Commit
·
54c62fb
1
Parent(s):
aa8a441
refined prompt
Browse files- agent.py +46 -123
- app.py +7 -7
- system_prompt.txt +18 -5
agent.py
CHANGED
@@ -18,166 +18,98 @@ from supabase.client import Client, create_client
|
|
18 |
|
19 |
load_dotenv()
|
20 |
|
|
|
|
|
21 |
@tool
|
22 |
-
def multiply(a: int, b: int) -> int:
|
23 |
-
"""Multiply two numbers.
|
24 |
-
Args:
|
25 |
-
a: first int
|
26 |
-
b: second int
|
27 |
-
"""
|
28 |
-
return a * b
|
29 |
|
30 |
@tool
|
31 |
-
def add(a: int, b: int) -> int:
|
32 |
-
"""Add two numbers.
|
33 |
-
Args:
|
34 |
-
a: first int
|
35 |
-
b: second int
|
36 |
-
"""
|
37 |
-
return a + b
|
38 |
|
39 |
@tool
|
40 |
-
def subtract(a: int, b: int) -> int:
|
41 |
-
"""Subtract two numbers.
|
42 |
-
Args:
|
43 |
-
a: first int
|
44 |
-
b: second int
|
45 |
-
"""
|
46 |
-
return a - b
|
47 |
|
48 |
@tool
|
49 |
-
def divide(a: int, b: int) ->
|
50 |
-
"""Divide two numbers.
|
51 |
-
Args:
|
52 |
-
a: first int
|
53 |
-
b: second int
|
54 |
-
"""
|
55 |
if b == 0:
|
56 |
raise ValueError("Cannot divide by zero.")
|
57 |
return a / b
|
58 |
|
59 |
@tool
|
60 |
-
def modulus(a: int, b: int) -> int:
|
61 |
-
"""Get the modulus of two numbers.
|
62 |
-
Args:
|
63 |
-
a: first int
|
64 |
-
b: second int
|
65 |
-
"""
|
66 |
-
return a % b
|
67 |
|
68 |
@tool
|
69 |
def wiki_search(query: str) -> str:
|
70 |
-
|
71 |
-
|
72 |
-
query: The search query."""
|
73 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
74 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
75 |
-
[
|
76 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
77 |
-
for doc in search_docs
|
78 |
-
])
|
79 |
-
return {"wiki_results": formatted_search_docs}
|
80 |
|
81 |
@tool
|
82 |
def web_search(query: str) -> str:
|
83 |
-
|
84 |
-
|
85 |
-
query: The search query."""
|
86 |
-
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
87 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
88 |
-
[
|
89 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
90 |
-
for doc in search_docs
|
91 |
-
])
|
92 |
-
return {"web_results": formatted_search_docs}
|
93 |
|
94 |
@tool
|
95 |
def arvix_search(query: str) -> str:
|
96 |
-
|
97 |
-
|
98 |
-
query: The search query."""
|
99 |
-
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
100 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
101 |
-
[
|
102 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
103 |
-
for doc in search_docs
|
104 |
-
])
|
105 |
-
return {"arvix_results": formatted_search_docs}
|
106 |
-
|
107 |
|
|
|
108 |
|
109 |
-
# load the system prompt from the file
|
110 |
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
111 |
system_prompt = f.read()
|
112 |
|
113 |
-
# System message
|
114 |
sys_msg = SystemMessage(content=system_prompt)
|
115 |
|
116 |
-
#
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
os.environ.get("SUPABASE_SERVICE_KEY"))
|
121 |
vector_store = SupabaseVectorStore(
|
122 |
client=supabase,
|
123 |
-
embedding=
|
124 |
table_name="Vector_Test",
|
125 |
query_name="match_documents_langchain",
|
126 |
)
|
127 |
create_retriever_tool = create_retriever_tool(
|
128 |
retriever=vector_store.as_retriever(),
|
129 |
name="Question Search",
|
130 |
-
description="A tool to retrieve similar questions from a vector store."
|
131 |
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
tools = [
|
136 |
-
multiply,
|
137 |
-
|
138 |
-
subtract,
|
139 |
-
divide,
|
140 |
-
modulus,
|
141 |
-
wiki_search,
|
142 |
-
web_search,
|
143 |
-
arvix_search,
|
144 |
]
|
145 |
|
146 |
-
#
|
147 |
def build_graph(provider: str = "groq"):
|
148 |
-
"""Build the graph"""
|
149 |
-
# Load environment variables from .env file
|
150 |
if provider == "google":
|
151 |
-
# Google Gemini
|
152 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
153 |
elif provider == "groq":
|
154 |
-
|
155 |
-
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
156 |
elif provider == "huggingface":
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
161 |
-
temperature=0,
|
162 |
-
),
|
163 |
-
)
|
164 |
else:
|
165 |
-
raise ValueError("Invalid provider.
|
166 |
-
|
167 |
llm_with_tools = llm.bind_tools(tools)
|
168 |
|
169 |
-
# Node
|
170 |
def assistant(state: MessagesState):
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
173 |
|
174 |
def retriever(state: MessagesState):
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
181 |
|
182 |
builder = StateGraph(MessagesState)
|
183 |
builder.add_node("retriever", retriever)
|
@@ -185,22 +117,13 @@ def build_graph(provider: str = "groq"):
|
|
185 |
builder.add_node("tools", ToolNode(tools))
|
186 |
builder.add_edge(START, "retriever")
|
187 |
builder.add_edge("retriever", "assistant")
|
188 |
-
builder.add_conditional_edges(
|
189 |
-
"assistant",
|
190 |
-
tools_condition,
|
191 |
-
)
|
192 |
builder.add_edge("tools", "assistant")
|
193 |
-
|
194 |
-
# Compile graph
|
195 |
return builder.compile()
|
196 |
|
197 |
-
# test
|
198 |
if __name__ == "__main__":
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
messages = graph.invoke({"messages": messages})
|
205 |
-
for m in messages["messages"]:
|
206 |
-
m.pretty_print()
|
|
|
18 |
|
19 |
load_dotenv()
|
20 |
|
21 |
+
# === TOOLS === #
|
22 |
+
|
23 |
@tool
|
24 |
+
def multiply(a: int, b: int) -> int: return a * b
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
@tool
|
27 |
+
def add(a: int, b: int) -> int: return a + b
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
@tool
|
30 |
+
def subtract(a: int, b: int) -> int: return a - b
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
@tool
|
33 |
+
def divide(a: int, b: int) -> float:
|
|
|
|
|
|
|
|
|
|
|
34 |
if b == 0:
|
35 |
raise ValueError("Cannot divide by zero.")
|
36 |
return a / b
|
37 |
|
38 |
@tool
|
39 |
+
def modulus(a: int, b: int) -> int: return a % b
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
@tool
|
42 |
def wiki_search(query: str) -> str:
|
43 |
+
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
44 |
+
return {"wiki_results": "\n\n---\n\n".join(doc.page_content for doc in docs)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
@tool
|
47 |
def web_search(query: str) -> str:
|
48 |
+
docs = TavilySearchResults(max_results=3).invoke(query)
|
49 |
+
return {"web_results": "\n\n---\n\n".join(doc.page_content for doc in docs)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
@tool
|
52 |
def arvix_search(query: str) -> str:
|
53 |
+
docs = ArxivLoader(query=query, load_max_docs=3).load()
|
54 |
+
return {"arvix_results": "\n\n---\n\n".join(doc.page_content[:1000] for doc in docs)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# === SYSTEM PROMPT === #
|
57 |
|
|
|
58 |
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
59 |
system_prompt = f.read()
|
60 |
|
|
|
61 |
sys_msg = SystemMessage(content=system_prompt)
|
62 |
|
63 |
+
# === EMBEDDING + RETRIEVER === #
|
64 |
+
|
65 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
66 |
+
supabase: Client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))
|
|
|
67 |
vector_store = SupabaseVectorStore(
|
68 |
client=supabase,
|
69 |
+
embedding=embeddings,
|
70 |
table_name="Vector_Test",
|
71 |
query_name="match_documents_langchain",
|
72 |
)
|
73 |
create_retriever_tool = create_retriever_tool(
|
74 |
retriever=vector_store.as_retriever(),
|
75 |
name="Question Search",
|
76 |
+
description="A tool to retrieve similar questions from a vector store."
|
77 |
)
|
78 |
|
79 |
+
# === TOOL LIST === #
|
|
|
80 |
tools = [
|
81 |
+
multiply, add, subtract, divide, modulus,
|
82 |
+
wiki_search, web_search, arvix_search
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
]
|
84 |
|
85 |
+
# === BUILD GRAPH === #
|
86 |
def build_graph(provider: str = "groq"):
|
|
|
|
|
87 |
if provider == "google":
|
|
|
88 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
89 |
elif provider == "groq":
|
90 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
|
|
91 |
elif provider == "huggingface":
|
92 |
+
llm = ChatHuggingFace(llm=HuggingFaceEndpoint(
|
93 |
+
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
94 |
+
temperature=0))
|
|
|
|
|
|
|
|
|
95 |
else:
|
96 |
+
raise ValueError("Invalid provider.")
|
97 |
+
|
98 |
llm_with_tools = llm.bind_tools(tools)
|
99 |
|
|
|
100 |
def assistant(state: MessagesState):
|
101 |
+
response = llm_with_tools.invoke(state["messages"])
|
102 |
+
answer = response.content.strip()
|
103 |
+
if "FINAL ANSWER:" not in answer:
|
104 |
+
answer = f"FINAL ANSWER: {answer.strip().splitlines()[0]}"
|
105 |
+
return {"messages": [AIMessage(content=answer)]}
|
106 |
|
107 |
def retriever(state: MessagesState):
|
108 |
+
similar = vector_store.similarity_search(state["messages"][0].content)
|
109 |
+
if similar:
|
110 |
+
ref = HumanMessage(content=f"Here is a similar example: \n{similar[0].page_content}")
|
111 |
+
return {"messages": [sys_msg] + state["messages"] + [ref]}
|
112 |
+
return {"messages": [sys_msg] + state["messages"]}
|
|
|
113 |
|
114 |
builder = StateGraph(MessagesState)
|
115 |
builder.add_node("retriever", retriever)
|
|
|
117 |
builder.add_node("tools", ToolNode(tools))
|
118 |
builder.add_edge(START, "retriever")
|
119 |
builder.add_edge("retriever", "assistant")
|
120 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
|
|
|
|
|
|
121 |
builder.add_edge("tools", "assistant")
|
|
|
|
|
122 |
return builder.compile()
|
123 |
|
|
|
124 |
if __name__ == "__main__":
|
125 |
+
graph = build_graph()
|
126 |
+
question = "What is 12 + 4?"
|
127 |
+
result = graph.invoke({"messages": [HumanMessage(content=question)]})
|
128 |
+
for m in result["messages"]:
|
129 |
+
print(m.content)
|
|
|
|
|
|
app.py
CHANGED
@@ -16,7 +16,6 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
16 |
# --- Basic Agent Definition ---
|
17 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
|
19 |
-
|
20 |
cached_answers = []
|
21 |
|
22 |
class BasicAgent:
|
@@ -29,8 +28,10 @@ class BasicAgent:
|
|
29 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
30 |
messages = [HumanMessage(content=question)]
|
31 |
messages = self.graph.invoke({"messages": messages})
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
35 |
def run_agent_only(profile: gr.OAuthProfile | None):
|
36 |
global cached_answers
|
@@ -45,8 +46,7 @@ def run_agent_only(profile: gr.OAuthProfile | None):
|
|
45 |
except Exception as e:
|
46 |
return f"Agent Init Error: {e}", None
|
47 |
|
48 |
-
|
49 |
-
questions_url = f"{api_url}/questions"
|
50 |
|
51 |
try:
|
52 |
response = requests.get(questions_url, timeout=15)
|
@@ -93,8 +93,8 @@ def submit_cached_answers(profile: gr.OAuthProfile | None):
|
|
93 |
"agent_code": agent_code,
|
94 |
"answers": cached_answers
|
95 |
}
|
96 |
-
|
97 |
-
submit_url = "
|
98 |
|
99 |
try:
|
100 |
response = requests.post(submit_url, json=payload, timeout=60)
|
|
|
16 |
# --- Basic Agent Definition ---
|
17 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
|
|
|
19 |
cached_answers = []
|
20 |
|
21 |
class BasicAgent:
|
|
|
28 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
29 |
messages = [HumanMessage(content=question)]
|
30 |
messages = self.graph.invoke({"messages": messages})
|
31 |
+
raw_answer = messages['messages'][-1].content
|
32 |
+
if raw_answer.startswith("FINAL ANSWER: "):
|
33 |
+
return raw_answer[len("FINAL ANSWER: "):].strip()
|
34 |
+
return f"Agent response did not follow FINAL ANSWER format: {raw_answer}"
|
35 |
|
36 |
def run_agent_only(profile: gr.OAuthProfile | None):
|
37 |
global cached_answers
|
|
|
46 |
except Exception as e:
|
47 |
return f"Agent Init Error: {e}", None
|
48 |
|
49 |
+
questions_url = f"{DEFAULT_API_URL}/questions"
|
|
|
50 |
|
51 |
try:
|
52 |
response = requests.get(questions_url, timeout=15)
|
|
|
93 |
"agent_code": agent_code,
|
94 |
"answers": cached_answers
|
95 |
}
|
96 |
+
|
97 |
+
submit_url = f"{DEFAULT_API_URL}/submit"
|
98 |
|
99 |
try:
|
100 |
response = requests.post(submit_url, json=payload, timeout=60)
|
system_prompt.txt
CHANGED
@@ -1,5 +1,18 @@
|
|
1 |
-
You are a helpful assistant
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a helpful assistant answering questions using a set of tools.
|
2 |
+
|
3 |
+
You must strictly follow this output format:
|
4 |
+
|
5 |
+
FINAL ANSWER: [YOUR FINAL ANSWER]
|
6 |
+
|
7 |
+
Where [YOUR FINAL ANSWER] is:
|
8 |
+
- A number (e.g., 42) → Do NOT use commas, units ($, %, etc.), or extra words.
|
9 |
+
- A string (e.g., Paris) → Do NOT use articles (e.g., "the", "an"), abbreviations, or numeric digits unless required.
|
10 |
+
- A comma-separated list (e.g., apple, banana, cherry) → Apply the above rules to each item.
|
11 |
+
|
12 |
+
Important:
|
13 |
+
- Always begin your final output with **exactly** "FINAL ANSWER: ".
|
14 |
+
- Do NOT include any reasoning or explanation after your final answer.
|
15 |
+
- Do NOT add anything after the period.
|
16 |
+
- Think step-by-step internally, but return **only** the FINAL ANSWER line in your output.
|
17 |
+
|
18 |
+
I will now ask you a question.
|