Spaces:
Running
Running
File size: 4,055 Bytes
caff61e bccf53b dc80d48 0152e0c a186d85 caff61e d5e3d23 a186d85 0152e0c 0e19825 b5a364c d5e3d23 a186d85 d5e3d23 a186d85 36e1064 d5e3d23 0e19825 0152e0c a186d85 0152e0c 0e19825 0152e0c d5e3d23 e82b28e a186d85 8513c99 a186d85 0e19825 a186d85 0e19825 8513c99 0e19825 3e3644e a186d85 0e19825 d5e3d23 0e19825 d73ddf5 0e19825 d73ddf5 6fea677 6fb7418 d5e3d23 6fea677 d5e3d23 0e19825 a186d85 0e19825 d5e3d23 6fb7418 d5e3d23 0e19825 8513c99 b1205e9 a186d85 d5e3d23 a186d85 d73ddf5 d5e3d23 a186d85 d5e3d23 a186d85 6fea677 d5e3d23 8513c99 d5e3d23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
from pathlib import Path
# Create cache directory for models
os.makedirs("models", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load YOLOv5x model
model_path = Path("models/yolov5x.pt")
if model_path.exists():
print(f"Loading model from cache: {model_path}")
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True, source="local", path=str(model_path)).to(device)
else:
print("Downloading YOLOv5x model and caching...")
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
torch.save(model.state_dict(), model_path)
# Model configurations
model.conf = 0.3 # Confidence threshold
model.iou = 0.3 # IoU threshold
model.classes = None # Detect all classes
if device.type == "cuda":
model.half()
else:
torch.set_num_threads(os.cpu_count())
model.eval()
np.random.seed(42)
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
total_inference_time = 0
inference_count = 0
def detect_objects(image):
global total_inference_time, inference_count
if image is None:
return None
start_time = time.time()
output_image = image.copy()
input_size = 640
with torch.no_grad():
results = model(image, size=input_size)
inference_time = time.time() - start_time
total_inference_time += inference_time
inference_count += 1
avg_inference_time = total_inference_time / inference_count
detections = results.pred[0].cpu().numpy()
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
# Thicker bounding boxes
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
label = f"{model.names[class_id]} {conf:.2f}"
font_scale, font_thickness = 0.9, 2 # Increased for better readability
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
fps = 1 / inference_time
# Stylish FPS display
overlay = output_image.copy()
cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
return output_image
example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
os.makedirs("examples", exist_ok=True)
with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
gr.Markdown("""
# Optimized YOLOv5 Object Detection
Detects objects using YOLOv5 with enhanced visualization and FPS tracking.
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="numpy")
submit_button = gr.Button("Submit", variant="primary")
clear_button = gr.Button("Clear")
with gr.Column(scale=1):
output_image = gr.Image(label="Detected Objects", type="numpy")
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=detect_objects,
cache_examples=True
)
submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
clear_button.click(lambda: (None, None), None, [input_image, output_image])
demo.launch()
|