Update app.py
Browse files
app.py
CHANGED
@@ -8,8 +8,12 @@ import pkg_resources
|
|
8 |
def install_package(package, version=None):
|
9 |
package_spec = f"{package}=={version}" if version else package
|
10 |
print(f"Installing {package_spec}...")
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
def ensure_package(package, version=None):
|
14 |
try:
|
15 |
if version:
|
@@ -17,26 +21,20 @@ def ensure_package(package, version=None):
|
|
17 |
else:
|
18 |
importlib.import_module(package)
|
19 |
print(f"{package} is already installed with the correct version.")
|
20 |
-
except (ImportError, pkg_resources.VersionConflict):
|
|
|
21 |
install_package(package, version)
|
22 |
|
23 |
# Check if running in a standard environment (not Colab/Jupyter)
|
24 |
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
|
25 |
print("Setting up environment...")
|
26 |
|
27 |
-
# First, uninstall problematic packages to start clean
|
28 |
-
for pkg in ["tensorflow", "numpy", "deepface", "ml-dtypes"]:
|
29 |
-
try:
|
30 |
-
subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "-y", pkg])
|
31 |
-
except:
|
32 |
-
pass
|
33 |
-
|
34 |
# Install packages in the correct order with compatible versions
|
35 |
-
ensure_package("numpy", "1.
|
36 |
-
ensure_package("protobuf", "3.20.3") #
|
37 |
-
ensure_package("tensorflow", "2.10.
|
38 |
|
39 |
-
# Install
|
40 |
for pkg in ["gradio", "opencv-python-headless", "matplotlib", "pillow", "pandas"]:
|
41 |
ensure_package(pkg)
|
42 |
|
@@ -58,12 +56,10 @@ import matplotlib.pyplot as plt
|
|
58 |
from deepface import DeepFace
|
59 |
|
60 |
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
61 |
-
# Save uploaded images to temporary files
|
62 |
temp_dir = tempfile.mkdtemp()
|
63 |
img1_path = os.path.join(temp_dir, "image1.jpg")
|
64 |
img2_path = os.path.join(temp_dir, "image2.jpg")
|
65 |
|
66 |
-
# Convert to PIL Images and save
|
67 |
if isinstance(img1, np.ndarray):
|
68 |
Image.fromarray(img1).save(img1_path)
|
69 |
else:
|
@@ -74,7 +70,6 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
74 |
else:
|
75 |
img2.save(img2_path)
|
76 |
|
77 |
-
# Perform face verification
|
78 |
try:
|
79 |
result = DeepFace.verify(
|
80 |
img1_path=img1_path,
|
@@ -84,10 +79,8 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
84 |
threshold=threshold
|
85 |
)
|
86 |
|
87 |
-
# Create comparison visualization
|
88 |
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
89 |
|
90 |
-
# Display images
|
91 |
img1_display = cv2.imread(img1_path)
|
92 |
img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
|
93 |
img2_display = cv2.imread(img2_path)
|
@@ -101,7 +94,6 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
101 |
ax[1].set_title("Image 2")
|
102 |
ax[1].axis("off")
|
103 |
|
104 |
-
# Create result message
|
105 |
verification_result = "β
FACE MATCHED" if result["verified"] else "β FACE NOT MATCHED"
|
106 |
confidence = round((1 - result["distance"]) * 100, 2)
|
107 |
|
@@ -111,7 +103,6 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
111 |
|
112 |
plt.tight_layout()
|
113 |
|
114 |
-
# Clean up temporary files
|
115 |
os.remove(img1_path)
|
116 |
os.remove(img2_path)
|
117 |
os.rmdir(temp_dir)
|
@@ -119,7 +110,6 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
119 |
return fig, json.dumps(result, indent=2)
|
120 |
|
121 |
except Exception as e:
|
122 |
-
# Clean up temporary files
|
123 |
if os.path.exists(img1_path):
|
124 |
os.remove(img1_path)
|
125 |
if os.path.exists(img2_path):
|
@@ -134,21 +124,17 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
134 |
return None, error_msg
|
135 |
|
136 |
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
137 |
-
# Create temp directory
|
138 |
temp_dir = tempfile.mkdtemp()
|
139 |
query_path = os.path.join(temp_dir, "query.jpg")
|
140 |
|
141 |
-
# Save query image
|
142 |
if isinstance(query_img, np.ndarray):
|
143 |
Image.fromarray(query_img).save(query_path)
|
144 |
else:
|
145 |
query_img.save(query_path)
|
146 |
|
147 |
-
# If db_folder is just a string, assume it's a folder path the user entered
|
148 |
if isinstance(db_folder, str):
|
149 |
db_path = db_folder
|
150 |
else:
|
151 |
-
# Handling for folder upload (creates a temp directory with the images)
|
152 |
db_path = os.path.join(temp_dir, "db")
|
153 |
os.makedirs(db_path, exist_ok=True)
|
154 |
|
@@ -157,7 +143,6 @@ def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
|
157 |
shutil.copy(file.name, os.path.join(db_path, f"image_{i}{file_ext}"))
|
158 |
|
159 |
try:
|
160 |
-
# Find matching faces
|
161 |
dfs = DeepFace.find(
|
162 |
img_path=query_path,
|
163 |
db_path=db_path,
|
@@ -167,32 +152,26 @@ def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
|
167 |
)
|
168 |
|
169 |
if isinstance(dfs, list):
|
170 |
-
# Handle case where multiple faces are found in query image
|
171 |
if len(dfs) == 0:
|
172 |
return None, "No matching faces found in the database."
|
173 |
-
df = dfs[0]
|
174 |
else:
|
175 |
df = dfs
|
176 |
|
177 |
-
# Check if any matches were found
|
178 |
if df.empty:
|
179 |
return None, "No matching faces found in the database."
|
180 |
|
181 |
-
# Sort by similarity (lowest distance first)
|
182 |
df = df.sort_values(by=["distance"])
|
183 |
|
184 |
-
# Create visualization for top matches (up to 4)
|
185 |
num_matches = min(4, len(df))
|
186 |
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
|
187 |
|
188 |
-
# Display query image
|
189 |
query_display = cv2.imread(query_path)
|
190 |
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
|
191 |
axes[0].imshow(query_display)
|
192 |
axes[0].set_title("Query Image")
|
193 |
axes[0].axis("off")
|
194 |
|
195 |
-
# Display matches
|
196 |
for i in range(num_matches):
|
197 |
match_path = df.iloc[i]["identity"]
|
198 |
distance = df.iloc[i]["distance"]
|
@@ -208,22 +187,18 @@ def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
|
208 |
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
|
209 |
plt.tight_layout()
|
210 |
|
211 |
-
# Format results for display
|
212 |
results = df[["identity", "distance"]].copy()
|
213 |
results["confidence"] = (1 - results["distance"]) * 100
|
214 |
results["confidence"] = results["confidence"].round(2)
|
215 |
results = results.rename(columns={"identity": "Image Path"})
|
216 |
|
217 |
-
# Clean up temp files
|
218 |
os.remove(query_path)
|
219 |
-
# Don't remove temp DB folder if it came from user input
|
220 |
if not isinstance(db_folder, str):
|
221 |
shutil.rmtree(db_path)
|
222 |
|
223 |
return fig, results.to_dict('records')
|
224 |
|
225 |
except Exception as e:
|
226 |
-
# Clean up temp files
|
227 |
if os.path.exists(query_path):
|
228 |
os.remove(query_path)
|
229 |
|
@@ -234,7 +209,6 @@ def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
|
234 |
return None, error_msg
|
235 |
|
236 |
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
237 |
-
# Create temp directory and save image
|
238 |
temp_dir = tempfile.mkdtemp()
|
239 |
img_path = os.path.join(temp_dir, "analyze.jpg")
|
240 |
|
@@ -244,7 +218,6 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
244 |
img.save(img_path)
|
245 |
|
246 |
try:
|
247 |
-
# Analyze facial attributes
|
248 |
results = DeepFace.analyze(
|
249 |
img_path=img_path,
|
250 |
actions=actions,
|
@@ -252,38 +225,31 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
252 |
detector_backend='opencv'
|
253 |
)
|
254 |
|
255 |
-
# Handle both single face and multiple faces results
|
256 |
if isinstance(results, list):
|
257 |
num_faces = len(results)
|
258 |
else:
|
259 |
num_faces = 1
|
260 |
results = [results]
|
261 |
|
262 |
-
# Create visualization
|
263 |
fig = plt.figure(figsize=(14, 7))
|
264 |
|
265 |
-
# Load the image for display
|
266 |
img_display = cv2.imread(img_path)
|
267 |
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
|
268 |
|
269 |
-
# Main image display
|
270 |
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
|
271 |
main_ax.imshow(img_display)
|
272 |
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
|
273 |
main_ax.axis('off')
|
274 |
|
275 |
-
# Create a results summary for each face
|
276 |
for i, face_result in enumerate(results):
|
277 |
-
if i >= 4:
|
278 |
break
|
279 |
|
280 |
-
# Get main results
|
281 |
age = face_result.get('age', 'N/A')
|
282 |
gender = face_result.get('dominant_gender', 'N/A')
|
283 |
race = face_result.get('dominant_race', 'N/A')
|
284 |
emotion = face_result.get('dominant_emotion', 'N/A')
|
285 |
|
286 |
-
# Gender confidence
|
287 |
gender_conf = 'N/A'
|
288 |
if 'gender' in face_result and isinstance(face_result['gender'], dict):
|
289 |
for g, conf in face_result['gender'].items():
|
@@ -291,7 +257,6 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
291 |
gender_conf = f"{conf:.1f}%"
|
292 |
break
|
293 |
|
294 |
-
# Race confidence
|
295 |
race_conf = 'N/A'
|
296 |
if 'race' in face_result and isinstance(face_result['race'], dict):
|
297 |
for r, conf in face_result['race'].items():
|
@@ -299,7 +264,6 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
299 |
race_conf = f"{conf:.1f}%"
|
300 |
break
|
301 |
|
302 |
-
# Emotion confidence
|
303 |
emotion_conf = 'N/A'
|
304 |
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
|
305 |
for e, conf in face_result['emotion'].items():
|
@@ -307,10 +271,8 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
307 |
emotion_conf = f"{conf:.1f}%"
|
308 |
break
|
309 |
|
310 |
-
# Create subplot for this face's results
|
311 |
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
|
312 |
|
313 |
-
# Format text for subplot
|
314 |
text = (
|
315 |
f"Face #{i+1}\n\n"
|
316 |
f"Age: {age}\n\n"
|
@@ -324,13 +286,11 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
324 |
|
325 |
plt.tight_layout()
|
326 |
|
327 |
-
# Clean up temp files
|
328 |
os.remove(img_path)
|
329 |
os.rmdir(temp_dir)
|
330 |
|
331 |
-
# Format results for display in JSON
|
332 |
formatted_results = []
|
333 |
-
for i, res in enumerate(results[:8]):
|
334 |
face_data = {
|
335 |
"face_number": i+1,
|
336 |
"age": res.get("age", "N/A"),
|
@@ -352,7 +312,6 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
352 |
return fig, formatted_results
|
353 |
|
354 |
except Exception as e:
|
355 |
-
# Clean up temp files
|
356 |
if os.path.exists(img_path):
|
357 |
os.remove(img_path)
|
358 |
if os.path.exists(temp_dir):
|
@@ -364,11 +323,9 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
364 |
|
365 |
return None, error_msg
|
366 |
|
367 |
-
# Create Gradio interface
|
368 |
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
|
369 |
gr.Markdown("""
|
370 |
# π Complete Face Recognition Tool
|
371 |
-
|
372 |
This tool provides three face recognition features:
|
373 |
- **Verify Faces**: Compare two specific images to check if they contain the same person
|
374 |
- **Find Faces**: Search for matching faces in a database/folder
|
@@ -378,142 +335,77 @@ with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) a
|
|
378 |
with gr.Tabs():
|
379 |
with gr.TabItem("Verify Faces"):
|
380 |
with gr.Row():
|
381 |
-
|
382 |
-
|
383 |
-
with gr.Column():
|
384 |
-
img2_input = gr.Image(label="Second Image", type="pil")
|
385 |
|
386 |
with gr.Row():
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
label="Face Recognition Model"
|
395 |
-
)
|
396 |
|
397 |
verify_button = gr.Button("Verify Faces", variant="primary")
|
398 |
|
399 |
-
|
400 |
-
|
401 |
|
402 |
-
with gr.Row():
|
403 |
-
verify_json = gr.JSON(label="Technical Details")
|
404 |
-
|
405 |
-
# Set up the verification function
|
406 |
verify_button.click(
|
407 |
verify_faces,
|
408 |
inputs=[img1_input, img2_input, verify_threshold, verify_model],
|
409 |
outputs=[verify_result_plot, verify_json]
|
410 |
)
|
411 |
|
412 |
-
gr.Markdown("""
|
413 |
-
### π How to use Face Verification:
|
414 |
-
1. Upload two facial images
|
415 |
-
2. Adjust the similarity threshold if needed
|
416 |
-
3. Select a face recognition model
|
417 |
-
4. Click "Verify Faces" button
|
418 |
-
5. View the results below
|
419 |
-
""")
|
420 |
-
|
421 |
with gr.TabItem("Find Faces"):
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
with gr.Row():
|
426 |
-
with gr.Column():
|
427 |
-
db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)")
|
428 |
-
db_files_input = gr.File(label="Or upload images for database", file_count="multiple")
|
429 |
|
430 |
with gr.Row():
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
label="Face Recognition Model"
|
439 |
-
)
|
440 |
|
441 |
find_button = gr.Button("Find Matching Faces", variant="primary")
|
442 |
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
with gr.Row():
|
447 |
-
find_results_table = gr.JSON(label="Detailed Results")
|
448 |
|
449 |
-
# Connect function to button
|
450 |
find_button.click(
|
451 |
find_faces,
|
452 |
inputs=[query_img, db_path_input, find_threshold, find_model],
|
453 |
outputs=[find_result_plot, find_results_table]
|
454 |
)
|
455 |
|
456 |
-
# Also connect with files input
|
457 |
db_files_input.change(
|
458 |
-
lambda x: "",
|
459 |
inputs=db_files_input,
|
460 |
outputs=db_path_input
|
461 |
)
|
462 |
|
463 |
-
gr.Markdown("""
|
464 |
-
### π How to use Face Finding:
|
465 |
-
1. Upload a query image containing the face you want to find
|
466 |
-
2. Either:
|
467 |
-
- Enter the path to a folder containing images to search through, or
|
468 |
-
- Upload multiple images to create a temporary database
|
469 |
-
3. Adjust the similarity threshold if needed
|
470 |
-
4. Select a face recognition model
|
471 |
-
5. Click "Find Matching Faces" button
|
472 |
-
6. View the results showing the most similar faces
|
473 |
-
""")
|
474 |
-
|
475 |
with gr.TabItem("Analyze Face"):
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
value=["age", "gender", "race", "emotion"],
|
483 |
-
label="Select Attributes to Analyze"
|
484 |
-
)
|
485 |
|
486 |
analyze_button = gr.Button("Analyze Face", variant="primary")
|
487 |
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
with gr.Row():
|
492 |
-
analyze_json = gr.JSON(label="Detailed Analysis")
|
493 |
|
494 |
-
# Connect function to button
|
495 |
analyze_button.click(
|
496 |
analyze_face,
|
497 |
inputs=[analyze_img, actions_checkboxes],
|
498 |
outputs=[analyze_result_plot, analyze_json]
|
499 |
)
|
500 |
|
501 |
-
gr.Markdown("""
|
502 |
-
### π How to use Facial Analysis:
|
503 |
-
1. Upload an image containing one or more faces
|
504 |
-
2. Select which attributes you want to analyze
|
505 |
-
3. Click "Analyze Face" button
|
506 |
-
4. View the visual results and detailed JSON data
|
507 |
-
|
508 |
-
### π Understanding the results:
|
509 |
-
- The tool can detect multiple faces in a single image
|
510 |
-
- For each face, it provides:
|
511 |
-
- Estimated age
|
512 |
-
- Predicted gender with confidence
|
513 |
-
- Predicted race/ethnicity with confidence
|
514 |
-
- Detected emotional expression with confidence
|
515 |
-
- The JSON output provides detailed confidence scores for all categories
|
516 |
-
""")
|
517 |
-
|
518 |
-
# Launch the app
|
519 |
demo.launch()
|
|
|
8 |
def install_package(package, version=None):
|
9 |
package_spec = f"{package}=={version}" if version else package
|
10 |
print(f"Installing {package_spec}...")
|
11 |
+
try:
|
12 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
|
13 |
+
except subprocess.CalledProcessError as e:
|
14 |
+
print(f"Failed to install {package_spec}: {e}")
|
15 |
+
raise
|
16 |
+
|
17 |
def ensure_package(package, version=None):
|
18 |
try:
|
19 |
if version:
|
|
|
21 |
else:
|
22 |
importlib.import_module(package)
|
23 |
print(f"{package} is already installed with the correct version.")
|
24 |
+
except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound) as e:
|
25 |
+
print(f"Package requirement failed: {e}")
|
26 |
install_package(package, version)
|
27 |
|
28 |
# Check if running in a standard environment (not Colab/Jupyter)
|
29 |
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
|
30 |
print("Setting up environment...")
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Install packages in the correct order with compatible versions
|
33 |
+
ensure_package("numpy", "1.23.5") # Compatible with TensorFlow 2.10
|
34 |
+
ensure_package("protobuf", "3.20.3") # Critical for TensorFlow compatibility
|
35 |
+
ensure_package("tensorflow", "2.10.0") # Stable version with good compatibility
|
36 |
|
37 |
+
# Install core dependencies
|
38 |
for pkg in ["gradio", "opencv-python-headless", "matplotlib", "pillow", "pandas"]:
|
39 |
ensure_package(pkg)
|
40 |
|
|
|
56 |
from deepface import DeepFace
|
57 |
|
58 |
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
|
59 |
temp_dir = tempfile.mkdtemp()
|
60 |
img1_path = os.path.join(temp_dir, "image1.jpg")
|
61 |
img2_path = os.path.join(temp_dir, "image2.jpg")
|
62 |
|
|
|
63 |
if isinstance(img1, np.ndarray):
|
64 |
Image.fromarray(img1).save(img1_path)
|
65 |
else:
|
|
|
70 |
else:
|
71 |
img2.save(img2_path)
|
72 |
|
|
|
73 |
try:
|
74 |
result = DeepFace.verify(
|
75 |
img1_path=img1_path,
|
|
|
79 |
threshold=threshold
|
80 |
)
|
81 |
|
|
|
82 |
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
83 |
|
|
|
84 |
img1_display = cv2.imread(img1_path)
|
85 |
img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
|
86 |
img2_display = cv2.imread(img2_path)
|
|
|
94 |
ax[1].set_title("Image 2")
|
95 |
ax[1].axis("off")
|
96 |
|
|
|
97 |
verification_result = "β
FACE MATCHED" if result["verified"] else "β FACE NOT MATCHED"
|
98 |
confidence = round((1 - result["distance"]) * 100, 2)
|
99 |
|
|
|
103 |
|
104 |
plt.tight_layout()
|
105 |
|
|
|
106 |
os.remove(img1_path)
|
107 |
os.remove(img2_path)
|
108 |
os.rmdir(temp_dir)
|
|
|
110 |
return fig, json.dumps(result, indent=2)
|
111 |
|
112 |
except Exception as e:
|
|
|
113 |
if os.path.exists(img1_path):
|
114 |
os.remove(img1_path)
|
115 |
if os.path.exists(img2_path):
|
|
|
124 |
return None, error_msg
|
125 |
|
126 |
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
|
|
127 |
temp_dir = tempfile.mkdtemp()
|
128 |
query_path = os.path.join(temp_dir, "query.jpg")
|
129 |
|
|
|
130 |
if isinstance(query_img, np.ndarray):
|
131 |
Image.fromarray(query_img).save(query_path)
|
132 |
else:
|
133 |
query_img.save(query_path)
|
134 |
|
|
|
135 |
if isinstance(db_folder, str):
|
136 |
db_path = db_folder
|
137 |
else:
|
|
|
138 |
db_path = os.path.join(temp_dir, "db")
|
139 |
os.makedirs(db_path, exist_ok=True)
|
140 |
|
|
|
143 |
shutil.copy(file.name, os.path.join(db_path, f"image_{i}{file_ext}"))
|
144 |
|
145 |
try:
|
|
|
146 |
dfs = DeepFace.find(
|
147 |
img_path=query_path,
|
148 |
db_path=db_path,
|
|
|
152 |
)
|
153 |
|
154 |
if isinstance(dfs, list):
|
|
|
155 |
if len(dfs) == 0:
|
156 |
return None, "No matching faces found in the database."
|
157 |
+
df = dfs[0]
|
158 |
else:
|
159 |
df = dfs
|
160 |
|
|
|
161 |
if df.empty:
|
162 |
return None, "No matching faces found in the database."
|
163 |
|
|
|
164 |
df = df.sort_values(by=["distance"])
|
165 |
|
|
|
166 |
num_matches = min(4, len(df))
|
167 |
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
|
168 |
|
|
|
169 |
query_display = cv2.imread(query_path)
|
170 |
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
|
171 |
axes[0].imshow(query_display)
|
172 |
axes[0].set_title("Query Image")
|
173 |
axes[0].axis("off")
|
174 |
|
|
|
175 |
for i in range(num_matches):
|
176 |
match_path = df.iloc[i]["identity"]
|
177 |
distance = df.iloc[i]["distance"]
|
|
|
187 |
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
|
188 |
plt.tight_layout()
|
189 |
|
|
|
190 |
results = df[["identity", "distance"]].copy()
|
191 |
results["confidence"] = (1 - results["distance"]) * 100
|
192 |
results["confidence"] = results["confidence"].round(2)
|
193 |
results = results.rename(columns={"identity": "Image Path"})
|
194 |
|
|
|
195 |
os.remove(query_path)
|
|
|
196 |
if not isinstance(db_folder, str):
|
197 |
shutil.rmtree(db_path)
|
198 |
|
199 |
return fig, results.to_dict('records')
|
200 |
|
201 |
except Exception as e:
|
|
|
202 |
if os.path.exists(query_path):
|
203 |
os.remove(query_path)
|
204 |
|
|
|
209 |
return None, error_msg
|
210 |
|
211 |
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
|
212 |
temp_dir = tempfile.mkdtemp()
|
213 |
img_path = os.path.join(temp_dir, "analyze.jpg")
|
214 |
|
|
|
218 |
img.save(img_path)
|
219 |
|
220 |
try:
|
|
|
221 |
results = DeepFace.analyze(
|
222 |
img_path=img_path,
|
223 |
actions=actions,
|
|
|
225 |
detector_backend='opencv'
|
226 |
)
|
227 |
|
|
|
228 |
if isinstance(results, list):
|
229 |
num_faces = len(results)
|
230 |
else:
|
231 |
num_faces = 1
|
232 |
results = [results]
|
233 |
|
|
|
234 |
fig = plt.figure(figsize=(14, 7))
|
235 |
|
|
|
236 |
img_display = cv2.imread(img_path)
|
237 |
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
|
238 |
|
|
|
239 |
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
|
240 |
main_ax.imshow(img_display)
|
241 |
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
|
242 |
main_ax.axis('off')
|
243 |
|
|
|
244 |
for i, face_result in enumerate(results):
|
245 |
+
if i >= 4:
|
246 |
break
|
247 |
|
|
|
248 |
age = face_result.get('age', 'N/A')
|
249 |
gender = face_result.get('dominant_gender', 'N/A')
|
250 |
race = face_result.get('dominant_race', 'N/A')
|
251 |
emotion = face_result.get('dominant_emotion', 'N/A')
|
252 |
|
|
|
253 |
gender_conf = 'N/A'
|
254 |
if 'gender' in face_result and isinstance(face_result['gender'], dict):
|
255 |
for g, conf in face_result['gender'].items():
|
|
|
257 |
gender_conf = f"{conf:.1f}%"
|
258 |
break
|
259 |
|
|
|
260 |
race_conf = 'N/A'
|
261 |
if 'race' in face_result and isinstance(face_result['race'], dict):
|
262 |
for r, conf in face_result['race'].items():
|
|
|
264 |
race_conf = f"{conf:.1f}%"
|
265 |
break
|
266 |
|
|
|
267 |
emotion_conf = 'N/A'
|
268 |
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
|
269 |
for e, conf in face_result['emotion'].items():
|
|
|
271 |
emotion_conf = f"{conf:.1f}%"
|
272 |
break
|
273 |
|
|
|
274 |
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
|
275 |
|
|
|
276 |
text = (
|
277 |
f"Face #{i+1}\n\n"
|
278 |
f"Age: {age}\n\n"
|
|
|
286 |
|
287 |
plt.tight_layout()
|
288 |
|
|
|
289 |
os.remove(img_path)
|
290 |
os.rmdir(temp_dir)
|
291 |
|
|
|
292 |
formatted_results = []
|
293 |
+
for i, res in enumerate(results[:8]):
|
294 |
face_data = {
|
295 |
"face_number": i+1,
|
296 |
"age": res.get("age", "N/A"),
|
|
|
312 |
return fig, formatted_results
|
313 |
|
314 |
except Exception as e:
|
|
|
315 |
if os.path.exists(img_path):
|
316 |
os.remove(img_path)
|
317 |
if os.path.exists(temp_dir):
|
|
|
323 |
|
324 |
return None, error_msg
|
325 |
|
|
|
326 |
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
|
327 |
gr.Markdown("""
|
328 |
# π Complete Face Recognition Tool
|
|
|
329 |
This tool provides three face recognition features:
|
330 |
- **Verify Faces**: Compare two specific images to check if they contain the same person
|
331 |
- **Find Faces**: Search for matching faces in a database/folder
|
|
|
335 |
with gr.Tabs():
|
336 |
with gr.TabItem("Verify Faces"):
|
337 |
with gr.Row():
|
338 |
+
img1_input = gr.Image(label="First Image", type="pil")
|
339 |
+
img2_input = gr.Image(label="Second Image", type="pil")
|
|
|
|
|
340 |
|
341 |
with gr.Row():
|
342 |
+
verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
|
343 |
+
label="Similarity Threshold (lower = stricter matching)")
|
344 |
+
verify_model = gr.Dropdown(
|
345 |
+
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
346 |
+
value="VGG-Face",
|
347 |
+
label="Face Recognition Model"
|
348 |
+
)
|
|
|
|
|
349 |
|
350 |
verify_button = gr.Button("Verify Faces", variant="primary")
|
351 |
|
352 |
+
verify_result_plot = gr.Plot(label="Verification Result")
|
353 |
+
verify_json = gr.JSON(label="Technical Details")
|
354 |
|
|
|
|
|
|
|
|
|
355 |
verify_button.click(
|
356 |
verify_faces,
|
357 |
inputs=[img1_input, img2_input, verify_threshold, verify_model],
|
358 |
outputs=[verify_result_plot, verify_json]
|
359 |
)
|
360 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
with gr.TabItem("Find Faces"):
|
362 |
+
query_img = gr.Image(label="Query Image (Face to find)", type="pil")
|
363 |
+
db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)")
|
364 |
+
db_files_input = gr.File(label="Or upload images for database", file_count="multiple")
|
|
|
|
|
|
|
|
|
365 |
|
366 |
with gr.Row():
|
367 |
+
find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
|
368 |
+
label="Similarity Threshold (lower = stricter matching)")
|
369 |
+
find_model = gr.Dropdown(
|
370 |
+
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
371 |
+
value="VGG-Face",
|
372 |
+
label="Face Recognition Model"
|
373 |
+
)
|
|
|
|
|
374 |
|
375 |
find_button = gr.Button("Find Matching Faces", variant="primary")
|
376 |
|
377 |
+
find_result_plot = gr.Plot(label="Search Results")
|
378 |
+
find_results_table = gr.JSON(label="Detailed Results")
|
|
|
|
|
|
|
379 |
|
|
|
380 |
find_button.click(
|
381 |
find_faces,
|
382 |
inputs=[query_img, db_path_input, find_threshold, find_model],
|
383 |
outputs=[find_result_plot, find_results_table]
|
384 |
)
|
385 |
|
|
|
386 |
db_files_input.change(
|
387 |
+
lambda x: "",
|
388 |
inputs=db_files_input,
|
389 |
outputs=db_path_input
|
390 |
)
|
391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
with gr.TabItem("Analyze Face"):
|
393 |
+
analyze_img = gr.Image(label="Upload Image for Analysis", type="pil")
|
394 |
+
actions_checkboxes = gr.CheckboxGroup(
|
395 |
+
choices=["age", "gender", "race", "emotion"],
|
396 |
+
value=["age", "gender", "race", "emotion"],
|
397 |
+
label="Select Attributes to Analyze"
|
398 |
+
)
|
|
|
|
|
|
|
399 |
|
400 |
analyze_button = gr.Button("Analyze Face", variant="primary")
|
401 |
|
402 |
+
analyze_result_plot = gr.Plot(label="Analysis Results")
|
403 |
+
analyze_json = gr.JSON(label="Detailed Analysis")
|
|
|
|
|
|
|
404 |
|
|
|
405 |
analyze_button.click(
|
406 |
analyze_face,
|
407 |
inputs=[analyze_img, actions_checkboxes],
|
408 |
outputs=[analyze_result_plot, analyze_json]
|
409 |
)
|
410 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
demo.launch()
|