Commit
·
6d24d35
1
Parent(s):
de718ca
claude API usuage
Browse files
agent.py
CHANGED
@@ -4,6 +4,7 @@ from dotenv import load_dotenv
|
|
4 |
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
from langgraph.prebuilt import tools_condition
|
6 |
from langgraph.prebuilt import ToolNode
|
|
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
from langchain_groq import ChatGroq
|
9 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
@@ -22,46 +23,38 @@ load_dotenv()
|
|
22 |
# === Tools ===
|
23 |
@tool
|
24 |
def multiply(a: int, b: int) -> int:
|
25 |
-
"""Multiply two integers."""
|
26 |
return a * b
|
27 |
|
28 |
@tool
|
29 |
def add(a: int, b: int) -> int:
|
30 |
-
"""Add two integers."""
|
31 |
return a + b
|
32 |
|
33 |
@tool
|
34 |
def subtract(a: int, b: int) -> int:
|
35 |
-
"""Subtract b from a."""
|
36 |
return a - b
|
37 |
|
38 |
@tool
|
39 |
def divide(a: int, b: int) -> float:
|
40 |
-
"""Divide a by b."""
|
41 |
if b == 0:
|
42 |
raise ValueError("Cannot divide by zero.")
|
43 |
return a / b
|
44 |
|
45 |
@tool
|
46 |
def modulus(a: int, b: int) -> int:
|
47 |
-
"""Return a modulo b."""
|
48 |
return a % b
|
49 |
|
50 |
@tool
|
51 |
def wiki_search(query: str) -> str:
|
52 |
-
"""Search Wikipedia for a query."""
|
53 |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
54 |
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
|
55 |
|
56 |
@tool
|
57 |
def web_search(query: str) -> str:
|
58 |
-
"""Search the web for a query."""
|
59 |
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
60 |
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
|
61 |
|
62 |
@tool
|
63 |
def arvix_search(query: str) -> str:
|
64 |
-
"""Search Arxiv for a query."""
|
65 |
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
66 |
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])
|
67 |
|
@@ -70,9 +63,9 @@ with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
|
70 |
system_prompt = f.read()
|
71 |
sys_msg = SystemMessage(content=system_prompt)
|
72 |
|
73 |
-
# === Embedding
|
74 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
75 |
-
supabase: Client = create_client(os.
|
76 |
vector_store = SupabaseVectorStore(
|
77 |
client=supabase,
|
78 |
embedding=embeddings,
|
@@ -80,24 +73,27 @@ vector_store = SupabaseVectorStore(
|
|
80 |
query_name="match_documents_langchain",
|
81 |
)
|
82 |
|
83 |
-
# === Tools
|
84 |
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
|
85 |
|
86 |
-
# ===
|
87 |
-
def build_graph(provider: str = "
|
88 |
-
if provider == "
|
89 |
-
llm =
|
|
|
|
|
|
|
|
|
90 |
elif provider == "groq":
|
91 |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
|
|
|
|
92 |
elif provider == "huggingface":
|
93 |
-
llm = ChatHuggingFace(
|
94 |
-
|
95 |
-
|
96 |
-
temperature=0,
|
97 |
-
)
|
98 |
-
)
|
99 |
else:
|
100 |
-
raise ValueError("Invalid provider
|
101 |
|
102 |
llm_with_tools = llm.bind_tools(tools)
|
103 |
|
@@ -123,7 +119,6 @@ def build_graph(provider: str = "groq"):
|
|
123 |
builder.add_node("assistant", assistant)
|
124 |
builder.add_node("tools", ToolNode(tools))
|
125 |
builder.add_node("formatter", formatter)
|
126 |
-
|
127 |
builder.add_edge(START, "retriever")
|
128 |
builder.add_edge("retriever", "assistant")
|
129 |
builder.add_conditional_edges("assistant", tools_condition)
|
@@ -132,9 +127,10 @@ def build_graph(provider: str = "groq"):
|
|
132 |
|
133 |
return builder.compile()
|
134 |
|
135 |
-
# === Test
|
136 |
if __name__ == "__main__":
|
137 |
-
graph = build_graph("
|
138 |
-
|
139 |
-
for
|
140 |
-
|
|
|
|
4 |
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
from langgraph.prebuilt import tools_condition
|
6 |
from langgraph.prebuilt import ToolNode
|
7 |
+
from langchain_anthropic.ChatAnthropic import ChatAnthropi
|
8 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
from langchain_groq import ChatGroq
|
10 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
|
|
23 |
# === Tools ===
|
24 |
@tool
|
25 |
def multiply(a: int, b: int) -> int:
|
|
|
26 |
return a * b
|
27 |
|
28 |
@tool
|
29 |
def add(a: int, b: int) -> int:
|
|
|
30 |
return a + b
|
31 |
|
32 |
@tool
|
33 |
def subtract(a: int, b: int) -> int:
|
|
|
34 |
return a - b
|
35 |
|
36 |
@tool
|
37 |
def divide(a: int, b: int) -> float:
|
|
|
38 |
if b == 0:
|
39 |
raise ValueError("Cannot divide by zero.")
|
40 |
return a / b
|
41 |
|
42 |
@tool
|
43 |
def modulus(a: int, b: int) -> int:
|
|
|
44 |
return a % b
|
45 |
|
46 |
@tool
|
47 |
def wiki_search(query: str) -> str:
|
|
|
48 |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
49 |
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
|
50 |
|
51 |
@tool
|
52 |
def web_search(query: str) -> str:
|
|
|
53 |
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
54 |
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
|
55 |
|
56 |
@tool
|
57 |
def arvix_search(query: str) -> str:
|
|
|
58 |
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
59 |
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])
|
60 |
|
|
|
63 |
system_prompt = f.read()
|
64 |
sys_msg = SystemMessage(content=system_prompt)
|
65 |
|
66 |
+
# === Embedding & Vector DB ===
|
67 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
68 |
+
supabase: Client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))
|
69 |
vector_store = SupabaseVectorStore(
|
70 |
client=supabase,
|
71 |
embedding=embeddings,
|
|
|
73 |
query_name="match_documents_langchain",
|
74 |
)
|
75 |
|
76 |
+
# === Tools ===
|
77 |
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
|
78 |
|
79 |
+
# === LangGraph Agent Definition ===
|
80 |
+
def build_graph(provider: str = "claude"):
|
81 |
+
if provider == "claude":
|
82 |
+
llm = ChatAnthropic(
|
83 |
+
model="claude-3-sonnet-20240229",
|
84 |
+
temperature=0,
|
85 |
+
anthropic_api_key=os.getenv("CLAUDE_API_KEY")
|
86 |
+
)
|
87 |
elif provider == "groq":
|
88 |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
89 |
+
elif provider == "google":
|
90 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
91 |
elif provider == "huggingface":
|
92 |
+
llm = ChatHuggingFace(llm=HuggingFaceEndpoint(
|
93 |
+
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
94 |
+
temperature=0))
|
|
|
|
|
|
|
95 |
else:
|
96 |
+
raise ValueError("Invalid provider")
|
97 |
|
98 |
llm_with_tools = llm.bind_tools(tools)
|
99 |
|
|
|
119 |
builder.add_node("assistant", assistant)
|
120 |
builder.add_node("tools", ToolNode(tools))
|
121 |
builder.add_node("formatter", formatter)
|
|
|
122 |
builder.add_edge(START, "retriever")
|
123 |
builder.add_edge("retriever", "assistant")
|
124 |
builder.add_conditional_edges("assistant", tools_condition)
|
|
|
127 |
|
128 |
return builder.compile()
|
129 |
|
130 |
+
# === Test ===
|
131 |
if __name__ == "__main__":
|
132 |
+
graph = build_graph("claude")
|
133 |
+
result = graph.invoke({"messages": [HumanMessage(content="What is the capital of France?")]})
|
134 |
+
for m in result["messages"]:
|
135 |
+
m.pretty_print()
|
136 |
+
|
app.py
CHANGED
@@ -13,8 +13,8 @@ cached_answers = []
|
|
13 |
|
14 |
class ChatAgent:
|
15 |
def __init__(self):
|
16 |
-
print("ChatAgent initialized with LangGraph workflow.")
|
17 |
-
self.graph = build_graph()
|
18 |
|
19 |
def __call__(self, question: str) -> str:
|
20 |
print(f"Processing question: {question[:60]}...")
|
@@ -95,8 +95,8 @@ with gr.Blocks() as demo:
|
|
95 |
gr.Markdown("Run the agent on all tasks, then submit for scoring.")
|
96 |
gr.LoginButton()
|
97 |
|
98 |
-
run_button = gr.Button("
|
99 |
-
submit_button = gr.Button("
|
100 |
|
101 |
status_box = gr.Textbox(label="Status", lines=3)
|
102 |
table = gr.DataFrame(label="Results", wrap=True)
|
|
|
13 |
|
14 |
class ChatAgent:
|
15 |
def __init__(self):
|
16 |
+
print("ChatAgent initialized with Claude LangGraph workflow.")
|
17 |
+
self.graph = build_graph("claude")
|
18 |
|
19 |
def __call__(self, question: str) -> str:
|
20 |
print(f"Processing question: {question[:60]}...")
|
|
|
95 |
gr.Markdown("Run the agent on all tasks, then submit for scoring.")
|
96 |
gr.LoginButton()
|
97 |
|
98 |
+
run_button = gr.Button("\U0001F9E0 Run Agent")
|
99 |
+
submit_button = gr.Button("\U0001F4E4 Submit Answers")
|
100 |
|
101 |
status_box = gr.Textbox(label="Status", lines=3)
|
102 |
table = gr.DataFrame(label="Results", wrap=True)
|