File size: 15,111 Bytes
ef07f3f 2b42f4f ba0a640 2b42f4f ef07f3f 0e514e1 ef07f3f 2b42f4f ef07f3f 0e514e1 ef07f3f 15cef53 ef07f3f 0e514e1 ef07f3f 0e514e1 15cef53 ef07f3f 0e514e1 ef07f3f 0e514e1 ef07f3f 0e514e1 ef07f3f 0e514e1 ef07f3f 0e514e1 ef07f3f 0e514e1 ef07f3f 0e514e1 15cef53 ef07f3f 0e514e1 15cef53 ef07f3f 15cef53 ef07f3f 0e514e1 15cef53 ef07f3f 0e514e1 15cef53 ef07f3f 0e514e1 ef07f3f 15cef53 ef07f3f 0e514e1 2b42f4f ef07f3f 0e514e1 15cef53 ef07f3f 15cef53 4c6ee84 ef07f3f 0e514e1 ef07f3f 15cef53 0e514e1 ef07f3f 0e514e1 15cef53 ef07f3f 0e514e1 ef07f3f 0e514e1 2b42f4f ef07f3f 2b42f4f ef07f3f 0e514e1 2b42f4f 0e514e1 2b42f4f 15cef53 2b42f4f 15cef53 2b42f4f 15cef53 2b42f4f 0e514e1 ef07f3f 0e514e1 15cef53 ef07f3f 15cef53 0e514e1 15cef53 ef07f3f 15cef53 ef07f3f 15cef53 0e514e1 15cef53 ef07f3f 0e514e1 ef07f3f 15cef53 ef07f3f 0e514e1 15cef53 ef07f3f 0e514e1 15cef53 ef07f3f 0e514e1 ef07f3f 0e514e1 ef07f3f 0e514e1 15cef53 ef07f3f 0e514e1 15cef53 17cfe59 15cef53 ef07f3f 0e514e1 ef07f3f 0e514e1 15cef53 ef07f3f 4c6ee84 ef07f3f 15cef53 ef07f3f 0e514e1 ef07f3f 0e514e1 ef07f3f 15cef53 ef07f3f 0e514e1 ef07f3f 0e514e1 ef07f3f 15cef53 ef07f3f 0e514e1 ef07f3f 15cef53 ef07f3f 15cef53 0e514e1 ef07f3f 15cef53 4c6ee84 15cef53 4c6ee84 0e514e1 15cef53 0e514e1 15cef53 2b42f4f 15cef53 ef07f3f 15cef53 0e514e1 ef07f3f 15cef53 4c6ee84 15cef53 4c6ee84 0e514e1 15cef53 0e514e1 15cef53 2b42f4f 15cef53 ef07f3f 15cef53 4c6ee84 15cef53 4c6ee84 0e514e1 15cef53 0e514e1 15cef53 2b42f4f 15cef53 2b42f4f 15cef53 2b42f4f 15cef53 2b42f4f 15cef53 2b42f4f 15cef53 2b42f4f 15cef53 2b42f4f 15cef53 2b42f4f ef07f3f 0e514e1 15cef53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# Install required packages
import os
import subprocess
import sys
import importlib
import pkg_resources
def install_package(package, version=None):
package_spec = f"{package}=={version}" if version else package
print(f"Installing {package_spec}...")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
except subprocess.CalledProcessError as e:
print(f"Failed to install {package_spec}: {e}")
raise
def ensure_package(package, version=None):
try:
if version:
pkg_resources.require(f"{package}=={version}")
else:
importlib.import_module(package)
print(f"{package} is already installed with the correct version.")
except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound) as e:
print(f"Package requirement failed: {e}")
install_package(package, version)
# Check environment and install dependencies
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
print("Setting up environment...")
# Install core dependencies
ensure_package("numpy", "1.23.5")
ensure_package("protobuf", "3.20.3")
ensure_package("tensorflow", "2.10.0")
ensure_package("opencv-python-headless", "4.7.0.72")
ensure_package("deepface", "0.0.79")
ensure_package("gradio", "3.50.2")
# Install additional required packages
for pkg in ["matplotlib", "pillow", "pandas"]:
ensure_package(pkg)
# Now import the required modules
import gradio as gr
import json
import cv2
import numpy as np
from deepface import DeepFace
import matplotlib.pyplot as plt
from PIL import Image
import tempfile
import pandas as pd
import shutil
# Google Drive integration (for Colab users)
if 'google.colab' in sys.modules:
from google.colab import drive
drive.mount('/content/drive')
def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
temp_dir = tempfile.mkdtemp()
img1_path = os.path.join(temp_dir, "image1.jpg")
img2_path = os.path.join(temp_dir, "image2.jpg")
try:
# Save images
if isinstance(img1, np.ndarray):
Image.fromarray(img1).save(img1_path)
else:
img1.save(img1_path)
if isinstance(img2, np.ndarray):
Image.fromarray(img2).save(img2_path)
else:
img2.save(img2_path)
# Perform verification
result = DeepFace.verify(
img1_path=img1_path,
img2_path=img2_path,
model_name=model,
distance_metric="cosine",
threshold=threshold
)
# Create visualization
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
img1_display = cv2.imread(img1_path)
img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
img2_display = cv2.imread(img2_path)
img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)
ax[0].imshow(img1_display)
ax[0].set_title("Image 1")
ax[0].axis("off")
ax[1].imshow(img2_display)
ax[1].set_title("Image 2")
ax[1].axis("off")
verification_result = "β
FACE MATCHED" if result["verified"] else "β FACE NOT MATCHED"
confidence = round((1 - result["distance"]) * 100, 2)
plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
fontsize=16, fontweight='bold',
color='green' if result["verified"] else 'red')
plt.tight_layout()
# Clean up
os.remove(img1_path)
os.remove(img2_path)
os.rmdir(temp_dir)
return fig, result # Return raw dict instead of JSON string
except Exception as e:
# Clean up even if error occurs
if os.path.exists(img1_path):
os.remove(img1_path)
if os.path.exists(img2_path):
os.remove(img2_path)
if os.path.exists(temp_dir):
os.rmdir(temp_dir)
error_msg = str(e)
if "No face detected" in error_msg:
error_msg = "No face detected in one or both images. Please try different images."
return None, {"error": error_msg}
def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
temp_dir = tempfile.mkdtemp()
query_path = os.path.join(temp_dir, "query.jpg")
try:
# Save query image
if isinstance(query_img, np.ndarray):
Image.fromarray(query_img).save(query_path)
else:
query_img.save(query_path)
# Handle database path
if isinstance(db_folder, str):
if db_folder.startswith("/content/drive"):
db_path = db_folder
else:
db_path = os.path.abspath(db_folder)
if not os.path.exists(db_path):
return None, {"error": "Invalid database path - directory does not exist"}
else:
db_path = os.path.join(temp_dir, "db")
os.makedirs(db_path, exist_ok=True)
for i, file in enumerate(db_folder):
orig_filename = file.orig_name
file_ext = os.path.splitext(orig_filename)[1]
new_filename = f"image_{i}{file_ext}"
shutil.copy(file.name, os.path.join(db_path, new_filename))
# Find matches
dfs = DeepFace.find(
img_path=query_path,
db_path=db_path,
model_name=model,
distance_metric="cosine",
threshold=threshold,
silent=True
)
# Process results
if isinstance(dfs, list):
if len(dfs) == 0:
return None, {"error": "No matching faces found in the database."}
df = dfs[0]
else:
df = dfs
if df.empty:
return None, {"error": "No matching faces found in the database."}
df = df.sort_values(by=["distance"])
# Create visualization
num_matches = min(4, len(df))
fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
query_display = cv2.imread(query_path)
query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
axes[0].imshow(query_display)
axes[0].set_title("Query Image")
axes[0].axis("off")
valid_matches = 0
for i in range(num_matches):
if i >= len(df):
break
match_path = df.iloc[i]["identity"]
if not os.path.exists(match_path):
continue
try:
match_img = cv2.imread(match_path)
if match_img is None:
continue
match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
axes[valid_matches+1].imshow(match_img)
axes[valid_matches+1].set_title(f"Match #{valid_matches+1}")
axes[valid_matches+1].axis("off")
valid_matches += 1
except Exception as e:
continue
# Hide empty axes
for j in range(valid_matches+1, num_matches+1):
axes[j].axis("off")
plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
plt.tight_layout()
# Prepare results
results = df[["identity", "distance"]].copy()
results["confidence"] = (1 - results["distance"]) * 100
results["confidence"] = results["confidence"].round(2)
results = results.rename(columns={"identity": "Image Path"}).to_dict('records')
return fig, results
except Exception as e:
error_msg = str(e)
if "No face detected" in error_msg:
error_msg = "No face detected in the query image. Please try a different image."
elif "No such file or directory" in error_msg:
error_msg = "Invalid database path or corrupted image files"
return None, {"error": error_msg}
finally:
# Clean up
if os.path.exists(query_path):
os.remove(query_path)
if 'db_path' in locals() and not isinstance(db_folder, str):
shutil.rmtree(db_path, ignore_errors=True)
def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
temp_dir = tempfile.mkdtemp()
img_path = os.path.join(temp_dir, "analyze.jpg")
try:
# Save image
if isinstance(img, np.ndarray):
Image.fromarray(img).save(img_path)
else:
img.save(img_path)
# Analyze image
results = DeepFace.analyze(
img_path=img_path,
actions=actions,
enforce_detection=True,
detector_backend='opencv'
)
# Process results
if isinstance(results, list):
num_faces = len(results)
else:
num_faces = 1
results = [results]
# Create visualization
fig = plt.figure(figsize=(14, 7))
img_display = cv2.imread(img_path)
img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
main_ax.imshow(img_display)
main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
main_ax.axis('off')
for i, face_result in enumerate(results[:4]):
# Get analysis data
age = face_result.get('age', 'N/A')
gender = face_result.get('dominant_gender', 'N/A')
race = face_result.get('dominant_race', 'N/A')
emotion = face_result.get('dominant_emotion', 'N/A')
# Create subplot
ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
text = f"Face #{i+1}\n\nAge: {age}\nGender: {gender}\nRace: {race}\nEmotion: {emotion}"
ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
ax.axis('off')
plt.tight_layout()
# Format results
formatted_results = []
for i, res in enumerate(results[:8]):
face_data = {
"face_number": i+1,
"age": res.get("age", "N/A"),
"gender": res.get("dominant_gender", "N/A"),
"race": res.get("dominant_race", "N/A"),
"emotion": res.get("dominant_emotion", "N/A")
}
formatted_results.append(face_data)
return fig, formatted_results
except Exception as e:
error_msg = str(e)
if "No face detected" in error_msg:
error_msg = "No face detected in the image. Please try a different image."
return None, {"error": error_msg}
finally:
# Clean up
if os.path.exists(img_path):
os.remove(img_path)
if os.path.exists(temp_dir):
os.rmdir(temp_dir)
# Create Gradio interface
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Complete Face Recognition Tool
This tool provides three face recognition features:
- **Verify Faces**: Compare two images to check if they contain the same person
- **Find Faces**: Search for matching faces in a database/folder
- **Analyze Face**: Determine age, gender, race, and emotion from facial images
""")
with gr.Tabs():
# Verify Faces Tab
with gr.TabItem("Verify Faces"):
with gr.Row():
img1 = gr.Image(label="First Image", type="pil")
img2 = gr.Image(label="Second Image", type="pil")
with gr.Row():
verify_threshold = gr.Slider(0.1, 0.9, value=0.6, step=0.05,
label="Similarity Threshold (lower = stricter)")
verify_model = gr.Dropdown(
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
value="VGG-Face",
label="Recognition Model"
)
verify_btn = gr.Button("Verify Faces", variant="primary")
with gr.Row():
verify_plot = gr.Plot(label="Comparison Result")
verify_results = gr.JSON(label="Verification Details")
# Find Faces Tab
with gr.TabItem("Find Faces"):
query_img = gr.Image(label="Query Image", type="pil")
with gr.Row():
db_path = gr.Textbox(
label="Database Path",
placeholder="/content/drive/MyDrive/your_folder or local path"
)
db_files = gr.File(label="Or upload images", file_count="multiple")
with gr.Row():
find_threshold = gr.Slider(0.1, 0.9, value=0.6, step=0.05,
label="Similarity Threshold")
find_model = gr.Dropdown(
choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
value="VGG-Face",
label="Recognition Model"
)
find_btn = gr.Button("Find Matches", variant="primary")
with gr.Row():
find_plot = gr.Plot(label="Matching Results")
find_results = gr.JSON(label="Match Details")
# Analyze Face Tab
with gr.TabItem("Analyze Face"):
analyze_img = gr.Image(label="Input Image", type="pil")
analyze_actions = gr.CheckboxGroup(
choices=["age", "gender", "race", "emotion"],
value=["age", "gender", "race", "emotion"],
label="Analysis Features"
)
analyze_btn = gr.Button("Analyze Face", variant="primary")
with gr.Row():
analyze_plot = gr.Plot(label="Analysis Visualization")
analyze_results = gr.JSON(label="Detailed Analysis")
# Event handlers
verify_btn.click(
verify_faces,
inputs=[img1, img2, verify_threshold, verify_model],
outputs=[verify_plot, verify_results]
)
find_btn.click(
find_faces,
inputs=[query_img, db_path, find_threshold, find_model],
outputs=[find_plot, find_results]
)
db_files.change(
lambda x: "",
inputs=db_files,
outputs=db_path
)
analyze_btn.click(
analyze_face,
inputs=[analyze_img, analyze_actions],
outputs=[analyze_plot, analyze_results]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |