Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,14 @@ import numpy as np
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torch.nn.functional as F
|
5 |
import spacy
|
6 |
-
from typing import List, Dict
|
7 |
import logging
|
8 |
import os
|
9 |
import gradio as gr
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
|
11 |
# Configure logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
@@ -18,7 +21,8 @@ MODEL_NAME = "microsoft/deberta-v3-small"
|
|
18 |
WINDOW_SIZE = 17
|
19 |
WINDOW_OVERLAP = 2
|
20 |
CONFIDENCE_THRESHOLD = 0.65
|
21 |
-
BATCH_SIZE =
|
|
|
22 |
|
23 |
class TextWindowProcessor:
|
24 |
def __init__(self):
|
@@ -34,13 +38,15 @@ class TextWindowProcessor:
|
|
34 |
|
35 |
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
|
36 |
self.nlp.disable_pipes(*disabled_pipes)
|
|
|
|
|
|
|
37 |
|
38 |
def split_into_sentences(self, text: str) -> List[str]:
|
39 |
doc = self.nlp(text)
|
40 |
return [str(sent).strip() for sent in doc.sents]
|
41 |
|
42 |
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
|
43 |
-
"""Create overlapping windows for quick scan mode."""
|
44 |
if len(sentences) < window_size:
|
45 |
return [" ".join(sentences)]
|
46 |
|
@@ -51,21 +57,18 @@ class TextWindowProcessor:
|
|
51 |
windows.append(" ".join(window))
|
52 |
return windows
|
53 |
|
54 |
-
def create_centered_windows(self, sentences: List[str], window_size: int) ->
|
55 |
-
"""Create
|
56 |
windows = []
|
57 |
window_sentence_indices = []
|
58 |
|
59 |
for i in range(len(sentences)):
|
|
|
60 |
half_window = window_size // 2
|
61 |
start_idx = max(0, i - half_window)
|
62 |
end_idx = min(len(sentences), i + half_window + 1)
|
63 |
|
64 |
-
|
65 |
-
end_idx = min(len(sentences), window_size)
|
66 |
-
elif end_idx == len(sentences):
|
67 |
-
start_idx = max(0, len(sentences) - window_size)
|
68 |
-
|
69 |
window = sentences[start_idx:end_idx]
|
70 |
windows.append(" ".join(window))
|
71 |
window_sentence_indices.append(list(range(start_idx, end_idx)))
|
@@ -75,12 +78,17 @@ class TextWindowProcessor:
|
|
75 |
class TextClassifier:
|
76 |
def __init__(self):
|
77 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
78 |
self.model_name = MODEL_NAME
|
79 |
self.tokenizer = None
|
80 |
self.model = None
|
81 |
self.processor = TextWindowProcessor()
|
82 |
self.initialize_model()
|
83 |
-
|
84 |
def initialize_model(self):
|
85 |
"""Initialize the model and tokenizer."""
|
86 |
logger.info("Initializing model and tokenizer...")
|
@@ -90,15 +98,19 @@ class TextClassifier:
|
|
90 |
self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
|
91 |
self.model_name,
|
92 |
model_max_length=MAX_LENGTH,
|
93 |
-
use_fast=
|
94 |
-
from_slow=True
|
95 |
)
|
96 |
|
97 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
98 |
self.model_name,
|
99 |
-
num_labels=2
|
|
|
100 |
).to(self.device)
|
101 |
|
|
|
|
|
|
|
|
|
102 |
model_path = "model_20250209_184929_acc1.0000.pt"
|
103 |
if os.path.exists(model_path):
|
104 |
logger.info(f"Loading custom model from {model_path}")
|
@@ -123,7 +135,7 @@ class TextClassifier:
|
|
123 |
|
124 |
predictions = []
|
125 |
|
126 |
-
# Process windows in batches
|
127 |
for i in range(0, len(windows), BATCH_SIZE):
|
128 |
batch_windows = windows[i:i + BATCH_SIZE]
|
129 |
|
@@ -148,7 +160,11 @@ class TextClassifier:
|
|
148 |
}
|
149 |
predictions.append(prediction)
|
150 |
|
151 |
-
|
|
|
|
|
|
|
|
|
152 |
if not predictions:
|
153 |
return {
|
154 |
'prediction': 'unknown',
|
@@ -166,7 +182,7 @@ class TextClassifier:
|
|
166 |
}
|
167 |
|
168 |
def detailed_scan(self, text: str) -> Dict:
|
169 |
-
"""Perform a detailed scan with sentence-level analysis."""
|
170 |
if not text.strip():
|
171 |
return {
|
172 |
'sentence_predictions': [],
|
@@ -207,18 +223,51 @@ class TextClassifier:
|
|
207 |
outputs = self.model(**inputs)
|
208 |
probs = F.softmax(outputs.logits, dim=-1)
|
209 |
|
|
|
210 |
for window_idx, indices in enumerate(batch_indices):
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
sentence_predictions = []
|
218 |
for i in range(len(sentences)):
|
219 |
if sentence_appearances[i] > 0:
|
220 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
221 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
sentence_predictions.append({
|
223 |
'sentence': sentences[i],
|
224 |
'human_prob': human_prob,
|
@@ -282,7 +331,6 @@ class TextClassifier:
|
|
282 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
283 |
"""Analyze text using specified mode and return formatted results."""
|
284 |
if mode == "quick":
|
285 |
-
# Quick scan
|
286 |
result = classifier.quick_scan(text)
|
287 |
|
288 |
quick_analysis = f"""
|
@@ -297,10 +345,8 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
297 |
quick_analysis
|
298 |
)
|
299 |
else:
|
300 |
-
# Detailed scan
|
301 |
analysis = classifier.detailed_scan(text)
|
302 |
|
303 |
-
# Format sentence-by-sentence analysis
|
304 |
detailed_analysis = []
|
305 |
for pred in analysis['sentence_predictions']:
|
306 |
confidence = pred['confidence'] * 100
|
@@ -309,7 +355,6 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
309 |
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
|
310 |
detailed_analysis.append("-" * 50)
|
311 |
|
312 |
-
# Format overall prediction
|
313 |
final_pred = analysis['overall_prediction']
|
314 |
overall_result = f"""
|
315 |
FINAL PREDICTION: {final_pred['prediction'].upper()}
|
@@ -354,7 +399,7 @@ demo = gr.Interface(
|
|
354 |
["This is a sample text written by a human. It contains multiple sentences with different ideas. The analysis will show how each sentence is classified.", "detailed"],
|
355 |
],
|
356 |
api_name="predict",
|
357 |
-
flagging_mode="never"
|
358 |
)
|
359 |
|
360 |
app = demo.app
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torch.nn.functional as F
|
5 |
import spacy
|
6 |
+
from typing import List, Dict, Tuple
|
7 |
import logging
|
8 |
import os
|
9 |
import gradio as gr
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
+
from concurrent.futures import ThreadPoolExecutor
|
12 |
+
from functools import partial
|
13 |
+
|
14 |
# Configure logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
|
|
21 |
WINDOW_SIZE = 17
|
22 |
WINDOW_OVERLAP = 2
|
23 |
CONFIDENCE_THRESHOLD = 0.65
|
24 |
+
BATCH_SIZE = 8 # Reduced batch size for CPU
|
25 |
+
MAX_WORKERS = 4 # Number of worker threads for processing
|
26 |
|
27 |
class TextWindowProcessor:
|
28 |
def __init__(self):
|
|
|
38 |
|
39 |
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
|
40 |
self.nlp.disable_pipes(*disabled_pipes)
|
41 |
+
|
42 |
+
# Initialize thread pool for parallel processing
|
43 |
+
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
44 |
|
45 |
def split_into_sentences(self, text: str) -> List[str]:
|
46 |
doc = self.nlp(text)
|
47 |
return [str(sent).strip() for sent in doc.sents]
|
48 |
|
49 |
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
|
|
|
50 |
if len(sentences) < window_size:
|
51 |
return [" ".join(sentences)]
|
52 |
|
|
|
57 |
windows.append(" ".join(window))
|
58 |
return windows
|
59 |
|
60 |
+
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
|
61 |
+
"""Create windows with better boundary handling"""
|
62 |
windows = []
|
63 |
window_sentence_indices = []
|
64 |
|
65 |
for i in range(len(sentences)):
|
66 |
+
# Calculate window boundaries centered on current sentence
|
67 |
half_window = window_size // 2
|
68 |
start_idx = max(0, i - half_window)
|
69 |
end_idx = min(len(sentences), i + half_window + 1)
|
70 |
|
71 |
+
# Create the window
|
|
|
|
|
|
|
|
|
72 |
window = sentences[start_idx:end_idx]
|
73 |
windows.append(" ".join(window))
|
74 |
window_sentence_indices.append(list(range(start_idx, end_idx)))
|
|
|
78 |
class TextClassifier:
|
79 |
def __init__(self):
|
80 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
81 |
+
if self.device.type == 'cpu':
|
82 |
+
# Enable CPU optimizations
|
83 |
+
torch.set_num_threads(MAX_WORKERS)
|
84 |
+
torch.set_num_interop_threads(MAX_WORKERS)
|
85 |
+
|
86 |
self.model_name = MODEL_NAME
|
87 |
self.tokenizer = None
|
88 |
self.model = None
|
89 |
self.processor = TextWindowProcessor()
|
90 |
self.initialize_model()
|
91 |
+
|
92 |
def initialize_model(self):
|
93 |
"""Initialize the model and tokenizer."""
|
94 |
logger.info("Initializing model and tokenizer...")
|
|
|
98 |
self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
|
99 |
self.model_name,
|
100 |
model_max_length=MAX_LENGTH,
|
101 |
+
use_fast=True
|
|
|
102 |
)
|
103 |
|
104 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
105 |
self.model_name,
|
106 |
+
num_labels=2,
|
107 |
+
torchscript=True # Enable TorchScript optimization
|
108 |
).to(self.device)
|
109 |
|
110 |
+
if self.device.type == 'cpu':
|
111 |
+
self.model.eval() # Ensure model is in eval mode for optimization
|
112 |
+
self.model = torch.jit.optimize_for_inference(torch.jit.script(self.model))
|
113 |
+
|
114 |
model_path = "model_20250209_184929_acc1.0000.pt"
|
115 |
if os.path.exists(model_path):
|
116 |
logger.info(f"Loading custom model from {model_path}")
|
|
|
135 |
|
136 |
predictions = []
|
137 |
|
138 |
+
# Process windows in smaller batches for CPU efficiency
|
139 |
for i in range(0, len(windows), BATCH_SIZE):
|
140 |
batch_windows = windows[i:i + BATCH_SIZE]
|
141 |
|
|
|
160 |
}
|
161 |
predictions.append(prediction)
|
162 |
|
163 |
+
# Clean up GPU memory if available
|
164 |
+
del inputs, outputs, probs
|
165 |
+
if torch.cuda.is_available():
|
166 |
+
torch.cuda.empty_cache()
|
167 |
+
|
168 |
if not predictions:
|
169 |
return {
|
170 |
'prediction': 'unknown',
|
|
|
182 |
}
|
183 |
|
184 |
def detailed_scan(self, text: str) -> Dict:
|
185 |
+
"""Perform a detailed scan with improved sentence-level analysis."""
|
186 |
if not text.strip():
|
187 |
return {
|
188 |
'sentence_predictions': [],
|
|
|
223 |
outputs = self.model(**inputs)
|
224 |
probs = F.softmax(outputs.logits, dim=-1)
|
225 |
|
226 |
+
# Attribute predictions with weighted scoring
|
227 |
for window_idx, indices in enumerate(batch_indices):
|
228 |
+
center_idx = len(indices) // 2
|
229 |
+
center_weight = 0.7 # Higher weight for center sentence
|
230 |
+
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
231 |
+
|
232 |
+
for pos, sent_idx in enumerate(indices):
|
233 |
+
# Apply higher weight to center sentence
|
234 |
+
weight = center_weight if pos == center_idx else edge_weight
|
235 |
+
sentence_appearances[sent_idx] += weight
|
236 |
+
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
237 |
+
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
238 |
+
|
239 |
+
# Clean up memory
|
240 |
+
del inputs, outputs, probs
|
241 |
+
if torch.cuda.is_available():
|
242 |
+
torch.cuda.empty_cache()
|
243 |
+
|
244 |
+
# Calculate final predictions with boundary smoothing
|
245 |
sentence_predictions = []
|
246 |
for i in range(len(sentences)):
|
247 |
if sentence_appearances[i] > 0:
|
248 |
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
249 |
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
250 |
+
|
251 |
+
# Apply minimal smoothing at prediction boundaries
|
252 |
+
if i > 0 and i < len(sentences) - 1:
|
253 |
+
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
254 |
+
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
255 |
+
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
256 |
+
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
257 |
+
|
258 |
+
# Check if we're at a prediction boundary
|
259 |
+
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
260 |
+
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
261 |
+
next_pred = 'human' if next_human > next_ai else 'ai'
|
262 |
+
|
263 |
+
if current_pred != prev_pred or current_pred != next_pred:
|
264 |
+
# Small adjustment at boundaries
|
265 |
+
smooth_factor = 0.1
|
266 |
+
human_prob = (human_prob * (1 - smooth_factor) +
|
267 |
+
(prev_human + next_human) * smooth_factor / 2)
|
268 |
+
ai_prob = (ai_prob * (1 - smooth_factor) +
|
269 |
+
(prev_ai + next_ai) * smooth_factor / 2)
|
270 |
+
|
271 |
sentence_predictions.append({
|
272 |
'sentence': sentences[i],
|
273 |
'human_prob': human_prob,
|
|
|
331 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
332 |
"""Analyze text using specified mode and return formatted results."""
|
333 |
if mode == "quick":
|
|
|
334 |
result = classifier.quick_scan(text)
|
335 |
|
336 |
quick_analysis = f"""
|
|
|
345 |
quick_analysis
|
346 |
)
|
347 |
else:
|
|
|
348 |
analysis = classifier.detailed_scan(text)
|
349 |
|
|
|
350 |
detailed_analysis = []
|
351 |
for pred in analysis['sentence_predictions']:
|
352 |
confidence = pred['confidence'] * 100
|
|
|
355 |
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
|
356 |
detailed_analysis.append("-" * 50)
|
357 |
|
|
|
358 |
final_pred = analysis['overall_prediction']
|
359 |
overall_result = f"""
|
360 |
FINAL PREDICTION: {final_pred['prediction'].upper()}
|
|
|
399 |
["This is a sample text written by a human. It contains multiple sentences with different ideas. The analysis will show how each sentence is classified.", "detailed"],
|
400 |
],
|
401 |
api_name="predict",
|
402 |
+
flagging_mode="never"
|
403 |
)
|
404 |
|
405 |
app = demo.app
|