Update app.py
Browse files
app.py
CHANGED
@@ -5,20 +5,18 @@ import numpy as np
|
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
7 |
|
8 |
-
# Modelo
|
9 |
class Autoencoder(nn.Module):
|
10 |
def __init__(self):
|
11 |
super(Autoencoder, self).__init__()
|
12 |
-
|
13 |
-
self.
|
14 |
-
self.
|
15 |
-
self.
|
16 |
-
self.fc1 = nn.Linear(128 * 8 * 8, 32) # Espacio latente
|
17 |
-
# Decoder
|
18 |
self.fc2 = nn.Linear(32, 128 * 8 * 8)
|
19 |
-
self.conv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)
|
20 |
-
self.conv5 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)
|
21 |
-
self.conv6 = nn.ConvTranspose2d(32, 1, kernel_size=3, stride=2, padding=1, output_padding=1)
|
22 |
|
23 |
def encode(self, x):
|
24 |
z = torch.tanh(self.conv1(x))
|
@@ -44,29 +42,35 @@ model = Autoencoder()
|
|
44 |
model.load_state_dict(torch.load("autoencoder.pth", map_location=torch.device("cpu")))
|
45 |
model.eval()
|
46 |
|
47 |
-
# Transformaci贸n
|
48 |
transform = transforms.Compose([
|
49 |
transforms.Grayscale(),
|
50 |
transforms.Resize((64, 64)),
|
51 |
transforms.ToTensor()
|
52 |
])
|
53 |
|
54 |
-
#
|
|
|
|
|
|
|
55 |
def detectar_anomalia(imagen):
|
|
|
56 |
with torch.no_grad():
|
57 |
-
|
58 |
-
reconstruida = model(img_tensor).squeeze(0).squeeze(0)
|
59 |
-
return reconstruida.numpy() # Convertir a numpy para visualizaci贸n
|
60 |
|
|
|
|
|
|
|
61 |
|
62 |
-
# Interfaz
|
63 |
-
|
64 |
fn=detectar_anomalia,
|
65 |
-
inputs=gr.Image(type="pil"),
|
66 |
-
outputs=
|
67 |
-
|
68 |
-
|
|
|
69 |
)
|
70 |
|
71 |
-
|
72 |
|
|
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
7 |
|
8 |
+
# Modelo Autoencoder
|
9 |
class Autoencoder(nn.Module):
|
10 |
def __init__(self):
|
11 |
super(Autoencoder, self).__init__()
|
12 |
+
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1)
|
13 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
|
14 |
+
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
|
15 |
+
self.fc1 = nn.Linear(128 * 8 * 8, 32)
|
|
|
|
|
16 |
self.fc2 = nn.Linear(32, 128 * 8 * 8)
|
17 |
+
self.conv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)
|
18 |
+
self.conv5 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)
|
19 |
+
self.conv6 = nn.ConvTranspose2d(32, 1, kernel_size=3, stride=2, padding=1, output_padding=1)
|
20 |
|
21 |
def encode(self, x):
|
22 |
z = torch.tanh(self.conv1(x))
|
|
|
42 |
model.load_state_dict(torch.load("autoencoder.pth", map_location=torch.device("cpu")))
|
43 |
model.eval()
|
44 |
|
45 |
+
# Transformaci贸n
|
46 |
transform = transforms.Compose([
|
47 |
transforms.Grayscale(),
|
48 |
transforms.Resize((64, 64)),
|
49 |
transforms.ToTensor()
|
50 |
])
|
51 |
|
52 |
+
# Umbral de error (ajustable)
|
53 |
+
THRESHOLD = 0.01
|
54 |
+
|
55 |
+
# Funci贸n de predicci贸n
|
56 |
def detectar_anomalia(imagen):
|
57 |
+
img_tensor = transform(imagen).unsqueeze(0)
|
58 |
with torch.no_grad():
|
59 |
+
reconstruida = model(img_tensor)
|
|
|
|
|
60 |
|
61 |
+
mse = torch.mean((img_tensor - reconstruida) ** 2).item()
|
62 |
+
resultado = "An贸mala" if mse > THRESHOLD else "Normal"
|
63 |
+
return resultado
|
64 |
|
65 |
+
# Interfaz Gradio
|
66 |
+
demo = gr.Interface(
|
67 |
fn=detectar_anomalia,
|
68 |
+
inputs=gr.Image(type="pil", label="Sube una imagen para analizar"),
|
69 |
+
outputs=gr.Label(label="Resultado"),
|
70 |
+
examples=["anomalous.png", "normal.png"],
|
71 |
+
title="馃搶 Detecci贸n de Anomal铆as con Autoencoder (PyTorch)",
|
72 |
+
description="Este Space utiliza un autoencoder entrenado con PyTorch para detectar anomal铆as en im谩genes de textiles industriales.",
|
73 |
)
|
74 |
|
75 |
+
demo.launch()
|
76 |
|