File size: 5,548 Bytes
6c5a763 3ffebe8 599d710 3ffebe8 6c5a763 cab60db 6c5a763 ab731e4 6c5a763 3ffebe8 6c5a763 3ffebe8 cab60db 6c5a763 3ffebe8 f1e60b9 3ffebe8 f1e60b9 3ffebe8 396e0c2 f1e60b9 3ffebe8 f1e60b9 3ffebe8 716b99a 3ffebe8 716b99a cab60db 6c5a763 ab731e4 6c5a763 70faa9c ce76895 599d710 70faa9c 3ffebe8 6c5a763 70faa9c 0bc0cd3 716b99a 70faa9c 6c5a763 599d710 6c5a763 599d710 396e0c2 6c5a763 455c7bd 6c5a763 599d710 30998ff 70faa9c 599d710 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
import time
import imageio
from datetime import datetime
st.set_page_config(layout="wide")
# --- ПАРАМЕТРЫ ---
seqlen = 60
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
# --- ФУНКЦИИ ---
# Функция для нахождения локальных минимумов (например, биомашин)
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
# Функция для мутации последовательности
def bio_mutate(seq):
r = random.random()
if r < 0.70:
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80:
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90:
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else:
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end][::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
return seq[:seqlen]
# Функция для вычисления автокорреляции
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result) != 0 else 1
return result[:10]/norm
# Функция для вычисления энтропии
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
# Функция для вычисления фрактальной размерности (корреляционной размерности)
def correlation_dimension(data, max_radius=20, min_points=5):
N = len(data)
dimensions = []
for radius in range(1, max_radius):
count = 0
for i in range(N):
for j in range(i + 1, N):
if np.abs(data[i] - data[j]) < radius:
count += 1
if count > min_points and radius > 1:
dimension = np.log(count) / np.log(radius)
dimensions.append(dimension)
return np.mean(dimensions) if dimensions else 0
# --- UI ---
st.title("🔴 Живой эфир мутаций ДНК")
start = st.button("▶️ Старт эфира")
stop = st.checkbox("⏹️ Остановить")
plot_placeholder = st.empty()
if start:
seq = ''.join(random.choices(bases, k=seqlen))
stat_bist_counts = []
stat_entropy = []
stat_fractal = []
step = 0
while True:
if stop:
st.warning("⏹️ Эфир остановлен пользователем.")
break
if step != 0:
seq = bio_mutate(seq)
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
stat_bist_counts.append(len(runs))
ent = compute_entropy(torsion_profile)
stat_entropy.append(ent)
acorr = compute_autocorr(torsion_profile)
fractal_dimension = correlation_dimension(torsion_profile)
stat_fractal.append(fractal_dimension)
fig, axs = plt.subplots(4, 1, figsize=(10, 10))
plt.subplots_adjust(hspace=0.45)
axs[0].plot(torsion_profile, color='royalblue')
for start_, end_, val in runs:
axs[0].axvspan(start_, end_, color="red", alpha=0.3)
axs[0].set_ylim(-200, 200)
axs[0].set_title(f"Шаг {step}: {seq}")
axs[0].set_ylabel("Торсионный угол")
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
axs[1].set_ylabel("Биомашины")
axs[1].set_title("Количество машин")
axs[2].bar(np.arange(6), acorr[:6], color='teal')
axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}")
axs[2].set_xlabel("Лаг")
axs[3].plot(stat_fractal, '-o', color='green', markersize=4)
axs[3].set_title("Фрактальная размерность")
axs[3].set_ylabel("Размерность")
plot_placeholder.pyplot(fig)
plt.close(fig)
step += 1
time.sleep(0.3)
|