File size: 15,111 Bytes
ef07f3f
2b42f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba0a640
2b42f4f
 
 
 
 
 
 
 
ef07f3f
 
 
 
0e514e1
 
ef07f3f
 
 
 
 
2b42f4f
 
 
 
 
ef07f3f
 
 
 
0e514e1
ef07f3f
15cef53
 
 
 
 
 
 
 
 
 
 
 
ef07f3f
0e514e1
ef07f3f
 
 
 
 
0e514e1
15cef53
ef07f3f
0e514e1
ef07f3f
 
 
 
0e514e1
ef07f3f
 
 
0e514e1
ef07f3f
 
 
0e514e1
ef07f3f
 
0e514e1
 
 
ef07f3f
0e514e1
ef07f3f
0e514e1
15cef53
ef07f3f
 
 
0e514e1
15cef53
 
ef07f3f
15cef53
ef07f3f
 
 
 
 
 
0e514e1
15cef53
 
ef07f3f
0e514e1
15cef53
ef07f3f
 
 
 
0e514e1
ef07f3f
15cef53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef07f3f
 
 
 
 
0e514e1
2b42f4f
ef07f3f
0e514e1
15cef53
ef07f3f
 
15cef53
4c6ee84
ef07f3f
 
0e514e1
ef07f3f
15cef53
0e514e1
ef07f3f
0e514e1
15cef53
ef07f3f
 
0e514e1
ef07f3f
 
 
 
 
0e514e1
2b42f4f
ef07f3f
2b42f4f
 
 
ef07f3f
0e514e1
2b42f4f
0e514e1
2b42f4f
 
 
 
 
 
 
15cef53
2b42f4f
 
15cef53
2b42f4f
 
15cef53
2b42f4f
 
0e514e1
ef07f3f
 
0e514e1
15cef53
ef07f3f
 
 
15cef53
0e514e1
15cef53
 
ef07f3f
15cef53
 
ef07f3f
15cef53
0e514e1
 
15cef53
 
 
 
 
 
 
 
ef07f3f
 
 
 
0e514e1
ef07f3f
15cef53
 
 
 
 
 
 
ef07f3f
 
 
 
 
 
0e514e1
15cef53
ef07f3f
 
 
 
 
0e514e1
15cef53
ef07f3f
0e514e1
ef07f3f
 
0e514e1
ef07f3f
 
 
 
0e514e1
15cef53
 
ef07f3f
 
 
 
0e514e1
15cef53
17cfe59
15cef53
ef07f3f
 
0e514e1
ef07f3f
0e514e1
15cef53
ef07f3f
4c6ee84
ef07f3f
 
 
15cef53
 
 
ef07f3f
 
0e514e1
ef07f3f
0e514e1
ef07f3f
15cef53
 
 
 
 
 
 
 
ef07f3f
 
 
 
 
0e514e1
ef07f3f
 
 
0e514e1
ef07f3f
15cef53
 
 
ef07f3f
0e514e1
ef07f3f
15cef53
ef07f3f
 
15cef53
 
0e514e1
ef07f3f
15cef53
 
4c6ee84
15cef53
 
 
4c6ee84
0e514e1
15cef53
0e514e1
15cef53
 
 
2b42f4f
15cef53
ef07f3f
15cef53
 
 
 
 
 
 
 
0e514e1
ef07f3f
15cef53
 
4c6ee84
15cef53
 
 
4c6ee84
0e514e1
15cef53
0e514e1
15cef53
 
 
2b42f4f
15cef53
ef07f3f
15cef53
 
4c6ee84
 
15cef53
4c6ee84
0e514e1
15cef53
0e514e1
15cef53
 
 
2b42f4f
15cef53
 
 
 
 
2b42f4f
 
15cef53
2b42f4f
15cef53
 
2b42f4f
 
15cef53
2b42f4f
15cef53
 
2b42f4f
 
15cef53
2b42f4f
15cef53
 
2b42f4f
ef07f3f
0e514e1
15cef53
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Install required packages
import os
import subprocess
import sys
import importlib
import pkg_resources

def install_package(package, version=None):
    package_spec = f"{package}=={version}" if version else package
    print(f"Installing {package_spec}...")
    try:
        subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
    except subprocess.CalledProcessError as e:
        print(f"Failed to install {package_spec}: {e}")
        raise

def ensure_package(package, version=None):
    try:
        if version:
            pkg_resources.require(f"{package}=={version}")
        else:
            importlib.import_module(package)
        print(f"{package} is already installed with the correct version.")
    except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound) as e:
        print(f"Package requirement failed: {e}")
        install_package(package, version)

# Check environment and install dependencies
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
    print("Setting up environment...")
    
    # Install core dependencies
    ensure_package("numpy", "1.23.5")
    ensure_package("protobuf", "3.20.3")
    ensure_package("tensorflow", "2.10.0")
    ensure_package("opencv-python-headless", "4.7.0.72")
    ensure_package("deepface", "0.0.79")
    ensure_package("gradio", "3.50.2")
    
    # Install additional required packages
    for pkg in ["matplotlib", "pillow", "pandas"]:
        ensure_package(pkg)

# Now import the required modules
import gradio as gr
import json
import cv2
import numpy as np
from deepface import DeepFace
import matplotlib.pyplot as plt
from PIL import Image
import tempfile
import pandas as pd
import shutil

# Google Drive integration (for Colab users)
if 'google.colab' in sys.modules:
    from google.colab import drive
    drive.mount('/content/drive')

def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
    temp_dir = tempfile.mkdtemp()
    img1_path = os.path.join(temp_dir, "image1.jpg")
    img2_path = os.path.join(temp_dir, "image2.jpg")
    
    try:
        # Save images
        if isinstance(img1, np.ndarray):
            Image.fromarray(img1).save(img1_path)
        else:
            img1.save(img1_path)
            
        if isinstance(img2, np.ndarray):
            Image.fromarray(img2).save(img2_path)
        else:
            img2.save(img2_path)

        # Perform verification
        result = DeepFace.verify(
            img1_path=img1_path, 
            img2_path=img2_path,
            model_name=model,
            distance_metric="cosine",
            threshold=threshold
        )
        
        # Create visualization
        fig, ax = plt.subplots(1, 2, figsize=(10, 5))
        
        img1_display = cv2.imread(img1_path)
        img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
        img2_display = cv2.imread(img2_path)
        img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)
        
        ax[0].imshow(img1_display)
        ax[0].set_title("Image 1")
        ax[0].axis("off")
        
        ax[1].imshow(img2_display)
        ax[1].set_title("Image 2")
        ax[1].axis("off")
        
        verification_result = "βœ… FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED"
        confidence = round((1 - result["distance"]) * 100, 2)
        
        plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}", 
                    fontsize=16, fontweight='bold', 
                    color='green' if result["verified"] else 'red')
        
        plt.tight_layout()
        
        # Clean up
        os.remove(img1_path)
        os.remove(img2_path)
        os.rmdir(temp_dir)
        
        return fig, result  # Return raw dict instead of JSON string

    except Exception as e:
        # Clean up even if error occurs
        if os.path.exists(img1_path):
            os.remove(img1_path)
        if os.path.exists(img2_path):
            os.remove(img2_path)
        if os.path.exists(temp_dir):
            os.rmdir(temp_dir)
        
        error_msg = str(e)
        if "No face detected" in error_msg:
            error_msg = "No face detected in one or both images. Please try different images."
        
        return None, {"error": error_msg}

def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"):
    temp_dir = tempfile.mkdtemp()
    query_path = os.path.join(temp_dir, "query.jpg")
    
    try:
        # Save query image
        if isinstance(query_img, np.ndarray):
            Image.fromarray(query_img).save(query_path)
        else:
            query_img.save(query_path)

        # Handle database path
        if isinstance(db_folder, str):
            if db_folder.startswith("/content/drive"):
                db_path = db_folder
            else:
                db_path = os.path.abspath(db_folder)
                if not os.path.exists(db_path):
                    return None, {"error": "Invalid database path - directory does not exist"}
        else:
            db_path = os.path.join(temp_dir, "db")
            os.makedirs(db_path, exist_ok=True)
            
            for i, file in enumerate(db_folder):
                orig_filename = file.orig_name
                file_ext = os.path.splitext(orig_filename)[1]
                new_filename = f"image_{i}{file_ext}"
                shutil.copy(file.name, os.path.join(db_path, new_filename))

        # Find matches
        dfs = DeepFace.find(
            img_path=query_path,
            db_path=db_path,
            model_name=model,
            distance_metric="cosine",
            threshold=threshold,
            silent=True
        )
        
        # Process results
        if isinstance(dfs, list):
            if len(dfs) == 0:
                return None, {"error": "No matching faces found in the database."}
            df = dfs[0]
        else:
            df = dfs
            
        if df.empty:
            return None, {"error": "No matching faces found in the database."}
        
        df = df.sort_values(by=["distance"])
        
        # Create visualization
        num_matches = min(4, len(df))
        fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5))
        
        query_display = cv2.imread(query_path)
        query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB)
        axes[0].imshow(query_display)
        axes[0].set_title("Query Image")
        axes[0].axis("off")
        
        valid_matches = 0
        for i in range(num_matches):
            if i >= len(df):
                break
                
            match_path = df.iloc[i]["identity"]
            if not os.path.exists(match_path):
                continue
                
            try:
                match_img = cv2.imread(match_path)
                if match_img is None:
                    continue
                    
                match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB)
                axes[valid_matches+1].imshow(match_img)
                axes[valid_matches+1].set_title(f"Match #{valid_matches+1}")
                axes[valid_matches+1].axis("off")
                valid_matches += 1
            except Exception as e:
                continue
        
        # Hide empty axes
        for j in range(valid_matches+1, num_matches+1):
            axes[j].axis("off")
        
        plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold')
        plt.tight_layout()
        
        # Prepare results
        results = df[["identity", "distance"]].copy()
        results["confidence"] = (1 - results["distance"]) * 100
        results["confidence"] = results["confidence"].round(2)
        results = results.rename(columns={"identity": "Image Path"}).to_dict('records')
        
        return fig, results

    except Exception as e:
        error_msg = str(e)
        if "No face detected" in error_msg:
            error_msg = "No face detected in the query image. Please try a different image."
        elif "No such file or directory" in error_msg:
            error_msg = "Invalid database path or corrupted image files"
        
        return None, {"error": error_msg}
    
    finally:
        # Clean up
        if os.path.exists(query_path):
            os.remove(query_path)
        if 'db_path' in locals() and not isinstance(db_folder, str):
            shutil.rmtree(db_path, ignore_errors=True)

def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
    temp_dir = tempfile.mkdtemp()
    img_path = os.path.join(temp_dir, "analyze.jpg")
    
    try:
        # Save image
        if isinstance(img, np.ndarray):
            Image.fromarray(img).save(img_path)
        else:
            img.save(img_path)

        # Analyze image
        results = DeepFace.analyze(
            img_path=img_path,
            actions=actions,
            enforce_detection=True,
            detector_backend='opencv'
        )
        
        # Process results
        if isinstance(results, list):
            num_faces = len(results)
        else:
            num_faces = 1
            results = [results]
        
        # Create visualization
        fig = plt.figure(figsize=(14, 7))
        
        img_display = cv2.imread(img_path)
        img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)
        
        main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        main_ax.imshow(img_display)
        main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
        main_ax.axis('off')
        
        for i, face_result in enumerate(results[:4]):
            # Get analysis data
            age = face_result.get('age', 'N/A')
            gender = face_result.get('dominant_gender', 'N/A')
            race = face_result.get('dominant_race', 'N/A')
            emotion = face_result.get('dominant_emotion', 'N/A')
            
            # Create subplot
            ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))
            text = f"Face #{i+1}\n\nAge: {age}\nGender: {gender}\nRace: {race}\nEmotion: {emotion}"
            ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
            ax.axis('off')
        
        plt.tight_layout()
        
        # Format results
        formatted_results = []
        for i, res in enumerate(results[:8]):
            face_data = {
                "face_number": i+1,
                "age": res.get("age", "N/A"),
                "gender": res.get("dominant_gender", "N/A"),
                "race": res.get("dominant_race", "N/A"),
                "emotion": res.get("dominant_emotion", "N/A")
            }
            formatted_results.append(face_data)
        
        return fig, formatted_results
    
    except Exception as e:
        error_msg = str(e)
        if "No face detected" in error_msg:
            error_msg = "No face detected in the image. Please try a different image."
        
        return None, {"error": error_msg}
    
    finally:
        # Clean up
        if os.path.exists(img_path):
            os.remove(img_path)
        if os.path.exists(temp_dir):
            os.rmdir(temp_dir)

# Create Gradio interface
with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # πŸ” Complete Face Recognition Tool
    
    This tool provides three face recognition features:
    - **Verify Faces**: Compare two images to check if they contain the same person
    - **Find Faces**: Search for matching faces in a database/folder
    - **Analyze Face**: Determine age, gender, race, and emotion from facial images
    """)
    
    with gr.Tabs():
        # Verify Faces Tab
        with gr.TabItem("Verify Faces"):
            with gr.Row():
                img1 = gr.Image(label="First Image", type="pil")
                img2 = gr.Image(label="Second Image", type="pil")
            
            with gr.Row():
                verify_threshold = gr.Slider(0.1, 0.9, value=0.6, step=0.05,
                                           label="Similarity Threshold (lower = stricter)")
                verify_model = gr.Dropdown(
                    choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
                    value="VGG-Face",
                    label="Recognition Model"
                )
            
            verify_btn = gr.Button("Verify Faces", variant="primary")
            
            with gr.Row():
                verify_plot = gr.Plot(label="Comparison Result")
                verify_results = gr.JSON(label="Verification Details")

        # Find Faces Tab
        with gr.TabItem("Find Faces"):
            query_img = gr.Image(label="Query Image", type="pil")
            
            with gr.Row():
                db_path = gr.Textbox(
                    label="Database Path",
                    placeholder="/content/drive/MyDrive/your_folder or local path"
                )
                db_files = gr.File(label="Or upload images", file_count="multiple")
            
            with gr.Row():
                find_threshold = gr.Slider(0.1, 0.9, value=0.6, step=0.05,
                                         label="Similarity Threshold")
                find_model = gr.Dropdown(
                    choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
                    value="VGG-Face",
                    label="Recognition Model"
                )
            
            find_btn = gr.Button("Find Matches", variant="primary")
            
            with gr.Row():
                find_plot = gr.Plot(label="Matching Results")
                find_results = gr.JSON(label="Match Details")

        # Analyze Face Tab
        with gr.TabItem("Analyze Face"):
            analyze_img = gr.Image(label="Input Image", type="pil")
            analyze_actions = gr.CheckboxGroup(
                choices=["age", "gender", "race", "emotion"],
                value=["age", "gender", "race", "emotion"],
                label="Analysis Features"
            )
            
            analyze_btn = gr.Button("Analyze Face", variant="primary")
            
            with gr.Row():
                analyze_plot = gr.Plot(label="Analysis Visualization")
                analyze_results = gr.JSON(label="Detailed Analysis")

    # Event handlers
    verify_btn.click(
        verify_faces,
        inputs=[img1, img2, verify_threshold, verify_model],
        outputs=[verify_plot, verify_results]
    )
    
    find_btn.click(
        find_faces,
        inputs=[query_img, db_path, find_threshold, find_model],
        outputs=[find_plot, find_results]
    )
    
    db_files.change(
        lambda x: "",
        inputs=db_files,
        outputs=db_path
    )
    
    analyze_btn.click(
        analyze_face,
        inputs=[analyze_img, analyze_actions],
        outputs=[analyze_plot, analyze_results]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()