Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,32 @@
|
|
1 |
import torch
|
2 |
-
import
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
4 |
import spacy
|
5 |
from typing import List, Dict
|
6 |
import logging
|
7 |
import os
|
8 |
-
|
9 |
-
|
10 |
-
# Initialize colorama for colored terminal output
|
11 |
-
init()
|
12 |
|
13 |
# Configure logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
-
# Constants
|
18 |
MAX_LENGTH = 512
|
19 |
MODEL_NAME = "microsoft/deberta-v3-small"
|
20 |
WINDOW_SIZE = 17
|
21 |
WINDOW_OVERLAP = 2
|
22 |
CONFIDENCE_THRESHOLD = 0.65
|
23 |
-
BATCH_SIZE = 16
|
24 |
|
25 |
-
class
|
26 |
def __init__(self):
|
27 |
try:
|
28 |
self.nlp = spacy.load("en_core_web_sm")
|
29 |
except OSError:
|
30 |
logger.info("Downloading spacy model...")
|
31 |
-
|
32 |
self.nlp = spacy.load("en_core_web_sm")
|
33 |
|
34 |
if 'sentencizer' not in self.nlp.pipe_names:
|
@@ -42,6 +40,7 @@ class TextProcessor:
|
|
42 |
return [str(sent).strip() for sent in doc.sents]
|
43 |
|
44 |
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
|
|
|
45 |
if len(sentences) < window_size:
|
46 |
return [" ".join(sentences)]
|
47 |
|
@@ -53,17 +52,15 @@ class TextProcessor:
|
|
53 |
return windows
|
54 |
|
55 |
def create_centered_windows(self, sentences: List[str], window_size: int) -> tuple[List[str], List[List[int]]]:
|
56 |
-
"""Create
|
57 |
windows = []
|
58 |
window_sentence_indices = []
|
59 |
|
60 |
for i in range(len(sentences)):
|
61 |
-
# Calculate window boundaries centered on current sentence
|
62 |
half_window = window_size // 2
|
63 |
start_idx = max(0, i - half_window)
|
64 |
end_idx = min(len(sentences), i + half_window + 1)
|
65 |
|
66 |
-
# Adjust window if we're near the edges
|
67 |
if start_idx == 0:
|
68 |
end_idx = min(len(sentences), window_size)
|
69 |
elif end_idx == len(sentences):
|
@@ -75,45 +72,58 @@ class TextProcessor:
|
|
75 |
|
76 |
return windows, window_sentence_indices
|
77 |
|
78 |
-
class
|
79 |
def __init__(self):
|
80 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
81 |
-
self.
|
82 |
self.tokenizer = None
|
83 |
self.model = None
|
84 |
-
self.
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
90 |
-
|
91 |
num_labels=2
|
92 |
).to(self.device)
|
93 |
|
94 |
-
|
95 |
-
|
|
|
96 |
checkpoint = torch.load(model_path, map_location=self.device)
|
97 |
self.model.load_state_dict(checkpoint['model_state_dict'])
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
def quick_scan(self, text: str) -> Dict:
|
104 |
-
"""
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
109 |
|
110 |
-
self.model.eval()
|
111 |
sentences = self.processor.split_into_sentences(text)
|
112 |
windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)
|
113 |
|
114 |
predictions = []
|
115 |
-
|
116 |
-
# Process windows in batches
|
117 |
for i in range(0, len(windows), BATCH_SIZE):
|
118 |
batch_windows = windows[i:i + BATCH_SIZE]
|
119 |
|
@@ -138,21 +148,9 @@ class AITextDetector:
|
|
138 |
}
|
139 |
predictions.append(prediction)
|
140 |
|
141 |
-
|
142 |
-
del inputs, outputs, probs
|
143 |
-
if torch.cuda.is_available():
|
144 |
-
torch.cuda.empty_cache()
|
145 |
-
|
146 |
-
return self._aggregate_quick_predictions(predictions)
|
147 |
-
|
148 |
-
def _aggregate_quick_predictions(self, predictions: List[Dict]) -> Dict:
|
149 |
-
"""
|
150 |
-
Aggregate predictions matching the second original program.
|
151 |
-
"""
|
152 |
if not predictions:
|
153 |
return {
|
154 |
-
'human_prob': 0.0,
|
155 |
-
'ai_prob': 0.0,
|
156 |
'prediction': 'unknown',
|
157 |
'confidence': 0.0,
|
158 |
'num_windows': 0
|
@@ -162,22 +160,25 @@ class AITextDetector:
|
|
162 |
avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)
|
163 |
|
164 |
return {
|
165 |
-
'human_prob': avg_human_prob,
|
166 |
-
'ai_prob': avg_ai_prob,
|
167 |
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
|
168 |
'confidence': max(avg_human_prob, avg_ai_prob),
|
169 |
'num_windows': len(predictions)
|
170 |
}
|
171 |
|
172 |
def detailed_scan(self, text: str) -> Dict:
|
173 |
-
"""
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
self.model.eval()
|
181 |
sentences = self.processor.split_into_sentences(text)
|
182 |
if not sentences:
|
183 |
return {}
|
@@ -189,7 +190,7 @@ class AITextDetector:
|
|
189 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
190 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
191 |
|
192 |
-
# Process windows in batches
|
193 |
for i in range(0, len(windows), BATCH_SIZE):
|
194 |
batch_windows = windows[i:i + BATCH_SIZE]
|
195 |
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
@@ -206,18 +207,12 @@ class AITextDetector:
|
|
206 |
outputs = self.model(**inputs)
|
207 |
probs = F.softmax(outputs.logits, dim=-1)
|
208 |
|
209 |
-
# Attribute window predictions back to individual sentences
|
210 |
for window_idx, indices in enumerate(batch_indices):
|
211 |
for sent_idx in indices:
|
212 |
sentence_appearances[sent_idx] += 1
|
213 |
sentence_scores[sent_idx]['human_prob'] += probs[window_idx][1].item()
|
214 |
sentence_scores[sent_idx]['ai_prob'] += probs[window_idx][0].item()
|
215 |
|
216 |
-
# Clear memory
|
217 |
-
del inputs, outputs, probs
|
218 |
-
if torch.cuda.is_available():
|
219 |
-
torch.cuda.empty_cache()
|
220 |
-
|
221 |
# Average the scores and create final sentence-level predictions
|
222 |
sentence_predictions = []
|
223 |
for i in range(len(sentences)):
|
@@ -232,46 +227,40 @@ class AITextDetector:
|
|
232 |
'confidence': max(human_prob, ai_prob)
|
233 |
})
|
234 |
|
235 |
-
# Generate highlighted text output
|
236 |
-
highlighted_text = self._generate_highlighted_text(sentence_predictions)
|
237 |
-
|
238 |
return {
|
239 |
'sentence_predictions': sentence_predictions,
|
240 |
-
'highlighted_text':
|
241 |
'full_text': text,
|
242 |
-
'overall_prediction': self.
|
243 |
}
|
244 |
|
245 |
-
def
|
246 |
-
"""
|
247 |
-
|
248 |
-
|
249 |
for pred in sentence_predictions:
|
250 |
sentence = pred['sentence']
|
251 |
confidence = pred['confidence']
|
252 |
-
|
253 |
if confidence >= CONFIDENCE_THRESHOLD:
|
254 |
if pred['prediction'] == 'human':
|
255 |
-
|
256 |
else:
|
257 |
-
|
258 |
else:
|
259 |
-
# Low confidence predictions get a lighter highlight
|
260 |
if pred['prediction'] == 'human':
|
261 |
-
|
262 |
else:
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
266 |
|
267 |
-
def
|
268 |
-
"""
|
269 |
-
Aggregate predictions matching the first original program.
|
270 |
-
"""
|
271 |
if not predictions:
|
272 |
return {
|
273 |
-
'human_prob': 0.0,
|
274 |
-
'ai_prob': 0.0,
|
275 |
'prediction': 'unknown',
|
276 |
'confidence': 0.0,
|
277 |
'num_sentences': 0
|
@@ -285,73 +274,88 @@ class AITextDetector:
|
|
285 |
avg_ai_prob = total_ai_prob / num_sentences
|
286 |
|
287 |
return {
|
288 |
-
'human_prob': avg_human_prob,
|
289 |
-
'ai_prob': avg_ai_prob,
|
290 |
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
|
291 |
'confidence': max(avg_human_prob, avg_ai_prob),
|
292 |
'num_sentences': num_sentences
|
293 |
}
|
294 |
|
295 |
-
def
|
296 |
-
|
297 |
-
|
|
|
|
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
if __name__ == "__main__":
|
357 |
-
|
|
|
1 |
import torch
|
2 |
+
import numpy as np
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch.nn.functional as F
|
5 |
import spacy
|
6 |
from typing import List, Dict
|
7 |
import logging
|
8 |
import os
|
9 |
+
import gradio as gr
|
|
|
|
|
|
|
10 |
|
11 |
# Configure logging
|
12 |
logging.basicConfig(level=logging.INFO)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
+
# Constants
|
16 |
MAX_LENGTH = 512
|
17 |
MODEL_NAME = "microsoft/deberta-v3-small"
|
18 |
WINDOW_SIZE = 17
|
19 |
WINDOW_OVERLAP = 2
|
20 |
CONFIDENCE_THRESHOLD = 0.65
|
21 |
+
BATCH_SIZE = 16
|
22 |
|
23 |
+
class TextWindowProcessor:
|
24 |
def __init__(self):
|
25 |
try:
|
26 |
self.nlp = spacy.load("en_core_web_sm")
|
27 |
except OSError:
|
28 |
logger.info("Downloading spacy model...")
|
29 |
+
spacy.cli.download("en_core_web_sm")
|
30 |
self.nlp = spacy.load("en_core_web_sm")
|
31 |
|
32 |
if 'sentencizer' not in self.nlp.pipe_names:
|
|
|
40 |
return [str(sent).strip() for sent in doc.sents]
|
41 |
|
42 |
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
|
43 |
+
"""Create overlapping windows for quick scan mode."""
|
44 |
if len(sentences) < window_size:
|
45 |
return [" ".join(sentences)]
|
46 |
|
|
|
52 |
return windows
|
53 |
|
54 |
def create_centered_windows(self, sentences: List[str], window_size: int) -> tuple[List[str], List[List[int]]]:
|
55 |
+
"""Create centered windows for detailed analysis mode."""
|
56 |
windows = []
|
57 |
window_sentence_indices = []
|
58 |
|
59 |
for i in range(len(sentences)):
|
|
|
60 |
half_window = window_size // 2
|
61 |
start_idx = max(0, i - half_window)
|
62 |
end_idx = min(len(sentences), i + half_window + 1)
|
63 |
|
|
|
64 |
if start_idx == 0:
|
65 |
end_idx = min(len(sentences), window_size)
|
66 |
elif end_idx == len(sentences):
|
|
|
72 |
|
73 |
return windows, window_sentence_indices
|
74 |
|
75 |
+
class TextClassifier:
|
76 |
def __init__(self):
|
77 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
78 |
+
self.model_name = MODEL_NAME
|
79 |
self.tokenizer = None
|
80 |
self.model = None
|
81 |
+
self.processor = TextWindowProcessor()
|
82 |
+
self.initialize_model()
|
83 |
+
|
84 |
+
def initialize_model(self):
|
85 |
+
"""Initialize the model and tokenizer."""
|
86 |
+
logger.info("Initializing model and tokenizer...")
|
87 |
+
|
88 |
+
from transformers import DebertaV2TokenizerFast
|
89 |
+
|
90 |
+
self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
|
91 |
+
self.model_name,
|
92 |
+
model_max_length=MAX_LENGTH,
|
93 |
+
use_fast=False,
|
94 |
+
from_slow=True
|
95 |
+
)
|
96 |
+
|
97 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
98 |
+
self.model_name,
|
99 |
num_labels=2
|
100 |
).to(self.device)
|
101 |
|
102 |
+
model_path = "model.pt"
|
103 |
+
if os.path.exists(model_path):
|
104 |
+
logger.info(f"Loading custom model from {model_path}")
|
105 |
checkpoint = torch.load(model_path, map_location=self.device)
|
106 |
self.model.load_state_dict(checkpoint['model_state_dict'])
|
107 |
+
else:
|
108 |
+
logger.warning("Custom model file not found. Using base model.")
|
109 |
+
|
110 |
+
self.model.eval()
|
111 |
|
112 |
def quick_scan(self, text: str) -> Dict:
|
113 |
+
"""Perform a quick scan using simple window analysis."""
|
114 |
+
if not text.strip():
|
115 |
+
return {
|
116 |
+
'prediction': 'unknown',
|
117 |
+
'confidence': 0.0,
|
118 |
+
'num_windows': 0
|
119 |
+
}
|
120 |
|
|
|
121 |
sentences = self.processor.split_into_sentences(text)
|
122 |
windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)
|
123 |
|
124 |
predictions = []
|
125 |
+
|
126 |
+
# Process windows in batches
|
127 |
for i in range(0, len(windows), BATCH_SIZE):
|
128 |
batch_windows = windows[i:i + BATCH_SIZE]
|
129 |
|
|
|
148 |
}
|
149 |
predictions.append(prediction)
|
150 |
|
151 |
+
# Calculate aggregate prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
if not predictions:
|
153 |
return {
|
|
|
|
|
154 |
'prediction': 'unknown',
|
155 |
'confidence': 0.0,
|
156 |
'num_windows': 0
|
|
|
160 |
avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)
|
161 |
|
162 |
return {
|
|
|
|
|
163 |
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
|
164 |
'confidence': max(avg_human_prob, avg_ai_prob),
|
165 |
'num_windows': len(predictions)
|
166 |
}
|
167 |
|
168 |
def detailed_scan(self, text: str) -> Dict:
|
169 |
+
"""Perform a detailed scan with sentence-level analysis."""
|
170 |
+
if not text.strip():
|
171 |
+
return {
|
172 |
+
'sentence_predictions': [],
|
173 |
+
'highlighted_text': '',
|
174 |
+
'full_text': '',
|
175 |
+
'overall_prediction': {
|
176 |
+
'prediction': 'unknown',
|
177 |
+
'confidence': 0.0,
|
178 |
+
'num_sentences': 0
|
179 |
+
}
|
180 |
+
}
|
181 |
|
|
|
182 |
sentences = self.processor.split_into_sentences(text)
|
183 |
if not sentences:
|
184 |
return {}
|
|
|
190 |
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
191 |
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
192 |
|
193 |
+
# Process windows in batches
|
194 |
for i in range(0, len(windows), BATCH_SIZE):
|
195 |
batch_windows = windows[i:i + BATCH_SIZE]
|
196 |
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
|
|
|
207 |
outputs = self.model(**inputs)
|
208 |
probs = F.softmax(outputs.logits, dim=-1)
|
209 |
|
|
|
210 |
for window_idx, indices in enumerate(batch_indices):
|
211 |
for sent_idx in indices:
|
212 |
sentence_appearances[sent_idx] += 1
|
213 |
sentence_scores[sent_idx]['human_prob'] += probs[window_idx][1].item()
|
214 |
sentence_scores[sent_idx]['ai_prob'] += probs[window_idx][0].item()
|
215 |
|
|
|
|
|
|
|
|
|
|
|
216 |
# Average the scores and create final sentence-level predictions
|
217 |
sentence_predictions = []
|
218 |
for i in range(len(sentences)):
|
|
|
227 |
'confidence': max(human_prob, ai_prob)
|
228 |
})
|
229 |
|
|
|
|
|
|
|
230 |
return {
|
231 |
'sentence_predictions': sentence_predictions,
|
232 |
+
'highlighted_text': self.format_predictions_html(sentence_predictions),
|
233 |
'full_text': text,
|
234 |
+
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
235 |
}
|
236 |
|
237 |
+
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
238 |
+
"""Format predictions as HTML with color-coding."""
|
239 |
+
html_parts = []
|
240 |
+
|
241 |
for pred in sentence_predictions:
|
242 |
sentence = pred['sentence']
|
243 |
confidence = pred['confidence']
|
244 |
+
|
245 |
if confidence >= CONFIDENCE_THRESHOLD:
|
246 |
if pred['prediction'] == 'human':
|
247 |
+
color = "#90EE90" # Light green
|
248 |
else:
|
249 |
+
color = "#FFB6C6" # Light red
|
250 |
else:
|
|
|
251 |
if pred['prediction'] == 'human':
|
252 |
+
color = "#E8F5E9" # Very light green
|
253 |
else:
|
254 |
+
color = "#FFEBEE" # Very light red
|
255 |
+
|
256 |
+
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
|
257 |
+
|
258 |
+
return " ".join(html_parts)
|
259 |
|
260 |
+
def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
|
261 |
+
"""Aggregate predictions from multiple sentences into a single prediction."""
|
|
|
|
|
262 |
if not predictions:
|
263 |
return {
|
|
|
|
|
264 |
'prediction': 'unknown',
|
265 |
'confidence': 0.0,
|
266 |
'num_sentences': 0
|
|
|
274 |
avg_ai_prob = total_ai_prob / num_sentences
|
275 |
|
276 |
return {
|
|
|
|
|
277 |
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
|
278 |
'confidence': max(avg_human_prob, avg_ai_prob),
|
279 |
'num_sentences': num_sentences
|
280 |
}
|
281 |
|
282 |
+
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
283 |
+
"""Analyze text using specified mode and return formatted results."""
|
284 |
+
if mode == "quick":
|
285 |
+
# Quick scan
|
286 |
+
result = classifier.quick_scan(text)
|
287 |
|
288 |
+
quick_analysis = f"""
|
289 |
+
PREDICTION: {result['prediction'].upper()}
|
290 |
+
Confidence: {result['confidence']*100:.1f}%
|
291 |
+
Windows analyzed: {result['num_windows']}
|
292 |
+
"""
|
293 |
+
|
294 |
+
return (
|
295 |
+
text, # No highlighting in quick mode
|
296 |
+
"Quick scan mode - no sentence-level analysis available",
|
297 |
+
quick_analysis
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
# Detailed scan
|
301 |
+
analysis = classifier.detailed_scan(text)
|
302 |
+
|
303 |
+
# Format sentence-by-sentence analysis
|
304 |
+
detailed_analysis = []
|
305 |
+
for pred in analysis['sentence_predictions']:
|
306 |
+
confidence = pred['confidence'] * 100
|
307 |
+
detailed_analysis.append(f"Sentence: {pred['sentence']}")
|
308 |
+
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
|
309 |
+
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
|
310 |
+
detailed_analysis.append("-" * 50)
|
311 |
+
|
312 |
+
# Format overall prediction
|
313 |
+
final_pred = analysis['overall_prediction']
|
314 |
+
overall_result = f"""
|
315 |
+
FINAL PREDICTION: {final_pred['prediction'].upper()}
|
316 |
+
Overall confidence: {final_pred['confidence']*100:.1f}%
|
317 |
+
Number of sentences analyzed: {final_pred['num_sentences']}
|
318 |
+
"""
|
319 |
+
|
320 |
+
return (
|
321 |
+
analysis['highlighted_text'],
|
322 |
+
"\n".join(detailed_analysis),
|
323 |
+
overall_result
|
324 |
+
)
|
325 |
+
|
326 |
+
# Initialize the classifier globally
|
327 |
+
classifier = TextClassifier()
|
328 |
+
|
329 |
+
# Create Gradio interface
|
330 |
+
demo = gr.Interface(
|
331 |
+
fn=lambda text, mode: analyze_text(text, mode, classifier),
|
332 |
+
inputs=[
|
333 |
+
gr.Textbox(
|
334 |
+
lines=8,
|
335 |
+
placeholder="Enter text to analyze...",
|
336 |
+
label="Input Text"
|
337 |
+
),
|
338 |
+
gr.Radio(
|
339 |
+
choices=["quick", "detailed"],
|
340 |
+
value="quick",
|
341 |
+
label="Analysis Mode",
|
342 |
+
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
|
343 |
+
)
|
344 |
+
],
|
345 |
+
outputs=[
|
346 |
+
gr.HTML(label="Highlighted Analysis"),
|
347 |
+
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
|
348 |
+
gr.Textbox(label="Overall Result", lines=4)
|
349 |
+
],
|
350 |
+
title="AI Text Detector",
|
351 |
+
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis.",
|
352 |
+
examples=[
|
353 |
+
["This is a sample text written by a human. It contains multiple sentences with different ideas. The analysis will show how each sentence is classified.", "quick"],
|
354 |
+
["This is a sample text written by a human. It contains multiple sentences with different ideas. The analysis will show how each sentence is classified.", "detailed"],
|
355 |
+
],
|
356 |
+
allow_flagging="never"
|
357 |
+
)
|
358 |
+
|
359 |
+
# Launch the interface
|
360 |
if __name__ == "__main__":
|
361 |
+
demo.launch(share=True)
|