Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,84 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from langchain.document_loaders import PyPDFLoader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain_together import TogetherEmbeddings
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.chat_models import ChatOpenAI
|
7 |
from langchain.chains import RetrievalQA
|
8 |
-
import time
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
@st.cache_resource
|
14 |
-
def
|
15 |
pdf_loader = PyPDFLoader('test1.pdf')
|
16 |
-
pages = pdf_loader.
|
17 |
-
|
|
|
18 |
|
19 |
-
|
20 |
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
|
21 |
)
|
22 |
-
|
23 |
-
|
24 |
-
# کش شده
|
25 |
-
chunk_texts, embeddings_model = get_chunks_and_embeddings()
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
st.title("📄 Chat with your PDF (با پیدیاف خودت حرف بزن!)")
|
31 |
-
st.subheader("در حال آمادهسازی امبدینگ چانکها...")
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
batch = chunk_texts[i:i+batch_size]
|
39 |
-
embedded = embeddings_model.embed_documents(batch)
|
40 |
-
all_embeddings.extend(embedded)
|
41 |
|
42 |
-
|
|
|
43 |
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
#
|
47 |
-
# 3. ساختن ایندکس FAISS از امبدینگها
|
48 |
-
# --------------------------------------------
|
49 |
-
vectorstore = FAISS.from_embeddings(all_embeddings, chunk_texts)
|
50 |
-
|
51 |
-
# --------------------------------------------
|
52 |
-
# 4. آماده سازی مدل LLM و چین
|
53 |
-
# --------------------------------------------
|
54 |
llm = ChatOpenAI(
|
55 |
base_url="https://api.together.xyz/v1",
|
56 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
57 |
model="meta-llama/Llama-3-70B-Instruct-Turbo-Free"
|
58 |
)
|
59 |
|
|
|
|
|
60 |
chain = RetrievalQA.from_chain_type(
|
61 |
llm=llm,
|
62 |
chain_type='stuff',
|
63 |
-
retriever=
|
64 |
input_key='question'
|
65 |
)
|
66 |
|
67 |
-
#
|
68 |
-
# 5. چت بات Streamlit
|
69 |
-
# --------------------------------------------
|
70 |
if 'messages' not in st.session_state:
|
71 |
st.session_state.messages = []
|
72 |
|
73 |
if 'pending_prompt' not in st.session_state:
|
74 |
st.session_state.pending_prompt = None
|
75 |
|
76 |
-
|
|
|
|
|
77 |
for msg in st.session_state.messages:
|
78 |
with st.chat_message(msg['role']):
|
79 |
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
|
80 |
|
81 |
-
|
82 |
-
prompt = st.chat_input("چطور میتونم کمکت کنم؟")
|
83 |
|
84 |
if prompt:
|
85 |
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
@@ -91,8 +90,8 @@ if st.session_state.pending_prompt:
|
|
91 |
thinking = st.empty()
|
92 |
thinking.markdown("🤖 در حال فکر کردن...")
|
93 |
|
94 |
-
# اجرای جستجو در ایندکس
|
95 |
-
response = chain.run(f
|
96 |
answer = response.split("Helpful Answer:")[-1].strip()
|
97 |
if not answer:
|
98 |
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
|
@@ -101,7 +100,6 @@ if st.session_state.pending_prompt:
|
|
101 |
full_response = ""
|
102 |
placeholder = st.empty()
|
103 |
|
104 |
-
# نمایش پاسخ به صورت تایپی
|
105 |
for word in answer.split():
|
106 |
full_response += word + " "
|
107 |
placeholder.markdown(full_response + "▌")
|
|
|
1 |
import streamlit as st
|
2 |
+
import time
|
3 |
from langchain.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_together import TogetherEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.chat_models import ChatOpenAI
|
8 |
from langchain.chains import RetrievalQA
|
|
|
9 |
|
10 |
+
# --- 📄 ساخت امبدینگها با batch 50 تایی
|
11 |
+
def batch_embed(texts, embeddings_model, batch_size=50):
|
12 |
+
all_embeddings = []
|
13 |
+
for i in range(0, len(texts), batch_size):
|
14 |
+
batch = texts[i:i+batch_size]
|
15 |
+
embs = embeddings_model.embed_documents([doc.page_content for doc in batch])
|
16 |
+
all_embeddings.extend(embs)
|
17 |
+
return all_embeddings
|
18 |
+
|
19 |
@st.cache_resource
|
20 |
+
def load_chunks_and_embeddings():
|
21 |
pdf_loader = PyPDFLoader('test1.pdf')
|
22 |
+
pages = pdf_loader.load()
|
23 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
|
24 |
+
docs = text_splitter.split_documents(pages)
|
25 |
|
26 |
+
embeddings = TogetherEmbeddings(
|
27 |
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
|
28 |
)
|
29 |
+
|
30 |
+
vectorstore = FAISS.from_documents([], embedding=embeddings) # اول خالی
|
|
|
|
|
31 |
|
32 |
+
# پروگرس بار
|
33 |
+
progress = st.progress(0, text="🔄 در حال پردازش چانکها...")
|
34 |
+
total = len(docs)
|
|
|
|
|
35 |
|
36 |
+
batch_size = 50
|
37 |
+
for i in range(0, total, batch_size):
|
38 |
+
batch_docs = docs[i:i+batch_size]
|
39 |
+
embeddings_batch = embeddings.embed_documents([doc.page_content for doc in batch_docs])
|
40 |
+
vectorstore.add_embeddings(embeddings_batch, batch_docs)
|
41 |
|
42 |
+
progress.progress(min((i+batch_size)/total, 1.0))
|
|
|
|
|
|
|
43 |
|
44 |
+
progress.empty()
|
45 |
+
return vectorstore
|
46 |
|
47 |
+
# --- 🛠️ آماده کردن دیتابیس
|
48 |
+
with st.spinner("📚 در حال بارگذاری فایل و ساخت امبدینگها... لطفا صبور باشید"):
|
49 |
+
vectorstore = load_chunks_and_embeddings()
|
50 |
|
51 |
+
# --- 🤖 آماده سازی مدل LLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
llm = ChatOpenAI(
|
53 |
base_url="https://api.together.xyz/v1",
|
54 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
55 |
model="meta-llama/Llama-3-70B-Instruct-Turbo-Free"
|
56 |
)
|
57 |
|
58 |
+
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 10})
|
59 |
+
|
60 |
chain = RetrievalQA.from_chain_type(
|
61 |
llm=llm,
|
62 |
chain_type='stuff',
|
63 |
+
retriever=retriever,
|
64 |
input_key='question'
|
65 |
)
|
66 |
|
67 |
+
# --- 💬 چت بات
|
|
|
|
|
68 |
if 'messages' not in st.session_state:
|
69 |
st.session_state.messages = []
|
70 |
|
71 |
if 'pending_prompt' not in st.session_state:
|
72 |
st.session_state.pending_prompt = None
|
73 |
|
74 |
+
st.title("📄🤖 دستیار PDF شما")
|
75 |
+
|
76 |
+
# نمایش تاریخچه گفتگو
|
77 |
for msg in st.session_state.messages:
|
78 |
with st.chat_message(msg['role']):
|
79 |
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
|
80 |
|
81 |
+
prompt = st.chat_input("سوالی از PDF داری؟")
|
|
|
82 |
|
83 |
if prompt:
|
84 |
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
|
|
90 |
thinking = st.empty()
|
91 |
thinking.markdown("🤖 در حال فکر کردن...")
|
92 |
|
93 |
+
# اجرای جستجو در ایندکس
|
94 |
+
response = chain.run(f'فقط به زبان فارسی جواب بده. سوال: {st.session_state.pending_prompt}')
|
95 |
answer = response.split("Helpful Answer:")[-1].strip()
|
96 |
if not answer:
|
97 |
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
|
|
|
100 |
full_response = ""
|
101 |
placeholder = st.empty()
|
102 |
|
|
|
103 |
for word in answer.split():
|
104 |
full_response += word + " "
|
105 |
placeholder.markdown(full_response + "▌")
|