Update app.py
Browse files
app.py
CHANGED
@@ -11,13 +11,6 @@ from typing import List
|
|
11 |
from together import Together
|
12 |
import pandas as pd
|
13 |
import streamlit as st
|
14 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
15 |
-
|
16 |
-
|
17 |
-
import numpy as np
|
18 |
-
from sentence_transformers import SentenceTransformer
|
19 |
-
import faiss
|
20 |
-
|
21 |
|
22 |
# ----------------- تنظیمات صفحه -----------------
|
23 |
st.set_page_config(page_title="رزم یار ارتش", page_icon="🪖", layout="wide")
|
@@ -188,46 +181,93 @@ st.markdown('<div class="chat-message">👋 سلام! چطور میتونم کم
|
|
188 |
|
189 |
|
190 |
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
texts = [text for text in texts if text.strip()]
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
chunk_overlap=50,
|
206 |
-
length_function=len,
|
207 |
-
separators=["\n\n", "\n", " ", ""]
|
208 |
-
)
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
dim = embeddings.shape[1]
|
219 |
-
index = faiss.IndexHNSWFlat(dim, 32)
|
220 |
-
index.hnsw.efSearch = 50
|
221 |
-
index.add(np.array(embeddings))
|
222 |
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
# مسیر فایل CSV
|
226 |
csv_file_path = 'output (1).csv'
|
227 |
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
# رابط چت
|
231 |
if 'messages' not in st.session_state:
|
232 |
st.session_state.messages = []
|
233 |
|
@@ -236,46 +276,33 @@ if 'pending_prompt' not in st.session_state:
|
|
236 |
|
237 |
for msg in st.session_state.messages:
|
238 |
with st.chat_message(msg['role']):
|
239 |
-
st.markdown(msg['content'], unsafe_allow_html=True)
|
240 |
|
241 |
-
|
242 |
|
243 |
-
if
|
244 |
-
st.session_state.messages.append({'role': 'user', 'content':
|
245 |
-
st.session_state.pending_prompt =
|
246 |
st.rerun()
|
247 |
|
248 |
if st.session_state.pending_prompt:
|
249 |
-
with st.chat_message(
|
250 |
thinking = st.empty()
|
251 |
-
thinking.markdown("🤖 در حال
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
top_indices = I[0]
|
259 |
-
top_texts = [texts[i] for i in top_indices]
|
260 |
-
top_vectors = np.array([vectors[i] for i in top_indices])
|
261 |
-
|
262 |
-
|
263 |
-
similarities = cosine_similarity(query_vector, top_vectors)[0]
|
264 |
-
|
265 |
-
# پیدا کردن دقیقترین متن
|
266 |
-
best_match_relative_index = np.argmax(similarities)
|
267 |
-
best_match_index = top_indices[best_match_relative_index]
|
268 |
-
best_match_text = texts[best_match_index]
|
269 |
-
response = "🧠 پاسخ سوال :\n\n" .join(best_match_text)
|
270 |
|
271 |
thinking.empty()
|
272 |
full_response = ""
|
273 |
placeholder = st.empty()
|
274 |
-
for word in
|
275 |
full_response += word + " "
|
276 |
placeholder.markdown(full_response + "▌")
|
277 |
-
time.sleep(0.
|
278 |
|
279 |
placeholder.markdown(full_response)
|
280 |
st.session_state.messages.append({'role': 'ai', 'content': full_response})
|
281 |
-
st.session_state.pending_prompt = None
|
|
|
11 |
from together import Together
|
12 |
import pandas as pd
|
13 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# ----------------- تنظیمات صفحه -----------------
|
16 |
st.set_page_config(page_title="رزم یار ارتش", page_icon="🪖", layout="wide")
|
|
|
181 |
|
182 |
|
183 |
|
184 |
+
# ----------------- لود csv و ساخت ایندکس -----------------
|
185 |
+
class TogetherEmbeddings(Embeddings):
|
186 |
+
def __init__(self, model_name: str, api_key: str):
|
187 |
+
self.model_name = model_name
|
188 |
+
self.client = Together(api_key=api_key)
|
189 |
|
190 |
+
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
191 |
+
# تقسیم متنها به دستههای کوچکتر برای جلوگیری از خطای 413
|
192 |
+
batch_size = 100 # این مقدار را میتوانید تنظیم کنید
|
193 |
+
embeddings = []
|
194 |
+
for i in range(0, len(texts), batch_size):
|
195 |
+
batch = texts[i:i + batch_size]
|
196 |
+
response = self.client.embeddings.create(model=self.model_name, input=batch)
|
197 |
+
embeddings.extend([item.embedding for item in response.data])
|
198 |
+
return embeddings
|
|
|
199 |
|
200 |
+
def embed_query(self, text: str) -> List[float]:
|
201 |
+
return self.embed_documents([text])[0]
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
@st.cache_resource
|
204 |
+
def get_csv_index(csv_file):
|
205 |
+
with st.spinner('📄 در حال پردازش فایل CSV...'):
|
206 |
+
# خواندن دادههای CSV
|
207 |
+
df = pd.read_csv(csv_file)
|
208 |
+
|
209 |
+
# تبدیل DataFrame به لیست از متون
|
210 |
+
texts = df.iloc[:, 0].astype(str).tolist() # ستون اول را میگیرد
|
|
|
|
|
|
|
|
|
211 |
|
212 |
+
# فیلتر کردن متنهای خالی
|
213 |
+
texts = [text for text in texts if text.strip()]
|
214 |
+
|
215 |
+
# تقسیم متنهای طولانی به بخشهای کوچکتر
|
216 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
217 |
+
chunk_size=2048,
|
218 |
+
chunk_overlap=256,
|
219 |
+
length_function=len,
|
220 |
+
separators=["\n\n", "\n", " ", ""]
|
221 |
+
)
|
222 |
+
|
223 |
+
split_texts = []
|
224 |
+
for text in texts:
|
225 |
+
split_texts.extend(text_splitter.split_text(text))
|
226 |
+
|
227 |
+
# ایجاد embeddings
|
228 |
+
embeddings = TogetherEmbeddings(
|
229 |
+
model_name="togethercomputer/m2-bert-80M-8k-retrieval",
|
230 |
+
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
|
231 |
+
)
|
232 |
+
|
233 |
+
# استفاده از VectorstoreIndexCreator برای ساخت ایندکس
|
234 |
+
index_creator = VectorstoreIndexCreator(
|
235 |
+
embedding=embeddings,
|
236 |
+
text_splitter=text_splitter
|
237 |
+
)
|
238 |
+
|
239 |
+
# تبدیل متون به اسناد (documents)
|
240 |
+
from langchain.docstore.document import Document
|
241 |
+
documents = [Document(page_content=text) for text in split_texts]
|
242 |
+
|
243 |
+
return index_creator.from_documents(documents)
|
244 |
|
245 |
# مسیر فایل CSV
|
246 |
csv_file_path = 'output (1).csv'
|
247 |
|
248 |
+
try:
|
249 |
+
# ساخت ایندکس
|
250 |
+
csv_index = get_csv_index(csv_file_path)
|
251 |
+
# st.success("ایندکس فایل CSV با موفقیت ساخته شد!")
|
252 |
+
except Exception as e:
|
253 |
+
st.error(f"خطا در ساخت ایندکس: {str(e)}")
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
#------------------------------------------
|
258 |
+
llm = ChatOpenAI(
|
259 |
+
base_url="https://api.together.xyz/v1",
|
260 |
+
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
261 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
|
262 |
+
)
|
263 |
+
|
264 |
+
chain = RetrievalQA.from_chain_type(
|
265 |
+
llm=llm,
|
266 |
+
chain_type='stuff',
|
267 |
+
retriever=csv_index.vectorstore.as_retriever(),
|
268 |
+
input_key='question'
|
269 |
+
)
|
270 |
|
|
|
271 |
if 'messages' not in st.session_state:
|
272 |
st.session_state.messages = []
|
273 |
|
|
|
276 |
|
277 |
for msg in st.session_state.messages:
|
278 |
with st.chat_message(msg['role']):
|
279 |
+
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
|
280 |
|
281 |
+
prompt = st.chat_input("چطور میتونم کمک کنم؟")
|
282 |
|
283 |
+
if prompt:
|
284 |
+
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
285 |
+
st.session_state.pending_prompt = prompt
|
286 |
st.rerun()
|
287 |
|
288 |
if st.session_state.pending_prompt:
|
289 |
+
with st.chat_message('ai'):
|
290 |
thinking = st.empty()
|
291 |
+
thinking.markdown("🤖 در حال فکر کردن...")
|
292 |
|
293 |
+
response = chain.run(f'پاسخ را فقط به زبان فارسی جواب بده به هیچ عنوان از زبان غیر از فارسی در پاسخ استفاده نکن. سوال: {st.session_state.pending_prompt}')
|
294 |
+
answer = response.split("Helpful Answer:")[-1].strip() if "Helpful Answer:" in response else response.strip()
|
295 |
+
if not answer:
|
296 |
+
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
thinking.empty()
|
299 |
full_response = ""
|
300 |
placeholder = st.empty()
|
301 |
+
for word in answer.split():
|
302 |
full_response += word + " "
|
303 |
placeholder.markdown(full_response + "▌")
|
304 |
+
time.sleep(0.03)
|
305 |
|
306 |
placeholder.markdown(full_response)
|
307 |
st.session_state.messages.append({'role': 'ai', 'content': full_response})
|
308 |
+
st.session_state.pending_prompt = None
|