Commit
·
de718ca
1
Parent(s):
208307a
changed to ChatAgent
Browse files- agent.py +25 -18
- app.py +43 -48
- system_prompt.txt +9 -6
agent.py
CHANGED
@@ -16,6 +16,7 @@ from langchain_core.tools import tool
|
|
16 |
from langchain.tools.retriever import create_retriever_tool
|
17 |
from supabase.client import Client, create_client
|
18 |
|
|
|
19 |
load_dotenv()
|
20 |
|
21 |
# === Tools ===
|
@@ -69,9 +70,9 @@ with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
|
69 |
system_prompt = f.read()
|
70 |
sys_msg = SystemMessage(content=system_prompt)
|
71 |
|
72 |
-
# ===
|
73 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
74 |
-
supabase = create_client(os.
|
75 |
vector_store = SupabaseVectorStore(
|
76 |
client=supabase,
|
77 |
embedding=embeddings,
|
@@ -79,7 +80,7 @@ vector_store = SupabaseVectorStore(
|
|
79 |
query_name="match_documents_langchain",
|
80 |
)
|
81 |
|
82 |
-
# === Tools ===
|
83 |
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
|
84 |
|
85 |
# === Graph Builder ===
|
@@ -96,38 +97,44 @@ def build_graph(provider: str = "groq"):
|
|
96 |
)
|
97 |
)
|
98 |
else:
|
99 |
-
raise ValueError("Invalid provider.
|
100 |
|
101 |
llm_with_tools = llm.bind_tools(tools)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
103 |
def assistant(state: MessagesState):
|
104 |
response = llm_with_tools.invoke(state["messages"])
|
105 |
-
|
106 |
-
# Extract exact match content, remove FINAL ANSWER: if present
|
107 |
-
if "FINAL ANSWER:" in content:
|
108 |
-
content = content.split("FINAL ANSWER:")[-1].strip()
|
109 |
-
return {"messages": [AIMessage(content=content)]}
|
110 |
|
111 |
-
def
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
115 |
|
116 |
builder = StateGraph(MessagesState)
|
117 |
builder.add_node("retriever", retriever)
|
118 |
builder.add_node("assistant", assistant)
|
119 |
builder.add_node("tools", ToolNode(tools))
|
|
|
|
|
120 |
builder.add_edge(START, "retriever")
|
121 |
builder.add_edge("retriever", "assistant")
|
122 |
builder.add_conditional_edges("assistant", tools_condition)
|
123 |
builder.add_edge("tools", "assistant")
|
|
|
124 |
|
125 |
return builder.compile()
|
126 |
|
|
|
127 |
if __name__ == "__main__":
|
128 |
-
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
129 |
graph = build_graph("groq")
|
130 |
-
messages = [HumanMessage(content=
|
131 |
-
|
132 |
-
|
133 |
-
m.pretty_print()
|
|
|
16 |
from langchain.tools.retriever import create_retriever_tool
|
17 |
from supabase.client import Client, create_client
|
18 |
|
19 |
+
# === Load environment ===
|
20 |
load_dotenv()
|
21 |
|
22 |
# === Tools ===
|
|
|
70 |
system_prompt = f.read()
|
71 |
sys_msg = SystemMessage(content=system_prompt)
|
72 |
|
73 |
+
# === Embedding and Supabase Setup ===
|
74 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
75 |
+
supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY"))
|
76 |
vector_store = SupabaseVectorStore(
|
77 |
client=supabase,
|
78 |
embedding=embeddings,
|
|
|
80 |
query_name="match_documents_langchain",
|
81 |
)
|
82 |
|
83 |
+
# === Tools List ===
|
84 |
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
|
85 |
|
86 |
# === Graph Builder ===
|
|
|
97 |
)
|
98 |
)
|
99 |
else:
|
100 |
+
raise ValueError("Invalid provider.")
|
101 |
|
102 |
llm_with_tools = llm.bind_tools(tools)
|
103 |
|
104 |
+
def retriever(state: MessagesState):
|
105 |
+
query = state["messages"][-1].content
|
106 |
+
similar = vector_store.similarity_search(query)
|
107 |
+
return {"messages": [sys_msg, state["messages"][-1], HumanMessage(content=f"Reference: {similar[0].page_content}")]}
|
108 |
+
|
109 |
def assistant(state: MessagesState):
|
110 |
response = llm_with_tools.invoke(state["messages"])
|
111 |
+
return {"messages": state["messages"] + [response]}
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
def formatter(state: MessagesState):
|
114 |
+
last = state["messages"][-1].content.strip()
|
115 |
+
if "FINAL ANSWER:" in last:
|
116 |
+
answer = last.split("FINAL ANSWER:")[-1].strip()
|
117 |
+
else:
|
118 |
+
answer = last.strip()
|
119 |
+
return {"messages": [AIMessage(content=answer)]}
|
120 |
|
121 |
builder = StateGraph(MessagesState)
|
122 |
builder.add_node("retriever", retriever)
|
123 |
builder.add_node("assistant", assistant)
|
124 |
builder.add_node("tools", ToolNode(tools))
|
125 |
+
builder.add_node("formatter", formatter)
|
126 |
+
|
127 |
builder.add_edge(START, "retriever")
|
128 |
builder.add_edge("retriever", "assistant")
|
129 |
builder.add_conditional_edges("assistant", tools_condition)
|
130 |
builder.add_edge("tools", "assistant")
|
131 |
+
builder.add_edge("assistant", "formatter")
|
132 |
|
133 |
return builder.compile()
|
134 |
|
135 |
+
# === Test Entry Point ===
|
136 |
if __name__ == "__main__":
|
|
|
137 |
graph = build_graph("groq")
|
138 |
+
messages = graph.invoke({"messages": [HumanMessage(content="What is the capital of France?")]})
|
139 |
+
for msg in messages["messages"]:
|
140 |
+
msg.pretty_print()
|
|
app.py
CHANGED
@@ -1,39 +1,27 @@
|
|
1 |
-
""" Basic Agent Evaluation Runner"""
|
2 |
import os
|
3 |
-
import inspect
|
4 |
import gradio as gr
|
5 |
-
import requests
|
6 |
import pandas as pd
|
7 |
-
import
|
|
|
8 |
from langchain_core.messages import HumanMessage
|
9 |
from agent import build_graph
|
10 |
-
import re
|
11 |
|
|
|
12 |
|
13 |
-
# (Keep Constants as is)
|
14 |
-
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
-
|
17 |
-
# --- Basic Agent Definition ---
|
18 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
19 |
-
|
20 |
-
|
21 |
cached_answers = []
|
22 |
|
23 |
-
|
24 |
-
raw = raw.strip()
|
25 |
-
if "FINAL ANSWER:" in raw:
|
26 |
-
return raw.split("FINAL ANSWER:")[-1].strip()
|
27 |
-
return raw.split("Final Answer:")[-1].strip() if "Final Answer:" in raw else raw
|
28 |
-
|
29 |
-
class BasicAgent:
|
30 |
def __init__(self):
|
|
|
31 |
self.graph = build_graph()
|
32 |
|
33 |
def __call__(self, question: str) -> str:
|
|
|
34 |
messages = [HumanMessage(content=question)]
|
35 |
-
|
36 |
-
|
|
|
37 |
|
38 |
def run_agent_only(profile: gr.OAuthProfile | None):
|
39 |
global cached_answers
|
@@ -44,67 +32,74 @@ def run_agent_only(profile: gr.OAuthProfile | None):
|
|
44 |
return "Please login first.", None
|
45 |
|
46 |
try:
|
47 |
-
agent =
|
48 |
except Exception as e:
|
49 |
return f"Agent Init Error: {e}", None
|
50 |
|
51 |
try:
|
52 |
-
|
|
|
53 |
except Exception as e:
|
54 |
return f"Error fetching questions: {e}", None
|
55 |
|
56 |
-
|
57 |
-
system_prompt = f.read().strip()
|
58 |
-
|
59 |
-
for item in questions:
|
60 |
task_id = item.get("task_id")
|
61 |
question = item.get("question")
|
62 |
file_name = item.get("file_name")
|
63 |
|
64 |
-
if not task_id or
|
65 |
continue
|
66 |
|
67 |
try:
|
68 |
-
user_message = question
|
69 |
-
|
|
|
|
|
|
|
70 |
cached_answers.append({"task_id": task_id, "submitted_answer": answer})
|
71 |
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer})
|
72 |
except Exception as e:
|
73 |
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": f"AGENT ERROR: {e}"})
|
74 |
|
75 |
-
return "Agent finished.
|
76 |
|
77 |
def submit_cached_answers(profile: gr.OAuthProfile | None):
|
|
|
78 |
if not profile or not cached_answers:
|
79 |
-
return "
|
|
|
|
|
|
|
|
|
80 |
|
81 |
payload = {
|
82 |
-
"username":
|
83 |
-
"agent_code":
|
84 |
"answers": cached_answers
|
85 |
}
|
86 |
|
87 |
try:
|
88 |
-
response = requests.post("
|
89 |
result = response.json()
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
94 |
except Exception as e:
|
95 |
return f"Submission failed: {e}", None
|
96 |
|
|
|
97 |
with gr.Blocks() as demo:
|
98 |
-
gr.Markdown("
|
99 |
-
|
100 |
-
2. Run agent only
|
101 |
-
3. Submit answers""")
|
102 |
-
|
103 |
gr.LoginButton()
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
108 |
|
109 |
run_button.click(fn=run_agent_only, outputs=[status_box, table])
|
110 |
submit_button.click(fn=submit_cached_answers, outputs=[status_box, table])
|
|
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
|
|
3 |
import pandas as pd
|
4 |
+
import requests
|
5 |
+
from dotenv import load_dotenv
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
from agent import build_graph
|
|
|
8 |
|
9 |
+
load_dotenv()
|
10 |
|
|
|
|
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
|
|
12 |
cached_answers = []
|
13 |
|
14 |
+
class ChatAgent:
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def __init__(self):
|
16 |
+
print("ChatAgent initialized with LangGraph workflow.")
|
17 |
self.graph = build_graph()
|
18 |
|
19 |
def __call__(self, question: str) -> str:
|
20 |
+
print(f"Processing question: {question[:60]}...")
|
21 |
messages = [HumanMessage(content=question)]
|
22 |
+
results = self.graph.invoke({"messages": messages})
|
23 |
+
answer = results['messages'][-1].content.strip()
|
24 |
+
return answer
|
25 |
|
26 |
def run_agent_only(profile: gr.OAuthProfile | None):
|
27 |
global cached_answers
|
|
|
32 |
return "Please login first.", None
|
33 |
|
34 |
try:
|
35 |
+
agent = ChatAgent()
|
36 |
except Exception as e:
|
37 |
return f"Agent Init Error: {e}", None
|
38 |
|
39 |
try:
|
40 |
+
response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
|
41 |
+
questions_data = response.json()
|
42 |
except Exception as e:
|
43 |
return f"Error fetching questions: {e}", None
|
44 |
|
45 |
+
for item in questions_data:
|
|
|
|
|
|
|
46 |
task_id = item.get("task_id")
|
47 |
question = item.get("question")
|
48 |
file_name = item.get("file_name")
|
49 |
|
50 |
+
if not task_id or question is None:
|
51 |
continue
|
52 |
|
53 |
try:
|
54 |
+
user_message = question
|
55 |
+
if file_name:
|
56 |
+
user_message += f"\n\nFile to use: {file_name}"
|
57 |
+
|
58 |
+
answer = agent(user_message)
|
59 |
cached_answers.append({"task_id": task_id, "submitted_answer": answer})
|
60 |
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer})
|
61 |
except Exception as e:
|
62 |
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": f"AGENT ERROR: {e}"})
|
63 |
|
64 |
+
return "Agent finished. Now click 'Submit Cached Answers'", pd.DataFrame(results_log)
|
65 |
|
66 |
def submit_cached_answers(profile: gr.OAuthProfile | None):
|
67 |
+
global cached_answers
|
68 |
if not profile or not cached_answers:
|
69 |
+
return "No cached answers to submit. Run the agent first.", None
|
70 |
+
|
71 |
+
space_id = os.getenv("SPACE_ID")
|
72 |
+
username = profile.username
|
73 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
74 |
|
75 |
payload = {
|
76 |
+
"username": username,
|
77 |
+
"agent_code": agent_code,
|
78 |
"answers": cached_answers
|
79 |
}
|
80 |
|
81 |
try:
|
82 |
+
response = requests.post(f"{DEFAULT_API_URL}/submit", json=payload, timeout=60)
|
83 |
result = response.json()
|
84 |
+
final_status = (
|
85 |
+
f"Submission Successful!\nUser: {result.get('username')}\n"
|
86 |
+
f"Score: {result.get('score', 'N/A')}% ({result.get('correct_count', '?')}/{result.get('total_attempted', '?')})"
|
87 |
+
)
|
88 |
+
return final_status, None
|
89 |
except Exception as e:
|
90 |
return f"Submission failed: {e}", None
|
91 |
|
92 |
+
# --- Gradio UI ---
|
93 |
with gr.Blocks() as demo:
|
94 |
+
gr.Markdown("# LangGraph ChatAgent Evaluation")
|
95 |
+
gr.Markdown("Run the agent on all tasks, then submit for scoring.")
|
|
|
|
|
|
|
96 |
gr.LoginButton()
|
97 |
+
|
98 |
+
run_button = gr.Button("🧠 Run Agent")
|
99 |
+
submit_button = gr.Button("📤 Submit Answers")
|
100 |
+
|
101 |
+
status_box = gr.Textbox(label="Status", lines=3)
|
102 |
+
table = gr.DataFrame(label="Results", wrap=True)
|
103 |
|
104 |
run_button.click(fn=run_agent_only, outputs=[status_box, table])
|
105 |
submit_button.click(fn=submit_cached_answers, outputs=[status_box, table])
|
system_prompt.txt
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
-
You are a helpful assistant. Think step-by-step to solve the question.
|
2 |
-
|
3 |
-
|
4 |
-
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
1 |
+
You are a helpful assistant. Think step-by-step to solve the question using available tools or reasoning. When you arrive at the correct answer, respond with only the answer and nothing else.
|
2 |
+
|
3 |
+
Your answer must follow these rules:
|
4 |
+
- If it's a number, do not include commas, currency symbols, or percentage signs.
|
5 |
+
- If it's a string, do not use articles (a, an, the) or abbreviations.
|
6 |
+
- If it's a list, format it as a comma-separated list of numbers or strings.
|
7 |
+
- Do not prefix your answer with "Answer:", "FINAL ANSWER:", or any other label.
|
8 |
+
|
9 |
+
Your reply should contain the answer only. No explanation. No formatting. No markdown. Just the final answer.
|