Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,7 @@ logger = logging.getLogger(__name__)
|
|
18 |
# Constants
|
19 |
MAX_LENGTH = 512
|
20 |
MODEL_NAME = "microsoft/deberta-v3-small"
|
21 |
-
WINDOW_SIZE =
|
22 |
WINDOW_OVERLAP = 2
|
23 |
CONFIDENCE_THRESHOLD = 0.65
|
24 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
@@ -176,6 +176,102 @@ class TextClassifier:
|
|
176 |
'num_windows': len(predictions)
|
177 |
}
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
def detailed_scan(self, text: str) -> Dict:
|
180 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
181 |
if not text.strip():
|
@@ -340,7 +436,7 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
340 |
quick_analysis
|
341 |
)
|
342 |
else:
|
343 |
-
|
344 |
|
345 |
detailed_analysis = []
|
346 |
for pred in analysis['sentence_predictions']:
|
|
|
18 |
# Constants
|
19 |
MAX_LENGTH = 512
|
20 |
MODEL_NAME = "microsoft/deberta-v3-small"
|
21 |
+
WINDOW_SIZE = 6
|
22 |
WINDOW_OVERLAP = 2
|
23 |
CONFIDENCE_THRESHOLD = 0.65
|
24 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
|
|
176 |
'num_windows': len(predictions)
|
177 |
}
|
178 |
|
179 |
+
def predict_with_local_context(self, text: str) -> Dict:
|
180 |
+
"""Enhanced prediction that maintains high confidence while preventing bleeding"""
|
181 |
+
if self.model is None or self.tokenizer is None:
|
182 |
+
self.load_model()
|
183 |
+
|
184 |
+
self.model.eval()
|
185 |
+
sentences = self.processor.split_into_sentences(text)
|
186 |
+
if not sentences:
|
187 |
+
return {}
|
188 |
+
|
189 |
+
# Initialize scores for each sentence
|
190 |
+
sentence_predictions = []
|
191 |
+
|
192 |
+
# First pass: Get base predictions for each sentence
|
193 |
+
for i in range(len(sentences)):
|
194 |
+
# Get a small window around the current sentence
|
195 |
+
start_idx = max(0, i - 1)
|
196 |
+
end_idx = min(len(sentences), i + 2)
|
197 |
+
window = sentences[start_idx:end_idx]
|
198 |
+
|
199 |
+
# Get model prediction for this window
|
200 |
+
inputs = self.tokenizer(
|
201 |
+
" ".join(window),
|
202 |
+
truncation=True,
|
203 |
+
padding=True,
|
204 |
+
max_length=MAX_LENGTH,
|
205 |
+
return_tensors="pt"
|
206 |
+
).to(self.device)
|
207 |
+
|
208 |
+
with torch.no_grad():
|
209 |
+
outputs = self.model(**inputs)
|
210 |
+
probs = F.softmax(outputs.logits, dim=-1)
|
211 |
+
|
212 |
+
# Extract probabilities
|
213 |
+
human_prob = probs[0][1].item()
|
214 |
+
ai_prob = probs[0][0].item()
|
215 |
+
|
216 |
+
sentence_predictions.append({
|
217 |
+
'sentence': sentences[i],
|
218 |
+
'human_prob': human_prob,
|
219 |
+
'ai_prob': ai_prob,
|
220 |
+
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
221 |
+
'confidence': max(human_prob, ai_prob)
|
222 |
+
})
|
223 |
+
|
224 |
+
del inputs, outputs, probs
|
225 |
+
if torch.cuda.is_available():
|
226 |
+
torch.cuda.empty_cache()
|
227 |
+
|
228 |
+
# Second pass: Minimal smoothing only at significant prediction boundaries
|
229 |
+
smoothed_predictions = []
|
230 |
+
for i in range(len(sentence_predictions)):
|
231 |
+
pred = sentence_predictions[i].copy()
|
232 |
+
|
233 |
+
# Only apply smoothing if this sentence is at a prediction boundary
|
234 |
+
if i > 0 and i < len(sentence_predictions) - 1:
|
235 |
+
prev_pred = sentence_predictions[i-1]
|
236 |
+
next_pred = sentence_predictions[i+1]
|
237 |
+
|
238 |
+
# Check if we're at a prediction boundary
|
239 |
+
at_boundary = (
|
240 |
+
pred['prediction'] != prev_pred['prediction'] or
|
241 |
+
pred['prediction'] != next_pred['prediction']
|
242 |
+
)
|
243 |
+
|
244 |
+
if at_boundary:
|
245 |
+
# Calculate average confidence of neighbors
|
246 |
+
neighbor_conf = (prev_pred['confidence'] + next_pred['confidence']) / 2
|
247 |
+
|
248 |
+
# If neighbors are very confident and different from current prediction,
|
249 |
+
# slightly adjust current prediction
|
250 |
+
if neighbor_conf > 0.85 and pred['confidence'] < 0.75:
|
251 |
+
# Adjust probabilities slightly toward neighbors
|
252 |
+
weight = 0.15 # Small adjustment weight
|
253 |
+
pred['human_prob'] = (
|
254 |
+
pred['human_prob'] * (1 - weight) +
|
255 |
+
((prev_pred['human_prob'] + next_pred['human_prob']) / 2) * weight
|
256 |
+
)
|
257 |
+
pred['ai_prob'] = (
|
258 |
+
pred['ai_prob'] * (1 - weight) +
|
259 |
+
((prev_pred['ai_prob'] + next_pred['ai_prob']) / 2) * weight
|
260 |
+
)
|
261 |
+
|
262 |
+
# Update prediction and confidence
|
263 |
+
pred['prediction'] = 'human' if pred['human_prob'] > pred['ai_prob'] else 'ai'
|
264 |
+
pred['confidence'] = max(pred['human_prob'], pred['ai_prob'])
|
265 |
+
|
266 |
+
smoothed_predictions.append(pred)
|
267 |
+
|
268 |
+
return {
|
269 |
+
'sentence_predictions': smoothed_predictions,
|
270 |
+
'highlighted_text': self.format_predictions_html(smoothed_predictions),
|
271 |
+
'full_text': text,
|
272 |
+
'overall_prediction': self.aggregate_predictions(smoothed_predictions)
|
273 |
+
}
|
274 |
+
|
275 |
def detailed_scan(self, text: str) -> Dict:
|
276 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
277 |
if not text.strip():
|
|
|
436 |
quick_analysis
|
437 |
)
|
438 |
else:
|
439 |
+
analysis = classifier.predict_with_local_context(text)
|
440 |
|
441 |
detailed_analysis = []
|
442 |
for pred in analysis['sentence_predictions']:
|