File size: 2,499 Bytes
4d5be2f
 
 
 
 
 
 
824f72f
4d5be2f
 
 
824f72f
 
 
 
de04d07
824f72f
 
 
4d5be2f
 
 
 
de04d07
4d5be2f
 
 
 
 
 
de04d07
 
 
 
4d5be2f
 
 
 
 
 
 
 
 
 
824f72f
4d5be2f
 
 
 
 
 
824f72f
 
 
 
4d5be2f
824f72f
4d5be2f
824f72f
f2c9943
824f72f
 
 
f2c9943
824f72f
 
f2c9943
824f72f
 
 
49bc36c
 
f2c9943
 
824f72f
f2c9943
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import torchvision.transforms as transforms

# Modelo Autoencoder
class Autoencoder(nn.Module):
    def __init__(self):
        super(Autoencoder, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
        self.fc1 = nn.Linear(128 * 8 * 8, 32)
        self.fc2 = nn.Linear(32, 128 * 8 * 8)
        self.conv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)
        self.conv5 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)
        self.conv6 = nn.ConvTranspose2d(32, 1, kernel_size=3, stride=2, padding=1, output_padding=1)

    def encode(self, x):
        z = torch.tanh(self.conv1(x))
        z = torch.tanh(self.conv2(z))
        z = torch.tanh(self.conv3(z))
        z = z.view(z.size(0), -1)
        z = torch.tanh(self.fc1(z))
        return z

    def decode(self, x):
        z = torch.tanh(self.fc2(x))
        z = z.view(z.size(0), 128, 8, 8)
        z = torch.tanh(self.conv4(z))
        z = torch.tanh(self.conv5(z))
        z = torch.sigmoid(self.conv6(z))
        return z

    def forward(self, x):
        return self.decode(self.encode(x))

# Cargar el modelo
model = Autoencoder()
model.load_state_dict(torch.load("autoencoder.pth", map_location=torch.device("cpu")))
model.eval()

# Transformaci贸n
transform = transforms.Compose([
    transforms.Grayscale(),
    transforms.Resize((64, 64)),
    transforms.ToTensor()
])

# Umbral de error (ajustable)
THRESHOLD = 0.01

# Funci贸n de predicci贸n
def detectar_anomalia(imagen):
    img_tensor = transform(imagen).unsqueeze(0)
    with torch.no_grad():
        reconstruida = model(img_tensor)

    mse = torch.mean((img_tensor - reconstruida) ** 2).item()
    resultado = "An贸mala" if mse > THRESHOLD else "Normal"
    return resultado

# Interfaz Gradio
demo = gr.Interface(
    fn=detectar_anomalia,
    inputs=gr.Image(type="pil", label="Sube una imagen para analizar"),
    outputs=gr.Label(label="Resultado"),
    examples=["anomalous.png", "normal.png"],
    title="Detecci贸n de Anomal铆as con Autoencoder (PyTorch)",
    description="Este Space utiliza un autoencoder entrenado con PyTorch para detectar anomal铆as en im谩genes de textiles.",
)

demo.launch()