Update app.py
Browse files
app.py
CHANGED
@@ -9,25 +9,31 @@ import torchvision.transforms as transforms
|
|
9 |
class Autoencoder(nn.Module):
|
10 |
def __init__(self):
|
11 |
super(Autoencoder, self).__init__()
|
12 |
-
|
13 |
-
self.
|
14 |
-
self.
|
15 |
-
self.
|
16 |
-
self.
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def encode(self, x):
|
20 |
z = torch.tanh(self.conv1(x))
|
21 |
z = torch.tanh(self.conv2(z))
|
|
|
22 |
z = z.view(z.size(0), -1)
|
23 |
z = torch.tanh(self.fc1(z))
|
24 |
return z
|
25 |
|
26 |
def decode(self, x):
|
27 |
z = torch.tanh(self.fc2(x))
|
28 |
-
z = z.view(z.size(0),
|
29 |
-
z = torch.tanh(self.
|
30 |
-
z = torch.
|
|
|
31 |
return z
|
32 |
|
33 |
def forward(self, x):
|
@@ -50,3 +56,4 @@ def detectar_anomalia(imagen):
|
|
50 |
with torch.no_grad():
|
51 |
img_tensor = transform(imagen).unsqueeze(0) # A帽adir batch
|
52 |
reconstruida = model(img_tensor).squeeze(0).squeeze(0)
|
|
|
|
9 |
class Autoencoder(nn.Module):
|
10 |
def __init__(self):
|
11 |
super(Autoencoder, self).__init__()
|
12 |
+
# Encoder
|
13 |
+
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1) # 64x64 -> 32x32
|
14 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1) # 32x32 -> 16x16
|
15 |
+
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) # 16x16 -> 8x8
|
16 |
+
self.fc1 = nn.Linear(128 * 8 * 8, 32) # Espacio latente
|
17 |
+
# Decoder
|
18 |
+
self.fc2 = nn.Linear(32, 128 * 8 * 8)
|
19 |
+
self.conv4 = nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1) # 8x8 -> 16x16
|
20 |
+
self.conv5 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1) # 16x16 -> 32x32
|
21 |
+
self.conv6 = nn.ConvTranspose2d(32, 1, kernel_size=3, stride=2, padding=1, output_padding=1) # 32x32 -> 64x64
|
22 |
|
23 |
def encode(self, x):
|
24 |
z = torch.tanh(self.conv1(x))
|
25 |
z = torch.tanh(self.conv2(z))
|
26 |
+
z = torch.tanh(self.conv3(z))
|
27 |
z = z.view(z.size(0), -1)
|
28 |
z = torch.tanh(self.fc1(z))
|
29 |
return z
|
30 |
|
31 |
def decode(self, x):
|
32 |
z = torch.tanh(self.fc2(x))
|
33 |
+
z = z.view(z.size(0), 128, 8, 8)
|
34 |
+
z = torch.tanh(self.conv4(z))
|
35 |
+
z = torch.tanh(self.conv5(z))
|
36 |
+
z = torch.sigmoid(self.conv6(z))
|
37 |
return z
|
38 |
|
39 |
def forward(self, x):
|
|
|
56 |
with torch.no_grad():
|
57 |
img_tensor = transform(imagen).unsqueeze(0) # A帽adir batch
|
58 |
reconstruida = model(img_tensor).squeeze(0).squeeze(0)
|
59 |
+
return reconstruida.numpy() # Convertir a numpy para visualizaci贸n
|