Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
---|---|---|---|---|---|
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class A_246 {
FastScanner in;
PrintWriter out;
public void run() {
try {
in = new FastScanner(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
public void solve() throws IOException {
int n = in.nextInt();
if (n == 1 || n == 2) {
out.println(-1);
return;
}
StringBuilder sb = new StringBuilder();
for (int i=n; i>=1; i--) {
sb.append(i);
sb.append(' ');
}
sb.deleteCharAt(sb.length()-1);
out.println(sb);
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(InputStreamReader in) {
br = new BufferedReader(in);
}
String nextLine() {
String str = null;
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
}
public static void main(String[] arg) {
A_246 o = new A_246();
o.run();
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
void solve() {
long long int n;
cin >> n;
if (n > 2) {
for (long long int i = 0; i < n - 1; i++) cout << 2 << " ";
cout << 1 << endl;
} else
cout << -1 << endl;
}
void testcase() {
int t;
cin >> t;
while (t--) {
solve();
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
solve();
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class BuggySort
{
public static void main(String []args)
{
Scanner s = new Scanner(System.in);
int n = s.nextInt();
if(n < 3)
{System.out.println("-1"); return;
}
for(int i = 1; i < n + 1; ++i)
{
if(i == 1)
System.out.print("2 ");
else if(i == 2)
System.out.print("3 ");
else if(i == 3)
System.out.print("1 ");
else
System.out.print(i+" ");
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | a=int(input())
if a<=2:print(-1)
else:print(' '.join(list(map(str,range(1,a+1)))[::-1]))
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class A_151 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
if(n==1 || n==2)
System.out.println(-1);
else
{
for (int i =n; i >=1; i--) {
System.out.print(i+" ");
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
import java.io.*;
public class codeforce {
public static void main(String[] args) {
PrintWriter out = new PrintWriter(System.out);
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if(n<=2)
System.out.println(-1);
else
{
System.out.print("2 3 1");
for(int i = 0; i<n-3; i++)
System.out.print(" 5");
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
if n < 3:
print -1
else:
l = range(n, 0, -1)
for i in l:
print i,
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int n;
int main() {
cin >> n;
if (n <= 2)
cout << -1;
else {
for (int i = 2; i <= n; ++i) cout << i << " ";
cout << 1;
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(raw_input())
if n<3:
print -1
else:
l=range(n)
l.reverse()
s=""
for i in l:
s=s+str(i+1)+" "
print s
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n <= 2)
cout << "-1\n";
else {
for (int i = n; i >= 1; i--) cout << i << " ";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main implements Runnable {
private static void solve() throws IOException {
int n = nextInt();
if( n <= 2 ){
out.println(-1);
}else{
out.print("2 3 1 ");
for( int i = 4; i <= n; ++i )
out.print(i+" ");
}
}
private static BufferedReader in;
private static PrintWriter out;
private static StringTokenizer st;
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
static String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null)
return null;
eat(line);
}
return st.nextToken();
}
private static void eat(String s) {
st = new StringTokenizer(s);
}
public static void main(String[] args) {
new Thread(null, new Main(), "Main", 1 << 27).start();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
eat("");
solve();
in.close();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(566);
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class teste{
public static void main (String[] args){
int n = new Scanner(System.in).nextInt();
if(n < 3)
System.out.println(-1);
else{
for(int i = n; i>0; i--)
System.out.println(i);
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(raw_input())
print ' '.join(map(str,[ i for i in range(n,0,-1)] )) if n>2 else -1
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
print -1 if n<3 else " ".join(map(str,range(n,0,-1))) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int inputByte=sc.nextInt();
if(inputByte<3) {
System.out.print(-1);
}
else {
for(int k=inputByte; k>0; k--){
System.out.print(" "+k);
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n==1 or n==2:
print(-1)
else:
for i in range(n):
print(n-i, end=" ")
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.lang.*;
import java.util.*;
import java.math.*;
public class MyClass{
static class Pair implements Comparable<Pair>{
long a, b;
public Pair(long a, long b) {
this.a = a;
this.b = b;
}
@Override
public int compareTo(Pair o) {
return Long.compare(a, o.a);
}
}
public static boolean prime(long x)
{
if(x<=1)return false;
for(int i=2;i*i<=x;i++)
{
if(x%i==0)
return false;
}
return true;
}
/* public static BigInteger decimal(String bi) {
return new BigInteger(bi, 2);
}*/
/*public static int log(int k)
{
int ans = (int)(Math.log(k) / Math.log(2));
return ans;
}*/
/* public static int gcd(int a,int b)
{
if (b== 0)
return a;
return gcd(b,a%b);
}*/
/* public static int cal(int num)
{ int k=1,ans=0;
while(num>0)
{
int d=num%10;
if(d!=0)
{
ans=ans+d*k;
k=k*10;
}
num=num/10;
}
return ans;
}*/
public static void main(String args[]) {
Scanner sc=new Scanner(System.in);
/* int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
long d=sc.nextLong();
long a=sc.nextLong();
long b=sc.nextLong();
ArrayList<Long> fi=new ArrayList<Long>();
for(int i=0;i<n;i++)
{
long x=sc.nextLong();
long y=sc.nextLong();
p.add(new Pair((x*a)+(y*b),i+1));
}
Collections.sort(p);
long r=0;
for(int i=0;i<n;i++){
if(r+p.get(i).a <= d){
r+=p.get(i).a;
fi.add(p.get(i).b);
}
else
break;
}
System.out.println(fi.size());
for(long i:fi)
System.out.print(i+" ");*/
int n=sc.nextInt();
if(n<3)
System.out.println(-1);
else
{
for(int i=n;i>=1;i--)
System.out.print(i+" ");
}
//}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(raw_input())
if n==1 or n==2:
print '-1',
else :
for i in range(n,0,-1):
print i,
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | //This code is written by प्रविण शंखपाळ
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Collections;
import java.util.Arrays;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Stack;
import java.util.Queue;
import java.util.PriorityQueue;
import java.util.List;
import java.util.HashSet;
import java.util.LinkedHashSet;
import java.util.TreeSet;
import java.util.Map;
import java.util.HashMap;
import java.util.Scanner;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.Vector;
import javafx.util.Pair;
public class Ginny_Weasley {
static long A[] = new long[(int) 1e6 + 1];
static int mod = (int) 1e9 + 7;
static long fib(int n) {
A[0] = 0;
A[1] = 1;
for (int i = 2; i <= n; i++) {
A[i] = (A[i - 1] + A[i - 2]) % mod;
}
return A[n];
}
public static void main(String[] args) {
try {
FastReader fr = new FastReader();
int n = fr.nextInt();
if (n <= 2) {
System.out.println(-1);
} else {
for (int i = n; i > 0; i--) {
System.out.print(i + " ");
}
}
} catch (Exception e) {
return;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
import java.util.Scanner;
import java.io.*;
import javax.lang.model.util.ElementScanner6;
import static java.lang.System.out;
public class A246
{
public static void main(String args[])
{
FastReader in=new FastReader();
PrintWriter pr = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int tc=1;
//tc=in.nextInt();
while(tc-->0)
{
int n=in.nextInt();
if(n<3){pr.println(-1); break;}
int arr[]=new int[n];
arr[0]=n;
arr[1]=n-1;
for(int i=2;i<n;i++)
{
arr[i]=i-1;
}
for(int i : arr)pr.print(i+" ");
pr.println();
/*
for(int i=0;i<n-1;i++)
{
for(int j=i;j<n-1;j++)
{
if(arr[j]>arr[j+1])
{
int temp=arr[j];
arr[j]=arr[j+1];
arr[j+1]=temp;
}
}
}
for(int i : arr)pr.print(i+" ");
pr.println();
*/
}
pr.flush();
}
static void sort(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
/**
* @author panicker
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class ProblemA {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task();
solver.solve(1, in, out);
out.close();
}
}
class Task {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int N = in.nextInt();
if (N > 2) {
for (int i = N; i > 0; i--) {
out.print(i + " ");
}
} else {
out.print(-1);
}
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if(n>2):
for i in range(2,n+1,1):
print(i,end=' ')
print(1)
else:
print(-1) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.util.Scanner;
public class P246A
{
/**
* @param args
*/
public static void main(String[] args)
{
// TODO Auto-generated method stub
Scanner in = new Scanner (System.in);
int n = in.nextInt();
if (n<=2) System.out.println(-1);
else
{
String out = "";
for (int i=0; i<n; i++)
out += 60-i + " ";
System.out.println(out.trim());
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n < 3) {
puts("-1");
continue;
}
printf("%d %d", n, n - 1);
for (int i = 2; i < n; i++) printf(" %d", i - 1);
puts("");
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n > 2:
print(*tuple(range(n+1)[:0:-1]))
else:
print(-1)
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
print -1 if n < 3 else ' '.join([`3`, `2`] + [`1`] * (n - 2)) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.InputStreamReader;
import java.util.*;
public class d2_151_A {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
if(n==1 || n==2)
System.out.println(-1);
else
for(int i=n;i>0;i--)
{
System.out.print(i+" ");
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int num;
while (scanf("%d", &num) != EOF) {
if (num > 2) {
while (num) {
cout << num << " ";
num--;
}
cout << endl;
} else {
cout << -1 << endl;
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.util.Scanner;
public class A264 {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int a=sc.nextInt();
if (a<3)
{
System.out.println("-1");
}else {
for (int i=a;i>0;i--)
{
System.out.print(i+" ");
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
int main(void) {
int n, a[50], i;
scanf("%d", &n);
if (n < 3)
printf("-1\n");
else {
for (i = n; i >= 1; i--) printf("%d ", i);
printf("\n");
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | ''' Codeforces Round #151 (Div. 2) | A - Buggy Sorting '''
try:
n = int(input())
ans = '-1' if n <= 2 else ' '.join([str(i) for i in range(n, 0, -1)])
print(ans)
except EOFError as e:
pass | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
l=[]
if n<=2:
print(-1)
else:
for i in range(n,0,-1):
l.append(i)
for r in l:
print(r,end=' ') | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, num[100];
while (~scanf("%d", &n)) {
if (n == 1 || n == 2) {
printf("-1\n");
continue;
}
for (int i = 1; i <= n; i++) printf("%d ", n - i + 1);
cout << endl;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n < 3) {
cout << -1 << endl;
} else {
for (int i = 2; i <= n; i++) {
cout << i << " ";
}
cout << 1 << endl;
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class P246A {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int num = sc.nextInt();
if (num <= 2) {
System.out.println("-1");
System.exit(0);
}
System.out.print("2 3 1");
int k = 4;
for (int i = 3; i < num; i++) {
System.out.print(" " + k);
k++;
}
sc.close();
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if (n<=2)
System.out.println(-1);
else {
for (int i=0; i<n-1; i++)
System.out.print(3+" ");
System.out.print(1);
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import sys
import copy
import os
def main(cin):
n = int(cin.readline().strip())
if n<3:
print -1
return
s = ['3','2']
for i in range(n-2):
s.append('1')
print ' '.join(s)
if __name__ == "__main__":
cin = sys.stdin
if (os.path.exists('best.txt')):
cin = open('best.txt')
main(cin)
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class a
{
public static void main(String[] arg) throws IOException
{
new a();
}
public a() throws IOException
{
FastScanner in = new FastScanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt();
if(n == 1 || n == 2) out.println(-1);
else
{
for(int i = n; i > 0; i--)
{
out.print(i + " ");
}
}
in.close(); out.close();
}
class FastScanner
{
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in)
{
br = new BufferedReader(new InputStreamReader(in));
st = new StringTokenizer("");
}
public String next() throws IOException
{
while(!st.hasMoreTokens()) st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public void close() throws IOException
{
br.close();
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n > 2:
print(*range(2,n+1), 1)
else:
print(-1) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n;
scanf("%lld", &n);
if (n <= 2)
printf("-1");
else {
for (int i = n; i >= 1; i--) printf("%d ", i);
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.*;
import java.util.*;
public class Main{
public static void main(String[] args){
try{
Scanner s = new Scanner(System.in);
int n = s.nextInt();
if(n <= 2){
System.out.printf("-1");
}else{
for(int i = n; i > 0; i--){
System.out.printf("%d", i);
if(i != 1) System.out.printf(" ");
}
}
}catch(Exception e){
e.printStackTrace();
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input();print ' '.join(map(str,range(n,0,-1))) if n>2 else '-1' | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline T sqr(const T& x) {
return x * x;
}
template <class T>
inline string tostr(const T& a) {
ostringstream os("");
os << a;
return os.str();
}
const int inf = 1999999999;
const double pi = acos(-1.0);
const double eps = 1e-9;
int main() {
clock_t _ = clock();
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
int n;
cin >> n;
if (n == 1 || n == 2) {
cout << -1 << ('\n');
return 0;
}
cout << 100 << ' ' << 99 << ' ';
for (int i = 0; i < n - 2; i++) cout << "1" << ' ';
cout << ('\n');
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
public class bucky{
private int contor=0;
public static void main (String args[]) {
Scanner input=new Scanner(System.in);
HashMap<Integer, Integer> map= new HashMap<Integer, Integer>();
HashMap<Integer, Integer> start= new HashMap<Integer, Integer>();
HashMap<Integer, Integer> finish= new HashMap<Integer, Integer>();
HashMap<Integer, Integer> maxime= new HashMap<Integer, Integer>();
int n=input.nextInt();
if(n<3) System.out.println(-1);
else for(int i=n;i>=1;i--)
System.out.print(i+" ");
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:16777216")
const double EPS = 1e-7;
double iabs(const double a) { return (a < -EPS) ? -a : a; }
double imin(const double a, const double b) { return (a - b > EPS) ? b : a; }
double imax(const double a, const double b) { return (a - b > EPS) ? a : b; }
template <class I>
I iabs(const I a) {
return (a < 0) ? -a : a;
}
template <class I>
I imin(const I a, const I b) {
return (a < b) ? a : b;
}
template <class I>
I imax(const I a, const I b) {
return (a < b) ? b : a;
}
template <class I>
inline I mod_pow(const I& x, const long long p, const I& m) {
if (p == 0) return 1;
I mult = (p & 1) ? x : 1;
I t = mod_pow(x, p / 2, m) % m;
return (((mult * t) % m) * t) % m;
}
template <class T>
inline T ipow(const T& x, const long long p) {
if (p == 0) return 1;
T mult = (p & 1) ? x : 1;
T h = ipow(x, p / 2);
return h * h * mult;
}
unsigned long long gcd(unsigned long long a, unsigned long long b) {
if (a == 0) return b;
return gcd(b % a, a);
}
template <int SIZE>
class DSU {
public:
int parent[SIZE];
int rank[SIZE];
int count;
void clear() {
for (int i = 0; i < SIZE; i++) {
this->parent[i] = -1;
this->rank[i] = 0;
}
this->count = 0;
}
DSU() { this->clear(); }
void make(int x) {
this->parent[x] = x;
this->rank[x] = 1;
this->count++;
}
bool in_a_set(int x) { return this->parent[x] != -1; }
int find(int x) {
if (x == this->parent[x]) return x;
return this->parent[x] = find(this->parent[x]);
}
void combine(int x, int y) {
x = this->find(x);
y = this->find(y);
if (x != y) {
if (this->rank[x] > this->rank[y])
this->parent[x] = y;
else
this->parent[y] = x;
}
}
};
class BigInt {
public:
const static unsigned int N = 1000;
const static unsigned int base = 10;
unsigned int len;
short sign;
unsigned int digits[N];
BigInt(const BigInt& bi) {
this->len = bi.len;
this->sign = bi.sign;
for (unsigned int i = 0; i < this->len; ++i) (*this)[i] = bi[i];
}
BigInt(long long n) {
this->len = 0;
this->sign = (n >= 0) ? 1 : -1;
this->digits[0] = 0;
while (n) {
this->digits[this->len] = n % this->base;
n /= this->base;
this->len++;
}
if (this->len == 0) this->len = 1;
}
BigInt(string s) {
this->sign = (s[0] == '-') ? 1 : -1;
this->digits[0] = 0;
if (s[0] == '-') s = s.substr(1, s.length() - 1);
this->len = s.length();
for (unsigned int i = 0; i < this->len; i++)
(*this)[i] = s[this->len - i - 1] - '0';
}
string toString() const {
stringstream ss;
for (int i = this->len - 1; i >= 0; --i) ss << (*this)[i];
return ss.str();
}
unsigned int& operator[](const unsigned int i) { return digits[i]; }
unsigned int operator[](const unsigned int i) const {
if (i < this->len) return this->digits[i];
return 0;
}
bool iszero() const {
if (this->len <= 1 && this->digits[0] == 0) return true;
return false;
}
BigInt& operator=(const BigInt& rval) {
if (this != &rval) {
this->len = rval.len;
this->sign = rval.sign;
for (unsigned int i = 0; i < this->len; ++i) (*this)[i] = rval[i];
}
return *this;
}
BigInt operator+(const BigInt& rhs) const {
BigInt s(0);
unsigned long long r = 0, d, i;
for (i = 0; i < max(this->len, rhs.len); i++) {
d = (*this)[i] + rhs[i] + r;
r = d / this->base;
s[i] = d % this->base;
}
s.len = max(this->len, rhs.len);
if (r) s[s.len++] = r;
return s;
}
BigInt operator+(unsigned long long rhs) const {
BigInt s(*this);
unsigned long long r = 0, d, i = 0;
while (rhs != 0 || r != 0) {
d = s[i] + (rhs % s.base) + r;
rhs /= s.base;
r = d / s.base;
s[i] = d % s.base;
i++;
}
if (i > s.len) s.len = i;
return s;
}
BigInt operator*(unsigned long long rhs) const {
if (rhs == 0) return BigInt(0);
BigInt s(*this);
unsigned long long r = 0, d, i;
for (i = 0; i < s.len; ++i) {
d = s[i] * rhs + r;
r = d / this->base;
s[i] = d % this->base;
}
while (r) s[s.len++] = r % this->base, r /= this->base;
return s;
}
BigInt operator*(const BigInt& rhs) const {
BigInt s(0);
if (rhs.iszero()) return s;
unsigned long long r, d, i, j, k;
for (i = 0; i < this->N; i++) s[i] = 0;
for (i = 0; i < this->len; i++) {
r = 0;
for (j = 0, k = i; j < rhs.len; j++, k++) {
d = (*this)[i] * rhs[j] + r + s[k];
r = d / this->base;
s[k] = d % this->base;
}
while (r) s[k++] = r % this->base, r /= this->base;
if (k > s.len) s.len = k;
}
while (s.len > 1 && s[s.len - 1] == 0) s.len--;
return s;
}
unsigned int operator%(unsigned int rhs) {
BigInt t(*this);
unsigned long long pow = 1;
unsigned long long mod = 0;
for (unsigned int i = 0; i < this->len && pow != 0; i++) {
mod = (((*this)[i] % rhs) * pow + mod) % rhs;
pow = (pow * this->base) % rhs;
}
return mod;
}
};
vector<long long> genprimes(const int n) {
vector<long long> res;
res.push_back(2);
long long m, t, j;
for (int i = 3; i <= n; i++) {
j = 0;
m = res.size();
t = (long long)sqrt(i * 1.0) + 1;
while (j < m && res[j] < t && i % res[j] != 0) j++;
if (j == m || res[j] >= t) res.push_back(i);
}
return res;
}
const unsigned long long N = 1000;
const long long INF = 100000000;
long long n, m, i, j, k, t, d;
int main(int argc, char* argv[]) {
cin >> n;
if (n < 3)
cout << "-1\n";
else {
for (i = n; i > 0; i--) cout << i << " ";
cout << endl;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import bisect
from itertools import accumulate
import os
import sys
import math
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
def input(): return sys.stdin.readline().rstrip("\r\n")
# ------------------- fast io --------------------
n=int(input())
if n==1 or n==2:
print(-1)
else:
for i in range(n,0,-1):
print(i,end=" ")
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
//int ar[] =new int[1001];
//st.charAt(i)
public class Watermelon {
public static void main(String args[]){
Scanner in = new Scanner(System.in);
int n;
n= in.nextInt();
if(n<=2){
System.out.print("-1");
}
else{
for(int i=n;i>0;i--){
System.out.print(i + " ");
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(raw_input())
if n <= 2:
print -1
else:
for i in xrange(2, n + 1):
print i,
print 1
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class BuggySorting {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s = new Scanner(System.in);
int n = s.nextInt();
if(n==1 || n==2)
System.out.println(-1);
else
{
for(int i=n;i>=1;i--)
{
System.out.print(i + " ");
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n<=2:
print(-1)
else:
print(*[i for i in range(n,0,-1)]) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import static java.util.Arrays.*;
import java.io.*;
import java.lang.reflect.*;
import java.util.*;
public class A {
final int MOD = (int)1e9 + 7;
final double eps = 1e-12;
final int INF = (int)1e9;
public A () {
int N = sc.nextInt();
if (N <= 2)
print(-1);
else {
Integer [] A = new Integer[N];
fill(A, 1);
A[0] = 2; A[1] = 3;
print(A);
}
}
////////////////////////////////////////////////////////////////////////////////////
static MyScanner sc;
static class MyScanner {
public String next() {
newLine();
return line[index++];
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
line = null;
return readLine();
}
public String [] nextStrings() {
line = null;
return readLine().split(" ");
}
public char [] nextChars() {
return next().toCharArray();
}
public Integer [] nextInts() {
String [] L = nextStrings();
Integer [] res = new Integer [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Integer.parseInt(L[i]);
return res;
}
public Long [] nextLongs() {
String [] L = nextStrings();
Long [] res = new Long [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Long.parseLong(L[i]);
return res;
}
public Double [] nextDoubles() {
String [] L = nextStrings();
Double [] res = new Double [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Double.parseDouble(L[i]);
return res;
}
//////////////////////////////////////////////
private boolean eol() {
return index == line.length;
}
private String readLine() {
try {
return r.readLine();
} catch (Exception e) {
throw new Error(e);
}
}
private final BufferedReader r;
MyScanner () {
this(new BufferedReader(new InputStreamReader(System.in)));
}
MyScanner(BufferedReader r) {
try {
this.r = r;
while (!r.ready())
Thread.sleep(1);
start();
} catch (Exception e) {
throw new Error(e);
}
}
private String [] line;
private int index;
private void newLine() {
if (line == null || eol()) {
line = readLine().split(" ");
index = 0;
}
}
}
static void print (Object... a) {
pw.println(build(a));
}
static void exit (Object... a) {
print(a);
exit();
}
static void exit () {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build(Object... a) {
StringBuilder b = new StringBuilder();
for (Object o : a)
append(b, o);
return b.toString().trim();
}
static void append(StringBuilder b, Object o) {
if (o.getClass().isArray()) {
int L = Array.getLength(o);
for (int i = 0; i < L; ++i)
append(b, Array.get(o, i));
} else if (o instanceof Iterable<?>) {
for (Object p : (Iterable<?>)o)
append(b, p);
} else
b.append(" ").append(o);
}
////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
sc = new MyScanner ();
new A();
exit();
}
static void start() {
t = millis();
}
static PrintWriter pw = new PrintWriter(System.out);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input();print-1if n<3 else" ".join(map(str,range(n,0,-1)))
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import sys
n = int(sys.stdin.readline())
if(n <= 2):
print(-1)
exit()
res = []
for i in range(n, 0, -1):
res.append(str(i))
print(" ".join(res)) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
int n;
int main() {
scanf("%d", &n);
if (n <= 2) {
printf("%d", -1);
return 0;
}
for (; n; n--) printf("%d ", n);
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author rais.fathin38
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
if(n == 1 || n == 2) out.printLine(-1);
else {
for(int i = n; i > 0; i--) out.print(i + " ");
out.printLine("");
}
}
}
class InputReader {
public BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (Exception e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n > 2) {
for (int i = 0; i < n; i++) {
cout << n - i << " \n"[i == n - 1];
}
return 0;
}
cout << -1 << endl;
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int a;
scanf("%d", &a);
if (a == 1 || a == 2) {
printf("%d\n", -1);
return 0;
}
printf("6 3");
for (int i = 2; i < a; i++) {
printf(" %d", i);
}
printf("\n");
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | def main():
n = int(raw_input())
if n < 3:
print -1
else:
print 2,3,
for i in range(2,n):
print 1,
if __name__ == "__main__":
main()
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n<=2:
print(-1)
else:
for i in range(n,0,-1):
print(i,end=" ") | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | a = int(input())
if (a == 2) | (a == 1):
print(-1)
else:
while a > 0:
print(a, end = " ")
a = a - 1 | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
scanf("%d", &n);
if (n <= 2)
printf("%d\n", -1);
else {
for (int i = n; i > 0; --i) printf("%d ", i);
printf("\n");
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int n, a[52];
int main() {
scanf("%d", &n);
if (n < 3) {
printf("-1");
return 0;
}
for (int i = n; i > 1; i--) printf("%d ", i);
printf("1");
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | def try_sort(array):
n = len(array)
for i in range(n):
for j in range(i, n-1):
if array[j] > array[j+1]:
array[j], array[j+1] = array[j+1], array[j]
return array
def main():
n = int(raw_input())
if n == 1 or n == 2:
print -1
else:
a = []
for i in range(n, 0, -1):
a.append(str(i))
#a.append(i)
#print try_sort(a)
print " ".join(a)
main()
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.*;
import java.util.*;
public class Main {
public static void main(String args[]) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = t_int(br);
if (n <= 2) {
System.out.println(-1);
} else {
for (int i = n; i > 1; i--) {
System.out.print(i + " ");
}
System.out.println(1);
}
br.close();
}
public static int t_int(BufferedReader br) throws Exception {
return Integer.parseInt(br.readLine());
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | a=int(input(""))
if (a==1 or a==2):
print(-1)
else:
for g in range (a,0,-1):
print(g)
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | a=int(input())
if a==1 or a==2:
print(-1)
else:
x=''
x+=(a-1)*'2 '
x+='1'
print(x)
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.*;
import java.util.*;
public class Example {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (Exception e) {
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
public void run() throws Exception {
//in = new BufferedReader(new FileReader("D.IN"));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.flush();
out.close();
in.close();
}
public void solve() throws Exception {
int n = nextInt();
if (n <= 2) {
out.println(-1);
} else {
out.print(n - 1 + " " + n + " ");
for (int i = 2; i < n; i++) {
out.print(1 + " ");
}
out.println();
}
}
public static void main(String[] args) throws Exception {
new Example().run();
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | def main(n):
if n <= 2:
return "-1"
l = list(reversed(list(range(1, n + 1))))
return ' '.join(list(map(str, l)))
print(main(int(input())))
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n < 3:
print(-1)
else:
print(*list(range(n, 0, -1)))
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
public class con1 {
public static void main(String[] args) {
Scanner sc =new Scanner(System.in);
int n =sc.nextInt();
if(n<3){
System.out.println(-1);
}else
while(n>0){
System.out.print(n+" ");
n--;
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n <= 2:
print -1
else:
for i in range(n):
print n - i,
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import sys
n = (int)(raw_input());
if (n < 3):
print -1;
else:
for i in range(n):
print n - i,;
print '\n';
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
public class p246A {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt(); in.close();
if(n < 3) System.out.println(-1);
else for(int i=n; i>0; --i) System.out.print(i+" ");
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
if n <= 2:
print -1
else:
alist = [2, 3]
alist.extend([1] * (n - 2))
print " ".join(map(str, alist))
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.FileNotFoundException;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
public class Main
{
public static void main(String[] args) throws FileNotFoundException
{
InputStream inputStream = System.in;//new FileInputStream("input.txt");
OutputStream outputStream = System.out;//new FileOutputStream("output.txt");
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
//////////////////////////////////////////////////////////////////////////////
TaskC solver = new TaskC();
solver.solve(in, out);
//////////////////////////////////////////////////////////////////////////////
out.close();
}
static class TaskC
{
void solve(InputReader in, PrintWriter out)
{
int n;
n = in.nextInt();
if(n<=2)
out.println(-1);
else
{
for(int i=n; i>0; i--)
out.print(i + " ");
out.println();
}
}
}
static class InputReader
{
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream)
{
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next()
{
while(tokenizer == null || !tokenizer.hasMoreTokens())
{
try
{
tokenizer = new StringTokenizer(reader.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
public double nextDouble()
{
return Double.parseDouble(next());
}
public String nextLine()
{
String str = "";
try
{
str = reader.readLine();
}
catch(IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | a = int(input())
d = 4
if a == 1 or a == 2 :
print(-1)
else:
for i in range(a -1):
print(d ,end = " ")
d += 1
print(1)
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
long long int n;
cin >> n;
if (n <= 2) {
cout << "-1";
return 0;
}
for (long long int i = n; i > 0; i--) cout << i << " ";
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Arrays;
import java.util.Scanner;
public class _0560BuggySorting {
static void sort(int[] arr) {
int n=arr.length;
for(int i=0;i<n-1;i++) {
for(int j=0;j<n-i-1;j++) {
if(arr[j]>arr[j+1]) {
int temp=arr[j];
arr[j]=arr[j+1];
arr[j+1]=temp;
}
}
}
System.out.println(Arrays.toString(arr));
}
public static void main(String[] args) {
// sort(new int[] {8,3,1,7});
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
if(n<=2) {
System.out.println(-1);
}
else {
int st=n;
for(int i=0;i<n;i++)
{
System.out.print(st+" ");
st--;
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | def readarray(f): return map(f, raw_input().split())
def readint(): return int(raw_input())
def printlist(l): print ' '.join(map(str, l))
n = readint()
if n < 3:
print -1
else:
printlist([3, 2, 1] + [1]*(n-3))
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | print [n<=2 and -1 or ' '.join(map(str,range(n,0,-1))) for n in [int(raw_input())]][0] | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n <= 2:
print("-1")
else:
for i in range(2,n+1):
print(str(i) + " ")
print(1)
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n <= 2) {
cout << -1 << endl;
} else {
for (int i = n; i >= 1; i--) {
cout << i << " ";
}
cout << endl;
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int arr[n];
int x = n;
if (n <= 2)
cout << -1 << endl;
else {
for (int i = 0; i < n; i++) {
arr[i] = x;
x--;
}
for (int i = 0; i < n; i++) cout << arr[i] << " ";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main(void) {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int n;
cin >> n;
int arr[n];
for (int i = 0; i < n; i++) {
arr[i] = i + 1;
}
reverse(arr, arr + n);
if (n < 3)
cout << -1 << "\n";
else {
for (auto u : arr) cout << u << " ";
cout << "\n";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.*;
import java.lang.reflect.Field;
import java.math.BigInteger;
import java.util.*;
public class codeforces implements Runnable {
private BufferedReader br = null;
private PrintWriter pw = null;
private StringTokenizer stk = new StringTokenizer("");
public static void main(String[] args) {
new Thread(new codeforces()).run();
}
public void run() { /*
* try { // br = new BufferedReader(new
* FileReader("input.txt")); pw = new
* PrintWriter("output.txt"); } catch
* (FileNotFoundException e) { e.printStackTrace(); }
*/
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new OutputStreamWriter(System.out));
solver();
pw.close();
}
private void nline() {
try {
if (!stk.hasMoreTokens())
stk = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException("KaVaBUnGO!!!", e);
}
}
private String nstr() {
while (!stk.hasMoreTokens())
nline();
return stk.nextToken();
}
private int ni() {
return Integer.valueOf(nstr());
}
private long nl() {
return Long.valueOf(nstr());
}
private double nd() {
return Double.valueOf(nstr());
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
}
return null;
}
private void solver() {
int n = ni();
if (n<3){
System.out.println(-1);
}else {
for(int i=n; i>=1; i--){
System.out.print(i+" ");
}
}
}
private BigInteger nbi() {
return new BigInteger(nstr());
}
void exit() {
System.exit(0);
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import sys
n = input()
if(n <= 2): print -1
else:
a = range(n, 0, -1)
for i in xrange(n):
if(i!= 0): sys.stdout.write(" ")
sys.stdout.write(str(a[i])) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import sys
n = int(sys.stdin.readline())
if n <= 2:
print -1
else:
print ' '.join(map(str, xrange(n, 0, -1)))
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import sys
import math
import string
from collections import deque
# Function #
def read_int() :
temp = raw_input().split();
return map(int, temp);
def read_str() :
temp = raw_input().split();
return temp;
def write(output) :
sys.stdout.write(output);
def writeln(output) :
sys.stdout.write(str(output)+'\n');
# Class #
INF = 9123456789123456789
# Main Entry #
# Inner Function #
ans = set();
if __name__ == '__main__':
n = read_int()[0];
if n <= 2 :
print -1;
else :
strout = ""
for ii in xrange(n, 0, -1) :
strout+=str(ii)+" ";
print strout[0:-1];
pass
# End Here # | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i;
scanf("%d", &n);
if (n < 3)
printf("-1\n");
else {
printf("%d %d", n - 1, n);
for (i = 1; i <= n - 2; i++) printf(" %d", i);
printf("\n");
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int ( raw_input() )
if n <= 2:
print -1
else:
a = ['2'] * (n-1) + ['1']
print ' '.join(a)
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input()
if n>2:
print ' '.join(map(str,range(n,0,-1)))
else:
print -1 | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if(n > 2){
for (int i = 2; i <= n; ++i)
{
System.out.println(i + " ");
}
System.out.println(1);
}else {
System.out.println(-1);
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
public class Main {
static Scanner in = new Scanner();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
int n = in.nextInt();
if(n < 3)
out.print(-1);
else
for(int i = n; i > 0; i--)
out.print(i + " ");
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
}
public String next() throws IOException {
if(!st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String nextLine() throws IOException {
if(!st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
String r = st.nextToken("\n");
st = new StringTokenizer(br.readLine(), " ");
return r;
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
a = list(map(str,list(range(n,0,-1))))
if n <= 2:
print (-1)
else:
print (" ".join(a))
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n<3:print(-1)
else:
for i in range(n,0,-1):
print(i,end=' ')
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int i, j, k, l, m, n, p, q, a, b, c, d, x, y, z, t, ans = 0;
int arr[200006];
cin >> n;
if (n == 1 || n == 2) {
cout << "-1";
} else {
for (i = n; i > 0; i--) {
cout << i << " ";
}
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n < 3:
print(-1)
else:
arr = [2,3,1]
for i in range(4,n+1):
arr.append(i)
print(*arr) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
long long int max(long long int a, long long int b) {
if (a >= b)
return a;
else
return b;
}
long long int min(long long int a, long long int b) {
if (a >= b)
return b;
else
return a;
}
long long int diff(long long int a, long long int b) {
if (a >= b)
return a - b;
else
return b - a;
}
void pairsort(int a[], int b[], int n) {
pair<int, int> pairt[n];
for (int i = 0; i < n; i++) {
pairt[i].first = a[i];
pairt[i].second = b[i];
}
sort(pairt, pairt + n);
for (int i = 0; i < n; i++) {
a[i] = pairt[i].first;
b[i] = pairt[i].second;
}
}
int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int n;
cin >> n;
if (n == 1 || n == 2)
cout << -1;
else {
for (int i = n; i > 0; i--) cout << i << " ";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.io.File;
import java.util.Formatter;
import java.util.Scanner;
// In the name of The Friend
// CONTEST TEMPLATE ---- SmileToAzrael ......... bagherbal
/**
*
* @author ali
*/
public class A {
public static void main(String[] args) {
try {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
if (n <= 2)
{
System.out.println("-1");
}
else {
System.out.print("2 2");
for (int i = 2; i < n; i++)
System.out.print(" 1");
System.out.println("");
}
System.exit(0);
}
catch(Exception e) {
e.printStackTrace();
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int v[1000000];
int buggy_sorting(int n) {
if (n == 1 || n == 2) return 0;
v[0] = 5;
v[1] = 6;
v[2] = 1;
for (int i = 3; i < n; i++) v[i] = i;
return 1;
}
void median() {
int t, n, k, pas, cnt;
long long int s;
cin >> t;
for (int z = 0; z < t; z++) {
cin >> n >> k;
pas = n / 2;
for (int i = 0; i < n * k; i++) cin >> v[i];
cnt = 0;
s = 0;
for (int i = n * k - 1 - pas; i >= 0; i -= pas + 1)
if (cnt < k) {
s += v[i];
cnt++;
}
cout << s << '\n';
}
}
int main() {
int n;
cin >> n;
if (buggy_sorting(n))
for (int i = 0; i < n; i++) cout << v[i] << " ";
else
cout << -1;
return 0;
}
| CPP |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.