File size: 23,541 Bytes
7eaaff0
ad52429
7b9d8b2
ad52429
7eaaff0
25f2b88
7eaaff0
 
ad52429
256b1d4
25f2b88
 
6fc3054
 
3282eb7
 
 
 
f1120bc
797026e
41365d5
7eaaff0
 
 
 
ad52429
7eaaff0
 
59eee68
7eaaff0
 
5e42313
 
7eaaff0
5e42313
797026e
 
 
 
aa57a4d
5e42313
3282eb7
5e42313
797026e
 
 
5f61427
797026e
 
 
 
 
 
 
ad52429
7eaaff0
 
 
 
 
ad52429
7eaaff0
 
 
 
 
 
 
25f2b88
 
 
7eaaff0
 
 
 
 
7b9d8b2
 
 
 
 
 
 
 
 
 
 
25f2b88
 
7eaaff0
 
1bb7d9d
7eaaff0
25f2b88
7eaaff0
 
 
1bb7d9d
25f2b88
7eaaff0
 
 
1bb7d9d
7eaaff0
 
ad52429
7eaaff0
5f61427
 
 
 
 
53f5f55
ad52429
7eaaff0
 
ad52429
 
25f2b88
ad52429
 
 
 
 
 
 
 
 
25f2b88
ad52429
 
3fe982e
ad52429
0fc43d5
3fe982e
25f2b88
154774e
ad52429
 
3fe982e
 
ad52429
 
 
 
7b9d8b2
 
ad52429
 
 
 
 
 
 
7b9d8b2
 
 
 
 
ad52429
25f2b88
7b9d8b2
 
7eaaff0
7b9d8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f2b88
 
 
 
 
7b9d8b2
7eaaff0
7b9d8b2
 
 
7eaaff0
 
7b9d8b2
 
 
 
 
 
 
 
 
444f8bc
 
99608c9
 
 
33fd63d
9a1a827
33fd63d
 
 
 
 
 
 
 
ad52429
444f8bc
33fd63d
 
 
444f8bc
33fd63d
 
444f8bc
33fd63d
 
 
444f8bc
33fd63d
444f8bc
 
 
 
33fd63d
 
 
 
 
 
 
444f8bc
33fd63d
 
 
444f8bc
33fd63d
 
 
 
5f61427
444f8bc
33fd63d
 
 
 
 
 
444f8bc
33fd63d
 
 
 
444f8bc
33fd63d
 
 
 
 
 
444f8bc
 
33fd63d
5f61427
 
 
 
444f8bc
33fd63d
 
 
 
444f8bc
33fd63d
 
 
 
 
 
 
444f8bc
33fd63d
 
 
 
 
 
 
444f8bc
33fd63d
 
 
 
 
 
1bb7d9d
ad52429
 
 
 
7eaaff0
 
 
ad52429
7eaaff0
 
ad52429
7eaaff0
ad52429
7eaaff0
 
ad52429
7eaaff0
ad52429
 
 
 
 
7eaaff0
ad52429
 
7eaaff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3282eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41365d5
3282eb7
 
 
 
41365d5
 
3282eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41365d5
3282eb7
41365d5
3282eb7
41365d5
6fc3054
3282eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1120bc
41365d5
 
797026e
 
f1120bc
3282eb7
f1120bc
3282eb7
f1120bc
3282eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1120bc
 
 
 
 
3282eb7
f1120bc
 
 
41365d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc3054
1419b33
 
ad52429
5f61427
 
 
 
 
 
 
 
 
 
 
 
 
 
050caf8
5f61427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eaaff0
f69e7ad
d946b22
f69e7ad
d946b22
f69e7ad
5f61427
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import spacy
from typing import List, Dict, Tuple
import logging
import os
import gradio as gr
from fastapi.middleware.cors import CORSMiddleware
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import time
from datetime import datetime
import openpyxl
from openpyxl import Workbook
from openpyxl.utils import get_column_letter
from io import BytesIO
import base64
import hashlib

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_LENGTH = 512
MODEL_NAME = "microsoft/deberta-v3-small"
WINDOW_SIZE = 6
WINDOW_OVERLAP = 2
CONFIDENCE_THRESHOLD = 0.65
BATCH_SIZE = 8  # Reduced batch size for CPU
MAX_WORKERS = 4  # Number of worker threads for processing

# Get password hash from environment variable (more secure)
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')

if not ADMIN_PASSWORD_HASH:
    ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb"

# Excel file path for logs
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"

def is_admin_password(input_text: str) -> bool:
    """
    Check if the input text matches the admin password using secure hash comparison.
    This prevents the password from being visible in the source code.
    """
    # Hash the input text
    input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
    
    # Compare hashes (constant-time comparison to prevent timing attacks)
    return input_hash == ADMIN_PASSWORD_HASH

class TextWindowProcessor:
    def __init__(self):
        try:
            self.nlp = spacy.load("en_core_web_sm")
        except OSError:
            logger.info("Downloading spacy model...")
            spacy.cli.download("en_core_web_sm")
            self.nlp = spacy.load("en_core_web_sm")

        if 'sentencizer' not in self.nlp.pipe_names:
            self.nlp.add_pipe('sentencizer')

        disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
        self.nlp.disable_pipes(*disabled_pipes)
        
        # Initialize thread pool for parallel processing
        self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)

    def split_into_sentences(self, text: str) -> List[str]:
        doc = self.nlp(text)
        return [str(sent).strip() for sent in doc.sents]

    def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
        if len(sentences) < window_size:
            return [" ".join(sentences)]

        windows = []
        stride = window_size - overlap
        for i in range(0, len(sentences) - window_size + 1, stride):
            window = sentences[i:i + window_size]
            windows.append(" ".join(window))
        return windows

    def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
        """Create windows with better boundary handling"""
        windows = []
        window_sentence_indices = []

        for i in range(len(sentences)):
            # Calculate window boundaries centered on current sentence
            half_window = window_size // 2
            start_idx = max(0, i - half_window)
            end_idx = min(len(sentences), i + half_window + 1)

            # Create the window
            window = sentences[start_idx:end_idx]
            windows.append(" ".join(window))
            window_sentence_indices.append(list(range(start_idx, end_idx)))

        return windows, window_sentence_indices

class TextClassifier:
    def __init__(self):
        # Set thread configuration before any model loading or parallel work
        if not torch.cuda.is_available():
            torch.set_num_threads(MAX_WORKERS)
            torch.set_num_interop_threads(MAX_WORKERS)
            
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model_name = MODEL_NAME
        self.tokenizer = None
        self.model = None
        self.processor = TextWindowProcessor()
        self.initialize_model()

    def initialize_model(self):
        """Initialize the model and tokenizer."""
        logger.info("Initializing model and tokenizer...")
        
        from transformers import DebertaV2TokenizerFast
        
        self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
            self.model_name,
            model_max_length=MAX_LENGTH,
            use_fast=True
        )
        
        self.model = AutoModelForSequenceClassification.from_pretrained(
            self.model_name,
            num_labels=2
        ).to(self.device)
            
        model_path = "model_20250209_184929_acc1.0000.pt"
        if os.path.exists(model_path):
            logger.info(f"Loading custom model from {model_path}")
            checkpoint = torch.load(model_path, map_location=self.device)
            self.model.load_state_dict(checkpoint['model_state_dict'])
        else:
            logger.warning("Custom model file not found. Using base model.")
            
        self.model.eval()

    def quick_scan(self, text: str) -> Dict:
        """Perform a quick scan using simple window analysis."""
        if not text.strip():
            return {
                'prediction': 'unknown',
                'confidence': 0.0,
                'num_windows': 0
            }

        sentences = self.processor.split_into_sentences(text)
        windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)

        predictions = []
        
        # Process windows in smaller batches for CPU efficiency
        for i in range(0, len(windows), BATCH_SIZE):
            batch_windows = windows[i:i + BATCH_SIZE]

            inputs = self.tokenizer(
                batch_windows,
                truncation=True,
                padding=True,
                max_length=MAX_LENGTH,
                return_tensors="pt"
            ).to(self.device)

            with torch.no_grad():
                outputs = self.model(**inputs)
                probs = F.softmax(outputs.logits, dim=-1)

                for idx, window in enumerate(batch_windows):
                    prediction = {
                        'window': window,
                        'human_prob': probs[idx][1].item(),
                        'ai_prob': probs[idx][0].item(),
                        'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai'
                    }
                    predictions.append(prediction)

            # Clean up GPU memory if available
            del inputs, outputs, probs
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        if not predictions:
            return {
                'prediction': 'unknown',
                'confidence': 0.0,
                'num_windows': 0
            }

        avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions)
        avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)

        return {
            'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
            'confidence': max(avg_human_prob, avg_ai_prob),
            'num_windows': len(predictions)
        }

    def detailed_scan(self, text: str) -> Dict:
        """Perform a detailed scan with improved sentence-level analysis."""
        # Clean up trailing whitespace
        text = text.rstrip()
        
        if not text.strip():
            return {
                'sentence_predictions': [],
                'highlighted_text': '',
                'full_text': '',
                'overall_prediction': {
                    'prediction': 'unknown',
                    'confidence': 0.0,
                    'num_sentences': 0
                }
            }

        sentences = self.processor.split_into_sentences(text)
        if not sentences:
            return {}

        # Create centered windows for each sentence
        windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)

        # Track scores for each sentence
        sentence_appearances = {i: 0 for i in range(len(sentences))}
        sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}

        # Process windows in batches
        for i in range(0, len(windows), BATCH_SIZE):
            batch_windows = windows[i:i + BATCH_SIZE]
            batch_indices = window_sentence_indices[i:i + BATCH_SIZE]

            inputs = self.tokenizer(
                batch_windows,
                truncation=True,
                padding=True,
                max_length=MAX_LENGTH,
                return_tensors="pt"
            ).to(self.device)

            with torch.no_grad():
                outputs = self.model(**inputs)
                probs = F.softmax(outputs.logits, dim=-1)

                # Attribute predictions with weighted scoring
                for window_idx, indices in enumerate(batch_indices):
                    center_idx = len(indices) // 2
                    center_weight = 0.7  # Higher weight for center sentence
                    edge_weight = 0.3 / (len(indices) - 1)  # Distribute remaining weight

                    for pos, sent_idx in enumerate(indices):
                        # Apply higher weight to center sentence
                        weight = center_weight if pos == center_idx else edge_weight
                        sentence_appearances[sent_idx] += weight
                        sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
                        sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()

            # Clean up memory
            del inputs, outputs, probs
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        # Calculate final predictions with boundary smoothing
        sentence_predictions = []
        for i in range(len(sentences)):
            if sentence_appearances[i] > 0:
                human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
                ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]

                # Apply minimal smoothing at prediction boundaries
                if i > 0 and i < len(sentences) - 1:
                    prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
                    prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
                    next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
                    next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]

                    # Check if we're at a prediction boundary
                    current_pred = 'human' if human_prob > ai_prob else 'ai'
                    prev_pred = 'human' if prev_human > prev_ai else 'ai'
                    next_pred = 'human' if next_human > next_ai else 'ai'

                    if current_pred != prev_pred or current_pred != next_pred:
                        # Small adjustment at boundaries
                        smooth_factor = 0.1
                        human_prob = (human_prob * (1 - smooth_factor) + 
                                    (prev_human + next_human) * smooth_factor / 2)
                        ai_prob = (ai_prob * (1 - smooth_factor) + 
                                (prev_ai + next_ai) * smooth_factor / 2)

                sentence_predictions.append({
                    'sentence': sentences[i],
                    'human_prob': human_prob,
                    'ai_prob': ai_prob,
                    'prediction': 'human' if human_prob > ai_prob else 'ai',
                    'confidence': max(human_prob, ai_prob)
                })

        return {
            'sentence_predictions': sentence_predictions,
            'highlighted_text': self.format_predictions_html(sentence_predictions),
            'full_text': text,
            'overall_prediction': self.aggregate_predictions(sentence_predictions)
        }

    def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
        """Format predictions as HTML with color-coding."""
        html_parts = []
        
        for pred in sentence_predictions:
            sentence = pred['sentence']
            confidence = pred['confidence']
            
            if confidence >= CONFIDENCE_THRESHOLD:
                if pred['prediction'] == 'human':
                    color = "#90EE90"  # Light green
                else:
                    color = "#FFB6C6"  # Light red
            else:
                if pred['prediction'] == 'human':
                    color = "#E8F5E9"  # Very light green
                else:
                    color = "#FFEBEE"  # Very light red
                    
            html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
            
        return " ".join(html_parts)

    def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
        """Aggregate predictions from multiple sentences into a single prediction."""
        if not predictions:
            return {
                'prediction': 'unknown',
                'confidence': 0.0,
                'num_sentences': 0
            }

        total_human_prob = sum(p['human_prob'] for p in predictions)
        total_ai_prob = sum(p['ai_prob'] for p in predictions)
        num_sentences = len(predictions)

        avg_human_prob = total_human_prob / num_sentences
        avg_ai_prob = total_ai_prob / num_sentences

        return {
            'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
            'confidence': max(avg_human_prob, avg_ai_prob),
            'num_sentences': num_sentences
        }

def initialize_excel_log():
    """Initialize the Excel log file if it doesn't exist."""
    if not os.path.exists(EXCEL_LOG_PATH):
        wb = Workbook()
        ws = wb.active
        ws.title = "Prediction Logs"
        
        # Set column headers
        headers = ["timestamp", "word_count", "prediction", "confidence", 
                   "execution_time_ms", "analysis_mode", "full_text"]
        
        for col_num, header in enumerate(headers, 1):
            ws.cell(row=1, column=col_num, value=header)
        
        # Adjust column widths for better readability
        ws.column_dimensions[get_column_letter(1)].width = 20  # timestamp
        ws.column_dimensions[get_column_letter(2)].width = 10  # word_count
        ws.column_dimensions[get_column_letter(3)].width = 10  # prediction
        ws.column_dimensions[get_column_letter(4)].width = 10  # confidence
        ws.column_dimensions[get_column_letter(5)].width = 15  # execution_time_ms
        ws.column_dimensions[get_column_letter(6)].width = 15  # analysis_mode
        ws.column_dimensions[get_column_letter(7)].width = 100  # full_text
            
        # Save the workbook
        wb.save(EXCEL_LOG_PATH)
        logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")

def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
    """Log prediction data to an Excel file in the /tmp directory."""
    # Initialize the Excel file if it doesn't exist
    if not os.path.exists(EXCEL_LOG_PATH):
        initialize_excel_log()
    
    try:
        # Load the existing workbook
        wb = openpyxl.load_workbook(EXCEL_LOG_PATH)
        ws = wb.active
        
        # Get the next row number
        next_row = ws.max_row + 1
        
        # Clean up the input text for Excel storage (replace problematic characters)
        cleaned_text = input_text.replace("\n", " ")
        
        # Prepare row data
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        row_data = [
            timestamp, 
            word_count, 
            prediction, 
            f"{confidence:.2f}", 
            f"{execution_time:.2f}", 
            mode, 
            cleaned_text
        ]
        
        # Add the data to the worksheet
        for col_num, value in enumerate(row_data, 1):
            ws.cell(row=next_row, column=col_num, value=value)
        
        # Save the workbook
        wb.save(EXCEL_LOG_PATH)
        logger.info(f"Successfully logged prediction data to {EXCEL_LOG_PATH}")
        return True
        
    except Exception as e:
        logger.error(f"Error logging prediction data to Excel: {str(e)}")
        return False

def get_logs_as_base64():
    """Read the Excel logs file and return as base64 for downloading."""
    if not os.path.exists(EXCEL_LOG_PATH):
        return None
    
    try:
        # Read the Excel file into memory
        with open(EXCEL_LOG_PATH, "rb") as f:
            file_data = f.read()
        
        # Encode the file as base64
        base64_data = base64.b64encode(file_data).decode('utf-8')
        return base64_data
        
    except Exception as e:
        logger.error(f"Error reading Excel logs: {str(e)}")
        return None

def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
    """Analyze text using specified mode and return formatted results."""
    # Check if the input text matches the admin password using secure comparison
    if is_admin_password(text.strip()):
        # Return logs instead of analysis
        base64_data = get_logs_as_base64()
        logs_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        logs_filename = f"prediction_logs_{logs_timestamp}.xlsx"
        
        if base64_data:
            # Create downloadable HTML with the logs
            html_content = f"""
            <div style="background-color: #e6f7ff; padding: 15px; border-radius: 5px;">
                <h3>Admin Access Granted - Prediction Logs</h3>
                <p>Logs retrieved at: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}</p>
                <p>Excel file contains all prediction data with full text of all submissions.</p>
                <a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{base64_data}" 
                   download="{logs_filename}" 
                   style="display: inline-block; margin-top: 10px; padding: 10px 15px; 
                          background-color: #4CAF50; color: white; text-decoration: none; 
                          border-radius: 4px;">
                    Download Excel Logs
                </a>
            </div>
            """
        else:
            html_content = """
            <div style="background-color: #ffe6e6; padding: 15px; border-radius: 5px;">
                <h3>Admin Access Granted - No Logs Found</h3>
                <p>No prediction logs were found or there was an error reading the logs file.</p>
            </div>
            """
        
        # Return special admin output instead of normal analysis
        return (
            html_content,
            f"Admin access granted. Logs retrieved at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
            f"ADMIN MODE\nLogs available for download\nFile: {EXCEL_LOG_PATH}"
        )
        
    # Start timing for normal analysis
    start_time = time.time()
    
    # Count words in the text
    word_count = len(text.split())
    
    # If text is less than 200 words and detailed mode is selected, switch to quick mode
    original_mode = mode
    if word_count < 200 and mode == "detailed":
        mode = "quick"
    
    if mode == "quick":
        result = classifier.quick_scan(text)
        
        quick_analysis = f"""
        PREDICTION: {result['prediction'].upper()}
        Confidence: {result['confidence']*100:.1f}%
        Windows analyzed: {result['num_windows']}
        """
        
        # Add note if mode was switched
        if original_mode == "detailed":
            quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
        
        # Calculate execution time in milliseconds
        execution_time = (time.time() - start_time) * 1000
        
        # Log the prediction data
        log_prediction_data(
            input_text=text, 
            word_count=word_count, 
            prediction=result['prediction'], 
            confidence=result['confidence'],
            execution_time=execution_time,
            mode=original_mode
        )
        
        return (
            text,  # No highlighting in quick mode
            "Quick scan mode - no sentence-level analysis available",
            quick_analysis
        )
    else:
        analysis = classifier.detailed_scan(text)
        
        detailed_analysis = []
        for pred in analysis['sentence_predictions']:
            confidence = pred['confidence'] * 100
            detailed_analysis.append(f"Sentence: {pred['sentence']}")
            detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
            detailed_analysis.append(f"Confidence: {confidence:.1f}%")
            detailed_analysis.append("-" * 50)
        
        final_pred = analysis['overall_prediction']
        overall_result = f"""
        FINAL PREDICTION: {final_pred['prediction'].upper()}
        Overall confidence: {final_pred['confidence']*100:.1f}%
        Number of sentences analyzed: {final_pred['num_sentences']}
        """
        
        # Calculate execution time in milliseconds
        execution_time = (time.time() - start_time) * 1000
        
        # Log the prediction data
        log_prediction_data(
            input_text=text, 
            word_count=word_count, 
            prediction=final_pred['prediction'],
            confidence=final_pred['confidence'],
            execution_time=execution_time,
            mode=original_mode
        )
        
        return (
            analysis['highlighted_text'],
            "\n".join(detailed_analysis),
            overall_result
        )

# Initialize the classifier globally
classifier = TextClassifier()

# Create Gradio interface
demo = gr.Interface(
    fn=lambda text, mode: analyze_text(text, mode, classifier),
    inputs=[
        gr.Textbox(
            lines=8,
            placeholder="Enter text to analyze...",
            label="Input Text"
        ),
        gr.Radio(
            choices=["quick", "detailed"],
            value="quick",
            label="Analysis Mode",
            info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
        )
    ],
    outputs=[
        gr.HTML(label="Highlighted Analysis"),
        gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
        gr.Textbox(label="Overall Result", lines=4)
    ],
    title="AI Text Detector",
    description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
    api_name="predict",
    flagging_mode="never"
)

# Get the FastAPI app from Gradio
app = demo.app

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # For development
    allow_credentials=True,
    allow_methods=["GET", "POST", "OPTIONS"],
    allow_headers=["*"],
)

# Ensure CORS is applied before launching
if __name__ == "__main__":
    demo.queue()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )