Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ from langchain.chat_models import ChatOpenAI
|
|
10 |
from typing import List
|
11 |
from together import Together
|
12 |
import pandas as pd
|
13 |
-
|
14 |
|
15 |
# ----------------- تنظیمات صفحه -----------------
|
16 |
st.set_page_config(page_title="رزم یار ارتش", page_icon="🪖", layout="wide")
|
@@ -182,14 +182,16 @@ st.markdown('<div class="chat-message">👋 سلام! چطور میتونم کم
|
|
182 |
|
183 |
|
184 |
# ----------------- لود csv و ساخت ایندکس -----------------
|
|
|
|
|
|
|
185 |
class TogetherEmbeddings(Embeddings):
|
186 |
def __init__(self, model_name: str, api_key: str):
|
187 |
self.model_name = model_name
|
188 |
self.client = Together(api_key=api_key)
|
189 |
|
190 |
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
191 |
-
|
192 |
-
batch_size = 100 # این مقدار را میتوانید تنظیم کنید
|
193 |
embeddings = []
|
194 |
for i in range(0, len(texts), batch_size):
|
195 |
batch = texts[i:i + batch_size]
|
@@ -200,84 +202,64 @@ class TogetherEmbeddings(Embeddings):
|
|
200 |
def embed_query(self, text: str) -> List[float]:
|
201 |
return self.embed_documents([text])[0]
|
202 |
|
|
|
203 |
@st.cache_resource
|
204 |
def get_csv_index(csv_file):
|
205 |
with st.spinner('📄 در حال پردازش فایل CSV...'):
|
206 |
-
# خواندن دادههای CSV
|
207 |
df = pd.read_csv(csv_file)
|
208 |
-
|
209 |
-
# تبدیل DataFrame به لیست از متون
|
210 |
-
texts = df.iloc[:, 0].astype(str).tolist() # ستون اول را میگیرد
|
211 |
-
|
212 |
-
# فیلتر کردن متنهای خالی
|
213 |
texts = [text for text in texts if text.strip()]
|
214 |
-
|
215 |
-
# تقسیم متنهای طولانی به بخشهای کوچکتر
|
216 |
text_splitter = RecursiveCharacterTextSplitter(
|
217 |
chunk_size=2048,
|
218 |
chunk_overlap=256,
|
219 |
length_function=len,
|
220 |
separators=["\n\n", "\n", " ", ""]
|
221 |
)
|
222 |
-
|
223 |
split_texts = []
|
224 |
for text in texts:
|
225 |
split_texts.extend(text_splitter.split_text(text))
|
226 |
|
227 |
-
|
|
|
228 |
embeddings = TogetherEmbeddings(
|
229 |
model_name="togethercomputer/m2-bert-80M-8k-retrieval",
|
230 |
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
|
231 |
)
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
embedding=embeddings,
|
236 |
-
text_splitter=text_splitter
|
237 |
-
)
|
238 |
-
|
239 |
-
# تبدیل متون به اسناد (documents)
|
240 |
-
from langchain.docstore.document import Document
|
241 |
-
documents = [Document(page_content=text) for text in split_texts]
|
242 |
-
|
243 |
-
return index_creator.from_documents(documents)
|
244 |
|
245 |
-
#
|
246 |
csv_file_path = 'output (1).csv'
|
247 |
|
248 |
try:
|
249 |
-
|
250 |
-
csv_index = get_csv_index(csv_file_path)
|
251 |
-
# st.success("ایندکس فایل CSV با موفقیت ساخته شد!")
|
252 |
except Exception as e:
|
253 |
st.error(f"خطا در ساخت ایندکس: {str(e)}")
|
|
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
#------------------------------------------
|
258 |
llm = ChatOpenAI(
|
259 |
base_url="https://api.together.xyz/v1",
|
260 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
261 |
-
model="meta-llama/Llama-3
|
262 |
-
)
|
263 |
-
|
264 |
-
chain = RetrievalQA.from_chain_type(
|
265 |
-
llm=llm,
|
266 |
-
chain_type='stuff',
|
267 |
-
retriever=csv_index.vectorstore.as_retriever(),
|
268 |
-
input_key='question'
|
269 |
)
|
270 |
|
|
|
271 |
if 'messages' not in st.session_state:
|
272 |
st.session_state.messages = []
|
273 |
|
274 |
if 'pending_prompt' not in st.session_state:
|
275 |
st.session_state.pending_prompt = None
|
276 |
|
|
|
277 |
for msg in st.session_state.messages:
|
278 |
with st.chat_message(msg['role']):
|
279 |
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
|
280 |
|
|
|
281 |
prompt = st.chat_input("چطور میتونم کمک کنم؟")
|
282 |
|
283 |
if prompt:
|
@@ -285,24 +267,45 @@ if prompt:
|
|
285 |
st.session_state.pending_prompt = prompt
|
286 |
st.rerun()
|
287 |
|
|
|
288 |
if st.session_state.pending_prompt:
|
289 |
with st.chat_message('ai'):
|
290 |
thinking = st.empty()
|
291 |
thinking.markdown("🤖 در حال فکر کردن...")
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from typing import List
|
11 |
from together import Together
|
12 |
import pandas as pd
|
13 |
+
from langchain.docstore.document import Document
|
14 |
|
15 |
# ----------------- تنظیمات صفحه -----------------
|
16 |
st.set_page_config(page_title="رزم یار ارتش", page_icon="🪖", layout="wide")
|
|
|
182 |
|
183 |
|
184 |
# ----------------- لود csv و ساخت ایندکس -----------------
|
185 |
+
|
186 |
+
|
187 |
+
# --- Embedding Class ---
|
188 |
class TogetherEmbeddings(Embeddings):
|
189 |
def __init__(self, model_name: str, api_key: str):
|
190 |
self.model_name = model_name
|
191 |
self.client = Together(api_key=api_key)
|
192 |
|
193 |
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
194 |
+
batch_size = 100
|
|
|
195 |
embeddings = []
|
196 |
for i in range(0, len(texts), batch_size):
|
197 |
batch = texts[i:i + batch_size]
|
|
|
202 |
def embed_query(self, text: str) -> List[float]:
|
203 |
return self.embed_documents([text])[0]
|
204 |
|
205 |
+
# --- Load CSV and Create Index ---
|
206 |
@st.cache_resource
|
207 |
def get_csv_index(csv_file):
|
208 |
with st.spinner('📄 در حال پردازش فایل CSV...'):
|
|
|
209 |
df = pd.read_csv(csv_file)
|
210 |
+
texts = df.iloc[:, 0].astype(str).tolist()
|
|
|
|
|
|
|
|
|
211 |
texts = [text for text in texts if text.strip()]
|
212 |
+
|
|
|
213 |
text_splitter = RecursiveCharacterTextSplitter(
|
214 |
chunk_size=2048,
|
215 |
chunk_overlap=256,
|
216 |
length_function=len,
|
217 |
separators=["\n\n", "\n", " ", ""]
|
218 |
)
|
219 |
+
|
220 |
split_texts = []
|
221 |
for text in texts:
|
222 |
split_texts.extend(text_splitter.split_text(text))
|
223 |
|
224 |
+
documents = [Document(page_content=text) for text in split_texts]
|
225 |
+
|
226 |
embeddings = TogetherEmbeddings(
|
227 |
model_name="togethercomputer/m2-bert-80M-8k-retrieval",
|
228 |
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
|
229 |
)
|
230 |
|
231 |
+
vectorstore = FAISS.from_documents(documents, embeddings)
|
232 |
+
return vectorstore, embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
# --- Load CSV ---
|
235 |
csv_file_path = 'output (1).csv'
|
236 |
|
237 |
try:
|
238 |
+
vectorstore, embedding_model = get_csv_index(csv_file_path)
|
|
|
|
|
239 |
except Exception as e:
|
240 |
st.error(f"خطا در ساخت ایندکس: {str(e)}")
|
241 |
+
st.stop()
|
242 |
|
243 |
+
# --- Load LLM ---
|
|
|
|
|
244 |
llm = ChatOpenAI(
|
245 |
base_url="https://api.together.xyz/v1",
|
246 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
247 |
+
model="meta-llama/Llama-3-70B-Instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
)
|
249 |
|
250 |
+
# --- Chat UI ---
|
251 |
if 'messages' not in st.session_state:
|
252 |
st.session_state.messages = []
|
253 |
|
254 |
if 'pending_prompt' not in st.session_state:
|
255 |
st.session_state.pending_prompt = None
|
256 |
|
257 |
+
# نمایش پیامهای قبلی
|
258 |
for msg in st.session_state.messages:
|
259 |
with st.chat_message(msg['role']):
|
260 |
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
|
261 |
|
262 |
+
# ورودی جدید کاربر
|
263 |
prompt = st.chat_input("چطور میتونم کمک کنم؟")
|
264 |
|
265 |
if prompt:
|
|
|
267 |
st.session_state.pending_prompt = prompt
|
268 |
st.rerun()
|
269 |
|
270 |
+
# پردازش سوال
|
271 |
if st.session_state.pending_prompt:
|
272 |
with st.chat_message('ai'):
|
273 |
thinking = st.empty()
|
274 |
thinking.markdown("🤖 در حال فکر کردن...")
|
275 |
|
276 |
+
try:
|
277 |
+
# امبد کردن سوال
|
278 |
+
query = st.session_state.pending_prompt
|
279 |
+
query_embedding = embedding_model.embed_query(query)
|
280 |
+
|
281 |
+
# بازیابی اسناد مشابه
|
282 |
+
docs = vectorstore.similarity_search_by_vector(query_embedding, k=4)
|
283 |
+
context = "\n".join([doc.page_content for doc in docs])
|
284 |
+
|
285 |
+
# ساخت پرامپت نهایی برای LLM
|
286 |
+
final_prompt = f"""با توجه به اطلاعات زیر پاسخ بده. فقط به زبان فارسی پاسخ بده:
|
287 |
+
اطلاعات:\n{context}\n\nسوال: {query}
|
288 |
+
"""
|
289 |
+
|
290 |
+
# ارسال به LLM
|
291 |
+
response = llm.invoke(final_prompt)
|
292 |
+
answer = response.content.strip()
|
293 |
+
if not answer:
|
294 |
+
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
|
295 |
+
|
296 |
+
# تایپ کردن تدریجی پاسخ
|
297 |
+
thinking.empty()
|
298 |
+
full_response = ""
|
299 |
+
placeholder = st.empty()
|
300 |
+
for word in answer.split():
|
301 |
+
full_response += word + " "
|
302 |
+
placeholder.markdown(full_response + "▌")
|
303 |
+
time.sleep(0.03)
|
304 |
+
|
305 |
+
placeholder.markdown(full_response)
|
306 |
+
st.session_state.messages.append({'role': 'ai', 'content': full_response})
|
307 |
+
st.session_state.pending_prompt = None
|
308 |
+
|
309 |
+
except Exception as e:
|
310 |
+
thinking.empty()
|
311 |
+
st.error(f"خطا در پاسخدهی: {str(e)}")
|