File size: 4,831 Bytes
e0f29bb
 
ccc745c
 
 
 
d005f19
ccc745c
 
 
e0f29bb
ccc745c
 
e0f29bb
ccc745c
 
 
 
6ac8934
de718ca
e0f29bb
6ac8934
72298ff
6ac8934
7df20a1
 
6ac8934
 
7df20a1
 
6ac8934
 
7df20a1
 
6ac8934
 
54c62fb
e0f29bb
 
 
6ac8934
 
7df20a1
 
e0f29bb
 
 
7df20a1
72298ff
e0f29bb
 
 
7df20a1
72298ff
e0f29bb
 
 
7df20a1
72298ff
7df20a1
72298ff
e0f29bb
 
 
 
6d24d35
54c62fb
6d24d35
e0f29bb
 
54c62fb
e0f29bb
 
 
7df20a1
6d24d35
72298ff
e0f29bb
6d24d35
 
 
 
 
 
 
 
e0f29bb
54c62fb
6d24d35
 
e0f29bb
6d24d35
 
 
e0f29bb
6d24d35
54c62fb
e0f29bb
 
de718ca
 
 
 
 
e0f29bb
72298ff
de718ca
e0f29bb
de718ca
 
 
 
 
 
 
e0f29bb
 
 
 
 
de718ca
e0f29bb
 
54c62fb
e0f29bb
de718ca
7df20a1
6ac8934
e0f29bb
6d24d35
e0f29bb
6d24d35
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_anthropic.ChatAnthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client

# === Load environment ===
load_dotenv()

# === Tools ===
@tool
def multiply(a: int, b: int) -> int:
    return a * b

@tool
def add(a: int, b: int) -> int:
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    return a - b

@tool
def divide(a: int, b: int) -> float:
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    return a % b

@tool
def wiki_search(query: str) -> str:
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    return "\n\n---\n\n".join([doc.page_content for doc in search_docs])

@tool
def web_search(query: str) -> str:
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    return "\n\n---\n\n".join([doc.page_content for doc in search_docs])

@tool
def arvix_search(query: str) -> str:
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])

# === System Prompt ===
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)

# === Embedding & Vector DB ===
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding=embeddings,
    table_name="Vector_Test",
    query_name="match_documents_langchain",
)

# === Tools ===
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]

# === LangGraph Agent Definition ===
def build_graph(provider: str = "claude"):
    if provider == "claude":
        llm = ChatAnthropic(
            model="claude-3-sonnet-20240229",
            temperature=0,
            anthropic_api_key=os.getenv("CLAUDE_API_KEY")
        )
    elif provider == "groq":
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
    elif provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "huggingface":
        llm = ChatHuggingFace(llm=HuggingFaceEndpoint(
            url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
            temperature=0))
    else:
        raise ValueError("Invalid provider")

    llm_with_tools = llm.bind_tools(tools)

    def retriever(state: MessagesState):
        query = state["messages"][-1].content
        similar = vector_store.similarity_search(query)
        return {"messages": [sys_msg, state["messages"][-1], HumanMessage(content=f"Reference: {similar[0].page_content}")]}

    def assistant(state: MessagesState):
        response = llm_with_tools.invoke(state["messages"])
        return {"messages": state["messages"] + [response]}

    def formatter(state: MessagesState):
        last = state["messages"][-1].content.strip()
        if "FINAL ANSWER:" in last:
            answer = last.split("FINAL ANSWER:")[-1].strip()
        else:
            answer = last.strip()
        return {"messages": [AIMessage(content=answer)]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_node("formatter", formatter)
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")
    builder.add_edge("assistant", "formatter")

    return builder.compile()

# === Test ===
if __name__ == "__main__":
    graph = build_graph("claude")
    result = graph.invoke({"messages": [HumanMessage(content="What is the capital of France?")]})
    for m in result["messages"]:
        m.pretty_print()