File size: 5,548 Bytes
6c5a763
3ffebe8
599d710
3ffebe8
6c5a763
 
 
 
cab60db
6c5a763
ab731e4
6c5a763
3ffebe8
6c5a763
 
3ffebe8
cab60db
6c5a763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ffebe8
 
f1e60b9
3ffebe8
 
 
 
 
 
 
 
 
 
f1e60b9
3ffebe8
 
 
396e0c2
 
f1e60b9
3ffebe8
 
 
 
f1e60b9
3ffebe8
 
 
716b99a
 
3ffebe8
 
716b99a
cab60db
6c5a763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab731e4
6c5a763
 
70faa9c
 
ce76895
599d710
 
70faa9c
3ffebe8
6c5a763
 
 
 
70faa9c
 
 
 
 
 
0bc0cd3
716b99a
70faa9c
6c5a763
 
 
 
 
 
 
 
 
 
 
 
599d710
 
 
6c5a763
 
 
599d710
 
396e0c2
6c5a763
 
 
 
 
 
 
455c7bd
6c5a763
 
 
 
599d710
 
30998ff
70faa9c
599d710
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import time
import imageio
from datetime import datetime

st.set_page_config(layout="wide")

# --- ПАРАМЕТРЫ ---
seqlen = 60
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']

# --- ФУНКЦИИ ---

# Функция для нахождения локальных минимумов (например, биомашин)
def find_local_min_runs(profile, min_run=1, max_run=2):
    result = []
    N = len(profile)
    i = 0
    while i < N:
        run_val = profile[i]
        run_length = 1
        while i + run_length < N and profile[i + run_length] == run_val:
            run_length += 1
        if min_run <= run_length <= max_run:
            result.append((i, i + run_length - 1, run_val))
        i += run_length
    return result

# Функция для мутации последовательности
def bio_mutate(seq):
    r = random.random()
    if r < 0.70:
        idx = random.randint(0, len(seq)-1)
        orig = seq[idx]
        prob = random.random()
        if orig in 'AG':
            newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
        elif orig in 'CT':
            newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
        else:
            newbase = random.choice([b for b in bases if b != orig])
        seq = seq[:idx] + newbase + seq[idx+1:]
    elif r < 0.80:
        idx = random.randint(0, len(seq)-1)
        ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
        seq = seq[:idx] + ins + seq[idx:]
        if len(seq) > seqlen:
            seq = seq[:seqlen]
    elif r < 0.90:
        if len(seq) > 4:
            idx = random.randint(0, len(seq)-2)
            dell = random.randint(1, min(3, len(seq)-idx))
            seq = seq[:idx] + seq[idx+dell:]
    else:
        if len(seq) > 10:
            start = random.randint(0, len(seq)-6)
            end = start + random.randint(3,6)
            subseq = seq[start:end][::-1]
            seq = seq[:start] + subseq + seq[end:]
    while len(seq) < seqlen:
        seq += random.choice(bases)
    return seq[:seqlen]

# Функция для вычисления автокорреляции
def compute_autocorr(profile):
    profile = profile - np.mean(profile)
    result = np.correlate(profile, profile, mode='full')
    result = result[result.size // 2:]
    norm = np.max(result) if np.max(result) != 0 else 1
    return result[:10]/norm

# Функция для вычисления энтропии
def compute_entropy(profile):
    vals, counts = np.unique(profile, return_counts=True)
    p = counts / counts.sum()
    return scipy_entropy(p, base=2)

# Функция для вычисления фрактальной размерности (корреляционной размерности)
def correlation_dimension(data, max_radius=20, min_points=5):
    N = len(data)
    dimensions = []
    for radius in range(1, max_radius):
        count = 0
        for i in range(N):
            for j in range(i + 1, N):
                if np.abs(data[i] - data[j]) < radius:
                    count += 1
        if count > min_points and radius > 1:
            dimension = np.log(count) / np.log(radius)
            dimensions.append(dimension)
    
    return np.mean(dimensions) if dimensions else 0

# --- UI ---
st.title("🔴 Живой эфир мутаций ДНК")
start = st.button("▶️ Старт эфира")
stop = st.checkbox("⏹️ Остановить")

plot_placeholder = st.empty()

if start:
    seq = ''.join(random.choices(bases, k=seqlen))
    stat_bist_counts = []
    stat_entropy = []
    stat_fractal = []

    step = 0
    while True:
        if stop:
            st.warning("⏹️ Эфир остановлен пользователем.")
            break

        if step != 0:
            seq = bio_mutate(seq)

        torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
        runs = find_local_min_runs(torsion_profile, min_run, max_run)
        stat_bist_counts.append(len(runs))
        ent = compute_entropy(torsion_profile)
        stat_entropy.append(ent)
        
        acorr = compute_autocorr(torsion_profile)
        
        fractal_dimension = correlation_dimension(torsion_profile)
        stat_fractal.append(fractal_dimension)

        fig, axs = plt.subplots(4, 1, figsize=(10, 10))
        plt.subplots_adjust(hspace=0.45)

        axs[0].plot(torsion_profile, color='royalblue')
        for start_, end_, val in runs:
            axs[0].axvspan(start_, end_, color="red", alpha=0.3)
        axs[0].set_ylim(-200, 200)
        axs[0].set_title(f"Шаг {step}: {seq}")
        axs[0].set_ylabel("Торсионный угол")

        axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
        axs[1].set_ylabel("Биомашины")
        axs[1].set_title("Количество машин")

        axs[2].bar(np.arange(6), acorr[:6], color='teal')
        axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}")
        axs[2].set_xlabel("Лаг")

        axs[3].plot(stat_fractal, '-o', color='green', markersize=4)
        axs[3].set_title("Фрактальная размерность")
        axs[3].set_ylabel("Размерность")
        
        plot_placeholder.pyplot(fig)
        plt.close(fig)

        step += 1
        time.sleep(0.3)