Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,33 @@
|
|
1 |
-
import streamlit as st
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
4 |
import random
|
5 |
-
from scipy.stats import entropy as scipy_entropy
|
6 |
-
import time
|
7 |
-
from datetime import datetime
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
seqlen = 60
|
11 |
-
min_run, max_run = 1, 2
|
12 |
-
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
|
13 |
bases = ['A', 'C', 'G', 'T']
|
14 |
|
15 |
-
# --- ФУНКЦИИ ---
|
16 |
-
|
17 |
-
def find_local_min_runs(profile, min_run=1, max_run=2):
|
18 |
-
result = []
|
19 |
-
N = len(profile)
|
20 |
-
i = 0
|
21 |
-
while i < N:
|
22 |
-
run_val = profile[i]
|
23 |
-
run_length = 1
|
24 |
-
while i + run_length < N and profile[i + run_length] == run_val:
|
25 |
-
run_length += 1
|
26 |
-
if min_run <= run_length <= max_run:
|
27 |
-
result.append((i, i + run_length - 1, run_val))
|
28 |
-
i += run_length
|
29 |
-
return result
|
30 |
-
|
31 |
def bio_mutate(seq):
|
32 |
r = random.random()
|
33 |
if r < 0.70:
|
@@ -62,29 +62,13 @@ def bio_mutate(seq):
|
|
62 |
seq += random.choice(bases)
|
63 |
return seq[:seqlen]
|
64 |
|
65 |
-
def compute_autocorr(profile):
|
66 |
-
profile = profile - np.mean(profile)
|
67 |
-
result = np.correlate(profile, profile, mode='full')
|
68 |
-
result = result[result.size // 2:]
|
69 |
-
norm = np.max(result) if np.max(result) != 0 else 1
|
70 |
-
return result[:10]/norm
|
71 |
-
|
72 |
-
def compute_entropy(profile):
|
73 |
-
vals, counts = np.unique(profile, return_counts=True)
|
74 |
-
p = counts / counts.sum()
|
75 |
-
return scipy_entropy(p, base=2)
|
76 |
-
|
77 |
-
def compute_global_entropy(seq_history):
|
78 |
-
"""
|
79 |
-
Вычисление глобальной энтропии на основе исторических последовательностей.
|
80 |
-
"""
|
81 |
-
all_torsions = np.concatenate([np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq]) for seq in seq_history])
|
82 |
-
vals, counts = np.unique(all_torsions, return_counts=True)
|
83 |
-
p = counts / counts.sum()
|
84 |
-
return scipy_entropy(p, base=2)
|
85 |
-
|
86 |
# --- UI ---
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
88 |
start = st.button("▶️ Старт эфира")
|
89 |
stop = st.checkbox("⏹️ Остановить")
|
90 |
|
@@ -92,11 +76,9 @@ plot_placeholder = st.empty()
|
|
92 |
|
93 |
if start:
|
94 |
seq = ''.join(random.choices(bases, k=seqlen))
|
95 |
-
seq_history = [seq] # История последовательностей для расчета глобальной энтропии
|
96 |
-
stat_bist_counts = []
|
97 |
-
stat_entropy = []
|
98 |
-
|
99 |
step = 0
|
|
|
|
|
100 |
while True:
|
101 |
if stop:
|
102 |
st.warning("⏹️ Эфир остановлен пользователем.")
|
@@ -104,39 +86,22 @@ if start:
|
|
104 |
|
105 |
if step != 0:
|
106 |
seq = bio_mutate(seq)
|
107 |
-
seq_history.append(seq) # Добавляем в историю
|
108 |
|
109 |
-
torsion_profile =
|
110 |
-
|
111 |
-
|
112 |
-
ent = compute_entropy(torsion_profile)
|
113 |
-
stat_entropy.append(ent)
|
114 |
-
acorr = compute_autocorr(torsion_profile)
|
115 |
|
116 |
-
#
|
117 |
-
|
118 |
-
|
119 |
-
fig, axs = plt.subplots(4, 1, figsize=(10, 10))
|
120 |
plt.subplots_adjust(hspace=0.45)
|
121 |
|
122 |
axs[0].plot(torsion_profile, color='royalblue')
|
123 |
-
for start_, end_, val in runs:
|
124 |
-
axs[0].axvspan(start_, end_, color="red", alpha=0.3)
|
125 |
-
axs[0].set_ylim(-200, 200)
|
126 |
axs[0].set_title(f"Шаг {step}: {seq}")
|
127 |
axs[0].set_ylabel("Торсионный угол")
|
128 |
|
129 |
-
axs[1].plot(
|
130 |
-
axs[1].
|
131 |
-
axs[1].
|
132 |
-
|
133 |
-
axs[2].bar(np.arange(6), acorr[:6], color='teal')
|
134 |
-
axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}")
|
135 |
-
axs[2].set_xlabel("Лаг")
|
136 |
-
|
137 |
-
axs[3].plot(stat_entropy, '-o', color='green', markersize=4)
|
138 |
-
axs[3].set_title(f"Глобальная Энтропия: {global_ent:.2f}")
|
139 |
-
axs[3].set_ylabel("Глобальная энтропия")
|
140 |
|
141 |
plot_placeholder.pyplot(fig)
|
142 |
plt.close(fig)
|
|
|
|
|
1 |
import numpy as np
|
2 |
import matplotlib.pyplot as plt
|
3 |
import random
|
|
|
|
|
|
|
4 |
|
5 |
+
# Преобразование последовательности в фрактальные точки на основе торсионных углов
|
6 |
+
def sequence_to_torsion(seq):
|
7 |
+
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
|
8 |
+
return np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
|
9 |
+
|
10 |
+
# Вычисление корреляционной размерности
|
11 |
+
def correlation_dimension(data, max_radius=20, min_points=5):
|
12 |
+
N = len(data)
|
13 |
+
dimensions = []
|
14 |
+
for radius in range(1, max_radius):
|
15 |
+
count = 0
|
16 |
+
for i in range(N):
|
17 |
+
for j in range(i + 1, N):
|
18 |
+
if np.abs(data[i] - data[j]) < radius:
|
19 |
+
count += 1
|
20 |
+
if count > min_points:
|
21 |
+
dimension = np.log(count) / np.log(radius)
|
22 |
+
dimensions.append(dimension)
|
23 |
+
|
24 |
+
return np.mean(dimensions) if dimensions else 0
|
25 |
+
|
26 |
+
# --- Основной код ---
|
27 |
+
|
28 |
seqlen = 60
|
|
|
|
|
29 |
bases = ['A', 'C', 'G', 'T']
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def bio_mutate(seq):
|
32 |
r = random.random()
|
33 |
if r < 0.70:
|
|
|
62 |
seq += random.choice(bases)
|
63 |
return seq[:seqlen]
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# --- UI ---
|
66 |
+
|
67 |
+
import streamlit as st
|
68 |
+
import time
|
69 |
+
|
70 |
+
st.title("🔴 Живой эфир мутаций ДНК с фрактальной размерностью")
|
71 |
+
|
72 |
start = st.button("▶️ Старт эфира")
|
73 |
stop = st.checkbox("⏹️ Остановить")
|
74 |
|
|
|
76 |
|
77 |
if start:
|
78 |
seq = ''.join(random.choices(bases, k=seqlen))
|
|
|
|
|
|
|
|
|
79 |
step = 0
|
80 |
+
stat_fractal_dimension = []
|
81 |
+
|
82 |
while True:
|
83 |
if stop:
|
84 |
st.warning("⏹️ Эфир остановлен пользователем.")
|
|
|
86 |
|
87 |
if step != 0:
|
88 |
seq = bio_mutate(seq)
|
|
|
89 |
|
90 |
+
torsion_profile = sequence_to_torsion(seq)
|
91 |
+
fractal_dim = correlation_dimension(torsion_profile)
|
92 |
+
stat_fractal_dimension.append(fractal_dim)
|
|
|
|
|
|
|
93 |
|
94 |
+
# Визуализация
|
95 |
+
fig, axs = plt.subplots(2, 1, figsize=(10, 8))
|
|
|
|
|
96 |
plt.subplots_adjust(hspace=0.45)
|
97 |
|
98 |
axs[0].plot(torsion_profile, color='royalblue')
|
|
|
|
|
|
|
99 |
axs[0].set_title(f"Шаг {step}: {seq}")
|
100 |
axs[0].set_ylabel("Торсионный угол")
|
101 |
|
102 |
+
axs[1].plot(stat_fractal_dimension, '-o', color='green', markersize=4)
|
103 |
+
axs[1].set_title(f"Фрактальная размерность: {fractal_dim:.3f}")
|
104 |
+
axs[1].set_xlabel("Шаг")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
plot_placeholder.pyplot(fig)
|
107 |
plt.close(fig)
|