ApsidalSolid4 commited on
Commit
5f61427
·
verified ·
1 Parent(s): 937af4d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -414
app.py CHANGED
@@ -18,10 +18,6 @@ from openpyxl.utils import get_column_letter
18
  from io import BytesIO
19
  import base64
20
  import hashlib
21
- import requests
22
- import tempfile
23
- from pathlib import Path
24
- import mimetypes
25
 
26
  # Configure logging
27
  logging.basicConfig(level=logging.INFO)
@@ -36,17 +32,6 @@ CONFIDENCE_THRESHOLD = 0.65
36
  BATCH_SIZE = 8 # Reduced batch size for CPU
37
  MAX_WORKERS = 4 # Number of worker threads for processing
38
 
39
- # IMPORTANT: Set PyTorch thread configuration at the module level
40
- # before any parallel work starts
41
- if not torch.cuda.is_available():
42
- # Set thread configuration only once at the beginning
43
- torch.set_num_threads(MAX_WORKERS)
44
- try:
45
- # Only set interop threads if it hasn't been set already
46
- torch.set_num_interop_threads(MAX_WORKERS)
47
- except RuntimeError as e:
48
- logger.warning(f"Could not set interop threads: {str(e)}")
49
-
50
  # Get password hash from environment variable (more secure)
51
  ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
52
 
@@ -56,168 +41,10 @@ if not ADMIN_PASSWORD_HASH:
56
  # Excel file path for logs
57
  EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
58
 
59
- # OCR API settings
60
- OCR_API_KEY = "9e11346f1288957" # Now using the complete key
61
- OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
62
- OCR_MAX_PDF_PAGES = 3
63
- OCR_MAX_FILE_SIZE_MB = 1
64
-
65
- # Configure logging for OCR module
66
- ocr_logger = logging.getLogger("ocr_module")
67
- ocr_logger.setLevel(logging.INFO)
68
-
69
- class OCRProcessor:
70
- """
71
- Handles OCR processing of image and document files using OCR.space API
72
- """
73
- def __init__(self, api_key: str = OCR_API_KEY):
74
- self.api_key = api_key
75
- self.endpoint = OCR_API_ENDPOINT
76
-
77
- def process_file(self, file_path: str) -> Dict:
78
- """
79
- Process a file using OCR.space API
80
- """
81
- start_time = time.time()
82
- ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}")
83
-
84
- # Validate file size
85
- file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
86
- if file_size_mb > OCR_MAX_FILE_SIZE_MB:
87
- ocr_logger.warning(f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB")
88
- return {
89
- "success": False,
90
- "error": f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB",
91
- "text": ""
92
- }
93
-
94
- # Determine file type and handle accordingly
95
- file_type = self._get_file_type(file_path)
96
- ocr_logger.info(f"Detected file type: {file_type}")
97
-
98
- # Set up API parameters
99
- payload = {
100
- 'isOverlayRequired': 'false',
101
- 'language': 'eng',
102
- 'OCREngine': '2', # Use more accurate engine
103
- 'scale': 'true',
104
- 'detectOrientation': 'true',
105
- }
106
-
107
- # For PDF files, check page count limitations
108
- if file_type == 'application/pdf':
109
- ocr_logger.info("PDF document detected, enforcing page limit")
110
- payload['filetype'] = 'PDF'
111
-
112
- # Prepare file for OCR API - using file data as bytes to avoid file handle issues
113
- with open(file_path, 'rb') as f:
114
- file_data = f.read()
115
-
116
- files = {
117
- 'file': (os.path.basename(file_path), file_data, file_type)
118
- }
119
-
120
- headers = {
121
- 'apikey': self.api_key,
122
- }
123
-
124
- # Make the OCR API request
125
- try:
126
- ocr_logger.info(f"Sending request to OCR.space API for file: {os.path.basename(file_path)}")
127
- response = requests.post(
128
- self.endpoint,
129
- files=files,
130
- data=payload,
131
- headers=headers,
132
- timeout=60 # Add 60 second timeout
133
- )
134
-
135
- ocr_logger.info(f"OCR API status code: {response.status_code}")
136
-
137
- # Log response text for debugging (first 200 chars)
138
- response_preview = response.text[:200] if hasattr(response, 'text') else "No text content"
139
- ocr_logger.info(f"OCR API response preview: {response_preview}...")
140
-
141
- try:
142
- response.raise_for_status()
143
- except Exception as e:
144
- ocr_logger.error(f"HTTP Error: {str(e)}")
145
- return {
146
- "success": False,
147
- "error": f"OCR API HTTP Error: {str(e)}",
148
- "text": ""
149
- }
150
-
151
- try:
152
- result = response.json()
153
- ocr_logger.info(f"OCR API exit code: {result.get('OCRExitCode')}")
154
-
155
- # Process the OCR results
156
- if result.get('OCRExitCode') in [1, 2]: # Success or partial success
157
- extracted_text = self._extract_text_from_result(result)
158
- processing_time = time.time() - start_time
159
- ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds")
160
- ocr_logger.info(f"Extracted text word count: {len(extracted_text.split())}")
161
-
162
- return {
163
- "success": True,
164
- "text": extracted_text,
165
- "word_count": len(extracted_text.split()),
166
- "processing_time_ms": int(processing_time * 1000)
167
- }
168
- else:
169
- error_msg = result.get('ErrorMessage', 'OCR processing failed')
170
- ocr_logger.error(f"OCR API error: {error_msg}")
171
- return {
172
- "success": False,
173
- "error": error_msg,
174
- "text": ""
175
- }
176
- except ValueError as e:
177
- ocr_logger.error(f"Invalid JSON response: {str(e)}")
178
- return {
179
- "success": False,
180
- "error": f"Invalid response from OCR API: {str(e)}",
181
- "text": ""
182
- }
183
-
184
- except requests.exceptions.RequestException as e:
185
- ocr_logger.error(f"OCR API request failed: {str(e)}")
186
- return {
187
- "success": False,
188
- "error": f"OCR API request failed: {str(e)}",
189
- "text": ""
190
- }
191
- finally:
192
- # No need to close file handle as we're using bytes directly
193
- pass
194
-
195
- def _extract_text_from_result(self, result: Dict) -> str:
196
- """
197
- Extract all text from the OCR API result
198
- """
199
- extracted_text = ""
200
-
201
- if 'ParsedResults' in result and result['ParsedResults']:
202
- for parsed_result in result['ParsedResults']:
203
- if parsed_result.get('ParsedText'):
204
- extracted_text += parsed_result['ParsedText']
205
-
206
- return extracted_text
207
-
208
- def _get_file_type(self, file_path: str) -> str:
209
- """
210
- Determine MIME type of a file
211
- """
212
- mime_type, _ = mimetypes.guess_type(file_path)
213
- if mime_type is None:
214
- # Default to binary if MIME type can't be determined
215
- return 'application/octet-stream'
216
- return mime_type
217
-
218
  def is_admin_password(input_text: str) -> bool:
219
  """
220
  Check if the input text matches the admin password using secure hash comparison.
 
221
  """
222
  # Hash the input text
223
  input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
@@ -278,6 +105,11 @@ class TextWindowProcessor:
278
 
279
  class TextClassifier:
280
  def __init__(self):
 
 
 
 
 
281
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
282
  self.model_name = MODEL_NAME
283
  self.tokenizer = None
@@ -421,7 +253,7 @@ class TextClassifier:
421
  for window_idx, indices in enumerate(batch_indices):
422
  center_idx = len(indices) // 2
423
  center_weight = 0.7 # Higher weight for center sentence
424
- edge_weight = 0.3 / (len(indices) - 1) if len(indices) > 1 else 0 # Distribute remaining weight
425
 
426
  for pos, sent_idx in enumerate(indices):
427
  # Apply higher weight to center sentence
@@ -444,10 +276,10 @@ class TextClassifier:
444
 
445
  # Apply minimal smoothing at prediction boundaries
446
  if i > 0 and i < len(sentences) - 1:
447
- prev_human = sentence_scores[i-1]['human_prob'] / max(sentence_appearances[i-1], 1e-10)
448
- prev_ai = sentence_scores[i-1]['ai_prob'] / max(sentence_appearances[i-1], 1e-10)
449
- next_human = sentence_scores[i+1]['human_prob'] / max(sentence_appearances[i+1], 1e-10)
450
- next_ai = sentence_scores[i+1]['ai_prob'] / max(sentence_appearances[i+1], 1e-10)
451
 
452
  # Check if we're at a prediction boundary
453
  current_pred = 'human' if human_prob > ai_prob else 'ai'
@@ -522,105 +354,6 @@ class TextClassifier:
522
  'num_sentences': num_sentences
523
  }
524
 
525
- # Function to handle file upload, OCR processing, and text analysis
526
- def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
527
- """
528
- Handle file upload, OCR processing, and text analysis
529
- """
530
- # Use the global classifier
531
- global classifier
532
- classifier_to_use = classifier
533
-
534
- if file_obj is None:
535
- return (
536
- "No file uploaded",
537
- "Please upload a file to analyze",
538
- "No file uploaded for analysis"
539
- )
540
-
541
- # Log the type of file object received
542
- logger.info(f"Received file upload of type: {type(file_obj)}")
543
-
544
- try:
545
- # Create a temporary file with an appropriate extension based on content
546
- if isinstance(file_obj, bytes):
547
- content_start = file_obj[:20] # Look at the first few bytes
548
-
549
- # Default to .bin extension
550
- file_ext = ".bin"
551
-
552
- # Try to detect PDF files
553
- if content_start.startswith(b'%PDF'):
554
- file_ext = ".pdf"
555
- # For images, detect by common magic numbers
556
- elif content_start.startswith(b'\xff\xd8'): # JPEG
557
- file_ext = ".jpg"
558
- elif content_start.startswith(b'\x89PNG'): # PNG
559
- file_ext = ".png"
560
- elif content_start.startswith(b'GIF'): # GIF
561
- file_ext = ".gif"
562
-
563
- # Create a temporary file with the detected extension
564
- with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
565
- temp_file_path = temp_file.name
566
- # Write uploaded file data to the temporary file
567
- temp_file.write(file_obj)
568
- logger.info(f"Saved uploaded file to {temp_file_path}")
569
- else:
570
- # Handle other file object types (should not typically happen with Gradio)
571
- logger.error(f"Unexpected file object type: {type(file_obj)}")
572
- return (
573
- "File upload error",
574
- "Unexpected file format",
575
- "Unable to process this file format"
576
- )
577
-
578
- # Process the file with OCR
579
- ocr_processor = OCRProcessor()
580
- logger.info(f"Starting OCR processing for file: {temp_file_path}")
581
- ocr_result = ocr_processor.process_file(temp_file_path)
582
-
583
- if not ocr_result["success"]:
584
- logger.error(f"OCR processing failed: {ocr_result['error']}")
585
- return (
586
- "OCR Processing Error",
587
- ocr_result["error"],
588
- "Failed to extract text from the uploaded file"
589
- )
590
-
591
- # Get the extracted text
592
- extracted_text = ocr_result["text"]
593
- logger.info(f"OCR processing complete. Extracted {len(extracted_text.split())} words")
594
-
595
- # If no text was extracted
596
- if not extracted_text.strip():
597
- logger.warning("No text extracted from file")
598
- return (
599
- "No text extracted",
600
- "The OCR process did not extract any text from the uploaded file.",
601
- "No text was found in the uploaded file"
602
- )
603
-
604
- # Call the original text analysis function with the extracted text
605
- logger.info("Proceeding with text analysis")
606
- return analyze_text(extracted_text, mode, classifier_to_use)
607
-
608
- except Exception as e:
609
- logger.error(f"Error in file upload processing: {str(e)}")
610
- return (
611
- "Error Processing File",
612
- f"An error occurred while processing the file: {str(e)}",
613
- "File processing error. Please try again or try a different file."
614
- )
615
- finally:
616
- # Clean up the temporary file
617
- if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
618
- try:
619
- os.remove(temp_file_path)
620
- logger.info(f"Removed temporary file: {temp_file_path}")
621
- except Exception as e:
622
- logger.warning(f"Could not remove temporary file: {str(e)}")
623
-
624
  def initialize_excel_log():
625
  """Initialize the Excel log file if it doesn't exist."""
626
  if not os.path.exists(EXCEL_LOG_PATH):
@@ -648,7 +381,6 @@ def initialize_excel_log():
648
  wb.save(EXCEL_LOG_PATH)
649
  logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
650
 
651
-
652
  def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
653
  """Log prediction data to an Excel file in the /tmp directory."""
654
  # Initialize the Excel file if it doesn't exist
@@ -691,7 +423,6 @@ def log_prediction_data(input_text, word_count, prediction, confidence, executio
691
  logger.error(f"Error logging prediction data to Excel: {str(e)}")
692
  return False
693
 
694
-
695
  def get_logs_as_base64():
696
  """Read the Excel logs file and return as base64 for downloading."""
697
  if not os.path.exists(EXCEL_LOG_PATH):
@@ -710,7 +441,6 @@ def get_logs_as_base64():
710
  logger.error(f"Error reading Excel logs: {str(e)}")
711
  return None
712
 
713
-
714
  def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
715
  """Analyze text using specified mode and return formatted results."""
716
  # Check if the input text matches the admin password using secure comparison
@@ -833,143 +563,51 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
833
  # Initialize the classifier globally
834
  classifier = TextClassifier()
835
 
836
- # Create Gradio interface with a file upload button matched to the radio buttons
837
- def create_interface():
838
- # Custom CSS for the interface
839
- css = """
840
- #analyze-btn {
841
- background-color: #FF8C00 !important;
842
- border-color: #FF8C00 !important;
843
- color: white !important;
844
- }
845
-
846
- /* Style the file upload to be more compact */
847
- .file-upload {
848
- width: 150px !important;
849
- margin-left: 15px !important;
850
- }
851
-
852
- /* Hide file preview elements */
853
- .file-upload .file-preview,
854
- .file-upload p:not(.file-upload p:first-child),
855
- .file-upload svg,
856
- .file-upload [data-testid="chunkFileDropArea"],
857
- .file-upload .file-drop {
858
- display: none !important;
859
- }
860
-
861
- /* Style the upload button */
862
- .file-upload button {
863
- height: 40px !important;
864
- width: 100% !important;
865
- background-color: #f0f0f0 !important;
866
- border: 1px solid #d9d9d9 !important;
867
- border-radius: 4px !important;
868
- color: #333 !important;
869
- font-size: 14px !important;
870
- display: flex !important;
871
- align-items: center !important;
872
- justify-content: center !important;
873
- margin: 0 !important;
874
- padding: 0 !important;
875
- }
876
-
877
- /* Hide the "or" text */
878
- .file-upload .or {
879
- display: none !important;
880
- }
881
-
882
- /* Make the container compact */
883
- .file-upload [data-testid="block"] {
884
- margin: 0 !important;
885
- padding: 0 !important;
886
- }
887
- """
888
-
889
- with gr.Blocks(css=css, title="AI Text Detector") as demo:
890
- gr.Markdown("# AI Text Detector")
891
- gr.Markdown("Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.")
892
-
893
- with gr.Row():
894
- # Left column - Input
895
- with gr.Column(scale=1):
896
- # Text input area
897
- text_input = gr.Textbox(
898
- lines=8,
899
- placeholder="Enter text to analyze...",
900
- label="Input Text"
901
- )
902
-
903
- # Analysis Mode section
904
- gr.Markdown("Analysis Mode")
905
- gr.Markdown("Quick mode for faster analysis. Detailed mode for sentence-level analysis.")
906
-
907
- # Simple row layout for radio buttons and file upload
908
- with gr.Row():
909
- mode_selection = gr.Radio(
910
- choices=["quick", "detailed"],
911
- value="quick",
912
- label="",
913
- show_label=False
914
- )
915
-
916
- # Revert to File component but with better styling
917
- file_upload = gr.File(
918
- file_types=["image", "pdf", "doc", "docx"],
919
- elem_classes=["file-upload"]
920
- )
921
-
922
- # Analyze button
923
- analyze_btn = gr.Button("Analyze Text", elem_id="analyze-btn")
924
-
925
- # Right column - Results
926
- with gr.Column(scale=1):
927
- output_html = gr.HTML(label="Highlighted Analysis")
928
- output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
929
- output_result = gr.Textbox(label="Overall Result", lines=4)
930
-
931
- # Connect components
932
- analyze_btn.click(
933
- fn=lambda text, mode: analyze_text(text, mode, classifier),
934
- inputs=[text_input, mode_selection],
935
- outputs=[output_html, output_sentences, output_result]
936
  )
937
-
938
- # Use the file upload handler without passing classifier (will use global)
939
- file_upload.change(
940
- fn=handle_file_upload_and_analyze,
941
- inputs=[file_upload, mode_selection],
942
- outputs=[output_html, output_sentences, output_result]
943
- )
944
-
945
- return demo
946
-
947
- # Setup the app with CORS middleware
948
- def setup_app():
949
- demo = create_interface()
950
-
951
- # Get the FastAPI app from Gradio
952
- app = demo.app
953
-
954
- # Add CORS middleware
955
- app.add_middleware(
956
- CORSMiddleware,
957
- allow_origins=["*"], # For development
958
- allow_credentials=True,
959
- allow_methods=["GET", "POST", "OPTIONS"],
960
- allow_headers=["*"],
961
- )
962
-
963
- return demo
964
-
965
- # Initialize the application
966
  if __name__ == "__main__":
967
- demo = setup_app()
968
-
969
- # Start the server
970
  demo.queue()
971
  demo.launch(
972
  server_name="0.0.0.0",
973
  server_port=7860,
974
  share=True
975
- )
 
 
18
  from io import BytesIO
19
  import base64
20
  import hashlib
 
 
 
 
21
 
22
  # Configure logging
23
  logging.basicConfig(level=logging.INFO)
 
32
  BATCH_SIZE = 8 # Reduced batch size for CPU
33
  MAX_WORKERS = 4 # Number of worker threads for processing
34
 
 
 
 
 
 
 
 
 
 
 
 
35
  # Get password hash from environment variable (more secure)
36
  ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
37
 
 
41
  # Excel file path for logs
42
  EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  def is_admin_password(input_text: str) -> bool:
45
  """
46
  Check if the input text matches the admin password using secure hash comparison.
47
+ This prevents the password from being visible in the source code.
48
  """
49
  # Hash the input text
50
  input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
 
105
 
106
  class TextClassifier:
107
  def __init__(self):
108
+ # Set thread configuration before any model loading or parallel work
109
+ if not torch.cuda.is_available():
110
+ torch.set_num_threads(MAX_WORKERS)
111
+ torch.set_num_interop_threads(MAX_WORKERS)
112
+
113
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
114
  self.model_name = MODEL_NAME
115
  self.tokenizer = None
 
253
  for window_idx, indices in enumerate(batch_indices):
254
  center_idx = len(indices) // 2
255
  center_weight = 0.7 # Higher weight for center sentence
256
+ edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
257
 
258
  for pos, sent_idx in enumerate(indices):
259
  # Apply higher weight to center sentence
 
276
 
277
  # Apply minimal smoothing at prediction boundaries
278
  if i > 0 and i < len(sentences) - 1:
279
+ prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
280
+ prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
281
+ next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
282
+ next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
283
 
284
  # Check if we're at a prediction boundary
285
  current_pred = 'human' if human_prob > ai_prob else 'ai'
 
354
  'num_sentences': num_sentences
355
  }
356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357
  def initialize_excel_log():
358
  """Initialize the Excel log file if it doesn't exist."""
359
  if not os.path.exists(EXCEL_LOG_PATH):
 
381
  wb.save(EXCEL_LOG_PATH)
382
  logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
383
 
 
384
  def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
385
  """Log prediction data to an Excel file in the /tmp directory."""
386
  # Initialize the Excel file if it doesn't exist
 
423
  logger.error(f"Error logging prediction data to Excel: {str(e)}")
424
  return False
425
 
 
426
  def get_logs_as_base64():
427
  """Read the Excel logs file and return as base64 for downloading."""
428
  if not os.path.exists(EXCEL_LOG_PATH):
 
441
  logger.error(f"Error reading Excel logs: {str(e)}")
442
  return None
443
 
 
444
  def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
445
  """Analyze text using specified mode and return formatted results."""
446
  # Check if the input text matches the admin password using secure comparison
 
563
  # Initialize the classifier globally
564
  classifier = TextClassifier()
565
 
566
+ # Create Gradio interface
567
+ demo = gr.Interface(
568
+ fn=lambda text, mode: analyze_text(text, mode, classifier),
569
+ inputs=[
570
+ gr.Textbox(
571
+ lines=8,
572
+ placeholder="Enter text to analyze...",
573
+ label="Input Text"
574
+ ),
575
+ gr.Radio(
576
+ choices=["quick", "detailed"],
577
+ value="quick",
578
+ label="Analysis Mode",
579
+ info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580
  )
581
+ ],
582
+ outputs=[
583
+ gr.HTML(label="Highlighted Analysis"),
584
+ gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
585
+ gr.Textbox(label="Overall Result", lines=4)
586
+ ],
587
+ title="AI Text Detector",
588
+ description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
589
+ api_name="predict",
590
+ flagging_mode="never"
591
+ )
592
+
593
+ # Get the FastAPI app from Gradio
594
+ app = demo.app
595
+
596
+ # Add CORS middleware
597
+ app.add_middleware(
598
+ CORSMiddleware,
599
+ allow_origins=["*"], # For development
600
+ allow_credentials=True,
601
+ allow_methods=["GET", "POST", "OPTIONS"],
602
+ allow_headers=["*"],
603
+ )
604
+
605
+ # Ensure CORS is applied before launching
 
 
 
 
606
  if __name__ == "__main__":
 
 
 
607
  demo.queue()
608
  demo.launch(
609
  server_name="0.0.0.0",
610
  server_port=7860,
611
  share=True
612
+ )
613
+