Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(raw_input()) if n <= 2: print -1 else: print '%s' % ' '.join(map(str, range(n,0,-1)))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class Practica_4 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if (n == 1 || n==2) { System.out.println(-1); } else { String cdn = ""; for (int i = n; i >= 1; i--) { cdn = cdn + " " + i; } System.out.println(cdn.trim()); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n <= 2: print(-1) else: for i in range(n, 1, -1): print(i, end = ' ') print(1)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; public class Solution{ /////////////////////////////////////////////////////////////////////////// static class FastScanner{ BufferedReader s; StringTokenizer st; public FastScanner(InputStream InputStream){ st = new StringTokenizer(""); s = new BufferedReader(new InputStreamReader(InputStream)); } public FastScanner(File f) throws FileNotFoundException{ st = new StringTokenizer(""); s = new BufferedReader (new FileReader(f)); } public int nextInt() throws IOException{ if(st.hasMoreTokens()) return Integer.parseInt(st.nextToken()); else{ st = new StringTokenizer(s.readLine()); return nextInt(); } } public BigInteger big() throws IOException{ if(st.hasMoreTokens()) return new BigInteger(st.nextToken()); else{ st = new StringTokenizer(s.readLine()); return big(); } } public double nextDouble() throws IOException{ if(st.hasMoreTokens()) return Double.parseDouble(st.nextToken()); else{ st = new StringTokenizer(s.readLine()); return nextDouble(); } } public long nextLong() throws IOException{ if(st.hasMoreTokens()) return Long.parseLong(st.nextToken()); else{ st = new StringTokenizer(s.readLine()); return nextLong(); } } public String nextString() throws IOException{ if(st.hasMoreTokens()) return st.nextToken(); else{ st = new StringTokenizer(s.readLine()); return nextString(); } } public String readLine() throws IOException{ return s.readLine(); } public void close() throws IOException{ s.close(); } } //////////////////////////////////////////////////////////////////// // Number Theory long pow(long a,long b,long mod){ long x = 1; long y = a; while(b > 0){ if(b % 2 == 1){ x = (x*y); x %= mod; } y = (y*y); y %= mod; b /= 2; } return x; } int divisor(long x,long[] a){ long limit = x; int numberOfDivisors = 0; for (int i=1; i < limit; ++i) { if (x % i == 0) { limit = x / i; if (limit != i) { numberOfDivisors++; } numberOfDivisors++; } } return numberOfDivisors; } void findSubsets(int array[]){ long numOfSubsets = 1 << array.length; for(int i = 0; i < numOfSubsets; i++){ @SuppressWarnings("unused") int pos = array.length - 1; int bitmask = i; while(bitmask > 0){ if((bitmask & 1) == 1) // ww.print(array[pos]+" "); bitmask >>= 1; pos--; } // ww.println(); } } public static long gcd(long a, long b){ return b == 0 ? a : gcd(b,a%b); } public static int lcm(int a,int b, int c){ return lcm(lcm(a,b),c); } public static int lcm(int a, int b){ return (int) (a*b/gcd(a,b)); } public static long invl(long a, long mod) { long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } return p < 0 ? p + mod : p; } //////////////////////////////////////////////////////////////////// // FastScanner s = new FastScanner(new File("input.txt")); // PrintWriter ww = new PrintWriter(new FileWriter("output.txt")); static InputStream inputStream = System.in; static FastScanner s = new FastScanner(inputStream); static OutputStream outputStream = System.out; static PrintWriter ww = new PrintWriter(new OutputStreamWriter(outputStream)); // private static Scanner s = new Scanner(System.in); @SuppressWarnings("unused") private static int[][] states = { {-1,0} , {1,0} , {0,-1} , {0,1} }; //////////////////////////////////////////////////////////////////// public static void main(String[] args) throws IOException{ new Solution().solve(); s.close(); ww.close(); } //////////////////////////////////////////////////////////////////// void solve() throws IOException{ int n = s.nextInt(); if(n == 1 || n == 2) ww.println(-1); else{ for(int i=n;i>=1;i--) ww.print(i+" "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; import java.util.stream.IntStream; public class Codeforces{ public static void main( String[] args ){ Scanner scanner = new Scanner( System.in ); int n = scanner.nextInt( ); if( n > 2 ) IntStream.rangeClosed( 0, n - 1 ).map( i -> n - i ).forEach( i -> System.out.print( i + " " ) ); else System.out.println( -1 ); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; public class Main { public static void main(String args[]) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if(n<=2) System.out.println("-1"); else { for(int i=n ; i>0 ; i--) System.out.print(i+" "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class A { /** * @param args */ public static void main(String[] args) { NS ns = new NS(); if (ns.n < 3){ System.out.println("-1"); } else { ns.forma(); ns.print(); } /* ns.formda(); ns.nsort(); ns.print(); */ } } class NS { NS() { Scanner scr = new Scanner(System.in); n = scr.nextInt(); a = new int[n]; } void forma(){ for (int k = 0; k < n; k++){ a[k] = n-k; } } void formda(){ for (int k = 0; k < n; k++){ a[k] = k; } } void nsort(){ for (int i = 0; i < n-1; i++){ for (int j = i; j < n-1; j++){ if (a[j] > a[j+1]) { int tmp = a[j]; a[j] = a[j+1]; a[j+1] = tmp; } } } } void print(){ for (int e: a){ System.out.print(e + " "); } } int n; int a[]; }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(raw_input()) if n == 1 or n == 2: print -1 else: for i in range(n, 0, -1): print i,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=input() if n<3: print -1 else: for x in range(1,n+1)[::-1]: print x,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(raw_input()) if(n<3): print -1 elif n==3: print 3,2,1 else: print 3,2,1, for i in xrange(4,n): print i, print n
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int i, n, j, a[101]; int main() { cin >> n; if (n == 1 || n == 2) cout << -1; else for (i = n; i >= 1; i--) cout << i << ' '; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n >= 3: print('3 2 1',end = ' ' ) for i in range (n - 3): print((i + 1), end = ' ') else: print('-1')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Solution { public void solve() throws IOException { int n = in.nextInt(); if (n <= 2) { System.out.println(-1); } else { for (int i = n; i >= 1; --i) { System.out.print(i + " "); } } } public void run() throws IOException { in = new MyScanner(); solve(); in.close(); } private MyScanner in; //private PrintWriter out; public class MyScanner { private BufferedReader br; private StringTokenizer st; public MyScanner() { this.br = new BufferedReader(new InputStreamReader(System.in)); } public MyScanner(String fileTitle) throws IOException { this.br = new BufferedReader(new FileReader(fileTitle + ".in")); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) { String s = br.readLine(); if (s == null) { return "-1"; } st = new StringTokenizer(s); } return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public int[] nextIntArray(int size) throws IOException { int[] arr = new int[size]; for (int i = 0; i < size; ++i) { arr[i] = nextInt(); } return arr; } public void close() throws IOException { br.close(); } } public static void main(String[] args) throws IOException { new Solution().run(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
a = raw_input() total = int(a) if total<3: print -1 else: print total-1, print total, for i in range(0,total-2): print 1,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
# ~*~ coding:utf-8 ~*~ n = int(raw_input()) if n <= 2: print -1 else: print ' '.join(map(str, [2, 3] + [1] * (n - 2)))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class A246 { public static void main(String args[]) throws IOException{ BufferedReader ip = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(ip.readLine()); StringBuilder sb = new StringBuilder(); if(n > 2) { for(;n>0;n--) sb.append(n+" "); System.out.print(sb); } else System.out.println("-1"); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int arr[n]; if (n >= 3) { for (int i = 0; i < n; i++) { arr[i] = (n - i); } for (int i = 0; i < n; i++) { cout << arr[i]; if (i != n - 1) cout << " "; else cout << endl; } } else cout << "-1" << endl; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class Ishu { public static void main(String[] args) { Scanner scan=new Scanner(System.in); int n,i,j; boolean flag=true; int[] a=new int[50]; int[] b=new int[50]; n=scan.nextInt(); for(i=0;i<n;++i) { a[i]=n-i; b[i]=a[i]; } for(i=0;i<n-1;++i) for(j=i;j<n-1;++j) if(b[j]>b[j+1]) { b[j]=b[j]+b[j+1]; b[j+1]=b[j]-b[j+1]; b[j]=b[j]-b[j+1]; } for(i=0;i<n-1;++i) if(!(b[i]<b[i+1])) { flag=false; break; } if(!flag) for(i=0;i<n;++i) System.out.print(a[i]+" "); else System.out.println(-1); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class _246_A { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n=in.nextInt(); if(n<3) System.out.println(-1); else for (int i = 0; i < n; i++) { System.out.print(n-i+" "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
//Date: Oct 4, 2013 //Time: 3:06:52 PM import java.util.*; import java.io.*; public class A246 implements Runnable { public void solve() throws IOException { int N = nextInt(); if(N <= 2) System.out.println(-1); else{ for(int i = N; i > 0; i--) System.out.print(i + " "); System.out.println(); } } //----------------------------------------------------------- public static void main(String[] args) { new A246().run(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); tok = null; solve(); in.close(); } catch (IOException e) { System.exit(0); } } public String nextToken() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } BufferedReader in; StringTokenizer tok; } /** public class A246 { } */
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; const long long M = 1e9 + 7; bool isPrime(long long num) { bool flag = true; for (long long i = 2; i <= sqrt(num); i++) { if (num % i == 0) { flag = false; break; } } return flag; } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long t = 1; while (t--) { long long n; cin >> n; if (n <= 2) cout << -1 << endl; else { for (long long i = n; i > 0; i--) cout << i << " "; } } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n < 3) cout << -1; else for (int i = n; i >= 1; i--) cout << i << " "; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n == 1 || n == 2) cout << -1; else while (n) { cout << n << " "; n--; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n <= 2) { cout << -1 << endl; } else { cout << 4 << " " << 5 << " "; for (int i = 3; i <= n; i++) { cout << i << " "; } cout << "\n"; } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#main n = int(input()) temp = [] if n<=2: print('-1') else: temp.append(n) temp.append(n) for i in range(n-2): temp.append(1) for k in temp: print(k,end=' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); int n, m; int a[55]; int main() { cin >> n; if (n == 1) cout << -1 << endl; else if (n == 2) cout << -1 << endl; else { for (int i = n; i >= 1; i--) cout << i << " "; } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; public class AUnsuccessfulSorting { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int inputByte=sc.nextInt(); if(inputByte<3) { System.out.print(-1); } else { for(int k=inputByte; k>0; k--){ System.out.print(" "+k); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; const long long N = 2e5 + 5; long long arr[N]; long long ans[N]; long long dp[N]; set<long long> adj[N]; long long vis[N] = {0}; set<long long> temp; void fast() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); } void solve() { long long n; cin >> n; if (n <= 2) { cout << -1 << '\n'; return; } for (long long i = n; i >= 1; i--) { cout << i << " "; } } int32_t main() { fast(); long long t = 1; while (t--) solve(); }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.StringTokenizer; public class A { static BufferedReader in; static StringTokenizer st; static PrintWriter out; static String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); int n = nextInt(); int[] a = new int[n + 1]; if (n == 1 || n == 2) { out.print(-1); } else { for (int i = n; i >= 1; i--) { out.print(i + " "); } } out.close(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; import java.io.*; public class Main { public static void main(String[] arg) { new Main(); } public Main() { Scanner cin=new Scanner(new BufferedInputStream(System.in)); int n=cin.nextInt(); if (n<=2) System.out.println(-1); else { System.out.print(n+" "+(n-1)+" "); for (int i=3;i<=n;i++) System.out.print((i-2)+(i==n?"\n":" ")); } cin.close(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; void solve() { long long int n; cin >> n; if (n <= 2) { cout << "-1" << '\n'; return; } long long int i; for (i = n - 1; i >= 0; i--) cout << i + 1 << " "; cout << '\n'; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; long long int t = 1; while (t--) solve(); return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Arrays; import java.util.Locale; import java.util.Scanner; public class Codeforces2 { public static void main(String[] args){ Scanner sc=new Scanner(System.in); int n=sc.nextInt(); if(n<3){ System.out.println(-1); }else{ int t=0; for(int i=n;i>=1;i--){ if(t==0){ System.out.print(i); t=1; }else{ System.out.print(" "+i); } } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(raw_input()) print -1 if n<3 else ' '.join(map(str, [3,2,1]+range(4,n+1)))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if(n<=2): print('-1') else: ans=[ ] while(n>0): ans.append(n) n-=1 print(*ans)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.IOException; import java.util.Arrays; import java.util.Collections; import java.util.Scanner; import java.applet.*; import java.awt.*; public class Cdfrc { public static void main(String[] args) throws NumberFormatException, IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); // int m = sc.nextInt(); // int[] a = new int[] { 2, 1 }; // for (int i = 1; i <= a.length - 1; i++) { // for (int j = i; j <= a.length - 1; j++) { // if (a[j - 1] > a[j]) { // int tmp = a[j - 1]; // a[j - 1] = a[j]; // a[j] = tmp; // } // } // } if (n <= 2) { System.out.println(-1); return; } for (int i = n; i > 0; i--) { System.out.print(i + " "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n <= 2: print("-1") else: for i in range(n, 0, -1): print(i, end=" ")
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
N = input() if (N <= 2): print -1 else: for a in range(N-1,-1,-1): print a+1, print
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n > 2: print(' '.join(str(i) for i in range(n, 0, -1))) else: print(-1)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; public class buggysorting { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = Integer.parseInt(in.nextLine()); if (n == 1 || n == 2) System.out.println(-1); else for (int i = 0; i < n; i++) System.out.print((((i+1)%n)+1) + " "); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
X = int(input()) if X <= 2: print(-1) exit() print(*[i for i in range(X, 0, -1)])
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
# coding: utf-8 n = int(input()) if n<=2: print(-1) else: print(' '.join([str(i) for i in range(2,n+1)]+['1']))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input() if n <= 2: print -1 else: print ' '.join(["2"] * (n - 1) + ["1"])
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; long long n, e, o, res, S; int main() { cin >> n; if (n <= 2) cout << -1; else { for (long long i = n; i >= 1; --i) cout << i << " "; } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int arr[1000000]; long long int i, j, k, n, q, jj, bb, m, a, z, x, y, xx1, yy1, xx2, yy2, t, ans; string s; int main() { cin >> n; if ((n == 1) || (n == 2)) cout << -1; else { cout << n << ' ' << n - 1 << ' '; for (i = 2; i < n; i++) cout << i - 1 << ' '; } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
def main(): i = input(); if i <= 2: print('-1') else: result = '7 8 5' for x in range (0, i-3): result = result + ' 10' print result main()
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class A246 { public static void main(String[] args) { Scanner input = new Scanner(System.in); int N = input.nextInt(); if (N <= 2) { System.out.println("-1"); } else { for (int n=N; n>=1; n--) { System.out.print(n+" "); } System.out.println(); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
def main(): n = int(raw_input()) if n > 2: print(' '.join(map(str,[ i for i in range(n,0,-1)] ))) else: print(-1) main()
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; public class Main { //IO public PrintWriter out; private StringTokenizer tokenizer; private BufferedReader reader; public String next(){ while (tokenizer==null||!tokenizer.hasMoreTokens()){ try{ tokenizer=new StringTokenizer(reader.readLine()); } catch (IOException e) {throw new RuntimeException(e);} } return tokenizer.nextToken(); } public int nextInt(){ return Integer.parseInt(next()); } //Main public Main(InputStream inputStream,OutputStream outputStream){ reader=new BufferedReader(new InputStreamReader(inputStream)); tokenizer=null; out=new PrintWriter(outputStream); } public static void main(String[] args){ InputStream inputStream=System.in; OutputStream outputStream=System.out; //try{ inputStream=new FileInputStream("input.txt");} catch (IOException e){} Main solver=new Main(inputStream,outputStream); solver.solve(); solver.out.close(); } //Solution public void solve(){ int n=nextInt(); if (n<=2) out.println(-1); else{ out.printf("99 100"); for (int i=3;i<=n;i++) out.printf(" 2"); out.println(); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; if (n == 1 || n == 2) { cout << -1; return 0; } for (i = n; i >= 1; i--) cout << i << " "; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) m = [] for i in range(1, n + 1): m.append(n + 1 - i) a = list(m) a.sort() for i in range(n - 1): for j in range(i, n - 1): if m[j] > m[j + 1]: m[j], m[j + 1] = m[j + 1], m[j] if m == a: print(-1) else: a.reverse() print(* a, sep = " ")
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) k=[i for i in range(n,0,-1)] if n>2: print(*k) else: print("-1")
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(raw_input()) if n < 3:print -1 else:print " ".join(map(str,range(n,0,-1)))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=input() if n>2: print ' '.join(map(str,[n-1]+range(1,n)[::-1])) else: print -1
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) print(*[[2,2]+[1]*(n-2),[-1]][n<3])
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
//package Round_151; import java.util.*; import java.io.*; public class a { String input = ""; String output = ""; FastScanner in; PrintWriter out; void solve() throws Exception { int n = in.nextInt(); int a[] = new int[n+1]; if (n < 3){ out.println(-1); return; } for (int i = 2; i<=n; i++) a[i] = n - i+ 1; a[1] = 100; for (int i = 1; i<=n; i++) out.print(a[i] +" "); } void run() { try { if (input.length() == 0) { InputStreamReader ins = new InputStreamReader(System.in); in = new FastScanner(new BufferedReader(ins)); } else { FileReader f = new FileReader(input); in = new FastScanner(new BufferedReader(f)); } if (output.length() == 0) { out = new PrintWriter(System.out); } else out = new PrintWriter(new File(output)); solve(); out.flush(); out.close(); } catch (Exception ex) { ex.printStackTrace(); out.close(); } } public static void main(String args[]) { new a().run(); } class FastScanner { BufferedReader bf; StringTokenizer st; FastScanner(BufferedReader bf) { this.bf = bf; } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(bf.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
# a=[5,4,3,2,1] # for i in range(3): # for j in range(3): # if a[i]>a[i+1]: # a[i],a[i+1]=a[i+1],a[i] # print(a) n=int(input()) if n==1 or n==2:print(-1) else:print(*[ x for x in range(n,0,-1)])
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int n; cin >> n; if (n == 0 || n == 1 || n == 2) cout << "-1" << "\n"; else { for (int i = n; i > 0; i--) cout << i << " "; cout << "\n"; } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.InputStreamReader; public class BuggySorting { void run() throws Exception { BufferedReader bfd = new BufferedReader( new InputStreamReader(System.in)); int n = Integer.parseInt(bfd.readLine()); if(n <= 2) System.out.println(-1); else { while(n > 1) System.out.print(n-- +" "); System.out.println(n); } } public static void main(String[] args) throws Exception { new BuggySorting().run(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n>2:print(*list(range(n,0,-1))) else:print(-1)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i; scanf("%d", &n); if (n < 3) { printf("-1\n"); return 0; } printf("3 2 "); for (i = 3; i <= n; i++) { printf("1 "); } printf("\n"); return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.util.*; public class Main { public static BufferedReader reader; public static StringTokenizer in; public static PrintWriter out; public static void main(String[] args) throws IOException { reader = new BufferedReader(new InputStreamReader(System.in)); in = new StringTokenizer(""); out = new PrintWriter(System.out); int n = nextInt(); if(n == 1 || n == 2) out.print(-1); else { for (int i = 0; i < n; i++) out.print(n - i + " "); } out.close(); } public static void get() throws IOException { while(!in.hasMoreTokens()) in = new StringTokenizer(reader.readLine()); } public static int nextInt() throws IOException { get(); return Integer.parseInt(in.nextToken()); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.util.*; public class Main { public static void main(String[] args)throws IOException { new Main().start(); } public void start()throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st; //int test=Integer.parseInt(br.readLine()); //int len=Integer.parseInt(br.readLine()); //int x = st.nextToken(); //st = new StringTokenizer(br.readLine()); //int mod = (int)(Math.pow(10,9))+7; //int count = 0; //3^n + 3* ((-1)^n) //System.out.println(mod); /*while(test --> 0){ }*/ int len = Integer.parseInt(br.readLine()); if(len == 1 || len == 2){ System.out.println(-1); return; } for (int i=2; i<= len; ++i) { System.out.print(i+" "); } System.out.print(1); return; } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int a, b, c, n, d, k, i; int main() { cin >> n; if (n <= 2) { cout << -1; } else { for (i = n; i >= 1; i--) { cout << i << " "; } } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j; cin >> n; if (n == 1 || n == 2) cout << "-1"; else { for (i = n; i >= 1; i--) cout << i << ' '; } cout << endl; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(raw_input()) if n <= 2: print -1 else: print ' '.join(map(str, range(n, 0, -1)))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class buddy { public static void main(String [] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); if(n <= 2 ) System.out.println("-1"); else { for(int i = n; i>=1; i--) System.out.print(i + " "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
def main_function(): a = int(input()) if a > 2: return " ".join([str(a - i) for i in range(a)]) return -1 print(main_function())
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#from dust i have come dust i will be n=int(input()) if n<=2: print(-1) exit(0) print(2,n,end=' ') for i in range(1,n): if i!=2: print(i,end=' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Random; import java.util.StringTokenizer; public class Main { static BufferedReader reader; static StringTokenizer tokenizer; static PrintWriter writer; static Random random; static int generateRandom(int n) { return Math.abs(random.nextInt()) % n; } static int nextInt() throws IOException { return Integer.parseInt(nextToken()); } static long nextLong() throws IOException { return Long.parseLong(nextToken()); } static double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } static String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } public static void main(String[] args) throws IOException { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); random=new Random(); solve(); reader.close(); writer.close(); } private static void solve() throws IOException { int n=nextInt(); if (n<3) writer.print(-1); else { writer.print(98+" "); writer.print(99+" "); for (int i=2;i<n;i++) writer.print(i+" "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedInputStream; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.FileReader; import java.io.FileWriter; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class A { public static int n,a[],b[],t[]; public static void main(String args[])throws Exception{ InputStream file = System.in; InputReader in = new InputReader(file); int n = in.nextInt(); if(n==1||n==2)System.out.println(-1); else for(int i=n;i>=1;i--) System.out.print(i+" "); } } class InputReader{ public StringTokenizer token; public BufferedReader in; public InputReader(InputStream file)throws Exception{ in = new BufferedReader(new InputStreamReader(file)); token = null; } public String next(){ while(token == null || !token.hasMoreTokens()){ try{ token = new StringTokenizer(in.readLine()); }catch(Exception ex){} } return token.nextToken(); } public int nextInt(){ return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public double nextDouble(){ return Double.parseDouble(next()); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n <= 2: print(-1) else: x = '' for i in range(n,0,-1): x += str(i) + ' ' print(x[:-1])
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n <= 2: print(-1) else: print(' '.join(map(str, list(range(2, n + 1)) + [1])))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input() if n <= 2: print -1 else: print n, n-1, for i in range(1, n-1): print i,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; import java.util.stream.IntStream; public class Solution { @SuppressWarnings("resource") public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if (n < 3) System.out.println(-1); else IntStream.range(1, n + 1).map(i -> n + 1 - i).forEach(i -> System.out.print(i + " ")); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
t=int(input()) if t<3: print(-1) else: for i in range(t,1,-1): print(i,end=" ") print(1)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int N; scanf("%d", &N); if (N <= 2) printf("%d", -1); else { for (int i = N; i >= 1; i--) { printf("%d", i); printf(" "); } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class A { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if (n == 1 || n == 2) { System.out.println(-1); } else { for (int i = 0; i < n; i++) { System.out.print(n-i + " "); } } //System.out.println(); //sort(n); } private static void sort(int n) { int[] vals = new int[n]; for (int i = 0; i < vals.length; i++) { vals[i] = n-i; } for (int i = 0; i < n-1; i++) { for (int j = i; j < n-1; j++) { if (vals[j] > vals[j+1]) { int temp = vals[j]; vals[j] = vals[j+1]; vals[j+1] = temp; } } } for (int i = 0; i < vals.length; i++) { System.out.print(vals[i] + " "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if(n==1 or n==2): print(-1) else: l=[i for i in range(1,n+1)] l.sort(reverse=True) print(*l)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; import java.math.*; import java.io.*; public class problem2 { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); if(n <=2)System.out.println(-1); else { for(int i=n;i>0;i--) { System.out.print(i+" "); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import sys def solve(lines, output): n = int(lines.readline()) if n < 3: output.write("-1\n") else: output.write(' '.join(str(x) for x in range(n, 0, -1)) + '\n') if __name__ == '__main__': solve(sys.stdin, sys.stdout)
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int i, n; while (scanf("%d", &n) != EOF) { if (n <= 2) printf("-1\n"); else { for (i = 2; i <= n; i++) printf("%d ", i); printf("1\n"); } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; if (n == 1 || n == 2) cout << -1 << endl; else { for (i = n; i >= 1; i--) { cout << i << " "; } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n == 1 or n == 2: print (-1) else: arr = [i for i in range(1,n+1)] arr.reverse() for i in arr: print(i,end=' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Scanner; public class CodeForces { public static void main(String[] args) { Scanner input = new Scanner(new BufferedReader(new InputStreamReader(System.in))); int n = input.nextInt(); if (n == 1 || n == 2) { System.out.println(-1); } else { for (int i = 0; i < n; i++) { if (i == 0) { System.out.print(3 + " "); } else if (i == 1) { System.out.print(2 + " "); } else { System.out.print(1 + " "); } } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n = 0; cin >> n; if (n == 1 || n == 2) { cout << -1 << endl; } else { for (int i = 2; i <= n; i++) { cout << i << " "; } cout << 1 << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n < 3) { cout << "-1"; return 0; } for (int i = n; i > 0; i--) { cout << i << " "; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.util.*; public class BuggySorting { public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(f.readLine()); if (n <= 2) { System.out.println(-1); return; } for (int i = 0; i < n; i++) System.out.print(n-i+" "); System.out.println(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int a[101], i, j, k, n, m; scanf("%d", &n); if (n > 2) { for (i = n; i > 0; i--) { printf("%d \n", i); } } else { printf("-1\n"); } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n == 1 or n == 2: print(-1) else: lst = list(range(1,n+1)) a,b = lst.pop(),lst.pop() lst = [a,b] + lst print(*lst)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
from sys import stdin,stdout,setrecursionlimit,maxint,exit #setrecursionlimit(2*10**5) from random import random def listInput(): return map(long,stdin.readline().split()) def printBS(li): for i in xrange(len(li)-1): stdout.write("%d "%li[i]) stdout.write("%d\n"%li[-1]) n=input() if n<=2: print -1 else: printBS([2,3,1]+[100]*(n-3))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int N, i; int main() { scanf("%d", &N); if (N <= 2) { printf("-1\n"); return 0; } for (i = N; i; i--) printf("%d%c", i, i == 1 ? '\n' : ' '); return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import sys def readints() : l = sys.stdin.readline() return map(int, l.split(' ')) def readstring() : l = sys.stdin.readline()[:-1] return l def readint() : l = sys.stdin.readline() return int(l) def clearchars(s, chars) : for c in chars : s = s.replace(c, '') return s def gcd(a, b) : if (a < b ) : a, b = b, a if b == 0 : return a return gcd(b, a % b) n = readint() if n <= 2 : print -1 else : print ' '.join(map(str, range(n, 0, -1)))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
//package sorting; import java.util.*; public class Valera { public static void main(String[] args) { // TODO Auto-generated method stub Scanner scanner = new Scanner(System.in); int N = scanner.nextInt(); if (N <= 2) { System.out.print("-1"); } else for (int i = N; i > 0; i--) { System.out.print(i + " "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) print(*([-1],[3,2]+[1]*(n-2))[n>2])
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.util.*; public class A { public static void main(String[] args) throws IOException { BufferedReader rd = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); StringTokenizer st; int N = Integer.parseInt(rd.readLine()); if(N<=2) pw.println(-1); else{ for(int i=1; i<N; i++) pw.print((N+1-i)+" "); pw.println(1); } pw.flush(); } static void sort(int[] a){ for(int i=0; i<a.length-1; i++){ for(int j=i; j<a.length-1; j++){ if(a[i]>a[j]){ int t = a[i]; a[i] = a[j]; a[j] = t; } } } System.out.println(Arrays.toString(a)); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n <= 2) cout << -1; else { while (n != 0) cout << n-- << " "; } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class Day_10 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if(n==1 || n==2) { System.out.println(-1); }else { System.out.print((n-1)+" "); for(int i = n; i>=1; i--) { if(i==n-1) { continue; } System.out.print(i+" "); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> int fastread() { int input; char c = 0; while (c < 33) c = getchar(); input = 0; while (c > 33) { input = input * 10 + c - '0'; c = getchar(); } return input; } int main() { int n = fastread(); int i; if (n == 1 || n == 2) printf("-1\n"); else for (i = n; i >= 1; i--) printf("%d ", i); printf("\n"); return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; import java.io.*; public class CF246A { public static void main(String[] args) throws IOException { in.init(System.in); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(); if(n<=2) out.println(-1); else for(int i = n;i>0;i--) out.print(i + " "); out.close(); } public static class in { static BufferedReader reader; static StringTokenizer tokenizer; static void init(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); tokenizer = new StringTokenizer(""); } static String next() throws IOException { while (!tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n <= 2) cout << -1; else { for (int i = 0; i < n - 1; i++) cout << 2 << " "; cout << 1; } return 0; }
CPP