Update app.py
Browse files
app.py
CHANGED
@@ -1,114 +1,70 @@
|
|
1 |
# Install required packages
|
2 |
-
import os
|
3 |
-
import subprocess
|
4 |
-
import sys
|
5 |
-
import importlib
|
6 |
-
import pkg_resources
|
7 |
-
|
8 |
-
def install_package(package, version=None):
|
9 |
-
package_spec = f"{package}=={version}" if version else package
|
10 |
-
print(f"Installing {package_spec}...")
|
11 |
-
try:
|
12 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
|
13 |
-
except subprocess.CalledProcessError as e:
|
14 |
-
print(f"Failed to install {package_spec}: {e}")
|
15 |
-
raise
|
16 |
-
|
17 |
-
def ensure_package(package, version=None):
|
18 |
-
try:
|
19 |
-
if version:
|
20 |
-
pkg_resources.require(f"{package}=={version}")
|
21 |
-
else:
|
22 |
-
importlib.import_module(package)
|
23 |
-
print(f"{package} is already installed with the correct version.")
|
24 |
-
except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound) as e:
|
25 |
-
print(f"Package requirement failed: {e}")
|
26 |
-
install_package(package, version)
|
27 |
-
|
28 |
-
# Check if running in a standard environment (not Colab/Jupyter)
|
29 |
-
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
|
30 |
-
print("Setting up environment...")
|
31 |
-
|
32 |
-
# Install packages in the correct order with compatible versions
|
33 |
-
ensure_package("numpy", "1.23.5") # Compatible with TensorFlow 2.10
|
34 |
-
ensure_package("protobuf", "3.20.3") # Critical for TensorFlow compatibility
|
35 |
-
ensure_package("tensorflow", "2.10.0") # Stable version with good compatibility
|
36 |
-
|
37 |
-
# Install core dependencies
|
38 |
-
for pkg in ["gradio", "opencv-python-headless", "matplotlib", "pillow", "pandas"]:
|
39 |
-
ensure_package(pkg)
|
40 |
-
|
41 |
-
# Install deepface last after all dependencies are set up
|
42 |
-
ensure_package("deepface")
|
43 |
-
|
44 |
-
# Now import the required modules
|
45 |
import gradio as gr
|
46 |
import json
|
47 |
import cv2
|
48 |
import numpy as np
|
|
|
|
|
49 |
from PIL import Image
|
50 |
import tempfile
|
|
|
51 |
import pandas as pd
|
52 |
import shutil
|
53 |
-
import matplotlib.pyplot as plt
|
54 |
-
|
55 |
-
# Import DeepFace after ensuring dependencies are properly installed
|
56 |
-
from deepface import DeepFace
|
57 |
|
58 |
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
59 |
temp_dir = tempfile.mkdtemp()
|
60 |
img1_path = os.path.join(temp_dir, "image1.jpg")
|
61 |
img2_path = os.path.join(temp_dir, "image2.jpg")
|
62 |
-
|
63 |
if isinstance(img1, np.ndarray):
|
64 |
Image.fromarray(img1).save(img1_path)
|
65 |
else:
|
66 |
img1.save(img1_path)
|
67 |
-
|
68 |
if isinstance(img2, np.ndarray):
|
69 |
Image.fromarray(img2).save(img2_path)
|
70 |
else:
|
71 |
img2.save(img2_path)
|
72 |
-
|
73 |
try:
|
74 |
result = DeepFace.verify(
|
75 |
-
img1_path=img1_path,
|
76 |
img2_path=img2_path,
|
77 |
model_name=model,
|
78 |
distance_metric="cosine",
|
79 |
threshold=threshold
|
80 |
)
|
81 |
-
|
82 |
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
83 |
-
|
84 |
img1_display = cv2.imread(img1_path)
|
85 |
img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
|
86 |
img2_display = cv2.imread(img2_path)
|
87 |
img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)
|
88 |
-
|
89 |
ax[0].imshow(img1_display)
|
90 |
ax[0].set_title("Image 1")
|
91 |
ax[0].axis("off")
|
92 |
-
|
93 |
ax[1].imshow(img2_display)
|
94 |
ax[1].set_title("Image 2")
|
95 |
ax[1].axis("off")
|
96 |
-
|
97 |
verification_result = "✅ FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED"
|
98 |
confidence = round((1 - result["distance"]) * 100, 2)
|
99 |
-
|
100 |
-
plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
|
101 |
-
fontsize=16, fontweight='bold',
|
102 |
color='green' if result["verified"] else 'red')
|
103 |
-
|
104 |
plt.tight_layout()
|
105 |
-
|
106 |
os.remove(img1_path)
|
107 |
os.remove(img2_path)
|
108 |
os.rmdir(temp_dir)
|
109 |
-
|
110 |
return fig, json.dumps(result, indent=2)
|
111 |
-
|
112 |
except Exception as e:
|
113 |
if os.path.exists(img1_path):
|
114 |
os.remove(img1_path)
|
@@ -116,107 +72,118 @@ def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
|
116 |
os.remove(img2_path)
|
117 |
if os.path.exists(temp_dir):
|
118 |
os.rmdir(temp_dir)
|
119 |
-
|
120 |
error_msg = f"Error: {str(e)}"
|
121 |
if "No face detected" in str(e):
|
122 |
error_msg = "No face detected in one or both images. Please try different images."
|
123 |
-
|
124 |
return None, error_msg
|
125 |
|
126 |
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
127 |
temp_dir = tempfile.mkdtemp()
|
128 |
query_path = os.path.join(temp_dir, "query.jpg")
|
129 |
-
|
130 |
if isinstance(query_img, np.ndarray):
|
131 |
Image.fromarray(query_img).save(query_path)
|
132 |
else:
|
133 |
query_img.save(query_path)
|
134 |
-
|
135 |
if isinstance(db_folder, str):
|
136 |
db_path = db_folder
|
137 |
else:
|
138 |
db_path = os.path.join(temp_dir, "db")
|
139 |
os.makedirs(db_path, exist_ok=True)
|
140 |
-
|
141 |
for i, file in enumerate(db_folder):
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
145 |
try:
|
146 |
dfs = DeepFace.find(
|
147 |
img_path=query_path,
|
148 |
db_path=db_path,
|
149 |
model_name=model,
|
150 |
distance_metric="cosine",
|
151 |
-
threshold=threshold
|
|
|
152 |
)
|
153 |
-
|
154 |
if isinstance(dfs, list):
|
155 |
if len(dfs) == 0:
|
156 |
return None, "No matching faces found in the database."
|
157 |
df = dfs[0]
|
158 |
else:
|
159 |
df = dfs
|
160 |
-
|
161 |
if df.empty:
|
162 |
return None, "No matching faces found in the database."
|
163 |
-
|
164 |
df = df.sort_values(by=["distance"])
|
165 |
-
|
166 |
num_matches = min(4, len(df))
|
167 |
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
|
168 |
-
|
169 |
query_display = cv2.imread(query_path)
|
170 |
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
|
171 |
axes[0].imshow(query_display)
|
172 |
axes[0].set_title("Query Image")
|
173 |
axes[0].axis("off")
|
174 |
-
|
175 |
for i in range(num_matches):
|
176 |
match_path = df.iloc[i]["identity"]
|
|
|
|
|
|
|
177 |
distance = df.iloc[i]["distance"]
|
178 |
confidence = round((1 - distance) * 100, 2)
|
179 |
-
|
180 |
match_img = cv2.imread(match_path)
|
|
|
|
|
|
|
181 |
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
|
182 |
-
|
183 |
axes[i+1].imshow(match_img)
|
184 |
axes[i+1].set_title(f"Match #{i+1}\nConfidence: {confidence}%")
|
185 |
axes[i+1].axis("off")
|
186 |
-
|
187 |
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
|
188 |
plt.tight_layout()
|
189 |
-
|
190 |
results = df[["identity", "distance"]].copy()
|
191 |
results["confidence"] = (1 - results["distance"]) * 100
|
192 |
results["confidence"] = results["confidence"].round(2)
|
193 |
results = results.rename(columns={"identity": "Image Path"})
|
194 |
-
|
195 |
os.remove(query_path)
|
196 |
if not isinstance(db_folder, str):
|
197 |
shutil.rmtree(db_path)
|
198 |
-
|
199 |
return fig, results.to_dict('records')
|
200 |
-
|
201 |
except Exception as e:
|
202 |
if os.path.exists(query_path):
|
203 |
os.remove(query_path)
|
204 |
-
|
205 |
error_msg = f"Error: {str(e)}"
|
206 |
if "No face detected" in str(e):
|
207 |
error_msg = "No face detected in the query image. Please try a different image."
|
208 |
-
|
|
|
|
|
209 |
return None, error_msg
|
210 |
|
211 |
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
212 |
temp_dir = tempfile.mkdtemp()
|
213 |
img_path = os.path.join(temp_dir, "analyze.jpg")
|
214 |
-
|
215 |
if isinstance(img, np.ndarray):
|
216 |
Image.fromarray(img).save(img_path)
|
217 |
else:
|
218 |
img.save(img_path)
|
219 |
-
|
220 |
try:
|
221 |
results = DeepFace.analyze(
|
222 |
img_path=img_path,
|
@@ -224,55 +191,55 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
224 |
enforce_detection=True,
|
225 |
detector_backend='opencv'
|
226 |
)
|
227 |
-
|
228 |
if isinstance(results, list):
|
229 |
num_faces = len(results)
|
230 |
else:
|
231 |
num_faces = 1
|
232 |
results = [results]
|
233 |
-
|
234 |
fig = plt.figure(figsize=(14, 7))
|
235 |
-
|
236 |
img_display = cv2.imread(img_path)
|
237 |
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
|
238 |
-
|
239 |
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
|
240 |
main_ax.imshow(img_display)
|
241 |
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
|
242 |
main_ax.axis('off')
|
243 |
-
|
244 |
for i, face_result in enumerate(results):
|
245 |
if i >= 4:
|
246 |
break
|
247 |
-
|
248 |
age = face_result.get('age', 'N/A')
|
249 |
gender = face_result.get('dominant_gender', 'N/A')
|
250 |
race = face_result.get('dominant_race', 'N/A')
|
251 |
emotion = face_result.get('dominant_emotion', 'N/A')
|
252 |
-
|
253 |
gender_conf = 'N/A'
|
254 |
if 'gender' in face_result and isinstance(face_result['gender'], dict):
|
255 |
for g, conf in face_result['gender'].items():
|
256 |
if g.lower() == gender.lower():
|
257 |
gender_conf = f"{conf:.1f}%"
|
258 |
break
|
259 |
-
|
260 |
race_conf = 'N/A'
|
261 |
if 'race' in face_result and isinstance(face_result['race'], dict):
|
262 |
for r, conf in face_result['race'].items():
|
263 |
if r.lower() == race.lower():
|
264 |
race_conf = f"{conf:.1f}%"
|
265 |
break
|
266 |
-
|
267 |
emotion_conf = 'N/A'
|
268 |
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
|
269 |
for e, conf in face_result['emotion'].items():
|
270 |
if e.lower() == emotion.lower():
|
271 |
emotion_conf = f"{conf:.1f}%"
|
272 |
break
|
273 |
-
|
274 |
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
|
275 |
-
|
276 |
text = (
|
277 |
f"Face #{i+1}\n\n"
|
278 |
f"Age: {age}\n\n"
|
@@ -280,15 +247,15 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
280 |
f"Race: {race} ({race_conf})\n\n"
|
281 |
f"Emotion: {emotion} ({emotion_conf})"
|
282 |
)
|
283 |
-
|
284 |
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
|
285 |
ax.axis('off')
|
286 |
-
|
287 |
plt.tight_layout()
|
288 |
-
|
289 |
os.remove(img_path)
|
290 |
os.rmdir(temp_dir)
|
291 |
-
|
292 |
formatted_results = []
|
293 |
for i, res in enumerate(results[:8]):
|
294 |
face_data = {
|
@@ -308,87 +275,93 @@ def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
|
308 |
}
|
309 |
}
|
310 |
formatted_results.append(face_data)
|
311 |
-
|
312 |
return fig, formatted_results
|
313 |
-
|
314 |
except Exception as e:
|
315 |
if os.path.exists(img_path):
|
316 |
os.remove(img_path)
|
317 |
if os.path.exists(temp_dir):
|
318 |
os.rmdir(temp_dir)
|
319 |
-
|
320 |
error_msg = f"Error: {str(e)}"
|
321 |
if "No face detected" in str(e):
|
322 |
error_msg = "No face detected in the image. Please try a different image."
|
323 |
-
|
324 |
return None, error_msg
|
325 |
|
|
|
326 |
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
|
327 |
gr.Markdown("""
|
328 |
# 🔍 Complete Face Recognition Tool
|
|
|
329 |
This tool provides three face recognition features:
|
330 |
- **Verify Faces**: Compare two specific images to check if they contain the same person
|
331 |
- **Find Faces**: Search for matching faces in a database/folder
|
332 |
- **Analyze Face**: Determine age, gender, race, and emotion from a facial image
|
333 |
""")
|
334 |
-
|
335 |
with gr.Tabs():
|
336 |
with gr.TabItem("Verify Faces"):
|
337 |
with gr.Row():
|
338 |
img1_input = gr.Image(label="First Image", type="pil")
|
339 |
img2_input = gr.Image(label="Second Image", type="pil")
|
340 |
-
|
341 |
with gr.Row():
|
342 |
-
verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
|
343 |
label="Similarity Threshold (lower = stricter matching)")
|
344 |
verify_model = gr.Dropdown(
|
345 |
-
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
346 |
-
value="VGG-Face",
|
347 |
label="Face Recognition Model"
|
348 |
)
|
349 |
-
|
350 |
verify_button = gr.Button("Verify Faces", variant="primary")
|
351 |
-
|
352 |
verify_result_plot = gr.Plot(label="Verification Result")
|
353 |
verify_json = gr.JSON(label="Technical Details")
|
354 |
-
|
355 |
verify_button.click(
|
356 |
-
verify_faces,
|
357 |
-
inputs=[img1_input, img2_input, verify_threshold, verify_model],
|
358 |
outputs=[verify_result_plot, verify_json]
|
359 |
)
|
360 |
-
|
|
|
|
|
361 |
with gr.TabItem("Find Faces"):
|
362 |
query_img = gr.Image(label="Query Image (Face to find)", type="pil")
|
363 |
db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)")
|
364 |
db_files_input = gr.File(label="Or upload images for database", file_count="multiple")
|
365 |
-
|
366 |
with gr.Row():
|
367 |
-
find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
|
368 |
label="Similarity Threshold (lower = stricter matching)")
|
369 |
find_model = gr.Dropdown(
|
370 |
-
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
371 |
-
value="VGG-Face",
|
372 |
label="Face Recognition Model"
|
373 |
)
|
374 |
-
|
375 |
find_button = gr.Button("Find Matching Faces", variant="primary")
|
376 |
-
|
377 |
find_result_plot = gr.Plot(label="Search Results")
|
378 |
find_results_table = gr.JSON(label="Detailed Results")
|
379 |
-
|
380 |
find_button.click(
|
381 |
find_faces,
|
382 |
inputs=[query_img, db_path_input, find_threshold, find_model],
|
383 |
outputs=[find_result_plot, find_results_table]
|
384 |
)
|
385 |
-
|
386 |
db_files_input.change(
|
387 |
lambda x: "",
|
388 |
inputs=db_files_input,
|
389 |
outputs=db_path_input
|
390 |
)
|
391 |
-
|
|
|
|
|
392 |
with gr.TabItem("Analyze Face"):
|
393 |
analyze_img = gr.Image(label="Upload Image for Analysis", type="pil")
|
394 |
actions_checkboxes = gr.CheckboxGroup(
|
@@ -396,16 +369,19 @@ with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) a
|
|
396 |
value=["age", "gender", "race", "emotion"],
|
397 |
label="Select Attributes to Analyze"
|
398 |
)
|
399 |
-
|
400 |
analyze_button = gr.Button("Analyze Face", variant="primary")
|
401 |
-
|
402 |
analyze_result_plot = gr.Plot(label="Analysis Results")
|
403 |
analyze_json = gr.JSON(label="Detailed Analysis")
|
404 |
-
|
405 |
analyze_button.click(
|
406 |
analyze_face,
|
407 |
inputs=[analyze_img, actions_checkboxes],
|
408 |
outputs=[analyze_result_plot, analyze_json]
|
409 |
)
|
|
|
|
|
410 |
|
|
|
411 |
demo.launch()
|
|
|
1 |
# Install required packages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import json
|
4 |
import cv2
|
5 |
import numpy as np
|
6 |
+
from deepface import DeepFace
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
from PIL import Image
|
9 |
import tempfile
|
10 |
+
import os
|
11 |
import pandas as pd
|
12 |
import shutil
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
|
15 |
temp_dir = tempfile.mkdtemp()
|
16 |
img1_path = os.path.join(temp_dir, "image1.jpg")
|
17 |
img2_path = os.path.join(temp_dir, "image2.jpg")
|
18 |
+
|
19 |
if isinstance(img1, np.ndarray):
|
20 |
Image.fromarray(img1).save(img1_path)
|
21 |
else:
|
22 |
img1.save(img1_path)
|
23 |
+
|
24 |
if isinstance(img2, np.ndarray):
|
25 |
Image.fromarray(img2).save(img2_path)
|
26 |
else:
|
27 |
img2.save(img2_path)
|
28 |
+
|
29 |
try:
|
30 |
result = DeepFace.verify(
|
31 |
+
img1_path=img1_path,
|
32 |
img2_path=img2_path,
|
33 |
model_name=model,
|
34 |
distance_metric="cosine",
|
35 |
threshold=threshold
|
36 |
)
|
37 |
+
|
38 |
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
39 |
+
|
40 |
img1_display = cv2.imread(img1_path)
|
41 |
img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
|
42 |
img2_display = cv2.imread(img2_path)
|
43 |
img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)
|
44 |
+
|
45 |
ax[0].imshow(img1_display)
|
46 |
ax[0].set_title("Image 1")
|
47 |
ax[0].axis("off")
|
48 |
+
|
49 |
ax[1].imshow(img2_display)
|
50 |
ax[1].set_title("Image 2")
|
51 |
ax[1].axis("off")
|
52 |
+
|
53 |
verification_result = "✅ FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED"
|
54 |
confidence = round((1 - result["distance"]) * 100, 2)
|
55 |
+
|
56 |
+
plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
|
57 |
+
fontsize=16, fontweight='bold',
|
58 |
color='green' if result["verified"] else 'red')
|
59 |
+
|
60 |
plt.tight_layout()
|
61 |
+
|
62 |
os.remove(img1_path)
|
63 |
os.remove(img2_path)
|
64 |
os.rmdir(temp_dir)
|
65 |
+
|
66 |
return fig, json.dumps(result, indent=2)
|
67 |
+
|
68 |
except Exception as e:
|
69 |
if os.path.exists(img1_path):
|
70 |
os.remove(img1_path)
|
|
|
72 |
os.remove(img2_path)
|
73 |
if os.path.exists(temp_dir):
|
74 |
os.rmdir(temp_dir)
|
75 |
+
|
76 |
error_msg = f"Error: {str(e)}"
|
77 |
if "No face detected" in str(e):
|
78 |
error_msg = "No face detected in one or both images. Please try different images."
|
79 |
+
|
80 |
return None, error_msg
|
81 |
|
82 |
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
|
83 |
temp_dir = tempfile.mkdtemp()
|
84 |
query_path = os.path.join(temp_dir, "query.jpg")
|
85 |
+
|
86 |
if isinstance(query_img, np.ndarray):
|
87 |
Image.fromarray(query_img).save(query_path)
|
88 |
else:
|
89 |
query_img.save(query_path)
|
90 |
+
|
91 |
if isinstance(db_folder, str):
|
92 |
db_path = db_folder
|
93 |
else:
|
94 |
db_path = os.path.join(temp_dir, "db")
|
95 |
os.makedirs(db_path, exist_ok=True)
|
96 |
+
|
97 |
for i, file in enumerate(db_folder):
|
98 |
+
orig_filename = file.orig_name # Get original filename with extension
|
99 |
+
file_ext = os.path.splitext(orig_filename)[1]
|
100 |
+
new_filename = f"image_{i}{file_ext}"
|
101 |
+
shutil.copy(file.name, os.path.join(db_path, new_filename))
|
102 |
+
|
103 |
try:
|
104 |
dfs = DeepFace.find(
|
105 |
img_path=query_path,
|
106 |
db_path=db_path,
|
107 |
model_name=model,
|
108 |
distance_metric="cosine",
|
109 |
+
threshold=threshold,
|
110 |
+
silent=True # Disable unnecessary logging
|
111 |
)
|
112 |
+
|
113 |
if isinstance(dfs, list):
|
114 |
if len(dfs) == 0:
|
115 |
return None, "No matching faces found in the database."
|
116 |
df = dfs[0]
|
117 |
else:
|
118 |
df = dfs
|
119 |
+
|
120 |
if df.empty:
|
121 |
return None, "No matching faces found in the database."
|
122 |
+
|
123 |
df = df.sort_values(by=["distance"])
|
124 |
+
|
125 |
num_matches = min(4, len(df))
|
126 |
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
|
127 |
+
|
128 |
query_display = cv2.imread(query_path)
|
129 |
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
|
130 |
axes[0].imshow(query_display)
|
131 |
axes[0].set_title("Query Image")
|
132 |
axes[0].axis("off")
|
133 |
+
|
134 |
for i in range(num_matches):
|
135 |
match_path = df.iloc[i]["identity"]
|
136 |
+
if not os.path.exists(match_path):
|
137 |
+
continue # Skip invalid paths
|
138 |
+
|
139 |
distance = df.iloc[i]["distance"]
|
140 |
confidence = round((1 - distance) * 100, 2)
|
141 |
+
|
142 |
match_img = cv2.imread(match_path)
|
143 |
+
if match_img is None:
|
144 |
+
continue # Skip unreadable images
|
145 |
+
|
146 |
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
|
147 |
+
|
148 |
axes[i+1].imshow(match_img)
|
149 |
axes[i+1].set_title(f"Match #{i+1}\nConfidence: {confidence}%")
|
150 |
axes[i+1].axis("off")
|
151 |
+
|
152 |
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
|
153 |
plt.tight_layout()
|
154 |
+
|
155 |
results = df[["identity", "distance"]].copy()
|
156 |
results["confidence"] = (1 - results["distance"]) * 100
|
157 |
results["confidence"] = results["confidence"].round(2)
|
158 |
results = results.rename(columns={"identity": "Image Path"})
|
159 |
+
|
160 |
os.remove(query_path)
|
161 |
if not isinstance(db_folder, str):
|
162 |
shutil.rmtree(db_path)
|
163 |
+
|
164 |
return fig, results.to_dict('records')
|
165 |
+
|
166 |
except Exception as e:
|
167 |
if os.path.exists(query_path):
|
168 |
os.remove(query_path)
|
169 |
+
|
170 |
error_msg = f"Error: {str(e)}"
|
171 |
if "No face detected" in str(e):
|
172 |
error_msg = "No face detected in the query image. Please try a different image."
|
173 |
+
elif "No such file or directory" in str(e):
|
174 |
+
error_msg = "Invalid database path or corrupted image files"
|
175 |
+
|
176 |
return None, error_msg
|
177 |
|
178 |
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
|
179 |
temp_dir = tempfile.mkdtemp()
|
180 |
img_path = os.path.join(temp_dir, "analyze.jpg")
|
181 |
+
|
182 |
if isinstance(img, np.ndarray):
|
183 |
Image.fromarray(img).save(img_path)
|
184 |
else:
|
185 |
img.save(img_path)
|
186 |
+
|
187 |
try:
|
188 |
results = DeepFace.analyze(
|
189 |
img_path=img_path,
|
|
|
191 |
enforce_detection=True,
|
192 |
detector_backend='opencv'
|
193 |
)
|
194 |
+
|
195 |
if isinstance(results, list):
|
196 |
num_faces = len(results)
|
197 |
else:
|
198 |
num_faces = 1
|
199 |
results = [results]
|
200 |
+
|
201 |
fig = plt.figure(figsize=(14, 7))
|
202 |
+
|
203 |
img_display = cv2.imread(img_path)
|
204 |
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
|
205 |
+
|
206 |
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
|
207 |
main_ax.imshow(img_display)
|
208 |
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
|
209 |
main_ax.axis('off')
|
210 |
+
|
211 |
for i, face_result in enumerate(results):
|
212 |
if i >= 4:
|
213 |
break
|
214 |
+
|
215 |
age = face_result.get('age', 'N/A')
|
216 |
gender = face_result.get('dominant_gender', 'N/A')
|
217 |
race = face_result.get('dominant_race', 'N/A')
|
218 |
emotion = face_result.get('dominant_emotion', 'N/A')
|
219 |
+
|
220 |
gender_conf = 'N/A'
|
221 |
if 'gender' in face_result and isinstance(face_result['gender'], dict):
|
222 |
for g, conf in face_result['gender'].items():
|
223 |
if g.lower() == gender.lower():
|
224 |
gender_conf = f"{conf:.1f}%"
|
225 |
break
|
226 |
+
|
227 |
race_conf = 'N/A'
|
228 |
if 'race' in face_result and isinstance(face_result['race'], dict):
|
229 |
for r, conf in face_result['race'].items():
|
230 |
if r.lower() == race.lower():
|
231 |
race_conf = f"{conf:.1f}%"
|
232 |
break
|
233 |
+
|
234 |
emotion_conf = 'N/A'
|
235 |
if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
|
236 |
for e, conf in face_result['emotion'].items():
|
237 |
if e.lower() == emotion.lower():
|
238 |
emotion_conf = f"{conf:.1f}%"
|
239 |
break
|
240 |
+
|
241 |
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
|
242 |
+
|
243 |
text = (
|
244 |
f"Face #{i+1}\n\n"
|
245 |
f"Age: {age}\n\n"
|
|
|
247 |
f"Race: {race} ({race_conf})\n\n"
|
248 |
f"Emotion: {emotion} ({emotion_conf})"
|
249 |
)
|
250 |
+
|
251 |
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
|
252 |
ax.axis('off')
|
253 |
+
|
254 |
plt.tight_layout()
|
255 |
+
|
256 |
os.remove(img_path)
|
257 |
os.rmdir(temp_dir)
|
258 |
+
|
259 |
formatted_results = []
|
260 |
for i, res in enumerate(results[:8]):
|
261 |
face_data = {
|
|
|
275 |
}
|
276 |
}
|
277 |
formatted_results.append(face_data)
|
278 |
+
|
279 |
return fig, formatted_results
|
280 |
+
|
281 |
except Exception as e:
|
282 |
if os.path.exists(img_path):
|
283 |
os.remove(img_path)
|
284 |
if os.path.exists(temp_dir):
|
285 |
os.rmdir(temp_dir)
|
286 |
+
|
287 |
error_msg = f"Error: {str(e)}"
|
288 |
if "No face detected" in str(e):
|
289 |
error_msg = "No face detected in the image. Please try a different image."
|
290 |
+
|
291 |
return None, error_msg
|
292 |
|
293 |
+
# Create Gradio interface
|
294 |
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
|
295 |
gr.Markdown("""
|
296 |
# 🔍 Complete Face Recognition Tool
|
297 |
+
|
298 |
This tool provides three face recognition features:
|
299 |
- **Verify Faces**: Compare two specific images to check if they contain the same person
|
300 |
- **Find Faces**: Search for matching faces in a database/folder
|
301 |
- **Analyze Face**: Determine age, gender, race, and emotion from a facial image
|
302 |
""")
|
303 |
+
|
304 |
with gr.Tabs():
|
305 |
with gr.TabItem("Verify Faces"):
|
306 |
with gr.Row():
|
307 |
img1_input = gr.Image(label="First Image", type="pil")
|
308 |
img2_input = gr.Image(label="Second Image", type="pil")
|
309 |
+
|
310 |
with gr.Row():
|
311 |
+
verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
|
312 |
label="Similarity Threshold (lower = stricter matching)")
|
313 |
verify_model = gr.Dropdown(
|
314 |
+
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
315 |
+
value="VGG-Face",
|
316 |
label="Face Recognition Model"
|
317 |
)
|
318 |
+
|
319 |
verify_button = gr.Button("Verify Faces", variant="primary")
|
320 |
+
|
321 |
verify_result_plot = gr.Plot(label="Verification Result")
|
322 |
verify_json = gr.JSON(label="Technical Details")
|
323 |
+
|
324 |
verify_button.click(
|
325 |
+
verify_faces,
|
326 |
+
inputs=[img1_input, img2_input, verify_threshold, verify_model],
|
327 |
outputs=[verify_result_plot, verify_json]
|
328 |
)
|
329 |
+
|
330 |
+
gr.Markdown("""... (keep existing markdown) ...""")
|
331 |
+
|
332 |
with gr.TabItem("Find Faces"):
|
333 |
query_img = gr.Image(label="Query Image (Face to find)", type="pil")
|
334 |
db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)")
|
335 |
db_files_input = gr.File(label="Or upload images for database", file_count="multiple")
|
336 |
+
|
337 |
with gr.Row():
|
338 |
+
find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
|
339 |
label="Similarity Threshold (lower = stricter matching)")
|
340 |
find_model = gr.Dropdown(
|
341 |
+
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
|
342 |
+
value="VGG-Face",
|
343 |
label="Face Recognition Model"
|
344 |
)
|
345 |
+
|
346 |
find_button = gr.Button("Find Matching Faces", variant="primary")
|
347 |
+
|
348 |
find_result_plot = gr.Plot(label="Search Results")
|
349 |
find_results_table = gr.JSON(label="Detailed Results")
|
350 |
+
|
351 |
find_button.click(
|
352 |
find_faces,
|
353 |
inputs=[query_img, db_path_input, find_threshold, find_model],
|
354 |
outputs=[find_result_plot, find_results_table]
|
355 |
)
|
356 |
+
|
357 |
db_files_input.change(
|
358 |
lambda x: "",
|
359 |
inputs=db_files_input,
|
360 |
outputs=db_path_input
|
361 |
)
|
362 |
+
|
363 |
+
gr.Markdown("""... (keep existing markdown) ...""")
|
364 |
+
|
365 |
with gr.TabItem("Analyze Face"):
|
366 |
analyze_img = gr.Image(label="Upload Image for Analysis", type="pil")
|
367 |
actions_checkboxes = gr.CheckboxGroup(
|
|
|
369 |
value=["age", "gender", "race", "emotion"],
|
370 |
label="Select Attributes to Analyze"
|
371 |
)
|
372 |
+
|
373 |
analyze_button = gr.Button("Analyze Face", variant="primary")
|
374 |
+
|
375 |
analyze_result_plot = gr.Plot(label="Analysis Results")
|
376 |
analyze_json = gr.JSON(label="Detailed Analysis")
|
377 |
+
|
378 |
analyze_button.click(
|
379 |
analyze_face,
|
380 |
inputs=[analyze_img, actions_checkboxes],
|
381 |
outputs=[analyze_result_plot, analyze_json]
|
382 |
)
|
383 |
+
|
384 |
+
gr.Markdown("""... (keep existing markdown) ...""")
|
385 |
|
386 |
+
# Launch the app
|
387 |
demo.launch()
|