Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install required packages
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
+
|
5 |
+
# Check if running in a standard environment (not Colab/Jupyter)
|
6 |
+
# and install packages if needed
|
7 |
+
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
|
8 |
+
try:
|
9 |
+
import gradio
|
10 |
+
import deepface
|
11 |
+
import cv2
|
12 |
+
import numpy as np
|
13 |
+
import matplotlib
|
14 |
+
import PIL
|
15 |
+
except ImportError:
|
16 |
+
print("Installing required packages...")
|
17 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install",
|
18 |
+
"gradio", "deepface", "opencv-python-headless", "numpy", "matplotlib", "pillow"])
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
+
import json
|
22 |
+
import cv2
|
23 |
+
import numpy as np
|
24 |
+
from deepface import DeepFace
|
25 |
+
import matplotlib.pyplot as plt
|
26 |
+
from PIL import Image
|
27 |
+
import tempfile
|
28 |
+
import os
|
29 |
+
import pandas as pd
|
30 |
+
import shutil
|
31 |
+
|
32 |
+
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
33 |
+
# Save uploaded images to temporary files
|
34 |
+
temp_dir = tempfile.mkdtemp()
|
35 |
+
img1_path = os.path.join(temp_dir, "image1.jpg")
|
36 |
+
img2_path = os.path.join(temp_dir, "image2.jpg")
|
37 |
+
|
38 |
+
# Convert to PIL Images and save
|
39 |
+
if isinstance(img1, np.ndarray):
|
40 |
+
Image.fromarray(img1).save(img1_path)
|
41 |
+
else:
|
42 |
+
img1.save(img1_path)
|
43 |
+
|
44 |
+
if isinstance(img2, np.ndarray):
|
45 |
+
Image.fromarray(img2).save(img2_path)
|
46 |
+
else:
|
47 |
+
img2.save(img2_path)
|
48 |
+
|
49 |
+
# Perform face verification
|
50 |
+
try:
|
51 |
+
result = DeepFace.verify(
|
52 |
+
img1_path=img1_path,
|
53 |
+
img2_path=img2_path,
|
54 |
+
model_name=model,
|
55 |
+
distance_metric="cosine",
|
56 |
+
threshold=threshold
|
57 |
+
)
|
58 |
+
|
59 |
+
# Create comparison visualization
|
60 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
61 |
+
|
62 |
+
# Display images
|
63 |
+
img1_display = cv2.imread(img1_path)
|
64 |
+
img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
|
65 |
+
img2_display = cv2.imread(img2_path)
|
66 |
+
img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)
|
67 |
+
|
68 |
+
ax[0].imshow(img1_display)
|
69 |
+
ax[0].set_title("Image 1")
|
70 |
+
ax[0].axis("off")
|
71 |
+
|
72 |
+
ax[1].imshow(img2_display)
|
73 |
+
ax[1].set_title("Image 2")
|
74 |
+
ax[1].axis("off")
|
75 |
+
|
76 |
+
# Create result message
|
77 |
+
verification_result = "β
FACE MATCHED" if result["verified"] else "β FACE NOT MATCHED"
|
78 |
+
confidence = round((1 - result["distance"]) * 100, 2)
|
79 |
+
|
80 |
+
plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
|
81 |
+
fontsize=16, fontweight='bold',
|
82 |
+
color='green' if result["verified"] else 'red')
|
83 |
+
|
84 |
+
plt.tight_layout()
|
85 |
+
|
86 |
+
# Clean up temporary files
|
87 |
+
os.remove(img1_path)
|
88 |
+
os.remove(img2_path)
|
89 |
+
os.rmdir(temp_dir)
|
90 |
+
|
91 |
+
return fig, json.dumps(result, indent=2)
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
# Clean up temporary files
|
95 |
+
if os.path.exists(img1_path):
|
96 |
+
os.remove(img1_path)
|
97 |
+
if os.path.exists(img2_path):
|
98 |
+
os.remove(img2_path)
|
99 |
+
if os.path.exists(temp_dir):
|
100 |
+
os.rmdir(temp_dir)
|
101 |
+
|
102 |
+
error_msg = f"Error: {str(e)}"
|
103 |
+
if "No face detected" in str(e):
|
104 |
+
error_msg = "No face detected in one or both images. Please try different images."
|
105 |
+
|
106 |
+
return None, error_msg
|
107 |
+
|
108 |
+
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
109 |
+
# Create temp directory
|
110 |
+
temp_dir = tempfile.mkdtemp()
|
111 |
+
query_path = os.path.join(temp_dir, "query.jpg")
|
112 |
+
|
113 |
+
# Save query image
|
114 |
+
if isinstance(query_img, np.ndarray):
|
115 |
+
Image.fromarray(query_img).save(query_path)
|
116 |
+
else:
|
117 |
+
query_img.save(query_path)
|
118 |
+
|
119 |
+
# If db_folder is just a string, assume it's a folder path the user entered
|
120 |
+
if isinstance(db_folder, str):
|
121 |
+
db_path = db_folder
|
122 |
+
else:
|
123 |
+
# Handling for folder upload (creates a temp directory with the images)
|
124 |
+
db_path = os.path.join(temp_dir, "db")
|
125 |
+
os.makedirs(db_path, exist_ok=True)
|
126 |
+
|
127 |
+
for i, file in enumerate(db_folder):
|
128 |
+
file_ext = os.path.splitext(file.name)[1]
|
129 |
+
shutil.copy(file.name, os.path.join(db_path, f"image_{i}{file_ext}"))
|
130 |
+
|
131 |
+
try:
|
132 |
+
# Find matching faces
|
133 |
+
dfs = DeepFace.find(
|
134 |
+
img_path=query_path,
|
135 |
+
db_path=db_path,
|
136 |
+
model_name=model,
|
137 |
+
distance_metric="cosine",
|
138 |
+
threshold=threshold
|
139 |
+
)
|
140 |
+
|
141 |
+
if isinstance(dfs, list):
|
142 |
+
# Handle case where multiple faces are found in query image
|
143 |
+
if len(dfs) == 0:
|
144 |
+
return None, "No matching faces found in the database."
|
145 |
+
df = dfs[0] # Take first face results
|
146 |
+
else:
|
147 |
+
df = dfs
|
148 |
+
|
149 |
+
# Check if any matches were found
|
150 |
+
if df.empty:
|
151 |
+
return None, "No matching faces found in the database."
|
152 |
+
|
153 |
+
# Sort by similarity (lowest distance first)
|
154 |
+
df = df.sort_values(by=["distance"])
|
155 |
+
|
156 |
+
# Create visualization for top matches (up to 4)
|
157 |
+
num_matches = min(4, len(df))
|
158 |
+
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
|
159 |
+
|
160 |
+
# Display query image
|
161 |
+
query_display = cv2.imread(query_path)
|
162 |
+
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
|
163 |
+
axes[0].imshow(query_display)
|
164 |
+
axes[0].set_title("Query Image")
|
165 |
+
axes[0].axis("off")
|
166 |
+
|
167 |
+
# Display matches
|
168 |
+
for i in range(num_matches):
|
169 |
+
match_path = df.iloc[i]["identity"]
|
170 |
+
distance = df.iloc[i]["distance"]
|
171 |
+
confidence = round((1 - distance) * 100, 2)
|
172 |
+
|
173 |
+
match_img = cv2.imread(match_path)
|
174 |
+
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
|
175 |
+
|
176 |
+
axes[i+1].imshow(match_img)
|
177 |
+
axes[i+1].set_title(f"Match #{i+1}\nConfidence: {confidence}%")
|
178 |
+
axes[i+1].axis("off")
|
179 |
+
|
180 |
+
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
|
181 |
+
plt.tight_layout()
|
182 |
+
|
183 |
+
# Format results for display
|
184 |
+
results = df[["identity", "distance"]].copy()
|
185 |
+
results["confidence"] = (1 - results["distance"]) * 100
|
186 |
+
results["confidence"] = results["confidence"].round(2)
|
187 |
+
results = results.rename(columns={"identity": "Image Path"})
|
188 |
+
|
189 |
+
# Clean up temp files
|
190 |
+
os.remove(query_path)
|
191 |
+
# Don't remove temp DB folder if it came from user input
|
192 |
+
if not isinstance(db_folder, str):
|
193 |
+
shutil.rmtree(db_path)
|
194 |
+
|
195 |
+
return fig, results.to_dict('records')
|
196 |
+
|
197 |
+
except Exception as e:
|
198 |
+
# Clean up temp files
|
199 |
+
if os.path.exists(query_path):
|
200 |
+
os.remove(query_path)
|
201 |
+
|
202 |
+
error_msg = f"Error: {str(e)}"
|
203 |
+
if "No face detected" in str(e):
|
204 |
+
error_msg = "No face detected in the query image. Please try a different image."
|
205 |
+
|
206 |
+
return None, error_msg
|
207 |
+
|
208 |
+
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
209 |
+
# Create temp directory and save image
|
210 |
+
temp_dir = tempfile.mkdtemp()
|
211 |
+
img_path = os.path.join(temp_dir, "analyze.jpg")
|
212 |
+
|
213 |
+
if isinstance(img, np.ndarray):
|
214 |
+
Image.fromarray(img).save(img_path)
|
215 |
+
else:
|
216 |
+
img.save(img_path)
|
217 |
+
|
218 |
+
try:
|
219 |
+
# Analyze facial attributes
|
220 |
+
results = DeepFace.analyze(
|
221 |
+
img_path=img_path,
|
222 |
+
actions=actions,
|
223 |
+
enforce_detection=True,
|
224 |
+
detector_backend='opencv'
|
225 |
+
)
|
226 |
+
|
227 |
+
# Handle both single face and multiple faces results
|
228 |
+
if isinstance(results, list):
|
229 |
+
num_faces = len(results)
|
230 |
+
else:
|
231 |
+
num_faces = 1
|
232 |
+
results = [results]
|
233 |
+
|
234 |
+
# Create visualization
|
235 |
+
fig = plt.figure(figsize=(14, 7))
|
236 |
+
|
237 |
+
# Load the image for display
|
238 |
+
img_display = cv2.imread(img_path)
|
239 |
+
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
|
240 |
+
|
241 |
+
# Main image display
|
242 |
+
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
|
243 |
+
main_ax.imshow(img_display)
|
244 |
+
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
|
245 |
+
main_ax.axis('off')
|
246 |
+
|
247 |
+
# Create a results summary for each face
|
248 |
+
for i, face_result in enumerate(results):
|
249 |
+
if i >= 4: # Limit to 4 faces for display
|
250 |
+
break
|
251 |
+
|
252 |
+
# Get main results
|
253 |
+
age = face_result.get('age', 'N/A')
|
254 |
+
gender = face_result.get('dominant_gender', 'N/A')
|
255 |
+
race = face_result.get('dominant_race', 'N/A')
|
256 |
+
emotion = face_result.get('dominant_emotion', 'N/A')
|
257 |
+
|
258 |
+
# Gender confidence
|
259 |
+
gender_conf = 'N/A'
|
260 |
+
if 'gender' in face_result and isinstance(face_result['gender'], dict):
|
261 |
+
for g, conf in face_result['gender'].items():
|
262 |
+
if g.lower() == gender.lower():
|
263 |
+
gender_conf = f"{conf:.1f}%"
|
264 |
+
break
|
265 |
+
|
266 |
+
# Race confidence
|
267 |
+
race_conf = 'N/A'
|
268 |
+
if 'race' in face_result and isinstance(face_result['race'], dict):
|
269 |
+
for r, conf in face_result['race'].items():
|
270 |
+
if r.lower() == race.lower():
|
271 |
+
race_conf = f"{conf:.1f}%"
|
272 |
+
break
|
273 |
+
|
274 |
+
# Emotion confidence
|
275 |
+
emotion_conf = 'N/A'
|
276 |
+
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
|
277 |
+
for e, conf in face_result['emotion'].items():
|
278 |
+
if e.lower() == emotion.lower():
|
279 |
+
emotion_conf = f"{conf:.1f}%"
|
280 |
+
break
|
281 |
+
|
282 |
+
# Create subplot for this face's results
|
283 |
+
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
|
284 |
+
|
285 |
+
# Format text for subplot
|
286 |
+
text = (
|
287 |
+
f"Face #{i+1}\n\n"
|
288 |
+
f"Age: {age}\n\n"
|
289 |
+
f"Gender: {gender} ({gender_conf})\n\n"
|
290 |
+
f"Race: {race} ({race_conf})\n\n"
|
291 |
+
f"Emotion: {emotion} ({emotion_conf})"
|
292 |
+
)
|
293 |
+
|
294 |
+
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
|
295 |
+
ax.axis('off')
|
296 |
+
|
297 |
+
plt.tight_layout()
|
298 |
+
|
299 |
+
# Clean up temp files
|
300 |
+
os.remove(img_path)
|
301 |
+
os.rmdir(temp_dir)
|
302 |
+
|
303 |
+
# Format results for display in JSON
|
304 |
+
formatted_results = []
|
305 |
+
for i, res in enumerate(results[:8]): # Limit to 8 faces for JSON display
|
306 |
+
face_data = {
|
307 |
+
"face_number": i+1,
|
308 |
+
"age": res.get("age", "N/A"),
|
309 |
+
"gender": {
|
310 |
+
"dominant": res.get("dominant_gender", "N/A"),
|
311 |
+
"confidence": res.get("gender", {})
|
312 |
+
},
|
313 |
+
"race": {
|
314 |
+
"dominant": res.get("dominant_race", "N/A"),
|
315 |
+
"confidence": res.get("race", {})
|
316 |
+
},
|
317 |
+
"emotion": {
|
318 |
+
"dominant": res.get("dominant_emotion", "N/A"),
|
319 |
+
"confidence": res.get("emotion", {})
|
320 |
+
}
|
321 |
+
}
|
322 |
+
formatted_results.append(face_data)
|
323 |
+
|
324 |
+
return fig, formatted_results
|
325 |
+
|
326 |
+
except Exception as e:
|
327 |
+
# Clean up temp files
|
328 |
+
if os.path.exists(img_path):
|
329 |
+
os.remove(img_path)
|
330 |
+
if os.path.exists(temp_dir):
|
331 |
+
os.rmdir(temp_dir)
|
332 |
+
|
333 |
+
error_msg = f"Error: {str(e)}"
|
334 |
+
if "No face detected" in str(e):
|
335 |
+
error_msg = "No face detected in the image. Please try a different image."
|
336 |
+
|
337 |
+
return None, error_msg
|
338 |
+
|
339 |
+
# Create Gradio interface
|
340 |
+
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
|
341 |
+
gr.Markdown("""
|
342 |
+
# π Complete Face Recognition Tool
|
343 |
+
|
344 |
+
This tool provides three face recognition features:
|
345 |
+
- **Verify Faces**: Compare two specific images to check if they contain the same person
|
346 |
+
- **Find Faces**: Search for matching faces in a database/folder
|
347 |
+
- **Analyze Face**: Determine age, gender, race, and emotion from a facial image
|
348 |
+
""")
|
349 |
+
|
350 |
+
with gr.Tabs():
|
351 |
+
with gr.TabItem("Verify Faces"):
|
352 |
+
with gr.Row():
|
353 |
+
with gr.Column():
|
354 |
+
img1_input = gr.Image(label="First Image", type="pil")
|
355 |
+
with gr.Column():
|
356 |
+
img2_input = gr.Image(label="Second Image", type="pil")
|
357 |
+
|
358 |
+
with gr.Row():
|
359 |
+
with gr.Column():
|
360 |
+
verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
|
361 |
+
label="Similarity Threshold (lower = stricter matching)")
|
362 |
+
with gr.Column():
|
363 |
+
verify_model = gr.Dropdown(
|
364 |
+
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
365 |
+
value="VGG-Face",
|
366 |
+
label="Face Recognition Model"
|
367 |
+
)
|
368 |
+
|
369 |
+
verify_button = gr.Button("Verify Faces", variant="primary")
|
370 |
+
|
371 |
+
with gr.Row():
|
372 |
+
verify_result_plot = gr.Plot(label="Verification Result")
|
373 |
+
|
374 |
+
with gr.Row():
|
375 |
+
verify_json = gr.JSON(label="Technical Details")
|
376 |
+
|
377 |
+
# Set up the verification function
|
378 |
+
verify_button.click(
|
379 |
+
verify_faces,
|
380 |
+
inputs=[img1_input, img2_input, verify_threshold, verify_model],
|
381 |
+
outputs=[verify_result_plot, verify_json]
|
382 |
+
)
|
383 |
+
|
384 |
+
gr.Markdown("""
|
385 |
+
### π How to use Face Verification:
|
386 |
+
1. Upload two facial images
|
387 |
+
2. Adjust the similarity threshold if needed
|
388 |
+
3. Select a face recognition model
|
389 |
+
4. Click "Verify Faces" button
|
390 |
+
5. View the results below
|
391 |
+
""")
|
392 |
+
|
393 |
+
with gr.TabItem("Find Faces"):
|
394 |
+
with gr.Row():
|
395 |
+
query_img = gr.Image(label="Query Image (Face to find)", type="pil")
|
396 |
+
|
397 |
+
with gr.Row():
|
398 |
+
with gr.Column():
|
399 |
+
db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)")
|
400 |
+
db_files_input = gr.File(label="Or upload images for database", file_count="multiple")
|
401 |
+
|
402 |
+
with gr.Row():
|
403 |
+
with gr.Column():
|
404 |
+
find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
|
405 |
+
label="Similarity Threshold (lower = stricter matching)")
|
406 |
+
with gr.Column():
|
407 |
+
find_model = gr.Dropdown(
|
408 |
+
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
409 |
+
value="VGG-Face",
|
410 |
+
label="Face Recognition Model"
|
411 |
+
)
|
412 |
+
|
413 |
+
find_button = gr.Button("Find Matching Faces", variant="primary")
|
414 |
+
|
415 |
+
with gr.Row():
|
416 |
+
find_result_plot = gr.Plot(label="Search Results")
|
417 |
+
|
418 |
+
with gr.Row():
|
419 |
+
find_results_table = gr.JSON(label="Detailed Results")
|
420 |
+
|
421 |
+
# Connect function to button
|
422 |
+
find_button.click(
|
423 |
+
find_faces,
|
424 |
+
inputs=[query_img, db_path_input, find_threshold, find_model],
|
425 |
+
outputs=[find_result_plot, find_results_table]
|
426 |
+
)
|
427 |
+
|
428 |
+
# Also connect with files input
|
429 |
+
db_files_input.change(
|
430 |
+
lambda x: "", # Clear the text input when files are uploaded
|
431 |
+
inputs=db_files_input,
|
432 |
+
outputs=db_path_input
|
433 |
+
)
|
434 |
+
|
435 |
+
gr.Markdown("""
|
436 |
+
### π How to use Face Finding:
|
437 |
+
1. Upload a query image containing the face you want to find
|
438 |
+
2. Either:
|
439 |
+
- Enter the path to a folder containing images to search through, or
|
440 |
+
- Upload multiple images to create a temporary database
|
441 |
+
3. Adjust the similarity threshold if needed
|
442 |
+
4. Select a face recognition model
|
443 |
+
5. Click "Find Matching Faces" button
|
444 |
+
6. View the results showing the most similar faces
|
445 |
+
""")
|
446 |
+
|
447 |
+
with gr.TabItem("Analyze Face"):
|
448 |
+
with gr.Row():
|
449 |
+
analyze_img = gr.Image(label="Upload Image for Analysis", type="pil")
|
450 |
+
|
451 |
+
with gr.Row():
|
452 |
+
actions_checkboxes = gr.CheckboxGroup(
|
453 |
+
choices=["age", "gender", "race", "emotion"],
|
454 |
+
value=["age", "gender", "race", "emotion"],
|
455 |
+
label="Select Attributes to Analyze"
|
456 |
+
)
|
457 |
+
|
458 |
+
analyze_button = gr.Button("Analyze Face", variant="primary")
|
459 |
+
|
460 |
+
with gr.Row():
|
461 |
+
analyze_result_plot = gr.Plot(label="Analysis Results")
|
462 |
+
|
463 |
+
with gr.Row():
|
464 |
+
analyze_json = gr.JSON(label="Detailed Analysis")
|
465 |
+
|
466 |
+
# Connect function to button
|
467 |
+
analyze_button.click(
|
468 |
+
analyze_face,
|
469 |
+
inputs=[analyze_img, actions_checkboxes],
|
470 |
+
outputs=[analyze_result_plot, analyze_json]
|
471 |
+
)
|
472 |
+
|
473 |
+
gr.Markdown("""
|
474 |
+
### π How to use Facial Analysis:
|
475 |
+
1. Upload an image containing one or more faces
|
476 |
+
2. Select which attributes you want to analyze
|
477 |
+
3. Click "Analyze Face" button
|
478 |
+
4. View the visual results and detailed JSON data
|
479 |
+
|
480 |
+
### π Understanding the results:
|
481 |
+
- The tool can detect multiple faces in a single image
|
482 |
+
- For each face, it provides:
|
483 |
+
- Estimated age
|
484 |
+
- Predicted gender with confidence
|
485 |
+
- Predicted race/ethnicity with confidence
|
486 |
+
- Detected emotional expression with confidence
|
487 |
+
- The JSON output provides detailed confidence scores for all categories
|
488 |
+
""")
|
489 |
+
|
490 |
+
# Launch the app
|
491 |
+
demo.launch()
|