Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,12 @@ from together import Together
|
|
12 |
import pandas as pd
|
13 |
import streamlit as st
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# ----------------- تنظیمات صفحه -----------------
|
16 |
st.set_page_config(page_title="رزم یار ارتش", page_icon="🪖", layout="wide")
|
17 |
|
@@ -181,93 +187,50 @@ st.markdown('<div class="chat-message">👋 سلام! چطور میتونم کم
|
|
181 |
|
182 |
|
183 |
|
184 |
-
# ----------------- لود csv و ساخت ایندکس -----------------
|
185 |
-
class TogetherEmbeddings(Embeddings):
|
186 |
-
def __init__(self, model_name: str, api_key: str):
|
187 |
-
self.model_name = model_name
|
188 |
-
self.client = Together(api_key=api_key)
|
189 |
-
|
190 |
-
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
191 |
-
# تقسیم متنها به دستههای کوچکتر برای جلوگیری از خطای 413
|
192 |
-
batch_size = 100 # این مقدار را میتوانید تنظیم کنید
|
193 |
-
embeddings = []
|
194 |
-
for i in range(0, len(texts), batch_size):
|
195 |
-
batch = texts[i:i + batch_size]
|
196 |
-
response = self.client.embeddings.create(model=self.model_name, input=batch)
|
197 |
-
embeddings.extend([item.embedding for item in response.data])
|
198 |
-
return embeddings
|
199 |
|
200 |
-
|
201 |
-
|
|
|
|
|
202 |
|
203 |
@st.cache_resource
|
204 |
-
def
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
|
231 |
-
)
|
232 |
-
|
233 |
-
# استفاده از VectorstoreIndexCreator برای ساخت ایندکس
|
234 |
-
index_creator = VectorstoreIndexCreator(
|
235 |
-
embedding=embeddings,
|
236 |
-
text_splitter=text_splitter
|
237 |
-
)
|
238 |
-
|
239 |
-
# تبدیل متون به اسناد (documents)
|
240 |
-
from langchain.docstore.document import Document
|
241 |
-
documents = [Document(page_content=text) for text in split_texts]
|
242 |
-
|
243 |
-
return index_creator.from_documents(documents)
|
244 |
|
245 |
# مسیر فایل CSV
|
246 |
csv_file_path = 'output (1).csv'
|
247 |
|
248 |
try:
|
249 |
-
|
250 |
-
|
251 |
-
st.success("ایندکس فایل CSV با موفقیت ساخته شد!")
|
252 |
except Exception as e:
|
253 |
-
st.error(f"خطا در
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
#------------------------------------------
|
258 |
-
llm = ChatOpenAI(
|
259 |
-
base_url="https://api.together.xyz/v1",
|
260 |
-
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
261 |
-
model="togethercomputer/m2-bert-80M-8k-retrieval"
|
262 |
-
)
|
263 |
-
|
264 |
-
chain = RetrievalQA.from_chain_type(
|
265 |
-
llm=llm,
|
266 |
-
chain_type='stuff',
|
267 |
-
retriever=csv_index.vectorstore.as_retriever(),
|
268 |
-
input_key='question'
|
269 |
-
)
|
270 |
|
|
|
271 |
if 'messages' not in st.session_state:
|
272 |
st.session_state.messages = []
|
273 |
|
@@ -276,33 +239,36 @@ if 'pending_prompt' not in st.session_state:
|
|
276 |
|
277 |
for msg in st.session_state.messages:
|
278 |
with st.chat_message(msg['role']):
|
279 |
-
st.markdown(
|
280 |
|
281 |
-
|
282 |
|
283 |
-
if
|
284 |
-
st.session_state.messages.append({'role': 'user', 'content':
|
285 |
-
st.session_state.pending_prompt =
|
286 |
st.rerun()
|
287 |
|
288 |
if st.session_state.pending_prompt:
|
289 |
-
with st.chat_message(
|
290 |
thinking = st.empty()
|
291 |
-
thinking.markdown("🤖 در حال
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
if not answer:
|
296 |
-
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
|
297 |
|
298 |
thinking.empty()
|
299 |
full_response = ""
|
300 |
placeholder = st.empty()
|
301 |
-
for word in
|
302 |
full_response += word + " "
|
303 |
placeholder.markdown(full_response + "▌")
|
304 |
-
time.sleep(0.
|
305 |
|
306 |
placeholder.markdown(full_response)
|
307 |
st.session_state.messages.append({'role': 'ai', 'content': full_response})
|
308 |
-
st.session_state.pending_prompt = None
|
|
|
12 |
import pandas as pd
|
13 |
import streamlit as st
|
14 |
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
from sentence_transformers import SentenceTransformer
|
18 |
+
import faiss
|
19 |
+
|
20 |
+
|
21 |
# ----------------- تنظیمات صفحه -----------------
|
22 |
st.set_page_config(page_title="رزم یار ارتش", page_icon="🪖", layout="wide")
|
23 |
|
|
|
187 |
|
188 |
|
189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
+
# ⚙️ مدل Embedding ساده و سریع
|
192 |
+
@st.cache_resource
|
193 |
+
def get_embedding_model():
|
194 |
+
return SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
|
195 |
|
196 |
@st.cache_resource
|
197 |
+
def process_csv(csv_file):
|
198 |
+
df = pd.read_csv(csv_file)
|
199 |
+
texts = df.iloc[:, 0].astype(str).tolist()
|
200 |
+
texts = [text for text in texts if text.strip()]
|
201 |
+
|
202 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
203 |
+
chunk_size=300,
|
204 |
+
chunk_overlap=50,
|
205 |
+
length_function=len,
|
206 |
+
separators=["\n\n", "\n", " ", ""]
|
207 |
+
)
|
208 |
+
|
209 |
+
split_texts = []
|
210 |
+
for text in texts:
|
211 |
+
split_texts.extend(text_splitter.split_text(text))
|
212 |
+
|
213 |
+
# مدل امبدینگ
|
214 |
+
model = get_embedding_model()
|
215 |
+
embeddings = model.encode(split_texts, show_progress_bar=True)
|
216 |
+
|
217 |
+
# ساخت ایندکس FAISS
|
218 |
+
dim = embeddings.shape[1]
|
219 |
+
index = faiss.IndexFlatL2(dim)
|
220 |
+
index.add(np.array(embeddings))
|
221 |
+
|
222 |
+
return split_texts, embeddings, index
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
# مسیر فایل CSV
|
225 |
csv_file_path = 'output (1).csv'
|
226 |
|
227 |
try:
|
228 |
+
texts, vectors, index = process_csv(csv_file_path)
|
229 |
+
st.success("✅ ایندکسسازی با موفقیت انجام شد.")
|
|
|
230 |
except Exception as e:
|
231 |
+
st.error(f"❌ خطا در پردازش فایل: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
+
# رابط چت
|
234 |
if 'messages' not in st.session_state:
|
235 |
st.session_state.messages = []
|
236 |
|
|
|
239 |
|
240 |
for msg in st.session_state.messages:
|
241 |
with st.chat_message(msg['role']):
|
242 |
+
st.markdown(msg['content'], unsafe_allow_html=True)
|
243 |
|
244 |
+
query = st.chat_input("سؤالت را بپرس...")
|
245 |
|
246 |
+
if query:
|
247 |
+
st.session_state.messages.append({'role': 'user', 'content': query})
|
248 |
+
st.session_state.pending_prompt = query
|
249 |
st.rerun()
|
250 |
|
251 |
if st.session_state.pending_prompt:
|
252 |
+
with st.chat_message("ai"):
|
253 |
thinking = st.empty()
|
254 |
+
thinking.markdown("🤖 در حال جستجو...")
|
255 |
+
|
256 |
+
# امبد کردن سؤال و جستجو
|
257 |
+
model = get_embedding_model()
|
258 |
+
query_vector = model.encode([st.session_state.pending_prompt])
|
259 |
+
D, I = index.search(np.array(query_vector), k=3) # 3 نتیجه نزدیک
|
260 |
|
261 |
+
results = [texts[i] for i in I[0]]
|
262 |
+
response = "🧠 نزدیکترین پاسخها:\n\n" + "\n\n---\n\n".join(results)
|
|
|
|
|
263 |
|
264 |
thinking.empty()
|
265 |
full_response = ""
|
266 |
placeholder = st.empty()
|
267 |
+
for word in response.split():
|
268 |
full_response += word + " "
|
269 |
placeholder.markdown(full_response + "▌")
|
270 |
+
time.sleep(0.02)
|
271 |
|
272 |
placeholder.markdown(full_response)
|
273 |
st.session_state.messages.append({'role': 'ai', 'content': full_response})
|
274 |
+
st.session_state.pending_prompt = None
|