Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
---|---|---|---|---|---|
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | ;(function () {
var n = +readline();
if (n < 3) {
print(-1);
return;
}
var str = [];
for (var i = 0; i < n; i++) {
str.push(n-i);
}
print(str.join(' '));
}).call(this); | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n<3:
print(-1)
else:
s=[100,2]+[1]*(n-2)
print(' '.join(map(str,s))) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
import java.io.PrintWriter;
import java.util.*;
import static java.lang.Math.*;
public class A151 {
static Scanner in = new Scanner(System.in);
static PrintWriter w = new PrintWriter(System.out, true);
static int ni() {
return in.nextInt();
}
static String nl() {
return in.nextLine();
}
static void pl(int v) {
w.println(v);
}
static void pl(String s) {
w.println(s);
}
public static void main(String[] args) {
int n = ni();
if (n <= 2) {
pl(-1);
} else {
w.print("2 3");
for (int i = 0; i < n - 2; i++) {
w.print(" 1");
}
w.println();
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class CF162A implements Runnable {
StringTokenizer tokenizer;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) {
new Thread(new CF162A()).start();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
} catch (Exception e) {
System.exit(9000);
} finally {
out.flush();
out.close();
}
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(in.readLine());
}
return tokenizer.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
String nextString() throws IOException {
return nextToken();
}
void solve() throws NumberFormatException, IOException {
int n = nextInt();
if (n == 0 || n == 1 || n == 2) {
out.println(-1);
return;
}
out.print(n - 1 + " ");
out.print(n + " ");
for (int i = 1; i < n - 1; i++) {
out.print(i + " ");
}
out.println();
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n > 2)
while (n) cout << n-- << " ";
else
cout << -1;
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n == 1 or n == 2:
print(-1)
else:
A = [(i + 1) % n + 1 for i in range(n)]
for i in range(n):
if i == n - 1:
print(A[i])
print()
else:
print(A[i], end = ' ') | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(raw_input())
if n==1 or n==2:
print -1
else:
print ' '.join(['3' for _ in range(n-1)]+['2']) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
while (~scanf("%d", &n)) {
if (n == 1 || n == 2) {
printf("-1\n");
} else {
for (int i = n; i >= 1; i--) {
printf("%d ", i);
}
printf("\n");
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input()
if n<=2:
print -1
else:
for i in xrange(n):
print n-i
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
scanf("%d", &n);
if (n == 1 || n == 2)
puts("-1");
else
for (int i = n; i >= 1; i--) printf("%d ", i);
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(raw_input())
if n<=2:
print -1
else:
for i in range(n,0,-1):
print i,
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | # -*- coding: utf-8 -*-
__author__ = 'Step'
n = int(raw_input())
if n < 3:
print -1
else:
while n:
print n,
n -= 1 | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Arrays;
import java.util.List;
import java.util.Scanner;
public class A {
public static void main(String[] Args) {
new A().solve();
}
void solve() {
int n = si();
if (n <= 2) {
System.out.println("-1");
} else {
for (int i = 1, j = 100; i <= n; i++, j--)
System.out.print(j + " ");
}
}
void test() {
for (int n = 0; n < 10; n++) {
int[] a = new int[n];
for (int i = 0, j = 100; i < n; i++, j--)
a[i] = j;
pai(a);
buggy(a);
pai(a);
System.out.println("");
}
}
static void buggy(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
for (int j = i; j < a.length - 1; j++) {
if (a[j] > a[j + 1]) {
int t = a[j];
a[j] = a[j + 1];
a[j + 1] = t;
}
}
}
}
// ----------------------- Library ------------------------
static void pai(int[] a) {
System.out.println(Arrays.toString(a));
}
static int toi(Object s) {
return Integer.parseInt(s.toString());
}
static int[] dx_ = { 0, 0, 1, -1 };
static int[] dy_ = { 1, -1, 0, 0 };
static int[] dx3 = { 1, -1, 0, 0, 0, 0 };
static int[] dy3 = { 0, 0, 1, -1, 0, 0 };
static int[] dz3 = { 0, 0, 0, 0, 1, -1 };
static int[] dx = { 1, 0, -1, 1, -1, 1, 0, -1 }, dy = { 1, 1, 1, 0, 0, -1,
-1, -1 };
static Scanner scan = new Scanner(System.in);
static int INF = 2147483647;
// finds GCD of a and b using Euclidian algorithm
public int GCD(int a, int b) {
if (b == 0)
return a;
return GCD(b, a % b);
}
static List<String> toList(String[] a) {
return Arrays.asList(a);
}
static String[] toArray(List<String> a) {
String[] o = new String[a.size()];
a.toArray(o);
return o;
}
static int[] pair(int... a) {
return a;
}
static int si() {
return scan.nextInt();
}
static String ss() {
return scan.next();
}
static int[] sai(int n) {
int[] a = new int[n];
for (int i = 0; i < a.length; i++)
a[i] = si();
return a;
}
static int[] sai_(int n) {
int[] a = new int[n + 1];
for (int i = 1; i <= n; i++)
a[i] = si();
return a;
}
static String[] sas(int n) {
String[] a = new String[n];
for (int i = 0; i < a.length; i++)
a[i] = ss();
return a;
}
static Object[][] _sm1(int r, int c) {
Object[][] a = new Object[r][c];
for (int i = 0; i < r; i++)
for (int j = 0; j < c; j++)
a[i][j] = scan.next();
return a;
}
static Object[][] _sm2(int r) {
Object[][] a = new Object[r][3];
for (int i = 0; i < r; i++)
a[i] = new Object[] { ss(), ss(), ss() };
return a;
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i;
cin >> n;
if (n <= 2)
cout << "-1";
else
for (i = n; i > 0; i--) cout << i << ' ';
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if(n<=2):
print(-1)
else:
for x in range(n,0,-1):
print(x,end=" ") | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import sys
from itertools import imap
inp = sys.stdin
if 0:
from StringIO import StringIO
s1 = '''15'''
inp = StringIO(s1)
def read_ints():
return map(int, inp.readline().split(' '))
n, = read_ints()
if n <= 2:
print -1
else:
print ' '.join(imap(str, xrange(n, 0, -1))) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if(n==1 or n==2): print(-1)
else:
for i in range (n,0,-1): print(i,end=' ') | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n == 1 || n == 2)
cout << "-1" << endl;
else
for (int i = n; i >= 1; i--) {
cout << i << " ";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author tarek
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ABuggySorting solver = new ABuggySorting();
solver.solve(1, in, out);
out.close();
}
static class ABuggySorting {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
if (n <= 2) {
out.printLine("-1");
return;
}
System.out.print("2" + " " + "2" + " ");
for (int i = 0; i < n - 2; i++) {
out.print("1" + " ");
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n == 1 || n == 2) {
cout << "-1";
} else {
for (int i = n; i >= 1; i--) {
cout << i << " ";
}
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.*;
import java.security.SecureRandom;
import java.util.*;
import java.math.*;
import java.awt.geom.*;
import static java.lang.Math.*;
public class Solution implements Runnable {
public void solve() throws Exception {
int n = sc.nextInt();
if (n <= 2) {
out.println(-1);
return;
}
out.print("100 3 ");
for (int i = 0;i < n - 2; ++ i)
out.print("1 ");
}
/*--------------------------------------------------------------*/
static String filename = "";
static boolean fromFile = false;
BufferedReader in;
PrintWriter out;
FastScanner sc;
public static void main(String[] args) {
new Thread(null, new Solution(), "", 1 << 25).start();
}
public void run() {
try {
init();
solve();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
out.close();
}
}
void init() throws Exception {
if (fromFile) {
in = new BufferedReader(new FileReader(filename+".in"));
out = new PrintWriter(new FileWriter(filename+".out"));
} else {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
sc = new FastScanner(in);
}
}
class FastScanner {
BufferedReader reader;
StringTokenizer strTok;
public FastScanner(BufferedReader reader) {
this.reader = reader;
}
public String nextToken() throws IOException {
while (strTok == null || !strTok.hasMoreTokens()) {
strTok = new StringTokenizer(reader.readLine());
}
return strTok.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public BigInteger nextBigInteger() throws IOException {
return new BigInteger(nextToken());
}
public BigDecimal nextBigDecimal() throws IOException {
return new BigDecimal(nextToken());
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, a[50];
cin >> n;
if (n <= 2)
cout << "-1\n";
else {
for (i = 0; i < n; i++) {
a[i] = n - i;
}
for (i = 0; i < n; i++) cout << a[i] << " ";
cout << "\n";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
int main() {
int n;
scanf("%d", &n);
if (n <= 2)
printf("-1\n");
else {
printf("%d %d", n - 1, n);
for (int i = 1; i <= n - 2; ++i) printf(" %d", i);
printf("\n");
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | inf = 1001
def merge(L, n1, R, n2):
L.append(inf)
R.append(inf)
a = []
i = j = 0
while i < n1 or j < n2:
if L[i] < R[j]:
a.append(L[i])
i += 1
else:
a.append(R[j])
j += 1
return a
def msort(a, n):
if n == 1:
return a
else:
n1 = n // 2
n2 = n - n1
L = a[:n1]
R = a[n1:]
L = msort(L, n1)
R = msort(R, n2)
return(merge(L, n1, R, n2))
def buggy(a, n):
for i in range(n-1):
for j in range(i, n-1):
if a[j] > a[j+1]:
temp = a[j]
a[j] = a[j+1]
a[j+1] = temp
return a
n = int(input())
a = []
k = 100
if n <= 2:
for f in range(n):
a.append(k-f)
else:
a = [3, 2, 1]
for i in range(n-3):
a.append(k-i)
r = a[:]
answer = msort(r, n)
buggy_result = buggy(r, n)
if buggy_result == answer:
print(-1)
else:
for x in a:
print(x, end = ' ') | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
public class sorting{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if(n<=2)
System.out.println(-1);
else
{
System.out.print("2 3 1");
for(int i = 0; i<n-3; i++)
System.out.print(" 5");
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if (n < 3)
System.out.println(-1);
else {
for (int i = n; i >= 1; i--)
System.out.print(i + " ");
System.out.println();
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if(n==1 or n==2):
print(-1)
else:
for i in range(n,0,-1):
print(i,end=" ") | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 2;
int main() {
ios::sync_with_stdio(false);
int n;
cin >> n;
if (n <= 2)
cout << -1 << endl;
else
cout << "2 3 1";
for (int i = 4; i <= n; ++i) {
cout << ' ' << i;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | def get_counter_example(n):
if n <= 2:
return -1
n -= 2
counter = ['5', '5']
for i in xrange(n):
counter += ['1']
return ' '.join(counter)
if __name__ == "__main__":
inpt = raw_input()
args = [int(el) for el in inpt.split(' ')]
rtn = get_counter_example(*args)
if type(rtn) is list:
for el in rtn:
print el
else:
print rtn
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
long long i;
scanf("%I64d", &n);
if (n == 1 || n == 2) {
printf("-1\n");
} else {
printf("%I64d %I64d ", n, n - 1);
for (i = 1; i <= n - 2; i++) {
printf("%I64d", i);
if (i != n - 2)
printf(" ");
else
printf("\n");
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n == 1 || n == 2) {
printf("-1\n");
} else {
int i;
printf("%d", n);
for (i = n - 1; i >= 1; i--) {
printf(" %d", i);
}
printf("\n");
}
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n<=2:
print(-1)
else:
a=[i for i in range(n,0,-1)]
print(*a) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
template <typename T>
inline string tostring(T a) {
ostringstream os("");
os << a;
return os.str();
}
template <typename T>
inline long long tolong(T a) {
long long res;
istringstream os(a);
os >> res;
return res;
}
template <typename T>
inline vector<int> parse(T str) {
vector<int> res;
int s;
istringstream os(str);
while (os >> s) res.push_back(s);
return res;
}
template <class T>
inline T _sqrt(T x) {
return (T)sqrt((double)x);
}
template <class T>
inline T _bigmod(T n, T m) {
T ans = 1, mult = n % 1073741824;
while (m) {
if (m & 1) ans = (ans * mult) % 1073741824;
m >>= 1;
mult = (mult * mult) % 1073741824;
}
ans %= 1073741824;
return ans;
}
template <class T>
inline T _modinv(T x) {
return _bigmod(x, (T)1073741824 - 2) % 1073741824;
}
inline int LEN(string a) { return a.length(); }
inline int LEN(char a[]) { return strlen(a); }
template <class T>
inline T _lcm(T x, T y) {
return x * y / __gcd(x, y);
}
int main() {
int a, b, c, d, x, y, z, cnt, n;
cin >> n;
if (n == 1 || n == 2)
cout << "-1";
else {
for (int i = n; i > 0; i--) cout << i << " ";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n==1 or n==2:
print (-1)
else:
ans=[1]*n
ans[0]=10
ans[1]=9
print (*ans) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
/**
*
* @author greggy
*/
public class BuggySorting {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if (n <= 2) {
System.out.println("-1");
} else {
for (int i = 0; i < n; i++) {
System.out.println(n - i + " ");
}
}
in.close();
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
scanf("%d", &n);
if (n < 3) {
printf("-1\n");
} else {
for (int i = n; i > 0; i--) {
printf("%d%c", i, i == 1 ? '\n' : ' ');
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n == 1 or n == 2:
print(-1)
else:
print(*range(n, 0, -1))
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(raw_input())
out = range(n,0,-1)
if n==1 or n==2:
print -1
else:
for i in out:
print i, | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
int main() {
int n, i;
scanf("%d", &n);
if (n == 1 || n == 2)
printf("-1");
else
for (i = n; i > 0; i--) printf("%d ", i);
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
int n;
cin >> n;
if (n <= 2)
cout << -1 << endl;
else {
for (int i = n; i >= 1; i--) cout << i << " ";
cout << endl;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i;
cin >> n;
if (n == 1 || n == 2) {
cout << -1;
return 0;
}
for (i = n; i >= 1; i--) cout << i << " ";
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n<=2:
print(-1)
else:
for i in range(n,0,-1):
print(i,end=" ")
print() | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import random
n=int(raw_input())
count = 0
while count < 1000:
a=[]
b=[]
d=[]
for i in range(0,n):
a.append(random.choice(range(1,100)))
b.append(int(a[i]))
d.append(int(a[i]))
b.sort()
#a1,a2,....an
#a0,a1,....an-1
for i in range(1,n):
for j in range(i,n):
j-=1
if a[j]>a[j+1]:
temp=a[j]
a[j]=a[j+1]
a[j+1]=temp
if b[0:n] != a[0:n]:
c=""
for i in d[0:n]:
c=c+str(i)+" "
print c.rstrip()
exit()
else:
count = count + 1
print "-1"
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
while (cin >> n) {
if (n < 3) {
cout << -1 << endl;
} else {
for (int i = n; i > 0; --i) {
cout << i << " ";
}
cout << endl;
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
scanf("%d", &n);
if (n <= 2)
printf("-1\n");
else {
while (n >= 1) {
printf("%d ", n);
n--;
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
public class CF0246A {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
if(n<=2) System.out.println("-1");
else {
for(int i=n;i>0;i--){
if(i==1) System.out.println(i);
else System.out.print(i+" ");
}
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n<3: print(-1)
else: print(' '.join(map(str,range(n,0,-1)))) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n < 3:
print(-1)
else:
print(' '.join(list(map(str, range(n, 0, -1)))))
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if(n == 1 or n== 2):
print(-1)
else:
i = n
while(i >= 1):
print(i,end=" ")
i -=1
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n > 2) {
for (int i = n; i > 0; i--) cout << i << " ";
cout << endl;
} else
cout << -1 << endl;
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(raw_input())
if n<3:
print -1
else:
while n:
print n
n=n-1
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
while (~scanf("%d", &n)) {
if (n == 1 || n == 2)
printf("-1\n");
else {
for (int i = n; i >= 1; i--) printf("%d ", i);
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n<3:print('-1')
else:
k=[i for i in range(n,0,-1)]
print(*k) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
void swap(int &i, int &j) {
int tmp = i;
i = j;
j = tmp;
}
int main() {
int n;
scanf("%d", &n);
if (n == 1 || n == 0 || n == 2) {
printf("-1");
return 0;
}
for (int i = n; i > 0; i--) printf("%d ", i);
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
import java.io.*;
import java.lang.*;
import static java.lang.System.*;
public class P246A{
static int[] arr;
static int n;
static void swap(int i, int j){
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
static void sort(){
for(int i=0; i<n; i++){
for(int j=i; j<n; j++){
if((j+1)<n && arr[j]>arr[j+1]) swap(j, j+1);
}
}
}
public static void main(String[] args)throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(in));
PrintStream ps = new PrintStream(new BufferedOutputStream(out));
Scanner sc = new Scanner(in);
while(sc.hasNext()){
n = sc.nextInt();
//arr = new int[n];
//for(int i=0; i<n; i++) arr[i]=sc.nextInt();
//sort();
if(n==1 || n==2){
out.println(-1);
}else{
for(int j=n; j>0; j--){
if(j!=n) out.print(" ");
out.print(j);
}
out.println();
}
}
ps.flush();
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
if (n == 1 || n == 2)
System.out.println(-1);
else {
System.out.print(n-1 + " ");
System.out.print(n+" ");
for (int i = n-2; i >= 1; i--)
System.out.print(i + " ");
System.out.println();
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.util.Scanner;
public class BuggySorting {
public BuggySorting() {
// TODO Auto-generated constructor stub
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
if(n<=2){
System.out.println(-1);
}else{
int k=100;
for(int i=0;i<n;i++){
System.out.print((k-i)+" ");
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;
public class D {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n=scan.nextInt();
ArrayList<Integer> a= new ArrayList<Integer>();
if(n>2) {
for(int i=1;i<=n;i++) {
a.add(i);
}
Collections.sort(a,Collections.reverseOrder());
for (Integer integer : a) {
System.out.print(integer+" ");
}
}
else {
System.out.println("-1");
}
scan.close();
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class buggySorting {
public static void main(String[] args) {
// TODO Auto-generated method stub
int n;
Scanner in=new Scanner(System.in);
n=in.nextInt();
if(n<=2)
System.out.println("-1");
else{
for(int i=n;i>=1;i--)
System.out.println(i+" ");
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
print(-1 if n < 3 else " ".join(map(str, [x for x in range(n, 0, -1)]))) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #!/usr/bin/env python
from sys import stdin
n = int(stdin.readline())
if n < 3:
print(-1)
else:
print(' '.join(map(str, [2, 2] + [1] * (n-2))))
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | def unlucky(n):
if n <= 2:
return [-1]
a = list()
for i in range(n, -1, -1):
a.append(i)
return a[:-1]
print(*unlucky(int(input())))
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
public class Main
{
public static void main(String args[])throws Exception
{
Scanner Sc=new Scanner(System.in);
int n=Sc.nextInt();
if(n>2)
{
for(int i=n;i>=1;i--)
System.out.print(i+" ");
System.out.println();
}
else
{
System.out.println(-1);
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, numberofgirl;
cin >> n;
if (n <= 2) {
cout << -1 << endl;
} else {
for (int g = n; g >= 1; g--) {
cout << g;
if (g < n + 1) cout << " ";
}
cout << endl;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class Code151A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] ar = new int[n];
if (n <= 2){
System.out.print(-1);
} else
for (int i = 0; i < n; i++){
System.out.print(n - i+ " ");
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if(n<3):
print(-1)
else:
a=list()
for i in range(n-2):
a.append(i+1)
a.insert(0,n-1)
a.insert(0,n)
for i in a:
print(i,end=' ') | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
int number, i;
using namespace std;
int main() {
cin >> number;
if (number > 2) {
for (i = number; i > 0; i--) {
cout << i << " ";
}
} else {
cout << "-1";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int i, j, n;
scanf("%d", &n);
if (n == 1 || n == 2)
printf("-1\n");
else {
for (i = n; i > 0; i--) {
printf("%d ", i);
}
printf("\n");
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
/**
*
* @author gargon
*/
public class JavaApplication30 {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if (n>2){
for (int i=n; i>0; i--){
System.out.print(i);
System.out.print(" ");
}
}else{
System.out.println(-1);
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(raw_input())
if n<3:
print -1
else:
ans=range(n,0,-1)
print ' '.join(map(str,ans)) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(raw_input())
if n > 2:
print ' '.join([`k` for k in xrange(n, 0, -1)])
else: print -1 | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | a=int(input())
if a==1 or a==2:
print(-1)
else:
print(3,5,end=' ')
for i in range(a-2):
print(1,end=' ')
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input()); print(*((-1,), range(n, 0, -1))[n > 2]) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int n;
int main() {
ios_base ::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n;
if (n == 1 || n == 2) {
cout << "-1"
<< "\n";
return 0;
}
for (int i = n; i >= 1; i--) {
cout << i << " ";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input()
if n<=2:
print -1
else:
for i in range(n-1):
print 2,
print 1 | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(raw_input())
if n<=2:
print -1
else:
for i in range(n,0,-1):
print i | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n <= 2)
cout << -1 << "\n";
else {
for (int i = 0; i < n; i++) {
cout << n - i << " ";
}
cout << endl;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n < 3)
cout << -1;
else
for (int i = n; i > 0; --i) {
cout << i << ' ';
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n == 1 || n == 2) {
cout << "-1" << endl;
} else {
while (n > 0) {
cout << n << " ";
n--;
}
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n<3:
print ('-1')
else:
print ("2 3 1 ")
q = 3
while q<n:
print (str(q)+" ")
q = q + 1
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n,a=input(),range(1,60)
print [' '.join(map(str,a[n-1::-1])),-1][n<3]
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n<3:
print(-1)
else:
print(*range(n,0,-1)) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.*;
import java.util.*;
public class test1
{
public static void main(String[] args) throws Exception
{
new test1().run();
}
PrintWriter out = null;
void run() throws Exception
{
Scanner in = new Scanner(System.in);
out = new PrintWriter(System.out);
int n=in.nextInt();
if(n<3)
out.println(-1);
else
{
out.print("3 2 1 ");
for(int i=4;i<=n;i++)
out.print("1 ");
}
out.close();
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, j, p, a[1000];
while (cin >> n) {
if (n > 2) {
for (i = n; i >= 1; i--) cout << i << " ";
cout << endl;
} else
cout << -1 << endl;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(input())
if n<3:print(-1)
else:
for i in range(n,0,-1):print(i) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i;
cin >> n;
if (n < 3)
cout << "-1";
else {
for (i = 0; i < n - 1; i++) {
cout << 60 - i << " ";
}
cout << 2 << endl;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
long long mod = 1000000000 + 7;
int main() {
ios::sync_with_stdio(0);
ios_base::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
long long n;
cin >> n;
if (n < 3) {
cout << -1;
return 0;
}
for (int i = n; i >= 1; i--) {
cout << i << " ";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int i, j, k, T;
cin >> T;
if (T <= 2)
cout << "-1\n";
else {
for (i = 1; i < T; i++) cout << "2 ";
cout << "1\n";
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int n;
int main() {
cin >> n;
if (n <= 2) {
cout << -1;
return 0;
}
for (int i = 2; i <= n; ++i) {
if (i != 2) cout << " ";
cout << i;
}
cout << " " << 1;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n <= 2:
print(-1)
else:
for i in range(n):
print(n - i + 1, end = ' ') | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
if n <= 2:
print -1
exit()
for i in xrange(n, 0, -1):
print i, | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i;
cin >> n;
if (n == 1 || n == 2)
cout << "-1";
else {
for (i = n; i >= 1; i--) cout << i << ' ';
cout << '\n';
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | ####################################################
# -*- coding: utf-8 -*-
import sys
w = sys.stdout.write
read = sys.stdin.readline
reads = sys.stdin.read
def r(f=None):
if f:
return map(f, read().split())
else:
return read().split()
def rs(t,f=None):
result = []
result_append = result.append
for i in xrange(t):
if f:
result_append(tuple(map(f, read().split())))
else:
result_append(list(read().split()))
return result
####################################################
import math
sqrt = math.sqrt
from collections import deque
[n] = r(int)
if n <= 2:
w("-1")
else:
res = range(1, n+1, 1)
res[0] = 3
res[2] = 1
w(" ".join(map(str, res))) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.*;
import java.util.*;
public class A_R151 {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
void solve() throws IOException {
int n = nextInt();
if (n <= 2){
out.println(-1);
return;
}
for (int i = 0; i < n; i++)
out.print((n - i) + " ");
}
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
solve();
in.close();
out.close();
}
public static void main(String[] args) throws IOException {
new A_R151().run();
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n <= 2) {
cout << -1;
} else {
while (n--) {
cout << n + 1 << " ";
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if (n > 2):
for i in range(2, n+1):
print(i, end = " ")
print(1)
else:
print(-1) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.ArrayList;
import java.util.Scanner;
/**
*
* @author Arif
*/
public class Problem9 {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int[] a = new int[n];
if (n == 1 || n == 2) {
System.out.println("-1");
} else {
a[0] = 99;
a[1] = 100;
a[n-1] = 1;
for (int i = 2; i <= n-2; i++) {
a[i] = i;
//System.out.println("arif");
}
for (int i = 0; i < n; i++) {
System.out.println(a[i]);
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
int main() {
int n = 0;
scanf("%d", &n);
if (n == 1 || n == 2)
printf("-1");
else {
int a[n + 1];
int i = 0;
for (i = 1; i <= n; i++) {
printf("%d ", n + 2 - i);
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n==1 or n==2:
print(-1)
else:
for i in range(n,0,-1):
print(i,end=' ')
print() | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
if n>2:
print ' '.join([str(i) for i in xrange(n,0,-1)])
else:
print -1
| PYTHON |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.