Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
;(function () { var n = +readline(); if (n < 3) { print(-1); return; } var str = []; for (var i = 0; i < n; i++) { str.push(n-i); } print(str.join(' ')); }).call(this);
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n<3: print(-1) else: s=[100,2]+[1]*(n-2) print(' '.join(map(str,s)))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; import java.io.PrintWriter; import java.util.*; import static java.lang.Math.*; public class A151 { static Scanner in = new Scanner(System.in); static PrintWriter w = new PrintWriter(System.out, true); static int ni() { return in.nextInt(); } static String nl() { return in.nextLine(); } static void pl(int v) { w.println(v); } static void pl(String s) { w.println(s); } public static void main(String[] args) { int n = ni(); if (n <= 2) { pl(-1); } else { w.print("2 3"); for (int i = 0; i < n - 2; i++) { w.print(" 1"); } w.println(); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class CF162A implements Runnable { StringTokenizer tokenizer; BufferedReader in; PrintWriter out; public static void main(String[] args) { new Thread(new CF162A()).start(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } catch (Exception e) { System.exit(9000); } finally { out.flush(); out.close(); } } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(in.readLine()); } return tokenizer.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } String nextString() throws IOException { return nextToken(); } void solve() throws NumberFormatException, IOException { int n = nextInt(); if (n == 0 || n == 1 || n == 2) { out.println(-1); return; } out.print(n - 1 + " "); out.print(n + " "); for (int i = 1; i < n - 1; i++) { out.print(i + " "); } out.println(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n > 2) while (n) cout << n-- << " "; else cout << -1; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n == 1 or n == 2: print(-1) else: A = [(i + 1) % n + 1 for i in range(n)] for i in range(n): if i == n - 1: print(A[i]) print() else: print(A[i], end = ' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(raw_input()) if n==1 or n==2: print -1 else: print ' '.join(['3' for _ in range(n-1)]+['2'])
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; while (~scanf("%d", &n)) { if (n == 1 || n == 2) { printf("-1\n"); } else { for (int i = n; i >= 1; i--) { printf("%d ", i); } printf("\n"); } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=input() if n<=2: print -1 else: for i in xrange(n): print n-i
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); if (n == 1 || n == 2) puts("-1"); else for (int i = n; i >= 1; i--) printf("%d ", i); return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(raw_input()) if n<=2: print -1 else: for i in range(n,0,-1): print i,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
# -*- coding: utf-8 -*- __author__ = 'Step' n = int(raw_input()) if n < 3: print -1 else: while n: print n, n -= 1
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Arrays; import java.util.List; import java.util.Scanner; public class A { public static void main(String[] Args) { new A().solve(); } void solve() { int n = si(); if (n <= 2) { System.out.println("-1"); } else { for (int i = 1, j = 100; i <= n; i++, j--) System.out.print(j + " "); } } void test() { for (int n = 0; n < 10; n++) { int[] a = new int[n]; for (int i = 0, j = 100; i < n; i++, j--) a[i] = j; pai(a); buggy(a); pai(a); System.out.println(""); } } static void buggy(int[] a) { for (int i = 0; i < a.length - 1; i++) { for (int j = i; j < a.length - 1; j++) { if (a[j] > a[j + 1]) { int t = a[j]; a[j] = a[j + 1]; a[j + 1] = t; } } } } // ----------------------- Library ------------------------ static void pai(int[] a) { System.out.println(Arrays.toString(a)); } static int toi(Object s) { return Integer.parseInt(s.toString()); } static int[] dx_ = { 0, 0, 1, -1 }; static int[] dy_ = { 1, -1, 0, 0 }; static int[] dx3 = { 1, -1, 0, 0, 0, 0 }; static int[] dy3 = { 0, 0, 1, -1, 0, 0 }; static int[] dz3 = { 0, 0, 0, 0, 1, -1 }; static int[] dx = { 1, 0, -1, 1, -1, 1, 0, -1 }, dy = { 1, 1, 1, 0, 0, -1, -1, -1 }; static Scanner scan = new Scanner(System.in); static int INF = 2147483647; // finds GCD of a and b using Euclidian algorithm public int GCD(int a, int b) { if (b == 0) return a; return GCD(b, a % b); } static List<String> toList(String[] a) { return Arrays.asList(a); } static String[] toArray(List<String> a) { String[] o = new String[a.size()]; a.toArray(o); return o; } static int[] pair(int... a) { return a; } static int si() { return scan.nextInt(); } static String ss() { return scan.next(); } static int[] sai(int n) { int[] a = new int[n]; for (int i = 0; i < a.length; i++) a[i] = si(); return a; } static int[] sai_(int n) { int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) a[i] = si(); return a; } static String[] sas(int n) { String[] a = new String[n]; for (int i = 0; i < a.length; i++) a[i] = ss(); return a; } static Object[][] _sm1(int r, int c) { Object[][] a = new Object[r][c]; for (int i = 0; i < r; i++) for (int j = 0; j < c; j++) a[i][j] = scan.next(); return a; } static Object[][] _sm2(int r) { Object[][] a = new Object[r][3]; for (int i = 0; i < r; i++) a[i] = new Object[] { ss(), ss(), ss() }; return a; } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; if (n <= 2) cout << "-1"; else for (i = n; i > 0; i--) cout << i << ' '; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if(n<=2): print(-1) else: for x in range(n,0,-1): print(x,end=" ")
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import sys from itertools import imap inp = sys.stdin if 0: from StringIO import StringIO s1 = '''15''' inp = StringIO(s1) def read_ints(): return map(int, inp.readline().split(' ')) n, = read_ints() if n <= 2: print -1 else: print ' '.join(imap(str, xrange(n, 0, -1)))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if(n==1 or n==2): print(-1) else: for i in range (n,0,-1): print(i,end=' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n == 1 || n == 2) cout << "-1" << endl; else for (int i = n; i >= 1; i--) { cout << i << " "; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author tarek */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); ABuggySorting solver = new ABuggySorting(); solver.solve(1, in, out); out.close(); } static class ABuggySorting { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); if (n <= 2) { out.printLine("-1"); return; } System.out.print("2" + " " + "2" + " "); for (int i = 0; i < n - 2; i++) { out.print("1" + " "); } } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n == 1 || n == 2) { cout << "-1"; } else { for (int i = n; i >= 1; i--) { cout << i << " "; } } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.security.SecureRandom; import java.util.*; import java.math.*; import java.awt.geom.*; import static java.lang.Math.*; public class Solution implements Runnable { public void solve() throws Exception { int n = sc.nextInt(); if (n <= 2) { out.println(-1); return; } out.print("100 3 "); for (int i = 0;i < n - 2; ++ i) out.print("1 "); } /*--------------------------------------------------------------*/ static String filename = ""; static boolean fromFile = false; BufferedReader in; PrintWriter out; FastScanner sc; public static void main(String[] args) { new Thread(null, new Solution(), "", 1 << 25).start(); } public void run() { try { init(); solve(); } catch (Exception e) { throw new RuntimeException(e); } finally { out.close(); } } void init() throws Exception { if (fromFile) { in = new BufferedReader(new FileReader(filename+".in")); out = new PrintWriter(new FileWriter(filename+".out")); } else { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } sc = new FastScanner(in); } } class FastScanner { BufferedReader reader; StringTokenizer strTok; public FastScanner(BufferedReader reader) { this.reader = reader; } public String nextToken() throws IOException { while (strTok == null || !strTok.hasMoreTokens()) { strTok = new StringTokenizer(reader.readLine()); } return strTok.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } public BigInteger nextBigInteger() throws IOException { return new BigInteger(nextToken()); } public BigDecimal nextBigDecimal() throws IOException { return new BigDecimal(nextToken()); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i, a[50]; cin >> n; if (n <= 2) cout << "-1\n"; else { for (i = 0; i < n; i++) { a[i] = n - i; } for (i = 0; i < n; i++) cout << a[i] << " "; cout << "\n"; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); if (n <= 2) printf("-1\n"); else { printf("%d %d", n - 1, n); for (int i = 1; i <= n - 2; ++i) printf(" %d", i); printf("\n"); } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
inf = 1001 def merge(L, n1, R, n2): L.append(inf) R.append(inf) a = [] i = j = 0 while i < n1 or j < n2: if L[i] < R[j]: a.append(L[i]) i += 1 else: a.append(R[j]) j += 1 return a def msort(a, n): if n == 1: return a else: n1 = n // 2 n2 = n - n1 L = a[:n1] R = a[n1:] L = msort(L, n1) R = msort(R, n2) return(merge(L, n1, R, n2)) def buggy(a, n): for i in range(n-1): for j in range(i, n-1): if a[j] > a[j+1]: temp = a[j] a[j] = a[j+1] a[j+1] = temp return a n = int(input()) a = [] k = 100 if n <= 2: for f in range(n): a.append(k-f) else: a = [3, 2, 1] for i in range(n-3): a.append(k-i) r = a[:] answer = msort(r, n) buggy_result = buggy(r, n) if buggy_result == answer: print(-1) else: for x in a: print(x, end = ' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; public class sorting{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); if(n<=2) System.out.println(-1); else { System.out.print("2 3 1"); for(int i = 0; i<n-3; i++) System.out.print(" 5"); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class A { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if (n < 3) System.out.println(-1); else { for (int i = n; i >= 1; i--) System.out.print(i + " "); System.out.println(); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if(n==1 or n==2): print(-1) else: for i in range(n,0,-1): print(i,end=" ")
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 2; int main() { ios::sync_with_stdio(false); int n; cin >> n; if (n <= 2) cout << -1 << endl; else cout << "2 3 1"; for (int i = 4; i <= n; ++i) { cout << ' ' << i; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
def get_counter_example(n): if n <= 2: return -1 n -= 2 counter = ['5', '5'] for i in xrange(n): counter += ['1'] return ' '.join(counter) if __name__ == "__main__": inpt = raw_input() args = [int(el) for el in inpt.split(' ')] rtn = get_counter_example(*args) if type(rtn) is list: for el in rtn: print el else: print rtn
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { long long n; long long i; scanf("%I64d", &n); if (n == 1 || n == 2) { printf("-1\n"); } else { printf("%I64d %I64d ", n, n - 1); for (i = 1; i <= n - 2; i++) { printf("%I64d", i); if (i != n - 2) printf(" "); else printf("\n"); } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; while (scanf("%d", &n) != EOF) { if (n == 1 || n == 2) { printf("-1\n"); } else { int i; printf("%d", n); for (i = n - 1; i >= 1; i--) { printf(" %d", i); } printf("\n"); } } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n<=2: print(-1) else: a=[i for i in range(n,0,-1)] print(*a)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; template <typename T> inline string tostring(T a) { ostringstream os(""); os << a; return os.str(); } template <typename T> inline long long tolong(T a) { long long res; istringstream os(a); os >> res; return res; } template <typename T> inline vector<int> parse(T str) { vector<int> res; int s; istringstream os(str); while (os >> s) res.push_back(s); return res; } template <class T> inline T _sqrt(T x) { return (T)sqrt((double)x); } template <class T> inline T _bigmod(T n, T m) { T ans = 1, mult = n % 1073741824; while (m) { if (m & 1) ans = (ans * mult) % 1073741824; m >>= 1; mult = (mult * mult) % 1073741824; } ans %= 1073741824; return ans; } template <class T> inline T _modinv(T x) { return _bigmod(x, (T)1073741824 - 2) % 1073741824; } inline int LEN(string a) { return a.length(); } inline int LEN(char a[]) { return strlen(a); } template <class T> inline T _lcm(T x, T y) { return x * y / __gcd(x, y); } int main() { int a, b, c, d, x, y, z, cnt, n; cin >> n; if (n == 1 || n == 2) cout << "-1"; else { for (int i = n; i > 0; i--) cout << i << " "; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n==1 or n==2: print (-1) else: ans=[1]*n ans[0]=10 ans[1]=9 print (*ans)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; /** * * @author greggy */ public class BuggySorting { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if (n <= 2) { System.out.println("-1"); } else { for (int i = 0; i < n; i++) { System.out.println(n - i + " "); } } in.close(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); if (n < 3) { printf("-1\n"); } else { for (int i = n; i > 0; i--) { printf("%d%c", i, i == 1 ? '\n' : ' '); } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n == 1 or n == 2: print(-1) else: print(*range(n, 0, -1))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(raw_input()) out = range(n,0,-1) if n==1 or n==2: print -1 else: for i in out: print i,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> int main() { int n, i; scanf("%d", &n); if (n == 1 || n == 2) printf("-1"); else for (i = n; i > 0; i--) printf("%d ", i); return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); int n; cin >> n; if (n <= 2) cout << -1 << endl; else { for (int i = n; i >= 1; i--) cout << i << " "; cout << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; if (n == 1 || n == 2) { cout << -1; return 0; } for (i = n; i >= 1; i--) cout << i << " "; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n<=2: print(-1) else: for i in range(n,0,-1): print(i,end=" ") print()
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import random n=int(raw_input()) count = 0 while count < 1000: a=[] b=[] d=[] for i in range(0,n): a.append(random.choice(range(1,100))) b.append(int(a[i])) d.append(int(a[i])) b.sort() #a1,a2,....an #a0,a1,....an-1 for i in range(1,n): for j in range(i,n): j-=1 if a[j]>a[j+1]: temp=a[j] a[j]=a[j+1] a[j+1]=temp if b[0:n] != a[0:n]: c="" for i in d[0:n]: c=c+str(i)+" " print c.rstrip() exit() else: count = count + 1 print "-1"
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; while (cin >> n) { if (n < 3) { cout << -1 << endl; } else { for (int i = n; i > 0; --i) { cout << i << " "; } cout << endl; } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); if (n <= 2) printf("-1\n"); else { while (n >= 1) { printf("%d ", n); n--; } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; public class CF0246A { public static void main(String[] args) { Scanner in=new Scanner(System.in); int n=in.nextInt(); if(n<=2) System.out.println("-1"); else { for(int i=n;i>0;i--){ if(i==1) System.out.println(i); else System.out.print(i+" "); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n<3: print(-1) else: print(' '.join(map(str,range(n,0,-1))))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n < 3: print(-1) else: print(' '.join(list(map(str, range(n, 0, -1)))))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if(n == 1 or n== 2): print(-1) else: i = n while(i >= 1): print(i,end=" ") i -=1
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n > 2) { for (int i = n; i > 0; i--) cout << i << " "; cout << endl; } else cout << -1 << endl; return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(raw_input()) if n<3: print -1 else: while n: print n n=n-1
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; while (~scanf("%d", &n)) { if (n == 1 || n == 2) printf("-1\n"); else { for (int i = n; i >= 1; i--) printf("%d ", i); } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n<3:print('-1') else: k=[i for i in range(n,0,-1)] print(*k)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> void swap(int &i, int &j) { int tmp = i; i = j; j = tmp; } int main() { int n; scanf("%d", &n); if (n == 1 || n == 0 || n == 2) { printf("-1"); return 0; } for (int i = n; i > 0; i--) printf("%d ", i); return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; import java.io.*; import java.lang.*; import static java.lang.System.*; public class P246A{ static int[] arr; static int n; static void swap(int i, int j){ int tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } static void sort(){ for(int i=0; i<n; i++){ for(int j=i; j<n; j++){ if((j+1)<n && arr[j]>arr[j+1]) swap(j, j+1); } } } public static void main(String[] args)throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(in)); PrintStream ps = new PrintStream(new BufferedOutputStream(out)); Scanner sc = new Scanner(in); while(sc.hasNext()){ n = sc.nextInt(); //arr = new int[n]; //for(int i=0; i<n; i++) arr[i]=sc.nextInt(); //sort(); if(n==1 || n==2){ out.println(-1); }else{ for(int j=n; j>0; j--){ if(j!=n) out.print(" "); out.print(j); } out.println(); } } ps.flush(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class A { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); if (n == 1 || n == 2) System.out.println(-1); else { System.out.print(n-1 + " "); System.out.print(n+" "); for (int i = n-2; i >= 1; i--) System.out.print(i + " "); System.out.println(); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class BuggySorting { public BuggySorting() { // TODO Auto-generated constructor stub } /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc=new Scanner(System.in); int n=sc.nextInt(); if(n<=2){ System.out.println(-1); }else{ int k=100; for(int i=0;i<n;i++){ System.out.print((k-i)+" "); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.ArrayList; import java.util.Collections; import java.util.Scanner; public class D { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int n=scan.nextInt(); ArrayList<Integer> a= new ArrayList<Integer>(); if(n>2) { for(int i=1;i<=n;i++) { a.add(i); } Collections.sort(a,Collections.reverseOrder()); for (Integer integer : a) { System.out.print(integer+" "); } } else { System.out.println("-1"); } scan.close(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class buggySorting { public static void main(String[] args) { // TODO Auto-generated method stub int n; Scanner in=new Scanner(System.in); n=in.nextInt(); if(n<=2) System.out.println("-1"); else{ for(int i=n;i>=1;i--) System.out.println(i+" "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) print(-1 if n < 3 else " ".join(map(str, [x for x in range(n, 0, -1)])))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#!/usr/bin/env python from sys import stdin n = int(stdin.readline()) if n < 3: print(-1) else: print(' '.join(map(str, [2, 2] + [1] * (n-2))))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
def unlucky(n): if n <= 2: return [-1] a = list() for i in range(n, -1, -1): a.append(i) return a[:-1] print(*unlucky(int(input())))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.*; public class Main { public static void main(String args[])throws Exception { Scanner Sc=new Scanner(System.in); int n=Sc.nextInt(); if(n>2) { for(int i=n;i>=1;i--) System.out.print(i+" "); System.out.println(); } else { System.out.println(-1); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, numberofgirl; cin >> n; if (n <= 2) { cout << -1 << endl; } else { for (int g = n; g >= 1; g--) { cout << g; if (g < n + 1) cout << " "; } cout << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; public class Code151A { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] ar = new int[n]; if (n <= 2){ System.out.print(-1); } else for (int i = 0; i < n; i++){ System.out.print(n - i+ " "); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if(n<3): print(-1) else: a=list() for i in range(n-2): a.append(i+1) a.insert(0,n-1) a.insert(0,n) for i in a: print(i,end=' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> int number, i; using namespace std; int main() { cin >> number; if (number > 2) { for (i = number; i > 0; i--) { cout << i << " "; } } else { cout << "-1"; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int i, j, n; scanf("%d", &n); if (n == 1 || n == 2) printf("-1\n"); else { for (i = n; i > 0; i--) { printf("%d ", i); } printf("\n"); } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.Scanner; /** * * @author gargon */ public class JavaApplication30 { /** * @param args the command line arguments */ public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); if (n>2){ for (int i=n; i>0; i--){ System.out.print(i); System.out.print(" "); } }else{ System.out.println(-1); } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(raw_input()) if n<3: print -1 else: ans=range(n,0,-1) print ' '.join(map(str,ans))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(raw_input()) if n > 2: print ' '.join([`k` for k in xrange(n, 0, -1)]) else: print -1
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
a=int(input()) if a==1 or a==2: print(-1) else: print(3,5,end=' ') for i in range(a-2): print(1,end=' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()); print(*((-1,), range(n, 0, -1))[n > 2])
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; typedef long long LL; int n; int main() { ios_base ::sync_with_stdio(0), cin.tie(0), cout.tie(0); cin >> n; if (n == 1 || n == 2) { cout << "-1" << "\n"; return 0; } for (int i = n; i >= 1; i--) { cout << i << " "; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=input() if n<=2: print -1 else: for i in range(n-1): print 2, print 1
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(raw_input()) if n<=2: print -1 else: for i in range(n,0,-1): print i
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n <= 2) cout << -1 << "\n"; else { for (int i = 0; i < n; i++) { cout << n - i << " "; } cout << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n < 3) cout << -1; else for (int i = n; i > 0; --i) { cout << i << ' '; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n == 1 || n == 2) { cout << "-1" << endl; } else { while (n > 0) { cout << n << " "; n--; } } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n<3: print ('-1') else: print ("2 3 1 ") q = 3 while q<n: print (str(q)+" ") q = q + 1
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n,a=input(),range(1,60) print [' '.join(map(str,a[n-1::-1])),-1][n<3]
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n<3: print(-1) else: print(*range(n,0,-1))
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.util.*; public class test1 { public static void main(String[] args) throws Exception { new test1().run(); } PrintWriter out = null; void run() throws Exception { Scanner in = new Scanner(System.in); out = new PrintWriter(System.out); int n=in.nextInt(); if(n<3) out.println(-1); else { out.print("3 2 1 "); for(int i=4;i<=n;i++) out.print("1 "); } out.close(); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j, p, a[1000]; while (cin >> n) { if (n > 2) { for (i = n; i >= 1; i--) cout << i << " "; cout << endl; } else cout << -1 << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n=int(input()) if n<3:print(-1) else: for i in range(n,0,-1):print(i)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; if (n < 3) cout << "-1"; else { for (i = 0; i < n - 1; i++) { cout << 60 - i << " "; } cout << 2 << endl; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; long long mod = 1000000000 + 7; int main() { ios::sync_with_stdio(0); ios_base::sync_with_stdio(0); cin.tie(0), cout.tie(0); long long n; cin >> n; if (n < 3) { cout << -1; return 0; } for (int i = n; i >= 1; i--) { cout << i << " "; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main(void) { int i, j, k, T; cin >> T; if (T <= 2) cout << "-1\n"; else { for (i = 1; i < T; i++) cout << "2 "; cout << "1\n"; } }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int n; int main() { cin >> n; if (n <= 2) { cout << -1; return 0; } for (int i = 2; i <= n; ++i) { if (i != 2) cout << " "; cout << i; } cout << " " << 1; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n <= 2: print(-1) else: for i in range(n): print(n - i + 1, end = ' ')
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input() if n <= 2: print -1 exit() for i in xrange(n, 0, -1): print i,
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; if (n == 1 || n == 2) cout << "-1"; else { for (i = n; i >= 1; i--) cout << i << ' '; cout << '\n'; } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#################################################### # -*- coding: utf-8 -*- import sys w = sys.stdout.write read = sys.stdin.readline reads = sys.stdin.read def r(f=None): if f: return map(f, read().split()) else: return read().split() def rs(t,f=None): result = [] result_append = result.append for i in xrange(t): if f: result_append(tuple(map(f, read().split()))) else: result_append(list(read().split())) return result #################################################### import math sqrt = math.sqrt from collections import deque [n] = r(int) if n <= 2: w("-1") else: res = range(1, n+1, 1) res[0] = 3 res[2] = 1 w(" ".join(map(str, res)))
PYTHON
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.io.*; import java.util.*; public class A_R151 { BufferedReader in; PrintWriter out; StringTokenizer st; void solve() throws IOException { int n = nextInt(); if (n <= 2){ out.println(-1); return; } for (int i = 0; i < n; i++) out.print((n - i) + " "); } void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); solve(); in.close(); out.close(); } public static void main(String[] args) throws IOException { new A_R151().run(); } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; if (n <= 2) { cout << -1; } else { while (n--) { cout << n + 1 << " "; } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if (n > 2): for i in range(2, n+1): print(i, end = " ") print(1) else: print(-1)
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
import java.util.ArrayList; import java.util.Scanner; /** * * @author Arif */ public class Problem9 { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int[] a = new int[n]; if (n == 1 || n == 2) { System.out.println("-1"); } else { a[0] = 99; a[1] = 100; a[n-1] = 1; for (int i = 2; i <= n-2; i++) { a[i] = i; //System.out.println("arif"); } for (int i = 0; i < n; i++) { System.out.println(a[i]); } } } }
JAVA
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
#include <bits/stdc++.h> int main() { int n = 0; scanf("%d", &n); if (n == 1 || n == 2) printf("-1"); else { int a[n + 1]; int i = 0; for (i = 1; i <= n; i++) { printf("%d ", n + 2 - i); } } return 0; }
CPP
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = int(input()) if n==1 or n==2: print(-1) else: for i in range(n,0,-1): print(i,end=' ') print()
PYTHON3
246_A. Buggy Sorting
Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a. loop integer variable i from 1 to n - 1     loop integer variable j from i to n - 1         if (aj > aj + 1), then swap the values of elements aj and aj + 1 But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1. Input You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array. Output Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them. Examples Input 1 Output -1
2
7
n = input() if n>2: print ' '.join([str(i) for i in xrange(n,0,-1)]) else: print -1
PYTHON