max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
insights/parsers/tests/test_zipl_conf.py
lhuett/insights-core
121
14053
<filename>insights/parsers/tests/test_zipl_conf.py from insights.parsers.zipl_conf import ZiplConf from insights.tests import context_wrap from insights.parsers import ParseException import pytest ZIPL_CONF = """ [defaultboot] defaultauto prompt=1 timeout=5 default=linux target=/boot [linux] image=/boot/vmlinuz-3.10.0-693.el7.s390x ramdisk=/boot/initramfs-3.10.0-693.el7.s390x.img parameters="root=/dev/mapper/rhel_gss5-root crashkernel=auto rd.dasd=0.0.0100 rd.dasd=0.0.0101 rd.dasd=0.0.0102 rd.lvm.lv=rhel_gss5/root rd.lvm.lv=rhel_gss5/swap net.ifnames=0 rd.znet=qeth,0.0.0600,0.0.0601,0.0.0602,layer2=0,portname=gss5,portno=0 LANG=en_US.UTF-8" [linux-0-rescue-a27932c8d57248e390cee3798bbd3709] image=/boot/vmlinuz-0-rescue-a27932c8d57248e390cee3798bbd3709 ramdisk=/boot/initramfs-0-rescue-a27932c8d57248e390cee3798bbd3709.img parameters="root=/dev/mapper/rhel_gss5-root crashkernel=auto rd.dasd=0.0.0100 rd.dasd=0.0.0101 rd.dasd=0.0.0102 rd.lvm.lv=rhel_gss5/root rd.lvm.lv=rhel_gss5/swap net.ifnames=0 rd.znet=qeth,0.0.0600,0.0.0601,0.0.0602,layer2=0,portname=gss5,portno=0" [other] image=/boot/vmlinuz ramdisk=/boot/initramfs.img parameters="root=/dev/mapper/rhel_gss5-root crashkernel=auto rd.dasd=0.0.0100 # Configuration for dumping to SCSI disk # Separate IPL and dump partitions [dumpscsi] target=/boot dumptofs=/dev/sda2 parameters="dump_dir=/mydumps dump_compress=none dump_mode=auto" # Menu containing two DASD boot configurations :menu1 1=linux 2=linux-0-rescue-a27932c8d57248e390cee3798bbd3709 default=1 prompt=1 timeout=30 """.strip() ZIPL_CONF_INVALID = """ prompt=1 timeout=5 default=linux [linux] image=/boot/vmlinuz-3.10.0-693.el7.s390x ramdisk=/boot/initramfs-3.10.0-693.el7.s390x.img parameters="root=/dev/mapper/rhel_gss5-root crashkernel=auto rd.dasd=0.0.0100 rd.dasd=0.0.0101 rd.dasd=0.0.0102 rd.lvm.lv=rhel_gss5/root rd.lvm.lv=rhel_gss5/swap net.ifnames=0 rd.znet=qeth,0.0.0600,0.0.0601,0.0.0602,layer2=0,portname=gss5,portno=0 LANG=en_US.UTF-8" """.strip() def test_zipl_conf(): res = ZiplConf(context_wrap(ZIPL_CONF)) assert res.get('linux').get('image') == "/boot/vmlinuz-3.10.0-693.el7.s390x" assert res['linux']['image'] == "/boot/vmlinuz-3.10.0-693.el7.s390x" assert res[':menu1']['1'] == 'linux' assert 'defaultauto' in res['defaultboot'] assert res['defaultboot']['defaultauto'] is True assert res['other']['parameters'] == '"root=/dev/mapper/rhel_gss5-root crashkernel=auto rd.dasd=0.0.0100' assert res.images == { 'linux': '/boot/vmlinuz-3.10.0-693.el7.s390x', 'linux-0-rescue-a27932c8d57248e390cee3798bbd3709': '/boot/vmlinuz-0-rescue-a27932c8d57248e390cee3798bbd3709', 'other': '/boot/vmlinuz' } assert res.dumptofses == {'dumpscsi': '/dev/sda2'} def test_zipl_conf_invalid(): with pytest.raises(ParseException) as pe: ZiplConf(context_wrap(ZIPL_CONF_INVALID)) assert "Invalid zipl configuration file is found." in str(pe)
pony/orm/tests/test_generator_db_session.py
ProgHaj/pony
2,628
14060
from __future__ import absolute_import, print_function, division import unittest from pony.orm.core import * from pony.orm.core import local from pony.orm.tests.testutils import * from pony.orm.tests import setup_database, teardown_database class TestGeneratorDbSession(unittest.TestCase): def setUp(self): db = Database() class Account(db.Entity): id = PrimaryKey(int) amount = Required(int) setup_database(db) self.db = db self.Account = Account with db_session: a1 = Account(id=1, amount=1000) a2 = Account(id=2, amount=2000) a3 = Account(id=3, amount=3000) def tearDown(self): teardown_database(self.db) assert local.db_session is None self.db = self.Account = None @raises_exception(TypeError, 'db_session with `retry` option cannot be applied to generator function') def test1(self): @db_session(retry=3) def f(): yield @raises_exception(TypeError, 'db_session with `ddl` option cannot be applied to generator function') def test2(self): @db_session(ddl=True) def f(): yield @raises_exception(TypeError, 'db_session with `serializable` option cannot be applied to generator function') def test3(self): @db_session(serializable=True) def f(): yield def test4(self): @db_session(immediate=True) def f(): yield @raises_exception(TransactionError, '@db_session-wrapped generator cannot be used inside another db_session') def test5(self): @db_session def f(): yield with db_session: next(f()) def test6(self): @db_session def f(): x = local.db_session self.assertTrue(x is not None) yield self.db._get_cache() self.assertEqual(local.db_session, x) a1 = self.Account[1] yield a1.amount self.assertEqual(local.db_session, x) a2 = self.Account[2] yield a2.amount gen = f() cache = next(gen) self.assertTrue(cache.is_alive) self.assertEqual(local.db_session, None) amount = next(gen) self.assertEqual(amount, 1000) self.assertEqual(local.db_session, None) amount = next(gen) self.assertEqual(amount, 2000) self.assertEqual(local.db_session, None) try: next(gen) except StopIteration: self.assertFalse(cache.is_alive) else: self.fail() def test7(self): @db_session def f(id1): a1 = self.Account[id1] id2 = yield a1.amount a2 = self.Account[id2] amount = yield a2.amount a1.amount -= amount a2.amount += amount commit() gen = f(1) amount1 = next(gen) self.assertEqual(amount1, 1000) amount2 = gen.send(2) self.assertEqual(amount2, 2000) try: gen.send(100) except StopIteration: pass else: self.fail() with db_session: a1 = self.Account[1] self.assertEqual(a1.amount, 900) a2 = self.Account[2] self.assertEqual(a2.amount, 2100) @raises_exception(TransactionError, 'You need to manually commit() changes before suspending the generator') def test8(self): @db_session def f(id1): a1 = self.Account[id1] a1.amount += 100 yield a1.amount for amount in f(1): pass def test9(self): @db_session def f(id1): a1 = self.Account[id1] a1.amount += 100 commit() yield a1.amount for amount in f(1): pass def test10(self): @db_session def f(id1): a1 = self.Account[id1] yield a1.amount a1.amount += 100 with db_session: a = self.Account[1].amount for amount in f(1): pass with db_session: b = self.Account[1].amount self.assertEqual(b, a + 100) def test12(self): @db_session def f(id1): a1 = self.Account[id1] yield a1.amount gen = f(1) next(gen) gen.close() @raises_exception(TypeError, 'error message') def test13(self): @db_session def f(id1): a1 = self.Account[id1] yield a1.amount gen = f(1) next(gen) gen.throw(TypeError('error message')) if __name__ == '__main__': unittest.main()
h/security/predicates.py
hypothesis/h
2,103
14085
""" Define authorization predicates. These are functions which accept an `Identity` object and a context object and return a truthy value. These represent building blocks of our permission map which define when people do, or don't have permissions. For example a predicate might define "group_created_by_user" which is only true when a user is present, a group is present and the user created that group. """ from itertools import chain from h.models.group import JoinableBy, ReadableBy, WriteableBy def requires(*parent_predicates): """ Decorate a predicate to say it requires other predicates to be True first. :param parent_predicates: A list of predicates that have to be true for this predicate to be true as well. """ def decorator(function): function.requires = parent_predicates return function return decorator # Identity things def authenticated(identity, _context): return identity # The `@requires` here means that this predicate needs `authenticate` to be # True before it's True. It also avoids attribute errors if identity is None @requires(authenticated) def authenticated_user(identity, _context): return identity.user @requires(authenticated_user) def user_is_staff(identity, _context): return identity.user.staff @requires(authenticated_user) def user_is_admin(identity, _context): return identity.user.admin @requires(authenticated) def authenticated_client(identity, _context): return identity.auth_client @requires(authenticated_client) def authenticated_client_is_lms(identity, _context): authority = identity.auth_client.authority return authority.startswith("lms.") and authority.endswith(".hypothes.is") # Users def user_found(_identity, context): return hasattr(context, "user") and context.user @requires(authenticated_client, user_found) def user_authority_matches_authenticated_client(identity, context): return context.user.authority == identity.auth_client.authority # Annotations def annotation_found(_identity, context): return hasattr(context, "annotation") and context.annotation @requires(annotation_found) def annotation_shared(_identity, context): return context.annotation.shared @requires(annotation_found) def annotation_not_shared(_identity, context): return not context.annotation.shared @requires(annotation_found) def annotation_live(_identity, context): return not context.annotation.deleted @requires(authenticated_user, annotation_found) def annotation_created_by_user(identity, context): return identity.user.userid == context.annotation.userid # Groups def group_found(_identity, context): return hasattr(context, "group") and context.group def group_not_found(_identity, context): return not hasattr(context, "group") or not context.group @requires(group_found) def group_writable_by_members(_identity, context): return context.group.writeable_by == WriteableBy.members @requires(group_found) def group_writable_by_authority(_identity, context): return context.group.writeable_by == WriteableBy.authority @requires(group_found) def group_readable_by_world(_identity, context): return context.group.readable_by == ReadableBy.world @requires(group_found) def group_readable_by_members(_identity, context): return context.group.readable_by == ReadableBy.members @requires(group_found) def group_joinable_by_authority(_identity, context): return context.group.joinable_by == JoinableBy.authority @requires(authenticated_user, group_found) def group_created_by_user(identity, context): return context.group.creator and context.group.creator.id == identity.user.id @requires(authenticated_user, group_found) def group_has_user_as_member(identity, context): # With detached groups like we have with the websocket, this doesn't work # as SQLAlchemy does not consider them equal: # return context.group in identity.user.groups return any(user_group.id == context.group.id for user_group in identity.user.groups) @requires(authenticated_user, group_found) def group_matches_user_authority(identity, context): return context.group.authority == identity.user.authority @requires(authenticated_client, group_found) def group_matches_authenticated_client_authority(identity, context): return context.group.authority == identity.auth_client.authority def resolve_predicates(mapping): """ Expand predicates with requirements into concrete lists of predicates. This takes a permission map which contains predicates which reference other ones (using `@requires`), and converts each clause to include the parents in parent first order. This means any parent which is referred to by a predicate is executed before it, and no predicate appears more than once. """ return { key: [_expand_clause(clause) for clause in clauses] for key, clauses in mapping.items() } def _expand_clause(clause): """Generate all of the predicates + parents in a clause without dupes.""" seen_before = set() # The chain.from_iterable here flattens nested iterables return list( chain.from_iterable( _expand_predicate(predicate, seen_before) for predicate in clause ) ) def _expand_predicate(predicate, seen_before): """Generate all of the parents and the predicate in parents first order.""" if hasattr(predicate, "requires"): for parent in predicate.requires: yield from _expand_predicate(parent, seen_before) if predicate not in seen_before: seen_before.add(predicate) yield predicate
tests/test_reusable_executor.py
hoodmane/loky
153
14088
<gh_stars>100-1000 import os import sys import gc import ctypes import psutil import pytest import warnings import threading from time import sleep from multiprocessing import util, current_process from pickle import PicklingError, UnpicklingError from distutils.version import LooseVersion import loky from loky import cpu_count from loky import get_reusable_executor from loky.process_executor import _RemoteTraceback, TerminatedWorkerError from loky.process_executor import BrokenProcessPool, ShutdownExecutorError from loky.reusable_executor import _ReusablePoolExecutor import cloudpickle from ._executor_mixin import ReusableExecutorMixin from .utils import TimingWrapper, id_sleep, check_python_subprocess_call from .utils import filter_match cloudpickle_version = LooseVersion(cloudpickle.__version__) # Compat windows if sys.platform == "win32": from signal import SIGTERM as SIGKILL libc = ctypes.cdll.msvcrt else: from signal import SIGKILL from ctypes.util import find_library libc = ctypes.CDLL(find_library("c")) try: import numpy as np except ImportError: np = None # Backward compat for python2 cPickle module PICKLING_ERRORS = (PicklingError,) try: import cPickle PICKLING_ERRORS += (cPickle.PicklingError,) except ImportError: pass def clean_warning_registry(): """Safe way to reset warnings.""" warnings.resetwarnings() reg = "__warningregistry__" for mod_name, mod in list(sys.modules.items()): if hasattr(mod, reg): getattr(mod, reg).clear() def wait_dead(worker, n_tries=1000, delay=0.001): """Wait for process pid to die""" for i in range(n_tries): if worker.exitcode is not None: return sleep(delay) raise RuntimeError("Process %d failed to die for at least %0.3fs" % (worker.pid, delay * n_tries)) def crash(): """Induces a segfault""" import faulthandler faulthandler._sigsegv() def exit(): """Induces a sys exit with exitcode 0""" sys.exit(0) def c_exit(exitcode=0): """Induces a libc exit with exitcode 0""" libc.exit(exitcode) def sleep_then_check_pids_exist(arg): """Sleep for some time and the check if all the passed pids exist""" time, pids = arg sleep(time) res = True for p in pids: res &= psutil.pid_exists(p) return res def kill_friend(pid, delay=0): """Function that send SIGKILL at process pid""" sleep(delay) try: os.kill(pid, SIGKILL) except (PermissionError, ProcessLookupError) as e: if psutil.pid_exists(pid): util.debug("Fail to kill an alive process?!?") raise e util.debug("process {} was already dead".format(pid)) def raise_error(etype=UnpicklingError, message=None): """Function that raises an Exception in process""" raise etype(message) def return_instance(cls): """Function that returns a instance of cls""" return cls() class SayWhenError(ValueError): pass def exception_throwing_generator(total, when): for i in range(total): if i == when: raise SayWhenError("Somebody said when") yield i def do_nothing(arg): """Function that return True, test passing argument""" return True class CrashAtPickle(object): """Bad object that triggers a segfault at pickling time.""" def __reduce__(self): crash() class CrashAtUnpickle(object): """Bad object that triggers a segfault at unpickling time.""" def __reduce__(self): return crash, () class ExitAtPickle(object): """Bad object that triggers a segfault at pickling time.""" def __reduce__(self): exit() class ExitAtUnpickle(object): """Bad object that triggers a process exit at unpickling time.""" def __reduce__(self): return exit, () class CExitAtPickle(object): """Bad object that triggers a segfault at pickling time.""" def __reduce__(self): c_exit() class CExitAtUnpickle(object): """Bad object that triggers a process exit at unpickling time.""" def __reduce__(self): return c_exit, () class ErrorAtPickle(object): """Bad object that raises an error at pickling time.""" def __init__(self, fail=True): self.fail = fail def __reduce__(self): if self.fail: raise PicklingError("Error in pickle") else: return id, (42, ) class ErrorAtUnpickle(object): """Bad object that triggers a process exit at unpickling time.""" def __init__(self, etype=UnpicklingError, message='the error message'): self.etype = etype self.message = message def __reduce__(self): return raise_error, (self.etype, self.message) class CrashAtGCInWorker(object): """Bad object that triggers a segfault at call item GC time""" def __del__(self): if current_process().name != "MainProcess": crash() class CExitAtGCInWorker(object): """Exit worker at call item GC time""" def __del__(self): if current_process().name != "MainProcess": c_exit() class TestExecutorDeadLock(ReusableExecutorMixin): crash_cases = [ # Check problem occuring while pickling a task in (id, (ExitAtPickle(),), PicklingError, None), (id, (ErrorAtPickle(),), PicklingError, None), # Check problem occuring while unpickling a task on workers (id, (ExitAtUnpickle(),), BrokenProcessPool, r"SystemExit"), (id, (CExitAtUnpickle(),), TerminatedWorkerError, r"EXIT\(0\)"), (id, (ErrorAtUnpickle(),), BrokenProcessPool, r"UnpicklingError"), (id, (CrashAtUnpickle(),), TerminatedWorkerError, r"SIGSEGV"), # Check problem occuring during function execution on workers (crash, (), TerminatedWorkerError, r"SIGSEGV"), (exit, (), SystemExit, None), (c_exit, (), TerminatedWorkerError, r"EXIT\(0\)"), (raise_error, (RuntimeError,), RuntimeError, None), # Check problem occuring while pickling a task result # on workers (return_instance, (CrashAtPickle,), TerminatedWorkerError, r"SIGSEGV"), (return_instance, (ExitAtPickle,), SystemExit, None), (return_instance, (CExitAtPickle,), TerminatedWorkerError, r"EXIT\(0\)"), (return_instance, (ErrorAtPickle,), PicklingError, None), # Check problem occuring while unpickling a task in # the result_handler thread (return_instance, (ExitAtUnpickle,), BrokenProcessPool, r"SystemExit"), (return_instance, (ErrorAtUnpickle,), BrokenProcessPool, r"UnpicklingError"), ] @pytest.mark.parametrize("func, args, expected_err, match", crash_cases) def test_crashes(self, func, args, expected_err, match): """Test various reusable_executor crash handling""" executor = get_reusable_executor(max_workers=2) res = executor.submit(func, *args) match_err = None if expected_err is TerminatedWorkerError: match_err = filter_match(match) match = None with pytest.raises(expected_err, match=match_err) as exc_info: res.result() # For remote traceback, ensure that the cause contains the original # error if match is not None: with pytest.raises(_RemoteTraceback, match=match): raise exc_info.value.__cause__ @pytest.mark.parametrize("func, args, expected_err, match", crash_cases) def test_in_callback_submit_with_crash(self, func, args, expected_err, match): """Test the recovery from callback crash""" executor = get_reusable_executor(max_workers=2, timeout=12) def in_callback_submit(future): future2 = get_reusable_executor( max_workers=2, timeout=12).submit(func, *args) # Store the future of the job submitted in the callback to make it # easy to introspect. future.callback_future = future2 future.callback_done.set() # Make sure the first submitted job last a bit to make sure that # the callback will be called in the queue manager thread and not # immediately in the main thread. delay = 0.1 f = executor.submit(id_sleep, 42, delay) f.callback_done = threading.Event() f.add_done_callback(in_callback_submit) assert f.result() == 42 if not f.callback_done.wait(timeout=3): raise AssertionError('callback not done before timeout') match_err = None if expected_err is TerminatedWorkerError: match_err = filter_match(match) match = None with pytest.raises(expected_err, match=match_err) as exc_info: f.callback_future.result() # For remote traceback, ensure that the cause contains the original # error if match is not None: with pytest.raises(_RemoteTraceback, match=match): raise exc_info.value.__cause__ def test_callback_crash_on_submit(self): """Errors in the callback execution directly in queue manager thread. This case can break the process executor and we want to make sure that we can detect the issue and recover by calling get_reusable_executor. """ executor = get_reusable_executor(max_workers=2) # Make sure the first submitted job last a bit to make sure that # the callback will be called in the queue manager thread and not # immediately in the main thread. delay = 0.1 f = executor.submit(id_sleep, 42, delay) f.add_done_callback(lambda _: exit()) assert f.result() == 42 assert executor.submit(id_sleep, 42, 0.1).result() == 42 executor = get_reusable_executor(max_workers=2) f = executor.submit(id_sleep, 42, delay) f.add_done_callback(lambda _: raise_error()) assert f.result() == 42 assert executor.submit(id_sleep, 42, 0.).result() == 42 def test_deadlock_kill(self): """Test deadlock recovery for reusable_executor""" executor = get_reusable_executor(max_workers=1, timeout=None) # trigger the spawning of the worker process executor.submit(sleep, 0.1) worker = next(iter(executor._processes.values())) with pytest.warns(UserWarning) as recorded_warnings: executor = get_reusable_executor(max_workers=2, timeout=None) assert len(recorded_warnings) == 1 expected_msg = ("Trying to resize an executor with running jobs:" " waiting for jobs completion before resizing.") assert recorded_warnings[0].message.args[0] == expected_msg os.kill(worker.pid, SIGKILL) wait_dead(worker) # wait for the executor to be able to detect the issue and set itself # in broken state: sleep(.5) with pytest.raises(TerminatedWorkerError, match=filter_match(r"SIGKILL")): executor.submit(id_sleep, 42, 0.1).result() # the get_reusable_executor factory should be able to create a new # working instance executor = get_reusable_executor(max_workers=2, timeout=None) assert executor.submit(id_sleep, 42, 0.).result() == 42 @pytest.mark.parametrize("n_proc", [1, 2, 5, 13]) def test_crash_races(self, n_proc): """Test the race conditions in reusable_executor crash handling""" if (sys.platform == 'win32' and sys.version_info >= (3, 8) and n_proc > 5): pytest.skip( "On win32, the paging size can be too small to import numpy " "multiple times in the sub-processes (imported when loading " "this file). Skipping while no better solution is found. See " "https://github.com/joblib/loky/issues/279 for more details." ) # Test for external crash signal comming from neighbor # with various race setup executor = get_reusable_executor(max_workers=n_proc, timeout=None) executor.map(id, range(n_proc)) # trigger the creation of the workers pids = list(executor._processes.keys()) assert len(pids) == n_proc assert None not in pids res = executor.map(sleep_then_check_pids_exist, [(.0001 * (j // 2), pids) for j in range(2 * n_proc)]) assert all(list(res)) with pytest.raises(TerminatedWorkerError, match=filter_match(r"SIGKILL")): res = executor.map(kill_friend, pids[::-1]) list(res) def test_imap_handle_iterable_exception(self): # The catch of the errors in imap generation depend on the # builded version of python executor = get_reusable_executor(max_workers=2) with pytest.raises(SayWhenError): executor.map(id_sleep, exception_throwing_generator(10, 3), chunksize=1) # SayWhenError seen at start of problematic chunk's results executor = get_reusable_executor(max_workers=2) with pytest.raises(SayWhenError): executor.map(id_sleep, exception_throwing_generator(20, 7), chunksize=2) executor = get_reusable_executor(max_workers=2) with pytest.raises(SayWhenError): executor.map(id_sleep, exception_throwing_generator(20, 7), chunksize=4) def test_queue_full_deadlock(self): executor = get_reusable_executor(max_workers=1) fs_fail = [executor.submit(do_nothing, ErrorAtPickle(True)) for i in range(100)] fs = [executor.submit(do_nothing, ErrorAtPickle(False)) for i in range(100)] with pytest.raises(PicklingError): fs_fail[99].result() assert fs[99].result() def test_informative_error_when_fail_at_unpickle(self): executor = get_reusable_executor(max_workers=2) obj = ErrorAtUnpickle(RuntimeError, 'message raised in child') f = executor.submit(id, obj) with pytest.raises(BrokenProcessPool) as exc_info: f.result() assert 'RuntimeError' in str(exc_info.value.__cause__) assert 'message raised in child' in str(exc_info.value.__cause__) @pytest.mark.skipif(np is None, reason="requires numpy") def test_numpy_dot_parent_and_child_no_freeze(self): """Test that no freeze happens in child process when numpy's thread pool is started in the parent. """ a = np.random.randn(1000, 1000) np.dot(a, a) # trigger the thread pool init in the parent process executor = get_reusable_executor(max_workers=2) executor.submit(np.dot, a, a).result() executor.shutdown(wait=True) class TestTerminateExecutor(ReusableExecutorMixin): def test_shutdown_kill(self): """Test reusable_executor termination handling""" from itertools import repeat executor = get_reusable_executor(max_workers=5) res1 = executor.map(id_sleep, range(100), repeat(.001)) res2 = executor.map(id_sleep, range(100), repeat(1)) assert list(res1) == list(range(100)) shutdown = TimingWrapper(executor.shutdown) shutdown(wait=True, kill_workers=True) assert shutdown.elapsed < 5 # We should get an error as the executor shutdowned before we fetched # all the results from the long running operation. with pytest.raises(ShutdownExecutorError): list(res2) def test_shutdown_deadlock(self): """Test recovery if killed after resize call""" # Test the executor.shutdown call do not cause deadlock executor = get_reusable_executor(max_workers=2, timeout=None) executor.map(id, range(2)) # start the worker processes executor.submit(kill_friend, (next(iter(executor._processes.keys())), .0)) sleep(.01) executor.shutdown(wait=True) def test_kill_workers_on_new_options(self): # submit a long running job with no timeout executor = get_reusable_executor(max_workers=2, timeout=None) f = executor.submit(sleep, 10000) # change the constructor parameter while requesting not to wait # for the long running task to complete (the workers will get # shutdown forcibly) executor = get_reusable_executor(max_workers=2, timeout=5, kill_workers=True) with pytest.raises(ShutdownExecutorError): f.result() f2 = executor.submit(id_sleep, 42, 0) assert f2.result() == 42 @pytest.mark.parametrize("bad_object, match", [ (CrashAtGCInWorker, r"SIGSEGV"), (CExitAtGCInWorker, r"EXIT\(0\)")]) def test_call_item_gc_crash_or_exit(self, bad_object, match): executor = get_reusable_executor(max_workers=1) bad_object = bad_object() f = executor.submit(id, bad_object) # The worker will successfully send back its result to the master # process before crashing so this future can always be collected: assert f.result() is not None # The executor should automatically detect that the worker has crashed # when processing subsequently dispatched tasks: with pytest.raises(TerminatedWorkerError, match=filter_match(match)): executor.submit(gc.collect).result() for r in executor.map(sleep, [.1] * 100): pass class TestResizeExecutor(ReusableExecutorMixin): def test_reusable_executor_resize(self): """Test reusable_executor resizing""" executor = get_reusable_executor(max_workers=2, timeout=None) executor.map(id, range(2)) # Decreasing the executor should drop a single process and keep one of # the old one as it is still in a good shape. The resize should not # occur while there are on going works. pids = list(executor._processes.keys()) res1 = executor.submit(sleep_then_check_pids_exist, (.3, pids)) clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") executor = get_reusable_executor(max_workers=1, timeout=None) assert len(w) == 1 expected_msg = "Trying to resize an executor with running jobs" assert expected_msg in str(w[0].message) assert res1.result(), ("Resize should wait for current processes " " to finish") assert len(executor._processes) == 1 assert next(iter(executor._processes.keys())) in pids # Requesting the same number of process should not impact the executor # nor kill the processed old_pid = next(iter((executor._processes.keys()))) unchanged_executor = get_reusable_executor(max_workers=1, timeout=None) assert len(unchanged_executor._processes) == 1 assert unchanged_executor is executor assert next(iter(unchanged_executor._processes.keys())) == old_pid # Growing the executor again should add a single process and keep the # old one as it is still in a good shape executor = get_reusable_executor(max_workers=2, timeout=None) assert len(executor._processes) == 2 assert old_pid in list(executor._processes.keys()) @pytest.mark.parametrize("reuse", [True, False]) @pytest.mark.parametrize("kill_workers", [True, False]) def test_reusable_executor_resize_many_times(self, kill_workers, reuse): # Tentative non-regression test for a deadlock when shutting down # the workers of an executor prior to resizing it. kwargs = { 'timeout': None, 'kill_workers': kill_workers, 'reuse': reuse, } with warnings.catch_warnings(record=True): # Cause all warnings to always be triggered. warnings.simplefilter("always") for size in [12, 2, 1, 12, 6, 1, 8, 5]: executor = get_reusable_executor(max_workers=size, **kwargs) executor.map(sleep, [0.01] * 6) # Do not wait for the tasks to complete. executor.shutdown() def test_kill_after_resize_call(self): """Test recovery if killed after resize call""" # Test the executor resizing called before a kill arrive executor = get_reusable_executor(max_workers=2, timeout=None) executor.map(id, range(2)) # trigger the creation of worker processes pid = next(iter(executor._processes.keys())) executor.submit(kill_friend, (pid, .1)) with pytest.warns(UserWarning) as recorded_warnings: warnings.simplefilter("always") executor = get_reusable_executor(max_workers=1, timeout=None) assert len(recorded_warnings) == 1 expected_msg = ("Trying to resize an executor with running jobs:" " waiting for jobs completion before resizing.") assert recorded_warnings[0].message.args[0] == expected_msg assert executor.submit(id_sleep, 42, 0.).result() == 42 executor.shutdown() def test_resize_after_timeout(self): with warnings.catch_warnings(record=True) as recorded_warnings: warnings.simplefilter("always") executor = get_reusable_executor(max_workers=2, timeout=.001) assert executor.submit(id_sleep, 42, 0.).result() == 42 sleep(.1) executor = get_reusable_executor(max_workers=8, timeout=.001) assert executor.submit(id_sleep, 42, 0.).result() == 42 sleep(.1) executor = get_reusable_executor(max_workers=2, timeout=.001) assert executor.submit(id_sleep, 42, 0.).result() == 42 if len(recorded_warnings) > 1: expected_msg = 'A worker stopped' assert expected_msg in recorded_warnings[0].message.args[0] class TestGetReusableExecutor(ReusableExecutorMixin): def test_invalid_process_number(self): """Raise error on invalid process number""" with pytest.raises(ValueError): get_reusable_executor(max_workers=0) with pytest.raises(ValueError): get_reusable_executor(max_workers=-1) executor = get_reusable_executor() with pytest.raises(ValueError): executor._resize(max_workers=None) @pytest.mark.skipif(sys.platform == "win32", reason="No fork on windows") @pytest.mark.skipif(sys.version_info <= (3, 4), reason="No context before 3.4") def test_invalid_context(self): """Raise error on invalid context""" with pytest.warns(UserWarning): with pytest.raises(ValueError): get_reusable_executor(max_workers=2, context="fork") def test_pass_start_method_name_as_context(self): executor = get_reusable_executor(max_workers=2, context='loky') assert executor.submit(id, 42).result() >= 0 with pytest.raises(ValueError): get_reusable_executor(max_workers=2, context='bad_start_method') def test_interactively_defined_executor_no_main(self): # check that the init_main_module parameter works properly # when using -c option, we don't need the safeguard if __name__ .. # and thus test LokyProcess without the extra argument. For running # a script, it is necessary to use init_main_module=False. code = """if True: from loky import get_reusable_executor e = get_reusable_executor() e.submit(id, 42).result() print("ok") """ check_python_subprocess_call(code, stdout_regex=r"ok") def test_reused_flag(self): executor, _ = _ReusablePoolExecutor.get_reusable_executor( max_workers=2 ) executor, reused = _ReusablePoolExecutor.get_reusable_executor( max_workers=2 ) assert reused executor.shutdown(kill_workers=True) executor, reused = _ReusablePoolExecutor.get_reusable_executor( max_workers=2 ) assert not reused @pytest.mark.xfail(cloudpickle_version >= LooseVersion("0.5.4") and cloudpickle_version <= LooseVersion("0.7.0"), reason="Known issue in cloudpickle") # https://github.com/cloudpipe/cloudpickle/pull/240 def test_interactively_defined_nested_functions(self): # Check that it's possible to call nested interactively defined # functions and furthermore that changing the code interactively # is taken into account by the single worker process. code = """if True: from loky import get_reusable_executor e = get_reusable_executor(max_workers=1) # Force a start of the children process: e.submit(id, 42).result() # Test that it's possible to call interactively defined, nested # functions: def inner_func(x): return -x def outer_func(x): return inner_func(x) assert e.submit(outer_func, 1).result() == outer_func(1) == -1 # Test that changes to the definition of the inner function are # taken into account in subsequent calls to the outer function. def inner_func(x): return x assert e.submit(outer_func, 1).result() == outer_func(1) == 1 print("ok") """ check_python_subprocess_call(code, stdout_regex=r"ok") def test_interactively_defined_recursive_functions(self): # Check that it's possible to call a recursive function defined # in a closure. # Also check that calling several function that stems from the same # factory with different closure states results in the expected result: # the function definitions should not collapse in the single worker # process. code = """if True: from loky import get_reusable_executor e = get_reusable_executor(max_workers=1) # Force a start of the children process: e.submit(id, 42).result() def make_func(seed): def func(x): if x <= 0: return seed return func(x - 1) + 1 return func func = make_func(0) assert e.submit(func, 5).result() == func(5) == 5 func = make_func(1) assert e.submit(func, 5).result() == func(5) == 6 print("ok") """ check_python_subprocess_call(code, stdout_regex=r"ok") def test_compat_with_concurrent_futures_exception(self): # It should be possible to use a loky process pool executor as a dropin # replacement for a ProcessPoolExecutor, including when catching # exceptions: concurrent = pytest.importorskip('concurrent') from concurrent.futures.process import BrokenProcessPool as BPPExc with pytest.raises(BPPExc): get_reusable_executor(max_workers=2).submit(crash).result() e = get_reusable_executor(max_workers=2) f = e.submit(id, 42) # Ensure that loky.Future are compatible with concurrent.futures # (see #155) assert isinstance(f, concurrent.futures.Future) (done, running) = concurrent.futures.wait([f], timeout=15) assert len(running) == 0 thread_configurations = [ ('constant', 'clean_start'), ('constant', 'broken_start'), ('varying', 'clean_start'), ('varying', 'broken_start'), ] @pytest.mark.parametrize("workers, executor_state", thread_configurations) def test_reusable_executor_thread_safety(self, workers, executor_state): if executor_state == 'clean_start': # Create a new shared executor and ensures that it's workers are # ready: get_reusable_executor(reuse=False).submit(id, 42).result() else: # Break the shared executor before launching the threads: with pytest.raises(TerminatedWorkerError, match=filter_match(r"SIGSEGV")): executor = get_reusable_executor(reuse=False) executor.submit(return_instance, CrashAtPickle).result() def helper_func(output_collector, max_workers=2, n_outer_steps=5, n_inner_steps=10): with warnings.catch_warnings(): # ignore resize warnings warnings.simplefilter("always") executor = get_reusable_executor(max_workers=max_workers) for i in range(n_outer_steps): results = executor.map( lambda x: x ** 2, range(n_inner_steps)) expected_result = [x ** 2 for x in range(n_inner_steps)] assert list(results) == expected_result output_collector.append('ok') if workers == 'constant': max_workers = [2] * 10 else: max_workers = [(i % 4) + 1 for i in range(10)] # Use the same executor with the same number of workers concurrently # in different threads: output_collector = [] threads = [threading.Thread( target=helper_func, args=(output_collector, w), name='test_thread_%02d_max_workers_%d' % (i, w)) for i, w in enumerate(max_workers)] with warnings.catch_warnings(record=True): for t in threads: t.start() for t in threads: t.join() assert output_collector == ['ok'] * len(threads) def test_reusable_executor_reuse_true(self): executor = get_reusable_executor(max_workers=3, timeout=42) executor.submit(id, 42).result() assert len(executor._processes) == 3 assert executor._timeout == 42 executor2 = get_reusable_executor(reuse=True) executor2.submit(id, 42).result() assert len(executor2._processes) == 3 assert executor2._timeout == 42 assert executor2 is executor executor3 = get_reusable_executor() executor3.submit(id, 42).result() assert len(executor3._processes) == cpu_count() assert executor3._timeout == 10 assert executor3 is not executor executor4 = get_reusable_executor() assert executor4 is executor3 class TestExecutorInitializer(ReusableExecutorMixin): def _initializer(self, x): loky._initialized_state = x def _test_initializer(self, delay=0): sleep(delay) return getattr(loky, "_initialized_state", "uninitialized") def test_reusable_initializer(self): executor = get_reusable_executor( max_workers=2, initializer=self._initializer, initargs=('done',)) assert executor.submit(self._test_initializer).result() == 'done' # when the initializer change, the executor is re-spawned executor = get_reusable_executor( max_workers=2, initializer=self._initializer, initargs=(42,)) assert executor.submit(self._test_initializer).result() == 42 # With reuse=True, the executor use the same initializer executor = get_reusable_executor(max_workers=4, reuse=True) for x in executor.map(self._test_initializer, delay=.1): assert x == 42 # With reuse='auto', the initializer is not used anymore executor = get_reusable_executor(max_workers=4) for x in executor.map(self._test_initializer, delay=.1): assert x == 'uninitialized'
test/connector/exchange/wazirx/test_wazirx_user_stream_tracker.py
BGTCapital/hummingbot
3,027
14094
<reponame>BGTCapital/hummingbot #!/usr/bin/env python from os.path import join, realpath import sys; sys.path.insert(0, realpath(join(__file__, "../../../../../"))) import conf from hummingbot.connector.exchange.wazirx.wazirx_api_order_book_data_source import WazirxAPIOrderBookDataSource from hummingbot.connector.exchange.wazirx.wazirx_user_stream_tracker import WazirxUserStreamTracker from hummingbot.connector.exchange.wazirx.wazirx_auth import WazirxAuth import asyncio from hummingbot.core.utils.async_utils import safe_ensure_future import logging import unittest trading_pairs = ["BTC-INR", "ZRX-INR"] class WazirxUserStreamTrackerUnitTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.ev_loop: asyncio.BaseEventLoop = asyncio.get_event_loop() api_key = conf.wazirx_api_key secret_key = conf.wazirx_secret_key cls.wazirx_auth = WazirxAuth(api_key, secret_key) cls.wazirx_orderbook_data_source = WazirxAPIOrderBookDataSource(trading_pairs=trading_pairs) cls.user_stream_tracker: WazirxUserStreamTracker = WazirxUserStreamTracker(cls.wazirx_auth, trading_pairs) def run_async(self, task): return self.ev_loop.run_until_complete(task) async def _iter_user_event_queue(self): while True: try: yield await self.user_stream_tracker.user_stream.get() except asyncio.CancelledError: raise except Exception: raise async def _user_stream_event_listener(self): """ Wait for 5 events to be seen """ count = 0 async for event_message in self._iter_user_event_queue(): logging.info(event_message) if count > 5: return count += 1 def test_user_stream(self): safe_ensure_future(self.user_stream_tracker.start()) # Wait process some msgs. self.ev_loop.run_until_complete(self._user_stream_event_listener()) logging.info(self.user_stream_tracker.user_stream) def main(): logging.basicConfig(level=logging.INFO) unittest.main() if __name__ == "__main__": main()
src/python/setup.py
blaine141/NVISII
149
14117
# Copyright (c) 2020 NVIDIA Corporation. All rights reserved. # This work is licensed under the NVIDIA Source Code License - Non-commercial. Full # text can be found in LICENSE.md from setuptools import setup, dist import wheel import os # required to geneerate a platlib folder required by audittools from setuptools.command.install import install # for generating a wheel version from git tag from setuptools_scm import get_version class InstallPlatlib(install): def finalize_options(self): install.finalize_options(self) if self.distribution.has_ext_modules(): self.install_lib = self.install_platlib # force setuptools to recognize that this is # actually a binary distribution class BinaryDistribution(dist.Distribution): def is_pure(self): return False def has_ext_modules(foo): return True # This gets the version from the most recent git tag, potentially concatinating # a commit hash at the end. current_version = get_version( root = "..", relative_to = __file__, fallback_version='0.0.0-dev0' ) optix_version = os.environ.get("OPTIX_VERSION", None) if optix_version: current_version = current_version + "." + optix_version print(current_version) setup( # This package is called nvisii name='nvisii', install_requires = ['numpy>=1.19.5'], packages = ['nvisii', "nvisii.importers"], # include the package "nvisii" # make sure the shared library is included package_data = {'': ("*.dll", "*.pyd", "*.so")}, include_package_data=True, description='', # See class BinaryDistribution that was defined earlier distclass=BinaryDistribution, version = current_version, author='<NAME>', author_email='', maintainer='', maintainer_email='', python_requires = ">=3.6", cmdclass={'install': InstallPlatlib}, )
rojak-analyzer/generate_stopwords.py
pyk/rojak
107
14145
# Run this script to create stopwords.py based on stopwords.txt import json def generate(input_txt, output_py): # Read line by line txt_file = open(input_txt) words = set([]) for raw_line in txt_file: line = raw_line.strip() # Skip empty line if len(line) < 1: continue # Skip comments if line[0] == '#': continue # Collect the stopwords words.add(line) # Dump the array to a file output = open(output_py, 'w') output.write('# DO NOT EDIT THIS FILE!\n') output.write('# Edit stopwords.txt, generate this file again via ') output.write('generate_stopwords.py\n') output.write('stopwords = set(%s)' % (json.dumps(sorted(words), indent=4))) output.close() txt_file.close() if __name__ == '__main__': generate('stopwords.txt', 'stopwords.py')
pyexchange/exchange2010/__init__.py
tedeler/pyexchange
128
14147
""" (c) 2013 LinkedIn Corp. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License");?you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software?distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """ import logging from ..base.calendar import BaseExchangeCalendarEvent, BaseExchangeCalendarService, ExchangeEventOrganizer, ExchangeEventResponse from ..base.folder import BaseExchangeFolder, BaseExchangeFolderService from ..base.soap import ExchangeServiceSOAP from ..exceptions import FailedExchangeException, ExchangeStaleChangeKeyException, ExchangeItemNotFoundException, ExchangeInternalServerTransientErrorException, ExchangeIrresolvableConflictException, InvalidEventType from ..compat import BASESTRING_TYPES from . import soap_request from lxml import etree from copy import deepcopy from datetime import date import warnings log = logging.getLogger("pyexchange") class Exchange2010Service(ExchangeServiceSOAP): def calendar(self, id="calendar"): return Exchange2010CalendarService(service=self, calendar_id=id) def mail(self): raise NotImplementedError("Sorry - nothin' here. Feel like adding it? :)") def contacts(self): raise NotImplementedError("Sorry - nothin' here. Feel like adding it? :)") def folder(self): return Exchange2010FolderService(service=self) def _send_soap_request(self, body, headers=None, retries=2, timeout=30, encoding="utf-8"): headers = { "Accept": "text/xml", "Content-type": "text/xml; charset=%s " % encoding } return super(Exchange2010Service, self)._send_soap_request(body, headers=headers, retries=retries, timeout=timeout, encoding=encoding) def _check_for_errors(self, xml_tree): super(Exchange2010Service, self)._check_for_errors(xml_tree) self._check_for_exchange_fault(xml_tree) def _check_for_exchange_fault(self, xml_tree): # If the request succeeded, we should see a <m:ResponseCode>NoError</m:ResponseCode> # somewhere in the response. if we don't (a) see the tag or (b) it doesn't say "NoError" # then flip out response_codes = xml_tree.xpath(u'//m:ResponseCode', namespaces=soap_request.NAMESPACES) if not response_codes: raise FailedExchangeException(u"Exchange server did not return a status response", None) # The full (massive) list of possible return responses is here. # http://msdn.microsoft.com/en-us/library/aa580757(v=exchg.140).aspx for code in response_codes: if code.text == u"ErrorChangeKeyRequiredForWriteOperations": # change key is missing or stale. we can fix that, so throw a special error raise ExchangeStaleChangeKeyException(u"Exchange Fault (%s) from Exchange server" % code.text) elif code.text == u"ErrorItemNotFound": # exchange_invite_key wasn't found on the server raise ExchangeItemNotFoundException(u"Exchange Fault (%s) from Exchange server" % code.text) elif code.text == u"ErrorIrresolvableConflict": # tried to update an item with an old change key raise ExchangeIrresolvableConflictException(u"Exchange Fault (%s) from Exchange server" % code.text) elif code.text == u"ErrorInternalServerTransientError": # temporary internal server error. throw a special error so we can retry raise ExchangeInternalServerTransientErrorException(u"Exchange Fault (%s) from Exchange server" % code.text) elif code.text == u"ErrorCalendarOccurrenceIndexIsOutOfRecurrenceRange": # just means some or all of the requested instances are out of range pass elif code.text != u"NoError": raise FailedExchangeException(u"Exchange Fault (%s) from Exchange server" % code.text) class Exchange2010CalendarService(BaseExchangeCalendarService): def event(self, id=None, **kwargs): return Exchange2010CalendarEvent(service=self.service, id=id, **kwargs) def get_event(self, id): return Exchange2010CalendarEvent(service=self.service, id=id) def new_event(self, **properties): return Exchange2010CalendarEvent(service=self.service, calendar_id=self.calendar_id, **properties) def list_events(self, start=None, end=None, details=False, delegate_for=None): return Exchange2010CalendarEventList(service=self.service, calendar_id=self.calendar_id, start=start, end=end, details=details, delegate_for=delegate_for) class Exchange2010CalendarEventList(object): """ Creates & Stores a list of Exchange2010CalendarEvent items in the "self.events" variable. """ def __init__(self, service=None, calendar_id=u'calendar', start=None, end=None, details=False, delegate_for=None): self.service = service self.count = 0 self.start = start self.end = end self.events = list() self.event_ids = list() self.details = details self.delegate_for = delegate_for # This request uses a Calendar-specific query between two dates. body = soap_request.get_calendar_items(format=u'AllProperties', calendar_id=calendar_id, start=self.start, end=self.end, delegate_for=self.delegate_for) response_xml = self.service.send(body) self._parse_response_for_all_events(response_xml) # Populate the event ID list, for convenience reasons. for event in self.events: self.event_ids.append(event._id) # If we have requested all the details, basically repeat the previous 3 steps, # but instead of start/stop, we have a list of ID fields. if self.details: log.debug(u'Received request for all details, retrieving now!') self.load_all_details() return def _parse_response_for_all_events(self, response): """ This function will retrieve *most* of the event data, excluding Organizer & Attendee details """ items = response.xpath(u'//m:FindItemResponseMessage/m:RootFolder/t:Items/t:CalendarItem', namespaces=soap_request.NAMESPACES) if not items: items = response.xpath(u'//m:GetItemResponseMessage/m:Items/t:CalendarItem', namespaces=soap_request.NAMESPACES) if items: self.count = len(items) log.debug(u'Found %s items' % self.count) for item in items: self._add_event(xml=soap_request.M.Items(deepcopy(item))) else: log.debug(u'No calendar items found with search parameters.') return self def _add_event(self, xml=None): log.debug(u'Adding new event to all events list.') event = Exchange2010CalendarEvent(service=self.service, xml=xml) log.debug(u'Subject of new event is %s' % event.subject) self.events.append(event) return self def load_all_details(self): """ This function will execute all the event lookups for known events. This is intended for use when you want to have a completely populated event entry, including Organizer & Attendee details. """ log.debug(u"Loading all details") if self.count > 0: # Now, empty out the events to prevent duplicates! del(self.events[:]) # Send the SOAP request with the list of exchange ID values. log.debug(u"Requesting all event details for events: {event_list}".format(event_list=str(self.event_ids))) body = soap_request.get_item(exchange_id=self.event_ids, format=u'AllProperties') response_xml = self.service.send(body) # Re-parse the results for all the details! self._parse_response_for_all_events(response_xml) return self class Exchange2010CalendarEvent(BaseExchangeCalendarEvent): def _init_from_service(self, id): log.debug(u'Creating new Exchange2010CalendarEvent object from ID') body = soap_request.get_item(exchange_id=id, format=u'AllProperties') response_xml = self.service.send(body) properties = self._parse_response_for_get_event(response_xml) self._update_properties(properties) self._id = id log.debug(u'Created new event object with ID: %s' % self._id) self._reset_dirty_attributes() return self def _init_from_xml(self, xml=None): log.debug(u'Creating new Exchange2010CalendarEvent object from XML') properties = self._parse_response_for_get_event(xml) self._update_properties(properties) self._id, self._change_key = self._parse_id_and_change_key_from_response(xml) log.debug(u'Created new event object with ID: %s' % self._id) self._reset_dirty_attributes() return self def as_json(self): raise NotImplementedError def validate(self): if self.recurrence is not None: if not (isinstance(self.recurrence_end_date, date)): raise ValueError('recurrence_end_date must be of type date') elif (self.recurrence_end_date < self.start.date()): raise ValueError('recurrence_end_date must be after start') if self.recurrence == u'daily': if not (isinstance(self.recurrence_interval, int) and 1 <= self.recurrence_interval <= 999): raise ValueError('recurrence_interval must be an int in the range from 1 to 999') elif self.recurrence == u'weekly': if not (isinstance(self.recurrence_interval, int) and 1 <= self.recurrence_interval <= 99): raise ValueError('recurrence_interval must be an int in the range from 1 to 99') if self.recurrence_days is None: raise ValueError('recurrence_days is required') for day in self.recurrence_days.split(' '): if day not in self.WEEKLY_DAYS: raise ValueError('recurrence_days received unknown value: %s' % day) elif self.recurrence == u'monthly': if not (isinstance(self.recurrence_interval, int) and 1 <= self.recurrence_interval <= 99): raise ValueError('recurrence_interval must be an int in the range from 1 to 99') elif self.recurrence == u'yearly': pass # everything is pulled from start else: raise ValueError('recurrence received unknown value: %s' % self.recurrence) super(Exchange2010CalendarEvent, self).validate() def create(self): """ Creates an event in Exchange. :: event = service.calendar().new_event( subject=u"80s Movie Night", location = u"My house", ) event.create() Invitations to attendees are sent out immediately. """ self.validate() body = soap_request.new_event(self) response_xml = self.service.send(body) self._id, self._change_key = self._parse_id_and_change_key_from_response(response_xml) return self def resend_invitations(self): """ Resends invites for an event. :: event = service.calendar().get_event(id='KEY HERE') event.resend_invitations() Anybody who has not declined this meeting will get a new invite. """ if not self.id: raise TypeError(u"You can't send invites for an event that hasn't been created yet.") # Under the hood, this is just an .update() but with no attributes changed. # We're going to enforce that by checking if there are any changed attributes and bail if there are if self._dirty_attributes: raise ValueError(u"There are unsaved changes to this invite - please update it first: %r" % self._dirty_attributes) self.refresh_change_key() body = soap_request.update_item(self, [], calendar_item_update_operation_type=u'SendOnlyToAll') self.service.send(body) return self def update(self, calendar_item_update_operation_type=u'SendToAllAndSaveCopy', **kwargs): """ Updates an event in Exchange. :: event = service.calendar().get_event(id='KEY HERE') event.location = u'New location' event.update() If no changes to the event have been made, this method does nothing. Notification of the change event is sent to all users. If you wish to just notify people who were added, specify ``send_only_to_changed_attendees=True``. """ if not self.id: raise TypeError(u"You can't update an event that hasn't been created yet.") if 'send_only_to_changed_attendees' in kwargs: warnings.warn( "The argument send_only_to_changed_attendees is deprecated. Use calendar_item_update_operation_type instead.", DeprecationWarning, ) # 20140502 if kwargs['send_only_to_changed_attendees']: calendar_item_update_operation_type = u'SendToChangedAndSaveCopy' VALID_UPDATE_OPERATION_TYPES = ( u'SendToNone', u'SendOnlyToAll', u'SendOnlyToChanged', u'SendToAllAndSaveCopy', u'SendToChangedAndSaveCopy', ) if calendar_item_update_operation_type not in VALID_UPDATE_OPERATION_TYPES: raise ValueError('calendar_item_update_operation_type has unknown value') self.validate() if self._dirty_attributes: log.debug(u"Updating these attributes: %r" % self._dirty_attributes) self.refresh_change_key() body = soap_request.update_item(self, self._dirty_attributes, calendar_item_update_operation_type=calendar_item_update_operation_type) self.service.send(body) self._reset_dirty_attributes() else: log.info(u"Update was called, but there's nothing to update. Doing nothing.") return self def cancel(self): """ Cancels an event in Exchange. :: event = service.calendar().get_event(id='KEY HERE') event.cancel() This will send notifications to anyone who has not declined the meeting. """ if not self.id: raise TypeError(u"You can't delete an event that hasn't been created yet.") self.refresh_change_key() self.service.send(soap_request.delete_event(self)) # TODO rsanders high - check return status to make sure it was actually sent return None def move_to(self, folder_id): """ :param str folder_id: The Calendar ID to where you want to move the event to. Moves an event to a different folder (calendar). :: event = service.calendar().get_event(id='KEY HERE') event.move_to(folder_id='NEW CALENDAR KEY HERE') """ if not folder_id: raise TypeError(u"You can't move an event to a non-existant folder") if not isinstance(folder_id, BASESTRING_TYPES): raise TypeError(u"folder_id must be a string") if not self.id: raise TypeError(u"You can't move an event that hasn't been created yet.") self.refresh_change_key() response_xml = self.service.send(soap_request.move_event(self, folder_id)) new_id, new_change_key = self._parse_id_and_change_key_from_response(response_xml) if not new_id: raise ValueError(u"MoveItem returned success but requested item not moved") self._id = new_id self._change_key = new_change_key self.calendar_id = folder_id return self def get_master(self): """ get_master() :raises InvalidEventType: When this method is called on an event that is not a Occurrence type. This will return the master event to the occurrence. **Examples**:: event = service.calendar().get_event(id='<event_id>') print event.type # If it prints out 'Occurrence' then that means we could get the master. master = event.get_master() print master.type # Will print out 'RecurringMaster'. """ if self.type != 'Occurrence': raise InvalidEventType("get_master method can only be called on a 'Occurrence' event type") body = soap_request.get_master(exchange_id=self._id, format=u"AllProperties") response_xml = self.service.send(body) return Exchange2010CalendarEvent(service=self.service, xml=response_xml) def get_occurrence(self, instance_index): """ get_occurrence(instance_index) :param iterable instance_index: This should be tuple or list of integers which correspond to occurrences. :raises TypeError: When instance_index is not an iterable of ints. :raises InvalidEventType: When this method is called on an event that is not a RecurringMaster type. This will return a list of occurrence events. **Examples**:: master = service.calendar().get_event(id='<event_id>') # The following will return the first 20 occurrences in the recurrence. # If there are not 20 occurrences, it will only return what it finds. occurrences = master.get_occurrence(range(1,21)) for occurrence in occurrences: print occurrence.start """ if not all([isinstance(i, int) for i in instance_index]): raise TypeError("instance_index must be an interable of type int") if self.type != 'RecurringMaster': raise InvalidEventType("get_occurrance method can only be called on a 'RecurringMaster' event type") body = soap_request.get_occurrence(exchange_id=self._id, instance_index=instance_index, format=u"AllProperties") response_xml = self.service.send(body) items = response_xml.xpath(u'//m:GetItemResponseMessage/m:Items', namespaces=soap_request.NAMESPACES) events = [] for item in items: event = Exchange2010CalendarEvent(service=self.service, xml=deepcopy(item)) if event.id: events.append(event) return events def conflicting_events(self): """ conflicting_events() This will return a list of conflicting events. **Example**:: event = service.calendar().get_event(id='<event_id>') for conflict in event.conflicting_events(): print conflict.subject """ if not self.conflicting_event_ids: return [] body = soap_request.get_item(exchange_id=self.conflicting_event_ids, format="AllProperties") response_xml = self.service.send(body) items = response_xml.xpath(u'//m:GetItemResponseMessage/m:Items', namespaces=soap_request.NAMESPACES) events = [] for item in items: event = Exchange2010CalendarEvent(service=self.service, xml=deepcopy(item)) if event.id: events.append(event) return events def refresh_change_key(self): body = soap_request.get_item(exchange_id=self._id, format=u"IdOnly") response_xml = self.service.send(body) self._id, self._change_key = self._parse_id_and_change_key_from_response(response_xml) return self def _parse_id_and_change_key_from_response(self, response): id_elements = response.xpath(u'//m:Items/t:CalendarItem/t:ItemId', namespaces=soap_request.NAMESPACES) if id_elements: id_element = id_elements[0] return id_element.get(u"Id", None), id_element.get(u"ChangeKey", None) else: return None, None def _parse_response_for_get_event(self, response): result = self._parse_event_properties(response) organizer_properties = self._parse_event_organizer(response) if organizer_properties is not None: if 'email' not in organizer_properties: organizer_properties['email'] = None result[u'organizer'] = ExchangeEventOrganizer(**organizer_properties) attendee_properties = self._parse_event_attendees(response) result[u'_attendees'] = self._build_resource_dictionary([ExchangeEventResponse(**attendee) for attendee in attendee_properties]) resource_properties = self._parse_event_resources(response) result[u'_resources'] = self._build_resource_dictionary([ExchangeEventResponse(**resource) for resource in resource_properties]) result['_conflicting_event_ids'] = self._parse_event_conflicts(response) return result def _parse_event_properties(self, response): property_map = { u'subject': { u'xpath': u'//m:Items/t:CalendarItem/t:Subject', }, u'location': { u'xpath': u'//m:Items/t:CalendarItem/t:Location', }, u'availability': { u'xpath': u'//m:Items/t:CalendarItem/t:LegacyFreeBusyStatus', }, u'start': { u'xpath': u'//m:Items/t:CalendarItem/t:Start', u'cast': u'datetime', }, u'end': { u'xpath': u'//m:Items/t:CalendarItem/t:End', u'cast': u'datetime', }, u'html_body': { u'xpath': u'//m:Items/t:CalendarItem/t:Body[@BodyType="HTML"]', }, u'text_body': { u'xpath': u'//m:Items/t:CalendarItem/t:Body[@BodyType="Text"]', }, u'_type': { u'xpath': u'//m:Items/t:CalendarItem/t:CalendarItemType', }, u'reminder_minutes_before_start': { u'xpath': u'//m:Items/t:CalendarItem/t:ReminderMinutesBeforeStart', u'cast': u'int', }, u'is_all_day': { u'xpath': u'//m:Items/t:CalendarItem/t:IsAllDayEvent', u'cast': u'bool', }, u'recurrence_end_date': { u'xpath': u'//m:Items/t:CalendarItem/t:Recurrence/t:EndDateRecurrence/t:EndDate', u'cast': u'date_only_naive', }, u'recurrence_interval': { u'xpath': u'//m:Items/t:CalendarItem/t:Recurrence/*/t:Interval', u'cast': u'int', }, u'recurrence_days': { u'xpath': u'//m:Items/t:CalendarItem/t:Recurrence/t:WeeklyRecurrence/t:DaysOfWeek', }, } result = self.service._xpath_to_dict(element=response, property_map=property_map, namespace_map=soap_request.NAMESPACES) try: recurrence_node = response.xpath(u'//m:Items/t:CalendarItem/t:Recurrence', namespaces=soap_request.NAMESPACES)[0] except IndexError: recurrence_node = None if recurrence_node is not None: if recurrence_node.find('t:DailyRecurrence', namespaces=soap_request.NAMESPACES) is not None: result['recurrence'] = 'daily' elif recurrence_node.find('t:WeeklyRecurrence', namespaces=soap_request.NAMESPACES) is not None: result['recurrence'] = 'weekly' elif recurrence_node.find('t:AbsoluteMonthlyRecurrence', namespaces=soap_request.NAMESPACES) is not None: result['recurrence'] = 'monthly' elif recurrence_node.find('t:AbsoluteYearlyRecurrence', namespaces=soap_request.NAMESPACES) is not None: result['recurrence'] = 'yearly' return result def _parse_event_organizer(self, response): organizer = response.xpath(u'//m:Items/t:CalendarItem/t:Organizer/t:Mailbox', namespaces=soap_request.NAMESPACES) property_map = { u'name': { u'xpath': u't:Name' }, u'email': { u'xpath': u't:EmailAddress' }, } if organizer: return self.service._xpath_to_dict(element=organizer[0], property_map=property_map, namespace_map=soap_request.NAMESPACES) else: return None def _parse_event_resources(self, response): property_map = { u'name': { u'xpath': u't:Mailbox/t:Name' }, u'email': { u'xpath': u't:Mailbox/t:EmailAddress' }, u'response': { u'xpath': u't:ResponseType' }, u'last_response': { u'xpath': u't:LastResponseTime', u'cast': u'datetime' }, } result = [] resources = response.xpath(u'//m:Items/t:CalendarItem/t:Resources/t:Attendee', namespaces=soap_request.NAMESPACES) for attendee in resources: attendee_properties = self.service._xpath_to_dict(element=attendee, property_map=property_map, namespace_map=soap_request.NAMESPACES) attendee_properties[u'required'] = True if u'last_response' not in attendee_properties: attendee_properties[u'last_response'] = None if u'email' in attendee_properties: result.append(attendee_properties) return result def _parse_event_attendees(self, response): property_map = { u'name': { u'xpath': u't:Mailbox/t:Name' }, u'email': { u'xpath': u't:Mailbox/t:EmailAddress' }, u'response': { u'xpath': u't:ResponseType' }, u'last_response': { u'xpath': u't:LastResponseTime', u'cast': u'datetime' }, } result = [] required_attendees = response.xpath(u'//m:Items/t:CalendarItem/t:RequiredAttendees/t:Attendee', namespaces=soap_request.NAMESPACES) for attendee in required_attendees: attendee_properties = self.service._xpath_to_dict(element=attendee, property_map=property_map, namespace_map=soap_request.NAMESPACES) attendee_properties[u'required'] = True if u'last_response' not in attendee_properties: attendee_properties[u'last_response'] = None if u'email' in attendee_properties: result.append(attendee_properties) optional_attendees = response.xpath(u'//m:Items/t:CalendarItem/t:OptionalAttendees/t:Attendee', namespaces=soap_request.NAMESPACES) for attendee in optional_attendees: attendee_properties = self.service._xpath_to_dict(element=attendee, property_map=property_map, namespace_map=soap_request.NAMESPACES) attendee_properties[u'required'] = False if u'last_response' not in attendee_properties: attendee_properties[u'last_response'] = None if u'email' in attendee_properties: result.append(attendee_properties) return result def _parse_event_conflicts(self, response): conflicting_ids = response.xpath(u'//m:Items/t:CalendarItem/t:ConflictingMeetings/t:CalendarItem/t:ItemId', namespaces=soap_request.NAMESPACES) return [id_element.get(u"Id") for id_element in conflicting_ids] class Exchange2010FolderService(BaseExchangeFolderService): def folder(self, id=None, **kwargs): return Exchange2010Folder(service=self.service, id=id, **kwargs) def get_folder(self, id): """ :param str id: The Exchange ID of the folder to retrieve from the Exchange store. Retrieves the folder specified by the id, from the Exchange store. **Examples**:: folder = service.folder().get_folder(id) """ return Exchange2010Folder(service=self.service, id=id) def new_folder(self, **properties): """ new_folder(display_name=display_name, folder_type=folder_type, parent_id=parent_id) :param str display_name: The display name given to the new folder. :param str folder_type: The type of folder to create. Possible values are 'Folder', 'CalendarFolder', 'ContactsFolder', 'SearchFolder', 'TasksFolder'. :param str parent_id: The parent folder where the new folder will be created. Creates a new folder with the given properties. Not saved until you call the create() method. **Examples**:: folder = service.folder().new_folder( display_name=u"New Folder Name", folder_type="CalendarFolder", parent_id='calendar', ) folder.create() """ return Exchange2010Folder(service=self.service, **properties) def find_folder(self, parent_id): """ find_folder(parent_id) :param str parent_id: The parent folder to list. This method will return a list of sub-folders to a given parent folder. **Examples**:: # Iterate through folders within the default 'calendar' folder. folders = service.folder().find_folder(parent_id='calendar') for folder in folders: print(folder.display_name) # Delete all folders within the 'calendar' folder. folders = service.folder().find_folder(parent_id='calendar') for folder in folders: folder.delete() """ body = soap_request.find_folder(parent_id=parent_id, format=u'AllProperties') response_xml = self.service.send(body) return self._parse_response_for_find_folder(response_xml) def _parse_response_for_find_folder(self, response): result = [] folders = response.xpath(u'//t:Folders/t:*', namespaces=soap_request.NAMESPACES) for folder in folders: result.append( Exchange2010Folder( service=self.service, xml=etree.fromstring(etree.tostring(folder)) # Might be a better way to do this ) ) return result class Exchange2010Folder(BaseExchangeFolder): def _init_from_service(self, id): body = soap_request.get_folder(folder_id=id, format=u'AllProperties') response_xml = self.service.send(body) properties = self._parse_response_for_get_folder(response_xml) self._update_properties(properties) return self def _init_from_xml(self, xml): properties = self._parse_response_for_get_folder(xml) self._update_properties(properties) return self def create(self): """ Creates a folder in Exchange. :: calendar = service.folder().new_folder( display_name=u"New Folder Name", folder_type="CalendarFolder", parent_id='calendar', ) calendar.create() """ self.validate() body = soap_request.new_folder(self) response_xml = self.service.send(body) self._id, self._change_key = self._parse_id_and_change_key_from_response(response_xml) return self def delete(self): """ Deletes a folder from the Exchange store. :: folder = service.folder().get_folder(id) print("Deleting folder: %s" % folder.display_name) folder.delete() """ if not self.id: raise TypeError(u"You can't delete a folder that hasn't been created yet.") body = soap_request.delete_folder(self) response_xml = self.service.send(body) # noqa # TODO: verify deletion self._id = None self._change_key = None return None def move_to(self, folder_id): """ :param str folder_id: The Folder ID of what will be the new parent folder, of this folder. Move folder to a different location, specified by folder_id:: folder = service.folder().get_folder(id) folder.move_to(folder_id="ID of new location's folder") """ if not folder_id: raise TypeError(u"You can't move to a non-existant folder") if not isinstance(folder_id, BASESTRING_TYPES): raise TypeError(u"folder_id must be a string") if not self.id: raise TypeError(u"You can't move a folder that hasn't been created yet.") response_xml = self.service.send(soap_request.move_folder(self, folder_id)) # noqa result_id, result_key = self._parse_id_and_change_key_from_response(response_xml) if self.id != result_id: raise ValueError(u"MoveFolder returned success but requested folder not moved") self.parent_id = folder_id return self def _parse_response_for_get_folder(self, response): FOLDER_PATH = u'//t:Folder | //t:CalendarFolder | //t:ContactsFolder | //t:SearchFolder | //t:TasksFolder' path = response.xpath(FOLDER_PATH, namespaces=soap_request.NAMESPACES)[0] result = self._parse_folder_properties(path) return result def _parse_folder_properties(self, response): property_map = { u'display_name': {u'xpath': u't:DisplayName'}, } self._id, self._change_key = self._parse_id_and_change_key_from_response(response) self._parent_id = self._parse_parent_id_and_change_key_from_response(response)[0] self.folder_type = etree.QName(response).localname return self.service._xpath_to_dict(element=response, property_map=property_map, namespace_map=soap_request.NAMESPACES) def _parse_id_and_change_key_from_response(self, response): id_elements = response.xpath(u'//t:FolderId', namespaces=soap_request.NAMESPACES) if id_elements: id_element = id_elements[0] return id_element.get(u"Id", None), id_element.get(u"ChangeKey", None) else: return None, None def _parse_parent_id_and_change_key_from_response(self, response): id_elements = response.xpath(u'//t:ParentFolderId', namespaces=soap_request.NAMESPACES) if id_elements: id_element = id_elements[0] return id_element.get(u"Id", None), id_element.get(u"ChangeKey", None) else: return None, None
models/recall/word2vec/static_model.py
ziyoujiyi/PaddleRec
2,739
14150
<filename>models/recall/word2vec/static_model.py<gh_stars>1000+ # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F import math from net import Word2VecLayer, Word2VecInferLayer class StaticModel(object): def __init__(self, config): self.cost = None self.metrics = {} self.config = config self._init_hyper_parameters() def _init_hyper_parameters(self): self.sparse_feature_number = self.config.get( "hyper_parameters.sparse_feature_number") self.sparse_feature_dim = self.config.get( "hyper_parameters.sparse_feature_dim") self.neg_num = self.config.get("hyper_parameters.neg_num") self.with_shuffle_batch = self.config.get( "hyper_parameters.with_shuffle_batch") self.learning_rate = self.config.get( "hyper_parameters.optimizer.learning_rate") self.decay_steps = self.config.get( "hyper_parameters.optimizer.decay_steps") self.decay_rate = self.config.get( "hyper_parameters.optimizer.decay_rate") def create_feeds(self, is_infer=False): if is_infer: analogy_a = paddle.static.data( name="analogy_a", shape=[None, 1], dtype='int64') analogy_b = paddle.static.data( name="analogy_b", shape=[None, 1], dtype='int64') analogy_c = paddle.static.data( name="analogy_c", shape=[None, 1], dtype='int64') #analogy_d = paddle.static.data( # name="analogy_d", shape=[None], dtype='int64') return [analogy_a, analogy_b, analogy_c] input_word = paddle.static.data( name="input_word", shape=[None, 1], dtype='int64') true_word = paddle.static.data( name='true_label', shape=[None, 1], dtype='int64') if self.with_shuffle_batch: return [input_word, true_word] neg_word = paddle.static.data( name="neg_label", shape=[None, self.neg_num], dtype='int64') return [input_word, true_word, neg_word] def net(self, inputs, is_infer=False): word2vec_model = Word2VecLayer( self.sparse_feature_number, self.sparse_feature_dim, self.neg_num, emb_name="emb", emb_w_name="emb_w", emb_b_name="emb_b") true_logits, neg_logits = word2vec_model.forward(inputs) label_ones = paddle.full( shape=[paddle.shape(true_logits)[0], 1], fill_value=1.0) label_zeros = paddle.full( shape=[paddle.shape(true_logits)[0], self.neg_num], fill_value=0.0) true_logits = paddle.nn.functional.sigmoid(true_logits) true_xent = paddle.nn.functional.binary_cross_entropy(true_logits, label_ones) neg_logits = paddle.nn.functional.sigmoid(neg_logits) neg_xent = paddle.nn.functional.binary_cross_entropy(neg_logits, label_zeros) cost = paddle.add(true_xent, neg_xent) avg_cost = paddle.mean(x=cost) self._cost = avg_cost fetch_dict = {'loss': avg_cost} return fetch_dict def create_optimizer(self, strategy=None): optimizer = paddle.optimizer.SGD(learning_rate=self.learning_rate) # learning_rate=paddle.fluid.layers.exponential_decay( # learning_rate=self.learning_rate, # decay_steps=self.decay_steps, # decay_rate=self.decay_rate, # staircase=True)) if strategy != None: import paddle.distributed.fleet as fleet optimizer = fleet.distributed_optimizer(optimizer, strategy) return optimizer def infer_net(self, input): #[analogy_a, analogy_b, analogy_c] = inputs all_label = paddle.static.data( name="all_label", shape=[self.sparse_feature_number], dtype='int64') word2vec = Word2VecInferLayer(self.sparse_feature_number, self.sparse_feature_dim, "emb") val, pred_idx = word2vec.forward(input[0], input[1], input[2], all_label) fetch_dict = {'pred_idx': pred_idx} return fetch_dict
test/test_tools.py
cokelaer/sequana
138
14153
<gh_stars>100-1000 from sequana.tools import bam_to_mapped_unmapped_fastq, reverse_complement, StatsBAM2Mapped from sequana import sequana_data from sequana.tools import bam_get_paired_distance, GZLineCounter, PairedFastQ from sequana.tools import genbank_features_parser def test_StatsBAM2Mapped(): data = sequana_data("test.bam", "testing") res = StatsBAM2Mapped(data) res.to_html() def test_bam2fastq(): data = sequana_data("test.bam", "testing") res = bam_to_mapped_unmapped_fastq(data) def test_reverse_complement(): assert reverse_complement("AACCGGTTA") == 'TAACCGGTT' def test_reverse(): from sequana.tools import reverse assert reverse("AACCGG") == 'GGCCAA' def test_distance(): data = sequana_data("test.bam", "testing") distances = bam_get_paired_distance(data) def test_gc_content(): from sequana.tools import gc_content data = sequana_data('measles.fa', "testing") gc_content(data, 10)['chr1'] gc_content(data, 101, circular=True)['chr1'] def test_genbank_features_parser(): data = sequana_data("JB409847.gbk") genbank_features_parser(data) def test_gzlinecounter(): assert len(GZLineCounter(sequana_data("test.fastq.gz"))) == 1000 def test_paired_file(): f1 = sequana_data("test.fastq.gz") f2 = sequana_data("test.fastq.gz") assert PairedFastQ(f1,f2).is_synchronised()
configs/mmrotate/rotated-detection_tensorrt_dynamic-320x320-1024x1024.py
grimoire/mmdeploy
746
14156
<filename>configs/mmrotate/rotated-detection_tensorrt_dynamic-320x320-1024x1024.py _base_ = ['./rotated-detection_static.py', '../_base_/backends/tensorrt.py'] onnx_config = dict( output_names=['dets', 'labels'], input_shape=None, dynamic_axes={ 'input': { 0: 'batch', 2: 'height', 3: 'width' }, 'dets': { 0: 'batch', 1: 'num_dets', }, 'labels': { 0: 'batch', 1: 'num_dets', }, }, ) backend_config = dict( common_config=dict(max_workspace_size=1 << 30), model_inputs=[ dict( input_shapes=dict( input=dict( min_shape=[1, 3, 320, 320], opt_shape=[1, 3, 1024, 1024], max_shape=[1, 3, 1024, 1024]))) ])
datasets.py
Tracesource/DCEC
154
14168
import numpy as np def load_mnist(): # the data, shuffled and split between train and test sets from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x = np.concatenate((x_train, x_test)) y = np.concatenate((y_train, y_test)) x = x.reshape(-1, 28, 28, 1).astype('float32') x = x/255. print('MNIST:', x.shape) return x, y def load_usps(data_path='./data/usps'): import os if not os.path.exists(data_path+'/usps_train.jf'): if not os.path.exists(data_path+'/usps_train.jf.gz'): os.system('wget http://www-i6.informatik.rwth-aachen.de/~keysers/usps_train.jf.gz -P %s' % data_path) os.system('wget http://www-i6.informatik.rwth-aachen.de/~keysers/usps_test.jf.gz -P %s' % data_path) os.system('gunzip %s/usps_train.jf.gz' % data_path) os.system('gunzip %s/usps_test.jf.gz' % data_path) with open(data_path + '/usps_train.jf') as f: data = f.readlines() data = data[1:-1] data = [list(map(float, line.split())) for line in data] data = np.array(data) data_train, labels_train = data[:, 1:], data[:, 0] with open(data_path + '/usps_test.jf') as f: data = f.readlines() data = data[1:-1] data = [list(map(float, line.split())) for line in data] data = np.array(data) data_test, labels_test = data[:, 1:], data[:, 0] x = np.concatenate((data_train, data_test)).astype('float32') x /= 2.0 x = x.reshape([-1, 16, 16, 1]) y = np.concatenate((labels_train, labels_test)) print('USPS samples', x.shape) return x, y
tests/integration_tests/framework/flask_utils.py
ilan-WS/cloudify-manager
124
14197
<reponame>ilan-WS/cloudify-manager<gh_stars>100-1000 ######### # Copyright (c) 2013 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging from cloudify.utils import setup_logger from integration_tests.framework.docker import (execute, copy_file_to_manager) from integration_tests.tests.constants import MANAGER_PYTHON from integration_tests.tests.utils import get_resource logger = setup_logger('Flask Utils', logging.INFO) security_config = None PREPARE_SCRIPT_PATH = '/tmp/prepare_reset_storage.py' SCRIPT_PATH = '/tmp/reset_storage.py' CONFIG_PATH = '/tmp/reset_storage_config.json' def prepare_reset_storage_script(container_id): reset_script = get_resource('scripts/reset_storage.py') prepare = get_resource('scripts/prepare_reset_storage.py') copy_file_to_manager(container_id, reset_script, SCRIPT_PATH) copy_file_to_manager(container_id, prepare, PREPARE_SCRIPT_PATH) execute(container_id, [MANAGER_PYTHON, PREPARE_SCRIPT_PATH, '--config', CONFIG_PATH]) def reset_storage(container_id): logger.info('Resetting PostgreSQL DB') # reset the storage by calling a script on the manager, to access # localhost-only APIs (rabbitmq management api) execute(container_id, [MANAGER_PYTHON, SCRIPT_PATH, '--config', CONFIG_PATH]) def set_ldap(config_data): logger.info('Setting LDAP configuration') _prepare_set_ldap_script() execute("{manager_python} {script_path} --config '{cfg_data}'" .format(manager_python=MANAGER_PYTHON, script_path='/tmp/set_ldap.py', cfg_data=json.dumps(config_data))) def _prepare_set_ldap_script(): set_ldap_script = get_resource('scripts/set_ldap.py') copy_file_to_manager(set_ldap_script, '/tmp/set_ldap.py')
test/talker.py
cjds/rosgo
148
14211
#!/usr/bin/env python import rospy from std_msgs.msg import String def talker(): pub = rospy.Publisher('chatter', String) rospy.init_node('talker', anonymous=True) while not rospy.is_shutdown(): str = "%s: hello world %s" % (rospy.get_name(), rospy.get_time()) rospy.loginfo(str) pub.publish(String(str)) rospy.sleep(1.0) if __name__ == '__main__': try: talker() except rospy.ROSInterruptException: pass
tests/io/test_kepseismic.py
jorgemarpa/lightkurve
235
14217
import pytest from astropy.io import fits import numpy as np from lightkurve.io.kepseismic import read_kepseismic_lightcurve from lightkurve.io.detect import detect_filetype @pytest.mark.remote_data def test_detect_kepseismic(): """Can we detect the correct format for KEPSEISMIC files?""" url = "https://archive.stsci.edu/hlsps/kepseismic/001200000/92147/20d-filter/hlsp_kepseismic_kepler_phot_kplr001292147-20d_kepler_v1_cor-filt-inp.fits" f = fits.open(url) assert detect_filetype(f) == "KEPSEISMIC" @pytest.mark.remote_data def test_read_kepseismic(): """Can we read KEPSEISMIC files?""" url = "https://archive.stsci.edu/hlsps/kepseismic/001200000/92147/20d-filter/hlsp_kepseismic_kepler_phot_kplr001292147-20d_kepler_v1_cor-filt-inp.fits" with fits.open(url, mode="readonly") as hdulist: fluxes = hdulist[1].data["FLUX"] lc = read_kepseismic_lightcurve(url) flux_lc = lc.flux.value # print(flux_lc, fluxes) assert np.sum(fluxes) == np.sum(flux_lc)
recipes/Python/223585_Stable_deep_sorting_dottedindexed_attributes/recipe-223585.py
tdiprima/code
2,023
14219
<gh_stars>1000+ def sortByAttrs(seq, attrs): listComp = ['seq[:] = [('] for attr in attrs: listComp.append('seq[i].%s, ' % attr) listComp.append('i, seq[i]) for i in xrange(len(seq))]') exec('%s' % ''.join(listComp)) seq.sort() seq[:] = [obj[-1] for obj in seq] return # # begin test code # from random import randint class a: def __init__(self): self.x = (randint(1, 5), randint(1, 5)) class b: def __init__(self): self.x = randint(1, 5) self.y = (a(), a()) class c: def __init__(self, arg): self.x = arg self.y = b() if __name__ == '__main__': aList = [c(1), c(2), c(3), c(4), c(5), c(6)] print '\n...to be sorted by obj.y.y[1].x[1]' print ' then, as needed, by obj.y.x' print ' then, as needed, by obj.x\n\n ', for i in range(6): print '(' + str(aList[i].y.y[1].x[1]) + ',', print str(aList[i].y.x) + ',', print str(aList[i].x) + ') ', sortByAttrs(aList, ['y.y[1].x[1]', 'y.x', 'x']) print '\n\n...now sorted by listed attributes.\n\n ', for i in range(6): print '(' + str(aList[i].y.y[1].x[1]) + ',', print str(aList[i].y.x) + ',', print str(aList[i].x) + ') ', print # # end test code #
spirit/topic/forms.py
ImaginaryLandscape/Spirit
974
14220
<gh_stars>100-1000 # -*- coding: utf-8 -*- from django import forms from django.utils.translation import gettext_lazy as _ from django.utils.encoding import smart_bytes from django.utils import timezone from ..core import utils from ..core.utils.forms import NestedModelChoiceField from ..category.models import Category from .models import Topic class TopicForm(forms.ModelForm): topic_hash = forms.CharField( max_length=32, widget=forms.HiddenInput, required=False) class Meta: model = Topic fields = ('title', 'category') def __init__(self, user, *args, **kwargs): super(TopicForm, self).__init__(*args, **kwargs) self.user = user self.fields['category'] = NestedModelChoiceField( queryset=Category.objects.visible().opened().ordered(), related_name='category_set', parent_field='parent_id', label_field='title', label=_("Category"), empty_label=_("Choose a category")) if self.instance.pk and not user.st.is_moderator: del self.fields['category'] def get_category(self): return self.cleaned_data['category'] def get_topic_hash(self): topic_hash = self.cleaned_data.get('topic_hash', None) if topic_hash: return topic_hash return utils.get_hash(( smart_bytes(self.cleaned_data['title']), smart_bytes('category-{}'.format(self.cleaned_data['category'].pk)))) def save(self, commit=True): if not self.instance.pk: self.instance.user = self.user self.instance.reindex_at = timezone.now() return super(TopicForm, self).save(commit)
package_manager/util_test.py
shahriak/dotnet5
10,302
14242
import unittest import os from six import StringIO from package_manager import util CHECKSUM_TXT = "1915adb697103d42655711e7b00a7dbe398a33d7719d6370c01001273010d069" DEBIAN_JESSIE_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" VERSION_ID="8" VERSION="Debian GNU/Linux 8 (jessie)" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ DEBIAN_STRETCH_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" VERSION_ID="9" VERSION="Debian GNU/Linux 9 (stretch)" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ DEBIAN_BUSTER_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" VERSION_ID="10" VERSION="Debian GNU/Linux 10 (buster)" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ # VERSION and VERSION_ID aren't set on unknown distros DEBIAN_UNKNOWN_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ osReleaseForDistro = { "jessie": DEBIAN_JESSIE_OS_RELEASE, "stretch": DEBIAN_STRETCH_OS_RELEASE, "buster": DEBIAN_BUSTER_OS_RELEASE, "???": DEBIAN_UNKNOWN_OS_RELEASE, } class TestUtil(unittest.TestCase): def test_sha256(self): current_dir = os.path.dirname(__file__) filename = os.path.join(current_dir, 'testdata', 'checksum.txt') actual = util.sha256_checksum(filename) self.assertEqual(CHECKSUM_TXT, actual) def test_generate_debian_os_release(self): for distro, expected_output in osReleaseForDistro.items(): output_file = StringIO() util.generate_os_release(distro, output_file) self.assertEqual(expected_output, output_file.getvalue()) if __name__ == '__main__': unittest.main()
homeassistant/components/smarthab/light.py
tbarbette/core
22,481
14267
<gh_stars>1000+ """Support for SmartHab device integration.""" from datetime import timedelta import logging import pysmarthab from requests.exceptions import Timeout from homeassistant.components.light import LightEntity from . import DATA_HUB, DOMAIN _LOGGER = logging.getLogger(__name__) SCAN_INTERVAL = timedelta(seconds=60) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up SmartHab lights from a config entry.""" hub = hass.data[DOMAIN][config_entry.entry_id][DATA_HUB] entities = ( SmartHabLight(light) for light in await hub.async_get_device_list() if isinstance(light, pysmarthab.Light) ) async_add_entities(entities, True) class SmartHabLight(LightEntity): """Representation of a SmartHab Light.""" def __init__(self, light): """Initialize a SmartHabLight.""" self._light = light @property def unique_id(self) -> str: """Return a unique ID.""" return self._light.device_id @property def name(self) -> str: """Return the display name of this light.""" return self._light.label @property def is_on(self) -> bool: """Return true if light is on.""" return self._light.state async def async_turn_on(self, **kwargs): """Instruct the light to turn on.""" await self._light.async_turn_on() async def async_turn_off(self, **kwargs): """Instruct the light to turn off.""" await self._light.async_turn_off() async def async_update(self): """Fetch new state data for this light.""" try: await self._light.async_update() except Timeout: _LOGGER.error( "Reached timeout while updating light %s from API", self.entity_id )
src/python/pants/backend/docker/util_rules/docker_build_context_test.py
pantsbuild/pants
1,806
14300
<gh_stars>1000+ # Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from textwrap import dedent from typing import Any, ContextManager import pytest from pants.backend.docker.goals import package_image from pants.backend.docker.subsystems import dockerfile_parser from pants.backend.docker.subsystems.dockerfile_parser import DockerfileInfo from pants.backend.docker.target_types import DockerImageTarget from pants.backend.docker.util_rules import ( dependencies, docker_binary, docker_build_args, docker_build_context, docker_build_env, dockerfile, ) from pants.backend.docker.util_rules.docker_build_args import DockerBuildArgs from pants.backend.docker.util_rules.docker_build_context import ( DockerBuildContext, DockerBuildContextRequest, ) from pants.backend.docker.util_rules.docker_build_env import DockerBuildEnvironment from pants.backend.docker.value_interpolation import ( DockerBuildArgsInterpolationValue, DockerInterpolationContext, DockerInterpolationValue, ) from pants.backend.python import target_types_rules from pants.backend.python.goals import package_pex_binary from pants.backend.python.goals.package_pex_binary import PexBinaryFieldSet from pants.backend.python.target_types import PexBinary from pants.backend.python.util_rules import pex_from_targets from pants.backend.shell.target_types import ShellSourcesGeneratorTarget, ShellSourceTarget from pants.backend.shell.target_types import rules as shell_target_types_rules from pants.core.goals.package import BuiltPackage from pants.core.target_types import FilesGeneratorTarget from pants.core.target_types import rules as core_target_types_rules from pants.engine.addresses import Address from pants.engine.fs import EMPTY_DIGEST, EMPTY_SNAPSHOT, Snapshot from pants.engine.internals.scheduler import ExecutionError from pants.testutil.pytest_util import no_exception from pants.testutil.rule_runner import QueryRule, RuleRunner def create_rule_runner() -> RuleRunner: rule_runner = RuleRunner( rules=[ *core_target_types_rules(), *dependencies.rules(), *docker_binary.rules(), *docker_build_args.rules(), *docker_build_context.rules(), *docker_build_env.rules(), *dockerfile.rules(), *dockerfile_parser.rules(), *package_image.rules(), *package_pex_binary.rules(), *pex_from_targets.rules(), *shell_target_types_rules(), *target_types_rules.rules(), QueryRule(BuiltPackage, [PexBinaryFieldSet]), QueryRule(DockerBuildContext, (DockerBuildContextRequest,)), ], target_types=[ DockerImageTarget, FilesGeneratorTarget, PexBinary, ShellSourcesGeneratorTarget, ShellSourceTarget, ], ) return rule_runner @pytest.fixture def rule_runner() -> RuleRunner: return create_rule_runner() def assert_build_context( rule_runner: RuleRunner, address: Address, *, build_upstream_images: bool = False, expected_files: list[str], expected_interpolation_context: dict[str, dict[str, str] | DockerInterpolationValue] | None = None, pants_args: list[str] | None = None, runner_options: dict[str, Any] | None = None, ) -> DockerBuildContext: if runner_options is None: runner_options = {} runner_options.setdefault("env_inherit", set()).update({"PATH", "PYENV_ROOT", "HOME"}) rule_runner.set_options(pants_args or [], **runner_options) context = rule_runner.request( DockerBuildContext, [ DockerBuildContextRequest( address=address, build_upstream_images=build_upstream_images, ) ], ) snapshot = rule_runner.request(Snapshot, [context.digest]) assert sorted(expected_files) == sorted(snapshot.files) if expected_interpolation_context is not None: if "build_args" in expected_interpolation_context: expected_interpolation_context["build_args"] = DockerBuildArgsInterpolationValue( expected_interpolation_context["build_args"] ) assert context.interpolation_context == DockerInterpolationContext.from_dict( expected_interpolation_context ) return context def test_file_dependencies(rule_runner: RuleRunner) -> None: rule_runner.write_files( { # img_A -> files_A # img_A -> img_B "src/a/BUILD": dedent( """\ docker_image(name="img_A", dependencies=[":files_A", "src/b:img_B"]) files(name="files_A", sources=["files/**"]) """ ), "src/a/Dockerfile": "FROM base", "src/a/files/a01": "", "src/a/files/a02": "", # img_B -> files_B "src/b/BUILD": dedent( """\ docker_image(name="img_B", dependencies=[":files_B"]) files(name="files_B", sources=["files/**"]) """ ), "src/b/Dockerfile": "FROM base", "src/b/files/b01": "", "src/b/files/b02": "", # Mixed "src/c/BUILD": dedent( """\ docker_image(name="img_C", dependencies=["src/a:files_A", "src/b:files_B"]) """ ), "src/c/Dockerfile": "FROM base", } ) # We want files_B in build context for img_B assert_build_context( rule_runner, Address("src/b", target_name="img_B"), expected_files=["src/b/Dockerfile", "src/b/files/b01", "src/b/files/b02"], ) # We want files_A in build context for img_A, but not files_B assert_build_context( rule_runner, Address("src/a", target_name="img_A"), expected_files=["src/a/Dockerfile", "src/a/files/a01", "src/a/files/a02"], ) # Mixed. assert_build_context( rule_runner, Address("src/c", target_name="img_C"), expected_files=[ "src/c/Dockerfile", "src/a/files/a01", "src/a/files/a02", "src/b/files/b01", "src/b/files/b02", ], ) def test_from_image_build_arg_dependency(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "src/upstream/BUILD": dedent( """\ docker_image( name="image", repository="upstream/{name}", instructions=["FROM alpine"], ) """ ), "src/downstream/BUILD": "docker_image(name='image')", "src/downstream/Dockerfile": dedent( """\ ARG BASE_IMAGE=src/upstream:image FROM $BASE_IMAGE """ ), } ) assert_build_context( rule_runner, Address("src/downstream", target_name="image"), expected_files=["src/downstream/Dockerfile"], build_upstream_images=True, expected_interpolation_context={ "baseimage": {"tag": "latest"}, "stage0": {"tag": "latest"}, "build_args": { "BASE_IMAGE": "upstream/image:latest", }, }, ) def test_files_out_of_tree(rule_runner: RuleRunner) -> None: # src/a:img_A -> res/static:files rule_runner.write_files( { "src/a/BUILD": dedent( """\ docker_image(name="img_A", dependencies=["res/static:files"]) """ ), "res/static/BUILD": dedent( """\ files(name="files", sources=["!BUILD", "**/*"]) """ ), "src/a/Dockerfile": "FROM base", "res/static/s01": "", "res/static/s02": "", "res/static/sub/s03": "", } ) assert_build_context( rule_runner, Address("src/a", target_name="img_A"), expected_files=[ "src/a/Dockerfile", "res/static/s01", "res/static/s02", "res/static/sub/s03", ], ) def test_packaged_pex_path(rule_runner: RuleRunner) -> None: # This test is here to ensure that we catch if there is any change in the generated path where # built pex binaries go, as we rely on that for dependency inference in the Dockerfile. rule_runner.write_files( { "src/docker/BUILD": """docker_image(dependencies=["src/python/proj/cli:bin"])""", "src/docker/Dockerfile": """FROM python""", "src/python/proj/cli/BUILD": """pex_binary(name="bin", entry_point="main.py")""", "src/python/proj/cli/main.py": """print("cli main")""", } ) assert_build_context( rule_runner, Address("src/docker", target_name="docker"), expected_files=["src/docker/Dockerfile", "src.python.proj.cli/bin.pex"], ) def test_interpolation_context_from_dockerfile(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "src/docker/BUILD": "docker_image()", "src/docker/Dockerfile": dedent( """\ FROM python:3.8 FROM alpine as interim FROM interim FROM scratch:1-1 as output """ ), } ) assert_build_context( rule_runner, Address("src/docker"), expected_files=["src/docker/Dockerfile"], expected_interpolation_context={ "baseimage": {"tag": "3.8"}, "stage0": {"tag": "3.8"}, "interim": {"tag": "latest"}, "stage2": {"tag": "latest"}, "output": {"tag": "1-1"}, "build_args": {}, }, ) def test_synthetic_dockerfile(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "src/docker/BUILD": dedent( """\ docker_image( instructions=[ "FROM python:3.8", "FROM alpine as interim", "FROM interim", "FROM scratch:1-1 as output", ] ) """ ), } ) assert_build_context( rule_runner, Address("src/docker"), expected_files=["src/docker/Dockerfile.docker"], expected_interpolation_context={ "baseimage": {"tag": "3.8"}, "stage0": {"tag": "3.8"}, "interim": {"tag": "latest"}, "stage2": {"tag": "latest"}, "output": {"tag": "1-1"}, "build_args": {}, }, ) def test_shell_source_dependencies(rule_runner: RuleRunner) -> None: rule_runner.write_files( { "src/docker/BUILD": dedent( """\ docker_image(dependencies=[":entrypoint", ":shell"]) shell_source(name="entrypoint", source="entrypoint.sh") shell_sources(name="shell", sources=["scripts/**/*.sh"]) """ ), "src/docker/Dockerfile": "FROM base", "src/docker/entrypoint.sh": "", "src/docker/scripts/s01.sh": "", "src/docker/scripts/s02.sh": "", "src/docker/scripts/random.file": "", } ) assert_build_context( rule_runner, Address("src/docker"), expected_files=[ "src/docker/Dockerfile", "src/docker/entrypoint.sh", "src/docker/scripts/s01.sh", "src/docker/scripts/s02.sh", ], ) def test_build_arg_defaults_from_dockerfile(rule_runner: RuleRunner) -> None: # Test that only explicitly defined build args in the BUILD file or pants configuraiton use the # environment for its values. rule_runner.write_files( { "src/docker/BUILD": dedent( """\ docker_image( extra_build_args=[ "base_version", ] ) """ ), "src/docker/Dockerfile": dedent( """\ ARG base_name=python ARG base_version=3.8 FROM ${base_name}:${base_version} ARG NO_DEF ENV opt=${NO_DEF} """ ), } ) assert_build_context( rule_runner, Address("src/docker"), runner_options={ "env": { "base_name": "no-effect", "base_version": "3.9", }, }, expected_files=["src/docker/Dockerfile"], expected_interpolation_context={ "baseimage": {"tag": "${base_version}"}, "stage0": {"tag": "${base_version}"}, "build_args": { # `base_name` is not listed here, as it was not an explicitly defined build arg. "base_version": "3.9", }, }, ) @pytest.mark.parametrize( "dockerfile_arg_value, extra_build_arg_value, expect", [ pytest.param(None, None, no_exception(), id="No args defined"), pytest.param( None, "", pytest.raises(ExecutionError, match=r"variable 'MY_ARG' is undefined"), id="No default value for build arg", ), pytest.param(None, "some default value", no_exception(), id="Default value for build arg"), pytest.param("", None, no_exception(), id="No build arg defined, and ARG without default"), pytest.param( "", "", pytest.raises(ExecutionError, match=r"variable 'MY_ARG' is undefined"), id="No default value from ARG", ), pytest.param( "", "some default value", no_exception(), id="Default value for build arg, ARG present" ), pytest.param( "some default value", None, no_exception(), id="No build arg defined, only ARG" ), pytest.param("some default value", "", no_exception(), id="Default value from ARG"), pytest.param( "some default value", "some other default", no_exception(), id="Default value for build arg, ARG default", ), ], ) def test_undefined_env_var_behavior( rule_runner: RuleRunner, dockerfile_arg_value: str | None, extra_build_arg_value: str | None, expect: ContextManager, ) -> None: dockerfile_arg = "" if dockerfile_arg_value is not None: dockerfile_arg = "ARG MY_ARG" if dockerfile_arg_value: dockerfile_arg += f"={dockerfile_arg_value}" extra_build_args = "" if extra_build_arg_value is not None: extra_build_args = 'extra_build_args=["MY_ARG' if extra_build_arg_value: extra_build_args += f"={extra_build_arg_value}" extra_build_args += '"],' rule_runner.write_files( { "src/docker/BUILD": dedent( f"""\ docker_image( {extra_build_args} ) """ ), "src/docker/Dockerfile": dedent( f"""\ FROM python:3.8 {dockerfile_arg} """ ), } ) with expect: assert_build_context( rule_runner, Address("src/docker"), expected_files=["src/docker/Dockerfile"], ) @pytest.fixture(scope="session") def build_context() -> DockerBuildContext: rule_runner = create_rule_runner() rule_runner.write_files( { "src/docker/BUILD": dedent( """\ docker_image( extra_build_args=["DEF_ARG"], instructions=[ "FROM python:3.8", "ARG MY_ARG", "ARG DEF_ARG=some-value", ], ) """ ), } ) return assert_build_context( rule_runner, Address("src/docker"), expected_files=["src/docker/Dockerfile.docker"], ) @pytest.mark.parametrize( "fmt_string, result, expectation", [ pytest.param( "{build_args.MY_ARG}", None, pytest.raises( ValueError, match=(r"The build arg 'MY_ARG' is undefined\. Defined build args are: DEF_ARG\."), ), id="ARG_NAME", ), pytest.param( "{build_args.DEF_ARG}", "some-value", no_exception(), id="DEF_ARG", ), ], ) def test_build_arg_behavior( build_context: DockerBuildContext, fmt_string: str, result: str | None, expectation: ContextManager, ) -> None: with expectation: assert fmt_string.format(**build_context.interpolation_context) == result def test_create_docker_build_context() -> None: context = DockerBuildContext.create( build_args=DockerBuildArgs.from_strings("ARGNAME=value1"), snapshot=EMPTY_SNAPSHOT, build_env=DockerBuildEnvironment.create({"ENVNAME": "value2"}), dockerfile_info=DockerfileInfo( address=Address("test"), digest=EMPTY_DIGEST, source="test/Dockerfile", putative_target_addresses=(), version_tags=("base latest", "stage1 1.2", "dev 2.0", "prod 2.0"), build_args=DockerBuildArgs.from_strings(), from_image_build_arg_names=(), copy_sources=(), ), ) assert list(context.build_args) == ["ARGNAME=value1"] assert dict(context.build_env.environment) == {"ENVNAME": "value2"} assert context.dockerfile == "test/Dockerfile" assert context.stages == ("base", "dev", "prod")
deeplab_resnet/__init__.py
tramper2/SIGGRAPH18SSS
390
14302
from .model import DeepLabResNetModel from .hc_deeplab import HyperColumn_Deeplabv2 from .image_reader import ImageReader, read_data_list, get_indicator_mat, get_batch_1chunk, read_an_image_from_disk, tf_wrap_get_patch, get_batch from .utils import decode_labels, inv_preprocess, prepare_label
joplin_web/api.py
foxmask/joplin-web
382
14389
# coding: utf-8 """ joplin-web """ from django.conf import settings from django.http.response import JsonResponse from django.urls import reverse from joplin_api import JoplinApiSync from joplin_web.utils import nb_notes_by_tag, nb_notes_by_folder import logging from rich import console console = console.Console() logger = logging.getLogger("joplin_web.app") joplin = JoplinApiSync(token=settings.JOPLIN_WEBCLIPPER_TOKEN) def get_folders(request): """ all the folders :param request :return: json """ res = joplin.get_folders() json_data = sorted(res.json(), key=lambda k: k['title']) data = nb_notes_by_folder(json_data) logger.debug(data) return JsonResponse(data, safe=False) def get_tags(request): res = joplin.get_tags() json_data = sorted(res.json(), key=lambda k: k['title']) data = nb_notes_by_tag(json_data) return JsonResponse(data, safe=False)
xs/layers/ops.py
eLeVeNnN/xshinnosuke
290
14422
from .base import * class Input(Layer): def __init__(self, input_shape: Union[List, Tuple], **kwargs): super(Input, self).__init__(input_shape=input_shape, **kwargs) self._shape = input_shape def call(self, x: F.Tensor, *args, **kwargs) -> F.Tensor: self._data = x return self._data class Reshape(Layer): def __init__(self, shape: Tuple, **kwargs): super().__init__(shape=shape, **kwargs) def call(self, x: F.Tensor, *args, **kwargs) -> F.Tensor: self._data = F.view(x, (-1, ) + self._shape, self._data) return self._data def compute_output_shape(self, input_shape: Union[List, Tuple] = None) -> Union[List, Tuple]: return self._shape class ZeroPadding2D(Layer): def __init__(self, padding, **kwargs): self.padding = padding super(ZeroPadding2D, self).__init__(**kwargs) def call(self, x: F.Tensor, *args, **kwargs) -> F.Tensor: self._data = F.pad2d(x, self.padding, self._data) return self._data def compute_output_shape(self, input_shape: Union[List, Tuple] = None) -> Union[List, Tuple]: self._shape = (input_shape[0], input_shape[1] + 2 * self.padding[0], input_shape[2] + 2 * self.padding[1]) return self._shape class Add(Layer): def __call__(self, inbounds: List[Layer], *args, **kwargs): for inbound in inbounds: self._in_bounds.append(inbound) inbound.add_out_bounds(self) self._shape = inbound.shape return self def init_layer_out_tensor(self, x : F.Tensor = None): x = self._in_bounds[0].data if x is None else x if self._data is None or x.shape[0] > self._data.shape_capacity[0]: self._data = Zeros()((x.shape[0],) + self.shape, requires_grad=self.trainable) self._data.to('static') for in_bound in self._in_bounds: self._data.add_in_bounds(in_bound.data) elif x.shape[0] < self._data.shape_capacity[0]: if GLOBAL.TRAINING: self._data.slices(slice(None, x.shape[0], None)) else: self._data = Zeros()((x.shape[0],) + self.shape, requires_grad=self.trainable) self._data.to('static') for in_bound in self._in_bounds: self._data.add_in_bounds(in_bound.data) else: self._data.slices(slice(None, None, None)) def forward(self, x: F.Tensor = None, *args, **kwargs) -> F.Tensor: self._data.zero_() for in_bound in self._in_bounds: GLOBAL.np.add(self._data.eval, in_bound.data.eval, out=self._data.eval) if GLOBAL.TRAINING and in_bound.data.requires_grad: initialize_ops_grad(in_bound.data) self._data.requires_grad = self._data.requires_grad or in_bound.data.requires_grad return self._data def compute_output_shape(self, input_shape: Union[List, Tuple] = None) -> Union[List, Tuple]: return self._shape def backward(self, gradients: F.Tensor = None): for in_bound in self._in_bounds: if in_bound.data.requires_grad: GLOBAL.np.add(in_bound.data.grad.eval, self._data.grad.eval, out=in_bound.data.grad.eval) self._data.zero_grad()
torchx/examples/apps/lightning_classy_vision/test/component_test.py
LaudateCorpus1/torchx
101
14438
<reponame>LaudateCorpus1/torchx<gh_stars>100-1000 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torchx.examples.apps.lightning_classy_vision.component as lightning_classy_vision from torchx.components.component_test_base import ComponentTestCase class DistributedComponentTest(ComponentTestCase): def test_trainer(self) -> None: self.validate(lightning_classy_vision, "trainer") def test_interpret(self) -> None: self.validate(lightning_classy_vision, "interpret")
third_party/xiuminglib/xiuminglib/vis/video.py
leehsiu/nerfactor
183
14440
<filename>third_party/xiuminglib/xiuminglib/vis/video.py from os.path import join, dirname import numpy as np from .text import put_text from .. import const from ..os import makedirs from ..imprt import preset_import from ..log import get_logger logger = get_logger() def make_video( imgs, fps=24, outpath=None, method='matplotlib', dpi=96, bitrate=-1): """Writes a list of images into a grayscale or color video. Args: imgs (list(numpy.ndarray)): Each image should be of type ``uint8`` or ``uint16`` and of shape H-by-W (grayscale) or H-by-W-by-3 (RGB). fps (int, optional): Frame rate. outpath (str, optional): Where to write the video to (a .mp4 file). ``None`` means ``os.path.join(const.Dir.tmp, 'make_video.mp4')``. method (str, optional): Method to use: ``'matplotlib'``, ``'opencv'``, ``'video_api'``. dpi (int, optional): Dots per inch when using ``matplotlib``. bitrate (int, optional): Bit rate in kilobits per second when using ``matplotlib``; reasonable values include 7200. Writes - A video of the images. """ if outpath is None: outpath = join(const.Dir.tmp, 'make_video.mp4') makedirs(dirname(outpath)) assert imgs, "Frame list is empty" for frame in imgs: assert np.issubdtype(frame.dtype, np.unsignedinteger), \ "Image type must be unsigned integer" h, w = imgs[0].shape[:2] for frame in imgs[1:]: assert frame.shape[:2] == (h, w), \ "All frames must have the same shape" if method == 'matplotlib': import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib import animation w_in, h_in = w / dpi, h / dpi fig = plt.figure(figsize=(w_in, h_in)) Writer = animation.writers['ffmpeg'] # may require you to specify path writer = Writer(fps=fps, bitrate=bitrate) def img_plt(arr): img_plt_ = plt.imshow(arr) ax = plt.gca() ax.set_position([0, 0, 1, 1]) ax.set_axis_off() return img_plt_ anim = animation.ArtistAnimation(fig, [(img_plt(x),) for x in imgs]) anim.save(outpath, writer=writer) # If obscure error like "ValueError: Invalid file object: <_io.Buff..." # occurs, consider upgrading matplotlib so that it prints out the real, # underlying ffmpeg error plt.close('all') elif method == 'opencv': cv2 = preset_import('cv2', assert_success=True) # TODO: debug codecs (see http://www.fourcc.org/codecs.php) if outpath.endswith('.mp4'): # fourcc = cv2.VideoWriter_fourcc(*'MJPG') # fourcc = cv2.VideoWriter_fourcc(*'X264') fourcc = cv2.VideoWriter_fourcc(*'H264') # fourcc = 0x00000021 elif outpath.endswith('.avi'): fourcc = cv2.VideoWriter_fourcc(*'XVID') else: raise NotImplementedError("Video type of\n\t%s" % outpath) vw = cv2.VideoWriter(outpath, fourcc, fps, (w, h)) for frame in imgs: if frame.ndim == 3: frame = frame[:, :, ::-1] # cv2 uses BGR vw.write(frame) vw.release() elif method == 'video_api': video_api = preset_import('video_api', assert_success=True) assert outpath.endswith('.webm'), "`video_api` requires .webm" with video_api.write(outpath, fps=fps) as h: for frame in imgs: if frame.ndim == 3 and frame.shape[2] == 4: frame = frame[:, :, :3] #frame = frame.astype(np.ubyte) h.add_frame(frame) else: raise ValueError(method) logger.debug("Images written as a video to:\n%s", outpath) def make_comparison_video( imgs1, imgs2, bar_width=4, bar_color=(1, 0, 0), sweep_vertically=False, sweeps=1, label1='', label2='', font_size=None, font_ttf=None, label1_top_left_xy=None, label2_top_left_xy=None, **make_video_kwargs): """Writes two lists of images into a comparison video that toggles between two videos with a sweeping bar. Args: imgs? (list(numpy.ndarray)): Each image should be of type ``uint8`` or ``uint16`` and of shape H-by-W (grayscale) or H-by-W-by-3 (RGB). bar_width (int, optional): Width of the sweeping bar. bar_color (tuple(float), optional): Bar and label RGB, normalized to :math:`[0,1]`. Defaults to red. sweep_vertically (bool, optional): Whether to sweep vertically or horizontally. sweeps (int, optional): Number of sweeps. label? (str, optional): Label for each video. font_size (int, optional): Font size. font_ttf (str, optional): Path to the .ttf font file. Defaults to Arial. label?_top_left_xy (tuple(int), optional): The XY coordinate of the label's top left corner. make_video_kwargs (dict, optional): Keyword arguments for :func:`make_video`. Writes - A comparison video. """ # Bar is perpendicular to sweep-along sweep_along = 0 if sweep_vertically else 1 bar_along = 1 if sweep_vertically else 0 # Number of frames n_frames = len(imgs1) assert n_frames == len(imgs2), \ "Videos to be compared have different numbers of frames" img_shape = imgs1[0].shape # Bar color according to image dtype img_dtype = imgs1[0].dtype bar_color = np.array(bar_color, dtype=img_dtype) if np.issubdtype(img_dtype, np.integer): bar_color *= np.iinfo(img_dtype).max # Map from frame index to bar location, considering possibly multiple trips bar_locs = [] for i in range(sweeps): ind = np.arange(0, img_shape[sweep_along]) if i % 2 == 1: # reverse every other trip ind = ind[::-1] bar_locs.append(ind) bar_locs = np.hstack(bar_locs) # all possible locations ind = np.linspace(0, len(bar_locs) - 1, num=n_frames, endpoint=True) bar_locs = [bar_locs[int(x)] for x in ind] # uniformly sampled # Label locations if label1_top_left_xy is None: # Label 1 at top left corner label1_top_left_xy = (int(0.1 * img_shape[1]), int(0.05 * img_shape[0])) if label2_top_left_xy is None: if sweep_vertically: # Label 2 at bottom left corner label2_top_left_xy = ( int(0.1 * img_shape[1]), int(0.75 * img_shape[0])) else: # Label 2 at top right corner label2_top_left_xy = ( int(0.7 * img_shape[1]), int(0.05 * img_shape[0])) frames = [] for i, (img1, img2) in enumerate(zip(imgs1, imgs2)): assert img1.shape == img_shape, f"`imgs1[{i}]` has a differnet shape" assert img2.shape == img_shape, f"`imgs2[{i}]` has a differnet shape" assert img1.dtype == img_dtype, f"`imgs1[{i}]` has a differnet dtype" assert img2.dtype == img_dtype, f"`imgs2[{i}]` has a differnet dtype" # Label the two images img1 = put_text( img1, label1, label_top_left_xy=label1_top_left_xy, font_size=font_size, font_color=bar_color, font_ttf=font_ttf) img2 = put_text( img2, label2, label_top_left_xy=label2_top_left_xy, font_size=font_size, font_color=bar_color, font_ttf=font_ttf) # Bar start and end bar_loc = bar_locs[i] bar_width_half = bar_width // 2 bar_start = max(0, bar_loc - bar_width_half) bar_end = min(bar_loc + bar_width_half, img_shape[sweep_along]) # Up to bar start, we show Image 1; bar end onwards, Image 2 img1 = np.take(img1, range(bar_start), axis=sweep_along) img2 = np.take( img2, range(bar_end, img_shape[sweep_along]), axis=sweep_along) # Between the two images, we show the bar actual_bar_width = img_shape[ sweep_along] - img1.shape[sweep_along] - img2.shape[sweep_along] reps = [1, 1, 1] reps[sweep_along] = actual_bar_width reps[bar_along] = img_shape[bar_along] bar_img = np.tile(bar_color, reps) frame = np.concatenate((img1, bar_img, img2), axis=sweep_along) frames.append(frame) make_video(frames, **make_video_kwargs)
cumulusci/core/config/BaseConfig.py
leboff/CumulusCI
163
14443
<reponame>leboff/CumulusCI<filename>cumulusci/core/config/BaseConfig.py<gh_stars>100-1000 import logging class BaseConfig(object): """BaseConfig provides a common interface for nested access for all Config objects in CCI.""" defaults = {} def __init__(self, config=None, keychain=None): if config is None: self.config = {} else: self.config = config self._init_logger() self._load_config() def _init_logger(self): """Initializes self.logger""" self.logger = logging.getLogger(__name__) def _load_config(self): """Subclasses may override this method to initialize :py:attr:`~config`""" pass def __getattr__(self, name): tree = name.split("__") if name.startswith("_"): raise AttributeError(f"Attribute {name} not found") value = None value_found = False config = self.config if len(tree) > 1: # Walk through the config dictionary using __ as a delimiter for key in tree[:-1]: config = config.get(key) if config is None: break if config and tree[-1] in config: value = config[tree[-1]] value_found = True if value_found: return value else: return self.defaults.get(name)
Network/class_func.py
Mobad225/S-DCNet
153
14446
# -*- coding: utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F import numpy as np # Func1: change density map into count map # density map: batch size * 1 * w * h def get_local_count(density_map,psize,pstride): IF_gpu = torch.cuda.is_available() # if gpu, return gpu IF_ret_gpu = (density_map.device.type == 'cuda') psize,pstride = int(psize),int(pstride) density_map = density_map.cpu().type(torch.float32) conv_kernel = torch.ones(1,1,psize,psize,dtype = torch.float32) if IF_gpu: density_map,conv_kernel = density_map.cuda(),conv_kernel.cuda() count_map = F.conv2d(density_map,conv_kernel,stride=pstride) if not IF_ret_gpu: count_map = count_map.cpu() return count_map # Func2: convert count to class (0->c-1) def Count2Class(count_map,label_indice): if isinstance(label_indice,np.ndarray): label_indice = torch.from_numpy(label_indice) IF_gpu = torch.cuda.is_available() IF_ret_gpu = (count_map.device.type == 'cuda') label_indice = label_indice.cpu().type(torch.float32) cls_num = len(label_indice)+1 cls_map = torch.zeros(count_map.size()).type(torch.LongTensor) if IF_gpu: count_map,label_indice,cls_map = count_map.cuda(),label_indice.cuda(),cls_map.cuda() for i in range(cls_num-1): if IF_gpu: cls_map = cls_map + (count_map >= label_indice[i]).cpu().type(torch.LongTensor).cuda() else: cls_map = cls_map + (count_map >= label_indice[i]).cpu().type(torch.LongTensor) if not IF_ret_gpu: cls_map = cls_map.cpu() return cls_map # Func3: convert class (0->c-1) to count number def Class2Count(pre_cls,label_indice): ''' # --Input: # 1.pre_cls is class label range in [0,1,2,...,C-1] # 2.label_indice not include 0 but the other points # --Output: # 1.count value, the same size as pre_cls ''' if isinstance(label_indice,np.ndarray): label_indice = torch.from_numpy(label_indice) label_indice = label_indice.squeeze() IF_gpu = torch.cuda.is_available() IF_ret_gpu = (pre_cls.device.type == 'cuda') # tranform interval to count value map label2count = [0.0] for (i,item) in enumerate(label_indice): if i<label_indice.size()[0]-1: tmp_count = (label_indice[i]+label_indice[i+1])/2 else: tmp_count = label_indice[i] label2count.append(tmp_count) label2count = torch.tensor(label2count) label2count = label2count.type(torch.FloatTensor) #outputs = outputs.max(dim=1)[1].cpu().data ORI_SIZE = pre_cls.size() pre_cls = pre_cls.reshape(-1).cpu() pre_counts = torch.index_select(label2count,0,pre_cls.cpu().type(torch.LongTensor)) pre_counts = pre_counts.reshape(ORI_SIZE) if IF_ret_gpu: pre_counts = pre_counts.cuda() return pre_counts if __name__ == '__main__': pre_cls = torch.Tensor([[0,1,2],[3,4,4]]) label_indice =torch.Tensor([0.5,1,1.5,2]) pre_counts = Class2Count(pre_cls,label_indice) print(pre_cls) print(label_indice) print(pre_counts) pre_cls = Count2Class(pre_counts,label_indice) print(pre_cls)
test/fixtures/python/analysis/main1.py
matsubara0507/semantic
8,844
14464
import a as b import b.c as e b.foo(1) e.baz(1)
tests/test_markdown_in_code_cells.py
st--/jupytext
5,378
14469
<filename>tests/test_markdown_in_code_cells.py """Issue #712""" from nbformat.v4.nbbase import new_code_cell, new_notebook from jupytext import reads, writes from jupytext.cell_to_text import three_backticks_or_more from jupytext.compare import compare, compare_notebooks from .utils import requires_myst def test_three_backticks_or_more(): assert three_backticks_or_more([""]) == "```" assert three_backticks_or_more(["``"]) == "```" assert three_backticks_or_more(["```python"]) == "````" assert three_backticks_or_more(["```"]) == "````" assert three_backticks_or_more(["`````python"]) == "``````" assert three_backticks_or_more(["`````"]) == "``````" def test_triple_backticks_in_code_cell( no_jupytext_version_number, nb=new_notebook( metadata={"main_language": "python"}, cells=[ new_code_cell( '''a = """ ``` foo ``` """''' ) ], ), text='''--- jupyter: jupytext: main_language: python --- ````python a = """ ``` foo ``` """ ```` ''', ): actual_text = writes(nb, fmt="md") compare(actual_text, text) actual_nb = reads(text, fmt="md") compare_notebooks(actual_nb, nb) @requires_myst def test_triple_backticks_in_code_cell_myst( no_jupytext_version_number, nb=new_notebook( metadata={"main_language": "python"}, cells=[ new_code_cell( '''a = """ ``` foo ``` """''' ) ], ), text='''--- jupytext: main_language: python --- ````{code-cell} a = """ ``` foo ``` """ ```` ''', ): actual_text = writes(nb, fmt="md:myst") compare(actual_text, text) actual_nb = reads(text, fmt="md:myst") compare_notebooks(actual_nb, nb) def test_alternate_tree_four_five_backticks( no_jupytext_version_number, nb=new_notebook( metadata={"main_language": "python"}, cells=[ new_code_cell('a = """\n```\n"""'), new_code_cell("b = 2"), new_code_cell('c = """\n````\n"""'), ], ), text='''--- jupyter: jupytext: main_language: python --- ````python a = """ ``` """ ```` ```python b = 2 ``` `````python c = """ ```` """ ````` ''', ): actual_text = writes(nb, fmt="md") compare(actual_text, text) actual_nb = reads(text, fmt="md") compare_notebooks(actual_nb, nb)
example/cifar10/fast_at.py
KuanKuanQAQ/ares
206
14471
<reponame>KuanKuanQAQ/ares ''' This file provides a wrapper class for Fast_AT (https://github.com/locuslab/fast_adversarial) model for CIFAR-10 dataset. ''' import sys import os import torch import torch.nn as nn import torch.nn.functional as F import tensorflow as tf from ares.model.pytorch_wrapper import pytorch_classifier_with_logits from ares.utils import get_res_path MODEL_PATH = get_res_path('./cifar10/cifar_model_weights_30_epochs.pth') def load(_): model = Fast_AT() model.load() return model @pytorch_classifier_with_logits(n_class=10, x_min=0.0, x_max=1.0, x_shape=(32, 32, 3), x_dtype=tf.float32, y_dtype=tf.int32) class Fast_AT(torch.nn.Module): def __init__(self): torch.nn.Module.__init__(self) self.model = PreActResNet18().cuda() self._mean_torch = torch.tensor((0.4914, 0.4822, 0.4465)).view(3,1,1).cuda() self._std_torch = torch.tensor((0.2471, 0.2435, 0.2616)).view(3,1,1).cuda() def forward(self, x): x = x.transpose(1, 2).transpose(1, 3).contiguous() input_var = (x.cuda() - self._mean_torch) / self._std_torch labels = self.model(input_var) return labels.cpu() def load(self): checkpoint = torch.load(MODEL_PATH) self.model.load_state_dict(checkpoint) self.model.float() self.model.eval() class PreActBlock(nn.Module): '''Pre-activation version of the BasicBlock.''' expansion = 1 def __init__(self, in_planes, planes, stride=1): super(PreActBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False) ) def forward(self, x): out = F.relu(self.bn1(x)) shortcut = self.shortcut(x) if hasattr(self, 'shortcut') else x out = self.conv1(out) out = self.conv2(F.relu(self.bn2(out))) out += shortcut return out class PreActBottleneck(nn.Module): '''Pre-activation version of the original Bottleneck module.''' expansion = 4 def __init__(self, in_planes, planes, stride=1): super(PreActBottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False) ) def forward(self, x): out = F.relu(self.bn1(x)) shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x out = self.conv1(out) out = self.conv2(F.relu(self.bn2(out))) out = self.conv3(F.relu(self.bn3(out))) out += shortcut return out class PreActResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(PreActResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.bn = nn.BatchNorm2d(512 * block.expansion) self.linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.relu(self.bn(out)) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def PreActResNet18(): return PreActResNet(PreActBlock, [2,2,2,2]) if __name__ == '__main__': if not os.path.exists(MODEL_PATH): if not os.path.exists(os.path.dirname(MODEL_PATH)): os.makedirs(os.path.dirname(MODEL_PATH), exist_ok=True) url = 'https://drive.google.com/file/d/1XM-v4hqi9u8EDrQ2xdCo37XXcM9q-R07/view' print('Please download "{}" to "{}".'.format(url, MODEL_PATH))
mayan/apps/linking/tests/test_smart_link_condition_views.py
atitaya1412/Mayan-EDMS
343
14474
<gh_stars>100-1000 from mayan.apps.testing.tests.base import GenericViewTestCase from ..events import event_smart_link_edited from ..permissions import permission_smart_link_edit from .mixins import ( SmartLinkConditionViewTestMixin, SmartLinkTestMixin, SmartLinkViewTestMixin ) class SmartLinkConditionViewTestCase( SmartLinkConditionViewTestMixin, SmartLinkTestMixin, SmartLinkViewTestMixin, GenericViewTestCase ): def setUp(self): super().setUp() self._create_test_smart_link() def test_smart_link_condition_create_view_no_permission(self): condition_count = self.test_smart_link.conditions.count() self._clear_events() response = self._request_test_smart_link_condition_create_view() self.assertEqual(response.status_code, 404) self.assertEqual( self.test_smart_link.conditions.count(), condition_count ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_smart_link_condition_create_view_with_access(self): self.grant_access( obj=self.test_smart_link, permission=permission_smart_link_edit ) condition_count = self.test_smart_link.conditions.count() self._clear_events() response = self._request_test_smart_link_condition_create_view() self.assertEqual(response.status_code, 302) self.assertEqual( self.test_smart_link.conditions.count(), condition_count + 1 ) events = self._get_test_events() self.assertEqual(events.count(), 1) self.assertEqual( events[0].action_object, self.test_smart_link_condition ) self.assertEqual(events[0].actor, self._test_case_user) self.assertEqual(events[0].target, self.test_smart_link) self.assertEqual(events[0].verb, event_smart_link_edited.id) def test_smart_link_condition_delete_view_no_permission(self): self._create_test_smart_link_condition() condition_count = self.test_smart_link.conditions.count() self._clear_events() response = self._request_test_smart_link_condition_delete_view() self.assertEqual(response.status_code, 404) self.assertEqual( self.test_smart_link.conditions.count(), condition_count ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_smart_link_condition_delete_view_with_access(self): self._create_test_smart_link_condition() self.grant_access( obj=self.test_smart_link, permission=permission_smart_link_edit ) condition_count = self.test_smart_link.conditions.count() self._clear_events() response = self._request_test_smart_link_condition_delete_view() self.assertEqual(response.status_code, 302) self.assertEqual( self.test_smart_link.conditions.count(), condition_count - 1 ) events = self._get_test_events() self.assertEqual(events.count(), 1) self.assertEqual(events[0].action_object, None) self.assertEqual(events[0].actor, self._test_case_user) self.assertEqual(events[0].target, self.test_smart_link) self.assertEqual(events[0].verb, event_smart_link_edited.id) def test_smart_link_condition_edit_view_no_permission(self): self._create_test_smart_link_condition() instance_values = self._model_instance_to_dictionary( instance=self.test_smart_link_condition ) self._clear_events() response = self._request_test_smart_link_condition_edit_view() self.assertEqual(response.status_code, 404) self.test_smart_link_condition.refresh_from_db() self.assertEqual( self._model_instance_to_dictionary( instance=self.test_smart_link_condition ), instance_values ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_smart_link_condition_edit_view_with_access(self): self._create_test_smart_link_condition() self.grant_access( obj=self.test_smart_link, permission=permission_smart_link_edit ) instance_values = self._model_instance_to_dictionary( instance=self.test_smart_link_condition ) self._clear_events() response = self._request_test_smart_link_condition_edit_view() self.assertEqual(response.status_code, 302) self.test_smart_link_condition.refresh_from_db() self.assertNotEqual( self._model_instance_to_dictionary( instance=self.test_smart_link_condition ), instance_values ) events = self._get_test_events() self.assertEqual(events.count(), 1) self.assertEqual( events[0].action_object, self.test_smart_link_condition ) self.assertEqual(events[0].actor, self._test_case_user) self.assertEqual(events[0].target, self.test_smart_link) self.assertEqual(events[0].verb, event_smart_link_edited.id) def test_smart_link_condition_list_view_no_permission(self): self._create_test_smart_link_condition() self._clear_events() response = self._request_test_smart_link_condition_list_view() self.assertNotContains( response=response, status_code=404, text=self.test_smart_link_condition.smart_link.label ) events = self._get_test_events() self.assertEqual(events.count(), 0) def test_smart_link_condition_list_view_with_access(self): self._create_test_smart_link_condition() self.grant_access( obj=self.test_smart_link, permission=permission_smart_link_edit ) self._clear_events() response = self._request_test_smart_link_condition_list_view() self.assertContains( response=response, status_code=200, text=self.test_smart_link_condition.smart_link.label ) events = self._get_test_events() self.assertEqual(events.count(), 0)
notebooks/container/__init__.py
DanieleBaranzini/sktime-tutorial-pydata-amsterdam-2020
114
14476
<gh_stars>100-1000 from container.base import TimeBase from container.array import TimeArray, TimeDtype from container.timeseries import TimeSeries from container.timeframe import TimeFrame
bh_tsne/prep_result.py
mr4jay/numerai
306
14502
import struct import numpy as np import pandas as pd df_train = pd.read_csv('../data/train_data.csv') df_valid = pd.read_csv('../data/valid_data.csv') df_test = pd.read_csv('../data/test_data.csv') with open('result.dat', 'rb') as f: N, = struct.unpack('i', f.read(4)) no_dims, = struct.unpack('i', f.read(4)) print(N, no_dims) mappedX = struct.unpack('{}d'.format(N * no_dims), f.read(8 * N * no_dims)) mappedX = np.array(mappedX).reshape((N, no_dims)) print(mappedX) tsne_train = mappedX[:len(df_train)] tsne_valid = mappedX[len(df_train):len(df_train)+len(df_valid)] tsne_test = mappedX[len(df_train)+len(df_valid):] assert(len(tsne_train) == len(df_train)) assert(len(tsne_valid) == len(df_valid)) assert(len(tsne_test) == len(df_test)) save_path = '../data/tsne_{}d_30p.npz'.format(no_dims) np.savez(save_path, train=tsne_train, valid=tsne_valid, test=tsne_test) print('Saved: {}'.format(save_path)) # landmarks, = struct.unpack('{}i'.format(N), f.read(4 * N)) # costs, = struct.unpack('{}d'.format(N), f.read(8 * N))
tools_d2/convert-pretrain-model-to-d2.py
nguyentritai2906/panoptic-deeplab
506
14526
<filename>tools_d2/convert-pretrain-model-to-d2.py #!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import pickle as pkl import sys import torch """ Usage: # download your pretrained model: wget https://github.com/LikeLy-Journey/SegmenTron/releases/download/v0.1.0/tf-xception65-270e81cf.pth -O x65.pth # run the conversion ./convert-pretrained-model-to-d2.py x65.pth x65.pkl # Then, use x65.pkl with the following changes in config: MODEL: WEIGHTS: "/path/to/x65.pkl" PIXEL_MEAN: [128, 128, 128] PIXEL_STD: [128, 128, 128] INPUT: FORMAT: "RGB" """ if __name__ == "__main__": input = sys.argv[1] obj = torch.load(input, map_location="cpu") res = {"model": obj, "__author__": "third_party", "matching_heuristics": True} with open(sys.argv[2], "wb") as f: pkl.dump(res, f)
pyActionRec/action_flow.py
Xiatian-Zhu/anet2016_cuhk
253
14531
<reponame>Xiatian-Zhu/anet2016_cuhk from config import ANET_CFG import sys sys.path.append(ANET_CFG.DENSE_FLOW_ROOT+'/build') from libpydenseflow import TVL1FlowExtractor import action_caffe import numpy as np class FlowExtractor(object): def __init__(self, dev_id, bound=20): TVL1FlowExtractor.set_device(dev_id) self._et = TVL1FlowExtractor(bound) def extract_flow(self, frame_list, new_size=None): """ This function extracts the optical flow and interleave x and y channels :param frame_list: :return: """ frame_size = frame_list[0].shape[:2] rst = self._et.extract_flow([x.tostring() for x in frame_list], frame_size[1], frame_size[0]) n_out = len(rst) if new_size is None: ret = np.zeros((n_out*2, frame_size[0], frame_size[1])) for i in xrange(n_out): ret[2*i, :] = np.fromstring(rst[i][0], dtype='uint8').reshape(frame_size) ret[2*i+1, :] = np.fromstring(rst[i][1], dtype='uint8').reshape(frame_size) else: import cv2 ret = np.zeros((n_out*2, new_size[1], new_size[0])) for i in xrange(n_out): ret[2*i, :] = cv2.resize(np.fromstring(rst[i][0], dtype='uint8').reshape(frame_size), new_size) ret[2*i+1, :] = cv2.resize(np.fromstring(rst[i][1], dtype='uint8').reshape(frame_size), new_size) return ret if __name__ == "__main__": import cv2 im1 = cv2.imread('../data/img_1.jpg') im2 = cv2.imread('../data/img_2.jpg') f = FlowExtractor(0) flow_frames = f.extract_flow([im1, im2]) from pylab import * plt.figure() plt.imshow(flow_frames[0]) plt.figure() plt.imshow(flow_frames[1]) plt.figure() plt.imshow(im1) plt.show() print flow_frames
apps/auth/views/wxlogin.py
rainydaygit/testtcloudserver
349
14534
from flask import Blueprint from apps.auth.business.wxlogin import WxLoginBusiness from apps.auth.extentions import validation, parse_json_form from library.api.render import json_detail_render wxlogin = Blueprint("wxlogin", __name__) @wxlogin.route('/', methods=['POST']) @validation('POST:wx_user_code') def wxuser_index_handler(): """ @api {post} /v1/wxlogin/ 登录 微信 @apiName WxLogin @apiGroup 用户 @apiDescription 登录微信 @apiParam {string} user_code 用户编码 @apiParamExample {json} Request-Example: { "user_code":"j2qL3QjNXXwa_4A0WJFDNJyPEx88HTHytARgRbr176g" } @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "code": 0, "data": { "token": "<PASSWORD>" }, "message": "" } """ user_code = parse_json_form('wx_user_code') ret, data, msg = WxLoginBusiness.get_user(user_code[0]) return json_detail_render(ret, data, msg)
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/s/star/star_needs_assignment_target_py35.py
ciskoinch8/vimrc
463
14558
""" Test PEP 0448 -- Additional Unpacking Generalizations https://www.python.org/dev/peps/pep-0448/ """ # pylint: disable=superfluous-parens, unnecessary-comprehension UNPACK_TUPLE = (*range(4), 4) UNPACK_LIST = [*range(4), 4] UNPACK_SET = {*range(4), 4} UNPACK_DICT = {'a': 1, **{'b': '2'}} UNPACK_DICT2 = {**UNPACK_DICT, "x": 1, "y": 2} UNPACK_DICT3 = {**{'a': 1}, 'a': 2, **{'a': 3}} UNPACK_IN_COMP = {elem for elem in (*range(10))} # [star-needs-assignment-target]
search_for_similar_images__perceptual_hash__phash/ui/SelectDirBox.py
DazEB2/SimplePyScripts
117
14561
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # SOURCE: https://github.com/gil9red/VideoStreamingWithEncryption/blob/37cf7f501460a286ec44a20db7b2403e8cb05d97/server_GUI_Qt/inner_libs/gui/SelectDirBox.py import os from PyQt5.QtWidgets import QWidget, QLineEdit, QLabel, QPushButton, QHBoxLayout, QFileDialog, QStyle from PyQt5.QtCore import pyqtSignal class SelectDirBox(QWidget): valueChanged = pyqtSignal(str) valueEdited = pyqtSignal(str) def __init__(self, value='', visible_label=True): super().__init__() self._label = QLabel('Directory:') self._label.setVisible(visible_label) self._value = QLineEdit() self._value.textChanged.connect(self.valueChanged.emit) self._value.textEdited.connect(self.valueEdited.emit) icon_open_dir = self.style().standardIcon(QStyle.SP_DirOpenIcon) action_open_dir = self._value.addAction(icon_open_dir, QLineEdit.TrailingPosition) action_open_dir.setToolTip('Open directory') action_open_dir.triggered.connect(self._on_open_dir) self._button_select_path = QPushButton('...') self._button_select_path.setFixedWidth(24) self._button_select_path.setToolTip('Select directory') self._button_select_path.clicked.connect(self._on_select_path) self.setValue(value) layout = QHBoxLayout() layout.setSpacing(5) layout.setContentsMargins(0, 0, 0, 0) layout.addWidget(self._label) layout.addWidget(self._value, stretch=1) layout.addWidget(self._button_select_path) self.setLayout(layout) def setValue(self, value: str): self._value.setText(value) self._value.setToolTip(value) def getValue(self) -> str: return self._value.text() def _on_select_path(self): path = QFileDialog.getExistingDirectory(self, None, self._value.text()) if not path: return self.setValue(path) def _on_open_dir(self): path = self._value.text() if os.path.isdir(path): os.startfile(path) def resizeEvent(self, event): super().resizeEvent(event) self._button_select_path.setFixedHeight(self._value.height()) if __name__ == '__main__': from PyQt5.QtWidgets import QApplication app = QApplication([]) mw = SelectDirBox() mw.valueChanged.connect( lambda value: print(f'Selected directory: {value}') ) mw.show() app.exec()
code/nn/optimization.py
serced/rcnn
372
14573
''' This file implements various optimization methods, including -- SGD with gradient norm clipping -- AdaGrad -- AdaDelta -- Adam Transparent to switch between CPU / GPU. @author: <NAME> (<EMAIL>) ''' import random from collections import OrderedDict import numpy as np import theano import theano.tensor as T from theano.sandbox.cuda.basic_ops import HostFromGpu from theano.sandbox.cuda.var import CudaNdarraySharedVariable from theano.printing import debugprint from .initialization import default_mrng def create_optimization_updates( cost, params, method="sgd", max_norm=5, updates=None, gradients=None, lr=0.01, eps=None, rho=0.99, gamma=0.999, beta1=0.9, beta2=0.999, momentum=0.0): _momentum = momentum lr = theano.shared(np.float64(lr).astype(theano.config.floatX)) rho = theano.shared(np.float64(rho).astype(theano.config.floatX)) beta1 = theano.shared(np.float64(beta1).astype(theano.config.floatX)) beta2 = theano.shared(np.float64(beta2).astype(theano.config.floatX)) momentum = theano.shared(np.float64(momentum).astype(theano.config.floatX)) gamma = theano.shared(np.float64(gamma).astype(theano.config.floatX)) if eps is None: eps = 1e-8 if method.lower() != "esgd" else 1e-4 eps = np.float64(eps).astype(theano.config.floatX) gparams = T.grad(cost, params) if gradients is None else gradients g_norm = 0 for g in gparams: g_norm = g_norm + g.norm(2)**2 g_norm = T.sqrt(g_norm) # max_norm is useful for sgd if method != "sgd": max_norm = None if max_norm is not None and max_norm is not False: max_norm = theano.shared(np.float64(max_norm).astype(theano.config.floatX)) shrink_factor = T.minimum(max_norm, g_norm + eps) / (g_norm + eps) gparams_clipped = [ ] for g in gparams: g = shrink_factor * g gparams_clipped.append(g) gparams = gparams_clipped if updates is None: updates = OrderedDict() gsums = create_accumulators(params) if method != "sgd" or _momentum > 0.0 else \ [ None for p in params ] xsums = create_accumulators(params) if method != "sgd" and method != "adagrad" else None if method == "sgd": create_sgd_updates(updates, params, gparams, gsums, lr, momentum) elif method == "adagrad": create_adagrad_updates(updates, params, gparams, gsums, lr, eps) elif method == "adadelta": create_adadelta_updates(updates, params, gparams, gsums, xsums, lr, eps, rho) elif method == "adam": create_adam_updates(updates, params, gparams, gsums, xsums, lr, eps, beta1, beta2) elif method == "esgd": create_esgd_updates(updates, params, gparams, gsums, xsums, lr, eps, gamma, momentum) else: raise Exception("Unknown optim method: {}\n".format(method)) if method == "adadelta": lr = rho return updates, lr, g_norm, gsums, xsums, max_norm def is_subtensor_op(p): if hasattr(p, 'owner') and hasattr(p.owner, 'op'): return isinstance(p.owner.op, T.AdvancedSubtensor1) or \ isinstance(p.owner.op, T.Subtensor) return False def get_subtensor_op_inputs(p): origin, indexes = p.owner.inputs if hasattr(origin, 'owner') and hasattr(origin.owner, 'op') and \ isinstance(origin.owner.op, HostFromGpu): origin = origin.owner.inputs[0] assert isinstance(origin, CudaNdarraySharedVariable) return origin, indexes def get_similar_subtensor(matrix, indexes, param_op): ''' So far there is only two possible subtensor operation used. ''' if isinstance(param_op.owner.op, T.AdvancedSubtensor1): return matrix[indexes] else: # indexes is start index in this case return matrix[indexes:] def create_accumulators(params): accums = [ ] for p in params: if is_subtensor_op(p): origin, _ = get_subtensor_op_inputs(p) acc = theano.shared(np.zeros_like(origin.get_value(borrow=True), \ dtype=theano.config.floatX)) else: acc = theano.shared(np.zeros_like(p.get_value(borrow=True), \ dtype=theano.config.floatX)) accums.append(acc) return accums def create_sgd_updates(updates, params, gparams, gsums, lr, momentum): has_momentum = momentum.get_value() > 0.0 for p, g, acc in zip(params, gparams, gsums): if is_subtensor_op(p): origin, indexes = get_subtensor_op_inputs(p) if has_momentum: acc_slices = get_similar_subtensor(acc, indexes, p) new_acc = acc_slices*momentum + g updates[acc] = T.set_subtensor(acc_slices, new_acc) else: new_acc = g updates[origin] = T.inc_subtensor(p, - lr * new_acc) else: if has_momentum: new_acc = acc*momentum + g updates[acc] = new_acc else: new_acc = g updates[p] = p - lr * new_acc def create_adagrad_updates(updates, params, gparams, gsums, lr, eps): for p, g, acc in zip(params, gparams, gsums): if is_subtensor_op(p): origin, indexes = get_subtensor_op_inputs(p) #acc_slices = acc[indexes] acc_slices = get_similar_subtensor(acc, indexes, p) new_acc = acc_slices + g**2 updates[acc] = T.set_subtensor(acc_slices, new_acc) updates[origin] = T.inc_subtensor(p, \ - lr * (g / T.sqrt(new_acc + eps))) else: new_acc = acc + g**2 updates[acc] = new_acc updates[p] = p - lr * (g / T.sqrt(new_acc + eps)) #updates[p] = p - lr * (g / (T.sqrt(new_acc) + eps)) # which one to use? def create_adadelta_updates(updates, params, gparams, gsums, xsums,\ lr, eps, rho): for p, g, gacc, xacc in zip(params, gparams, gsums, xsums): if is_subtensor_op(p): origin, indexes = get_subtensor_op_inputs(p) gacc_slices = gacc[indexes] xacc_slices = xacc[indexes] new_gacc = rho * gacc_slices + (1.0-rho) * g**2 d = -T.sqrt((xacc_slices + eps)/(new_gacc + eps)) * g new_xacc = rho * xacc_slices + (1.0-rho) * d**2 updates[gacc] = T.set_subtensor(gacc_slices, new_gacc) updates[xacc] = T.set_subtensor(xacc_slices, new_xacc) updates[origin] = T.inc_subtensor(p, d) else: new_gacc = rho * gacc + (1.0-rho) * g**2 d = -T.sqrt((xacc + eps)/(new_gacc + eps)) * g new_xacc = rho * xacc + (1.0-rho) * d**2 updates[gacc] = new_gacc updates[xacc] = new_xacc updates[p] = p + d def create_adam_updates(updates, params, gparams, gsums, xsums, \ lr, eps, beta1, beta2): i = theano.shared(np.float64(0.0).astype(theano.config.floatX)) i_t = i + 1.0 omb1_t = 1.0 - beta1**i_t omb2_t = 1.0 - beta2**i_t lr_t = lr * (T.sqrt(omb2_t) / omb1_t) for p, g, m, v in zip(params, gparams, gsums, xsums): if is_subtensor_op(p): origin, indexes = get_subtensor_op_inputs(p) m_sub = m[indexes] v_sub = v[indexes] m_t = beta1*m_sub + (1.0-beta1)*g v_t = beta2*v_sub + (1.0-beta2)*T.sqr(g) g_t = m_t / (T.sqrt(v_t) + eps) updates[m] = T.set_subtensor(m_sub, m_t) updates[v] = T.set_subtensor(v_sub, v_t) updates[origin] = T.inc_subtensor(p, -lr_t*g_t) else: m_t = beta1*m + (1.0-beta1)*g v_t = beta2*v + (1.0-beta2)*T.sqr(g) g_t = m_t / (T.sqrt(v_t) + eps) updates[m] = m_t updates[v] = v_t updates[p] = p - lr_t*g_t updates[i] = i_t def create_esgd_updates(updates, params, gparams, gsums, xsums, lr, eps, gamma, momentum): has_momentum = momentum.get_value() > 0.0 samples = [ default_mrng.normal(size=p.shape, avg=0, std=1, dtype=theano.config.floatX) for p in params ] HVs = T.Lop(gparams, params, samples) i = theano.shared(np.float64(0.0).astype(theano.config.floatX)) i_t = i + 1.0 omg_t = 1.0 - gamma**i_t for p, g, m, D, Hv in zip(params, gparams, gsums, xsums, HVs): if is_subtensor_op(p): raise Exception("ESGD subtensor update not implemented!") else: D_t = D * gamma + T.sqr(Hv) * (1.0-gamma) if has_momentum: m_t = m*momentum + g updates[m] = m_t else: m_t = g g_t = m_t / ( T.sqrt(D_t/omg_t + eps) ) #g_t = m_t / ( T.sqrt(D_t + eps) ) updates[D] = D_t updates[p] = p - lr*g_t updates[i] = i_t
deep-rl/lib/python2.7/site-packages/OpenGL/GLES2/vboimplementation.py
ShujaKhalid/deep-rl
210
14583
from OpenGL.arrays import vbo from OpenGL.GLES2.VERSION import GLES2_2_0 from OpenGL.GLES2.OES import mapbuffer class Implementation( vbo.Implementation ): """OpenGL-based implementation of VBO interfaces""" def __init__( self ): for name in self.EXPORTED_NAMES: for source in [ GLES2_2_0, mapbuffer ]: for possible in (name,name+'OES'): try: setattr( self, name, getattr( source, possible )) except AttributeError as err: pass else: found = True assert found, name if GLES2_2_0.glBufferData: self.available = True Implementation.register()
eval.py
CLT29/pvse
119
14595
from __future__ import print_function import os, sys import pickle import time import glob import numpy as np import torch from model import PVSE from loss import cosine_sim, order_sim from vocab import Vocabulary from data import get_test_loader from logger import AverageMeter from option import parser, verify_input_args ORDER_BATCH_SIZE = 100 def encode_data(model, data_loader, use_gpu=False): """Encode all images and sentences loadable by data_loader""" # switch to evaluate mode model.eval() use_mil = model.module.mil if hasattr(model, 'module') else model.mil # numpy array to keep all the embeddings img_embs, txt_embs = None, None for i, data in enumerate(data_loader): img, txt, txt_len, ids = data if torch.cuda.is_available(): img, txt, txt_len = img.cuda(), txt.cuda(), txt_len.cuda() # compute the embeddings img_emb, txt_emb, _, _, _, _ = model.forward(img, txt, txt_len) del img, txt, txt_len # initialize the output embeddings if img_embs is None: if use_gpu: emb_sz = [len(data_loader.dataset), img_emb.size(1), img_emb.size(2)] \ if use_mil else [len(data_loader.dataset), img_emb.size(1)] img_embs = torch.zeros(emb_sz, dtype=img_emb.dtype, requires_grad=False).cuda() txt_embs = torch.zeros(emb_sz, dtype=txt_emb.dtype, requires_grad=False).cuda() else: emb_sz = (len(data_loader.dataset), img_emb.size(1), img_emb.size(2)) \ if use_mil else (len(data_loader.dataset), img_emb.size(1)) img_embs = np.zeros(emb_sz) txt_embs = np.zeros(emb_sz) # preserve the embeddings by copying from gpu and converting to numpy img_embs[ids] = img_emb if use_gpu else img_emb.data.cpu().numpy().copy() txt_embs[ids] = txt_emb if use_gpu else txt_emb.data.cpu().numpy().copy() return img_embs, txt_embs def i2t(images, sentences, nreps=1, npts=None, return_ranks=False, order=False, use_gpu=False): """ Images->Text (Image Annotation) Images: (nreps*N, K) matrix of images Captions: (nreps*N, K) matrix of sentences """ if use_gpu: assert not order, 'Order embedding not supported in GPU mode' if npts is None: npts = int(images.shape[0] / nreps) index_list = [] ranks, top1 = np.zeros(npts), np.zeros(npts) for index in range(npts): # Get query image im = images[nreps * index] im = im.reshape((1,) + im.shape) # Compute scores if use_gpu: if len(sentences.shape) == 2: sim = im.mm(sentences.t()).view(-1) else: _, K, D = im.shape sim_kk = im.view(-1, D).mm(sentences.view(-1, D).t()) sim_kk = sim_kk.view(im.size(0), K, sentences.size(0), K) sim_kk = sim_kk.permute(0,1,3,2).contiguous() sim_kk = sim_kk.view(im.size(0), -1, sentences.size(0)) sim, _ = sim_kk.max(dim=1) sim = sim.flatten() else: if order: if index % ORDER_BATCH_SIZE == 0: mx = min(images.shape[0], nreps * (index + ORDER_BATCH_SIZE)) im2 = images[nreps * index:mx:nreps] sim_batch = order_sim(torch.Tensor(im2).cuda(), torch.Tensor(sentences).cuda()) sim_batch = sim_batch.cpu().numpy() sim = sim_batch[index % ORDER_BATCH_SIZE] else: sim = np.tensordot(im, sentences, axes=[2, 2]).max(axis=(0,1,3)).flatten() \ if len(sentences.shape) == 3 else np.dot(im, sentences.T).flatten() if use_gpu: _, inds_gpu = sim.sort() inds = inds_gpu.cpu().numpy().copy()[::-1] else: inds = np.argsort(sim)[::-1] index_list.append(inds[0]) # Score rank = 1e20 for i in range(nreps * index, nreps * (index + 1), 1): tmp = np.where(inds == i)[0][0] if tmp < rank: rank = tmp ranks[index] = rank top1[index] = inds[0] # Compute metrics r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) medr = np.floor(np.median(ranks)) + 1 meanr = ranks.mean() + 1 if return_ranks: return (r1, r5, r10, medr, meanr), (ranks, top1) else: return (r1, r5, r10, medr, meanr) def t2i(images, sentences, nreps=1, npts=None, return_ranks=False, order=False, use_gpu=False): """ Text->Images (Image Search) Images: (nreps*N, K) matrix of images Captions: (nreps*N, K) matrix of sentences """ if use_gpu: assert not order, 'Order embedding not supported in GPU mode' if npts is None: npts = int(images.shape[0] / nreps) if use_gpu: ims = torch.stack([images[i] for i in range(0, len(images), nreps)]) else: ims = np.array([images[i] for i in range(0, len(images), nreps)]) ranks, top1 = np.zeros(nreps * npts), np.zeros(nreps * npts) for index in range(npts): # Get query sentences queries = sentences[nreps * index:nreps * (index + 1)] # Compute scores if use_gpu: if len(sentences.shape) == 2: sim = queries.mm(ims.t()) else: sim_kk = queries.view(-1, queries.size(-1)).mm(ims.view(-1, ims.size(-1)).t()) sim_kk = sim_kk.view(queries.size(0), queries.size(1), ims.size(0), ims.size(1)) sim_kk = sim_kk.permute(0,1,3,2).contiguous() sim_kk = sim_kk.view(queries.size(0), -1, ims.size(0)) sim, _ = sim_kk.max(dim=1) else: if order: if nreps * index % ORDER_BATCH_SIZE == 0: mx = min(sentences.shape[0], nreps * index + ORDER_BATCH_SIZE) sentences_batch = sentences[nreps * index:mx] sim_batch = order_sim(torch.Tensor(images).cuda(), torch.Tensor(sentences_batch).cuda()) sim_batch = sim_batch.cpu().numpy() sim = sim_batch[:, (nreps * index) % ORDER_BATCH_SIZE:(nreps * index) % ORDER_BATCH_SIZE + nreps].T else: sim = np.tensordot(queries, ims, axes=[2, 2]).max(axis=(1,3)) \ if len(sentences.shape) == 3 else np.dot(queries, ims.T) inds = np.zeros(sim.shape) for i in range(len(inds)): if use_gpu: _, inds_gpu = sim[i].sort() inds[i] = inds_gpu.cpu().numpy().copy()[::-1] else: inds[i] = np.argsort(sim[i])[::-1] ranks[nreps * index + i] = np.where(inds[i] == index)[0][0] top1[nreps * index + i] = inds[i][0] # Compute metrics r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) medr = np.floor(np.median(ranks)) + 1 meanr = ranks.mean() + 1 if return_ranks: return (r1, r5, r10, medr, meanr), (ranks, top1) else: return (r1, r5, r10, medr, meanr) def convert_old_state_dict(x, model, multi_gpu=False): params = model.state_dict() prefix = ['module.img_enc.', 'module.txt_enc.'] \ if multi_gpu else ['img_enc.', 'txt_enc.'] for i, old_params in enumerate(x): for key, val in old_params.items(): key = prefix[i] + key.replace('module.','').replace('our_model', 'pie_net') assert key in params, '{} not found in model state_dict'.format(key) params[key] = val return params def evalrank(model, args, split='test'): print('Loading dataset') data_loader = get_test_loader(args, vocab) print('Computing results... (eval_on_gpu={})'.format(args.eval_on_gpu)) img_embs, txt_embs = encode_data(model, data_loader, args.eval_on_gpu) n_samples = img_embs.shape[0] nreps = 5 if args.data_name == 'coco' else 1 print('Images: %d, Sentences: %d' % (img_embs.shape[0] / nreps, txt_embs.shape[0])) # 5fold cross-validation, only for MSCOCO mean_metrics = None if args.data_name == 'coco': results = [] for i in range(5): r, rt0 = i2t(img_embs[i*5000:(i + 1)*5000], txt_embs[i*5000:(i + 1)*5000], nreps=nreps, return_ranks=True, order=args.order, use_gpu=args.eval_on_gpu) r = (r[0], r[1], r[2], r[3], r[3] / n_samples, r[4], r[4] / n_samples) print("Image to text: %.2f, %.2f, %.2f, %.2f (%.2f), %.2f (%.2f)" % r) ri, rti0 = t2i(img_embs[i*5000:(i + 1)*5000], txt_embs[i*5000:(i + 1)*5000], nreps=nreps, return_ranks=True, order=args.order, use_gpu=args.eval_on_gpu) if i == 0: rt, rti = rt0, rti0 ri = (ri[0], ri[1], ri[2], ri[3], ri[3] / n_samples, ri[4], ri[4] / n_samples) print("Text to image: %.2f, %.2f, %.2f, %.2f (%.2f), %.2f (%.2f)" % ri) ar = (r[0] + r[1] + r[2]) / 3 ari = (ri[0] + ri[1] + ri[2]) / 3 rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2] print("rsum: %.2f ar: %.2f ari: %.2f" % (rsum, ar, ari)) results += [list(r) + list(ri) + [ar, ari, rsum]] mean_metrics = tuple(np.array(results).mean(axis=0).flatten()) print("-----------------------------------") print("Mean metrics from 5-fold evaluation: ") print("rsum: %.2f" % (mean_metrics[-1] * 6)) print("Average i2t Recall: %.2f" % mean_metrics[-3]) print("Image to text: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % mean_metrics[:7]) print("Average t2i Recall: %.2f" % mean_metrics[-2]) print("Text to image: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % mean_metrics[7:14]) # no cross-validation, full evaluation r, rt = i2t(img_embs, txt_embs, nreps=nreps, return_ranks=True, use_gpu=args.eval_on_gpu) ri, rti = t2i(img_embs, txt_embs, nreps=nreps, return_ranks=True, use_gpu=args.eval_on_gpu) ar = (r[0] + r[1] + r[2]) / 3 ari = (ri[0] + ri[1] + ri[2]) / 3 rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2] r = (r[0], r[1], r[2], r[3], r[3] / n_samples, r[4], r[4] / n_samples) ri = (ri[0], ri[1], ri[2], ri[3], ri[3] / n_samples, ri[4], ri[4] / n_samples) print("rsum: %.2f" % rsum) print("Average i2t Recall: %.2f" % ar) print("Image to text: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % r) print("Average t2i Recall: %.2f" % ari) print("Text to image: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % ri) return mean_metrics if __name__ == '__main__': multi_gpu = torch.cuda.device_count() > 1 args = verify_input_args(parser.parse_args()) opt = verify_input_args(parser.parse_args()) # load vocabulary used by the model with open('./vocab/%s_vocab.pkl' % args.data_name, 'rb') as f: vocab = pickle.load(f) args.vocab_size = len(vocab) # load model and options assert os.path.isfile(args.ckpt) model = PVSE(vocab.word2idx, args) if torch.cuda.is_available(): model = torch.nn.DataParallel(model).cuda() if multi_gpu else model torch.backends.cudnn.benchmark = True model.load_state_dict(torch.load(args.ckpt)) # evaluate metrics = evalrank(model, args, split='test')
paddlex/ppdet/modeling/heads/detr_head.py
xiaolao/PaddleX
3,655
14596
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F from paddlex.ppdet.core.workspace import register import pycocotools.mask as mask_util from ..initializer import linear_init_, constant_ from ..transformers.utils import inverse_sigmoid __all__ = ['DETRHead', 'DeformableDETRHead'] class MLP(nn.Layer): def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.LayerList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) self._reset_parameters() def _reset_parameters(self): for l in self.layers: linear_init_(l) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x class MultiHeadAttentionMap(nn.Layer): """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)""" def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.dropout = nn.Dropout(dropout) weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.XavierUniform()) bias_attr = paddle.framework.ParamAttr( initializer=paddle.nn.initializer.Constant()) if bias else False self.q_proj = nn.Linear(query_dim, hidden_dim, weight_attr, bias_attr) self.k_proj = nn.Conv2D( query_dim, hidden_dim, 1, weight_attr=weight_attr, bias_attr=bias_attr) self.normalize_fact = float(hidden_dim / self.num_heads)**-0.5 def forward(self, q, k, mask=None): q = self.q_proj(q) k = self.k_proj(k) bs, num_queries, n, c, h, w = q.shape[0], q.shape[1], self.num_heads,\ self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1] qh = q.reshape([bs, num_queries, n, c]) kh = k.reshape([bs, n, c, h, w]) # weights = paddle.einsum("bqnc,bnchw->bqnhw", qh * self.normalize_fact, kh) qh = qh.transpose([0, 2, 1, 3]).reshape([-1, num_queries, c]) kh = kh.reshape([-1, c, h * w]) weights = paddle.bmm(qh * self.normalize_fact, kh).reshape( [bs, n, num_queries, h, w]).transpose([0, 2, 1, 3, 4]) if mask is not None: weights += mask # fix a potenial bug: https://github.com/facebookresearch/detr/issues/247 weights = F.softmax(weights.flatten(3), axis=-1).reshape(weights.shape) weights = self.dropout(weights) return weights class MaskHeadFPNConv(nn.Layer): """ Simple convolutional head, using group norm. Upsampling is done using a FPN approach """ def __init__(self, input_dim, fpn_dims, context_dim, num_groups=8): super().__init__() inter_dims = [input_dim, ] + [context_dim // (2**i) for i in range(1, 5)] weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.KaimingUniform()) bias_attr = paddle.framework.ParamAttr( initializer=paddle.nn.initializer.Constant()) self.conv0 = self._make_layers(input_dim, input_dim, 3, num_groups, weight_attr, bias_attr) self.conv_inter = nn.LayerList() for in_dims, out_dims in zip(inter_dims[:-1], inter_dims[1:]): self.conv_inter.append( self._make_layers(in_dims, out_dims, 3, num_groups, weight_attr, bias_attr)) self.conv_out = nn.Conv2D( inter_dims[-1], 1, 3, padding=1, weight_attr=weight_attr, bias_attr=bias_attr) self.adapter = nn.LayerList() for i in range(len(fpn_dims)): self.adapter.append( nn.Conv2D( fpn_dims[i], inter_dims[i + 1], 1, weight_attr=weight_attr, bias_attr=bias_attr)) def _make_layers(self, in_dims, out_dims, kernel_size, num_groups, weight_attr=None, bias_attr=None): return nn.Sequential( nn.Conv2D( in_dims, out_dims, kernel_size, padding=kernel_size // 2, weight_attr=weight_attr, bias_attr=bias_attr), nn.GroupNorm(num_groups, out_dims), nn.ReLU()) def forward(self, x, bbox_attention_map, fpns): x = paddle.concat([ x.tile([bbox_attention_map.shape[1], 1, 1, 1]), bbox_attention_map.flatten(0, 1) ], 1) x = self.conv0(x) for inter_layer, adapter_layer, feat in zip(self.conv_inter[:-1], self.adapter, fpns): feat = adapter_layer(feat).tile( [bbox_attention_map.shape[1], 1, 1, 1]) x = inter_layer(x) x = feat + F.interpolate(x, size=feat.shape[-2:]) x = self.conv_inter[-1](x) x = self.conv_out(x) return x @register class DETRHead(nn.Layer): __shared__ = ['num_classes', 'hidden_dim', 'use_focal_loss'] __inject__ = ['loss'] def __init__(self, num_classes=80, hidden_dim=256, nhead=8, num_mlp_layers=3, loss='DETRLoss', fpn_dims=[1024, 512, 256], with_mask_head=False, use_focal_loss=False): super(DETRHead, self).__init__() # add background class self.num_classes = num_classes if use_focal_loss else num_classes + 1 self.hidden_dim = hidden_dim self.loss = loss self.with_mask_head = with_mask_head self.use_focal_loss = use_focal_loss self.score_head = nn.Linear(hidden_dim, self.num_classes) self.bbox_head = MLP(hidden_dim, hidden_dim, output_dim=4, num_layers=num_mlp_layers) if self.with_mask_head: self.bbox_attention = MultiHeadAttentionMap(hidden_dim, hidden_dim, nhead) self.mask_head = MaskHeadFPNConv(hidden_dim + nhead, fpn_dims, hidden_dim) self._reset_parameters() def _reset_parameters(self): linear_init_(self.score_head) @classmethod def from_config(cls, cfg, hidden_dim, nhead, input_shape): return { 'hidden_dim': hidden_dim, 'nhead': nhead, 'fpn_dims': [i.channels for i in input_shape[::-1]][1:] } @staticmethod def get_gt_mask_from_polygons(gt_poly, pad_mask): out_gt_mask = [] for polygons, padding in zip(gt_poly, pad_mask): height, width = int(padding[:, 0].sum()), int(padding[0, :].sum()) masks = [] for obj_poly in polygons: rles = mask_util.frPyObjects(obj_poly, height, width) rle = mask_util.merge(rles) masks.append( paddle.to_tensor(mask_util.decode(rle)).astype('float32')) masks = paddle.stack(masks) masks_pad = paddle.zeros( [masks.shape[0], pad_mask.shape[1], pad_mask.shape[2]]) masks_pad[:, :height, :width] = masks out_gt_mask.append(masks_pad) return out_gt_mask def forward(self, out_transformer, body_feats, inputs=None): r""" Args: out_transformer (Tuple): (feats: [num_levels, batch_size, num_queries, hidden_dim], memory: [batch_size, hidden_dim, h, w], src_proj: [batch_size, h*w, hidden_dim], src_mask: [batch_size, 1, 1, h, w]) body_feats (List(Tensor)): list[[B, C, H, W]] inputs (dict): dict(inputs) """ feats, memory, src_proj, src_mask = out_transformer outputs_logit = self.score_head(feats) outputs_bbox = F.sigmoid(self.bbox_head(feats)) outputs_seg = None if self.with_mask_head: bbox_attention_map = self.bbox_attention(feats[-1], memory, src_mask) fpn_feats = [a for a in body_feats[::-1]][1:] outputs_seg = self.mask_head(src_proj, bbox_attention_map, fpn_feats) outputs_seg = outputs_seg.reshape([ feats.shape[1], feats.shape[2], outputs_seg.shape[-2], outputs_seg.shape[-1] ]) if self.training: assert inputs is not None assert 'gt_bbox' in inputs and 'gt_class' in inputs gt_mask = self.get_gt_mask_from_polygons( inputs['gt_poly'], inputs['pad_mask']) if 'gt_poly' in inputs else None return self.loss( outputs_bbox, outputs_logit, inputs['gt_bbox'], inputs['gt_class'], masks=outputs_seg, gt_mask=gt_mask) else: return (outputs_bbox[-1], outputs_logit[-1], outputs_seg) @register class DeformableDETRHead(nn.Layer): __shared__ = ['num_classes', 'hidden_dim'] __inject__ = ['loss'] def __init__(self, num_classes=80, hidden_dim=512, nhead=8, num_mlp_layers=3, loss='DETRLoss'): super(DeformableDETRHead, self).__init__() self.num_classes = num_classes self.hidden_dim = hidden_dim self.nhead = nhead self.loss = loss self.score_head = nn.Linear(hidden_dim, self.num_classes) self.bbox_head = MLP(hidden_dim, hidden_dim, output_dim=4, num_layers=num_mlp_layers) self._reset_parameters() def _reset_parameters(self): linear_init_(self.score_head) constant_(self.score_head.bias, -4.595) constant_(self.bbox_head.layers[-1].weight) bias = paddle.zeros_like(self.bbox_head.layers[-1].bias) bias[2:] = -2.0 self.bbox_head.layers[-1].bias.set_value(bias) @classmethod def from_config(cls, cfg, hidden_dim, nhead, input_shape): return {'hidden_dim': hidden_dim, 'nhead': nhead} def forward(self, out_transformer, body_feats, inputs=None): r""" Args: out_transformer (Tuple): (feats: [num_levels, batch_size, num_queries, hidden_dim], memory: [batch_size, \sum_{l=0}^{L-1} H_l \cdot W_l, hidden_dim], reference_points: [batch_size, num_queries, 2]) body_feats (List(Tensor)): list[[B, C, H, W]] inputs (dict): dict(inputs) """ feats, memory, reference_points = out_transformer reference_points = inverse_sigmoid(reference_points.unsqueeze(0)) outputs_bbox = self.bbox_head(feats) # It's equivalent to "outputs_bbox[:, :, :, :2] += reference_points", # but the gradient is wrong in paddle. outputs_bbox = paddle.concat( [ outputs_bbox[:, :, :, :2] + reference_points, outputs_bbox[:, :, :, 2:] ], axis=-1) outputs_bbox = F.sigmoid(outputs_bbox) outputs_logit = self.score_head(feats) if self.training: assert inputs is not None assert 'gt_bbox' in inputs and 'gt_class' in inputs return self.loss(outputs_bbox, outputs_logit, inputs['gt_bbox'], inputs['gt_class']) else: return (outputs_bbox[-1], outputs_logit[-1], None)
mapreduce/handlers.py
igeeker/v2ex
161
14600
#!/usr/bin/env python # # Copyright 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Defines executor tasks handlers for MapReduce implementation.""" # Disable "Invalid method name" # pylint: disable-msg=C6409 import datetime import logging import math import os from mapreduce.lib import simplejson import time from google.appengine.api import memcache from google.appengine.api.labs import taskqueue from google.appengine.ext import db from mapreduce import base_handler from mapreduce import context from mapreduce import quota from mapreduce import model from mapreduce import quota from mapreduce import util # TODO(user): Make this a product of the reader or in quotas.py _QUOTA_BATCH_SIZE = 20 # The amount of time to perform scanning in one slice. New slice will be # scheduled as soon as current one takes this long. _SLICE_DURATION_SEC = 15 # Delay between consecutive controller callback invocations. _CONTROLLER_PERIOD_SEC = 2 class Error(Exception): """Base class for exceptions in this module.""" class NotEnoughArgumentsError(Error): """Required argument is missing.""" class NoDataError(Error): """There is no data present for a desired input.""" class MapperWorkerCallbackHandler(base_handler.BaseHandler): """Callback handler for mapreduce worker task. Request Parameters: mapreduce_spec: MapreduceSpec of the mapreduce serialized to json. shard_id: id of the shard. slice_id: id of the slice. """ def __init__(self, time_function=time.time): """Constructor. Args: time_function: time function to use to obtain current time. """ base_handler.BaseHandler.__init__(self) self._time = time_function def post(self): """Handle post request.""" spec = model.MapreduceSpec.from_json_str( self.request.get("mapreduce_spec")) self._start_time = self._time() shard_id = self.shard_id() # TODO(user): Make this prettier logging.debug("post: shard=%s slice=%s headers=%s", shard_id, self.slice_id(), self.request.headers) shard_state, control = db.get([ model.ShardState.get_key_by_shard_id(shard_id), model.MapreduceControl.get_key_by_job_id(spec.mapreduce_id), ]) if not shard_state: # We're letting this task to die. It's up to controller code to # reinitialize and restart the task. logging.error("State not found for shard ID %r; shutting down", shard_id) return if control and control.command == model.MapreduceControl.ABORT: logging.info("Abort command received by shard %d of job '%s'", shard_state.shard_number, shard_state.mapreduce_id) shard_state.active = False shard_state.result_status = model.ShardState.RESULT_ABORTED shard_state.put() model.MapreduceControl.abort(spec.mapreduce_id) return input_reader = self.input_reader(spec.mapper) if spec.mapper.params.get("enable_quota", True): quota_consumer = quota.QuotaConsumer( quota.QuotaManager(memcache.Client()), shard_id, _QUOTA_BATCH_SIZE) else: quota_consumer = None ctx = context.Context(spec, shard_state) context.Context._set(ctx) try: # consume quota ahead, because we do not want to run a datastore # query if there's not enough quota for the shard. if not quota_consumer or quota_consumer.check(): scan_aborted = False entity = None # We shouldn't fetch an entity from the reader if there's not enough # quota to process it. Perform all quota checks proactively. if not quota_consumer or quota_consumer.consume(): for entity in input_reader: if isinstance(entity, db.Model): shard_state.last_work_item = repr(entity.key()) else: shard_state.last_work_item = repr(entity)[:100] scan_aborted = not self.process_entity(entity, ctx) # Check if we've got enough quota for the next entity. if (quota_consumer and not scan_aborted and not quota_consumer.consume()): scan_aborted = True if scan_aborted: break else: scan_aborted = True if not scan_aborted: logging.info("Processing done for shard %d of job '%s'", shard_state.shard_number, shard_state.mapreduce_id) # We consumed extra quota item at the end of for loop. # Just be nice here and give it back :) if quota_consumer: quota_consumer.put(1) shard_state.active = False shard_state.result_status = model.ShardState.RESULT_SUCCESS # TODO(user): Mike said we don't want this happen in case of # exception while scanning. Figure out when it's appropriate to skip. ctx.flush() finally: context.Context._set(None) if quota_consumer: quota_consumer.dispose() # Rescheduling work should always be the last statement. It shouldn't happen # if there were any exceptions in code before it. if shard_state.active: self.reschedule(spec, input_reader) def process_entity(self, entity, ctx): """Process a single entity. Call mapper handler on the entity. Args: entity: an entity to process. ctx: current execution context. Returns: True if scan should be continued, False if scan should be aborted. """ ctx.counters.increment(context.COUNTER_MAPPER_CALLS) handler = ctx.mapreduce_spec.mapper.handler if util.is_generator_function(handler): for result in handler(entity): if callable(result): result(ctx) else: try: if len(result) == 2: logging.error("Collectors not implemented yet") else: logging.error("Got bad output tuple of length %d", len(result)) except TypeError: logging.error( "Handler yielded type %s, expected a callable or a tuple", result.__class__.__name__) else: handler(entity) if self._time() - self._start_time > _SLICE_DURATION_SEC: logging.debug("Spent %s seconds. Rescheduling", self._time() - self._start_time) return False return True def shard_id(self): """Get shard unique identifier of this task from request. Returns: shard identifier as string. """ return str(self.request.get("shard_id")) def slice_id(self): """Get slice unique identifier of this task from request. Returns: slice identifier as int. """ return int(self.request.get("slice_id")) def input_reader(self, mapper_spec): """Get the reader from mapper_spec initialized with the request's state. Args: mapper_spec: a mapper spec containing the immutable mapper state. Returns: An initialized InputReader. """ input_reader_spec_dict = simplejson.loads( self.request.get("input_reader_state")) return mapper_spec.input_reader_class().from_json( input_reader_spec_dict) @staticmethod def worker_parameters(mapreduce_spec, shard_id, slice_id, input_reader): """Fill in mapper worker task parameters. Returned parameters map is to be used as task payload, and it contains all the data, required by mapper worker to perform its function. Args: mapreduce_spec: specification of the mapreduce. shard_id: id of the shard (part of the whole dataset). slice_id: id of the slice (part of the shard). input_reader: InputReader containing the remaining inputs for this shard. Returns: string->string map of parameters to be used as task payload. """ return {"mapreduce_spec": mapreduce_spec.to_json_str(), "shard_id": shard_id, "slice_id": str(slice_id), "input_reader_state": input_reader.to_json_str()} @staticmethod def get_task_name(shard_id, slice_id): """Compute single worker task name. Args: shard_id: id of the shard (part of the whole dataset) as string. slice_id: id of the slice (part of the shard) as int. Returns: task name which should be used to process specified shard/slice. """ # Prefix the task name with something unique to this framework's # namespace so we don't conflict with user tasks on the queue. return "appengine-mrshard-%s-%s" % (shard_id, slice_id) def reschedule(self, mapreduce_spec, input_reader): """Reschedule worker task to continue scanning work. Args: mapreduce_spec: mapreduce specification. input_reader: remaining input reader to process. """ MapperWorkerCallbackHandler.schedule_slice( self.base_path(), mapreduce_spec, self.shard_id(), self.slice_id() + 1, input_reader) @classmethod def schedule_slice(cls, base_path, mapreduce_spec, shard_id, slice_id, input_reader, queue_name=None, eta=None, countdown=None): """Schedule slice scanning by adding it to the task queue. Args: base_path: base_path of mapreduce request handlers as string. mapreduce_spec: mapreduce specification as MapreduceSpec. shard_id: current shard id as string. slice_id: slice id as int. input_reader: remaining InputReader for given shard. queue_name: Optional queue to run on; uses the current queue of execution or the default queue if unspecified. eta: Absolute time when the MR should execute. May not be specified if 'countdown' is also supplied. This may be timezone-aware or timezone-naive. countdown: Time in seconds into the future that this MR should execute. Defaults to zero. """ task_params = MapperWorkerCallbackHandler.worker_parameters( mapreduce_spec, shard_id, slice_id, input_reader) task_name = MapperWorkerCallbackHandler.get_task_name(shard_id, slice_id) queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", queue_name or "default") try: taskqueue.Task(url=base_path + "/worker_callback", params=task_params, name=task_name, eta=eta, countdown=countdown).add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r with params %r already exists. %s: %s", task_name, task_params, e.__class__, e) class ControllerCallbackHandler(base_handler.BaseHandler): """Supervises mapreduce execution. Is also responsible for gathering execution status from shards together. This task is "continuously" running by adding itself again to taskqueue if mapreduce is still active. """ def __init__(self, time_function=time.time): """Constructor. Args: time_function: time function to use to obtain current time. """ base_handler.BaseHandler.__init__(self) self._time = time_function def post(self): """Handle post request.""" spec = model.MapreduceSpec.from_json_str( self.request.get("mapreduce_spec")) # TODO(user): Make this logging prettier. logging.debug("post: id=%s headers=%s", spec.mapreduce_id, self.request.headers) state, control = db.get([ model.MapreduceState.get_key_by_job_id(spec.mapreduce_id), model.MapreduceControl.get_key_by_job_id(spec.mapreduce_id), ]) if not state: logging.error("State not found for mapreduce_id '%s'; skipping", spec.mapreduce_id) return shard_states = model.ShardState.find_by_mapreduce_id(spec.mapreduce_id) if state.active and len(shard_states) != spec.mapper.shard_count: # Some shards were lost logging.error("Incorrect number of shard states: %d vs %d; " "aborting job '%s'", len(shard_states), spec.mapper.shard_count, spec.mapreduce_id) state.active = False state.result_status = model.MapreduceState.RESULT_FAILED model.MapreduceControl.abort(spec.mapreduce_id) active_shards = [s for s in shard_states if s.active] failed_shards = [s for s in shard_states if s.result_status == model.ShardState.RESULT_FAILED] aborted_shards = [s for s in shard_states if s.result_status == model.ShardState.RESULT_ABORTED] if state.active: state.active = bool(active_shards) state.active_shards = len(active_shards) state.failed_shards = len(failed_shards) state.aborted_shards = len(aborted_shards) if (not state.active and control and control.command == model.MapreduceControl.ABORT): # User-initiated abort *after* all shards have completed. logging.info("Abort signal received for job '%s'", spec.mapreduce_id) state.result_status = model.MapreduceState.RESULT_ABORTED if not state.active: state.active_shards = 0 if not state.result_status: # Set final result status derived from shard states. if [s for s in shard_states if s.result_status != model.ShardState.RESULT_SUCCESS]: state.result_status = model.MapreduceState.RESULT_FAILED else: state.result_status = model.MapreduceState.RESULT_SUCCESS logging.info("Final result for job '%s' is '%s'", spec.mapreduce_id, state.result_status) # We don't need a transaction here, since we change only statistics data, # and we don't care if it gets overwritten/slightly inconsistent. self.aggregate_state(state, shard_states) poll_time = state.last_poll_time state.last_poll_time = datetime.datetime.utcfromtimestamp(self._time()) if not state.active: # This is the last execution. # Enqueue done_callback if needed. def put_state(state): state.put() done_callback = spec.params.get( model.MapreduceSpec.PARAM_DONE_CALLBACK) if done_callback: taskqueue.Task( url=done_callback, headers={"Mapreduce-Id": spec.mapreduce_id}).add( spec.params.get( model.MapreduceSpec.PARAM_DONE_CALLBACK_QUEUE, "default"), transactional=True) db.run_in_transaction(put_state, state) return else: state.put() processing_rate = int(spec.mapper.params.get( "processing_rate") or model._DEFAULT_PROCESSING_RATE_PER_SEC) self.refill_quotas(poll_time, processing_rate, active_shards) ControllerCallbackHandler.reschedule( self.base_path(), spec, self.serial_id() + 1) def aggregate_state(self, mapreduce_state, shard_states): """Update current mapreduce state by aggregating shard states. Args: mapreduce_state: current mapreduce state as MapreduceState. shard_states: all shard states (active and inactive). list of ShardState. """ processed_counts = [] mapreduce_state.counters_map.clear() for shard_state in shard_states: mapreduce_state.counters_map.add_map(shard_state.counters_map) processed_counts.append(shard_state.counters_map.get( context.COUNTER_MAPPER_CALLS)) mapreduce_state.set_processed_counts(processed_counts) def refill_quotas(self, last_poll_time, processing_rate, active_shard_states): """Refill quotas for all active shards. Args: last_poll_time: Datetime with the last time the job state was updated. processing_rate: How many items to process per second overall. active_shard_states: All active shard states, list of ShardState. """ if not active_shard_states: return quota_manager = quota.QuotaManager(memcache.Client()) current_time = int(self._time()) last_poll_time = time.mktime(last_poll_time.timetuple()) total_quota_refill = processing_rate * max(0, current_time - last_poll_time) quota_refill = int(math.ceil( 1.0 * total_quota_refill / len(active_shard_states))) if not quota_refill: return # TODO(user): use batch memcache API to refill quota in one API call. for shard_state in active_shard_states: quota_manager.put(shard_state.shard_id, quota_refill) def serial_id(self): """Get serial unique identifier of this task from request. Returns: serial identifier as int. """ return int(self.request.get("serial_id")) @staticmethod def get_task_name(mapreduce_spec, serial_id): """Compute single controller task name. Args: mapreduce_spec: specification of the mapreduce. serial_id: id of the invocation as int. Returns: task name which should be used to process specified shard/slice. """ # Prefix the task name with something unique to this framework's # namespace so we don't conflict with user tasks on the queue. return "appengine-mrcontrol-%s-%s" % ( mapreduce_spec.mapreduce_id, serial_id) @staticmethod def controller_parameters(mapreduce_spec, serial_id): """Fill in controller task parameters. Returned parameters map is to be used as task payload, and it contains all the data, required by controller to perform its function. Args: mapreduce_spec: specification of the mapreduce. serial_id: id of the invocation as int. Returns: string->string map of parameters to be used as task payload. """ return {"mapreduce_spec": mapreduce_spec.to_json_str(), "serial_id": str(serial_id)} @classmethod def reschedule(cls, base_path, mapreduce_spec, serial_id, queue_name=None): """Schedule new update status callback task. Args: base_path: mapreduce handlers url base path as string. mapreduce_spec: mapreduce specification as MapreduceSpec. serial_id: id of the invocation as int. queue_name: The queue to schedule this task on. Will use the current queue of execution if not supplied. """ task_name = ControllerCallbackHandler.get_task_name( mapreduce_spec, serial_id) task_params = ControllerCallbackHandler.controller_parameters( mapreduce_spec, serial_id) if not queue_name: queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", "default") try: taskqueue.Task(url=base_path + "/controller_callback", name=task_name, params=task_params, countdown=_CONTROLLER_PERIOD_SEC).add(queue_name) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError), e: logging.warning("Task %r with params %r already exists. %s: %s", task_name, task_params, e.__class__, e) class KickOffJobHandler(base_handler.BaseHandler): """Taskqueue handler which kicks off a mapreduce processing. Request Parameters: mapreduce_spec: MapreduceSpec of the mapreduce serialized to json. input_readers: List of InputReaders objects separated by semi-colons. """ def post(self): """Handles kick off request.""" spec = model.MapreduceSpec.from_json_str( self._get_required_param("mapreduce_spec")) input_readers_json = simplejson.loads( self._get_required_param("input_readers")) queue_name = os.environ.get("HTTP_X_APPENGINE_QUEUENAME", "default") mapper_input_reader_class = spec.mapper.input_reader_class() input_readers = [mapper_input_reader_class.from_json_str(reader_json) for reader_json in input_readers_json] KickOffJobHandler._schedule_shards( spec, input_readers, queue_name, self.base_path()) ControllerCallbackHandler.reschedule( self.base_path(), spec, queue_name=queue_name, serial_id=0) def _get_required_param(self, param_name): """Get a required request parameter. Args: param_name: name of request parameter to fetch. Returns: parameter value Raises: NotEnoughArgumentsError: if parameter is not specified. """ value = self.request.get(param_name) if not value: raise NotEnoughArgumentsError(param_name + " not specified") return value @classmethod def _schedule_shards(cls, spec, input_readers, queue_name, base_path): """Prepares shard states and schedules their execution. Args: spec: mapreduce specification as MapreduceSpec. input_readers: list of InputReaders describing shard splits. queue_name: The queue to run this job on. base_path: The base url path of mapreduce callbacks. """ # Note: it's safe to re-attempt this handler because: # - shard state has deterministic and unique key. # - schedule_slice will fall back gracefully if a task already exists. shard_states = [] for shard_number, input_reader in enumerate(input_readers): shard = model.ShardState.create_new(spec.mapreduce_id, shard_number) shard.shard_description = str(input_reader) shard_states.append(shard) # Retrievs already existing shards. existing_shard_states = db.get(shard.key() for shard in shard_states) existing_shard_keys = set(shard.key() for shard in existing_shard_states if shard is not None) # Puts only non-existing shards. db.put(shard for shard in shard_states if shard.key() not in existing_shard_keys) for shard_number, input_reader in enumerate(input_readers): shard_id = model.ShardState.shard_id_from_number( spec.mapreduce_id, shard_number) MapperWorkerCallbackHandler.schedule_slice( base_path, spec, shard_id, 0, input_reader, queue_name=queue_name) class StartJobHandler(base_handler.JsonHandler): """Command handler starts a mapreduce job.""" def handle(self): """Handles start request.""" # Mapper spec as form arguments. mapreduce_name = self._get_required_param("name") mapper_input_reader_spec = self._get_required_param("mapper_input_reader") mapper_handler_spec = self._get_required_param("mapper_handler") mapper_params = self._get_params( "mapper_params_validator", "mapper_params.") params = self._get_params( "params_validator", "params.") # Set some mapper param defaults if not present. mapper_params["processing_rate"] = int(mapper_params.get( "processing_rate") or model._DEFAULT_PROCESSING_RATE_PER_SEC) queue_name = mapper_params["queue_name"] = mapper_params.get( "queue_name", "default") # Validate the Mapper spec, handler, and input reader. mapper_spec = model.MapperSpec( mapper_handler_spec, mapper_input_reader_spec, mapper_params, int(mapper_params.get("shard_count", model._DEFAULT_SHARD_COUNT))) mapreduce_id = type(self)._start_map( mapreduce_name, mapper_spec, params, base_path=self.base_path(), queue_name=queue_name, _app=mapper_params.get("_app")) self.json_response["mapreduce_id"] = mapreduce_id def _get_params(self, validator_parameter, name_prefix): """Retrieves additional user-supplied params for the job and validates them. Args: validator_parameter: name of the request parameter which supplies validator for this parameter set. name_prefix: common prefix for all parameter names in the request. Raises: Any exception raised by the 'params_validator' request parameter if the params fail to validate. """ params_validator = self.request.get(validator_parameter) user_params = {} for key in self.request.arguments(): if key.startswith(name_prefix): values = self.request.get_all(key) adjusted_key = key[len(name_prefix):] if len(values) == 1: user_params[adjusted_key] = values[0] else: user_params[adjusted_key] = values if params_validator: resolved_validator = util.for_name(params_validator) resolved_validator(user_params) return user_params def _get_required_param(self, param_name): """Get a required request parameter. Args: param_name: name of request parameter to fetch. Returns: parameter value Raises: NotEnoughArgumentsError: if parameter is not specified. """ value = self.request.get(param_name) if not value: raise NotEnoughArgumentsError(param_name + " not specified") return value @classmethod def _start_map(cls, name, mapper_spec, mapreduce_params, base_path="/mapreduce", queue_name="default", eta=None, countdown=None, _app=None): # Check that handler can be instantiated. mapper_spec.get_handler() mapper_input_reader_class = mapper_spec.input_reader_class() mapper_input_readers = mapper_input_reader_class.split_input(mapper_spec) if not mapper_input_readers: raise NoDataError("Found no mapper input readers to process.") mapper_spec.shard_count = len(mapper_input_readers) state = model.MapreduceState.create_new() mapreduce_spec = model.MapreduceSpec( name, state.key().id_or_name(), mapper_spec.to_json(), mapreduce_params) state.mapreduce_spec = mapreduce_spec state.active = True state.active_shards = mapper_spec.shard_count if _app: state.app_id = _app # TODO(user): Initialize UI fields correctly. state.char_url = "" state.sparkline_url = "" def schedule_mapreduce(state, mapper_input_readers, eta, countdown): state.put() readers_json = [reader.to_json_str() for reader in mapper_input_readers] taskqueue.Task( url=base_path + "/kickoffjob_callback", params={"mapreduce_spec": state.mapreduce_spec.to_json_str(), "input_readers": simplejson.dumps(readers_json)}, eta=eta, countdown=countdown).add(queue_name, transactional=True) # Point of no return: We're actually going to run this job! db.run_in_transaction( schedule_mapreduce, state, mapper_input_readers, eta, countdown) return state.key().id_or_name() class CleanUpJobHandler(base_handler.JsonHandler): """Command to kick off tasks to clean up a job's data.""" def handle(self): # TODO(user): Have this kick off a task to clean up all MapreduceState, # ShardState, and MapreduceControl entities for a job ID. self.json_response["status"] = "This does nothing yet." class AbortJobHandler(base_handler.JsonHandler): """Command to abort a running job.""" def handle(self): model.MapreduceControl.abort(self.request.get("mapreduce_id")) self.json_response["status"] = "Abort signal sent."
src/third_party/swiftshader/third_party/subzero/pydir/wasm-run-torture-tests.py
rhencke/engine
2,151
14605
<filename>src/third_party/swiftshader/third_party/subzero/pydir/wasm-run-torture-tests.py #!/usr/bin/env python2 #===- subzero/wasm-run-torture-tests.py - Subzero WASM Torture Test Driver ===// # # The Subzero Code Generator # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. # #===-----------------------------------------------------------------------===// from __future__ import print_function import argparse import glob import multiprocessing import os import Queue import shutil import StringIO import sys import threading IGNORED_TESTS = set([ # The remaining tests are known waterfall failures '20010122-1.c.wasm', '20031003-1.c.wasm', '20071018-1.c.wasm', '20071120-1.c.wasm', '20071220-1.c.wasm', '20071220-2.c.wasm', '20101011-1.c.wasm', 'alloca-1.c.wasm', 'bitfld-3.c.wasm', 'bitfld-5.c.wasm', 'builtin-bitops-1.c.wasm', 'conversion.c.wasm', 'eeprof-1.c.wasm', 'frame-address.c.wasm', 'pr17377.c.wasm', 'pr32244-1.c.wasm', 'pr34971.c.wasm', 'pr36765.c.wasm', 'pr39228.c.wasm', 'pr43008.c.wasm', 'pr47237.c.wasm', 'pr60960.c.wasm', 'va-arg-pack-1.c.wasm', '20000717-5.c.wasm', # abort() (also works without emcc) '20001203-2.c.wasm', # assert fail (works without emcc) '20040811-1.c.wasm', # OOB trap '20070824-1.c.wasm', # abort() (also works without emcc) 'arith-rand-ll.c.wasm', # abort() (works without emcc) 'arith-rand.c.wasm', # abort() (works without emcc) 'pr23135.c.wasm', # OOB trap (works without emcc) 'pr34415.c.wasm', # (empty output?) 'pr36339.c.wasm', # abort() (works without emcc) 'pr38048-2.c.wasm', # abort() (works without emcc) 'pr42691.c.wasm', # abort() (works without emcc) 'pr43220.c.wasm', # OOB trap (works without emcc) 'pr43269.c.wasm', # abort() (works without emcc) 'vla-dealloc-1.c.wasm', # OOB trap (works without emcc) '20051012-1.c.wasm', # error reading binary '921208-2.c.wasm', # error reading binary '920501-1.c.wasm', # error reading binary 'call-trap-1.c.wasm', # error reading binary 'pr44942.c.wasm', # error reading binary '920625-1.c.wasm', # abort() (also fails without emcc) '931004-10.c.wasm', # abort() (also fails without emcc) '931004-12.c.wasm', # abort() (also fails without emcc) '931004-14.c.wasm', # abort() (also fails without emcc) '931004-6.c.wasm', # abort() (also fails without emcc) 'pr38051.c.wasm', # (empty output?) (fails without emcc) 'pr38151.c.wasm', # abort() (fails without emcc) 'pr44575.c.wasm', # abort() (fails without emcc) 'strct-stdarg-1.c.wasm', # abort() (fails without emcc) 'strct-varg-1.c.wasm', # abort() (fails without emcc) 'va-arg-22.c.wasm', # abort() (fails without emcc) 'stdarg-3.c.wasm', # abort() (fails without emcc) 'pr56982.c.wasm', # missing setjmp (wasm.js check did not catch) '20010605-2.c.wasm', # missing __netf2 '20020413-1.c.wasm', # missing __lttf2 '20030914-1.c.wasm', # missing __floatsitf '20040709-1.c.wasm', # missing __netf2 '20040709-2.c.wasm', # missing __netf2 '20050121-1.c.wasm', # missing __floatsitf '20080502-1.c.wasm', # missing __eqtf2 '920501-8.c.wasm', # missing __extenddftf2 '930513-1.c.wasm', # missing __extenddftf2 '930622-2.c.wasm', # missing __floatditf '960215-1.c.wasm', # missing __addtf3 '960405-1.c.wasm', # missing __eqtf2 '960513-1.c.wasm', # missing __subtf3 'align-2.c.wasm', # missing __eqtf2 'complex-6.c.wasm', # missing __subtf3 'complex-7.c.wasm', # missing __netf2 'pr49218.c.wasm', # missing __fixsfti 'pr54471.c.wasm', # missing __multi3 'regstack-1.c.wasm', # missing __addtf3 'stdarg-1.c.wasm', # missing __netf2 'stdarg-2.c.wasm', # missing __floatsitf 'va-arg-5.c.wasm', # missing __eqtf2 'va-arg-6.c.wasm', # missing __eqtf2 'struct-ret-1.c.wasm', # missing __extenddftf2 ]) parser = argparse.ArgumentParser() parser.add_argument('-v', '--verbose', action='store_true') parser.add_argument('--translate-only', action='store_true') parser.add_argument('tests', nargs='*') args = parser.parse_args() OUT_DIR = "./build/wasm-torture" results_lock = threading.Lock() compile_count = 0 compile_failures = [] run_count = 0 run_failures = [] def run_test(test_file, verbose=False): global args global compile_count global compile_failures global results_lock global run_count global run_failures global OUT_DIR global IGNORED_TESTS run_test = not args.translate_only test_name = os.path.basename(test_file) obj_file = os.path.join(OUT_DIR, test_name + ".o") exe_file = os.path.join(OUT_DIR, test_name + ".exe") if not verbose and test_name in IGNORED_TESTS: print("\033[1;34mSkipping {}\033[1;m".format(test_file)) return cmd = """LD_LIBRARY_PATH=../../../../v8/out/native/lib.target ./pnacl-sz \ -filetype=obj -target=x8632 {} -threads=0 -O2 \ -verbose=wasm -o {}""".format(test_file, obj_file) if not verbose: cmd += " &> /dev/null" out = StringIO.StringIO() out.write(test_file + " ..."); status = os.system(cmd); if status != 0: print('\033[1;31m[compile fail]\033[1;m', file=out) with results_lock: compile_failures.append(test_file) else: compile_count += 1 # Try to link and run the program. cmd = "clang -g -m32 {} -o {} " + \ "./runtime/szrt.c ./runtime/wasm-runtime.cpp -lm -lstdc++" cmd = cmd.format(obj_file, exe_file) if not run_test or os.system(cmd) == 0: if not run_test or os.system(exe_file) == 0: with results_lock: run_count += 1 print('\033[1;32m[ok]\033[1;m', file=out) else: with results_lock: run_failures.append(test_file) print('\033[1;33m[run fail]\033[1;m', file=out) else: with results_lock: run_failures.append(test_file) print('\033[1;33m[run fail]\033[1;m', file=out) sys.stdout.write(out.getvalue()) verbose = args.verbose if len(args.tests) > 0: test_files = args.tests else: test_files = glob.glob("./emwasm-torture-out/*.wasm") if os.path.exists(OUT_DIR): shutil.rmtree(OUT_DIR) os.mkdir(OUT_DIR) tasks = Queue.Queue() def worker(): while True: run_test(tasks.get(), verbose) tasks.task_done() for i in range(multiprocessing.cpu_count()): t = threading.Thread(target=worker) t.daemon = True t.start() for test_file in test_files: tasks.put(test_file) tasks.join() if len(compile_failures) > 0: print() print("Compilation failures:") print("=====================\n") for f in compile_failures: print(" \033[1;31m" + f + "\033[1;m") if len(run_failures) > 0: print() print("Run failures:") print("=============\n") for f in run_failures: print(" \033[1;33m" + f + "\033[1;m") print("\n\033[1;32m{}\033[1;m / \033[1;33m{}\033[1;m / {} tests passed" .format(run_count, compile_count - run_count, run_count + len(compile_failures) + len(run_failures)))
tests/storage/test_filesystem.py
dilyanpalauzov/vdirsyncer
888
14613
<filename>tests/storage/test_filesystem.py import subprocess import aiostream import pytest from vdirsyncer.storage.filesystem import FilesystemStorage from vdirsyncer.vobject import Item from . import StorageTests class TestFilesystemStorage(StorageTests): storage_class = FilesystemStorage @pytest.fixture def get_storage_args(self, tmpdir): async def inner(collection="test"): rv = {"path": str(tmpdir), "fileext": ".txt", "collection": collection} if collection is not None: rv = await self.storage_class.create_collection(**rv) return rv return inner def test_is_not_directory(self, tmpdir): with pytest.raises(OSError): f = tmpdir.join("hue") f.write("stub") self.storage_class(str(tmpdir) + "/hue", ".txt") @pytest.mark.asyncio async def test_broken_data(self, tmpdir): s = self.storage_class(str(tmpdir), ".txt") class BrokenItem: raw = "Ц, Ш, Л, ж, Д, З, Ю".encode() uid = "jeezus" ident = uid with pytest.raises(TypeError): await s.upload(BrokenItem) assert not tmpdir.listdir() @pytest.mark.asyncio async def test_ident_with_slash(self, tmpdir): s = self.storage_class(str(tmpdir), ".txt") await s.upload(Item("UID:a/b/c")) (item_file,) = tmpdir.listdir() assert "/" not in item_file.basename and item_file.isfile() @pytest.mark.asyncio async def test_ignore_tmp_files(self, tmpdir): """Test that files with .tmp suffix beside .ics files are ignored.""" s = self.storage_class(str(tmpdir), ".ics") await s.upload(Item("UID:xyzxyz")) (item_file,) = tmpdir.listdir() item_file.copy(item_file.new(ext="tmp")) assert len(tmpdir.listdir()) == 2 assert len(await aiostream.stream.list(s.list())) == 1 @pytest.mark.asyncio async def test_ignore_tmp_files_empty_fileext(self, tmpdir): """Test that files with .tmp suffix are ignored with empty fileext.""" s = self.storage_class(str(tmpdir), "") await s.upload(Item("UID:xyzxyz")) (item_file,) = tmpdir.listdir() item_file.copy(item_file.new(ext="tmp")) assert len(tmpdir.listdir()) == 2 # assert False, tmpdir.listdir() # enable to see the created filename assert len(await aiostream.stream.list(s.list())) == 1 @pytest.mark.asyncio async def test_ignore_files_typical_backup(self, tmpdir): """Test file-name ignorance with typical backup ending ~.""" ignorext = "~" # without dot storage = self.storage_class(str(tmpdir), "", fileignoreext=ignorext) await storage.upload(Item("UID:xyzxyz")) (item_file,) = tmpdir.listdir() item_file.copy(item_file.new(basename=item_file.basename + ignorext)) assert len(tmpdir.listdir()) == 2 assert len(await aiostream.stream.list(storage.list())) == 1 @pytest.mark.asyncio async def test_too_long_uid(self, tmpdir): storage = self.storage_class(str(tmpdir), ".txt") item = Item("UID:" + "hue" * 600) href, etag = await storage.upload(item) assert item.uid not in href @pytest.mark.asyncio async def test_post_hook_inactive(self, tmpdir, monkeypatch): def check_call_mock(*args, **kwargs): raise AssertionError() monkeypatch.setattr(subprocess, "call", check_call_mock) s = self.storage_class(str(tmpdir), ".txt", post_hook=None) await s.upload(Item("UID:a/b/c")) @pytest.mark.asyncio async def test_post_hook_active(self, tmpdir, monkeypatch): calls = [] exe = "foo" def check_call_mock(call, *args, **kwargs): calls.append(True) assert len(call) == 2 assert call[0] == exe monkeypatch.setattr(subprocess, "call", check_call_mock) s = self.storage_class(str(tmpdir), ".txt", post_hook=exe) await s.upload(Item("UID:a/b/c")) assert calls @pytest.mark.asyncio async def test_ignore_git_dirs(self, tmpdir): tmpdir.mkdir(".git").mkdir("foo") tmpdir.mkdir("a") tmpdir.mkdir("b") expected = {"a", "b"} actual = { c["collection"] async for c in self.storage_class.discover(str(tmpdir)) } assert actual == expected
mhcflurry/select_allele_specific_models_command.py
ignatovmg/mhcflurry
113
14615
""" Model select class1 single allele models. """ import argparse import os import signal import sys import time import traceback import random from functools import partial from pprint import pprint import numpy import pandas from scipy.stats import kendalltau, percentileofscore, pearsonr from sklearn.metrics import roc_auc_score import tqdm # progress bar tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481 from .class1_affinity_predictor import Class1AffinityPredictor from .common import normalize_allele_name from .encodable_sequences import EncodableSequences from .common import configure_logging, random_peptides from .local_parallelism import worker_pool_with_gpu_assignments_from_args, add_local_parallelism_args from .regression_target import from_ic50 # To avoid pickling large matrices to send to child processes when running in # parallel, we use this global variable as a place to store data. Data that is # stored here before creating the thread pool will be inherited to the child # processes upon fork() call, allowing us to share large data with the workers # via shared memory. GLOBAL_DATA = {} parser = argparse.ArgumentParser(usage=__doc__) parser.add_argument( "--data", metavar="FILE.csv", required=False, help=( "Model selection data CSV. Expected columns: " "allele, peptide, measurement_value")) parser.add_argument( "--exclude-data", metavar="FILE.csv", required=False, help=( "Data to EXCLUDE from model selection. Useful to specify the original " "training data used")) parser.add_argument( "--models-dir", metavar="DIR", required=True, help="Directory to read models") parser.add_argument( "--out-models-dir", metavar="DIR", required=True, help="Directory to write selected models") parser.add_argument( "--out-unselected-predictions", metavar="FILE.csv", help="Write predictions for validation data using unselected predictor to " "FILE.csv") parser.add_argument( "--unselected-accuracy-scorer", metavar="SCORER", default="combined:mass-spec,mse") parser.add_argument( "--unselected-accuracy-scorer-num-samples", type=int, default=1000) parser.add_argument( "--unselected-accuracy-percentile-threshold", type=float, metavar="X", default=95) parser.add_argument( "--allele", default=None, nargs="+", help="Alleles to select models for. If not specified, all alleles with " "enough measurements will be used.") parser.add_argument( "--combined-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using combined selector") parser.add_argument( "--combined-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using combined selector") parser.add_argument( "--combined-min-contribution-percent", type=float, default=1.0, metavar="X", help="Use only model selectors that can contribute at least X %% to the " "total score. Default: %(default)s") parser.add_argument( "--mass-spec-min-measurements", type=int, metavar="N", default=1, help="Min number of measurements required for an allele to use mass-spec model " "selection") parser.add_argument( "--mass-spec-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using mass-spec selector") parser.add_argument( "--mass-spec-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using mass-spec selector") parser.add_argument( "--mse-min-measurements", type=int, metavar="N", default=1, help="Min number of measurements required for an allele to use MSE model " "selection") parser.add_argument( "--mse-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using MSE selector") parser.add_argument( "--mse-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using MSE selector") parser.add_argument( "--scoring", nargs="+", default=["mse", "consensus"], help="Scoring procedures to use in order") parser.add_argument( "--consensus-min-models", type=int, default=8, metavar="N", help="Min number of models to select per allele when using consensus selector") parser.add_argument( "--consensus-max-models", type=int, default=1000, metavar="N", help="Max number of models to select per allele when using consensus selector") parser.add_argument( "--consensus-num-peptides-per-length", type=int, default=10000, help="Num peptides per length to use for consensus scoring") parser.add_argument( "--mass-spec-regex", metavar="REGEX", default="mass[- ]spec", help="Regular expression for mass-spec data. Runs on measurement_source col." "Default: %(default)s.") parser.add_argument( "--verbosity", type=int, help="Keras verbosity. Default: %(default)s", default=0) add_local_parallelism_args(parser) def run(argv=sys.argv[1:]): global GLOBAL_DATA # On sigusr1 print stack trace print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid()) signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack()) args = parser.parse_args(argv) args.out_models_dir = os.path.abspath(args.out_models_dir) configure_logging(verbose=args.verbosity > 1) input_predictor = Class1AffinityPredictor.load(args.models_dir) print("Loaded: %s" % input_predictor) if args.allele: alleles = [normalize_allele_name(a) for a in args.allele] else: alleles = input_predictor.supported_alleles metadata_dfs = {} if args.data: df = pandas.read_csv(args.data) print("Loaded data: %s" % (str(df.shape))) df = df.loc[ (df.peptide.str.len() >= 8) & (df.peptide.str.len() <= 15) ] print("Subselected to 8-15mers: %s" % (str(df.shape))) # Allele names in data are assumed to be already normalized. df = df.loc[df.allele.isin(alleles)].dropna() print("Selected %d alleles: %s" % (len(alleles), ' '.join(alleles))) if args.exclude_data: exclude_df = pandas.read_csv(args.exclude_data) metadata_dfs["model_selection_exclude"] = exclude_df print("Loaded exclude data: %s" % (str(df.shape))) df["_key"] = df.allele + "__" + df.peptide exclude_df["_key"] = exclude_df.allele + "__" + exclude_df.peptide df["_excluded"] = df._key.isin(exclude_df._key.unique()) print("Excluding measurements per allele (counts): ") print(df.groupby("allele")._excluded.sum()) print("Excluding measurements per allele (fractions): ") print(df.groupby("allele")._excluded.mean()) df = df.loc[~df._excluded] del df["_excluded"] del df["_key"] print("Reduced data to: %s" % (str(df.shape))) metadata_dfs["model_selection_data"] = df df["mass_spec"] = df.measurement_source.str.contains( args.mass_spec_regex) else: df = None if args.out_unselected_predictions: df["unselected_prediction"] = input_predictor.predict( alleles=df.allele.values, peptides=df.peptide.values) df.to_csv(args.out_unselected_predictions) print("Wrote: %s" % args.out_unselected_predictions) selectors = {} selector_to_model_selection_kwargs = {} def make_selector( scoring, combined_min_contribution_percent=args.combined_min_contribution_percent): if scoring in selectors: return ( selectors[scoring], selector_to_model_selection_kwargs[scoring]) start = time.time() if scoring.startswith("combined:"): model_selection_kwargs = { 'min_models': args.combined_min_models, 'max_models': args.combined_max_models, } component_selectors = [] for component_selector in scoring.split(":", 1)[1].split(","): component_selectors.append( make_selector( component_selector)[0]) selector = CombinedModelSelector( component_selectors, min_contribution_percent=combined_min_contribution_percent) elif scoring == "mse": model_selection_kwargs = { 'min_models': args.mse_min_models, 'max_models': args.mse_max_models, } min_measurements = args.mse_min_measurements selector = MSEModelSelector( df=df.loc[~df.mass_spec], predictor=input_predictor, min_measurements=min_measurements) elif scoring == "mass-spec": mass_spec_df = df.loc[df.mass_spec] model_selection_kwargs = { 'min_models': args.mass_spec_min_models, 'max_models': args.mass_spec_max_models, } min_measurements = args.mass_spec_min_measurements selector = MassSpecModelSelector( df=mass_spec_df, predictor=input_predictor, min_measurements=min_measurements) elif scoring == "consensus": model_selection_kwargs = { 'min_models': args.consensus_min_models, 'max_models': args.consensus_max_models, } selector = ConsensusModelSelector( predictor=input_predictor, num_peptides_per_length=args.consensus_num_peptides_per_length) else: raise ValueError("Unsupported scoring method: %s" % scoring) print("Instantiated model selector %s in %0.2f sec." % ( scoring, time.time() - start)) return (selector, model_selection_kwargs) for scoring in args.scoring: (selector, model_selection_kwargs) = make_selector(scoring) selectors[scoring] = selector selector_to_model_selection_kwargs[scoring] = model_selection_kwargs unselected_accuracy_scorer = None if args.unselected_accuracy_scorer: # Force running all selectors by setting combined_min_contribution_percent=0. unselected_accuracy_scorer = make_selector( args.unselected_accuracy_scorer, combined_min_contribution_percent=0.0)[0] print("Using unselected accuracy scorer: %s" % unselected_accuracy_scorer) GLOBAL_DATA["unselected_accuracy_scorer"] = unselected_accuracy_scorer print("Selectors for alleles:") allele_to_selector = {} allele_to_model_selection_kwargs = {} for allele in alleles: selector = None for possible_selector in args.scoring: if selectors[possible_selector].usable_for_allele(allele=allele): selector = selectors[possible_selector] print("%20s %s" % (allele, selector.plan_summary(allele))) break if selector is None: raise ValueError("No selectors usable for allele: %s" % allele) allele_to_selector[allele] = selector allele_to_model_selection_kwargs[allele] = ( selector_to_model_selection_kwargs[possible_selector]) GLOBAL_DATA["args"] = args GLOBAL_DATA["input_predictor"] = input_predictor GLOBAL_DATA["unselected_accuracy_scorer"] = unselected_accuracy_scorer GLOBAL_DATA["allele_to_selector"] = allele_to_selector GLOBAL_DATA["allele_to_model_selection_kwargs"] = allele_to_model_selection_kwargs if not os.path.exists(args.out_models_dir): print("Attempting to create directory: %s" % args.out_models_dir) os.mkdir(args.out_models_dir) print("Done.") result_predictor = Class1AffinityPredictor(metadata_dataframes=metadata_dfs) worker_pool = worker_pool_with_gpu_assignments_from_args(args) start = time.time() if worker_pool is None: # Serial run print("Running in serial.") results = ( model_select(allele) for allele in alleles) else: # Parallel run random.shuffle(alleles) results = worker_pool.imap_unordered( partial(model_select, constant_data=GLOBAL_DATA), alleles, chunksize=1) unselected_summary = [] model_selection_dfs = [] for result in tqdm.tqdm(results, total=len(alleles)): pprint(result) summary_dict = dict(result) summary_dict["retained"] = result["selected"] is not None del summary_dict["selected"] unselected_summary.append(summary_dict) if result['selected'] is not None: model_selection_dfs.append( result['selected'].metadata_dataframes['model_selection']) result_predictor.merge_in_place([result['selected']]) if model_selection_dfs: model_selection_df = pandas.concat( model_selection_dfs, ignore_index=True) model_selection_df["selector"] = model_selection_df.allele.map( allele_to_selector) result_predictor.metadata_dataframes["model_selection"] = ( model_selection_df) result_predictor.metadata_dataframes["unselected_summary"] = ( pandas.DataFrame(unselected_summary)) print("Done model selecting for %d alleles." % len(alleles)) result_predictor.save(args.out_models_dir) model_selection_time = time.time() - start if worker_pool: worker_pool.close() worker_pool.join() print("Model selection time %0.2f min." % (model_selection_time / 60.0)) print("Predictor written to: %s" % args.out_models_dir) class ScrambledPredictor(object): def __init__(self, predictor): self.predictor = predictor self._predictions = {} self._allele = None def predict(self, peptides, allele): if peptides not in self._predictions: self._predictions[peptides] = pandas.Series( self.predictor.predict(peptides=peptides, allele=allele)) self._allele = allele assert allele == self._allele return self._predictions[peptides].sample(frac=1.0).values def model_select(allele, constant_data=GLOBAL_DATA): unselected_accuracy_scorer = constant_data["unselected_accuracy_scorer"] selector = constant_data["allele_to_selector"][allele] model_selection_kwargs = constant_data[ "allele_to_model_selection_kwargs" ][allele] predictor = constant_data["input_predictor"] args = constant_data["args"] unselected_accuracy_scorer_samples = constant_data["args"].unselected_accuracy_scorer_num_samples result_dict = { "allele": allele } unselected_score = None unselected_score_percentile = None unselected_score_scrambled_mean = None if unselected_accuracy_scorer: unselected_score_function = ( unselected_accuracy_scorer.score_function(allele)) additional_metadata = {} unselected_score = unselected_score_function( predictor, additional_metadata_out=additional_metadata) scrambled_predictor = ScrambledPredictor(predictor) scrambled_scores = numpy.array([ unselected_score_function( scrambled_predictor) for _ in range(unselected_accuracy_scorer_samples) ]) unselected_score_scrambled_mean = scrambled_scores.mean() unselected_score_percentile = percentileofscore( scrambled_scores, unselected_score) print( "Unselected score and percentile", allele, unselected_score, unselected_score_percentile, additional_metadata) result_dict.update( dict(("unselected_%s" % key, value) for (key, value) in additional_metadata.items())) selected = None threshold = args.unselected_accuracy_percentile_threshold if unselected_score_percentile is None or unselected_score_percentile >= threshold: selected = predictor.model_select( score_function=selector.score_function(allele=allele), alleles=[allele], **model_selection_kwargs) result_dict["unselected_score_plan"] = ( unselected_accuracy_scorer.plan_summary(allele) if unselected_accuracy_scorer else None) result_dict["selector_score_plan"] = selector.plan_summary(allele) result_dict["unselected_accuracy_score_percentile"] = unselected_score_percentile result_dict["unselected_score"] = unselected_score result_dict["unselected_score_scrambled_mean"] = unselected_score_scrambled_mean result_dict["selected"] = selected result_dict["num_models"] = len(selected.neural_networks) if selected else None return result_dict def cache_encoding(predictor, peptides): # Encode the peptides for each neural network, so the encoding # becomes cached. for network in predictor.neural_networks: network.peptides_to_network_input(peptides) class ScoreFunction(object): """ Thin wrapper over a score function (Class1AffinityPredictor -> float). Used to keep a summary string associated with the function. """ def __init__(self, function, summary=None): self.function = function self.summary = summary if summary else "(n/a)" def __call__(self, *args, **kwargs): return self.function(*args, **kwargs) class CombinedModelSelector(object): """ Model selector that computes a weighted average over other model selectors. """ def __init__(self, model_selectors, weights=None, min_contribution_percent=1.0): if weights is None: weights = numpy.ones(shape=(len(model_selectors),)) self.model_selectors = model_selectors self.selector_to_weight = dict(zip(self.model_selectors, weights)) self.min_contribution_percent = min_contribution_percent def usable_for_allele(self, allele): return any( selector.usable_for_allele(allele) for selector in self.model_selectors) def plan_summary(self, allele): return self.score_function(allele, dry_run=True).summary def score_function(self, allele, dry_run=False): selector_to_max_weighted_score = {} for selector in self.model_selectors: weight = self.selector_to_weight[selector] if selector.usable_for_allele(allele): max_weighted_score = selector.max_absolute_value(allele) * weight else: max_weighted_score = 0 selector_to_max_weighted_score[selector] = max_weighted_score max_total_score = sum(selector_to_max_weighted_score.values()) # Use only selectors that can contribute >1% to the total score selectors_to_use = [ selector for selector in self.model_selectors if ( selector_to_max_weighted_score[selector] > max_total_score * self.min_contribution_percent / 100.0) ] summary = ", ".join([ "%s(|%.3f|)" % ( selector.plan_summary(allele), selector_to_max_weighted_score[selector]) for selector in selectors_to_use ]) if dry_run: score = None else: score_functions_and_weights = [ (selector.score_function(allele=allele), self.selector_to_weight[selector]) for selector in selectors_to_use ] def score(predictor, additional_metadata_out=None): scores = numpy.array([ score_function( predictor, additional_metadata_out=additional_metadata_out) * weight for (score_function, weight) in score_functions_and_weights ]) if additional_metadata_out is not None: additional_metadata_out["combined_score_terms"] = str( list(scores)) return scores.sum() return ScoreFunction(score, summary=summary) class ConsensusModelSelector(object): """ Model selector that scores sub-ensembles based on their Kendall tau consistency with the full ensemble over a set of random peptides. """ def __init__( self, predictor, num_peptides_per_length=10000, multiply_score_by_value=10.0): (min_length, max_length) = predictor.supported_peptide_lengths peptides = [] for length in range(min_length, max_length + 1): peptides.extend( random_peptides(num_peptides_per_length, length=length)) self.peptides = EncodableSequences.create(peptides) self.predictor = predictor self.multiply_score_by_value = multiply_score_by_value cache_encoding(self.predictor, self.peptides) def usable_for_allele(self, allele): return True def max_absolute_value(self, allele): return self.multiply_score_by_value def plan_summary(self, allele): return "consensus (%d points)" % len(self.peptides) def score_function(self, allele): full_ensemble_predictions = self.predictor.predict( allele=allele, peptides=self.peptides) def score(predictor, additional_metadata_out=None): predictions = predictor.predict( allele=allele, peptides=self.peptides, ) tau = kendalltau(predictions, full_ensemble_predictions).correlation if additional_metadata_out is not None: additional_metadata_out["score_consensus_tau"] = tau return tau * self.multiply_score_by_value return ScoreFunction( score, summary=self.plan_summary(allele)) class MSEModelSelector(object): """ Model selector that uses mean-squared error to score models. Inequalities are supported. """ def __init__( self, df, predictor, min_measurements=1, multiply_score_by_data_size=True): self.df = df self.predictor = predictor self.min_measurements = min_measurements self.multiply_score_by_data_size = multiply_score_by_data_size def usable_for_allele(self, allele): return (self.df.allele == allele).sum() >= self.min_measurements def max_absolute_value(self, allele): if self.multiply_score_by_data_size: return (self.df.allele == allele).sum() else: return 1.0 def plan_summary(self, allele): return self.score_function(allele).summary def score_function(self, allele): sub_df = self.df.loc[self.df.allele == allele].reset_index(drop=True) peptides = EncodableSequences.create(sub_df.peptide.values) def score(predictor, additional_metadata_out=None): predictions = predictor.predict( allele=allele, peptides=peptides, ) deviations = from_ic50(predictions) - from_ic50( sub_df.measurement_value) if 'measurement_inequality' in sub_df.columns: # Must reverse meaning of inequality since we are working with # transformed 0-1 values, which are anti-correlated with the ic50s. # The measurement_inequality column is given in terms of ic50s. deviations.loc[ ( (sub_df.measurement_inequality == "<") & (deviations > 0)) | ((sub_df.measurement_inequality == ">") & (deviations < 0)) ] = 0.0 score_mse = (1 - (deviations ** 2).mean()) if additional_metadata_out is not None: additional_metadata_out["score_MSE"] = 1 - score_mse # We additionally include other scores on (=) measurements as # a convenience eq_df = sub_df if 'measurement_inequality' in sub_df.columns: eq_df = sub_df.loc[ sub_df.measurement_inequality == "=" ] additional_metadata_out["score_pearsonr"] = ( pearsonr( numpy.log(eq_df.measurement_value.values), numpy.log(predictions[eq_df.index.values]))[0]) for threshold in [500, 5000, 15000]: if (eq_df.measurement_value < threshold).nunique() == 2: additional_metadata_out["score_AUC@%d" % threshold] = ( roc_auc_score( (eq_df.measurement_value < threshold).values, -1 * predictions[eq_df.index.values])) return score_mse * ( len(sub_df) if self.multiply_score_by_data_size else 1) summary = "mse (%d points)" % (len(sub_df)) return ScoreFunction(score, summary=summary) class MassSpecModelSelector(object): """ Model selector that uses PPV of differentiating decoys from hits from mass-spec experiments. """ def __init__( self, df, predictor, decoys_per_length=0, min_measurements=100, multiply_score_by_data_size=True): # Index is peptide, columns are alleles hit_matrix = df.groupby( ["peptide", "allele"]).measurement_value.count().unstack().fillna( 0).astype(bool) if decoys_per_length: (min_length, max_length) = predictor.supported_peptide_lengths decoys = [] for length in range(min_length, max_length + 1): decoys.extend( random_peptides(decoys_per_length, length=length)) decoy_matrix = pandas.DataFrame( index=decoys, columns=hit_matrix.columns, dtype=bool) decoy_matrix[:] = False full_matrix = pandas.concat([hit_matrix, decoy_matrix]) else: full_matrix = hit_matrix if len(full_matrix) > 0: full_matrix = full_matrix.sample(frac=1.0).astype(float) self.df = full_matrix self.predictor = predictor self.min_measurements = min_measurements self.multiply_score_by_data_size = multiply_score_by_data_size self.peptides = EncodableSequences.create(full_matrix.index.values) cache_encoding(self.predictor, self.peptides) @staticmethod def ppv(y_true, predictions): df = pandas.DataFrame({"prediction": predictions, "y_true": y_true}) return df.sort_values("prediction", ascending=True)[ : int(y_true.sum()) ].y_true.mean() def usable_for_allele(self, allele): return allele in self.df.columns and ( self.df[allele].sum() >= self.min_measurements) def max_absolute_value(self, allele): if self.multiply_score_by_data_size: return self.df[allele].sum() else: return 1.0 def plan_summary(self, allele): return self.score_function(allele).summary def score_function(self, allele): total_hits = self.df[allele].sum() total_decoys = (self.df[allele] == 0).sum() multiplier = total_hits if self.multiply_score_by_data_size else 1 def score(predictor, additional_metadata_out=None): predictions = predictor.predict( allele=allele, peptides=self.peptides, ) ppv = self.ppv(self.df[allele], predictions) if additional_metadata_out is not None: additional_metadata_out["score_mass_spec_PPV"] = ppv # We additionally compute AUC score. additional_metadata_out["score_mass_spec_AUC"] = roc_auc_score( self.df[allele].values, -1 * predictions) return ppv * multiplier summary = "mass-spec (%d hits / %d decoys)" % (total_hits, total_decoys) return ScoreFunction(score, summary=summary) if __name__ == '__main__': run()
CircuitPython_Made_Easy_On_CPX/cpx_temperature_neopixels.py
joewalk102/Adafruit_Learning_System_Guides
665
14616
import time from adafruit_circuitplayground.express import cpx import simpleio cpx.pixels.auto_write = False cpx.pixels.brightness = 0.3 # Set these based on your ambient temperature for best results! minimum_temp = 24 maximum_temp = 30 while True: # temperature value remapped to pixel position peak = simpleio.map_range(cpx.temperature, minimum_temp, maximum_temp, 0, 10) print(cpx.temperature) print(int(peak)) for i in range(0, 10, 1): if i <= peak: cpx.pixels[i] = (0, 255, 255) else: cpx.pixels[i] = (0, 0, 0) cpx.pixels.show() time.sleep(0.05)
opendbc/generator/test_generator.py
darknight111/openpilot3
116
14619
<gh_stars>100-1000 #!/usr/bin/env python3 import os import filecmp import tempfile from opendbc.generator.generator import create_all, opendbc_root def test_generator(): with tempfile.TemporaryDirectory() as d: create_all(d) ignore = [f for f in os.listdir(opendbc_root) if not f.endswith('_generated.dbc')] comp = filecmp.dircmp(opendbc_root, d, ignore=ignore) assert len(comp.diff_files) == 0, f"Different files: {comp.diff_files}" test_generator()
mayan/apps/rest_api/classes.py
atitaya1412/Mayan-EDMS
336
14621
<filename>mayan/apps/rest_api/classes.py from collections import namedtuple import io import json from furl import furl from django.core.handlers.wsgi import WSGIRequest from django.http.request import QueryDict from django.template import Variable, VariableDoesNotExist from django.test.client import MULTIPART_CONTENT from django.urls import resolve from django.urls.exceptions import Resolver404 from mayan.apps.organizations.settings import setting_organization_url_base_path from mayan.apps.templating.classes import Template from .literals import API_VERSION class BatchResponse: def __init__(self, name, status_code, data, headers): self.name = name self.status_code = status_code self.data = data self.headers = headers class NestableLazyIterator: def __init__( self, iterable_string, context, context_list_index, parent_iterator=None ): self.iterable_string = iterable_string self.context = context self.context_list_index = context_list_index self.parent_iterator = parent_iterator self.items = None self.index = 0 def __iter__(self): return self def __next__(self): # Setup the initial values on the initial access. if not self.items: if self.parent_iterator: next(self.parent_iterator) self.update_iterable_object() if self.index == len(self.items): self.index = 0 if self.parent_iterator: next(self.parent_iterator) else: raise StopIteration self.update_iterable_object() value = self.items[self.index] self.context['iterables'][self.context_list_index] = value self.index += 1 return value def update_iterable_object(self): self.items = Variable(var=self.iterable_string).resolve(context=self.context) RenderedContent = namedtuple( typename='RenderedContent', field_names=( 'body', 'include', 'method', 'name', 'url' ) ) class BatchRequest: def __init__( self, collection, name, url, body=None, group_name=None, include='true', iterables=None, method='GET' ): self.collection = collection self.body = body or {} self.include = include self.group_name = group_name self.iterables = iterables self.method = method self.name = name self.url = url def execute(self): if self.iterables: # Initialize the iterables list to allow using any index. self.collection.context['iterables'] = [None] * len(self.iterables) iterator = None for iterable_index, iterable in enumerate(self.iterables): iterator = NestableLazyIterator( context=self.collection.context, context_list_index=iterable_index, iterable_string=iterable, parent_iterator=iterator ) while True: try: next(iterator) except StopIteration: break except VariableDoesNotExist as exception: self.collection.responses[self.name] = { 'data': {'error': str(exception)}, 'include': 'true', 'is_response': True } return else: rendered_content = self.render_content() BatchRequest( collection=self.collection, body=rendered_content.body, group_name=self.group_name, include=rendered_content.include, method=rendered_content.method, name=rendered_content.name, url=rendered_content.url ).execute() else: rendered_content = self.render_content() url_parts = furl(rendered_content.url) try: resolver_match = resolve(path=url_parts.pathstr) except Resolver404 as exception: self.collection.responses[rendered_content.name] = { 'data': { 'error': '"{}" not found'.format(exception.args[0]['path']) }, 'include': 'true', 'is_response': True, 'status_code': 404 } return else: environ = getattr( self.collection.view_request, 'environ', {} ).copy() environ['REQUEST_METHOD'] = rendered_content.method environ['PATH_INFO'] = self.url environ['QUERY_STRING'] = url_parts.querystr post_query_dict = QueryDict(mutable=True) post_query_dict.update(rendered_content.body) json_body = json.dumps(post_query_dict) request_data = json_body.encode('utf-8') environ['wsgi.input'] = io.BytesIO(request_data) environ['CONTENT_LENGTH'] = str(len(request_data)) if rendered_content.method == 'POST': environ['CONTENT_TYPE'] = MULTIPART_CONTENT else: environ['CONTENT_TYPE'] = 'application/octet-stream' request = WSGIRequest(environ=environ) request.LANGUAGE_CODE = getattr( self.collection.view_request, 'LANGUAGE_CODE', None ) request.POST = post_query_dict request._read_started = True request.auth = getattr( self.collection.view_request, 'auth', None ) request.csrf_processing_done = True request.session = getattr( self.collection.view_request, 'session', None ) request.user = getattr( self.collection.view_request, 'user', None ) response = resolver_match.func( request=request, **resolver_match.kwargs ) result = { 'data': response.data, 'headers': {key: value for key, value in response.items()}, 'include': rendered_content.include, 'is_response': True, 'status_code': response.status_code } self.collection.context[rendered_content.name] = result self.collection.responses[rendered_content.name] = result if self.group_name: self.collection.context.setdefault('groups', {}) self.collection.context['groups'].setdefault( self.group_name, [] ) self.collection.context['groups'][self.group_name].append( result ) def render_content(self): rendered_body = {} for key, value in self.body.items(): rendered_key = Template(template_string=key).render( context=self.collection.context ) rendered_value = Template(template_string=value).render( context=self.collection.context ) rendered_body[rendered_key] = rendered_value rendered_include = Template(template_string=self.include).render( context=self.collection.context ) rendered_method = Template(template_string=self.method).render( context=self.collection.context ) rendered_name = Template(template_string=self.name).render( context=self.collection.context ) rendered_url = Template(template_string=self.url).render( context=self.collection.context ) return RenderedContent( body=rendered_body, include=rendered_include, method=rendered_method, name=rendered_name, url=rendered_url ) class BatchRequestCollection: def __init__(self, request_list=None): self.requests = [] for request_index, request_dict in enumerate(request_list): request_dict.update( {'collection': self} ) try: self.requests.append(BatchRequest(**request_dict)) except Exception as exception: raise ValueError( 'Error instantiating request #{}; {}'.format( request_index, exception ) ) from exception def execute(self, view_request): self.context = {'view_request': view_request} self.responses = {} self.view_request = view_request for request in self.requests: request.execute() # Convert responses in context into response class instances. result = [] for key, value in self.responses.items(): if json.loads(s=value.get('include', 'true')): result.append( BatchResponse( name=key, status_code=value.get('status_code', 0), data=value.get('data', {}), headers=value.get('headers', {}), ) ) return result class Endpoint: def __init__(self, label, viewname=None, kwargs=None): self.label = label self.kwargs = kwargs if viewname: self.viewname = viewname else: installation_base_url = setting_organization_url_base_path.value if installation_base_url: installation_base_url = '/{}'.format(installation_base_url) else: installation_base_url = '' self.url = '{}/api/v{}/{}/'.format( installation_base_url, API_VERSION, self.label ) try: self.viewname = resolve(path=self.url).view_name except Resolver404: self.viewname = None
pxr/base/tf/testenv/testTfStringUtils.py
DougRogers-DigitalFish/USD
3,680
14637
#!/pxrpythonsubst # # Copyright 2016 Pixar # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # from pxr import Tf import logging import unittest class TestStringUtils(unittest.TestCase): """ Test Tf String Utils (The python wrapped porting of the utility functions). """ def setUp(self): self.log = logging.getLogger() def test_StringSplit(self): """Testing StringSplit() function. This function is supposed to behave like the split method on python string objects.""" self.log.info("Testing string split cases") self.assertEqual([], Tf.StringSplit("","")) self.assertEqual([], Tf.StringSplit("abcd","")) self.assertEqual([], Tf.StringSplit("","ccc")) s = "abcd" self.assertEqual(s.split("a"), Tf.StringSplit(s, "a")) self.assertEqual(s.split("b"), Tf.StringSplit(s, "b")) self.assertEqual(s.split("c"), Tf.StringSplit(s, "c")) self.assertEqual(s.split("d"), Tf.StringSplit(s, "d")) self.assertEqual(s.split("abcd"), Tf.StringSplit(s, "abcd")) self.assertEqual(s.split("ab"), Tf.StringSplit(s, "ab")) s = "a:+b:+c:+d" self.assertEqual(s.split(":+"), Tf.StringSplit(s, ":+")) s = "a:+b:+c:d" self.assertEqual(s.split(":+"), Tf.StringSplit(s, ":+")) def test_Unicode(self): """Testing that we can pass python unicode objects to wrapped functions expecting std::string""" self.log.info("Testing unicode calls") self.assertEqual(Tf.StringSplit('123', '2'), ['1', '3']) self.assertEqual(Tf.StringSplit('123', u'2'), ['1', '3']) self.assertEqual(Tf.StringSplit(u'123', '2'), ['1', '3']) self.assertEqual(Tf.StringSplit(u'123', u'2'), ['1', '3']) self.assertEqual(Tf.DictionaryStrcmp('apple', 'banana'), -1) self.assertEqual(Tf.DictionaryStrcmp('apple', u'banana'), -1) self.assertEqual(Tf.DictionaryStrcmp(u'apple', 'banana'), -1) self.assertEqual(Tf.DictionaryStrcmp(u'apple', u'banana'), -1) def test_StringToLong(self): def checks(val): self.assertEqual(Tf.StringToLong(repr(val)), val) def checku(val): self.assertEqual(Tf.StringToULong(repr(val)), val) # A range of valid values. for i in range(1000000): checku(i) for i in range(-500000, 500000): checks(i) # A wider range of valid values. for i in range(0, 1000000000, 9337): checks(i) for i in range(-500000000, 500000000, 9337): checks(i) # Get the max/min values. ulmax, lmax, lmin = ( Tf._GetULongMax(), Tf._GetLongMax(), Tf._GetLongMin()) # Check the extrema and one before to ensure they work. for n in [ulmax-1, ulmax]: checku(n) for n in [lmin, lmin+1, lmax-1, lmax]: checks(n) # Check that some beyond the extrema over/underflow. # # Unsigned overflow. for i in range(1, 1000): with self.assertRaises(ValueError): checku(ulmax + i) with self.assertRaises(ValueError): checks(lmax + i) with self.assertRaises(ValueError): checks(lmin - i) def test_Identifiers(self): self.assertFalse(Tf.IsValidIdentifier('')) self.assertTrue(Tf.IsValidIdentifier('hello9')) self.assertFalse(Tf.IsValidIdentifier('9hello')) self.assertTrue(Tf.IsValidIdentifier('hello_world')) self.assertTrue(Tf.IsValidIdentifier('HELLO_WORLD')) self.assertTrue(Tf.IsValidIdentifier('hello_world_1234')) self.assertFalse(Tf.IsValidIdentifier('hello_#world#_1234')) self.assertFalse(Tf.IsValidIdentifier('h e l l o')) self.assertEqual(Tf.MakeValidIdentifier(''), '_') self.assertEqual(Tf.MakeValidIdentifier('hello9'), 'hello9') self.assertEqual(Tf.MakeValidIdentifier('9hello'), '_hello') self.assertEqual( Tf.MakeValidIdentifier('hello_#world#_1234'), 'hello__world__1234') self.assertFalse(Tf.IsValidIdentifier('h e l l o'), 'h_e_l_l_o') self.assertFalse(Tf.IsValidIdentifier('!@#$%'), '_____') if __name__ == '__main__': unittest.main()
envelopes/envelope.py
siyaoyao/envelopes
202
14647
# -*- coding: utf-8 -*- # Copyright (c) 2013 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # """ envelopes.envelope ================== This module contains the Envelope class. """ import sys if sys.version_info[0] == 2: from email import Encoders as email_encoders elif sys.version_info[0] == 3: from email import encoders as email_encoders basestring = str def unicode(_str, _charset): return str(_str.encode(_charset), _charset) else: raise RuntimeError('Unsupported Python version: %d.%d.%d' % ( sys.version_info[0], sys.version_info[1], sys.version_info[2] )) from email.header import Header from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.application import MIMEApplication from email.mime.audio import MIMEAudio from email.mime.image import MIMEImage from email.mime.text import MIMEText import mimetypes import os import re from .conn import SMTP from .compat import encoded class MessageEncodeError(Exception): pass class Envelope(object): """ The Envelope class. **Address formats** The following formats are supported for e-mail addresses: * ``"<EMAIL>"`` - just the e-mail address part as a string, * ``"Some User <<EMAIL>>"`` - name and e-mail address parts as a string, * ``("<EMAIL>", "Some User")`` - e-mail address and name parts as a tuple. Whenever you come to manipulate addresses feel free to use any (or all) of the formats above. :param to_addr: ``To`` address or list of ``To`` addresses :param from_addr: ``From`` address :param subject: message subject :param html_body: optional HTML part of the message :param text_body: optional plain text part of the message :param cc_addr: optional single CC address or list of CC addresses :param bcc_addr: optional single BCC address or list of BCC addresses :param headers: optional dictionary of headers :param charset: message charset """ ADDR_FORMAT = '%s <%s>' ADDR_REGEXP = re.compile(r'^(.*) <([^@]+@[^@]+)>$') def __init__(self, to_addr=None, from_addr=None, subject=None, html_body=None, text_body=None, cc_addr=None, bcc_addr=None, headers=None, charset='utf-8'): if to_addr: if isinstance(to_addr, list): self._to = to_addr else: self._to = [to_addr] else: self._to = [] self._from = from_addr self._subject = subject self._parts = [] if text_body: self._parts.append(('text/plain', text_body, charset)) if html_body: self._parts.append(('text/html', html_body, charset)) if cc_addr: if isinstance(cc_addr, list): self._cc = cc_addr else: self._cc = [cc_addr] else: self._cc = [] if bcc_addr: if isinstance(bcc_addr, list): self._bcc = bcc_addr else: self._bcc = [bcc_addr] else: self._bcc = [] if headers: self._headers = headers else: self._headers = {} self._charset = charset self._addr_format = unicode(self.ADDR_FORMAT, charset) def __repr__(self): return u'<Envelope from="%s" to="%s" subject="%s">' % ( self._addrs_to_header([self._from]), self._addrs_to_header(self._to), self._subject ) @property def to_addr(self): """List of ``To`` addresses.""" return self._to def add_to_addr(self, to_addr): """Adds a ``To`` address.""" self._to.append(to_addr) def clear_to_addr(self): """Clears list of ``To`` addresses.""" self._to = [] @property def from_addr(self): return self._from @from_addr.setter def from_addr(self, from_addr): self._from = from_addr @property def cc_addr(self): """List of CC addresses.""" return self._cc def add_cc_addr(self, cc_addr): """Adds a CC address.""" self._cc.append(cc_addr) def clear_cc_addr(self): """Clears list of CC addresses.""" self._cc = [] @property def bcc_addr(self): """List of BCC addresses.""" return self._bcc def add_bcc_addr(self, bcc_addr): """Adds a BCC address.""" self._bcc.append(bcc_addr) def clear_bcc_addr(self): """Clears list of BCC addresses.""" self._bcc = [] @property def charset(self): """Message charset.""" return self._charset @charset.setter def charset(self, charset): self._charset = charset self._addr_format = unicode(self.ADDR_FORMAT, charset) def _addr_tuple_to_addr(self, addr_tuple): addr = '' if len(addr_tuple) == 2 and addr_tuple[1]: addr = self._addr_format % ( self._header(addr_tuple[1] or ''), addr_tuple[0] or '' ) elif addr_tuple[0]: addr = addr_tuple[0] return addr @property def headers(self): """Dictionary of custom headers.""" return self._headers def add_header(self, key, value): """Adds a custom header.""" self._headers[key] = value def clear_headers(self): """Clears custom headers.""" self._headers = {} def _addrs_to_header(self, addrs): _addrs = [] for addr in addrs: if not addr: continue if isinstance(addr, basestring): if self._is_ascii(addr): _addrs.append(self._encoded(addr)) else: # these headers need special care when encoding, see: # http://tools.ietf.org/html/rfc2047#section-8 # Need to break apart the name from the address if there are # non-ascii chars m = self.ADDR_REGEXP.match(addr) if m: t = (m.group(2), m.group(1)) _addrs.append(self._addr_tuple_to_addr(t)) else: # What can we do? Just pass along what the user gave us and hope they did it right _addrs.append(self._encoded(addr)) elif isinstance(addr, tuple): _addrs.append(self._addr_tuple_to_addr(addr)) else: self._raise(MessageEncodeError, '%s is not a valid address' % str(addr)) _header = ','.join(_addrs) return _header def _raise(self, exc_class, message): raise exc_class(self._encoded(message)) def _header(self, _str): if self._is_ascii(_str): return _str return Header(_str, self._charset).encode() def _is_ascii(self, _str): return all(ord(c) < 128 for c in _str) def _encoded(self, _str): return encoded(_str, self._charset) def to_mime_message(self): """Returns the envelope as :py:class:`email.mime.multipart.MIMEMultipart`.""" msg = MIMEMultipart('alternative') msg['Subject'] = self._header(self._subject or '') msg['From'] = self._encoded(self._addrs_to_header([self._from])) msg['To'] = self._encoded(self._addrs_to_header(self._to)) if self._cc: msg['CC'] = self._addrs_to_header(self._cc) if self._headers: for key, value in self._headers.items(): msg[key] = self._header(value) for part in self._parts: type_maj, type_min = part[0].split('/') if type_maj == 'text' and type_min in ('html', 'plain'): msg.attach(MIMEText(part[1], type_min, self._charset)) else: msg.attach(part[1]) return msg def add_attachment(self, file_path, mimetype=None): """Attaches a file located at *file_path* to the envelope. If *mimetype* is not specified an attempt to guess it is made. If nothing is guessed then `application/octet-stream` is used.""" if not mimetype: mimetype, _ = mimetypes.guess_type(file_path) if mimetype is None: mimetype = 'application/octet-stream' type_maj, type_min = mimetype.split('/') with open(file_path, 'rb') as fh: part_data = fh.read() part = MIMEBase(type_maj, type_min) part.set_payload(part_data) email_encoders.encode_base64(part) part_filename = os.path.basename(self._encoded(file_path)) part.add_header('Content-Disposition', 'attachment; filename="%s"' % part_filename) self._parts.append((mimetype, part)) def send(self, *args, **kwargs): """Sends the envelope using a freshly created SMTP connection. *args* and *kwargs* are passed directly to :py:class:`envelopes.conn.SMTP` constructor. Returns a tuple of SMTP object and whatever its send method returns.""" conn = SMTP(*args, **kwargs) send_result = conn.send(self) return conn, send_result
test/test_format.py
GuyTuval/msgpack-python
1,252
14661
<reponame>GuyTuval/msgpack-python #!/usr/bin/env python # coding: utf-8 from msgpack import unpackb def check(src, should, use_list=0, raw=True): assert unpackb(src, use_list=use_list, raw=raw, strict_map_key=False) == should def testSimpleValue(): check(b"\x93\xc0\xc2\xc3", (None, False, True)) def testFixnum(): check(b"\x92\x93\x00\x40\x7f\x93\xe0\xf0\xff", ((0, 64, 127), (-32, -16, -1))) def testFixArray(): check(b"\x92\x90\x91\x91\xc0", ((), ((None,),))) def testFixRaw(): check(b"\x94\xa0\xa1a\xa2bc\xa3def", (b"", b"a", b"bc", b"def")) def testFixMap(): check( b"\x82\xc2\x81\xc0\xc0\xc3\x81\xc0\x80", {False: {None: None}, True: {None: {}}} ) def testUnsignedInt(): check( b"\x99\xcc\x00\xcc\x80\xcc\xff\xcd\x00\x00\xcd\x80\x00" b"\xcd\xff\xff\xce\x00\x00\x00\x00\xce\x80\x00\x00\x00" b"\xce\xff\xff\xff\xff", (0, 128, 255, 0, 32768, 65535, 0, 2147483648, 4294967295), ) def testSignedInt(): check( b"\x99\xd0\x00\xd0\x80\xd0\xff\xd1\x00\x00\xd1\x80\x00" b"\xd1\xff\xff\xd2\x00\x00\x00\x00\xd2\x80\x00\x00\x00" b"\xd2\xff\xff\xff\xff", (0, -128, -1, 0, -32768, -1, 0, -2147483648, -1), ) def testRaw(): check( b"\x96\xda\x00\x00\xda\x00\x01a\xda\x00\x02ab\xdb\x00\x00" b"\x00\x00\xdb\x00\x00\x00\x01a\xdb\x00\x00\x00\x02ab", (b"", b"a", b"ab", b"", b"a", b"ab"), ) check( b"\x96\xda\x00\x00\xda\x00\x01a\xda\x00\x02ab\xdb\x00\x00" b"\x00\x00\xdb\x00\x00\x00\x01a\xdb\x00\x00\x00\x02ab", ("", "a", "ab", "", "a", "ab"), raw=False, ) def testArray(): check( b"\x96\xdc\x00\x00\xdc\x00\x01\xc0\xdc\x00\x02\xc2\xc3\xdd\x00" b"\x00\x00\x00\xdd\x00\x00\x00\x01\xc0\xdd\x00\x00\x00\x02" b"\xc2\xc3", ((), (None,), (False, True), (), (None,), (False, True)), ) def testMap(): check( b"\x96" b"\xde\x00\x00" b"\xde\x00\x01\xc0\xc2" b"\xde\x00\x02\xc0\xc2\xc3\xc2" b"\xdf\x00\x00\x00\x00" b"\xdf\x00\x00\x00\x01\xc0\xc2" b"\xdf\x00\x00\x00\x02\xc0\xc2\xc3\xc2", ( {}, {None: False}, {True: False, None: False}, {}, {None: False}, {True: False, None: False}, ), )
test/scons-time/time/no-result.py
moroten/scons
1,403
14682
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" """ Verify that the time subcommand's --which option doesn't fail, and prints an appropriate error message, if a log file doesn't have its specific requested results. """ import TestSCons_time test = TestSCons_time.TestSCons_time() header = """\ set key bottom left plot '-' title "Startup" with lines lt 1 # Startup """ footer = """\ e """ line_fmt = "%s 11.123456\n" lines = [] for i in range(9): logfile_name = 'foo-%s-0.log' % i if i == 5: test.write(test.workpath(logfile_name), "NO RESULTS HERE!\n") else: test.fake_logfile(logfile_name) lines.append(line_fmt % i) expect = [header] + lines + [footer] stderr = "file 'foo-5-0.log' has no results!\n" test.run(arguments = 'time --fmt gnuplot --which total foo*.log', stdout = ''.join(expect), stderr = stderr) expect = [header] + [footer] test.run(arguments = 'time --fmt gnuplot foo-5-0.log', stdout = ''.join(expect), stderr = stderr) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
foo/pictureR/wordsTemplate.py
MangetsuC/arkHelper
147
14724
<filename>foo/pictureR/wordsTemplate.py<gh_stars>100-1000 from PIL import Image, ImageDraw, ImageFont from numpy import asarray from cv2 import cvtColor, COLOR_RGB2BGR, imshow, waitKey from os import getcwd def getFontSize_name(resolution): x = resolution[0] if x <= 1024: return (16, (1024,576)) elif x <= 1280: return (21, (1280,720)) elif x <= 1440: return (23, (1440,810)) elif x <= 1600: return (26, (1600,900)) else: return (31, (1920,1080)) def getTemplatePic_CH(words, fontsize): #字号典型值 基建干员名称23 进驻总览房屋名称28(1440*810) 基建干员名称30 进驻总览房屋名称38(1920*1080) ttf = ImageFont.truetype(getcwd() + "/res/fonts/SourceHanSansCN-Regular.otf", fontsize) #字体选用思源黑体 wordsPic = Image.new('RGB', ttf.getsize(words)) wordsDraw = ImageDraw.Draw(wordsPic) wordsDraw.text((0, 0), words, font=ttf, fill=(255,255,255)) #创建对应的模板 #temp = cvtColor(asarray(wordsPic), COLOR_RGB2BGR) #imshow('test', temp) #waitKey(0) return cvtColor(asarray(wordsPic), COLOR_RGB2BGR) def getTemplatePic_NUM(num, fontsize): #字号典型值 进驻总览干员心情28 num = str(num) ttf = ImageFont.truetype(getcwd() + "/res/fonts/Bender.otf", fontsize) #字体选用bender wordsPic = Image.new('RGB', ttf.getsize(num), color = (255, 255, 255)) wordsDraw = ImageDraw.Draw(wordsPic) wordsDraw.text((0, 0), num, font=ttf, fill=(0,0,0)) #创建对应的模板 return cvtColor(asarray(wordsPic), COLOR_RGB2BGR)
tools/harness/tests/freemem.py
lambdaxymox/barrelfish
111
14737
########################################################################## # Copyright (c) 2009, ETH Zurich. # All rights reserved. # # This file is distributed under the terms in the attached LICENSE file. # If you do not find this file, copies can be found by writing to: # ETH Zurich D-INFK, Universitaetstrasse 6, CH-8092 Zurich. Attn: Systems Group. ########################################################################## import re import tests from common import TestCommon from results import PassFailResult @tests.add_test class MemTest(TestCommon): '''prints out free and total memory after system boot up''' name = "freemem" def get_modules(self, build, machine): modules = super(MemTest, self).get_modules(build, machine) modules.add_module("freemem") return modules def get_finish_string(self): return "freemem done!" def process_data(self, testdir, rawiter): # the test passed iff the last line is the finish string lastline = '' for line in rawiter: lastline = line passed = lastline.startswith(self.get_finish_string()) return PassFailResult(passed)
src/reader/_plugins/enclosure_tags.py
mirekdlugosz/reader
205
14750
""" enclosure_tags ~~~~~~~~~~~~~~ Fix tags for MP3 enclosures (e.g. podcasts). Adds a "with tags" link to a version of the file with tags set as follows: * the entry title as title * the feed title as album * the entry/feed author as author This plugin needs additional dependencies, use the ``unstable-plugins`` extra to install them: .. code-block:: bash pip install reader[unstable-plugins] To load:: READER_APP_PLUGIN='reader._plugins.enclosure_tags:init' \\ python -m reader serve Implemented for https://github.com/lemon24/reader/issues/50. Became a plugin in https://github.com/lemon24/reader/issues/52. """ import tempfile from urllib.parse import urlparse import mutagen.mp3 import requests from flask import Blueprint from flask import request from flask import Response from flask import stream_with_context from flask import url_for blueprint = Blueprint('enclosure_tags', __name__) ALL_TAGS = ('album', 'title', 'artist') SET_ONLY_IF_MISSING_TAGS = {'artist'} @blueprint.route('/enclosure-tags', defaults={'filename': None}) @blueprint.route('/enclosure-tags/<filename>') def enclosure_tags(filename): def update_tags(file): emp3 = mutagen.mp3.EasyMP3(file) changed = False for key in ALL_TAGS: if key in SET_ONLY_IF_MISSING_TAGS and emp3.get(key): continue value = request.args.get(key) if not value: continue emp3[key] = [value] changed = True if changed: emp3.save(file) file.seek(0) def chunks(req): # Send the headers as soon as possible. # Some browsers wait for the headers before showing the "Save As" dialog. yield '' tmp = tempfile.TemporaryFile() for chunk in req.iter_content(chunk_size=2 ** 20): tmp.write(chunk) tmp.seek(0) update_tags(tmp) try: while True: data = tmp.read(2 ** 20) if not data: break yield data finally: tmp.close() url = request.args['url'] req = requests.get(url, stream=True) headers = {} for name in ('Content-Type', 'Content-Disposition'): if name in req.headers: headers[name] = req.headers[name] return Response(stream_with_context(chunks(req)), headers=headers) def enclosure_tags_filter(enclosure, entry): filename = urlparse(enclosure.href).path.split('/')[-1] if not filename.endswith('.mp3'): return [] args = {'url': enclosure.href, 'filename': filename} if entry.title: args['title'] = entry.title if entry.feed.title: args['album'] = entry.feed.title if entry.author or entry.feed.author: args['artist'] = entry.author or entry.feed.author return [('with tags', url_for('enclosure_tags.enclosure_tags', **args))] def init(app): app.register_blueprint(blueprint) app.reader_additional_enclosure_links.append(enclosure_tags_filter)
gw_full_latest/CloudTTN.py
rendikanyut/LowCostLoRaGw
654
14763
<gh_stars>100-1000 #------------------------------------------------------------------------------- # Part of this Python script is taken from the Pycom NanoGateway # https://github.com/pycom/pycom-libraries/tree/master/examples/lorawan-nano-gateway # # Adapted by <EMAIL> # # This file is part of the low-cost LoRa gateway developped at University of Pau # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the program. If not, see <http://www.gnu.org/licenses/>. #------------------------------------------------------------------------------- import binascii import json import os import socket import time import datetime from dateutil import parser import calendar import sys #don't generate pyc (no compilation of imported module) so change in key_* file can be done dynamically sys.dont_write_bytecode = True import key_TTN as key_LoRaWAN netserv='TTN' try: key_LoRaWAN.source_list except AttributeError: key_LoRaWAN.source_list=[] try: key_LoRaWAN.lorawan_server except AttributeError: key_LoRaWAN.lorawan_server="router.eu.thethings.network" try: key_LoRaWAN.lorawan_port except AttributeError: key_LoRaWAN.lorawan_port=1700 PROTOCOL_VERSION = 2 PUSH_DATA = 0 PUSH_ACK = 1 PULL_DATA = 2 PULL_ACK = 4 PULL_RESP = 3 RX_PK = { 'rxpk': [{ 'time': '', 'tmst': 0, 'chan': 0, 'rfch': 0, 'freq': 0, 'stat': 1, 'modu': 'LORA', 'datr': '', 'codr': '4/5', 'rssi': 0, 'lsnr': 0, 'size': 0, 'data': '' }] } TX_ACK_PK = { 'txpk_ack': { 'error': '' } } class LoRaWAN: def __init__(self, id, frequency, bw, sf, server, port): self.id = id self.frequency = frequency self.sf = sf self.bw = bw self.server = server self.port = port self.server_ip = None self.sock = None def start(self): self._log('Cloud%s: gw id: {}' % netserv, self.id) # get the server IP and create an UDP socket try: self.server_ip = socket.getaddrinfo(self.server, self.port)[0][-1] self._log('Cloud%s: Opening UDP socket to {} ({}) port {}...' % netserv, self.server, self.server_ip[0], self.server_ip[1]) self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.sock.setblocking(False) except Exception as ex: self._log('Cloud%s: Failed to connect to server: {}' % netserv, ex) def _sf_bw_to_dr(self, sf, bw): dr = 'SF' + str(sf) if bw == 125: return dr + 'BW125' elif bw == 250: return dr + 'BW250' else: return dr + 'BW500' def rx_packet(self, ldata, datalen, tdata, tmst, rssi, snr): RX_PK["rxpk"][0]["time"] = tdata if tmst=='': #in seconds, maybe we should put it in microsecond? RX_PK["rxpk"][0]["tmst"] = calendar.timegm(time.gmtime()) else: RX_PK["rxpk"][0]["tmst"] = int(tmst) RX_PK["rxpk"][0]["freq"] = self.frequency RX_PK["rxpk"][0]["datr"] = self._sf_bw_to_dr(self.sf, self.bw) RX_PK["rxpk"][0]["rssi"] = rssi RX_PK["rxpk"][0]["lsnr"] = snr RX_PK["rxpk"][0]["data"] = ldata RX_PK["rxpk"][0]["size"] = datalen #packet = self._make_node_packet(rx_data, tdata, 0, self.sf, self.bw, rssi, snr) packet=json.dumps(RX_PK) self._push_data(packet) self._log('Cloud%s: Received packet: {}' % netserv, packet) def _push_data(self, data): token = os.urandom(2) packet = bytearray([PROTOCOL_VERSION]) + token + bytearray([PUSH_DATA]) + binascii.unhexlify(self.id) + data #print ''.join('{:02x}'.format(x) for x in packet) #self._log('Cloud%s: Try to forward packet: {}' % netserv, packet) try: self.sock.sendto(packet, self.server_ip) self.sock.close() except Exception as ex: self._log('Cloud%s: Failed to push uplink packet to server: {}' % netserv, ex) def _log(self, message, *args): print('{}'.format(str(message).format(*args))) # Testing with pau_lorawan_testing/Pau_testing_device 0x26011721 # # python CloudTTN.py "QCEXASYAAAABhCGE1L87NCDMk0jLa6hYXm0e+g==" "256,64,637605665,0,28,8,-45" "125,5,12,868100" "2019-03-25T18:46:00.528+01:00" "0000B827EBD1B236" # or # python CloudTTN.py "QCEXASYAAAABhCGE1L87NCDMk0jLa6hYXm0e+g==" "256,64,637605665,0,28,8,-45" "125,5,12,868100" "`date +%FT%T%z`" "0000B827EBD1B236" # # get the base64 encrypted data from `Arduino_LoRa_temp` sending "Hello from UPPA" # # Hello from UPPA # plain payload hex # 48 65 6C 6C 6F 20 66 72 6F 6D 20 55 50 50 41 # Encrypting # encrypted payload # 84 21 84 D4 BF 3B 34 20 CC 93 48 CB 6B A8 58 # calculate MIC with NwkSKey # transmitted LoRaWAN-like packet: # MHDR[1] | DevAddr[4] | FCtrl[1] | FCnt[2] | FPort[1] | EncryptedPayload | MIC[4] # 40 21 17 01 26 00 00 00 01 84 21 84 D4 BF 3B 34 20 CC 93 48 CB 6B A8 58 5E 6D 1E FA # [base64 LoRaWAN HEADER+CIPHER+MIC]:QCEXASYAAAABhCGE1L87NCDMk0jLa6hYXm0e+g== def main(ldata, pdata, rdata, tdata, gwid): # this is common code to process packet information provided by the main gateway script (i.e. post_processing_gw.py) # these information are provided in case you need them arr = map(int,pdata.split(',')) dst=arr[0] ptype=arr[1] src=arr[2] seq=arr[3] datalen=arr[4] SNR=arr[5] RSSI=arr[6] #if lora packet is received with an SX1301 concentrator, then the packet-formatter will pass the tmst field after the date information, separated by '*' #i.e. "2019-03-25T18:46:00.528+01:00*29641444" tmst=tdata.count('*') if (tmst != 0): tdata_tmp=tdata.split('*')[0] tmst=tdata.split('*')[1] tdata=tdata_tmp else: tmst='' #from 2019-05-14T14:53:10.241191+02:00 (similar to command date +%FT%T.%6N%z) #to 2019-05-14T14:53:10.241191Z (similar to command date +%FT%T.%6NZ) dt = parser.parse(tdata) #in case you want to remove microsecond #tdata = dt.replace(microsecond=0,tzinfo=None).isoformat()+"Z" tdata = dt.replace(tzinfo=None).isoformat()+"Z" arr = map(int,rdata.split(',')) rbw=arr[0] rcr=arr[1] rsf=arr[2] rfq=arr[3]/1000.0 #LoRaWAN packet if dst==256: src_str="0x%0.8X" % src #we force to BW125 as TTN is can not handle other bandwidth right now, for instance those of Lora 2.4GHz #TODO: change when TTN will support LoRa 2.4GHz rbw=125 else: src_str=str(src) if (src_str in key_LoRaWAN.source_list) or (len(key_LoRaWAN.source_list)==0): #build the ttn_gwid which is defined to be gwid[4:10]+"FFFF"+gwid[10:] #gwid is normally defined as eth0 MAC address filled by 0 in front: 0000B827EBD1B236 ttn_gwid=gwid[4:10]+"FFFF"+gwid[10:] ttn = LoRaWAN( id=ttn_gwid, frequency=rfq, bw=rbw, sf=rsf, server=key_LoRaWAN.lorawan_server, port=key_LoRaWAN.lorawan_port) ttn.start() ttn.rx_packet(ldata, datalen, tdata, tmst, RSSI, SNR) else: print "Source is not is source list, not sending to %s" % netserv if __name__ == "__main__": main(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5])
release/stubs.min/Autodesk/Revit/DB/__init___parts/Workset.py
htlcnn/ironpython-stubs
182
14772
class Workset(WorksetPreview,IDisposable): """ Represents a workset in the document. """ @staticmethod def Create(document,name): """ Create(document: Document,name: str) -> Workset Creates a new workset. document: The document in which the new instance is created. name: The workset name. Returns: Returns the newly created workset. """ pass def Dispose(self): """ Dispose(self: WorksetPreview,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: WorksetPreview,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass IsEditable=property(lambda self: object(),lambda self,v: None,lambda self: None) """Whether the workset is editable. Get: IsEditable(self: Workset) -> bool """ IsOpen=property(lambda self: object(),lambda self,v: None,lambda self: None) """Whether the workset is open (rather than closed). Get: IsOpen(self: Workset) -> bool """ IsVisibleByDefault=property(lambda self: object(),lambda self,v: None,lambda self: None) """Whether the workset is visible by default. Get: IsVisibleByDefault(self: Workset) -> bool """ Kind=property(lambda self: object(),lambda self,v: None,lambda self: None) """Kind of the workset. Get: Kind(self: Workset) -> WorksetKind """
tf_quant_finance/datetime/constants.py
slowy07/tf-quant-finance
3,138
14794
# Lint as: python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Date-related constants and enums.""" import enum class Month(enum.Enum): """Months. Values are one-based.""" JANUARY = 1 FEBUARY = 2 MARCH = 3 APRIL = 4 MAY = 5 JUNE = 6 JULY = 7 AUGUST = 8 SEPTEMBER = 9 OCTOBER = 10 NOVEMBER = 11 DECEMBER = 12 class WeekDay(enum.Enum): """Named days of the week. Values are zero-based with Monday = 0.""" # We follow Python datetime convention of starting from 0. MONDAY = 0 TUESDAY = 1 WEDNESDAY = 2 THURSDAY = 3 FRIDAY = 4 SATURDAY = 5 SUNDAY = 6 class PeriodType(enum.Enum): """Periods that can be added or subtracted from DateTensors.""" DAY = 0 WEEK = 1 MONTH = 2 YEAR = 3 class BusinessDayConvention(enum.Enum): """Conventions that determine how to roll dates that fall on holidays. * `NONE`: No adjustment * `FOLLOWING`: Choose the first business day after the given holiday. * `MODIFIED_FOLLOWING`: Choose the first business day after the given holiday unless that day falls in the next calendar month, in which case choose the first business day before the holiday. * `PRECEDING`: Choose the first business day before the given holiday. * `MODIFIED_PRECEDING`: Choose the first business day before the given holiday unless that day falls in the previous calendar month, in which case choose the first business day after the holiday. """ NONE = 0 FOLLOWING = 1 MODIFIED_FOLLOWING = 2 PRECEDING = 3 MODIFIED_PRECEDING = 4 # TODO(b/148011715): add NEAREST convention. class WeekendMask(object): """Provides weekend masks for some of the common weekend patterns.""" # E.g. US/UK/Europe etc. SATURDAY_SUNDAY = (0, 0, 0, 0, 0, 1, 1) # E.g. Most countries in the Middle East. FRIDAY_SATURDAY = (0, 0, 0, 0, 1, 1, 0) # E.g. India, Nepal. SUNDAY_ONLY = (0, 0, 0, 0, 0, 0, 1) # Default value. NONE = (0, 0, 0, 0, 0, 0, 0)
generate_trajectories.py
keuntaeklee/pytorch-PPUU
159
14795
import argparse, pdb import gym import numpy as np import os import pickle import random import torch import scipy.misc from gym.envs.registration import register parser = argparse.ArgumentParser() parser.add_argument('-display', type=int, default=0) parser.add_argument('-seed', type=int, default=1) parser.add_argument('-lanes', type=int, default=3) parser.add_argument('-traffic_rate', type=int, default=15) parser.add_argument('-state_image', type=int, default=1) parser.add_argument('-save_images', type=int, default=0) parser.add_argument('-store', type=int, default=1) parser.add_argument('-data_dir', type=str, default='traffic-data/state-action-cost/') parser.add_argument('-fps', type=int, default=30) parser.add_argument('-time_slot', type=int, default=0) parser.add_argument('-map', type=str, default='i80', choices={'ai', 'i80', 'us101', 'lanker', 'peach'}) parser.add_argument('-delta_t', type=float, default=0.1) opt = parser.parse_args() opt.state_image = (opt.state_image == 1) opt.store = (opt.store == 1) random.seed(opt.seed) np.random.seed(opt.seed) torch.manual_seed(opt.seed) os.system("mkdir -p " + opt.data_dir) kwargs = dict( display=opt.display, state_image=opt.state_image, store=opt.store, fps=opt.fps, nb_lanes=opt.lanes, traffic_rate=opt.traffic_rate, data_dir=opt.data_dir, delta_t=opt.delta_t, ) register( id='Traffic-v0', entry_point='traffic_gym:Simulator', kwargs=kwargs ) register( id='I-80-v0', entry_point='map_i80:I80', kwargs=kwargs ) gym.envs.registration.register( id='US-101-v0', entry_point='map_us101:US101', kwargs=kwargs, ) gym.envs.registration.register( id='Lankershim-v0', entry_point='map_lanker:Lankershim', kwargs=kwargs, ) gym.envs.registration.register( id='Peachtree-v0', entry_point='map_peach:Peachtree', kwargs=kwargs, ) env_names = { 'ai': 'Traffic-v0', 'i80': 'I-80-v0', 'us101': 'US-101-v0', 'lanker': 'Lankershim-v0', 'peach': 'Peachtree-v0', } print('Building the environment (loading data, if any)') env = gym.make(env_names[opt.map]) env.reset(frame=0, time_slot=opt.time_slot) done = False while not done: observation, reward, done, info = env.step() env.render() print(f'Data generation for <{opt.map}, time slot {opt.time_slot}> completed')
curriculum/experiments/goals/point_nd/goal_point_nd_trpo.py
coco-robotics/rllab-curriculum
115
14807
<filename>curriculum/experiments/goals/point_nd/goal_point_nd_trpo.py from curriculum.utils import set_env_no_gpu, format_experiment_prefix set_env_no_gpu() import argparse import math import os import os.path as osp import sys import random from multiprocessing import cpu_count import numpy as np import tensorflow as tf from rllab.misc.instrument import run_experiment_lite from rllab import config from rllab.misc.instrument import VariantGenerator from rllab.algos.trpo import TRPO from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline from curriculum.envs.ndim_point.point_env import PointEnv from rllab.envs.normalized_env import normalize from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy from curriculum.envs.goal_env import GoalExplorationEnv, evaluate_goal_env from curriculum.envs.base import FixedStateGenerator, UniformStateGenerator from curriculum.state.evaluator import * from curriculum.logging.html_report import format_dict, HTMLReport from curriculum.logging.visualization import * from curriculum.logging.logger import ExperimentLogger from curriculum.experiments.goals.point_nd.utils import plot_policy_performance EXPERIMENT_TYPE = osp.basename(__file__).split('.')[0] def run_task(v): random.seed(v['seed']) np.random.seed(v['seed']) # goal generators logger.log("Initializing the goal generators and the inner env...") inner_env = normalize(PointEnv(dim=v['goal_size'], state_bounds=v['state_bounds'])) print("the state_bounds are: ", v['state_bounds']) center = np.zeros(v['goal_size']) uniform_goal_generator = UniformStateGenerator(state_size=v['goal_size'], bounds=v['goal_range'], center=center) feasible_goal_ub = np.array(v['state_bounds'])[:v['goal_size']] print("the feasible_goal_ub is: ", feasible_goal_ub) uniform_feasible_goal_generator = UniformStateGenerator(state_size=v['goal_size'], bounds=[-1 * feasible_goal_ub, feasible_goal_ub]) env = GoalExplorationEnv( env=inner_env, goal_generator=uniform_goal_generator, obs2goal_transform=lambda x: x[:int(len(x) / 2)], terminal_eps=v['terminal_eps'], only_feasible=v['only_feasible'], distance_metric=v['distance_metric'], terminate_env=True, goal_weight=v['goal_weight'], ) # this goal_generator will be updated by a uniform after if v['sample_unif_feas']: env.update_goal_generator(uniform_feasible_goal_generator) policy = GaussianMLPPolicy( env_spec=env.spec, hidden_sizes=(32, 32), # Fix the variance since different goals will require different variances, making this parameter hard to learn. learn_std=False, output_gain=v['output_gain'], init_std=v['policy_init_std'], ) baseline = LinearFeatureBaseline(env_spec=env.spec) n_traj = 3 # feasible_goals = generate_initial_goals(env, policy, v['goal_range'], horizon=v['horizon'], size=10000) #v['horizon']) # print(feasible_goals) # uniform_list_goal_generator = UniformListStateGenerator(goal_list=feasible_goals.tolist()) # env.update_goal_generator(uniform_list_goal_generator) # env.update_goal_generator(fixed_goal_generator) logger.log("Initializing report and plot_policy_reward...") log_dir = logger.get_snapshot_dir() inner_log_dir = osp.join(log_dir, 'inner_iters') report = HTMLReport(osp.join(log_dir, 'report.html'), images_per_row=3) report.add_header("{}".format(EXPERIMENT_TYPE)) report.add_text(format_dict(v)) logger.log("Starting the outer iterations") for outer_iter in range(v['outer_iters']): logger.log("Outer itr # %i" % outer_iter) logger.log("Perform TRPO with UniformListStateGenerator...") with ExperimentLogger(inner_log_dir, outer_iter, snapshot_mode='last', hold_outter_log=True): algo = TRPO( env=env, policy=policy, baseline=baseline, batch_size=v['pg_batch_size'], max_path_length=v['horizon'], n_itr=v['inner_iters'], discount=0.995, step_size=0.01, plot=False, ) algo.train() report.add_image( plot_policy_performance(policy, env, v['horizon']) ) # log some more on how the pendulum performs the upright and general task old_goal_generator = env.goal_generator logger.log("Evaluating performance on Unif and Fix Goal Gen...") with logger.tabular_prefix('UnifFeasGoalGen_'): env.update_goal_generator(uniform_feasible_goal_generator) evaluate_goal_env(env, policy=policy, horizon=v['horizon'], n_goals=50, fig_prefix='UnifFeasGoalGen_itr%d' % outer_iter, report=report, n_traj=n_traj) # back to old goal generator with logger.tabular_prefix("UnifGoalGen_"): env.update_goal_generator(old_goal_generator) evaluate_goal_env(env, policy=policy, horizon=v['horizon'], n_goals=50, fig_prefix='UnifGoalGen_itr%d' % outer_iter, report=report, n_traj=n_traj) logger.dump_tabular(with_prefix=False) report.save() report.new_row() with logger.tabular_prefix('FINALUnifFeasGoalGen_'): env.update_goal_generator(uniform_feasible_goal_generator) evaluate_goal_env(env, policy=policy, horizon=v['horizon'], n_goals=5e3, fig_prefix='FINAL1UnifFeasGoalGen_', report=report, n_traj=n_traj) evaluate_goal_env(env, policy=policy, horizon=v['horizon'], n_goals=5e3, fig_prefix='FINAL2UnifFeasGoalGen_', report=report, n_traj=n_traj) logger.dump_tabular(with_prefix=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--ec2', '-e', action='store_true', default=False, help="add flag to run in ec2") parser.add_argument('--clone', '-c', action='store_true', default=False, help="add flag to copy file and checkout current") parser.add_argument('--local_docker', '-d', action='store_true', default=False, help="add flag to run in local dock") parser.add_argument('--type', '-t', type=str, default='', help='set instance type') parser.add_argument('--price', '-p', type=str, default='', help='set betting price') parser.add_argument('--subnet', '-sn', type=str, default='', help='set subnet like us-west-1a') parser.add_argument('--name', '-n', type=str, default='', help='set exp prefix name and new file name') parser.add_argument('--debug', action='store_true', default=False, help="run code without multiprocessing") parser.add_argument( '--prefix', type=str, default=None, help='set the additional name for experiment prefix' ) args = parser.parse_args() # setup ec2 ec2_instance = args.type if args.type else 'm4.4xlarge' # configure instance info = config.INSTANCE_TYPE_INFO[ec2_instance] config.AWS_INSTANCE_TYPE = ec2_instance config.AWS_SPOT_PRICE = str(info["price"]) n_parallel = int(info["vCPU"]) # make the default 4 if not using ec2 if args.ec2: mode = 'ec2' elif args.local_docker: mode = 'local_docker' n_parallel = cpu_count() if not args.debug else 1 else: mode = 'local' n_parallel = cpu_count() if not args.debug else 1 default_prefix = 'goal-point-nd-trpo' if args.prefix is None: exp_prefix = format_experiment_prefix(default_prefix) elif args.prefix == '': exp_prefix = default_prefix else: exp_prefix = '{}_{}'.format(default_prefix, args.prefix) vg = VariantGenerator() vg.add('seed', range(30, 90, 20)) # # GeneratorEnv params vg.add('goal_size', [2, 3, 4, 5, 6]) # this is the ultimate goal we care about: getting the pendulum upright vg.add('terminal_eps', lambda goal_size: [math.sqrt(goal_size) / math.sqrt(2) * 0.3]) vg.add('only_feasible', [True]) vg.add('goal_range', [5]) # this will be used also as bound of the state_space vg.add('state_bounds', lambda goal_range, goal_size, terminal_eps: [(1, goal_range) + (0.3,) * (goal_size - 2) + (goal_range, ) * goal_size]) vg.add('sample_unif_feas', [True]) vg.add('distance_metric', ['L2']) vg.add('goal_weight', [1]) ############################################# vg.add('min_reward', lambda goal_weight: [goal_weight * 0.1]) # now running it with only the terminal reward of 1! vg.add('max_reward', lambda goal_weight: [goal_weight * 0.9]) vg.add('horizon', [200]) vg.add('outer_iters', [200]) vg.add('inner_iters', [5]) vg.add('pg_batch_size', [20000]) # policy initialization vg.add('output_gain', [1]) vg.add('policy_init_std', [1]) print('Running {} inst. on type {}, with price {}, parallel {}'.format( vg.size, config.AWS_INSTANCE_TYPE, config.AWS_SPOT_PRICE, n_parallel )) for vv in vg.variants(): if mode in ['ec2', 'local_docker']: run_experiment_lite( # use_cloudpickle=False, stub_method_call=run_task, variant=vv, mode=mode, # Number of parallel workers for sampling n_parallel=n_parallel, # Only keep the snapshot parameters for the last iteration snapshot_mode="last", seed=vv['seed'], # plot=True, exp_prefix=exp_prefix, # exp_name=exp_name, sync_s3_pkl=True, # for sync the pkl file also during the training sync_s3_png=True, sync_s3_html=True, # # use this ONLY with ec2 or local_docker!!! pre_commands=[ 'export MPLBACKEND=Agg', 'pip install --upgrade pip', 'pip install --upgrade -I tensorflow', 'pip install git+https://github.com/tflearn/tflearn.git', 'pip install dominate', 'pip install multiprocessing_on_dill', 'pip install scikit-image', 'conda install numpy -n rllab3 -y', ], ) if mode == 'local_docker': sys.exit() else: run_experiment_lite( # use_cloudpickle=False, stub_method_call=run_task, variant=vv, mode='local', n_parallel=n_parallel, # Only keep the snapshot parameters for the last iteration snapshot_mode="last", seed=vv['seed'], exp_prefix=exp_prefix, print_command=False, ) if args.debug: sys.exit()
pyNastran/bdf/bdf_interface/encoding.py
ACea15/pyNastran
293
14808
<gh_stars>100-1000 def decode_lines(lines_bytes, encoding: str): if isinstance(lines_bytes[0], bytes): lines_str = [line.decode(encoding) for line in lines_bytes] elif isinstance(lines_bytes[0], str): lines_str = lines_bytes else: raise TypeError(type(lines_bytes[0])) return lines_str
generator/src/googleapis/codegen/utilities/json_expander.py
romulobusatto/google-api-php-client-services
709
14831
#!/usr/bin/python2.7 # Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Support for simple JSON templates. A JSON template is a dictionary of JSON data in which string values may be simple templates in string.Template format (i.e., $dollarSignEscaping). By default, the template is expanded against its own data, optionally updated with additional context. """ import json from string import Template import sys __author__ = '<EMAIL> (<NAME>)' def ExpandJsonTemplate(json_data, extra_context=None, use_self=True): """Recursively template-expand a json dict against itself or other context. The context for string expansion is the json dict itself by default, updated by extra_context, if supplied. Args: json_data: (dict) A JSON object where string values may be templates. extra_context: (dict) Additional context for template expansion. use_self: (bool) Whether to expand the template against itself, or only use extra_context. Returns: A dict where string template values have been expanded against the context. """ if use_self: context = dict(json_data) else: context = {} if extra_context: context.update(extra_context) def RecursiveExpand(obj): if isinstance(obj, list): return [RecursiveExpand(x) for x in obj] elif isinstance(obj, dict): return dict((k, RecursiveExpand(v)) for k, v in obj.iteritems()) elif isinstance(obj, (str, unicode)): return Template(obj).safe_substitute(context) else: return obj return RecursiveExpand(json_data) if __name__ == '__main__': if len(sys.argv) > 1: json_in = open(sys.argv[1]) else: json_in = sys.stdin data = json.load(json_in) expanded = ExpandJsonTemplate(data) json.dump(expanded, sys.stdout, indent=2)
haiku/_src/integration/numpy_inputs_test.py
timwillhack/dm-haikuBah2
1,647
14875
<reponame>timwillhack/dm-haikuBah2 # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests whether modules produce similar output given np.ndarray inputs.""" import functools from typing import Tuple from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors import jax import jax.numpy as jnp import numpy as np ModuleFn = descriptors.ModuleFn def tree_assert_allclose(a, b, *, atol=1e-6): jax.tree_multimap( functools.partial(np.testing.assert_allclose, atol=atol), a, b) class NumpyInputsTest(parameterized.TestCase): @test_utils.combined_named_parameters( descriptors.ALL_MODULES, test_utils.named_bools('np_inputs'), test_utils.named_bools('np_params'), test_utils.named_bools('close_over_params')) def test_numpy_and_jax_results_close( self, module_fn: ModuleFn, shape: Tuple[int, ...], dtype: jnp.dtype, np_params: bool, np_inputs: bool, close_over_params: bool, ): if not (np_params or np_inputs): self.skipTest('Pure JAX variants tested elsewhere') f = hk.transform_with_state(lambda x: module_fn()(x)) # pylint: disable=unnecessary-lambda rng = jax.random.PRNGKey(42) x = jnp.ones(shape, dtype) params, state = f.init(rng, x) if close_over_params: apply_fn = functools.partial(f.apply, params, state) out, new_state = jax.jit(apply_fn)(rng, x) else: out, new_state = jax.jit(f.apply)(params, state, rng, x) if np_inputs: rng, x = jax.device_get((rng, x)) with self.subTest('init'): params2, state2 = f.init(rng, x) tree_assert_allclose(params, params2) tree_assert_allclose(state, state2) with self.subTest('apply'): if np_params: params, state = jax.device_get((params, state)) if close_over_params: apply_fn = functools.partial(f.apply, params, state) out2, new_state2 = jax.jit(apply_fn)(rng, x) else: out2, new_state2 = jax.jit(f.apply)(params, state, rng, x) tree_assert_allclose(out, out2) tree_assert_allclose(new_state, new_state2) if __name__ == '__main__': absltest.main()
tests/test_translator.py
Attsun1031/schematics
1,430
14894
# -*- coding: utf-8 -*- import pytest def test_translator(): def translator(string): translations = {'String value is too long.': 'Tamanho de texto muito grande.'} return translations.get(string, string) from schematics.translator import register_translator register_translator(translator) from schematics.types import StringType from schematics.exceptions import ValidationError with pytest.raises(ValidationError) as exc: StringType(max_length=1).validate_length('Abc') assert exc.value == ['Tamanho de texto muito grande.']
osf/management/commands/populate_custom_taxonomies.py
gaybro8777/osf.io
628
14909
import json import logging from django.core.management.base import BaseCommand from django.db import transaction from osf.models import AbstractProvider, PreprintProvider, Preprint, Subject from osf.models.provider import rules_to_subjects from scripts import utils as script_utils from osf.models.validators import validate_subject_hierarchy from website.preprints.tasks import on_preprint_updated logger = logging.getLogger(__name__) BEPRESS_PROVIDER = None def validate_input(custom_provider, data, provider_type='osf.preprintprovider', copy=False, add_missing=False): # This function may be run outside of this command (e.g. in the admin app) so we # need to make sure that BEPRESS_PROVIDER is set global BEPRESS_PROVIDER BEPRESS_PROVIDER = AbstractProvider.objects.filter(_id='osf', type='osf.preprintprovider').first() logger.info('Validating data') includes = data.get('include', []) excludes = data.get('exclude', []) customs = data.get('custom', {}) merges = data.get('merge', {}) if copy: included_subjects = rules_to_subjects(custom_provider.subjects_acceptable) else: assert not set(includes) & set(excludes), 'There must be no overlap between includes and excludes' for text in includes: assert Subject.objects.filter(provider=BEPRESS_PROVIDER, text=text).exists(), 'Unable to find included subject with text {}'.format(text) included_subjects = Subject.objects.filter(provider=BEPRESS_PROVIDER, text__in=includes).include_children() logger.info('Successfully validated `include`') for text in excludes: try: Subject.objects.get(provider=BEPRESS_PROVIDER, text=text) except Subject.DoesNotExist: raise RuntimeError('Unable to find excluded subject with text {}'.format(text)) assert included_subjects.filter(text=text).exists(), 'Excluded subject with text {} was not included'.format(text) included_subjects = included_subjects.exclude(text__in=excludes) logger.info('Successfully validated `exclude`') for cust_name, map_dict in customs.items(): assert not included_subjects.filter(text=cust_name).exists(), 'Custom text {} already exists in mapped set'.format(cust_name) assert Subject.objects.filter(provider=BEPRESS_PROVIDER, text=map_dict.get('bepress')).exists(), 'Unable to find specified BePress subject with text {}'.format(map_dict.get('bepress')) if map_dict.get('parent'): # Null parent possible assert map_dict['parent'] in set(customs.keys()) | set(included_subjects.values_list('text', flat=True)), 'Unable to find specified parent with text {} in mapped set'.format(map_dict['parent']) # TODO: hierarchy length validation? Probably more trouble than worth here, done on .save logger.info('Successfully validated `custom`') included_subjects = included_subjects | Subject.objects.filter(text__in=[map_dict['bepress'] for map_dict in customs.values()]) for merged_from, merged_into in merges.items(): assert not included_subjects.filter(text=merged_from).exists(), 'Cannot merge subject "{}" that will be included'.format(merged_from) assert merged_into in set(included_subjects.values_list('text', flat=True)) | set(customs.keys()), 'Unable to determine merge target for "{}"'.format(merged_into) included_subjects = included_subjects | Subject.objects.filter(text__in=merges.keys()) missing_subjects = Subject.objects.filter(id__in=set([hier[-1].id for ps in Preprint.objects.filter(provider=custom_provider) for hier in ps.subject_hierarchy])).exclude(id__in=included_subjects.values_list('id', flat=True)) if not add_missing: assert not missing_subjects.exists(), 'Incomplete mapping -- following subjects in use but not included:\n{}'.format(list(missing_subjects.values_list('text', flat=True))) if isinstance(custom_provider, PreprintProvider): assert custom_provider.share_title not in [None, '', 'bepress'], 'share title not set; please set the share title on this provider before creating a custom taxonomy.' logger.info('Successfully validated mapping completeness') return list(missing_subjects) if add_missing else None def create_subjects_recursive(custom_provider, root_text, exclude_texts, parent=None): logger.info('Duplicating BePress subject {} on {}'.format(root_text, custom_provider._id)) bepress_subj = Subject.objects.get(provider=BEPRESS_PROVIDER, text=root_text) custom_subj = Subject(text=root_text, parent=parent, bepress_subject=bepress_subj, provider=custom_provider) custom_subj.save() # This is not a problem now, as all excluded subjects are leafs, but it could be problematic if non-leafs had their children excluded. # It could also be problematic if they didn't, if any of those children are used by existing preprints. # TODO: Determine correct resolution for child_text in bepress_subj.children.exclude(text__in=exclude_texts).values_list('text', flat=True): create_subjects_recursive(custom_provider, child_text, exclude_texts, parent=custom_subj) def create_from_subjects_acceptable(custom_provider, add_missing=False, missing=None): tries = 0 subjects_to_copy = list(rules_to_subjects(custom_provider.subjects_acceptable)) if missing and add_missing: subjects_to_copy = subjects_to_copy + missing while len(subjects_to_copy): previous_len = len(subjects_to_copy) tries += 1 if tries == 10: raise RuntimeError('Unable to map subjects acceptable with 10 iterations -- subjects remaining: {}'.format(subjects_to_copy)) for subj in list(subjects_to_copy): if map_custom_subject(custom_provider, subj.text, subj.parent.text if subj.parent else None, subj.text): subjects_to_copy.remove(subj) elif add_missing and subj.parent and subj.parent not in subjects_to_copy: # Dirty subjects_to_copy.append(subj.parent) previous_len += 1 else: logger.warn('Failed. Retrying next iteration') new_len = len(subjects_to_copy) if new_len == previous_len: raise RuntimeError('Unable to map any custom subjects on iteration -- subjects remaining: {}'.format(subjects_to_copy)) def do_create_subjects(custom_provider, includes, excludes, copy=False, add_missing=False, missing=None): if copy: create_from_subjects_acceptable(custom_provider, add_missing=add_missing, missing=missing) else: for root_text in includes: create_subjects_recursive(custom_provider, root_text, excludes) def map_custom_subject(custom_provider, name, parent, mapping): logger.info('Attempting to create subject {} on {} from {} with {}'.format(name, custom_provider._id, mapping, 'parent {}'.format(parent) if parent else 'no parent')) if parent: parent_subject = Subject.objects.filter(provider=custom_provider, text=parent).first() else: parent_subject = None bepress_subject = Subject.objects.get(provider=BEPRESS_PROVIDER, text=mapping) if parent and not parent_subject: return False custom_subject = Subject(provider=custom_provider, text=name, parent=parent_subject, bepress_subject=bepress_subject) custom_subject.save() return True def do_custom_mapping(custom_provider, customs): tries = 0 unmapped_customs = customs while len(unmapped_customs): previous_len = len(unmapped_customs) tries += 1 if tries == 10: raise RuntimeError('Unable to map custom subjects with 10 iterations -- invalid input') successes = [] for cust_name, map_dict in unmapped_customs.items(): if map_custom_subject(custom_provider, cust_name, map_dict.get('parent'), map_dict.get('bepress')): successes.append(cust_name) else: logger.warn('Failed. Retrying next iteration') [unmapped_customs.pop(key) for key in successes] new_len = len(unmapped_customs) if new_len == previous_len: raise RuntimeError('Unable to map any custom subjects on iteration -- invalid input') def map_preprints_to_custom_subjects(custom_provider, merge_dict, dry_run=False): for preprint in Preprint.objects.filter(provider=custom_provider): logger.info('Preparing to migrate preprint {}'.format(preprint.id)) old_hier = preprint.subject_hierarchy subjects_to_map = [hier[-1] for hier in old_hier] merged_subject_ids = set(Subject.objects.filter(provider=custom_provider, text__in=[merge_dict[k] for k in set(merge_dict.keys()) & set([s.text for s in subjects_to_map])]).values_list('id', flat=True)) subject_ids_to_map = set(s.id for s in subjects_to_map if s.text not in merge_dict.keys()) aliased_subject_ids = set(Subject.objects.filter(bepress_subject__id__in=subject_ids_to_map, provider=custom_provider).values_list('id', flat=True)) | merged_subject_ids aliased_hiers = [s.object_hierarchy for s in Subject.objects.filter(id__in=aliased_subject_ids)] old_subjects = list(preprint.subjects.values_list('id', flat=True)) preprint.subjects.clear() for hier in aliased_hiers: validate_subject_hierarchy([s._id for s in hier]) for s in hier: preprint.subjects.add(s) # Update preprint in SHARE if not dry_run: on_preprint_updated(preprint._id, old_subjects=old_subjects) preprint.reload() new_hier = [s.object_hierarchy for s in preprint.subjects.exclude(children__in=preprint.subjects.all())] logger.info('Successfully migrated preprint {}.\n\tOld hierarchy:{}\n\tNew hierarchy:{}'.format(preprint.id, old_hier, new_hier)) def migrate(provider=None, provider_type='osf.preprintprovider', share_title=None, data=None, dry_run=False, copy=False, add_missing=False): # This function may be run outside of this command (e.g. in the admin app) so we # need to make sure that BEPRESS_PROVIDER is set global BEPRESS_PROVIDER if not BEPRESS_PROVIDER: BEPRESS_PROVIDER = AbstractProvider.objects.filter(_id='osf', type='osf.preprintprovider').first() custom_provider = AbstractProvider.objects.filter(_id=provider, type=provider_type).first() assert custom_provider, 'Unable to find specified provider: {}'.format(provider) assert custom_provider.id != BEPRESS_PROVIDER.id, 'Cannot add custom mapping to BePress provider' assert not custom_provider.subjects.exists(), 'Provider aldready has a custom taxonomy' if isinstance(custom_provider, PreprintProvider) and custom_provider.share_title in [None, '', 'bepress']: if not share_title: raise RuntimeError('`--share-title` is required if not already set on the provider') custom_provider.share_title = share_title custom_provider.save() missing = validate_input(custom_provider, data, provider_type=provider_type, copy=copy, add_missing=add_missing) do_create_subjects(custom_provider, data['include'], data.get('exclude', []), copy=copy, add_missing=add_missing, missing=missing) do_custom_mapping(custom_provider, data.get('custom', {})) map_preprints_to_custom_subjects(custom_provider, data.get('merge', {}), dry_run=dry_run) class Command(BaseCommand): def add_arguments(self, parser): super(Command, self).add_arguments(parser) parser.add_argument( '--dry', action='store_true', dest='dry_run', help='Run migration and roll back changes to db', ) parser.add_argument( '--data', action='store', dest='data', help='List of targets, of form {\n"include": [<list of subject texts to include at top level, children implicit>],' '\n"exclude": [<list of children to exclude from included trees>],' '\n"custom": [{"<Custom Name": {"parent": <Parent text>", "bepress": "<Bepress Name>"}}, ...]' '\n"merge": {"<Merged from (bepress)>": "<Merged into (custom)", ...}}', ) parser.add_argument( '--provider', action='store', dest='provider', required=True, help='_id of the <provider> object, e.g. "osf". <provider> is expected to not already have a custom taxonomy.' ) parser.add_argument( '--from-subjects-acceptable', action='store_true', dest='from_subjects_acceptable', help='Specifies that the provider\'s `subjects_acceptable` be copied. `data.include` and `exclude` are ignored, the other keys may still be used' ) parser.add_argument( '--add-missing', action='store_true', dest='add_missing', help='Adds "used-but-not-included" subjects.' ) parser.add_argument( '--share-title', action='store', type=str, dest='share_title', help='Sets <provider>.share_title. Ignored if already set on provider, required if not.' ) parser.add_argument( '--type', action='store', type=str, dest='provider_type', help='Specifies provider type [`osf.preprintprovider`, `osf.registrationprovider`, `osf.collectionprovider`]' ) def handle(self, *args, **options): global BEPRESS_PROVIDER provider_type = options.get('provider_type') or 'osf.preprintprovider' BEPRESS_PROVIDER = AbstractProvider.objects.filter(_id='osf', type='osf.preprintprovider').first() dry_run = options.get('dry_run') provider = options['provider'] data = json.loads(options['data'] or '{}') share_title = options.get('share_title') copy = options.get('from_subjects_acceptable') add_missing = options.get('add_missing') if copy: data['include'] = list(Subject.objects.filter(provider=BEPRESS_PROVIDER, parent__isnull=True).values_list('text', flat=True)) if not dry_run: script_utils.add_file_logger(logger, __file__) with transaction.atomic(): migrate(provider=provider, share_title=share_title, provider_type=provider_type, data=data, dry_run=dry_run, copy=copy, add_missing=add_missing) if dry_run: raise RuntimeError('Dry run, transaction rolled back.')
modules/mongodb_atlas/mongodb_atlas.py
riddopic/opta
595
14935
<filename>modules/mongodb_atlas/mongodb_atlas.py import os from typing import TYPE_CHECKING from modules.base import ModuleProcessor from opta.core.terraform import get_terraform_outputs from opta.exceptions import UserErrors if TYPE_CHECKING: from opta.layer import Layer from opta.module import Module class MongodbAtlasProcessor(ModuleProcessor): def __init__(self, module: "Module", layer: "Layer"): if module.data["type"] != "mongodb-atlas": raise Exception( f"The module {module.name} was expected to be of type mongodb-atlas" ) super(MongodbAtlasProcessor, self).__init__(module, layer) def pre_hook(self, module_idx: int) -> None: required_env_set = set(["MONGODB_ATLAS_PUBLIC_KEY", "MONGODB_ATLAS_PRIVATE_KEY"]) if not required_env_set.issubset(set(os.environ.keys())): raise UserErrors( "Opta did not find environment variable(s), please set them and retry: {}".format( required_env_set - set(os.environ.keys()) ) ) super(MongodbAtlasProcessor, self).pre_hook(module_idx) def process(self, module_idx: int) -> None: self.module.data["cloud_provider"] = self.layer.cloud.upper() if self.module.data["cloud_provider"] == "LOCAL": self.module.data["cloud_provider"] = "AWS" # For local, always spin up in AWS self.module.data["region"] = "US_EAST_1" base_layer = self.layer.root() root_outputs = get_terraform_outputs(base_layer) self.module.data["public_nat_ips"] = root_outputs["public_nat_ips"] super(MongodbAtlasProcessor, self).process(module_idx)
plugins/hashsum_download/girder_hashsum_download/settings.py
JKitok/girder
395
14972
from girder.exceptions import ValidationException from girder.utility import setting_utilities class PluginSettings: AUTO_COMPUTE = 'hashsum_download.auto_compute' @setting_utilities.default(PluginSettings.AUTO_COMPUTE) def _defaultAutoCompute(): return False @setting_utilities.validator(PluginSettings.AUTO_COMPUTE) def _validateAutoCompute(doc): if not isinstance(doc['value'], bool): raise ValidationException('Auto-compute hash setting must be true or false.')
ccmlib/cluster_factory.py
justinchuch/ccm
626
14974
from __future__ import absolute_import import os import yaml from ccmlib import common, extension, repository from ccmlib.cluster import Cluster from ccmlib.dse_cluster import DseCluster from ccmlib.node import Node from distutils.version import LooseVersion #pylint: disable=import-error, no-name-in-module class ClusterFactory(): @staticmethod def load(path, name): cluster_path = os.path.join(path, name) filename = os.path.join(cluster_path, 'cluster.conf') with open(filename, 'r') as f: data = yaml.safe_load(f) try: install_dir = None if 'install_dir' in data: install_dir = data['install_dir'] repository.validate(install_dir) if install_dir is None and 'cassandra_dir' in data: install_dir = data['cassandra_dir'] repository.validate(install_dir) cassandra_version = None if 'cassandra_version' in data: cassandra_version = LooseVersion(data['cassandra_version']) if common.isDse(install_dir): cluster = DseCluster(path, data['name'], install_dir=install_dir, create_directory=False, derived_cassandra_version=cassandra_version) else: cluster = Cluster(path, data['name'], install_dir=install_dir, create_directory=False, derived_cassandra_version=cassandra_version) node_list = data['nodes'] seed_list = data['seeds'] if 'partitioner' in data: cluster.partitioner = data['partitioner'] if 'config_options' in data: cluster._config_options = data['config_options'] if 'dse_config_options' in data: cluster._dse_config_options = data['dse_config_options'] if 'misc_config_options' in data: cluster._misc_config_options = data['misc_config_options'] if 'log_level' in data: cluster.__log_level = data['log_level'] if 'use_vnodes' in data: cluster.use_vnodes = data['use_vnodes'] if 'datadirs' in data: cluster.data_dir_count = int(data['datadirs']) extension.load_from_cluster_config(cluster, data) except KeyError as k: raise common.LoadError("Error Loading " + filename + ", missing property:" + k) for node_name in node_list: cluster.nodes[node_name] = Node.load(cluster_path, node_name, cluster) for seed in seed_list: cluster.seeds.append(seed) return cluster
causalnex/structure/pytorch/dist_type/_base.py
Rishab26/causalnex
1,523
14975
# Copyright 2019-2020 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. """ ``causalnex.pytorch.dist_type._base`` defines the distribution type class interface and default behavior. """ import itertools from abc import ABCMeta, abstractmethod from copy import deepcopy from typing import Dict, List, Tuple import numpy as np import torch from causalnex.structure.structuremodel import StructureModel class DistTypeBase(metaclass=ABCMeta): """Base class defining the distribution default behavior and interface""" def __init__(self, idx: int): """ Default constructor for the DistTypeBase class. Unless overridden, provides default behavior to all subclasses. Args: idx: Positional index in data passed to the NOTEARS algorithm which correspond to this datatype. """ self.idx = idx def get_columns( self, X: np.ndarray, ) -> np.ndarray: """ Gets the column(s) associated with the instantiated DistType. Args: X: Full dataset to be selected from. Returns: 1d or 2d np.ndarray of columns. """ return X[:, self.idx] # pylint: disable=no-self-use # pylint: disable=unused-argument def preprocess_X(self, X: np.ndarray, fit_transform: bool = True) -> np.ndarray: """ Overload this method to perform any required preprocessing of the data matrix. This can include data conversion, column expansion etc. Changes to the tabu parameters should also be done here. **WARN** This preprocessing CANNOT reorder the columns of X. Args: X: The original passed-in data. fit_transform: Whether the class first fits then transforms the data, or just transforms. Just transforming is used to preprocess new data after the initial NOTEARS fit. Returns: Preprocessed X """ return X # pylint: disable=no-self-use def preprocess_tabu_edges( self, tabu_edges: List[Tuple[int, int]] ) -> List[Tuple[int, int]]: """ Overload this method to perform any required preprocessing of the tabu_edges. Args: tabu_edges: The original tabu_edges. Returns: Preprocessed tabu_edges. """ return tabu_edges # pylint: disable=no-self-use def preprocess_tabu_nodes(self, tabu_nodes: List[int]) -> List[int]: """ Overload this method to perform any required preprocessing of the tabu_nodes. Args: tabu_nodes: The original tabu_nodes. Returns: Preprocessed tabu_nodes. """ return tabu_nodes # pylint: disable=no-self-use def update_idx_col(self, idx_col: Dict[int, str]) -> Dict[int, str]: """ Overload this method to update the idx_col dict with expanded colnames. Args: idx_col: The original index to column mapping. Returns: Updated index to column mapping. """ return idx_col def add_to_node(self, sm: StructureModel) -> StructureModel: """ Adds self to a node of a structure model corresponding to self.idx. Args: sm: The input StructureModel Returns: Updated StructureModel """ sm.nodes[self.idx]["dist_type"] = self return sm # pylint: disable=no-self-use def modify_h(self, square_weight_mat: torch.Tensor) -> torch.Tensor: """ Overload this method to apply updates to the W matrix in h(W). Typically used to prevent spurious cycles when using expended columns. Args: square_weight_mat: The weight matrix used in h(W). Returns: Updated weight matrix used in h(W). """ return square_weight_mat # pylint: disable=no-self-use def collapse_adj(self, adj: np.ndarray) -> np.ndarray: """ Overload this method to apply updates to collapse the W matrix of a multi-parameter distribution Likely has the same impact as modify_h. Args: adj: The adjacency matrix. Returns: Updated adjacency matrix. """ return adj @abstractmethod def loss(self, X: torch.Tensor, X_hat: torch.Tensor) -> torch.Tensor: """ Args: X: The original data passed into NOTEARS (i.e. the reconstruction target). X_hat: The reconstructed data. Returns: Scalar pytorch tensor of the reconstruction loss between X and X_hat. """ raise NotImplementedError("Must implement the loss() method") @abstractmethod def inverse_link_function(self, X_hat: torch.Tensor) -> torch.Tensor: """ Convert the transformed data from the latent space to the original dtype using the inverse link function. Args: X_hat: Reconstructed data in the latent space. Returns: Modified X_hat. MUST be same shape as passed in data. Projects the self.idx column from the latent space to the dist_type space. """ raise NotImplementedError("Must implement the inverse_link_function() method") class ExpandColumnsMixin: """ Mixin class providing convenience methods for column expansion. """ @staticmethod def _expand_columns(X: np.ndarray, new_columns: np.ndarray) -> np.ndarray: """ Expands the data matrix columns without reordering the indices. Args: X: Base dataset to expand. new_columns: The columns to expand the dataset by. Returns: Expanded dataset. """ return np.hstack([X, new_columns]) @staticmethod def update_tabu_edges( idx_group: List[int], tabu_edges: List[Tuple[int, int]], tabu_idx_group: bool, ) -> List[Tuple[int, int]]: """ Tabu edges are: 1. all user defined connections to original feature column 2. all inter-feature connections (optional) Args: idx_group: The group of indices which correspond to a single expanded column. tabu_edges: The list of tabu_edges to be updated. tabu_idx_group: Whether inter-group edges should also be considered tabu. I.e if a result of a column expansion, often want to prevent edges being learned between parameters. Returns: Updated tabu_edges """ if tabu_edges is None: tabu_edges = [] # copy to prevent mutations tabu_edges = deepcopy(tabu_edges) # handle 1. new_tabu_edges = [] # for each original tabu pair for (i, j) in tabu_edges: # idx_group[0] is the original column index if i == idx_group[0]: new_tabu_edges += [(idx, j) for idx in idx_group[1:]] elif j == idx_group[0]: new_tabu_edges += [(i, idx) for idx in idx_group[1:]] # all new edges added to tabu_edges tabu_edges += new_tabu_edges # handle 2. if tabu_idx_group: # add on all pairwise permutations of particular feature group # NOTE: permutations are needed for edge directionality tabu_edges += list(itertools.permutations(idx_group, 2)) return tabu_edges @staticmethod def update_tabu_nodes( idx_group: List[int], tabu_nodes: List[int] ) -> List[Tuple[int, int]]: """ Tabu nodes are: 1. all user defined connections to original feature column Args: idx_group: The group of indices which correspond to a single expanded column. tabu_nodes: The list of tabu_nodes to be updated. Returns: Updated tabu_nodes """ if tabu_nodes is None: return tabu_nodes # copy to prevent mutations tabu_nodes = deepcopy(tabu_nodes) new_tabu_nodes = [] for i in tabu_nodes: # NOTE: the first element in the idx_group is guaranteed as self.idx if i == idx_group[0]: new_tabu_nodes += idx_group[1:] # add on the new tabu nodes tabu_nodes += new_tabu_nodes return tabu_nodes
docs/examples/Moving_Platform_Simulation.py
Red-Portal/Stone-Soup-1
157
15018
#!/usr/bin/env python # coding: utf-8 """ Multi-Sensor Moving Platform Simulation Example =============================================== This example looks at how multiple sensors can be mounted on a single moving platform and exploiting a defined moving platform as a sensor target. """ # %% # Building a Simulated Multi-Sensor Moving Platform # ------------------------------------------------- # The focus of this example is to show how to setup and configure a simulation environment in order to provide a # multi-sensor moving platform, as such the application of a tracker will not be covered in detail. For more information # about trackers and how to configure them review of the tutorials and demonstrations is recommended. # # This example makes use of Stone Soup :class:`~.MovingPlatform`, :class:`~.MultiTransitionMovingPlatform` and # :class:`~.Sensor` objects. # # In order to configure platforms, sensors and the simulation we will need to import some specific Stone Soup objects. # As these have been introduced in previous tutorials they are imported upfront. New functionality within this example # will be imported at the relevant point in order to draw attention to the new features. # Some general imports and set up from datetime import datetime from datetime import timedelta from matplotlib import pyplot as plt import numpy as np # Stone Soup imports: from stonesoup.types.state import State, GaussianState from stonesoup.types.array import StateVector from stonesoup.types.array import CovarianceMatrix from stonesoup.models.transition.linear import ( CombinedLinearGaussianTransitionModel, ConstantVelocity) from stonesoup.predictor.particle import ParticlePredictor from stonesoup.resampler.particle import SystematicResampler from stonesoup.updater.particle import ParticleUpdater from stonesoup.measures import Mahalanobis from stonesoup.hypothesiser.distance import DistanceHypothesiser from stonesoup.dataassociator.neighbour import GNNWith2DAssignment from stonesoup.tracker.simple import SingleTargetTracker # Define the simulation start time start_time = datetime.now() # %% # Create a multi-sensor platform # ------------------------------ # We have previously demonstrated how to create a :class:`~.FixedPlatform` which exploited a # :class:`~.RadarRangeBearingElevation` *Sensor* in order to detect and track targets generated within a # :class:`~.MultiTargetGroundTruthSimulator`. # # In this example we are going to create a moving platform which will be mounted with a pair of sensors and moves within # a 6 dimensional state space according to the following :math:`\mathbf{x}`. # # .. math:: # \mathbf{x} = \begin{bmatrix} # x\\ \dot{x}\\ y\\ \dot{y}\\ z\\ \dot{z} \end{bmatrix} # = \begin{bmatrix} # 0\\ 0\\ 0\\ 50\\ 8000\\ 0 \end{bmatrix} # # The platform will be initiated with a near constant velocity model which has been parameterised to have zero noise. # Therefore the platform location at time :math:`k` is given by :math:`F_{k}x_{k-1}` where :math:`F_{k}` is given by: # # .. math:: # F_{k} = \begin{bmatrix} # 1 & \triangle k & 0 & 0 & 0 & 0\\ # 0 & 1 & 0 & 0 & 0 & 0\\ # 0 & 0 & 1 & \triangle k & 0 & 0\\ # 0 & 0 & 0 & 1 & 0 & 0\\ # 0 & 0 & 0 & 0 & 1 & \triangle k \\ # 0 & 0 & 0 & 0 & 0 & 1\\ # \end{bmatrix} # First import the Moving platform from stonesoup.platform.base import MovingPlatform # Define the initial platform position, in this case the origin initial_loc = StateVector([[0], [0], [0], [50], [8000], [0]]) initial_state = State(initial_loc, start_time) # Define transition model and position for 3D platform transition_model = CombinedLinearGaussianTransitionModel( [ConstantVelocity(0.), ConstantVelocity(0.), ConstantVelocity(0.)]) # create our fixed platform sensor_platform = MovingPlatform(states=initial_state, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), transition_model=transition_model) # %% # With our platform generated we now need to build a set of sensors which will be mounted onto the platform. In this # case we will exploit a :class:`~.RadarElevationBearingRangeRate` and a :class:`~.PassiveElevationBearing` sensor # (e.g. an optical sensor, which has no capability to directly measure range). # # First we will create a radar which is capable of measuring bearing (:math:`\phi`), elevation (:math:`\theta`), range # (:math:`r`) and range-rate (:math:`\dot{r}`) of the target platform. # Import a range rate bearing elevation capable radar from stonesoup.sensor.radar.radar import RadarElevationBearingRangeRate # Create a radar sensor radar_noise_covar = CovarianceMatrix(np.diag( np.array([np.deg2rad(3), # Elevation np.deg2rad(3), # Bearing 100., # Range 25.]))) # Range Rate # radar mountings radar_mounting_offsets = StateVector([10, 0, 0]) # e.g. nose cone radar_rotation_offsets = StateVector([0, 0, 0]) # Mount the radar onto the platform radar = RadarElevationBearingRangeRate(ndim_state=6, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), noise_covar=radar_noise_covar, mounting_offset=radar_mounting_offsets, rotation_offset=radar_rotation_offsets, ) sensor_platform.add_sensor(radar) # %% # Our second sensor is a passive sensor, capable of measuring the bearing (:math:`\phi`) and elevation (:math:`\theta`) # of the target platform. For the purposes of this example we will assume that the passive sensor is an imager. # The imager sensor model is described by the following equations: # # .. math:: # \mathbf{z}_k = h(\mathbf{x}_k, \dot{\mathbf{x}}_k) # # where: # # * :math:`\mathbf{z}_k` is a measurement vector of the form: # # .. math:: # \mathbf{z}_k = \begin{bmatrix} \theta \\ \phi \end{bmatrix} # # * :math:`h` is a non - linear model function of the form: # # .. math:: # h(\mathbf{x}_k,\dot{\mathbf{x}}_k) = \begin{bmatrix} # \arcsin(\mathcal{z} /\sqrt{\mathcal{x} ^ 2 + \mathcal{y} ^ 2 +\mathcal{z} ^ 2}) \\ # \arctan(\mathcal{y},\mathcal{x}) \ \ # \end{bmatrix} + \dot{\mathbf{x}}_k # # * :math:`\mathbf{z}_k` is Gaussian distributed with covariance :math:`R`, i.e.: # # .. math:: # \mathbf{z}_k \sim \mathcal{N}(0, R) # # .. math:: # R = \begin{bmatrix} # \sigma_{\theta}^2 & 0 \\ # 0 & \sigma_{\phi}^2 \\ # \end{bmatrix} # Import a passive sensor capability from stonesoup.sensor.passive import PassiveElevationBearing imager_noise_covar = CovarianceMatrix(np.diag(np.array([np.deg2rad(0.05), # Elevation np.deg2rad(0.05)]))) # Bearing # imager mounting offset imager_mounting_offsets = StateVector([0, 8, -1]) # e.g. wing mounted imaging pod imager_rotation_offsets = StateVector([0, 0, 0]) # Mount the imager onto the platform imager = PassiveElevationBearing(ndim_state=6, mapping=(0, 2, 4), noise_covar=imager_noise_covar, mounting_offset=imager_mounting_offsets, rotation_offset=imager_rotation_offsets, ) sensor_platform.add_sensor(imager) # %% # Notice that we have added sensors to specific locations on the aircraft, defined by the mounting_offset parameter. # The values in this array are defined in the platforms local coordinate frame of reference. So in this case an offset # of :math:`[0, 8, -1]` means the sensor is located 8 meters to the right and 1 meter below the center point of the # platform. # # Now that we have mounted the two sensors we can see that the platform object has both associated with it: sensor_platform.sensors # %% # Create a Target Platform # ------------------------ # There are two ways of generating a target in Stone Soup. Firstly, we can use the inbuilt ground-truth generator # functionality within Stone Soup, which we demonstrated in the previous example, and creates a random target based on # our selected parameters. The second method provides a means to generate a target which will perform specific # behaviours, this is the approach we will take here. # # In order to create a target which moves in pre-defined sequences we exploit the fact that platforms can be used as # sensor targets within a simulation, coupled with the :class:`~.MultiTransitionMovingPlatform` which enables a platform # to be provided with a pre-defined list of transition models and transition times. The platform will continue to loop # over the transition sequence provided until the simulation ends. # # When simulating sensor platforms it is important to note that within the simulation Stone Soup treats all platforms as # potential targets. Therefore if we created multiple sensor platforms they would each *sense* all other platforms # within the simulation (sensor-target geometry dependant). # # For this example we will create an air target which will fly a sequence of straight and level followed by a # coordinated turn in the :math:`x-y` plane. This is configured such that the target will perform each manoeuvre for 8 # seconds, and it will turn through 45 degrees over the course of the turn manoeuvre. # Import a Constant Turn model to enable target to perform basic manoeuvre from stonesoup.models.transition.linear import ConstantTurn straight_level = CombinedLinearGaussianTransitionModel( [ConstantVelocity(0.), ConstantVelocity(0.), ConstantVelocity(0.)]) # Configure the aircraft turn behaviour turn_noise_diff_coeffs = np.array([0., 0.]) turn_rate = np.pi/32 # specified in radians per seconds... turn_model = ConstantTurn(turn_noise_diff_coeffs=turn_noise_diff_coeffs, turn_rate=turn_rate) # Configure turn model to maintain current altitude turning = CombinedLinearGaussianTransitionModel( [turn_model, ConstantVelocity(0.)]) manoeuvre_list = [straight_level, turning] manoeuvre_times = [timedelta(seconds=8), timedelta(seconds=8)] # %% # Now that we have created a list of manoeuvre behaviours and durations we can build our multi-transition moving # platform. Because we intend for this platform to be a target we do not need to attach any sensors to it. # Import a multi-transition moving platform from stonesoup.platform.base import MultiTransitionMovingPlatform initial_target_location = StateVector([[0], [-40], [1800], [0], [8000], [0]]) initial_target_state = State(initial_target_location, start_time) target = MultiTransitionMovingPlatform(transition_models=manoeuvre_list, transition_times=manoeuvre_times, states=initial_target_state, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), sensors=None) # %% # Creating the simulator # ---------------------- # Now that we have build our sensor platform and a target platform we need to wrap them in a simulator. Because we do # not want any additional ground truth objects, which is how most simulators work in Stone Soup, we need to use a # :class:`~.DummyGroundTruthSimulator` which returns a set of empty ground truth paths with timestamps. These are then # feed into a :class:`~.PlatformDetectionSimulator` with the two platforms we have already built. # Import the required simulators from stonesoup.simulator.simple import DummyGroundTruthSimulator from stonesoup.simulator.platform import PlatformDetectionSimulator # %% # We now need to create an array of timestamps which starts at *datetime.now()* and enable the simulator to run for # 25 seconds. times = np.arange(0, 24, 1) # 25 seconds timestamps = [start_time + timedelta(seconds=float(elapsed_time)) for elapsed_time in times] truths = DummyGroundTruthSimulator(times=timestamps) sim = PlatformDetectionSimulator(groundtruth=truths, platforms=[sensor_platform, target]) # %% # Create a Tracker # ------------------------------------ # Now that we have setup our sensor platform, target and simulation we need to create a tracker. For this example we # will use a Particle Filter as this enables us to handle the non-linear nature of the imaging sensor. In this example # we will use an inflated constant noise model to account for target motion uncertainty. # # Note that we don't add a measurement model to the updater, this is because each sensor adds their measurement model to # each detection they generate. The tracker handles this internally by checking for a measurement model with each # detection it receives and applying only the relevant measurement model. target_transition_model = CombinedLinearGaussianTransitionModel( [ConstantVelocity(5), ConstantVelocity(5), ConstantVelocity(1)]) # First add a Particle Predictor predictor = ParticlePredictor(target_transition_model) # Now create a resampler and particle updater resampler = SystematicResampler() updater = ParticleUpdater(measurement_model=None, resampler=resampler) # Create a particle initiator from stonesoup.initiator.simple import GaussianParticleInitiator, SinglePointInitiator single_point_initiator = SinglePointInitiator( GaussianState([[0], [-40], [2000], [0], [8000], [0]], np.diag([10000, 1000, 10000, 1000, 10000, 1000])), None) initiator = GaussianParticleInitiator(number_particles=500, initiator=single_point_initiator) hypothesiser = DistanceHypothesiser(predictor, updater, measure=Mahalanobis(), missed_distance=np.inf) data_associator = GNNWith2DAssignment(hypothesiser) from stonesoup.deleter.time import UpdateTimeStepsDeleter deleter = UpdateTimeStepsDeleter(time_steps_since_update=10) # Create a Kalman single-target tracker tracker = SingleTargetTracker( initiator=initiator, deleter=deleter, detector=sim, data_associator=data_associator, updater=updater ) # %% # The final step is to iterate our tracker over the simulation and plot out the results. Because we have a bearing # only sensor it does not make sense to plot out the detections without animating the resulting plot. This # animation shows the sensor platform (blue) moving towards the true target position (red). The estimated target # position is shown in black, radar detections are shown in yellow while the bearing only imager detections are # coloured green. from matplotlib import animation import matplotlib matplotlib.rcParams['animation.html'] = 'jshtml' from stonesoup.models.measurement.nonlinear import CartesianToElevationBearingRangeRate from stonesoup.functions import sphere2cart fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(1, 1, 1) frames = [] for time, ctracks in tracker: artists = [] ax.set_xlabel("$East$") ax.set_ylabel("$North$") ax.set_ylim(0, 2250) ax.set_xlim(-1000, 1000) X = [state.state_vector[0] for state in sensor_platform] Y = [state.state_vector[2] for state in sensor_platform] artists.extend(ax.plot(X, Y, color='b')) for detection in sim.detections: if isinstance(detection.measurement_model, CartesianToElevationBearingRangeRate): x, y = detection.measurement_model.inverse_function(detection)[[0, 2]] color = 'y' else: r = 10000000 # extract the platform rotation offsets _, el_offset, az_offset = sensor_platform.orientation # obtain measurement angles and map to cartesian e, a = detection.state_vector x, y, _ = sphere2cart(r, a + az_offset, e + el_offset) color = 'g' X = [sensor_platform.state_vector[0], x] Y = [sensor_platform.state_vector[2], y] artists.extend(ax.plot(X, Y, color=color)) X = [state.state_vector[0] for state in target] Y = [state.state_vector[2] for state in target] artists.extend(ax.plot(X, Y, color='r')) for track in ctracks: X = [state.state_vector[0] for state in track] Y = [state.state_vector[2] for state in track] artists.extend(ax.plot(X, Y, color='k')) frames.append(artists) animation.ArtistAnimation(fig, frames) # %% # To increase your confidence with simulated platform targets it would be good practice to modify the target to fly # pre-defined shapes, a race track oval for example. You could also experiment with different sensor performance levels # in order to see at what point the tracker is no longer able to generate a reasonable estimate of the target location. # %% # Key points # ---------- # 1. Platforms, static or moving, can be used as targets for sensor platforms. # 2. Simulations can be built with only known platform behaviours when you want to test specific scenarios. # 3. A tracker can be configured to exploit all sensor data created in a simulation.
examples/ndfd/ndfd.py
eLBati/pyxb
123
15021
from raw.ndfd import *
backend/kale/tests/assets/kfp_dsl/simple_data_passing.py
brness/kale
502
15035
import json import kfp.dsl as _kfp_dsl import kfp.components as _kfp_components from collections import OrderedDict from kubernetes import client as k8s_client def step1(): from kale.common import mlmdutils as _kale_mlmdutils _kale_mlmdutils.init_metadata() from kale.marshal.decorator import marshal as _kale_marshal from kale.common.runutils import link_artifacts as _kale_link_artifacts _kale_pipeline_parameters = {} @_kale_marshal([], ['_b', '_a'], _kale_pipeline_parameters, "/marshal") def step1(): a = 1 b = 2 return a, b step1() _kale_artifacts = {} _kale_link_artifacts(_kale_artifacts) _kale_mlmdutils.call("mark_execution_complete") def step2(): from kale.common import mlmdutils as _kale_mlmdutils _kale_mlmdutils.init_metadata() from kale.common.runutils import ttl as _kale_ttl from kale.marshal.decorator import marshal as _kale_marshal from kale.common.runutils import link_artifacts as _kale_link_artifacts _kale_pipeline_parameters = {} @_kale_ttl(5) @_kale_marshal(['_b', '_a'], ['_c'], _kale_pipeline_parameters, "/marshal") def step2(a, b): c = a + b print(c) return c step2() _kale_artifacts = {} _kale_link_artifacts(_kale_artifacts) _kale_mlmdutils.call("mark_execution_complete") def step3(): from kale.common import mlmdutils as _kale_mlmdutils _kale_mlmdutils.init_metadata() from kale.marshal.decorator import marshal as _kale_marshal from kale.common.runutils import link_artifacts as _kale_link_artifacts _kale_pipeline_parameters = {} @_kale_marshal(['_a', '_c'], [], _kale_pipeline_parameters, "/marshal") def step3(a, c): d = c + a print(d) step3() _kale_artifacts = {} _kale_link_artifacts(_kale_artifacts) _kale_mlmdutils.call("mark_execution_complete") _kale_step1_op = _kfp_components.func_to_container_op(step1) _kale_step2_op = _kfp_components.func_to_container_op(step2) _kale_step3_op = _kfp_components.func_to_container_op(step3) @_kfp_dsl.pipeline( name='test', description='' ) def auto_generated_pipeline(): _kale_pvolumes_dict = OrderedDict() _kale_volume_step_names = [] _kale_volume_name_parameters = [] _kale_marshal_vop = _kfp_dsl.VolumeOp( name="kale-marshal-volume", resource_name="kale-marshal-pvc", modes=['ReadWriteMany'], size="1Gi" ) _kale_volume_step_names.append(_kale_marshal_vop.name) _kale_volume_name_parameters.append( _kale_marshal_vop.outputs["name"].full_name) _kale_pvolumes_dict['/marshal'] = _kale_marshal_vop.volume _kale_volume_step_names.sort() _kale_volume_name_parameters.sort() _kale_step1_task = _kale_step1_op()\ .add_pvolumes(_kale_pvolumes_dict)\ .after() _kale_step_labels = {'common-label': 'true'} for _kale_k, _kale_v in _kale_step_labels.items(): _kale_step1_task.add_pod_label(_kale_k, _kale_v) _kale_step_limits = {'amd/gpu': '1'} for _kale_k, _kale_v in _kale_step_limits.items(): _kale_step1_task.container.add_resource_limit(_kale_k, _kale_v) _kale_step1_task.container.working_dir = "/test" _kale_step1_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) _kale_output_artifacts = {} _kale_step1_task.output_artifact_paths.update(_kale_output_artifacts) _kale_step1_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") _kale_dep_names = (_kale_step1_task.dependent_names + _kale_volume_step_names) _kale_step1_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(_kale_dep_names)) if _kale_volume_name_parameters: _kale_step1_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(_kale_volume_name_parameters)) _kale_step2_task = _kale_step2_op()\ .add_pvolumes(_kale_pvolumes_dict)\ .after(_kale_step1_task) _kale_step_labels = {'common-label': 'true'} for _kale_k, _kale_v in _kale_step_labels.items(): _kale_step2_task.add_pod_label(_kale_k, _kale_v) _kale_step2_task.set_retry_strategy( num_retries=5, retry_policy="Always", backoff_duration="20", backoff_factor=2, backoff_max_duration=None) _kale_step2_task.container.working_dir = "/test" _kale_step2_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) _kale_output_artifacts = {} _kale_step2_task.output_artifact_paths.update(_kale_output_artifacts) _kale_step2_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") _kale_dep_names = (_kale_step2_task.dependent_names + _kale_volume_step_names) _kale_step2_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(_kale_dep_names)) if _kale_volume_name_parameters: _kale_step2_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(_kale_volume_name_parameters)) _kale_step3_task = _kale_step3_op()\ .add_pvolumes(_kale_pvolumes_dict)\ .after(_kale_step2_task, _kale_step1_task) _kale_step_annotations = {'step3-annotation': 'test'} for _kale_k, _kale_v in _kale_step_annotations.items(): _kale_step3_task.add_pod_annotation(_kale_k, _kale_v) _kale_step_labels = {'common-label': 'true'} for _kale_k, _kale_v in _kale_step_labels.items(): _kale_step3_task.add_pod_label(_kale_k, _kale_v) _kale_step3_task.container.working_dir = "/test" _kale_step3_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) _kale_output_artifacts = {} _kale_step3_task.output_artifact_paths.update(_kale_output_artifacts) _kale_step3_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") _kale_dep_names = (_kale_step3_task.dependent_names + _kale_volume_step_names) _kale_step3_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(_kale_dep_names)) if _kale_volume_name_parameters: _kale_step3_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(_kale_volume_name_parameters)) if __name__ == "__main__": pipeline_func = auto_generated_pipeline pipeline_filename = pipeline_func.__name__ + '.pipeline.tar.gz' import kfp.compiler as compiler compiler.Compiler().compile(pipeline_func, pipeline_filename) # Get or create an experiment and submit a pipeline run import kfp client = kfp.Client() experiment = client.create_experiment('test') # Submit a pipeline run from kale.common import kfputils pipeline_id, version_id = kfputils.upload_pipeline( pipeline_filename, "test") run_result = kfputils.run_pipeline( experiment_name=experiment.name, pipeline_id=pipeline_id, version_id=version_id)
gaphor/RAAML/stpa/connectors.py
Texopolis/gaphor
867
15054
<filename>gaphor/RAAML/stpa/connectors.py<gh_stars>100-1000 from gaphor.diagram.connectors import Connector from gaphor.diagram.presentation import Classified from gaphor.RAAML.raaml import RelevantTo from gaphor.RAAML.stpa import RelevantToItem from gaphor.SysML.requirements.connectors import DirectedRelationshipPropertyPathConnect @Connector.register(Classified, RelevantToItem) class RelevantToConnect(DirectedRelationshipPropertyPathConnect): relation_type = RelevantTo
python/test/experimental/test_tb_graph_writer.py
daniel-falk/nnabla
2,792
15067
# Copyright 2021 Sony Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import numpy as np import nnabla as nn import nnabla.functions as F import nnabla.parametric_functions as PF def test_show_graph(): try: from nnabla.experimental.tb_graph_writer import TBGraphWriter except: pytest.skip( 'Skip because tensorboardX and tensorflow is not installed.') nn.clear_parameters() x = nn.Variable((2, 3, 4, 4)) with nn.parameter_scope('c1'): h = PF.convolution(x, 8, (3, 3), pad=(1, 1)) h = F.relu(PF.batch_normalization(h)) with nn.parameter_scope('f1'): y = PF.affine(h, 10) with TBGraphWriter(log_dir='log_out') as tb: tb.from_variable(y, output_name="y") def test_show_curve(): try: from nnabla.experimental.tb_graph_writer import TBGraphWriter except: pytest.skip( 'Skip because tensorboardX and tensorflow is not installed.') with TBGraphWriter(log_dir='log_out') as tb: values = [] for i in range(360): s = np.sin(i / 180.0 * np.pi) tb.add_scalar("show_curve/sin", s, i) values.append(s) nd_values = np.array(values) for i in range(10): tb.add_histogram("histogram", nd_values, i) nd_values += 0.05
pyperform/tools.py
timgates42/pyperform
250
15080
<gh_stars>100-1000 __author__ = 'calvin' import re import sys from math import log10 if sys.version[0] == '3': pass else: range = xrange classdef_regex = re.compile(r"\S*def .*#!|class .*#!") tagged_line_regex = re.compile(r".*#!") def convert_time_units(t): """ Convert time in seconds into reasonable time units. """ if t == 0: return '0 s' order = log10(t) if -9 < order < -6: time_units = 'ns' factor = 1000000000 elif -6 <= order < -3: time_units = 'us' factor = 1000000 elif -3 <= order < -1: time_units = 'ms' factor = 1000. elif -1 <= order: time_units = 's' factor = 1 return "{:.3f} {}".format(factor * t, time_units) def globalize_indentation(src): """ Strip the indentation level so the code runs in the global scope. """ lines = src.splitlines() indent = len(lines[0]) - len(lines[0].strip(' ')) func_src = '' for ii, l in enumerate(src.splitlines()): line = l[indent:] func_src += line + '\n' return func_src def remove_decorators(src): """ Remove decorators from the source code """ src = src.strip() src_lines = src.splitlines() multi_line = False n_deleted = 0 for n in range(len(src_lines)): line = src_lines[n - n_deleted].strip() if (line.startswith('@') and 'Benchmark' in line) or multi_line: del src_lines[n - n_deleted] n_deleted += 1 if line.endswith(')'): multi_line = False else: multi_line = True setup_src = '\n'.join(src_lines) return setup_src def get_tagged_imports(fp): imports = [] inside_def = False def_lines = [] def_indent = 0 with open(fp, 'r') as f: lastLine = f.readline() for line in f: tagged_class_or_def = re.findall(classdef_regex, lastLine) tagged_line = re.findall(tagged_line_regex, lastLine) # Find the indentation level of the function/class definition and capture all source code lines # until we get a line that is the same indentation level (end of function/class definition). if tagged_class_or_def or inside_def: if tagged_class_or_def and def_lines: imports.append(''.join(def_lines)) def_lines = [] inside_def = False if inside_def: # For lines within the definition indent = len(lastLine) - len(lastLine.lstrip(' ')) if indent == def_indent and lastLine != '\n': imports.append(''.join(def_lines)) def_lines = [] inside_def = False def_indent = 0 if tagged_line: imports.append(lastLine) else: if lastLine != '\n': def_lines.append(lastLine) else: # For the definition line inside_def = True def_indent = len(lastLine) - len(lastLine.lstrip(' ')) def_lines.append(lastLine) elif tagged_line: imports.append(lastLine) lastLine = line # Examine the last line tagged_line = re.findall(tagged_line_regex, lastLine) if inside_def: def_lines.append(line) imports.append(''.join(def_lines)) elif tagged_line: imports.append(line) src = '\n'.join(imports) + '\n' return src def generate_call_statement(func, is_class_method, *args, **kwargs): # Create the call statement if is_class_method: stmt = 'instance.' + func.__name__ + '(' else: stmt = func.__name__ + '(' for arg in args: stmt += arg.__repr__() + ', ' for kw, val in kwargs.items(): stmt += '{0}={1}, '.format(kw, val.__repr__()) stmt = stmt.strip(', ') stmt += ')' return stmt def walk_tree(start, attr): """ Recursively walk through a tree relationship. This iterates a tree in a top-down approach, fully reaching the end of a lineage before moving onto the next sibling of that generation. """ path = [start] for child in path: yield child idx = path.index(child) for grandchild in reversed(getattr(child, attr)): path.insert(idx + 1, grandchild)
google_or_tools/coloring_ip_sat.py
tias/hakank
279
15101
# Copyright 2021 <NAME> <EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Simple coloring problem (MIP approach) in OR-tools CP-SAT Solver. Inspired by the GLPK:s model color.mod ''' COLOR, Graph Coloring Problem Written in GNU MathProg by <NAME> <<EMAIL>> Given an undirected loopless graph G = (V, E), where V is a set of nodes, E <= V x V is a set of arcs, the Graph Coloring Problem is to find a mapping (coloring) F: V -> C, where C = {1, 2, ... } is a set of colors whose cardinality is as small as possible, such that F(i) != F(j) for every arc (i,j) in E, that is adjacent nodes must be assigned different colors. ''' This is a port of my old OR-tools CP solver coloring_ip.py This model was created by <NAME> (<EMAIL>) Also see my other OR-tols models: http://www.hakank.org/or_tools/ """ from __future__ import print_function from ortools.sat.python import cp_model as cp import math, sys # from cp_sat_utils import * def main(): model = cp.CpModel() # max number of colors # [we know that 4 suffices for normal maps] nc = 5 # number of nodes n = 11 # set of nodes V = list(range(n)) num_edges = 20 # # Neighbours # # This data correspond to the instance myciel3.col from: # http://mat.gsia.cmu.edu/COLOR/instances.html # # Note: 1-based (adjusted below) E = [[1, 2], [1, 4], [1, 7], [1, 9], [2, 3], [2, 6], [2, 8], [3, 5], [3, 7], [3, 10], [4, 5], [4, 6], [4, 10], [5, 8], [5, 9], [6, 11], [7, 11], [8, 11], [9, 11], [10, 11]] # # declare variables # # x[i,c] = 1 means that node i is assigned color c x = {} for v in V: for j in range(nc): x[v, j] = model.NewIntVar(0, 1, 'v[%i,%i]' % (v, j)) # u[c] = 1 means that color c is used, i.e. assigned to some node u = [model.NewIntVar(0, 1, 'u[%i]' % i) for i in range(nc)] # number of colors used, to minimize num_colors = model.NewIntVar(0,nc, "num_colors") model.Add(num_colors == sum(u)) # # constraints # # each node must be assigned exactly one color for i in V: model.Add(sum([x[i, c] for c in range(nc)]) == 1) # adjacent nodes cannot be assigned the same color # (and adjust to 0-based) for i in range(num_edges): for c in range(nc): model.Add(x[E[i][0] - 1, c] + x[E[i][1] - 1, c] <= u[c]) # objective model.Minimize(num_colors) # # solution # solver = cp.CpSolver() status = solver.Solve(model) if status == cp.OPTIMAL: print() print('number of colors:', solver.Value(num_colors)) print('colors used:', [solver.Value(u[i]) for i in range(nc)]) print() for v in V: print('v%i' % v, ' color ', end=' ') for c in range(nc): if solver.Value(x[v, c]) == 1: print(c) print() print('NumConflicts:', solver.NumConflicts()) print('NumBranches:', solver.NumBranches()) print('WallTime:', solver.WallTime()) if __name__ == '__main__': main()
tools/find_run_binary.py
pospx/external_skia
6,304
15106
#!/usr/bin/python # Copyright (c) 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Module that finds and runs a binary by looking in the likely locations.""" import os import subprocess import sys def run_command(args): """Runs a program from the command line and returns stdout. Args: args: Command line to run, as a list of string parameters. args[0] is the binary to run. Returns: stdout from the program, as a single string. Raises: Exception: the program exited with a nonzero return code. """ proc = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = proc.communicate() if proc.returncode is not 0: raise Exception('command "%s" failed: %s' % (args, stderr)) return stdout def find_path_to_program(program): """Returns path to an existing program binary. Args: program: Basename of the program to find (e.g., 'render_pictures'). Returns: Absolute path to the program binary, as a string. Raises: Exception: unable to find the program binary. """ trunk_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) possible_paths = [os.path.join(trunk_path, 'out', 'Release', program), os.path.join(trunk_path, 'out', 'Debug', program), os.path.join(trunk_path, 'out', 'Release', program + '.exe'), os.path.join(trunk_path, 'out', 'Debug', program + '.exe')] for try_path in possible_paths: if os.path.isfile(try_path): return try_path raise Exception('cannot find %s in paths %s; maybe you need to ' 'build %s?' % (program, possible_paths, program))
pml/engineer_tests.py
gatapia/py_ml_utils
183
15129
from __future__ import print_function, absolute_import import unittest, math import pandas as pd import numpy as np from . import * class T(base_pandas_extensions_tester.BasePandasExtensionsTester): def test_concat(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2': ['d', 'e', 'f']}) df.engineer('concat(c_1, c_2)') self.assertTrue(np.array_equal(df['c_concat(c_1,c_2)'].values, np.array(['ad', 'be', 'cf'], 'object'))) def test_concat_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'c_3': ['h', 'i', 'j']}) df.engineer('concat(c_3, c_1, c_2)') self.assertTrue(np.array_equal(df['c_concat(c_3,c_1,c_2)'].values, np.array(['had', 'ibe', 'jcf'], 'object'))) def test_concat_with_numerical_col(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3]}) df.engineer('concat(c_1,n_2)') self.assertTrue(np.array_equal(df['c_concat(c_1,n_2)'].values, np.array(['a1', 'b2', 'c3'], 'object'))) def test_concat_with_numerical_col_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6]}) df.engineer('concat(n_3,c_1,n_2)') self.assertTrue(np.array_equal(df['c_concat(n_3,c_1,n_2)'].values, np.array(['4a1', '5b2', '6c3'], 'object'))) def test_multiplication(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('mult(n_2, n_3)') self.assertTrue(np.array_equal(df['n_mult(n_2,n_3)'].values, np.array([4, 10, 18], long))) def test_multiplication_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('mult(n_2, n_3, n_4)') self.assertTrue(np.array_equal(df['n_mult(n_2,n_3,n_4)'].values, np.array([4*7, 80, 18*9], long))) def test_square_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('pow(2)') np.testing.assert_array_equal(df.values, np.array([ ['a', 1, 4, 7, 1*1, 4*4, 7*7], ['b', 2, 5, 8, 2*2, 5*5, 8*8], ['c', 3, 6, 9, 3*3, 6*6, 9*9], ], 'object')) def test_square_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('pow(n_3, 2)') np.testing.assert_array_equal(df.values, np.array([ ['a', 1, 4, 7, 4*4], ['b', 2, 5, 8, 5*5], ['c', 3, 6, 9, 6*6], ], 'object')) def test_log_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('lg()') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.log(1), math.log(4), math.log(7)], ['b', 2, 5, 8, math.log(2), math.log(5), math.log(8)], ['c', 3, 6, 9, math.log(3), math.log(6), math.log(9)], ], 'object'))) def test_log_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('lg(n_3)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.log(4)], ['b', 2, 5, 8, math.log(5)], ['c', 3, 6, 9, math.log(6)], ], 'object'))) def test_sqrt_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('sqrt()') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.sqrt(1), math.sqrt(4), math.sqrt(7)], ['b', 2, 5, 8, math.sqrt(2), math.sqrt(5), math.sqrt(8)], ['c', 3, 6, 9, math.sqrt(3), math.sqrt(6), math.sqrt(9)], ], 'object'))) def test_sqrt_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('sqrt(n_3)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.sqrt(4)], ['b', 2, 5, 8, math.sqrt(5)], ['c', 3, 6, 9, math.sqrt(6)], ], 'object'))) def test_rolling_sum_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_sum(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 35, 40, 30, 29, 48], df['n_' + col]) def test_rolling_mean_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_mean(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16], df['n_' + col], rtol=1e-3) def test_rolling_median_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_median(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 12, 13, 13, 12, 12], df['n_' + col]) def test_rolling_min_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_min(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 10, 12, 2, 2, 2], df['n_' + col]) def test_rolling_max_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_max(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 13, 15, 15, 15, 34], df['n_' + col]) def test_rolling_std_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_std(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371], df['n_' + col], rtol=1e-3) def test_rolling_var_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_var(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268], df['n_' + col], rtol=1e-3) # Multiple Columns def test_rolling_sum_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_sum(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 35, 40, 30, 29, 48], df['n_rolling_sum(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 6, 10, 10, 9, 8], df['n_rolling_sum(n_2,3)']) def test_rolling_mean_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_mean(3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16], df['n_rolling_mean(n_1,3)'], rtol=1e-3) np.testing.assert_allclose([np.nan, np.nan, 2, 3.333, 3.333, 3, 2.666], df['n_rolling_mean(n_2,3)'], rtol=1e-3) def test_rolling_median_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_median(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 12, 13, 13, 12, 12], df['n_rolling_median(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 2, 3, 3, 2, 2], df['n_rolling_median(n_2,3)']) def test_rolling_min_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_min(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 10, 12, 2, 2, 2], df['n_rolling_min(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 1, 2, 2, 2, 2], df['n_rolling_min(n_2,3)']) def test_rolling_max_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_max(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 13, 15, 15, 15, 34], df['n_rolling_max(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 3, 5, 5, 5, 4], df['n_rolling_max(n_2,3)']) def test_rolling_std_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_std(3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371], df['n_rolling_std(n_1,3)'], rtol=1e-3) np.testing.assert_allclose([np.nan, np.nan, 1, 1.528, 1.528, 1.732, 1.1547], df['n_rolling_std(n_2,3)'], rtol=1e-3) def test_rolling_var_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_var(3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268], df['n_rolling_var(n_1,3)'], rtol=1e-3) np.testing.assert_allclose([np.nan, np.nan, 1, 2.333, 2.333, 3, 1.333], df['n_rolling_var(n_2,3)'], rtol=1e-3) def test_method_chaining(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2':['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.\ engineer('concat(c_1, c_2)').\ engineer('concat(c_1, n_2)').\ engineer('mult(n_2, n_3)').\ engineer('lg(n_2)').\ engineer('pow(n_3, 2)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 'd', 1, 4, 7, 'ad', 'a1', 4, math.log(1), 4*4], ['b', 'e', 2, 5, 8, 'be', 'b2', 10, math.log(2), 5*5], ['c', 'f', 3, 6, 9, 'cf', 'c3', 18, math.log(3), 6*6] ], 'object'))) def test_chaining_single_call_semi_col_sep(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2':['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('concat(c_1, c_2);concat(c_1, n_2);mult(n_2, n_3);lg(n_2);pow(n_3, 2)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 'd', 1, 4, 7, 'ad', 'a1', 4, math.log(1), 4*4], ['b', 'e', 2, 5, 8, 'be', 'b2', 10, math.log(2), 5*5], ['c', 'f', 3, 6, 9, 'cf', 'c3', 18, math.log(3), 6*6] ], 'object'))) def test_chaining_single_with_arr_arg(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2':['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('concat(c_1, c_2);concat(c_1, n_2);mult(n_2, n_3);lg(n_2);pow(n_3, 2)'.split(';')) self.assertTrue(np.array_equal(df.values, np.array([ ['a', 'd', 1, 4, 7, 'ad', 'a1', 4, math.log(1), 4*4], ['b', 'e', 2, 5, 8, 'be', 'b2', 10, math.log(2), 5*5], ['c', 'f', 3, 6, 9, 'cf', 'c3', 18, math.log(3), 6*6] ], 'object'))) def test_long_method_chains(self): df1 = pd.DataFrame({'n_1': [1, 2, 3], 'n_2': [4, 5, 6]}) df2 = pd.DataFrame({'n_1': [1, 2, 3], 'n_2': [4, 5, 6]}) df1.engineer('mult(lg(mult(n_1, n_2)), lg(pow(n_1, 3)))') df2.engineer('mult(n_1,n_2);pow(n_1,3)') df2.engineer('lg(pow(n_1,3));lg(mult(n_1, n_2))') df2.engineer('mult(lg(mult(n_1,n_2)),lg(pow(n_1, 3)))') np.testing.assert_array_equal(df1.columns.values.sort(), df2.columns.values.sort()); np.testing.assert_array_equal(df1['n_mult(n_1,n_2)'].values, df2['n_mult(n_1,n_2)'].values); np.testing.assert_array_equal(df1['n_pow(n_1,3)'], df2['n_pow(n_1,3)']); np.testing.assert_array_equal(df1['n_lg(pow(n_1,3))'], df2['n_lg(pow(n_1,3))']); np.testing.assert_array_equal(df1['n_lg(mult(n_1,n_2))'], df2['n_lg(mult(n_1,n_2))']); np.testing.assert_array_equal(df1['n_mult(lg(mult(n_1,n_2)),lg(pow(n_1,3)))'], df2['n_mult(lg(mult(n_1,n_2)),lg(pow(n_1,3)))']);
src/pyrobot/habitat/base.py
cihuang123/pyrobot
2,150
15131
import numpy as np import math import pyrobot.utils.util as prutil import rospy import habitat_sim.agent as habAgent import habitat_sim.utils as habUtils from habitat_sim.agent.controls import ActuationSpec import habitat_sim.errors import quaternion from tf.transformations import euler_from_quaternion, euler_from_matrix class LoCoBotBase(object): """docstring for SimpleBase""" def __init__(self, configs, simulator): self.configs = configs self.sim = simulator.sim self.agent = self.sim.get_agent(self.configs.COMMON.SIMULATOR.DEFAULT_AGENT_ID) self.transform = None self.init_state = self.get_full_state() def execute_action(self, action_name, actuation): # actions = "turn_right" or "turn_left" or "move_forward" # returns a bool showing if collided or not return self._act(action_name, actuation) def get_full_state(self): # Returns habitat_sim.agent.AgentState return self.agent.get_state() def _rot_matrix(self, habitat_quat): quat_list = [habitat_quat.x, habitat_quat.y, habitat_quat.z, habitat_quat.w] return prutil.quat_to_rot_mat(quat_list) def get_state(self, state_type="odom"): # Returns (x, y, yaw) assert state_type == "odom", "Error: Only Odom state is available" cur_state = self.get_full_state() init_rotation = self._rot_matrix(self.init_state.rotation) # true position here refers to the relative position from # where `self.init_state` is treated as origin true_position = cur_state.position - self.init_state.position true_position = np.matmul(init_rotation.transpose(), true_position, dtype=np.float64) cur_rotation = self._rot_matrix(cur_state.rotation) cur_rotation = np.matmul(init_rotation.transpose(), cur_rotation, dtype=np.float64) (r, pitch, yaw) = euler_from_matrix(cur_rotation, axes="sxzy") # Habitat has y perpendicular to map where as ROS has z perpendicular # to the map. Where as x is same. # Here ROS_X = -1 * habitat_z and ROS_Y = -1*habitat_x return (-1 * true_position[2], -1 * true_position[0], yaw) def stop(self): raise NotImplementedError("Veclocity control is not supported in Habitat-Sim!!") def set_vel(self, fwd_speed, turn_speed, exe_time=1): raise NotImplementedError("Veclocity control is not supported in Habitat-Sim!!") def go_to_relative( self, xyt_position, use_map=False, close_loop=False, smooth=False ): """ Moves the robot to the robot to given goal state relative to its initial pose. :param xyt_position: The relative goal state of the form (x,y,t) :param use_map: When set to "True", ensures that controler is using only free space on the map to move the robot. :param close_loop: When set to "True", ensures that controler is operating in open loop by taking account of odometry. :param smooth: When set to "True", ensures that the motion leading to the goal is a smooth one. :type xyt_position: list :type use_map: bool :type close_loop: bool :type smooth: bool :return: True if successful; False otherwise (timeout, etc.) :rtype: bool """ try: if use_map: raise NotImplementedError( "Using map feature is not yet supported for Habitat-Sim" ) if close_loop: raise NotImplementedError( "Closed-loop postion control is not supported in Habitat-Sim!" ) if smooth: raise NotImplementedError( "Smooth position control feature is not yet for Habitat-Sim" ) except Exception as error: print(error) return False (cur_x, cur_y, cur_yaw) = self.get_state() abs_yaw = cur_yaw + xyt_position[2] return self._go_to_relative_pose(xyt_position[0], xyt_position[1], abs_yaw) def go_to_absolute( self, xyt_position, use_map=False, close_loop=False, smooth=False ): """ Moves the robot to the robot to given goal state in the world frame. :param xyt_position: The goal state of the form (x,y,t) in the world (map) frame. :param use_map: When set to "True", ensures that controler is using only free space on the map to move the robot. :param close_loop: When set to "True", ensures that controler is operating in open loop by taking account of odometry. :param smooth: When set to "True", ensures that the motion leading to the goal is a smooth one. :type xyt_position: list :type use_map: bool :type close_loop: bool :type smooth: bool :return: True if successful; False otherwise (timeout, etc.) :rtype: bool """ try: if use_map: raise NotImplementedError( "Using map feature is not yet supported for Habitat-Sim" ) if close_loop: raise NotImplementedError( "Closed-loop postion control is not supported in Habitat-Sim!" ) if smooth: raise NotImplementedError( "Smooth position control feature is not yet for Habitat-Sim" ) except Exception as error: print(error) return False (cur_x, cur_y, cur_yaw) = self.get_state() rel_X = xyt_position[0] - cur_x rel_Y = xyt_position[1] - cur_y abs_yaw = xyt_position[2] # convert rel_X & rel_Y from global frame to current frame R = np.array([[np.cos(cur_yaw), np.sin(cur_yaw)], [-np.sin(cur_yaw), np.cos(cur_yaw)]]) rel_x, rel_y = np.matmul(R, np.array([rel_X, rel_Y]).reshape(-1,1)) return self._go_to_relative_pose(rel_x[0], rel_y[0], abs_yaw) def _act(self, action_name, actuation): """Take the action specified by action_id :param action_id: ID of the action. Retreives the action from `agent_config.action_space <AgentConfiguration.action_space>` :return: Whether or not the action taken resulted in a collision """ did_collide = False act_spec = ActuationSpec(actuation) did_collide = self.agent.controls.action( self.agent.scene_node, action_name, act_spec, apply_filter=True ) return did_collide def _go_to_relative_pose(self, rel_x, rel_y, abs_yaw): # clip relative movements beyond 10 micrometer precision # this is done to improve determinism, as habitat-sim doesn't # seem to precisely move the robot beyond sub milimeter precision anyways if abs(rel_x) < 1e-5: rel_x = 0 if abs(rel_y) < 1e-5: rel_y = 0 if math.sqrt(rel_x ** 2 + rel_y ** 2) > 0.0: # rotate to point to (x, y) point action_name = "turn_left" if rel_y < 0.0: action_name = "turn_right" v1 = np.asarray([1, 0], dtype=np.float64) v2 = np.asarray([rel_x, rel_y], dtype=np.float64) cosine_angle = np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)) angle = np.arccos(cosine_angle) did_collide = self._act(action_name, math.degrees(angle)) if did_collide: print("Error: Collision accured while 1st rotating!") return False # move to (x,y) point did_collide = self._act("move_forward", math.sqrt(rel_x ** 2 + rel_y ** 2)) if did_collide: print("Error: Collision accured while moving straight!") return False # rotate to match the final yaw! (cur_x, cur_y, cur_yaw) = self.get_state() rel_yaw = abs_yaw - cur_yaw # clip to micro-degree precision to preserve determinism if abs(rel_yaw) < 1e-4: rel_yaw = 0 action_name = "turn_left" if rel_yaw < 0.0: action_name = "turn_right" rel_yaw *= -1 did_collide = self._act(action_name, math.degrees(rel_yaw)) if did_collide: print("Error: Collision accured while rotating!") return False return True def track_trajectory(self, states, controls, close_loop): """ State trajectory that the robot should track. :param states: sequence of (x,y,t) states that the robot should track. :param controls: optionally specify control sequence as well. :param close_loop: whether to close loop on the computed control sequence or not. :type states: list :type controls: list :type close_loop: bool :return: True if successful; False otherwise (timeout, etc.) :rtype: bool """ raise NotImplementedError
nanpy/bmp180.py
AFTC-1/Arduino-rpi
178
15135
<filename>nanpy/bmp180.py from __future__ import division import logging from nanpy.i2c import I2C_Master from nanpy.memo import memoized import time log = logging.getLogger(__name__) def to_s16(n): return (n + 2 ** 15) % 2 ** 16 - 2 ** 15 class Bmp180(object): """Control of BMP180 Digital pressure sensor (I2C) calculation is based on Bosch datasheet.""" def __init__(self, wire, address=0x77, oss=3): self.i2c = I2C_Master(wire) self.address = address self.oss = oss def read_bytes(self, address, count): self.i2c.send(self.address, [address]) x = self.i2c.request(self.address, count) return x def write_byte(self, address, data): self.i2c.send(self.address, [address, data]) @property @memoized def eeprom(self): return self.read_bytes(0xaa, 22) def read_temperature_raw(self): self.write_byte(0xf4, 0x2e) time.sleep(0.005) MSB, LSB = self.read_bytes(0xf6, 2) UT = (MSB << 8) + LSB return UT def read_pressure_raw(self): self.write_byte(0xf4, 0x34 + (self.oss << 6)) time.sleep(0.005) MSB, LSB, XLSB = self.read_bytes(0xf6, 3) UP = ((MSB << 16) + (LSB << 8) + XLSB) >> (8 - self.oss) return UP @classmethod def calculate(cls, pressure_raw, temperature_raw, oss, eeprom): ''' return: Pascal, Celsius ''' UT = temperature_raw UP = pressure_raw def ushort(i): return (eeprom[2 * i] << 8) + eeprom[2 * i + 1] def short(i): return to_s16(ushort(i)) AC1 = short(0) AC2 = short(1) AC3 = short(2) AC4 = ushort(3) AC5 = ushort(4) AC6 = ushort(5) B1 = short(6) B2 = short(7) # MB = short(8) MC = short(9) MD = short(10) X1 = ((UT - AC6) * AC5) >> 15 X2 = (MC << 11) // (X1 + MD) B5 = X1 + X2 T = (B5 + 8) >> 4 B6 = B5 - 4000 X1 = (B2 * ((B6 * B6) >> 12)) >> 11 X2 = (AC2 * B6) >> 11 X3 = X1 + X2 B3 = (((AC1 * 4 + X3) << oss) + 2) // 4 X1 = (AC3 * B6) >> 13 X2 = (B1 * ((B6 * B6) >> 12)) >> 16 X3 = ((X1 + X2) + 2) // 4 B4 = (AC4 * (X3 + 32768)) >> 15 B7 = (UP - B3) * (50000 >> oss) p = (B7 * 2) // B4 if B7 < 0x80000000 else (B7 // B4) * 2 X1 = (p >> 8) * (p >> 8) X1 = (X1 * 3038) >> 16 X2 = (-7357 * p) >> 16 p += (X1 + X2 + 3791) >> 4 return p, T / 10 def read(self): ''' return: Pascal, Celsius ''' temperature_raw = self.read_temperature_raw() pressure_raw = self.read_pressure_raw() return self.calculate( pressure_raw, temperature_raw, self.oss, self.eeprom, )
qf_lib/backtesting/order/order.py
webclinic017/qf-lib
198
15146
<gh_stars>100-1000 # Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from qf_lib.backtesting.contract.contract import Contract from qf_lib.backtesting.order.execution_style import ExecutionStyle from qf_lib.backtesting.order.time_in_force import TimeInForce class Order(object): """ Order generated by a strategy, then processed by PositionSizer. Finally executed by ExecutionHandler. """ def __init__(self, contract: Contract, quantity: int, execution_style: ExecutionStyle, time_in_force: TimeInForce, order_state=""): """ This __init__ shouldn't be used anywhere beyond this module. Use OrderFactory for creating Order objects. """ self.id = None # type:int self.contract = contract self.quantity = quantity self.time_in_force = time_in_force self.execution_style = execution_style self.order_state = order_state def __str__(self): return '\nOrder:\n' \ '\tid: {}\n' \ '\tcontract: {}\n' \ '\tquantity: {}\n' \ '\ttif: {}\n' \ '\texecution_style: {}\n' \ '\torder_state: {}'.format(self.id, str(self.contract), self.quantity, str(self.time_in_force), self.execution_style, self.order_state) def __eq__(self, other): if self is other: return True if not isinstance(other, Order): return False # one Order has id and another hasn't if (self.id is None) != (other.id is None): return False if self.id is not None and other.id == self.id: return True # when both ids are none -> compare the values return (self.contract, self.quantity, self.time_in_force, self.execution_style) == \ (other.contract, other.quantity, other.time_in_force, other.execution_style) def __hash__(self): return hash((self.contract, self.quantity, self.time_in_force, self.execution_style))
hallucinate/api.py
SySS-Research/hallucinate
199
15148
class BaseHandler: def send(self, data, p): pass def recv(self, data, p): pass def shutdown(self, p, direction=2): pass def close(self): pass
seq2seq-chatbot/chat_web.py
rohitkujur1997/chatbot
104
15151
<reponame>rohitkujur1997/chatbot<filename>seq2seq-chatbot/chat_web.py """ Script for serving a trained chatbot model over http """ import datetime import click from os import path from flask import Flask, request, send_from_directory from flask_cors import CORS from flask_restful import Resource, Api import general_utils import chat_command_handler from chat_settings import ChatSettings from chatbot_model import ChatbotModel from vocabulary import Vocabulary app = Flask(__name__) CORS(app) @app.cli.command() @click.argument("checkpointfile") @click.option("-p", "--port", type=int) def serve_chat(checkpointfile, port): api = Api(app) #Read the hyperparameters and configure paths model_dir, hparams, checkpoint = general_utils.initialize_session_server(checkpointfile) #Load the vocabulary print() print ("Loading vocabulary...") if hparams.model_hparams.share_embedding: shared_vocab_filepath = path.join(model_dir, Vocabulary.SHARED_VOCAB_FILENAME) input_vocabulary = Vocabulary.load(shared_vocab_filepath) output_vocabulary = input_vocabulary else: input_vocab_filepath = path.join(model_dir, Vocabulary.INPUT_VOCAB_FILENAME) input_vocabulary = Vocabulary.load(input_vocab_filepath) output_vocab_filepath = path.join(model_dir, Vocabulary.OUTPUT_VOCAB_FILENAME) output_vocabulary = Vocabulary.load(output_vocab_filepath) #Create the model print ("Initializing model...") print() with ChatbotModel(mode = "infer", model_hparams = hparams.model_hparams, input_vocabulary = input_vocabulary, output_vocabulary = output_vocabulary, model_dir = model_dir) as model: #Load the weights print() print ("Loading model weights...") model.load(checkpoint) # Setting up the chat chatlog_filepath = path.join(model_dir, "chat_logs", "web_chatlog_{0}.txt".format(datetime.datetime.now().strftime("%Y%m%d_%H%M%S"))) chat_settings = ChatSettings(hparams.model_hparams, hparams.inference_hparams) chat_command_handler.print_commands() class Answer(Resource): def get(self, question): is_command, terminate_chat, _ = chat_command_handler.handle_command(question, model, chat_settings) if terminate_chat: answer = "[Can't terminate from http request]" elif is_command: answer = "[Command processed]" else: #If it is not a command (it is a question), pass it on to the chatbot model to get the answer _, answer = model.chat(question, chat_settings) if chat_settings.inference_hparams.log_chat: chat_command_handler.append_to_chatlog(chatlog_filepath, question, answer) return answer class UI(Resource): def get(self): return send_from_directory(".", "chat_ui.html") api.add_resource(Answer, "/chat/<string:question>") api.add_resource(UI, "/chat_ui/") app.run(debug=False, port=port)
datar/base/trig_hb.py
stjordanis/datar
110
15179
<filename>datar/base/trig_hb.py<gh_stars>100-1000 """Trigonometric and Hyperbolic Functions""" from typing import Callable import numpy from pipda import register_func from ..core.contexts import Context from ..core.types import FloatOrIter from .constants import pi def _register_trig_hb_func(name: str, np_name: str, doc: str) -> Callable: """Register trigonometric and hyperbolic function""" np_fun = getattr(numpy, np_name) if name.endswith("pi"): func = lambda x: np_fun(x * pi) else: # ufunc cannot set context func = lambda x: np_fun(x) func = register_func(None, context=Context.EVAL, func=func) func.__name__ = name func.__doc__ = doc return func sin = _register_trig_hb_func( "sin", "sin", doc="""The sine function Args: x: a numeric value or iterable Returns: The sine value of `x` """, ) cos = _register_trig_hb_func( "cos", "cos", doc="""The cosine function Args: x: a numeric value or iterable Returns: The cosine value of `x` """, ) tan = _register_trig_hb_func( "tan", "tan", doc="""The tangent function Args: x: a numeric value or iterable Returns: The tangent value of `x` """, ) acos = _register_trig_hb_func( "acos", "arccos", doc="""The arc-cosine function Args: x: a numeric value or iterable Returns: The arc-cosine value of `x` """, ) asin = _register_trig_hb_func( "acos", "arcsin", doc="""The arc-sine function Args: x: a numeric value or iterable Returns: The arc-sine value of `x` """, ) atan = _register_trig_hb_func( "acos", "arctan", doc="""The arc-sine function Args: x: a numeric value or iterable Returns: The arc-sine value of `x` """, ) sinpi = _register_trig_hb_func( "sinpi", "sin", doc="""The sine function Args: x: a numeric value or iterable, which is the multiple of pi Returns: The sine value of `x` """, ) cospi = _register_trig_hb_func( "cospi", "cos", doc="""The cosine function Args: x: a numeric value or iterable, which is the multiple of pi Returns: The cosine value of `x` """, ) tanpi = _register_trig_hb_func( "tanpi", "tan", doc="""The tangent function Args: x: a numeric value or iterable, which is the multiple of pi Returns: The tangent value of `x` """, ) cosh = _register_trig_hb_func( "cosh", "cosh", doc="""Hyperbolic cosine Args: x: a numeric value or iterable Returns: The hyperbolic cosine value of `x` """, ) sinh = _register_trig_hb_func( "sinh", "sinh", doc="""Hyperbolic sine Args: x: a numeric value or iterable Returns: The hyperbolic sine value of `x` """, ) tanh = _register_trig_hb_func( "tanh", "tanh", doc="""Hyperbolic tangent Args: x: a numeric value or iterable Returns: The hyperbolic tangent value of `x` """, ) acosh = _register_trig_hb_func( "acosh", "arccosh", doc="""Hyperbolic arc-cosine Args: x: a numeric value or iterable Returns: The hyperbolic arc-cosine value of `x` """, ) asinh = _register_trig_hb_func( "asinh", "arcsinh", doc="""Hyperbolic arc-sine Args: x: a numeric value or iterable Returns: The hyperbolic arc-sine value of `x` """, ) atanh = _register_trig_hb_func( "atanh", "arctanh", doc="""Hyperbolic arc-tangent Args: x: a numeric value or iterable Returns: The hyperbolic arc-tangent value of `x` """, ) @register_func(None, context=Context.EVAL) def atan2(y: FloatOrIter, x: FloatOrIter) -> FloatOrIter: """Calculates the angle between the x-axis and the vector (0,0) -> (x,y) Args: y: and x: The end coordinates of the vector Returns: The angle between x-axis and vector (0,0) -> (x,y) """ return numpy.arctan2(y, x)
tests/unit/cli/test_repo.py
tehlingchu/anchore-cli
110
15217
from anchorecli.cli import repo
src/pyrobot/vrep_locobot/camera.py
gujralsanyam22/pyrobot
2,150
15230
<reponame>gujralsanyam22/pyrobot # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import pyrobot.utils.util as prutil from pyrobot.core import Camera from pyrobot.utils.util import try_cv2_import cv2 = try_cv2_import() from cv_bridge import CvBridge, CvBridgeError from pyrep.objects.vision_sensor import VisionSensor from pyrep.const import ObjectType, PerspectiveMode, RenderMode from pyrep.objects.joint import Joint class LoCoBotCamera(Camera): """docstring for SimpleCamera""" def __init__(self, configs, simulator): self.sim = simulator.sim self.rgb_cam = VisionSensor("kinect_rgb") self.depth_cam = VisionSensor("kinect_depth") self.rgb_cam.set_render_mode(RenderMode.OPENGL3) self.depth_cam.set_render_mode(RenderMode.OPENGL3) # Pan and tilt related variables. self.pan_joint = Joint("LoCoBot_head_pan_joint") self.tilt_joint = Joint("LoCoBot_head_tilt_joint") def get_rgb(self): return self.rgb_cam.capture_rgb() def get_depth(self): return self.depth_cam.capture_depth() def get_rgb_depth(self): return self.get_rgb(), self.get_depth() def get_intrinsics(self): # Todo: Remove this after we fix intrinsics raise NotImplementedError """ Returns the instrinsic matrix of the camera :return: the intrinsic matrix (shape: :math:`[3, 3]`) :rtype: np.ndarray """ # fx = self.configs['Camera.fx'] # fy = self.configs['Camera.fy'] # cx = self.configs['Camera.cx'] # cy = self.configs['Camera.cy'] Itc = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]]) return Itc def pix_to_3dpt(self, rs, cs, in_cam=False): """ Get the 3D points of the pixels in RGB images. :param rs: rows of interest in the RGB image. It can be a list or 1D numpy array which contains the row indices. The default value is None, which means all rows. :param cs: columns of interest in the RGB image. It can be a list or 1D numpy array which contains the column indices. The default value is None, which means all columns. :param in_cam: return points in camera frame, otherwise, return points in base frame :type rs: list or np.ndarray :type cs: list or np.ndarray :type in_cam: bool :returns: tuple (pts, colors) pts: point coordinates in world frame (shape: :math:`[N, 3]`) colors: rgb values for pts_in_cam (shape: :math:`[N, 3]`) :rtype: tuple(np.ndarray, np.ndarray) """ raise NotImplementedError def get_current_pcd(self, in_cam=True): """ Return the point cloud at current time step (one frame only) :param in_cam: return points in camera frame, otherwise, return points in base frame :type in_cam: bool :returns: tuple (pts, colors) pts: point coordinates in world frame (shape: :math:`[N, 3]`) colors: rgb values for pts_in_cam (shape: :math:`[N, 3]`) :rtype: tuple(np.ndarray, np.ndarray) """ raise NotImplementedError @property def state(self): """ Return the current pan and tilt joint angles of the robot camera. :return: pan_tilt: A list the form [pan angle, tilt angle] :rtype: list """ return self.get_state() def get_state(self): """ Return the current pan and tilt joint angles of the robot camera. :return: pan_tilt: A list the form [pan angle, tilt angle] :rtype: list """ return [self.get_pan(), self.get_tilt()] def get_pan(self): """ Return the current pan joint angle of the robot camera. :return: pan: Pan joint angle :rtype: float """ return self.pan_joint.get_joint_position() def get_tilt(self): """ Return the current tilt joint angle of the robot camera. :return: tilt: Tilt joint angle :rtype: float """ return self.tilt_joint.get_joint_position() def set_pan(self, pan, wait=True): """ Sets the pan joint angle to the specified value. :param pan: value to be set for pan joint :param wait: wait until the pan angle is set to the target angle. :type pan: float :type wait: bool """ self.pan_joint.set_joint_position(pan) # [self.sim.step() for _ in range(50)] def set_tilt(self, tilt, wait=True): """ Sets the tilt joint angle to the specified value. :param tilt: value to be set for the tilt joint :param wait: wait until the tilt angle is set to the target angle. :type tilt: float :type wait: bool """ self.tilt_joint.set_joint_position(tilt) def set_pan_tilt(self, pan, tilt, wait=True): """ Sets both the pan and tilt joint angles to the specified values. :param pan: value to be set for pan joint :param tilt: value to be set for the tilt joint :param wait: wait until the pan and tilt angles are set to the target angles. :type pan: float :type tilt: float :type wait: bool """ self.set_pan(pan) self.set_tilt(tilt) def reset(self): """ This function resets the pan and tilt joints by actuating them to their home configuration. """ self.set_pan_tilt(self.configs.CAMERA.RESET_PAN, self.configs.CAMERA.RESET_TILT)
packs/hue/actions/rgb.py
jonico/st2contrib
164
15278
from lib import action class RGBAction(action.BaseAction): def run(self, light_id, red, green, blue, transition_time): light = self.hue.lights.get(light_id) light.rgb(red, green, blue, transition_time)
Dragon/python/dragon/vm/tensorflow/contrib/learn/datasets/base.py
neopenx/Dragon
212
15301
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base utilities for loading datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import random import time import shutil from six.moves import urllib Dataset = collections.namedtuple('Dataset', ['data', 'target']) Datasets = collections.namedtuple('Datasets', ['train', 'validation', 'test']) def retry(initial_delay, max_delay, factor=2.0, jitter=0.25, is_retriable=None): """Simple decorator for wrapping retriable functions. Args: initial_delay: the initial delay. factor: each subsequent retry, the delay is multiplied by this value. (must be >= 1). jitter: to avoid lockstep, the returned delay is multiplied by a random number between (1-jitter) and (1+jitter). To add a 20% jitter, set jitter = 0.2. Must be < 1. max_delay: the maximum delay allowed (actual max is max_delay * (1 + jitter). is_retriable: (optional) a function that takes an Exception as an argument and returns true if retry should be applied. """ if factor < 1: raise ValueError('factor must be >= 1; was %f' % (factor,)) if jitter >= 1: raise ValueError('jitter must be < 1; was %f' % (jitter,)) # Generator to compute the individual delays def delays(): delay = initial_delay while delay <= max_delay: yield delay * random.uniform(1 - jitter, 1 + jitter) delay *= factor def wrap(fn): """Wrapper function factory invoked by decorator magic.""" def wrapped_fn(*args, **kwargs): """The actual wrapper function that applies the retry logic.""" for delay in delays(): try: return fn(*args, **kwargs) except Exception as e: # pylint: disable=broad-except) if is_retriable is None: continue if is_retriable(e): time.sleep(delay) else: raise return fn(*args, **kwargs) return wrapped_fn return wrap _RETRIABLE_ERRNOS = { 110, # Connection timed out [socket.py] } def _is_retriable(e): return isinstance(e, IOError) and e.errno in _RETRIABLE_ERRNOS @retry(initial_delay=1.0, max_delay=16.0, is_retriable=_is_retriable) def urlretrieve_with_retry(url, filename=None): return urllib.request.urlretrieve(url, filename) def maybe_download(filename, work_directory, source_url): """Download the data from source url, unless it's already here. Args: filename: string, name of the file in the directory. work_directory: string, path to working directory. source_url: url to download from if file doesn't exist. Returns: Path to resulting file. """ if not os.path.exists(work_directory): os.makedirs(work_directory) filepath = os.path.join(work_directory, filename) if not os.path.exists(filepath): temp_file_name, _ = urlretrieve_with_retry(source_url) shutil.copy(temp_file_name, filepath) size = os.path.getsize(filepath) print('Successfully downloaded', filename, size, 'bytes.') return filepath
Algorithm.Python/OptionDataNullReferenceRegressionAlgorithm.py
BlackBoxAM/Lean
6,580
15316
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### <summary> ### This algorithm is a regression test for issue #2018 and PR #2038. ### </summary> class OptionDataNullReferenceRegressionAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 12, 1) self.SetEndDate(2017, 1, 1) self.SetCash(500000) self.AddEquity("DUST") option = self.AddOption("DUST") option.SetFilter(self.UniverseFunc) def UniverseFunc(self, universe): return universe.IncludeWeeklys().Strikes(-1, +1).Expiration(timedelta(25), timedelta(100))
examples/sharedlinks/sharedlinks-backend/links/models.py
gcbirzan/django-rest-registration
329
15317
from django.db import models from django.contrib.auth.models import User class Link(models.Model): url = models.URLField() title = models.CharField(max_length=255) reporter = models.ForeignKey( User, on_delete=models.SET_NULL, related_name='reported_links', null=True, blank=False, ) def __str__(self): return '{self.title} ({self.url})'.format(self=self) def get_num_of_positive_votes(self): return self.votes.filter(positive=True).count() def get_num_of_negative_votes(self): return self.votes.filter(negative=True).count() class LinkVote(models.Model): class Meta: unique_together = ( ('link', 'voter'), ) link = models.ForeignKey( Link, on_delete=models.CASCADE, related_name='votes', ) voter = models.ForeignKey( User, on_delete=models.SET_NULL, related_name='votes', null=True, blank=False, ) positive = models.BooleanField() negative = models.BooleanField() def __str__(self): if self.positive: vote = 'positive' elif self.negative: vote = 'negative' else: vote = 'neutral' return '{vote} vote for {self.link} by {self.voter}'.format( vote=vote, self=self)
clint/textui/core.py
mpmman/clint
1,230
15323
<gh_stars>1000+ # -*- coding: utf-8 -*- """ clint.textui.core ~~~~~~~~~~~~~~~~~ Core TextUI functionality for Puts/Indent/Writer. """ from __future__ import absolute_import import sys from contextlib import contextmanager from .formatters import max_width, min_width, _get_max_width_context from .cols import columns from ..utils import tsplit __all__ = ('puts', 'puts_err', 'indent', 'dedent', 'columns', 'max_width', 'min_width', 'STDOUT', 'STDERR') STDOUT = sys.stdout.write STDERR = sys.stderr.write NEWLINES = ('\n', '\r', '\r\n') INDENT_STRINGS = [] # Private def _indent(indent=0, quote='', indent_char=' '): """Indent util function, compute new indent_string""" if indent > 0: indent_string = ''.join(( str(quote), (indent_char * (indent - len(quote))) )) else: indent_string = ''.join(( ('\x08' * (-1 * (indent - len(quote)))), str(quote)) ) if len(indent_string): INDENT_STRINGS.append(indent_string) # Public def puts(s='', newline=True, stream=STDOUT): """Prints given string to stdout.""" max_width_ctx = _get_max_width_context() if max_width_ctx: cols, separator = max_width_ctx[-1] s = max_width(s, cols, separator) if newline: s = tsplit(s, NEWLINES) s = map(str, s) indent = ''.join(INDENT_STRINGS) s = (str('\n' + indent)).join(s) _str = ''.join(( ''.join(INDENT_STRINGS), str(s), '\n' if newline else '' )) stream(_str) def puts_err(s='', newline=True, stream=STDERR): """Prints given string to stderr.""" puts(s, newline, stream) def dedent(): """Dedent next strings, use only if you use indent otherwise than as a context.""" INDENT_STRINGS.pop() @contextmanager def _indent_context(): """Indentation context manager.""" try: yield finally: dedent() def indent(indent=4, quote=''): """Indentation manager, return an indentation context manager.""" _indent(indent, quote) return _indent_context()
private_market/test.py
sigmoid3/Dapper
974
15352
<reponame>sigmoid3/Dapper<gh_stars>100-1000 from ethereum import tester as t from ethereum import utils def test(): s = t.state() test_company = s.abi_contract('company.se', ADMIN_ACCOUNT=utils.decode_int(t.a0)) order_book = s.abi_contract('orders.se') test_currency = s.abi_contract('currency.se', sender=t.k0) assert test_company.getAdmin() == t.a0.encode('hex') # Issue 1000 shares to user a1 test_company.issueShares(1000, t.a1, sender=t.k0) # Issue 50000 coins to users a2 and a3 test_currency.sendCoin(50000, t.a2, sender=t.k0) test_currency.sendCoin(50000, t.a3, sender=t.k0) # User a1 can have as many shares as he wants, but must retain at # least 800 test_company.setShareholderMaxShares(t.a1, 2**100, sender=t.k0) test_company.setShareholderMinShares(t.a1, 800, sender=t.k0) # User a2 can have up to 500 shares test_company.setShareholderMaxShares(t.a2, 500, sender=t.k0) # User a2 tries to give himself the right to unlimited shares, # fails because he is not the admin test_company.setShareholderMaxShares(t.a2, 2**100, sender=t.k2) # A few sanity checks assert test_company.getCurrentShareholdingsOf(t.a1) == 1000 assert test_company.getShareholderMinShares(t.a1) == 800 assert test_company.getShareholderMaxShares(t.a2) == 500 # User a1 transfers 150 shares to a2 assert test_company.sendCoin(150, t.a2, sender=t.k1) is True # User a1 tries to transfer 150 shares to a2 again, fails because # such a transaction would result a1 having 700 shares, which is # below his limit assert test_company.sendCoin(150, t.a2, sender=t.k1) is False # Check shareholdings assert test_company.getCurrentShareholdingsOf(t.a1) == 850 assert test_company.getCurrentShareholdingsOf(t.a2) == 150 # Authorize the order book contract to accept lockups test_company.setContractAuthorized(order_book.address, True) # User a1 puts up 50 shares for sale; however, he tries to do # this without first authorizing the order book to withdraw so # the operation fails assert order_book.mkSellOrder(test_company.address, 50, test_currency.address, 10000, sender=t.k1) == -1 # Now, try to create the order properly test_company.authorizeLockup(order_book.address, 50, sender=t.k1) _id = order_book.mkSellOrder(test_company.address, 50, test_currency.address, 10000, sender=t.k1) assert _id >= 0 assert test_company.getLockedShareholdingsOf(t.a1) == 50 # Accept the order by a3. This should fail because a3 has not # authorized the order_book to withdraw coins assert order_book.claimSellOrder(_id, sender=t.k3) is False # Do the authorization test_currency.approveOnce(order_book.address, 10000, sender=t.k3) # It should still fail because a3 is not authorized to hold shares assert order_book.claimSellOrder(_id, sender=t.k3) is False # Now do it properly test_currency.approveOnce(order_book.address, 10000, sender=t.k2) assert order_book.claimSellOrder(_id, sender=t.k2) is True # Check shareholdings and balances assert test_company.getCurrentShareholdingsOf(t.a1) == 800 assert test_company.getCurrentShareholdingsOf(t.a2) == 200 assert test_company.getLockedShareholdingsOf(t.a1) == 0 assert test_currency.coinBalanceOf(t.a1) == 10000 assert test_currency.coinBalanceOf(t.a2) == 40000 assert test_currency.coinBalanceOf(t.a3) == 50000 # Authorize a3 to hold shares test_company.setShareholderMaxShares(t.a3, 500) # A3 buys shares test_currency.approveOnce(order_book.address, 20000, sender=t.k3) _id2 = order_book.mkBuyOrder(test_company.address, 100, test_currency.address, 20000, sender=t.k3) assert _id2 >= 0, _id2 test_company.authorizeLockup(order_book.address, 100, sender=t.k2) assert order_book.claimBuyOrder(_id2, sender=t.k2) is True # Check shareholdings and balances assert test_company.getCurrentShareholdingsOf(t.a1) == 800 assert test_company.getCurrentShareholdingsOf(t.a2) == 100 assert test_company.getCurrentShareholdingsOf(t.a3) == 100 assert test_company.getLockedShareholdingsOf(t.a1) == 0 assert test_currency.coinBalanceOf(t.a1) == 10000 assert test_currency.coinBalanceOf(t.a2) == 60000 assert test_currency.coinBalanceOf(t.a3) == 30000 if __name__ == '__main__': test()
doc/python_api/examples/bpy.types.Depsgraph.1.py
rbabari/blender
365
15373
<gh_stars>100-1000 """ Dependency graph: Evaluated ID example ++++++++++++++++++++++++++++++++++++++ This example demonstrates access to the evaluated ID (such as object, material, etc.) state from an original ID. This is needed every time one needs to access state with animation, constraints, and modifiers taken into account. """ import bpy class OBJECT_OT_evaluated_example(bpy.types.Operator): """Access evaluated object state and do something with it""" bl_label = "DEG Access Evaluated Object" bl_idname = "object.evaluated_example" def execute(self, context): # This is an original object. Its data does not have any modifiers applied. obj = context.object if obj is None or obj.type != 'MESH': self.report({'INFO'}, "No active mesh object to get info from") return {'CANCELLED'} # Evaluated object exists within a specific dependency graph. # We will request evaluated object from the dependency graph which corresponds to the # current scene and view layer. # # NOTE: This call ensure the dependency graph is fully evaluated. This might be expensive # if changes were made made to the scene, but is needed to ensure no dangling or incorrect # pointers are exposed. depsgraph = context.evaluated_depsgraph_get() # Actually request evaluated object. # # This object has animation and drivers applied on it, together with constraints and # modifiers. # # For mesh objects the object.data will be a mesh with all modifiers applied. # This means that in access to vertices or faces after modifier stack happens via fields of # object_eval.object. # # For other types of objects the object_eval.data does not have modifiers applied on it, # but has animation applied. # # NOTE: All ID types have `evaluated_get()`, including materials, node trees, worlds. object_eval = obj.evaluated_get(depsgraph) mesh_eval = object_eval.data self.report({'INFO'}, f"Number of evaluated vertices: {len(mesh_eval.vertices)}") return {'FINISHED'} def register(): bpy.utils.register_class(OBJECT_OT_evaluated_example) def unregister(): bpy.utils.unregister_class(OBJECT_OT_evaluated_example) if __name__ == "__main__": register()
setup.py
zhuzhenping/hf_at_py
130
15385
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/11/20 8:15 # @Author : HaiFeng # @Email : <EMAIL> from setuptools import setup import os this_directory = os.path.abspath(os.path.dirname(__file__)) # 读取文件内容 def read_file(filename): with open(os.path.join(this_directory, filename), encoding='utf-8') as f: desc = f.read() return desc # 获取依赖 def read_requirements(filename): return [line.strip() for line in read_file(filename).splitlines() if not line.startswith('#')] long_description = read_file('readme.md') long_description_content_type = 'text/markdown' # 指定包文档格式为markdown # talib无需加入 os.system('pipreqs . --encoding=utf8 --force') # 生成 requirements.txt setup( name='hfpy', # 包名 python_requires='>=3.6.0', # python环境 version='0.2.2', # 包的版本 description="Hai Feng Future Trading Platform with SE", # 包简介,显示在PyPI long_description=long_description, # 读取的Readme文档内容 long_description_content_type=long_description_content_type, # 指定包文档格式为markdown author="HaiFeng", # 作者相关信息 author_email='<EMAIL>', url='https://github.com/haifengat/hf_at_py', # 指定包信息,还可以用find_packages()函数 # packages=find_packages(), packages=['hfpy'], install_requires=read_requirements('requirements.txt'), # 指定需要安装的依赖 include_package_data=True, license="MIT License", platforms="any", classifiers=[ "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
scripts/download_lookml.py
orf/lkml
110
15532
<filename>scripts/download_lookml.py import os import re from base64 import b64decode from pathlib import Path import requests username = os.environ["GITHUB_USERNAME"] password = os.environ["GITHUB_PERSONAL_ACCESS_TOKEN"] auth = requests.auth.HTTPBasicAuth(username, password) directory = Path(__file__).resolve().parent.parent / "github" directory.mkdir(exist_ok=True) start_url = "https://api.github.com/search/code?q=view+language:lookml" next_url = None page = 1 with requests.Session() as session: session.auth = auth while True: response = session.get(next_url or start_url) response.raise_for_status() links = response.headers["Link"] finds = re.findall( r"<(https://api.github.com/search/code\?" r'q=view\+language%3Alookml&page=\d+)>; rel="next"', links, ) if finds: next_url = finds[0] else: next_url = None print(next_url) urls = [item["url"] for item in response.json()["items"]] print(f"Downloading all content from page {page}") for url in urls: response = session.get(url) response.raise_for_status() response_json = response.json() name = response_json["name"] encoded = response_json["content"] content = b64decode(encoded).decode("utf-8") if ( name.endswith(".lookml") or content.startswith("-") or "- view" in content ): continue file_path = directory / name with file_path.open("w+") as file: file.write(content) if next_url is None: break else: page += 1
m2-modified/ims/common/agentless-system-crawler/crawler/plugins/emitters/http_emitter.py
CCI-MOC/ABMI
108
15543
<reponame>CCI-MOC/ABMI<filename>m2-modified/ims/common/agentless-system-crawler/crawler/plugins/emitters/http_emitter.py import logging from iemit_plugin import IEmitter from plugins.emitters.base_http_emitter import BaseHttpEmitter logger = logging.getLogger('crawlutils') class HttpEmitter(BaseHttpEmitter, IEmitter): def get_emitter_protocol(self): return 'http'
chainer_chemistry/links/update/ggnn_update.py
pfnet/chainerchem
184
15549
<gh_stars>100-1000 import chainer from chainer import functions from chainer import links import chainer_chemistry from chainer_chemistry.links.connection.graph_linear import GraphLinear from chainer_chemistry.utils import is_sparse class GGNNUpdate(chainer.Chain): """GGNN submodule for update part. Args: in_channels (int or None): input dim of feature vector for each node hidden_channels (int): dimension of feature vector for each node out_channels (int or None): output dime of feature vector for each node When `None`, `hidden_channels` is used. n_edge_types (int): number of types of edge """ def __init__(self, in_channels=None, hidden_channels=16, out_channels=None, n_edge_types=4, **kwargs): if out_channels is None: out_channels = hidden_channels super(GGNNUpdate, self).__init__() if in_channels is None: gru_in_channels = None else: gru_in_channels = in_channels + hidden_channels with self.init_scope(): self.graph_linear = GraphLinear( in_channels, n_edge_types * hidden_channels) self.update_layer = links.GRU(gru_in_channels, out_channels) self.n_edge_types = n_edge_types self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels def __call__(self, h, adj, **kwargs): hidden_ch = self.hidden_channels # --- Message part --- mb, atom, in_ch = h.shape m = functions.reshape(self.graph_linear(h), (mb, atom, hidden_ch, self.n_edge_types)) # m: (minibatch, atom, ch, edge_type) # Transpose m = functions.transpose(m, (0, 3, 1, 2)) # m: (minibatch, edge_type, atom, ch) # (minibatch * edge_type, atom, out_ch) m = functions.reshape(m, (mb * self.n_edge_types, atom, hidden_ch)) if is_sparse(adj): m = functions.sparse_matmul(adj, m) else: adj = functions.reshape(adj, (mb * self.n_edge_types, atom, atom)) m = chainer_chemistry.functions.matmul(adj, m) # (minibatch * edge_type, atom, out_ch) m = functions.reshape(m, (mb, self.n_edge_types, atom, hidden_ch)) m = functions.sum(m, axis=1) # (minibatch, atom, out_ch) # --- Update part --- # Contraction h = functions.reshape(h, (mb * atom, in_ch)) # Contraction m = functions.reshape(m, (mb * atom, hidden_ch)) out_h = self.update_layer(functions.concat((h, m), axis=1)) # Expansion out_h = functions.reshape(out_h, (mb, atom, self.out_channels)) return out_h def reset_state(self): self.update_layer.reset_state()
samples/ast/test.py
Ryoich/python_zero
203
15550
def func(a, b): return a + b def func2(a): print(a) print("Hello")
configs/models/aott.py
yoxu515/aot-benchmark
105
15555
import os from .default import DefaultModelConfig class ModelConfig(DefaultModelConfig): def __init__(self): super().__init__() self.MODEL_NAME = 'AOTT'