File size: 5,260 Bytes
e0f29bb ccc745c 5bd65b0 ccc745c e0f29bb ccc745c e0f29bb ccc745c c81aa98 6ac8934 e0f29bb 6ac8934 72298ff 6ac8934 7df20a1 56e4890 7df20a1 6ac8934 7df20a1 56e4890 7df20a1 6ac8934 7df20a1 56e4890 7df20a1 6ac8934 54c62fb 56e4890 e0f29bb 6ac8934 7df20a1 56e4890 7df20a1 e0f29bb 56e4890 7df20a1 72298ff e0f29bb 56e4890 7df20a1 72298ff e0f29bb 56e4890 7df20a1 72298ff 7df20a1 72298ff e0f29bb 58aeeb9 54c62fb 6d24d35 e0f29bb 54c62fb e0f29bb 7df20a1 6d24d35 72298ff e0f29bb 58aeeb9 ae06836 58aeeb9 1b8a61f 58aeeb9 6d24d35 e0f29bb 58aeeb9 54c62fb e0f29bb de718ca 58aeeb9 de718ca e0f29bb 72298ff de718ca e0f29bb de718ca 0c02b02 e0f29bb de718ca 58aeeb9 e0f29bb 54c62fb e0f29bb de718ca 7df20a1 6ac8934 e0f29bb 58aeeb9 e0f29bb 58aeeb9 6d24d35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_anthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
import re
load_dotenv()
# === Tools ===
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies two integers and returns the result."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds two integers and returns the sum."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtracts the second integer from the first and returns the result."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divides the first integer by the second and returns the result as a float."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Returns the remainder of dividing the first integer by the second."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Searches Wikipedia for a query and returns the top 2 results as a formatted string."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
@tool
def web_search(query: str) -> str:
"""Uses Tavily to search the web for a query and returns the top 3 result snippets."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
@tool
def arvix_search(query: str) -> str:
"""Searches Arxiv for academic papers related to the query and returns the top 3 abstracts."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])
# === System Prompt ===
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
# === Embeddings & Vector Store ===
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="Vector_Test",
query_name="match_documents_langchain",
)
# === Tools ===
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
# === LangGraph Builder ===
def build_graph(provider: str = "huggingface"):
if provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
temperature=0,
huggingfacehub_api_token=os.getenv("HF_TOKEN")
)
)
else:
raise ValueError("Only 'huggingface' (Qwen3) is supported in this build.")
llm_with_tools = llm.bind_tools(tools)
def retriever(state: MessagesState):
query = state["messages"][-1].content
similar = vector_store.similarity_search(query)
return {
"messages": [
sys_msg,
state["messages"][-1],
HumanMessage(content=f"Reference: {similar[0].page_content}")
]
}
def assistant(state: MessagesState):
response = llm_with_tools.invoke(state["messages"])
return {"messages": state["messages"] + [response]}
def formatter(state: MessagesState):
last = state["messages"][-1].content.strip()
cleaned = re.sub(r"<.*?>", "", last)
cleaned = re.sub(r"(Final\s*Answer:|Answer:)", "", cleaned, flags=re.IGNORECASE)
cleaned = cleaned.strip().split("\n")[0].strip()
return {"messages": [AIMessage(content=cleaned)]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_node("formatter", formatter)
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
builder.add_edge("assistant", "formatter")
return builder.compile()
# === Run Test ===
if __name__ == "__main__":
graph = build_graph()
result = graph.invoke({"messages": [HumanMessage(content="What is the capital of France?")]})
for m in result["messages"]:
m.pretty_print()
|