Update app.py
Browse files
app.py
CHANGED
@@ -63,17 +63,19 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
63 |
img1_path = os.path.join(temp_dir, "image1.jpg")
|
64 |
img2_path = os.path.join(temp_dir, "image2.jpg")
|
65 |
|
66 |
-
if isinstance(img1, np.ndarray):
|
67 |
-
Image.fromarray(img1).save(img1_path)
|
68 |
-
else:
|
69 |
-
img1.save(img1_path)
|
70 |
-
|
71 |
-
if isinstance(img2, np.ndarray):
|
72 |
-
Image.fromarray(img2).save(img2_path)
|
73 |
-
else:
|
74 |
-
img2.save(img2_path)
|
75 |
-
|
76 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
result = DeepFace.verify(
|
78 |
img1_path=img1_path,
|
79 |
img2_path=img2_path,
|
@@ -82,6 +84,7 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
82 |
threshold=threshold
|
83 |
)
|
84 |
|
|
|
85 |
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
86 |
|
87 |
img1_display = cv2.imread(img1_path)
|
@@ -106,13 +109,15 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
106 |
|
107 |
plt.tight_layout()
|
108 |
|
|
|
109 |
os.remove(img1_path)
|
110 |
os.remove(img2_path)
|
111 |
os.rmdir(temp_dir)
|
112 |
|
113 |
-
return fig,
|
114 |
-
|
115 |
except Exception as e:
|
|
|
116 |
if os.path.exists(img1_path):
|
117 |
os.remove(img1_path)
|
118 |
if os.path.exists(img2_path):
|
@@ -120,40 +125,42 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
120 |
if os.path.exists(temp_dir):
|
121 |
os.rmdir(temp_dir)
|
122 |
|
123 |
-
error_msg =
|
124 |
-
if "No face detected" in
|
125 |
error_msg = "No face detected in one or both images. Please try different images."
|
126 |
|
127 |
-
return None, error_msg
|
128 |
|
129 |
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
130 |
temp_dir = tempfile.mkdtemp()
|
131 |
query_path = os.path.join(temp_dir, "query.jpg")
|
132 |
|
133 |
-
if isinstance(query_img, np.ndarray):
|
134 |
-
Image.fromarray(query_img).save(query_path)
|
135 |
-
else:
|
136 |
-
query_img.save(query_path)
|
137 |
-
|
138 |
-
# Handle cloud storage paths and uploaded files
|
139 |
-
if isinstance(db_folder, str):
|
140 |
-
if db_folder.startswith("/content/drive"):
|
141 |
-
db_path = db_folder
|
142 |
-
else:
|
143 |
-
db_path = os.path.abspath(db_folder)
|
144 |
-
if not os.path.exists(db_path):
|
145 |
-
return None, "Invalid database path - directory does not exist"
|
146 |
-
else:
|
147 |
-
db_path = os.path.join(temp_dir, "db")
|
148 |
-
os.makedirs(db_path, exist_ok=True)
|
149 |
-
|
150 |
-
for i, file in enumerate(db_folder):
|
151 |
-
orig_filename = file.orig_name
|
152 |
-
file_ext = os.path.splitext(orig_filename)[1]
|
153 |
-
new_filename = f"image_{i}{file_ext}"
|
154 |
-
shutil.copy(file.name, os.path.join(db_path, new_filename))
|
155 |
-
|
156 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
dfs = DeepFace.find(
|
158 |
img_path=query_path,
|
159 |
db_path=db_path,
|
@@ -163,18 +170,20 @@ def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
|
163 |
silent=True
|
164 |
)
|
165 |
|
|
|
166 |
if isinstance(dfs, list):
|
167 |
if len(dfs) == 0:
|
168 |
-
return None, "No matching faces found in the database."
|
169 |
df = dfs[0]
|
170 |
else:
|
171 |
df = dfs
|
172 |
|
173 |
if df.empty:
|
174 |
-
return None, "No matching faces found in the database."
|
175 |
|
176 |
df = df.sort_values(by=["distance"])
|
177 |
|
|
|
178 |
num_matches = min(4, len(df))
|
179 |
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
|
180 |
|
@@ -193,9 +202,6 @@ def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
|
193 |
if not os.path.exists(match_path):
|
194 |
continue
|
195 |
|
196 |
-
distance = df.iloc[i]["distance"]
|
197 |
-
confidence = round((1 - distance) * 100, 2)
|
198 |
-
|
199 |
try:
|
200 |
match_img = cv2.imread(match_path)
|
201 |
if match_img is None:
|
@@ -203,51 +209,55 @@ def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
|
203 |
|
204 |
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
|
205 |
axes[valid_matches+1].imshow(match_img)
|
206 |
-
axes[valid_matches+1].set_title(f"Match #{valid_matches+1}
|
207 |
axes[valid_matches+1].axis("off")
|
208 |
valid_matches += 1
|
209 |
-
except:
|
210 |
continue
|
211 |
|
|
|
212 |
for j in range(valid_matches+1, num_matches+1):
|
213 |
axes[j].axis("off")
|
214 |
|
215 |
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
|
216 |
plt.tight_layout()
|
217 |
|
|
|
218 |
results = df[["identity", "distance"]].copy()
|
219 |
results["confidence"] = (1 - results["distance"]) * 100
|
220 |
results["confidence"] = results["confidence"].round(2)
|
221 |
-
results = results.rename(columns={"identity": "Image Path"})
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
shutil.rmtree(db_path)
|
226 |
-
|
227 |
-
return fig, results.to_dict('records')
|
228 |
-
|
229 |
except Exception as e:
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
error_msg = f"Error: {str(e)}"
|
234 |
-
if "No face detected" in str(e):
|
235 |
error_msg = "No face detected in the query image. Please try a different image."
|
236 |
-
elif "No such file or directory" in
|
237 |
error_msg = "Invalid database path or corrupted image files"
|
238 |
|
239 |
-
return None, error_msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
242 |
temp_dir = tempfile.mkdtemp()
|
243 |
img_path = os.path.join(temp_dir, "analyze.jpg")
|
244 |
|
245 |
-
if isinstance(img, np.ndarray):
|
246 |
-
Image.fromarray(img).save(img_path)
|
247 |
-
else:
|
248 |
-
img.save(img_path)
|
249 |
-
|
250 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
results = DeepFace.analyze(
|
252 |
img_path=img_path,
|
253 |
actions=actions,
|
@@ -255,12 +265,14 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
255 |
detector_backend='opencv'
|
256 |
)
|
257 |
|
|
|
258 |
if isinstance(results, list):
|
259 |
num_faces = len(results)
|
260 |
else:
|
261 |
num_faces = 1
|
262 |
results = [results]
|
263 |
|
|
|
264 |
fig = plt.figure(figsize=(14, 7))
|
265 |
|
266 |
img_display = cv2.imread(img_path)
|
@@ -271,88 +283,48 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
271 |
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
|
272 |
main_ax.axis('off')
|
273 |
|
274 |
-
for i, face_result in enumerate(results):
|
275 |
-
|
276 |
-
break
|
277 |
-
|
278 |
age = face_result.get('age', 'N/A')
|
279 |
gender = face_result.get('dominant_gender', 'N/A')
|
280 |
race = face_result.get('dominant_race', 'N/A')
|
281 |
emotion = face_result.get('dominant_emotion', 'N/A')
|
282 |
|
283 |
-
|
284 |
-
if 'gender' in face_result and isinstance(face_result['gender'], dict):
|
285 |
-
for g, conf in face_result['gender'].items():
|
286 |
-
if g.lower() == gender.lower():
|
287 |
-
gender_conf = f"{conf:.1f}%"
|
288 |
-
break
|
289 |
-
|
290 |
-
race_conf = 'N/A'
|
291 |
-
if 'race' in face_result and isinstance(face_result['race'], dict):
|
292 |
-
for r, conf in face_result['race'].items():
|
293 |
-
if r.lower() == race.lower():
|
294 |
-
race_conf = f"{conf:.1f}%"
|
295 |
-
break
|
296 |
-
|
297 |
-
emotion_conf = 'N/A'
|
298 |
-
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
|
299 |
-
for e, conf in face_result['emotion'].items():
|
300 |
-
if e.lower() == emotion.lower():
|
301 |
-
emotion_conf = f"{conf:.1f}%"
|
302 |
-
break
|
303 |
-
|
304 |
-
# Fixed line with proper parentheses
|
305 |
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
|
306 |
-
|
307 |
-
text = (
|
308 |
-
f"Face #{i+1}\n\n"
|
309 |
-
f"Age: {age}\n\n"
|
310 |
-
f"Gender: {gender} ({gender_conf})\n\n"
|
311 |
-
f"Race: {race} ({race_conf})\n\n"
|
312 |
-
f"Emotion: {emotion} ({emotion_conf})"
|
313 |
-
)
|
314 |
-
|
315 |
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
|
316 |
ax.axis('off')
|
317 |
|
318 |
plt.tight_layout()
|
319 |
|
320 |
-
|
321 |
-
os.rmdir(temp_dir)
|
322 |
-
|
323 |
formatted_results = []
|
324 |
for i, res in enumerate(results[:8]):
|
325 |
face_data = {
|
326 |
"face_number": i+1,
|
327 |
"age": res.get("age", "N/A"),
|
328 |
-
"gender":
|
329 |
-
|
330 |
-
|
331 |
-
},
|
332 |
-
"race": {
|
333 |
-
"dominant": res.get("dominant_race", "N/A"),
|
334 |
-
"confidence": res.get("race", {})
|
335 |
-
},
|
336 |
-
"emotion": {
|
337 |
-
"dominant": res.get("dominant_emotion", "N/A"),
|
338 |
-
"confidence": res.get("emotion", {})
|
339 |
-
}
|
340 |
}
|
341 |
formatted_results.append(face_data)
|
342 |
|
343 |
return fig, formatted_results
|
344 |
|
345 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
if os.path.exists(img_path):
|
347 |
os.remove(img_path)
|
348 |
if os.path.exists(temp_dir):
|
349 |
os.rmdir(temp_dir)
|
350 |
-
|
351 |
-
error_msg = f"Error: {str(e)}"
|
352 |
-
if "No face detected" in str(e):
|
353 |
-
error_msg = "No face detected in the image. Please try a different image."
|
354 |
-
|
355 |
-
return None, error_msg
|
356 |
|
357 |
# Create Gradio interface
|
358 |
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
|
@@ -360,90 +332,99 @@ with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) a
|
|
360 |
# 🔍 Complete Face Recognition Tool
|
361 |
|
362 |
This tool provides three face recognition features:
|
363 |
-
- **Verify Faces**: Compare two
|
364 |
-
- **Find Faces**: Search for matching faces in a database/folder
|
365 |
-
- **Analyze Face**: Determine age, gender, race, and emotion from
|
366 |
""")
|
367 |
|
368 |
with gr.Tabs():
|
|
|
369 |
with gr.TabItem("Verify Faces"):
|
370 |
with gr.Row():
|
371 |
-
|
372 |
-
|
373 |
|
374 |
with gr.Row():
|
375 |
-
verify_threshold = gr.Slider(
|
376 |
-
|
377 |
verify_model = gr.Dropdown(
|
378 |
-
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
379 |
-
value="VGG-Face",
|
380 |
-
label="
|
381 |
)
|
382 |
|
383 |
-
|
384 |
|
385 |
-
|
386 |
-
|
|
|
387 |
|
|
|
388 |
with gr.TabItem("Find Faces"):
|
389 |
-
query_img = gr.Image(label="Query Image
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
|
|
|
|
395 |
|
396 |
with gr.Row():
|
397 |
-
find_threshold = gr.Slider(
|
398 |
-
|
399 |
find_model = gr.Dropdown(
|
400 |
-
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
401 |
-
value="VGG-Face",
|
402 |
-
label="
|
403 |
)
|
404 |
|
405 |
-
|
406 |
|
407 |
-
|
408 |
-
|
|
|
409 |
|
|
|
410 |
with gr.TabItem("Analyze Face"):
|
411 |
-
analyze_img = gr.Image(label="
|
412 |
-
|
413 |
choices=["age", "gender", "race", "emotion"],
|
414 |
value=["age", "gender", "race", "emotion"],
|
415 |
-
label="
|
416 |
)
|
417 |
|
418 |
-
|
419 |
|
420 |
-
|
421 |
-
|
|
|
422 |
|
423 |
-
#
|
424 |
-
|
425 |
-
verify_faces,
|
426 |
-
inputs=[
|
427 |
-
outputs=[
|
428 |
)
|
429 |
|
430 |
-
|
431 |
find_faces,
|
432 |
-
inputs=[query_img,
|
433 |
-
outputs=[
|
434 |
)
|
435 |
|
436 |
-
|
437 |
lambda x: "",
|
438 |
-
inputs=
|
439 |
-
outputs=
|
440 |
)
|
441 |
|
442 |
-
|
443 |
analyze_face,
|
444 |
-
inputs=[analyze_img,
|
445 |
-
outputs=[
|
446 |
)
|
447 |
|
448 |
# Launch the app
|
449 |
-
|
|
|
|
63 |
img1_path = os.path.join(temp_dir, "image1.jpg")
|
64 |
img2_path = os.path.join(temp_dir, "image2.jpg")
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
try:
|
67 |
+
# Save images
|
68 |
+
if isinstance(img1, np.ndarray):
|
69 |
+
Image.fromarray(img1).save(img1_path)
|
70 |
+
else:
|
71 |
+
img1.save(img1_path)
|
72 |
+
|
73 |
+
if isinstance(img2, np.ndarray):
|
74 |
+
Image.fromarray(img2).save(img2_path)
|
75 |
+
else:
|
76 |
+
img2.save(img2_path)
|
77 |
+
|
78 |
+
# Perform verification
|
79 |
result = DeepFace.verify(
|
80 |
img1_path=img1_path,
|
81 |
img2_path=img2_path,
|
|
|
84 |
threshold=threshold
|
85 |
)
|
86 |
|
87 |
+
# Create visualization
|
88 |
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
89 |
|
90 |
img1_display = cv2.imread(img1_path)
|
|
|
109 |
|
110 |
plt.tight_layout()
|
111 |
|
112 |
+
# Clean up
|
113 |
os.remove(img1_path)
|
114 |
os.remove(img2_path)
|
115 |
os.rmdir(temp_dir)
|
116 |
|
117 |
+
return fig, result # Return raw dict instead of JSON string
|
118 |
+
|
119 |
except Exception as e:
|
120 |
+
# Clean up even if error occurs
|
121 |
if os.path.exists(img1_path):
|
122 |
os.remove(img1_path)
|
123 |
if os.path.exists(img2_path):
|
|
|
125 |
if os.path.exists(temp_dir):
|
126 |
os.rmdir(temp_dir)
|
127 |
|
128 |
+
error_msg = str(e)
|
129 |
+
if "No face detected" in error_msg:
|
130 |
error_msg = "No face detected in one or both images. Please try different images."
|
131 |
|
132 |
+
return None, {"error": error_msg}
|
133 |
|
134 |
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
135 |
temp_dir = tempfile.mkdtemp()
|
136 |
query_path = os.path.join(temp_dir, "query.jpg")
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
try:
|
139 |
+
# Save query image
|
140 |
+
if isinstance(query_img, np.ndarray):
|
141 |
+
Image.fromarray(query_img).save(query_path)
|
142 |
+
else:
|
143 |
+
query_img.save(query_path)
|
144 |
+
|
145 |
+
# Handle database path
|
146 |
+
if isinstance(db_folder, str):
|
147 |
+
if db_folder.startswith("/content/drive"):
|
148 |
+
db_path = db_folder
|
149 |
+
else:
|
150 |
+
db_path = os.path.abspath(db_folder)
|
151 |
+
if not os.path.exists(db_path):
|
152 |
+
return None, {"error": "Invalid database path - directory does not exist"}
|
153 |
+
else:
|
154 |
+
db_path = os.path.join(temp_dir, "db")
|
155 |
+
os.makedirs(db_path, exist_ok=True)
|
156 |
+
|
157 |
+
for i, file in enumerate(db_folder):
|
158 |
+
orig_filename = file.orig_name
|
159 |
+
file_ext = os.path.splitext(orig_filename)[1]
|
160 |
+
new_filename = f"image_{i}{file_ext}"
|
161 |
+
shutil.copy(file.name, os.path.join(db_path, new_filename))
|
162 |
+
|
163 |
+
# Find matches
|
164 |
dfs = DeepFace.find(
|
165 |
img_path=query_path,
|
166 |
db_path=db_path,
|
|
|
170 |
silent=True
|
171 |
)
|
172 |
|
173 |
+
# Process results
|
174 |
if isinstance(dfs, list):
|
175 |
if len(dfs) == 0:
|
176 |
+
return None, {"error": "No matching faces found in the database."}
|
177 |
df = dfs[0]
|
178 |
else:
|
179 |
df = dfs
|
180 |
|
181 |
if df.empty:
|
182 |
+
return None, {"error": "No matching faces found in the database."}
|
183 |
|
184 |
df = df.sort_values(by=["distance"])
|
185 |
|
186 |
+
# Create visualization
|
187 |
num_matches = min(4, len(df))
|
188 |
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
|
189 |
|
|
|
202 |
if not os.path.exists(match_path):
|
203 |
continue
|
204 |
|
|
|
|
|
|
|
205 |
try:
|
206 |
match_img = cv2.imread(match_path)
|
207 |
if match_img is None:
|
|
|
209 |
|
210 |
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
|
211 |
axes[valid_matches+1].imshow(match_img)
|
212 |
+
axes[valid_matches+1].set_title(f"Match #{valid_matches+1}")
|
213 |
axes[valid_matches+1].axis("off")
|
214 |
valid_matches += 1
|
215 |
+
except Exception as e:
|
216 |
continue
|
217 |
|
218 |
+
# Hide empty axes
|
219 |
for j in range(valid_matches+1, num_matches+1):
|
220 |
axes[j].axis("off")
|
221 |
|
222 |
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
|
223 |
plt.tight_layout()
|
224 |
|
225 |
+
# Prepare results
|
226 |
results = df[["identity", "distance"]].copy()
|
227 |
results["confidence"] = (1 - results["distance"]) * 100
|
228 |
results["confidence"] = results["confidence"].round(2)
|
229 |
+
results = results.rename(columns={"identity": "Image Path"}).to_dict('records')
|
230 |
|
231 |
+
return fig, results
|
232 |
+
|
|
|
|
|
|
|
|
|
233 |
except Exception as e:
|
234 |
+
error_msg = str(e)
|
235 |
+
if "No face detected" in error_msg:
|
|
|
|
|
|
|
236 |
error_msg = "No face detected in the query image. Please try a different image."
|
237 |
+
elif "No such file or directory" in error_msg:
|
238 |
error_msg = "Invalid database path or corrupted image files"
|
239 |
|
240 |
+
return None, {"error": error_msg}
|
241 |
+
|
242 |
+
finally:
|
243 |
+
# Clean up
|
244 |
+
if os.path.exists(query_path):
|
245 |
+
os.remove(query_path)
|
246 |
+
if 'db_path' in locals() and not isinstance(db_folder, str):
|
247 |
+
shutil.rmtree(db_path, ignore_errors=True)
|
248 |
|
249 |
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
250 |
temp_dir = tempfile.mkdtemp()
|
251 |
img_path = os.path.join(temp_dir, "analyze.jpg")
|
252 |
|
|
|
|
|
|
|
|
|
|
|
253 |
try:
|
254 |
+
# Save image
|
255 |
+
if isinstance(img, np.ndarray):
|
256 |
+
Image.fromarray(img).save(img_path)
|
257 |
+
else:
|
258 |
+
img.save(img_path)
|
259 |
+
|
260 |
+
# Analyze image
|
261 |
results = DeepFace.analyze(
|
262 |
img_path=img_path,
|
263 |
actions=actions,
|
|
|
265 |
detector_backend='opencv'
|
266 |
)
|
267 |
|
268 |
+
# Process results
|
269 |
if isinstance(results, list):
|
270 |
num_faces = len(results)
|
271 |
else:
|
272 |
num_faces = 1
|
273 |
results = [results]
|
274 |
|
275 |
+
# Create visualization
|
276 |
fig = plt.figure(figsize=(14, 7))
|
277 |
|
278 |
img_display = cv2.imread(img_path)
|
|
|
283 |
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
|
284 |
main_ax.axis('off')
|
285 |
|
286 |
+
for i, face_result in enumerate(results[:4]):
|
287 |
+
# Get analysis data
|
|
|
|
|
288 |
age = face_result.get('age', 'N/A')
|
289 |
gender = face_result.get('dominant_gender', 'N/A')
|
290 |
race = face_result.get('dominant_race', 'N/A')
|
291 |
emotion = face_result.get('dominant_emotion', 'N/A')
|
292 |
|
293 |
+
# Create subplot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
|
295 |
+
text = f"Face #{i+1}\n\nAge: {age}\nGender: {gender}\nRace: {race}\nEmotion: {emotion}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
|
297 |
ax.axis('off')
|
298 |
|
299 |
plt.tight_layout()
|
300 |
|
301 |
+
# Format results
|
|
|
|
|
302 |
formatted_results = []
|
303 |
for i, res in enumerate(results[:8]):
|
304 |
face_data = {
|
305 |
"face_number": i+1,
|
306 |
"age": res.get("age", "N/A"),
|
307 |
+
"gender": res.get("dominant_gender", "N/A"),
|
308 |
+
"race": res.get("dominant_race", "N/A"),
|
309 |
+
"emotion": res.get("dominant_emotion", "N/A")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
}
|
311 |
formatted_results.append(face_data)
|
312 |
|
313 |
return fig, formatted_results
|
314 |
|
315 |
except Exception as e:
|
316 |
+
error_msg = str(e)
|
317 |
+
if "No face detected" in error_msg:
|
318 |
+
error_msg = "No face detected in the image. Please try a different image."
|
319 |
+
|
320 |
+
return None, {"error": error_msg}
|
321 |
+
|
322 |
+
finally:
|
323 |
+
# Clean up
|
324 |
if os.path.exists(img_path):
|
325 |
os.remove(img_path)
|
326 |
if os.path.exists(temp_dir):
|
327 |
os.rmdir(temp_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
# Create Gradio interface
|
330 |
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
|
|
|
332 |
# 🔍 Complete Face Recognition Tool
|
333 |
|
334 |
This tool provides three face recognition features:
|
335 |
+
- **Verify Faces**: Compare two images to check if they contain the same person
|
336 |
+
- **Find Faces**: Search for matching faces in a database/folder
|
337 |
+
- **Analyze Face**: Determine age, gender, race, and emotion from facial images
|
338 |
""")
|
339 |
|
340 |
with gr.Tabs():
|
341 |
+
# Verify Faces Tab
|
342 |
with gr.TabItem("Verify Faces"):
|
343 |
with gr.Row():
|
344 |
+
img1 = gr.Image(label="First Image", type="pil")
|
345 |
+
img2 = gr.Image(label="Second Image", type="pil")
|
346 |
|
347 |
with gr.Row():
|
348 |
+
verify_threshold = gr.Slider(0.1, 0.9, value=0.6, step=0.05,
|
349 |
+
label="Similarity Threshold (lower = stricter)")
|
350 |
verify_model = gr.Dropdown(
|
351 |
+
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
352 |
+
value="VGG-Face",
|
353 |
+
label="Recognition Model"
|
354 |
)
|
355 |
|
356 |
+
verify_btn = gr.Button("Verify Faces", variant="primary")
|
357 |
|
358 |
+
with gr.Row():
|
359 |
+
verify_plot = gr.Plot(label="Comparison Result")
|
360 |
+
verify_results = gr.JSON(label="Verification Details")
|
361 |
|
362 |
+
# Find Faces Tab
|
363 |
with gr.TabItem("Find Faces"):
|
364 |
+
query_img = gr.Image(label="Query Image", type="pil")
|
365 |
+
|
366 |
+
with gr.Row():
|
367 |
+
db_path = gr.Textbox(
|
368 |
+
label="Database Path",
|
369 |
+
placeholder="/content/drive/MyDrive/your_folder or local path"
|
370 |
+
)
|
371 |
+
db_files = gr.File(label="Or upload images", file_count="multiple")
|
372 |
|
373 |
with gr.Row():
|
374 |
+
find_threshold = gr.Slider(0.1, 0.9, value=0.6, step=0.05,
|
375 |
+
label="Similarity Threshold")
|
376 |
find_model = gr.Dropdown(
|
377 |
+
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
378 |
+
value="VGG-Face",
|
379 |
+
label="Recognition Model"
|
380 |
)
|
381 |
|
382 |
+
find_btn = gr.Button("Find Matches", variant="primary")
|
383 |
|
384 |
+
with gr.Row():
|
385 |
+
find_plot = gr.Plot(label="Matching Results")
|
386 |
+
find_results = gr.JSON(label="Match Details")
|
387 |
|
388 |
+
# Analyze Face Tab
|
389 |
with gr.TabItem("Analyze Face"):
|
390 |
+
analyze_img = gr.Image(label="Input Image", type="pil")
|
391 |
+
analyze_actions = gr.CheckboxGroup(
|
392 |
choices=["age", "gender", "race", "emotion"],
|
393 |
value=["age", "gender", "race", "emotion"],
|
394 |
+
label="Analysis Features"
|
395 |
)
|
396 |
|
397 |
+
analyze_btn = gr.Button("Analyze Face", variant="primary")
|
398 |
|
399 |
+
with gr.Row():
|
400 |
+
analyze_plot = gr.Plot(label="Analysis Visualization")
|
401 |
+
analyze_results = gr.JSON(label="Detailed Analysis")
|
402 |
|
403 |
+
# Event handlers
|
404 |
+
verify_btn.click(
|
405 |
+
verify_faces,
|
406 |
+
inputs=[img1, img2, verify_threshold, verify_model],
|
407 |
+
outputs=[verify_plot, verify_results]
|
408 |
)
|
409 |
|
410 |
+
find_btn.click(
|
411 |
find_faces,
|
412 |
+
inputs=[query_img, db_path, find_threshold, find_model],
|
413 |
+
outputs=[find_plot, find_results]
|
414 |
)
|
415 |
|
416 |
+
db_files.change(
|
417 |
lambda x: "",
|
418 |
+
inputs=db_files,
|
419 |
+
outputs=db_path
|
420 |
)
|
421 |
|
422 |
+
analyze_btn.click(
|
423 |
analyze_face,
|
424 |
+
inputs=[analyze_img, analyze_actions],
|
425 |
+
outputs=[analyze_plot, analyze_results]
|
426 |
)
|
427 |
|
428 |
# Launch the app
|
429 |
+
if __name__ == "__main__":
|
430 |
+
demo.launch()
|