File size: 11,494 Bytes
d287817 dc196f7 5b3a336 dc196f7 324f762 5b3a336 07e178a 0de879f d9bc83c 5b0f7c7 a3d3b71 dc196f7 5b0f7c7 dc196f7 5b0f7c7 dc196f7 5b0f7c7 9144ba9 dc196f7 5b0f7c7 9144ba9 5b0f7c7 9144ba9 dc196f7 5b0f7c7 dc196f7 9144ba9 5b0f7c7 9144ba9 dc196f7 5b0f7c7 dc196f7 9144ba9 dc196f7 9144ba9 dc196f7 5b0f7c7 6a58328 dc196f7 9144ba9 dc196f7 9144ba9 5b0f7c7 9144ba9 5b0f7c7 9144ba9 5b0f7c7 dc196f7 9144ba9 dc196f7 5b0f7c7 e72fe69 9144ba9 7437313 5b0f7c7 dc196f7 a9cf61c 5b0f7c7 dc196f7 5b0f7c7 9144ba9 936909b 5b0f7c7 936909b 6a58328 283f324 0de879f dab4d10 f656688 283f324 f656688 0de879f f656688 d9bc83c f656688 d9bc83c dab4d10 f656688 dab4d10 0de879f 33a09b2 dab4d10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import time
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together
import pandas as pd
from langchain.docstore.document import Document
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="رزم یار ارتش", page_icon="🪖", layout="wide")
# ----------------- استایل سفارشی -----------------
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
html, body, [class*="css"] {
font-family: 'Vazirmatn', Tahoma, sans-serif;
direction: rtl;
text-align: right;
}
.stApp {
background: linear-gradient(to left, #f0f4f7, #d9e2ec);
}
.sidebar .sidebar-content {
background-color: #ffffff;
border-left: 2px solid #4e8a3e;
padding-top: 10px;
}
.sidebar .sidebar-content div {
margin-bottom: 10px;
font-weight: bold;
color: #2c3e50;
font-size: 15px;
}
.stButton>button {
background-color: #4e8a3e !important;
color: white !important;
font-weight: bold;
border-radius: 8px;
padding: 5px 16px;
transition: 0.3s;
font-size: 14px;
}
.stButton>button:hover {
background-color: #3c6d30 !important;
}
.header-text {
text-align: center;
margin-top: 15px;
margin-bottom: 25px;
background-color: rgba(255, 255, 255, 0.85);
padding: 16px;
border-radius: 16px;
box-shadow: 0 4px 10px rgba(0,0,0,0.1);
}
.header-text h1 {
font-size: 36px;
color: #2c3e50;
margin: 0;
font-weight: bold;
}
.subtitle {
font-size: 16px;
color: #34495e;
margin-top: 5px;
}
.chat-message {
background-color: rgba(255, 255, 255, 0.95);
border: 1px solid #4e8a3e;
border-radius: 12px;
padding: 14px;
margin-bottom: 10px;
box-shadow: 0 4px 8px rgba(0,0,0,0.08);
animation: fadeIn 0.5s ease;
}
.stTextInput>div>input, .stTextArea textarea {
background-color: rgba(255,255,255,0.9) !important;
border-radius: 8px !important;
direction: rtl;
text-align: right;
font-family: 'Vazirmatn', Tahoma;
}
img.small-logo {
width: 90px;
margin-bottom: 15px;
display: block;
margin-right: auto;
margin-left: auto;
}
.menu-item {
display: flex;
align-items: center;
gap: 8px;
padding: 6px 0;
font-size: 15px;
cursor: pointer;
}
.menu-item img {
width: 20px;
height: 20px;
}
</style>
""", unsafe_allow_html=True)
# ----------------- بدنه اصلی -----------------
with st.sidebar:
st.image("log.png", width=90)
st.markdown("""
<div class="menu-item">
<img src="https://cdn-icons-png.flaticon.com/512/3596/3596165.png" />
گفتگوی جدید
</div>
<div class="menu-item">
<img src="https://cdn-icons-png.flaticon.com/512/709/709496.png" />
تاریخچه
</div>
<hr/>
<div class="menu-item">
<img src="https://cdn-icons-png.flaticon.com/512/1828/1828932.png" />
مدلهای هوش مصنوعی
</div>
<div class="menu-item">
<img src="https://cdn-icons-png.flaticon.com/512/681/681494.png" />
تولید محتوا
</div>
<hr/>
<div class="menu-item">
<img src="https://cdn-icons-png.flaticon.com/512/3601/3601646.png" />
دستیار ویژه
</div>
<div class="menu-item">
<img src="https://cdn-icons-png.flaticon.com/512/709/709612.png" />
ابزار مالی
</div>
<hr/>
<div class="menu-item">
<img src="https://cdn-icons-png.flaticon.com/512/2099/2099058.png" />
تنظیمات
</div>
<div class="menu-item">
<img src="https://cdn-icons-png.flaticon.com/512/597/597177.png" />
پشتیبانی
</div>
""", unsafe_allow_html=True)
st.markdown("""
<style>
/* تنظیم سایز سایدبار */
[data-testid="stSidebar"] {
width: 220px !important;
flex-shrink: 0;
}
[data-testid="stSidebar"] > div {
width: 220px !important;
}
</style>
""", unsafe_allow_html=True)
# محتوای اصلی
st.markdown("""
<div class="header-text">
<h1>رزم یار ارتش</h1>
<div class="subtitle">دستیار هوشمند ارتشی برای پشتیبانی و راهبری</div>
</div>
""", unsafe_allow_html=True)
st.markdown('<div class="chat-message">👋 سلام! چطور میتونم کمکتون کنم؟</div>', unsafe_allow_html=True)
# چت اینپوت کاربر
#user_input = st.text_input("پیام خود را وارد کنید...")
#if user_input:
# st.markdown(f'<div class="chat-message">📩 شما: {user_input}</div>', unsafe_allow_html=True)
# ----------- تعریف کلاس امبدینگ با Together -----------
class TogetherEmbeddings(Embeddings):
def __init__(self, model_name: str, api_key: str):
self.model_name = model_name
self.client = Together(api_key=api_key)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
batch_size = 100
embeddings = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i + batch_size]
response = self.client.embeddings.create(model=self.model_name, input=batch)
embeddings.extend([item.embedding for item in response.data])
return embeddings
def embed_query(self, text: str) -> List[float]:
return self.embed_documents([text])[0]
# ----------- پردازش و ایندکس کردن CSV -----------
@st.cache_resource
def build_vectorstore_from_csv(csv_file_path: str):
df = pd.read_csv(csv_file_path)
texts = df.iloc[:, 0].astype(str).tolist()
texts = [text.strip() for text in texts if text.strip()]
# برش متنها
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=2048,
chunk_overlap=256,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
split_texts = []
for text in texts:
split_texts.extend(text_splitter.split_text(text))
documents = [Document(page_content=text) for text in split_texts]
embeddings = TogetherEmbeddings(
model_name="togethercomputer/m2-bert-80M-32k-retrieval",
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
)
vectorstore = FAISS.from_documents(documents, embeddings)
return vectorstore, embeddings
# ----------- بارگذاری مدل زبانی -----------
def load_llm():
return ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="Qwen/Qwen3-235B-A22B-fp8-tput"
)
# ----------- ساخت پرامپت نهایی برای LLM -----------
def build_prompt(context: str, user_question: str) -> str:
return f"""با توجه به اطلاعات زیر، فقط بر اساس آنها به سؤال پاسخ بده. اگر اطلاعات کافی نیست، بگو اطلاعات کافی ندارم.
🔹 اطلاعات:\n{context}\n\n❓ سؤال: {user_question}
"""
# ----------- تمیز کردن خروجی مدل از پاسخهای اضافی -----------
def clean_llm_response(response_text: str) -> str:
lines = response_text.split('\n')
filtered = [
line for line in lines
if not line.strip().startswith("<")
and not line.strip().lower().startswith(("think", "note", "#"))
]
return "\n".join(filtered).strip() or "متأسفم، اطلاعات دقیقی در این مورد ندارم."
# ----------- پردازش سوال و بازیابی پاسخها -----------
def process_user_query(query: str, vectorstore, embedding_model, llm):
# 1. ساخت embedding از سوال
query_embedding = embedding_model.embed_query(query)
# 2. پیدا کردن 3 پاسخ مشابه با cosine similarity
docs = vectorstore.similarity_search_by_vector(query_embedding, k=3)
context = "\n".join([doc.page_content for doc in docs])
# 3. ساخت پرامپت نهایی با استفاده از پاسخهای مشابه به عنوان context
final_prompt = build_prompt(context, query)
# 4. ارسال پرامپت به LLM و دریافت پاسخ
response = llm.invoke(final_prompt)
raw_answer = response.content.strip()
# 5. تمیز کردن و نمایش پاسخ نهایی
clean_answer = clean_llm_response(raw_answer)
return clean_answer
# ----------- اجرای Streamlit UI -----------
def run_chat_ui():
st.title("💬 دستیار هوشمند متنی بر اساس فایل CSV")
# بارگذاری ایندکس
csv_file_path = 'output (1).csv'
try:
vectorstore, embedding_model = build_vectorstore_from_csv(csv_file_path)
except Exception as e:
st.error(f"خطا در پردازش فایل: {str(e)}")
st.stop()
llm = load_llm()
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
# نمایش پیامهای قبلی
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"{msg['content']}", unsafe_allow_html=True)
# گرفتن سوال جدید
user_prompt = st.chat_input("سوال خود را وارد کنید...")
if user_prompt:
st.session_state.messages.append({'role': 'user', 'content': user_prompt})
st.session_state.pending_prompt = user_prompt
st.rerun()
# پردازش سوال
if st.session_state.pending_prompt:
with st.chat_message("ai"):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن...")
try:
# پردازش سوال و دریافت پاسخ نهایی
query = st.session_state.pending_prompt
clean_answer = process_user_query(query, vectorstore, embedding_model, llm)
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in clean_answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
except Exception as e:
thinking.empty()
st.error(f"خطا در پردازش مدل: {str(e)}")
# اجرای برنامه
if __name__ == "__main__":
run_chat_ui()
|