Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
|
8 |
+
# Modelo autoencoder
|
9 |
+
class Autoencoder(nn.Module):
|
10 |
+
def __init__(self):
|
11 |
+
super(Autoencoder, self).__init__()
|
12 |
+
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1)
|
13 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
|
14 |
+
self.fc1 = nn.Linear(64 * 16 * 16, 16)
|
15 |
+
self.fc2 = nn.Linear(16, 64 * 16 * 16)
|
16 |
+
self.conv3 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)
|
17 |
+
self.conv4 = nn.ConvTranspose2d(32, 1, kernel_size=3, stride=2, padding=1, output_padding=1)
|
18 |
+
|
19 |
+
def encode(self, x):
|
20 |
+
z = torch.tanh(self.conv1(x))
|
21 |
+
z = torch.tanh(self.conv2(z))
|
22 |
+
z = z.view(z.size(0), -1)
|
23 |
+
z = torch.tanh(self.fc1(z))
|
24 |
+
return z
|
25 |
+
|
26 |
+
def decode(self, x):
|
27 |
+
z = torch.tanh(self.fc2(x))
|
28 |
+
z = z.view(z.size(0), 64, 16, 16)
|
29 |
+
z = torch.tanh(self.conv3(z))
|
30 |
+
z = torch.sigmoid(self.conv4(z))
|
31 |
+
return z
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
return self.decode(self.encode(x))
|
35 |
+
|
36 |
+
# Cargar el modelo
|
37 |
+
model = Autoencoder()
|
38 |
+
model.load_state_dict(torch.load("autoencoder.pth", map_location=torch.device("cpu")))
|
39 |
+
model.eval()
|
40 |
+
|
41 |
+
# Transformaci贸n de entrada
|
42 |
+
transform = transforms.Compose([
|
43 |
+
transforms.Grayscale(),
|
44 |
+
transforms.Resize((64, 64)),
|
45 |
+
transforms.ToTensor()
|
46 |
+
])
|
47 |
+
|
48 |
+
# Funci贸n de inferencia
|
49 |
+
def detectar_anomalia(imagen):
|
50 |
+
with torch.no_grad():
|
51 |
+
img_tensor = transform(imagen).unsqueeze(0) # A帽adir batch
|
52 |
+
reconstruida = model(img_tensor).squeeze(0).squeeze(_
|