Commit
·
7df20a1
1
Parent(s):
54c62fb
changes to avoid runtime error
Browse files
agent.py
CHANGED
@@ -18,98 +18,113 @@ from supabase.client import Client, create_client
|
|
18 |
|
19 |
load_dotenv()
|
20 |
|
21 |
-
# === TOOLS === #
|
22 |
-
|
23 |
@tool
|
24 |
-
def multiply(a: int, b: int) -> int:
|
|
|
|
|
25 |
|
26 |
@tool
|
27 |
-
def add(a: int, b: int) -> int:
|
|
|
|
|
28 |
|
29 |
@tool
|
30 |
-
def subtract(a: int, b: int) -> int:
|
|
|
|
|
31 |
|
32 |
@tool
|
33 |
def divide(a: int, b: int) -> float:
|
|
|
34 |
if b == 0:
|
35 |
raise ValueError("Cannot divide by zero.")
|
36 |
return a / b
|
37 |
|
38 |
@tool
|
39 |
-
def modulus(a: int, b: int) -> int:
|
|
|
|
|
40 |
|
41 |
@tool
|
42 |
def wiki_search(query: str) -> str:
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
|
46 |
@tool
|
47 |
def web_search(query: str) -> str:
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
@tool
|
52 |
def arvix_search(query: str) -> str:
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
59 |
system_prompt = f.read()
|
60 |
|
61 |
sys_msg = SystemMessage(content=system_prompt)
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
66 |
-
supabase: Client = create_client(os.
|
67 |
vector_store = SupabaseVectorStore(
|
68 |
client=supabase,
|
69 |
embedding=embeddings,
|
70 |
table_name="Vector_Test",
|
71 |
query_name="match_documents_langchain",
|
72 |
)
|
|
|
73 |
create_retriever_tool = create_retriever_tool(
|
74 |
retriever=vector_store.as_retriever(),
|
75 |
name="Question Search",
|
76 |
description="A tool to retrieve similar questions from a vector store."
|
77 |
)
|
78 |
|
79 |
-
#
|
80 |
tools = [
|
81 |
multiply, add, subtract, divide, modulus,
|
82 |
wiki_search, web_search, arvix_search
|
83 |
]
|
84 |
|
85 |
-
#
|
86 |
def build_graph(provider: str = "groq"):
|
87 |
if provider == "google":
|
88 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
89 |
elif provider == "groq":
|
90 |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
91 |
elif provider == "huggingface":
|
92 |
-
llm = ChatHuggingFace(
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
95 |
else:
|
96 |
-
raise ValueError("Invalid provider.")
|
97 |
|
98 |
llm_with_tools = llm.bind_tools(tools)
|
99 |
|
100 |
def assistant(state: MessagesState):
|
101 |
-
|
102 |
-
answer = response.content.strip()
|
103 |
-
if "FINAL ANSWER:" not in answer:
|
104 |
-
answer = f"FINAL ANSWER: {answer.strip().splitlines()[0]}"
|
105 |
-
return {"messages": [AIMessage(content=answer)]}
|
106 |
|
107 |
def retriever(state: MessagesState):
|
108 |
similar = vector_store.similarity_search(state["messages"][0].content)
|
109 |
-
|
110 |
-
|
111 |
-
return {"messages": [sys_msg] + state["messages"] + [ref]}
|
112 |
-
return {"messages": [sys_msg] + state["messages"]}
|
113 |
|
114 |
builder = StateGraph(MessagesState)
|
115 |
builder.add_node("retriever", retriever)
|
@@ -119,11 +134,13 @@ def build_graph(provider: str = "groq"):
|
|
119 |
builder.add_edge("retriever", "assistant")
|
120 |
builder.add_conditional_edges("assistant", tools_condition)
|
121 |
builder.add_edge("tools", "assistant")
|
|
|
122 |
return builder.compile()
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
18 |
|
19 |
load_dotenv()
|
20 |
|
|
|
|
|
21 |
@tool
|
22 |
+
def multiply(a: int, b: int) -> int:
|
23 |
+
"""Multiply two integers and return the result."""
|
24 |
+
return a * b
|
25 |
|
26 |
@tool
|
27 |
+
def add(a: int, b: int) -> int:
|
28 |
+
"""Add two integers and return the result."""
|
29 |
+
return a + b
|
30 |
|
31 |
@tool
|
32 |
+
def subtract(a: int, b: int) -> int:
|
33 |
+
"""Subtract the second integer from the first and return the result."""
|
34 |
+
return a - b
|
35 |
|
36 |
@tool
|
37 |
def divide(a: int, b: int) -> float:
|
38 |
+
"""Divide the first integer by the second and return the result as float."""
|
39 |
if b == 0:
|
40 |
raise ValueError("Cannot divide by zero.")
|
41 |
return a / b
|
42 |
|
43 |
@tool
|
44 |
+
def modulus(a: int, b: int) -> int:
|
45 |
+
"""Return the remainder when the first integer is divided by the second."""
|
46 |
+
return a % b
|
47 |
|
48 |
@tool
|
49 |
def wiki_search(query: str) -> str:
|
50 |
+
"""Search Wikipedia for a query and return up to 2 results."""
|
51 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
52 |
+
formatted = "\n\n---\n\n".join(
|
53 |
+
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' for doc in search_docs]
|
54 |
+
)
|
55 |
+
return {"wiki_results": formatted}
|
56 |
|
57 |
@tool
|
58 |
def web_search(query: str) -> str:
|
59 |
+
"""Search Tavily for a query and return up to 3 results."""
|
60 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
61 |
+
formatted = "\n\n---\n\n".join(
|
62 |
+
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' for doc in search_docs]
|
63 |
+
)
|
64 |
+
return {"web_results": formatted}
|
65 |
|
66 |
@tool
|
67 |
def arvix_search(query: str) -> str:
|
68 |
+
"""Search Arxiv for a query and return up to 3 results."""
|
69 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
70 |
+
formatted = "\n\n---\n\n".join(
|
71 |
+
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' for doc in search_docs]
|
72 |
+
)
|
73 |
+
return {"arvix_results": formatted}
|
74 |
+
|
75 |
+
# Load system prompt
|
76 |
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
77 |
system_prompt = f.read()
|
78 |
|
79 |
sys_msg = SystemMessage(content=system_prompt)
|
80 |
|
81 |
+
# Setup Supabase vector retriever
|
|
|
82 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
83 |
+
supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY"))
|
84 |
vector_store = SupabaseVectorStore(
|
85 |
client=supabase,
|
86 |
embedding=embeddings,
|
87 |
table_name="Vector_Test",
|
88 |
query_name="match_documents_langchain",
|
89 |
)
|
90 |
+
|
91 |
create_retriever_tool = create_retriever_tool(
|
92 |
retriever=vector_store.as_retriever(),
|
93 |
name="Question Search",
|
94 |
description="A tool to retrieve similar questions from a vector store."
|
95 |
)
|
96 |
|
97 |
+
# Define tool list
|
98 |
tools = [
|
99 |
multiply, add, subtract, divide, modulus,
|
100 |
wiki_search, web_search, arvix_search
|
101 |
]
|
102 |
|
103 |
+
# Build graph
|
104 |
def build_graph(provider: str = "groq"):
|
105 |
if provider == "google":
|
106 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
107 |
elif provider == "groq":
|
108 |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
109 |
elif provider == "huggingface":
|
110 |
+
llm = ChatHuggingFace(
|
111 |
+
llm=HuggingFaceEndpoint(
|
112 |
+
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
113 |
+
temperature=0,
|
114 |
+
)
|
115 |
+
)
|
116 |
else:
|
117 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
118 |
|
119 |
llm_with_tools = llm.bind_tools(tools)
|
120 |
|
121 |
def assistant(state: MessagesState):
|
122 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
|
|
|
|
|
|
|
|
123 |
|
124 |
def retriever(state: MessagesState):
|
125 |
similar = vector_store.similarity_search(state["messages"][0].content)
|
126 |
+
example_msg = HumanMessage(content=f"Here I provide a similar question and answer for reference: \n\n{similar[0].page_content}")
|
127 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
|
|
|
|
128 |
|
129 |
builder = StateGraph(MessagesState)
|
130 |
builder.add_node("retriever", retriever)
|
|
|
134 |
builder.add_edge("retriever", "assistant")
|
135 |
builder.add_conditional_edges("assistant", tools_condition)
|
136 |
builder.add_edge("tools", "assistant")
|
137 |
+
|
138 |
return builder.compile()
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
142 |
+
graph = build_graph("groq")
|
143 |
+
messages = [HumanMessage(content=question)]
|
144 |
+
messages = graph.invoke({"messages": messages})
|
145 |
+
for m in messages["messages"]:
|
146 |
+
m.pretty_print()
|
app.py
CHANGED
@@ -16,6 +16,7 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
16 |
# --- Basic Agent Definition ---
|
17 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
|
|
|
19 |
cached_answers = []
|
20 |
|
21 |
class BasicAgent:
|
|
|
16 |
# --- Basic Agent Definition ---
|
17 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
|
19 |
+
|
20 |
cached_answers = []
|
21 |
|
22 |
class BasicAgent:
|