Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,11 @@ import numpy as np
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
import random
|
5 |
from scipy.stats import entropy as scipy_entropy
|
|
|
6 |
|
7 |
# --- НАСТРОЙКИ ---
|
8 |
seqlen = 60
|
9 |
-
steps =
|
10 |
min_run, max_run = 1, 2
|
11 |
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
|
12 |
bases = ['A', 'C', 'G', 'T']
|
@@ -27,7 +28,7 @@ def find_local_min_runs(profile, min_run=1, max_run=2):
|
|
27 |
|
28 |
def bio_mutate(seq):
|
29 |
r = random.random()
|
30 |
-
if r < 0.70:
|
31 |
idx = random.randint(0, len(seq)-1)
|
32 |
orig = seq[idx]
|
33 |
prob = random.random()
|
@@ -38,94 +39,95 @@ def bio_mutate(seq):
|
|
38 |
else:
|
39 |
newbase = random.choice([b for b in bases if b != orig])
|
40 |
seq = seq[:idx] + newbase + seq[idx+1:]
|
41 |
-
elif r < 0.80:
|
42 |
idx = random.randint(0, len(seq)-1)
|
43 |
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
|
44 |
seq = seq[:idx] + ins + seq[idx:]
|
45 |
if len(seq) > seqlen:
|
46 |
seq = seq[:seqlen]
|
47 |
-
elif r < 0.90:
|
48 |
if len(seq) > 4:
|
49 |
idx = random.randint(0, len(seq)-2)
|
50 |
dell = random.randint(1, min(3, len(seq)-idx))
|
51 |
seq = seq[:idx] + seq[idx+dell:]
|
52 |
-
else:
|
53 |
if len(seq) > 10:
|
54 |
start = random.randint(0, len(seq)-6)
|
55 |
end = start + random.randint(3,6)
|
56 |
subseq = seq[start:end]
|
57 |
-
|
58 |
-
|
59 |
while len(seq) < seqlen:
|
60 |
seq += random.choice(bases)
|
61 |
if len(seq) > seqlen:
|
62 |
seq = seq[:seqlen]
|
63 |
return seq
|
64 |
|
65 |
-
def compute_entropy(profile):
|
66 |
-
vals, counts = np.unique(profile, return_counts=True)
|
67 |
-
p = counts / counts.sum()
|
68 |
-
return scipy_entropy(p, base=2)
|
69 |
-
|
70 |
def compute_autocorr(profile):
|
71 |
profile = profile - np.mean(profile)
|
72 |
result = np.correlate(profile, profile, mode='full')
|
73 |
result = result[result.size // 2:]
|
74 |
-
norm = np.max(result) if np.max(result)
|
75 |
return result[:10]/norm
|
76 |
|
77 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
seq = ''.join(random.choices(bases, k=seqlen))
|
79 |
stat_bist_counts = []
|
80 |
stat_entropy = []
|
81 |
stat_autocorr = []
|
82 |
-
|
|
|
83 |
|
84 |
for step in range(steps):
|
85 |
-
if step
|
86 |
seq = bio_mutate(seq)
|
87 |
-
|
88 |
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
|
89 |
runs = find_local_min_runs(torsion_profile, min_run, max_run)
|
90 |
stat_bist_counts.append(len(runs))
|
91 |
ent = compute_entropy(torsion_profile)
|
92 |
stat_entropy.append(ent)
|
93 |
acorr = compute_autocorr(torsion_profile)
|
94 |
-
stat_autocorr.append(acorr)
|
95 |
|
96 |
-
|
97 |
-
plt.
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
# Торсионный профиль
|
100 |
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
|
101 |
for start, end, val in runs:
|
102 |
axs[0].axvspan(start, end, color="red", alpha=0.3)
|
103 |
-
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=
|
104 |
axs[0].set_ylim(-200, 200)
|
105 |
-
axs[0].
|
|
|
|
|
106 |
axs[0].legend()
|
107 |
|
108 |
-
|
109 |
-
axs[1].
|
|
|
110 |
axs[1].set_ylim(0, max(10, max(stat_bist_counts)+1))
|
111 |
axs[1].set_title("Динамика: число 'биомашин'")
|
112 |
|
113 |
-
|
114 |
-
axs[2].
|
115 |
-
axs[2].
|
116 |
-
axs[2].
|
117 |
-
|
118 |
-
figs.append(fig)
|
119 |
-
|
120 |
-
return figs
|
121 |
-
|
122 |
-
# --- Streamlit UI ---
|
123 |
-
st.set_page_config(layout="wide")
|
124 |
-
st.title("🧬 Эволюция ДНК: визуализация торсионного профиля, мутаций и структур")
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
st.info("Генерируется...")
|
129 |
-
figures = simulate_and_plot(steps)
|
130 |
-
for fig in figures:
|
131 |
-
st.pyplot(fig)
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
import random
|
5 |
from scipy.stats import entropy as scipy_entropy
|
6 |
+
import time
|
7 |
|
8 |
# --- НАСТРОЙКИ ---
|
9 |
seqlen = 60
|
10 |
+
steps = 120
|
11 |
min_run, max_run = 1, 2
|
12 |
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
|
13 |
bases = ['A', 'C', 'G', 'T']
|
|
|
28 |
|
29 |
def bio_mutate(seq):
|
30 |
r = random.random()
|
31 |
+
if r < 0.70: # Точечная мутация
|
32 |
idx = random.randint(0, len(seq)-1)
|
33 |
orig = seq[idx]
|
34 |
prob = random.random()
|
|
|
39 |
else:
|
40 |
newbase = random.choice([b for b in bases if b != orig])
|
41 |
seq = seq[:idx] + newbase + seq[idx+1:]
|
42 |
+
elif r < 0.80: # Инсерция короткого блока
|
43 |
idx = random.randint(0, len(seq)-1)
|
44 |
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
|
45 |
seq = seq[:idx] + ins + seq[idx:]
|
46 |
if len(seq) > seqlen:
|
47 |
seq = seq[:seqlen]
|
48 |
+
elif r < 0.90: # Делеция
|
49 |
if len(seq) > 4:
|
50 |
idx = random.randint(0, len(seq)-2)
|
51 |
dell = random.randint(1, min(3, len(seq)-idx))
|
52 |
seq = seq[:idx] + seq[idx+dell:]
|
53 |
+
else: # Блочная перестановка (инверсия)
|
54 |
if len(seq) > 10:
|
55 |
start = random.randint(0, len(seq)-6)
|
56 |
end = start + random.randint(3,6)
|
57 |
subseq = seq[start:end]
|
58 |
+
subseq = subseq[::-1]
|
59 |
+
seq = seq[:start] + subseq + seq[end:]
|
60 |
while len(seq) < seqlen:
|
61 |
seq += random.choice(bases)
|
62 |
if len(seq) > seqlen:
|
63 |
seq = seq[:seqlen]
|
64 |
return seq
|
65 |
|
|
|
|
|
|
|
|
|
|
|
66 |
def compute_autocorr(profile):
|
67 |
profile = profile - np.mean(profile)
|
68 |
result = np.correlate(profile, profile, mode='full')
|
69 |
result = result[result.size // 2:]
|
70 |
+
norm = np.max(result) if np.max(result)!=0 else 1
|
71 |
return result[:10]/norm
|
72 |
|
73 |
+
def compute_entropy(profile):
|
74 |
+
vals, counts = np.unique(profile, return_counts=True)
|
75 |
+
p = counts / counts.sum()
|
76 |
+
return scipy_entropy(p, base=2)
|
77 |
+
|
78 |
+
# --- Streamlit интерфейс ---
|
79 |
+
st.title("🧬 Эволюция ДНК-подобной последовательности")
|
80 |
+
st.markdown("Модель визуализирует мутации и анализирует структуру последовательности во времени.")
|
81 |
+
|
82 |
+
# Кнопка запуска симуляции
|
83 |
+
if st.button("▶️ Запустить симуляцию"):
|
84 |
seq = ''.join(random.choices(bases, k=seqlen))
|
85 |
stat_bist_counts = []
|
86 |
stat_entropy = []
|
87 |
stat_autocorr = []
|
88 |
+
|
89 |
+
plot_placeholder = st.empty()
|
90 |
|
91 |
for step in range(steps):
|
92 |
+
if step != 0:
|
93 |
seq = bio_mutate(seq)
|
|
|
94 |
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
|
95 |
runs = find_local_min_runs(torsion_profile, min_run, max_run)
|
96 |
stat_bist_counts.append(len(runs))
|
97 |
ent = compute_entropy(torsion_profile)
|
98 |
stat_entropy.append(ent)
|
99 |
acorr = compute_autocorr(torsion_profile)
|
|
|
100 |
|
101 |
+
# Визуализация
|
102 |
+
fig, axs = plt.subplots(3, 1, figsize=(10, 8))
|
103 |
+
plt.subplots_adjust(hspace=0.45)
|
104 |
+
lags_shown = 6
|
105 |
+
|
106 |
+
axs[0].cla()
|
107 |
+
axs[1].cla()
|
108 |
+
axs[2].cla()
|
109 |
|
|
|
110 |
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
|
111 |
for start, end, val in runs:
|
112 |
axs[0].axvspan(start, end, color="red", alpha=0.3)
|
113 |
+
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5)
|
114 |
axs[0].set_ylim(-200, 200)
|
115 |
+
axs[0].set_xlabel("Позиция")
|
116 |
+
axs[0].set_ylabel("Торсионный угол (град.)")
|
117 |
+
axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent:.2f}")
|
118 |
axs[0].legend()
|
119 |
|
120 |
+
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
|
121 |
+
axs[1].set_xlabel("Шаг")
|
122 |
+
axs[1].set_ylabel("Число машин")
|
123 |
axs[1].set_ylim(0, max(10, max(stat_bist_counts)+1))
|
124 |
axs[1].set_title("Динамика: число 'биомашин'")
|
125 |
|
126 |
+
axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal', alpha=0.7)
|
127 |
+
axs[2].set_xlabel("Лаг")
|
128 |
+
axs[2].set_ylabel("Автокорреляция")
|
129 |
+
axs[2].set_title("Автокорреляция углового профиля (структурность) и энтропия")
|
130 |
+
axs[2].text(0.70,0.70, f"Энтропия: {ent:.2f}", transform=axs[2].transAxes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
plot_placeholder.pyplot(fig)
|
133 |
+
time.sleep(0.5)
|
|
|
|
|
|
|
|