Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n<=2: print(-1) else: print(*[n-x for x in range(n)])
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; public class BuggySorting { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc= new Scanner(System.in); int n=sc.nextInt(); if(n==1||n==2) System.out.println(-1); else for(int i=n;i>0;i--) System.out.print(i+" "); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); if ( n<=2 ) { System.out.println(-1); } else { for ( int i = n ; i>=1 ; --i ) { System.out.print(i+" "); } System.out.println(); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class AUnsuccessfulSorting { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int inputByte=sc.nextInt(); if(inputByte<3) { System.out.print(-1); } else { for(int i=inputByte; i>0; i--){ System.out.print(" "+i); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; inline int ADD(int a, int b) { a += b; if (a >= 1000000007) a -= 1000000007; return (int)a; } inline void ADDTO(int &a, int b) { a += b; if (a >= 1000000007) a -= 1000000007; } inline void SUBTO(int &a, int b) { a -= b; if (a < 0) a += 1000000007; } inline int MUL(int a, int b) { return (int)((long long)a * b % 1000000007); } int main() { int n; while (scanf("%d", &n) == 1) { if (n <= 2) puts("-1"); else { printf("3 2 1"); for (int i = 0; i < (n - 3); ++i) printf(" 1"); puts(""); } } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; if (n < 3) { cout << -1 << endl; return 0; } cout << 5 << " " << 6 << " " << 4 << " "; for (i = 1; i <= n - 3; i++) cout << 5 << " "; cout << endl; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.util.*; public class cikk { static class InputReader { private InputStream stream; private byte[] inbuf = new byte[1024]; private int start= 0; private int end = 0; public InputReader(InputStream stream) { this.stream = stream; } private int readByte() { if (start == -1) throw new UnknownError(); if (end >= start) { end= 0; try { start= stream.read(inbuf); } catch (IOException e) { throw new UnknownError(); } if (start<= 0) return -1; } return inbuf[end++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } public String next() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } public long nextLong() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } } public static void main(String args[]) { InputReader sc=new InputReader(System.in); int n=sc.nextInt(); if(n!=1 && n!=2) for(int i=n;i>=1;i--) System.out.print(i+" "); else System.out.println(-1); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n < 3: print(-1) else: print(' '.join(str(i) for i in range(n, 0, -1)))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n <= 2: print("-1") else: print(*list(range(n, 0, -1)))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n<3: print(-1) else: a=[i+1 for i in range(n)] a=sorted(a,reverse=True) for b in a: print b,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class CF246taskA { StringTokenizer st; BufferedReader in; PrintWriter out; public static void main(String[] args) throws NumberFormatException, IOException { CF246taskA solver = new CF246taskA(); solver.open(); long time = System.currentTimeMillis(); solver.solve(); if (!"true".equals(System.getProperty("ONLINE_JUDGE"))) { System.out.println("Spent time: " + (System.currentTimeMillis() - time)); System.out.println("Memory: " + (Runtime.getRuntime().totalMemory() - Runtime .getRuntime().freeMemory())); } solver.close(); } public void open() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } public String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = in.readLine(); if (line == null) return null; st = new StringTokenizer(line); } return st.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } public void solve() throws NumberFormatException, IOException { int n = nextInt(); if (n<3) { out.println(-1); return; } out.print("3 2 1 "); for (int i = 4; i <= n; i++) { out.print(i+" "); } } public void close() { out.flush(); out.close(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); long long int n; cin >> n; if (n < 3) { cout << -1; return 0; } long long int a[n]; a[0] = n; a[1] = n; for (long long int I = 2; I < n; I += 1) a[I] = I; for (long long int I = 0; I < n; I += 1) cout << a[I] << " "; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import sys import math #import random #sys.setrecursionlimit(100000000) input = sys.stdin.readline ############ ---- USER DEFINED INPUT FUNCTIONS ---- ############ def inp(): return(int(input())) def inara(): return(list(map(int,input().split()))) def insr(): s = input() return(list(s[:len(s) - 1])) def invr(): return(map(int,input().split())) ################################################################ ############ ---- THE ACTUAL CODE STARTS BELOW ---- ############ n=inp() if n<=2: print(-1) else: for i in range(n,0,-1): print(i,end=" ")
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import sys n = int(sys.stdin.readline().strip()) if n < 3: print(-1) else: print(' '.join([str(n-i) for i in range(0, n)]))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; if (n < 3) cout << "-1\n"; else { for (i = n; i > 1; i--) cout << i << " "; cout << "1" << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
def main(): n = int(raw_input()) if n < 3: print -1 return print ' '.join(map(str, list(reversed(xrange(1, n + 1))))) if __name__ == '__main__': main()
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) print(-1 if n<=2 else "2 3 "+"1 "*(n-2))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n > 2: print " ".join(map(str, reversed(range(1, n + 1)))) else: print "-1"
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.Enumeration; import java.util.Iterator; import java.util.Properties; /** * Works good for CF * @author cykeltillsalu */ public class A { //some local config static boolean test = false; static String testDataFile = "testdata.txt"; static String feedFile = "feed.txt"; CompetitionType type = CompetitionType.CF; private static String ENDL = "\n"; // solution private void solve() throws Throwable { int n = iread(); if( n > 2){ for (int i = 0; i < n-1; i++) { System.out.print((n - i) + " "); } System.out.println("1"); } else { System.out.println("-1"); } } public int iread() throws Exception { return Integer.parseInt(wread()); } public double dread() throws Exception { return Double.parseDouble(wread()); } public long lread() throws Exception { return Long.parseLong(wread()); } public String wread() throws IOException { StringBuilder b = new StringBuilder(); int c; c = in.read(); while (c >= 0 && c <= ' ') c = in.read(); if (c < 0) return ""; while (c > ' ') { b.append((char) c); c = in.read(); } return b.toString(); } public static void main(String[] args) throws Throwable { if(test){ //run all cases from testfile: BufferedReader testdataReader = new BufferedReader(new FileReader(testDataFile)); String readLine = testdataReader.readLine(); int casenr = 0; out: while (true) { BufferedWriter w = new BufferedWriter(new FileWriter(feedFile)); if(!readLine.equalsIgnoreCase("input")){ break; } while (true) { readLine = testdataReader.readLine(); if(readLine.equalsIgnoreCase("output")){ break; } w.write(readLine + "\n"); } w.close(); System.out.println("Answer on case "+(++casenr)+": "); new A().solve(); System.out.println("Expected answer: "); while (true) { readLine = testdataReader.readLine(); if(readLine == null){ break out; } if(readLine.equalsIgnoreCase("input")){ break; } System.out.println(readLine); } System.out.println("----------------"); } testdataReader.close(); } else { // run on server new A().solve(); } out.close(); } public A() throws Throwable { if (test) { in = new BufferedReader(new FileReader(new File(feedFile))); } } InputStreamReader inp = new InputStreamReader(System.in); BufferedReader in = new BufferedReader(inp); static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out)); enum CompetitionType {CF, OTHER}; }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class buggysorting { public static void main(String[] args) { Scanner sc = new Scanner (System.in); int n = sc.nextInt(); if (n<3) { System.out.print(-1); } else { for (int i=n; i>0; i--) { System.out.print(i); System.out.print(" "); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n < 3) cout << -1 << endl; else { for (int i = n; i >= 2; i--) cout << i << " "; cout << 1 << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class Solver { /** * @param args */ public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if(n<=2){ System.out.print("-1"); }else{ for(int i = n; i>0; i--){ System.out.print(i+" "); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n < 3: print(-1) else: while n > 0: print(n, end=" ") n -= 1
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int n; int main() { ios_base::sync_with_stdio(false); cin >> n; if (n < 3) { cout << "-1"; return 0; } for (int i = n; i >= 1; i--) cout << i << ' '; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
from sys import stdin n=int(stdin.readline()) if n==1 or n==2: print("-1") else: print("2 3 1",end=" ") for i in range(4,n+1): print(i,end=" ") print()
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input() if n < 3: print -1 exit() for i in xrange(1, n + 1): if i == 1: print 2, elif i == 2: print 3, elif i == 3: print 1, else: print i,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n <= 2) cout << -1; else { for (int i = 2; i <= n; i++) cout << i << " "; cout << 1; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input() if n==1 or n==2: print "-1" else: while n>0: print n, n-=1
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input() if n <= 2: print -1 else: for i in range(n) : print n - i,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; unsigned long long n = 0, m = 100, i, j, k, ans = -1, y, x, z, l, a, b, c, s, o = 0; bool can = false; int main() { std::ios_base::sync_with_stdio(false); cin >> n; if (n < 3) cout << -1; else while (n--) cout << n + 1 << " "; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n <= 2) { cout << "-1\n"; return 0; } cout << "2 3"; for (int i = 1; i <= n - 2; ++i) { cout << " 1"; } cout << '\n'; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
def stripped_line(): return raw_input().strip() def read_ints(): return map(int, stripped_line().split()) n = read_ints()[0] if n <= 2: print -1 else: res = range(1, n + 1) res.reverse() print " ".join([str(x) for x in res])
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
X = int(input()) print("".join([str(i) + " " for i in range(X, 0, -1)]) if X > 2 else -1)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(raw_input()) if (n <= 2): print("-1") else: for i in range(2, n + 1): print(str(i) + " ") print("1\n")
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n == 1 or n == 2: print(-1) else: for i in range(n, 0, -1): print(i, end=" ")
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, ret; while (cin >> n) { if (n == 1 || n == 2) cout << -1 << endl; else { int cnt = 0; for (int i = n; i >= 1; i--) { if (cnt) cout << " "; cnt++; cout << i; } cout << endl; } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; if (n < 3) cout << -1 << "\n"; else { for (int i = n; i > 0; i--) if (i == 1) cout << i << "\n"; else cout << i << " "; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input() if n < 3: print -1 exit() else: print ' '.join(map(str, xrange(n, 0, -1)))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n <= 2: print(-1) else: print(' '.join(str(2 - x // (n - 1)) for x in range(n)))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if(n <= 2): print(-1) else: arr = list(range(1, n + 1)) arr.reverse() arr = [str(i) for i in arr] print(" ".join(arr))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> int main() { int n, i; scanf("%d", &n); if (n == 1 || n == 2) printf("-1\n"); else { printf("3 2"); for (i = 3; i <= n; i++) printf(" 1"); printf("\n"); } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input()-2; if n<1: print -1 else: print '2 3','1 '*n
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class ar { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws java.lang.Exception { FastReader scn = new FastReader(); int n=scn.nextInt(); if(n<3){ System.out.print(-1+"\n"); return; }else{ System.out.print(7+" "+8+" "); for(int i=1;i<=n-2;i++){ System.out.print(2+" "); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
def bad_sort (): n = int ( raw_input () ) if not (1 <= n <= 50): return -1 if (n < 3): print -1 else: print " ".join( map ( str, range (n,0,-1)) ) bad_sort ()
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; void makra() { int n; cin >> n; if (n <= 2) cout << "-1\n"; else { for (int i = 0; i < n; ++i) cout << n - i << " "; cout << "\n"; } } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); int tc = 1; while (tc--) { makra(); } cerr << "Time elapsed:" << clock() / (long double)CLOCKS_PER_SEC << "sec" << endl; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) a = [n-i for i in range(n)] def so(n, a): for i in range(n-1): for j in range(i, n-1): a[j], a[j+1] = a[j+1], a[j] if n in (1, 2): print(-1) else: print(' '.join(map(str, a)))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; import java.io.*; public class A { FastScanner in; PrintWriter out; public void solve() throws IOException { int n = in.nextInt(); if (n <= 2) { out.println(-1); return; } for (int i = 0; i < n -1 ; i++) { out.print(99 + " "); } out.println(1); } public void run() { try { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); } } class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } FastScanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); } String next() throws IOException { return hasNext() ? st.nextToken() : null; } boolean hasNext() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = br.readLine(); if (line == null) { return false; } st = new StringTokenizer(line); } return true; } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); } } public static void main(String[] arg) { new A().run(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { long n, i, mas[100], j, t; cin >> n; for (i = 0; i < n; ++i) mas[i] = n - i; for (i = 0; i < n - 1; ++i) for (j = i; j < n - 1; ++j) if (mas[j] > mas[j + 1]) { t = mas[j]; mas[j] = mas[j + 1]; mas[j + 1] = t; } for (i = 0; i < n - 1; ++i) if (mas[i] > mas[i + 1]) { for (j = 0; j < n; ++j) cout << n - j << ' '; return 0; } cout << -1; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#coding:utf-8 import sys n = int(sys.stdin.readline()) if n > 2: for a in range(n, 0, -1): print a, print else: print '-1'
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class Prob246A { public static void main(String[] Args) { Scanner scan = new Scanner(System.in); int x = scan.nextInt(); if (x <= 2) System.out.println(-1); else { for (int i = 1; i < x; i++) System.out.print((i + 1) + " "); System.out.println(1); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; void solve(istream &in, ostream &out) { int n; in >> n; if (n < 3) { out << -1; return; } for (int i = 0; i < n; ++i) out << n - i << " "; } int main() { solve(cin, cout); return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(raw_input()) if n==1 or n==2: print -1 else: for i in xrange(n): print n-i, print
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n<=2: print('-1') else: s='' for i in range(n,0,-1): s+=str(i)+' ' print(s)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import sys n=int(sys.stdin.readline()) a=[x for x in range(1,n+1)] a.sort(reverse=True) b=[str(x) for x in a] if n<=2: print -1 else: print ' '.join(b)
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; template <class T> inline T gcd(T a, T b) { if (b == 0) return a; return gcd(b, a % b); } template <class T> T lcm(T a, T b) { return (a / gcd<T>(a, b) * b); } template <class T> inline T modinverse(T a, T M) { return bigmod(a, M - 2, M); } template <class T> inline T bigmod(T p, T e, T M) { long long ret = 1; for (; e > 0; e >>= 1) { if (e & 1) ret = (ret * p) % M; p = (p * p) % M; } return (T)ret; } template <typename T> string NtoS(T Number) { stringstream ss; ss << Number; return ss.str(); } long long pow(long long x, long long y) { long long res = 1; for (; y;) { if ((y & 1)) { res *= x; } x *= x; y >>= 1; } return res; } int main() { int a, b, c, d, n, m, s[1001], t[100]; scanf("%d", &n); for (int i = n; i >= 1; i--) { s[n - i + 1] = i; t[n - i + 1] = i; } for (int i = 1; i <= n - 1; i++) { for (int j = i; j < n - 1; j++) { if (s[j] > s[j + 1]) swap(s[j], s[j + 1]); } } for (int i = 1; i <= n; i++) { if (s[i] != t[i]) { for (int i = 1; i <= n; i++) cout << t[i] << " "; return 0; } } cout << "-1"; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n == 1 || n == 2) cout << -1 << endl; else { while (true) { cout << n; if (n != 1) cout << ' '; n--; if (n == 0) return 0; } } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; import java.io.*; import java.math.BigInteger; import java.text.*; public class Main { static long mod = 1000_000_007; static long mod1 = 998244353; static boolean fileIO = false; static boolean memory = true; static FastScanner f; static PrintWriter pw; static double eps = (double)1e-6; static int oo = (int)1e7; // N = 1 or N = max ? // longs vs. ints ? // max / min ? public static void solve() throws Exception { int n = f.ni(); int arr[] = new int[n]; if (n <= 2) { pn(-1); return; } for (int i = n; i >= 1; --i) p(i + " "); } public static void main(String[] args)throws Exception { if(memory) new Thread(null, new Runnable() {public void run(){try{new Main().run();}catch(Exception e){e.printStackTrace();System.exit(1);}}}, "", 1 << 28).start(); else new Main().run(); } /******************************END OF MAIN PROGRAM*******************************************/ void run()throws Exception { if (System.getProperty("ONLINE_JUDGE") == null) { f = new FastScanner(""); pw = new PrintWriter(System.out); } else { f = new FastScanner(); pw = new PrintWriter(System.out); //fw = new FileWriter("!out.txt"); } //pre(); int t = 1; int tt = 1; while(t --> 0) { //fw.write("Case #" + (tt++) + ": "); //fw.write("\n"); solve(); } pw.flush(); pw.close(); } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String str) throws Exception { try { br = new BufferedReader(new FileReader("!a.txt")); } catch (Exception e) { e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } public String next()throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int ni() throws IOException {return Integer.parseInt(next());} public long nl() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public double nd() throws IOException {return Double.parseDouble(next());} } public static void pn(Object... o) {for(int i = 0; i < o.length; ++i) pw.print(o[i] + (i + 1 < o.length ? " ": "\n"));} public static void p(Object... o) {for(int i = 0; i < o.length; ++i) pw.print(o[i] + (i + 1 < o.length ? " " : ""));} public static void pni(Object... o) {for(Object obj : o) pw.print(oo + " "); pw.println(); pw.flush();} public static int gcd(int a,int b){if(b==0)return a;else{return gcd(b,a%b);}} public static long gcd(long a,long b){if(b==0l)return a;else{return gcd(b,a%b);}} public static long lcm(long a,long b){return (a*b/gcd(a,b));} public static long pow(long a,long b){long res=1;while(b>0){if((b&1)==1)res=res*a;b>>=1;a=a*a;}return res;} public static int pow(int a,int b){int res=1;while(b>0){if((b&1)==1)res=res*a;b>>=1;a=a*a;}return res;} public static long mpow(long a,long b, long m){long res=1;while(b>0){if((b&1)==1)res=((res%m)*(a%m))%m;b>>=1;a=((a%m)*(a%m))%m;}return res;} public static long mul(long a , long b , long mod){return ((a%mod)*(b%mod)%mod);} public static long adp(long a , long b){return ((a%mod)+(b%mod)%mod);} public static int dig(long a){int cnt=0;while(a>0){a/=10;++cnt;}return Math.max(1,cnt);} public static int dig(int a){int cnt=0;while(a>0){a/=10;++cnt;}return Math.max(1,cnt);} public static boolean isPrime(long n){if(n<=1)return false;if(n<=3)return true;if(n%2==0||n%3==0)return false;for(long i=5;i*i<=n;i=i+6)if(n%i==0||n%(i+2)==0)return false;return true;} public static boolean isPrime(int n){if(n<=1)return false;if(n<=3)return true;if(n%2==0||n%3==0)return false;for(int i=5;i*i<=n;i=i+6)if(n%i==0||n%(i+2)==0)return false;return true;} public static HashSet<Long> factors(long n){HashSet<Long> hs=new HashSet<Long>();for(long i=1;i<=(long)Math.sqrt(n);i++){if(n%i==0){hs.add(i);hs.add(n/i);}}return hs;} public static HashSet<Integer> factors(int n){HashSet<Integer> hs=new HashSet<Integer>();for(int i=1;i<=(int)Math.sqrt(n);i++){if(n%i==0){hs.add(i);hs.add(n/i);}}return hs;} public static HashSet<Long> pf(long n){HashSet<Long> ff=factors(n);HashSet<Long> ans=new HashSet<Long>();for(Long i:ff)if(isPrime(i))ans.add(i);return ans;} public static HashSet<Integer> pf(int n){HashSet<Integer> ff=factors(n);HashSet<Integer> ans=new HashSet<Integer>();for(Integer i:ff)if(isPrime(i))ans.add(i);return ans;} public static int gnv(char c){return Character.getNumericValue(c);} public static void sort(int[] a){ArrayList<Integer> l=new ArrayList<>();for(int i:a)l.add(i);Collections.sort(l);for(int i=0;i<a.length;++i)a[i]=l.get(i);} public static void sort(long[] a){ArrayList<Long> l=new ArrayList<>();for(long i:a)l.add(i);Collections.sort(l);for(int i=0;i<a.length;++i)a[i]=l.get(i);} public static void sort(ArrayList<Integer> a){Collections.sort(a);} }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; while (~scanf("%d", &n)) { if (n <= 2) printf("-1\n"); else { int flag = 2; for (int i = n; i != 1; i--) { while (flag) { printf("%d ", i); flag--; if (flag == 0) i--; } printf("%d ", i); } puts(""); } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import math def solve(n): if n <= 2: return [-1] return [i for i in range(n,0,-1)] def main() : n = int(input()) # arr = list(map(int, input().split(' '))) # arr = [] # for _ in range(3): # arr.append(input()) print(*solve(n)) main()
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; import java.io.*; public class Buggy_Sorting { public static void main(String args[]) throws Exception { BufferedReader f=new BufferedReader(new InputStreamReader(System.in)); int size=Integer.parseInt(f.readLine()); if(size<=2) System.out.println(-1); else { for(int x=size;x>=1;x--) System.out.print(x+" "); System.out.println(); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import sys #my_file = sys.stdin #my_file = open("input.txt", "r") n = int(input()) if n > 2: lst = list(range(n-1,0,-1)) lst.insert(0, n-1) for i in lst: print(i, end=" ") else: print(-1)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if (n <= 2): print(-1) else: for i in range(n - 1, -1, -1): print(i + 1, end = ' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { Scanner Sc=new Scanner(System.in); int n=Sc.nextInt(); if(n<=2) System.out.println(-1); else { for(int i=n;i>=1;i--) System.out.print(i+" "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int a; cin >> a; if (a > 2) { for (int i = a; i > 0; i--) cout << i << " "; } else cout << "-1"; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#July 4, 2014 sa=int(input()) string='' if sa==1 or sa==2: print("-1") else: for x in range(sa, 0, -1): string+=str(x) string+=' ' print(string.strip())
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input() if ( n <= 2 ) : print -1 else : print n-1,n,' '.join(map(str,range(1,n-1)))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n <= 2: print(-1) else: print(*[x for x in range(n, 0, -1)])
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import sys def RedirectIO(): sys.stdin=open("test.in","r") # sys.stdout=open("output.txt","w") #RedirectIO() def main(): n=int(raw_input()) if n<3: print -1 else: for i in xrange(n,0,-1): print i, main()
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int n; int main() { cin >> n; if (n <= 2) cout << -1; else while (n--) cout << n + 1 << " "; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(raw_input()) if n<3: print -1 else: print " ".join(map(str,range(2,n+1)+[1]))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] arr = new int[n]; if (n == 1 || n == 2) { out.println("-1"); return; } arr[0] = n; arr[1] = n - 1; for (int i = 2; i < n; ++i) { arr[i] = n - i; } for (int i = 0; i < n; ++i) { out.print(arr[i] + " "); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.text.DecimalFormat; import java.util.*; public class codeforce { static Scanner sc = new Scanner(System.in); //static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static PrintStream out = new PrintStream(System.out); //public static int mod = 1000000007; public static void main(String[] args) throws IOException { int n = sc.nextInt(); if (n<=2)out.println(-1); else for(int i=n;i>0;i--)out.print(i+" "); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; template <class T> T Abs(T x) { return x > 0 ? x : -x; } template <class T> T Max(T a, T b) { return a > b ? a : b; } template <class T> T Min(T a, T b) { return a < b ? a : b; } template <class T> T gcd(T a, T b) { return a % b == 0 ? b : gcd(b, a % b); } bool isVowel(char ch) { ch = tolower(ch); return (ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u'); } int main() { int i, j, k, n, tc; while (cin >> n) { if (n < 3) { cout << -1 << endl; continue; } cout << 3 << " " << 2 << " " << 1; for (int i = (4); i < (n + 1); i++) cout << " " << i; cout << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; const int N = 50; int n; int a[N]; int main() { cin >> n; if (n < 3) { cout << -1; return 0; } for (int i = 0; i < n; i++) a[i] = n - i; for (int i = 0; i < n; i++) cout << a[i] << " "; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.util.*; public class p222 { public static void main(String[] args) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter wf = new BufferedWriter(new OutputStreamWriter(System.out)); int n = Integer.parseInt(br.readLine()); if(n > 2 ){ for(int i = 2; i <= n ; i++ ){ wf.write(i + " "); } wf.write("1"); }else{ wf.write("-1"); } wf.newLine(); wf.flush(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n < 3: print(-1) else: print(2, 2, *([1] * (n - 2)))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#!/usr/bin/env python # -*- coding: utf-8 -*- # Steve Phillips / elimisteve # 2012.11.21 n = int(raw_input()) #array = [2, 1, 3, 9, 8, 7, 7, 8, 3, 2, 3] if n <= 2: print -1 else: print 2, 3, for _ in xrange(n-2): print 1,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; import java.math.*; public class main { public static void main(String[] args) { Scanner cin = new Scanner(System.in); int n = cin.nextInt(); if(n<=2){System.out.println("-1");return ;} int [] array = new int[n+1]; for(int i=1 ; i<=n ; i++) { array[i]=n-i+1; } for(int i=1 ; i<n ; i++) { for(int j=i ; j<n ; j++) if(array[j]>array[j+1]) { int tmp=array[j]; array[j]=array[j+1]; array[j+1]=tmp; } } Arrays.sort(array); System.out.printf("%d", array[n]); for(int i=n-1 ; i>=1 ; i--) System.out.printf(" %d",array[i]); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n <= 2: print(-1) else: while n > 0: print(n, end=' ') n -= 1 # CodeForcesian # ♥ # اگه ایمان داری که روزای خوب تو راهن # روزای خوب قطعا به سمتت میاد
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input() print(-1 if n < 3 else ' '.join(map(str, range(n, 0, -1))))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int i, n; int main() { cin >> n; if (n == 1 || n == 2) { cout << "-1\n"; return 0; } cout << "2\n"; for (i = n; i >= 1; --i) { if (i != 2) cout << i << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n == 1 or n == 2: print(-1) else: for i in range(n, 0, -1): print(i, end = ' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; public class BuggySorting { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); if (n == 1||n==2) { System.out.println(-1); } else { for (int i = 0; i < n; i++) { System.out.print(n - i + " "); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n <= 2) { cout << "-1"; return 0; } for (int i = n; i >= 1; i--) cout << i << " "; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class prog { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int asd=scan.nextInt(); if(asd<=2){ System.out.println(-1); } else{ System.out.print(4+" "); System.out.print(5+" "); System.out.print(3+" "); for (int i = 0; i < asd-3; i++) { System.out.print((i+1)+" "); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n < 3 : print(-1) exit() for i in range(n, 0, -1): print(i, end = ' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.util.*; public class p246a { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); if(n<3) System.out.println("-1"); else { for(int i=n;i>0;i--) System.out.print(i+" "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; if (n == 1 || n == 2) cout << -1; else cout << 5 << " " << 4 << " " << 2 << " "; for (i = 0; i < n - 3; i++) cout << 1 << " "; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> int main() { int i, n; scanf("%d", &n); if (n <= 2) printf("-1\n"); else for (i = n; i >= 1; i--) printf("%d ", i); return (0); }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n>2: for i in range(n,0,-1): print(i, end=' ') else: print(-1)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; public class Solution { public static final int MOD = 1000050131; public static void main(String args[]) throws IOException { // BufferedReader br = new BufferedReader(new FileReader("c://tmp//in.txt")); BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = r_i(br); if (n > 2) { // int a[] = new int[n]; for (int i = n; i >= 1; i--) { pr_o(i + " "); // a[n - i] = i; } /* * pr_o_nl(Arrays.toString(a)); for (int i = 1; i < n; i++) { for (int j = i; j * < n; j++) { int tmp = a[i]; a[i] = a[j]; a[j] = tmp; } } * pr_o_nl(Arrays.toString(a)); */ } else { pr_o(-1); } } public static void pr_o(Object s) { System.out.print(s); } public static void pr_o_nl(Object s) { System.out.print(s); pr_nl(); } public static void pr_nl() { System.out.println(); } public static int prs_s_i(String s) { return Integer.parseInt(s); } public static Long prs_s_l(String s) { return Long.parseLong(s); } public static int r_i(BufferedReader br) throws IOException { return prs_s_i(br.readLine()); } public static long r_l(BufferedReader br) throws IOException { return prs_s_l(br.readLine()); } public static String r_s(BufferedReader br) throws IOException { return br.readLine(); } public static String[] r_s_a(BufferedReader br) throws IOException { return br.readLine().split(" "); } public static int[] r_i_a(BufferedReader br) throws IOException { String s[] = r_s_a(br); int a[] = new int[s.length]; for (int i = 0; i < s.length; i++) { a[i] = prs_s_i(s[i]); } return a; } public static long[] r_l_a(BufferedReader br) throws IOException { String s[] = r_s_a(br); long a[] = new long[s.length]; for (int i = 0; i < s.length; i++) { a[i] = prs_s_l(s[i]); } return a; } public static int[][] r_s_a_i(BufferedReader br, int a[][], int i) throws IOException { String s1[] = r_s_a(br); for (int j = 0; j < s1.length; j++) { a[i][j] = prs_s_i(s1[j]); } return a; } public static int[][] r_s_a_r_w_o_s(BufferedReader br, int a[][], int r) throws IOException { for (int i = 0; i < r; i++) { String s = r_s(br); for (int j = 0; j < r; j++) { if (s.charAt(j) == '.') { a[i][j] = 0; } else { a[i][j] = Integer.parseInt("" + s.charAt(j)); } } } return a; } public static int[][] r_s_a_r(BufferedReader br, int a[][], int r) throws IOException { for (int i = 0; i < r; i++) { a = r_s_a_i(br, a, i); } return a; } public static Integer maxx(Integer... x) { int max = 0; for (Integer a : x) { max = Math.max(a, max); } return max; } public static Integer minn(Integer... x) { int min = Integer.MAX_VALUE; for (Integer a : x) { min = Math.min(a, min); } return min; } public static Long maxx(Long... x) { long max = 0; for (Long a : x) { max = Math.max(a, max); } return max; } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n < 3) cout << "-1"; else while (n > 0) cout << n-- << " "; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n > 2) { for (int i = 2; i <= n; i++) { cout << i << " "; } cout << 1 << endl; } else { cout << -1 << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n <= 2) return cout << -1, 0; for (int i = 0; i < n - 1; i++) cout << 2 << " "; cout << 1; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n == 1 || n == 2) cout << -1 << endl; else { cout << n; for (int i = n - 1; i >= 1; i--) cout << " " << i; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; void fast() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); } int main() { fast(); int n; cin >> n; if (n > 2) { for (int i = 2; i <= n; ++i) { cout << i << " "; } cout << 1 << endl; } else { cout << -1 << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(raw_input()) if(n<=2): print -1 else: print 99,100,98, for i in range(n-3): print i+1,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.PrintWriter; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in=new Scanner(System.in); PrintWriter out=new PrintWriter(System.out); int n = in.nextInt(); if (n > 2) { for (int i=0;i<n;i++) { out.print((n-i) + " "); } } else { out.println(-1); } out.flush(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#!/usr/bin/python n = input() print ' '.join([`n-i` for i in xrange(n)]) if n > 2 else -1
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(raw_input()) if n < 3: print "-1" else: for x in reversed(xrange(n)): print x + 1,
PYTHON