Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
---|---|---|---|---|---|
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int n, a[51], b[51];
int main() {
int n, i;
cin >> n;
if (n <= 2) {
cout << -1 << endl;
return 0;
}
cout << n + 2;
for (i = 2; i <= n; i++) cout << " " << n + 3 - i;
cout << endl;
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input()
if(n<=2):
print -1
else:
for i in range(1,n):
print i+1,
print 1 | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
const long long int N = 1e6 + 2, inf = 1e9 + 7;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int n;
cin >> n;
if (n <= 2) cout << "-1\n", exit(0);
for (int i = n; i >= 1; i--) cout << i << " ";
cout << "\n";
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class BiggySorting {
public static void main(String[] args){
Scanner s = new Scanner(System.in);
int n = s.nextInt();
if(n<=2)
System.out.println("-1");
else{
for(int i=n;i>1;i--)
{
System.out.println(i);
}
System.out.println("1");
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(raw_input())
if (n<3):
print -1
else:
for i in range(n,0,-1):
print i | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
if n < 3:
print -1
elif n == 3:
print "2 3 1"
else:
print "2 3 1 " + " ".join(map(str,range(4,n+1))) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #Author: M@sud_P@rvez
n=int(input())
if n<=2:
print(-1)
else:
for i in range(n,0,-1):
print(i,end=" ")
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class BuggySorting {
public static void main(String[] args) {
PrintWriter pw = new PrintWriter(System.out);
reader(System.in);
int n = nI();
if (n == 1 || n == 2) {
pw.println(-1);
}
else {
for (int i = n; i > 0; i--) {
pw.print(i + " ");
}
}
pw.close();
}
private static BufferedReader br;
private static StringTokenizer st;
static void reader(InputStream stream) {
try {
br = new BufferedReader(new InputStreamReader(stream));
} catch (Exception e) {
e.printStackTrace();
}
}
static String n() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
static int nI() {
return Integer.parseInt(n());
}
static long nL() {
return Long.parseLong(n());
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class BuggySorting {
public static void main(String[] args) throws IOException {
PrintWriter out = new PrintWriter(System.out);
sc = new StringTokenizer(br.readLine());
int n = nxtInt();
if (n < 3)
out.println(-1);
else {
for (int i = n; i > 0; i--)
out.print(i + (i == 1 ? "" : " "));
out.println();
}
br.close();
out.close();
}
static BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
static StringTokenizer sc;
static String nxtTok() throws IOException {
while (!sc.hasMoreTokens()) {
String s = br.readLine();
if (s == null)
return null;
sc = new StringTokenizer(s.trim());
}
return sc.nextToken();
}
static int nxtInt() throws IOException {
return Integer.parseInt(nxtTok());
}
static long nxtLng() throws IOException {
return Long.parseLong(nxtTok());
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int n;
int main() {
scanf("%d", &n);
if (n <= 2) {
printf("-1\n");
return 0;
}
printf("%d", n);
for (n--; n; n--) printf(" %d", n);
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input()-2
print -1 if n<1 else '2 3','1 '*n
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | from Queue import * # Queue, LifoQueue, PriorityQueue
from bisect import * #bisect, insort
from datetime import *
from collections import * #deque, Counter,OrderedDict,defaultdict
import calendar
import heapq
import math
import copy
import itertools
myread = lambda : map(int,raw_input().split())
def solver():
n = input()
if n == 1 or n == 2:
print -1
return
for i in range(n-1):
print n-i,
print 1
if __name__ == "__main__":
solver()
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n > 2:
l = [ i for i in range(n,0,-1)]
print(*l,sep = ' ')
else:
print(-1)
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(raw_input())
if n >= 3:
print 10,
print 9,
print 8,
for i in range(n-3):
print 1,
else:
print -1 | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
int main() {
int n, i, j, k, temp;
while (scanf("%d", &n) == 1) {
if (n < 3)
printf("-1\n");
else {
printf("%d", n);
for (i = n - 1; i > 0; i--) printf(" %d", i);
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
scanf("%d", &n);
if (n <= 2)
printf("-1\n");
else {
n -= 2;
printf("2 3");
while (n--) {
printf(" 1");
}
printf("\n");
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i;
cin >> n;
if (n < 3)
cout << -1;
else {
cout << "5 3 2";
for (i = 4; i <= n; i++) cout << " 5";
}
cout << endl;
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int n;
int main() {
cin >> n;
if (n < 3)
cout << "-1";
else {
for (int i = n; i >= 1; i--) {
cout << i << " ";
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input()
if n<=2:
print -1
else:
a = [3,2]+[1]*(n-2)
for x in a:
print x,
print
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input()
print -1 if n <3 else ' '.join(map(str,range(n,0,-1)))
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
j = []
if n <= 2:
print(-1)
else:
for i in reversed(range(1, n+1)):
j.append(i)
print(' '.join(map(str, j))) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.PrintWriter;
import java.util.Scanner;
/**
* <a href="http://codeforces.ru/problemset/problem/246/A"/>
*
* @author pvasilyev
* @since 29 Dec 2013
*/
public class Problem070 {
public static void main(String[] args) {
final Scanner reader = new Scanner(System.in);
final PrintWriter writer = new PrintWriter(System.out);
solve(reader, writer);
reader.close();
writer.close();
}
private static void solve(final Scanner reader, final PrintWriter writer) {
final int m = reader.nextInt();
if (m == 1 || m == 2) {
writer.println(-1);
return;
}
for (int i = m; i >= 1; i--) {
writer.print(i + " ");
}
writer.println();
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.util.Scanner;
public class D {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n=scan.nextInt();
if(n>2) {
for(int i=2;i<=n;i++) {
System.out.print(i+" ");
}
System.out.print("1");
}
else {
System.out.println("-1");
}
scan.close();
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import sys
import math
from collections import defaultdict
def read_line():
return sys.stdin.readline()[:-1]
def read_int():
return int(sys.stdin.readline())
def read_int_line():
return [int(v) for v in sys.stdin.readline().split()]
def fun(a,v):
for i,k in enumerate(a[::-1]):
if v>=k:
return (k,8-i)
return -1
n = read_int()
if n<=2:
print(-1)
else:
for i in range(1,n+1):
print(n+1-i,end = " ")
print() | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.*;
import java.util.*;
import java.lang.*;
public class A {
public static void main (String[] argv) throws Exception
{
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(in.readLine());
int n = Integer.parseInt(st.nextToken());
if ((n == 1)||(n == 2)) {
System.out.println("-1");
} else {
System.out.print("4 5");
for (int i = 2; i < n; ++i) {
System.out.print(" 2");
}
System.out.println("");
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
int main() {
int n, i, j;
scanf("%d", &n);
if (n == 1 || n == 2) {
printf("-1");
} else {
for (i = n; i > 0; i--) {
printf("%d ", i);
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
if n < 3:
print '-1'
else:
for i in range(n)[::-1]:
print i + 1, | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class Question246A {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
if(n>2){
for(int i=n;i>=1;i--){
System.out.print(i+" ");
}
}else {
System.out.println("-1");
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import sys
n = int(sys.stdin.readline())
if(n <= 2):
print(-1)
exit()
res = []
for i in range(2, n + 1):
res.append(str(i))
res.append(str(1))
print(" ".join(res))
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input()
if n<3:
print -1
else:
print 2,3,1,
for i in range(4,n+1):
print i, | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n < 3)
cout << -1 << endl;
else {
cout << 2 << " " << 3 << " " << 1 << " ";
for (int i = 0; i < n - 3; i++) cout << 1 << " ";
cout << endl;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(raw_input())
if n == 1 or n == 2:
print -1
else: print ' '.join(map(str, range(2,n+1) + [1]))
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
#pragma comment(linker, "/STACK:16777216")
using namespace std;
int main() {
int n;
cin >> n;
if (n <= 2)
cout << -1;
else
for (int i = 0; i < n; ++i) cout << n - i << " ";
cout << endl;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
print(-1 if n < 3 else " ".join(["100"] * (n - 1) + ["1"])) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | def bubbleSort(a, n):
for i in range(n-1):
for j in range(i, n-1):
if a[j] > a[j+1]:
a[j], a[j+1] = a[j+1], a[j]
n=int(input())
if n<=2:
print(-1)
else:
#l=[]
for i in range(n, 0, -1):
print(i, end=' ')
#l.append(i)
""" print()
bubbleSort(l, len(l))
for i in l:
print(i, end=' ') """ | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, s;
cin >> n;
if (n < 3)
cout << "-1";
else
for (int i = n; i >= 1; i--) {
cout << i << " ";
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
long long int mod = 1e9 + 7;
long long int inf = 1e9 + 7;
void solve() {
long long int n;
cin >> n;
if (n <= 2) {
cout << "-1" << endl;
} else {
long long int i;
for (i = n; i >= 1; i--) {
cout << i << " ";
}
cout << endl;
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
long long int t = 1;
while (t--) {
solve();
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
const long long N = 100;
int main() {
int n;
cin >> n;
if (n <= 2)
cout << -1;
else
for (int i = n; i >= 1; i--) {
cout << i << " ";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.*;
import java.util.*;
public class A {
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(System.in);
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int n = s.nextInt();
int[] backwards = new int[n], sort = new int[n];
for(int i = 0; i < n; i++) {
backwards[i] = n-i;
sort[i] = i+1;
}
for(int i = 0; i < n-1; i++) {
for(int j = i; j < n-1; j++) {
if(backwards[j] > backwards[j+1]) {
int temp = backwards[j];
backwards[j] = backwards[j+1];
backwards[j+1] = temp;
}
}
}
if(Arrays.equals(backwards, sort)) {
System.out.println(-1);
} else {
for(int i = 0; i < n; i++) {
if(i != n-1) out.print((n-i) + " ");
else out.println(n-i);
}
out.flush();
}
out.close();
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.io.*;
import java.util.*;
public class BuggySorting
{
public BuggySorting(Scanner in)
{
int n;
int i;
n = in.nextInt();
if (n >= 3)
{
for (i = 0; i < n; i++)
{
if (i > 0)
System.out.printf(" ");
if (i == 2)
System.out.printf("1");
else
System.out.printf("5");
}
System.out.printf("%n");
}
else
System.out.printf("-1%n");
}
public static void main(String[] args)
{
new BuggySorting(new Scanner(System.in));
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
byte n = in.nextByte();
if(n<=2) System.out.println(-1);
else {
for (int i = n; i > 0; i--) {
System.out.print(i+" ");
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n < 3) {
cout << "-1\n";
return 0;
}
for (int i = n; i > 0; i--) cout << i << " ";
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | # Lista 1 PPC - K
n = int(input())
if n <= 2:
print("-1")
else:
for i in range(2,n+1):
print(str(i) + " ")
print(1)
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.StringTokenizer;
import javax.swing.plaf.basic.BasicInternalFrameTitlePane.MaximizeAction;
public class main implements Runnable {
private BufferedReader br = null;
private PrintWriter pw = null;
private StringTokenizer stk = new StringTokenizer("");
public static void main(String[] args) {
// TODO Auto-generated method stub
new Thread(new main()).run();
}
@Override
public void run() {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new OutputStreamWriter(System.out));
Solver();
pw.close();
}
private void nline() {
try {
if (!stk.hasMoreTokens())
stk = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException("Kernel Panic!!!!", e);
}
}
private String nstr() {
while (!stk.hasMoreTokens()) {
nline();
}
return stk.nextToken();
}
private int ni() {
return Integer.valueOf(nstr());
}
private long nl() {
return Long.valueOf(nstr());
}
private double nd() {
return Double.valueOf(nstr());
}
private BigInteger nbi() {
return new BigInteger(nstr());
}
private String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return null;
}
private void Solver() {
int n = ni();
if (n==1 || n==2) pw.print(-1);
else {
for (int i = n; i>0; i--){
pw.print(i+" ");
}
}
}
private void exit() {
System.exit(0);
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author neuivn
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int N = in.nextInt();
if (N <= 2) {
out.println(-1);
} else {
for (int j = N; j >= 1; --j) out.print(j + " ");
out.println();
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n <= 2:
print(-1)
else:
print("2 " * (n - 1) + "1") | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #!/usr/local/bin/python
import sys
n = int(raw_input())
if n <=2:
print -1
sys.exit()
a = [i for i in xrange(n, 0, -1)]
print " ".join([str(i) for i in a])
"""
a = map(int, raw_input().split())
for i in xrange(n-1):
for j in xrange(i, n-1):
if a[j] > a[j+1]:
a[j+1], a[j] = a[j], a[j+1]
print " ".join([str(i) for i in a])
"""
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n < 3:
print(-1)
else:
print(*[n - i for i in range(n)])
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n > 2) {
for (int i = n; i >= 2; i--) cout << i << " ";
cout << 1 << endl;
} else
cout << -1 << endl;
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n == 1 or n == 2:
print(-1)
else:
print(*list(range(n, 0, -1)))
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
public class Main{
public static void ValeraSort(int[] a,int n)
{
for(int i = 1; i < n; i++)
{
for (int j = i; j < n; j++)
{
if (a[j]>a[j+1])
{
int temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;
}
}
}
}
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int[] array = new int[n+1];
for (int j = 1; j <= n; j++)
{
array[j] = n-j+1;
}
//ValeraSort(array,n);
if (n<3)
{
System.out.println(-1);
}
else
{
for(int j = 1; j <= n;j++)
{
System.out.print(array[j]+" ");
}
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Scanner;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, Scanner in, PrintWriter out) {
int n = in.nextInt();
StringBuilder sb = new StringBuilder();
if (n < 3) {
out.println(-1);
return;
}
sb.append("5 ");
sb.append("4 ");
for (int i = 2; i < n; i++) {
sb.append("2 ");
}
out.println(sb.toString());
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n == 1 || n == 2)
cout << -1 << endl;
else
while (n) {
cout << n << " ";
n--;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
print(*((-1,), range(n, 0, -1))[n > 2]) | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n <= 2)
cout << -1 << endl;
else {
for (int i = n; i > 0; i--) {
if (i != n) cout << " ";
cout << i;
}
cout << endl;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
if n <= 2: print -1
else:
print 2, 3,
for i in xrange(n - 2): print 1,
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | ri = lambda: raw_input().strip()
n = int(ri())
if n == 1 or n == 2:
print -1
else:
for i in xrange(n, 0, -1):
print i,
print | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
const long long mod = 1000000007;
using namespace std;
int main() {
int n;
cin >> n;
if (n == 1 || n == 2)
cout << -1;
else {
for (int i = 1; i <= (n); i++) cout << (100 - i) << " ";
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n <= 2:
print(-1)
else:
for i in range (n, 0, -1):
print(i, end= ' ') | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int inputByte=sc.nextInt();
if(inputByte<3) {
System.out.print(-1);
}
else {
for(int i=inputByte; i>0; i--){
System.out.print(" "+i);
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i;
scanf("%d", &n);
if (n <= 2)
printf("-1");
else {
for (i = 0; i < n; i++) {
printf("%d ", n - i);
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
if n == 1 or n == 2: print -1
else:
for i in xrange(n):
print n - i, | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input()
if n<3:print-1
else:print" ".join(map(str,[i for i in range(n,0,-1)]))
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
print [' '.join(map(str, range(n, 0, -1))), -1][n < 3] | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
if n<=2:
print -1
else:
print ' '.join(map(str,range(n,0,-1))) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | # Description of the problem can be found at http://codeforces.com/problemset/problem/246/A
n = int(input())
if n <= 2:
print(-1)
else:
print("2 " * (n - 1) + "1") | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.util.Scanner;
public class A2 {
public static void main(String[] args) {
Scanner nik = new Scanner(System.in);
int n = nik.nextInt();
if (n <= 2) {
System.out.println(-1);
} else {
System.out.print(n - 1 + " " + n + " ");
n -= 2;
for (int i = n; i >= 1; i--) {
System.out.print(i + " ");
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(raw_input())
if n < 3:
print -1
else:
for i in range(n):
print n - i | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import sys
n = int(sys.stdin.readline())
if n < 3:
print -1
else:
print ' '.join([str(x) for x in range(n, 0, -1)])
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.StringTokenizer;
import java.util.Collections;
import java.util.Collection;
import java.util.Set;
import java.util.HashSet;
import java.util.Map;
import java.util.HashMap;
import java.util.Arrays;
import java.util.ArrayList;
import java.util.Queue;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.Stack;
import java.util.Vector;
import java.util.Hashtable;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.FileReader;
import java.math.BigInteger;
public class Main
{
static PrintWriter writer;
static StringTokenizer sz;
static BufferedReader reader;
public static void main(String[] args)
throws Exception
{
declare();
int n;
if ((n = Integer.parseInt(reader.readLine())) <= 2)
writer.print(-1);
else
for (int i=n;i > 0;--i)
writer.print(i + " ");
close();
}
private static String readString()
throws IOException
{
return reader.readLine();
}
private static void readLine()
throws IOException
{
sz = new StringTokenizer(reader.readLine());
}
private static int readInt()
throws IOException
{
return Integer.parseInt(sz.nextToken());
}
private static long readLong()
throws IOException
{
return Long.parseLong(sz.nextToken());
}
private static void declare()
{
writer = new PrintWriter(System.out);
reader = new BufferedReader(
new InputStreamReader(System.in));
}
private static void declareFile()
throws IOException
{
writer = new PrintWriter("output.txt");
reader = new BufferedReader(
new FileReader("input.txt"));
}
private static void close()
throws IOException
{
writer.flush();
writer.close();
reader.close();
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(raw_input())
print ' '.join(map(str,range(2,n+1) + [1])) if n > 2 else -1
| PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.util.Scanner;
public class BuggySorting {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if(n==1 ||n==2){
System.out.println("-1");
}else{
int ans=100;
for(int i=0;i<n;i++){
System.out.print(ans+" ");
ans--;
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i;
cin >> n;
int lis[100];
if (n <= 2) {
cout << -1;
return 0;
} else {
for (i = 2; i <= n; i++) {
cout << i << " ";
lis[i - 2] = i;
}
cout << 1;
lis[i - 2] = 1;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n == 1 || n == 2)
cout << -1 << endl;
else {
cout << n;
for (int i = n - 1; i >= 1; i--) cout << " " << i;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n==1 or n==2:
print(-1)
else:
for i in range(n):
print(n-i, end=' ') | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import static java.util.Arrays.*;
import java.io.*;
import java.lang.reflect.*;
import java.util.*;
public class A {
final int MOD = (int)1e9 + 7;
final double eps = 1e-12;
final int INF = (int)1e9;
public A () {
int N = sc.nextInt();
if (N <= 2)
print(-1);
else {
Integer [] A = new Integer[N];
for (int i = 0; i < N; ++i)
A[i] = i+1;
sort(A, Collections.reverseOrder());
print((Object)A);
}
}
////////////////////////////////////////////////////////////////////////////////////
static MyScanner sc;
static class MyScanner {
public String next() {
newLine();
return line[index++];
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
line = null;
return readLine();
}
public String [] nextStrings() {
line = null;
return readLine().split(" ");
}
public char [] nextChars() {
return next().toCharArray();
}
public Integer [] nextInts() {
String [] L = nextStrings();
Integer [] res = new Integer [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Integer.parseInt(L[i]);
return res;
}
public Long [] nextLongs() {
String [] L = nextStrings();
Long [] res = new Long [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Long.parseLong(L[i]);
return res;
}
public Double [] nextDoubles() {
String [] L = nextStrings();
Double [] res = new Double [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Double.parseDouble(L[i]);
return res;
}
//////////////////////////////////////////////
private boolean eol() {
return index == line.length;
}
private String readLine() {
try {
return r.readLine();
} catch (Exception e) {
throw new Error(e);
}
}
private final BufferedReader r;
MyScanner () {
this(new BufferedReader(new InputStreamReader(System.in)));
}
MyScanner(BufferedReader r) {
try {
this.r = r;
while (!r.ready())
Thread.sleep(1);
start();
} catch (Exception e) {
throw new Error(e);
}
}
private String [] line;
private int index;
private void newLine() {
if (line == null || eol()) {
line = readLine().split(" ");
index = 0;
}
}
}
static void print (Object... a) {
pw.println(build(a));
}
static void exit (Object... a) {
print(a);
exit();
}
static void exit () {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build(Object... a) {
StringBuilder b = new StringBuilder();
for (Object o : a)
append(b, o);
return b.toString().trim();
}
static void append(StringBuilder b, Object o) {
if (o.getClass().isArray()) {
int L = Array.getLength(o);
for (int i = 0; i < L; ++i)
append(b, Array.get(o, i));
} else if (o instanceof Iterable<?>) {
for (Object p : (Iterable<?>)o)
append(b, p);
} else
b.append(" ").append(o);
}
////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
sc = new MyScanner ();
new A();
exit();
}
static void start() {
t = millis();
}
static PrintWriter pw = new PrintWriter(System.out);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=input()
if n==2 or n==1:print-1;exit()
print" ".join(map(str,[x for x in range(n,0,-1)])) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | N = int(input())
if N < 3:
print(-1)
else:
for i in range(N, 0, -1):
print(i,end=' ') | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
// Buggy Sorting
// 2012/11/21
public class P246A{
Scanner sc=new Scanner(System.in);
int n;
void run(){
n=sc.nextInt();
solve();
}
void solve(){
if(n<=2){
println("-1");
}else{
for(int i=n; i>=1; i--){
print(i+(i==1?"\n":" "));
}
}
}
void println(String s){
System.out.println(s);
}
void print(String s){
System.out.print(s);
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new P246A().run();
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
const int N = 300000;
int main() {
int n;
scanf("%d", &n);
if (n == 1 || n == 2)
printf("-1\n");
else {
for (int i = n; i >= 1; i--) printf("%d ", i);
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | m = []
n = int(input())
for i in range(1, n + 1):
m.append(n + 1 - i)
a = list(m)
a.sort()
for i in range(n - 1):
for j in range(i, n - 1):
if m[j] > m[j + 1]:
m[j], m[j + 1] = m[j + 1], m[j]
if m == a:
print(-1)
else:
a.reverse()
print(* a, sep = " ") | PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.*;
public final class BuggySorting
{
public static void main(String arg[])
{
Scanner br=new Scanner(System.in);
int n=br.nextInt();
if(n<=2)
System.out.println("-1");
else
{
for(int i=1;i<n;i++)
System.out.print((i+1)+" ");
System.out.print("1");
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = int(input())
if n > 2:
print(" ".join(map(str,list(range(n,0,-1)))))
else:
print(-1)
| PYTHON3 |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int n, a[55], i;
int main() {
cin >> n;
if (n == 1 || n == 2)
cout << -1;
else {
a[1] = 90;
a[2] = 89;
for (i = 3; i <= n; i++) a[i] = i;
for (i = 1; i <= n; i++) cout << a[i] << " ";
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class BuggySorting {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
if (n <= 2)System.out.println(-1);
else for (int i = n; i > 0; i--) System.out.print(i + " ");
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 |
import java.util.*;
public class BuggySorting {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
if(n<=2)
System.out.println("-1");
else
{
for(int i=n;i>=1;i--)
System.out.print(i+" ");
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
map<long long int, long long int> mp, mk;
set<long long int> s1, s2;
vector<long long int> v, w;
long long int a[2000006], b[2000006];
string s = "", p = "", q = "";
char ch;
long long int m, n, c, i, j, k, l, r, x, t, y, u, e, f, g, h, mn, mx, d;
int main() {
cin >> n;
if (n <= 2)
cout << -1;
else
for (i = n; i > 0; i--) cout << i << " ";
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class B implements Runnable {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args) {
new Thread(null, new B(), "", 128 * (1L << 20)).start();
}
void init() throws FileNotFoundException {
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
public void run() {
try {
timeBegin = System.currentTimeMillis();
init();
solve();
out.close();
time();
} catch (Exception e) {
e.printStackTrace(System.err);
System.exit(-1);
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
String readString(String s) throws IOException {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine(), s + "\n \t");
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
int readInt(String s) throws IOException {
return Integer.parseInt(readString(s));
}
boolean isPrime(int a) throws IOException {
int del=0;
if(a==2){
return false;
}
for(int i=2;i<Math.sqrt(a)+1;i++){
if(a%i==0){
del=i;
break;
}
}
if(del>0){
return false;
}
else return true;
}
public BigInteger factorial(int num) throws IOException {
BigInteger fact = new BigInteger("1");
BigInteger i = new BigInteger("1");
BigInteger one = new BigInteger("1");
for (int j=0;j<num;j++) {
fact = fact.multiply(i);
i=i.add(one);
//out.println(fact.toString()+" "+i.toString());
}
//fact = fact.add(one);
return fact;
}
public int[] readIntArr(int n) throws IOException{
int[] a = new int[n];
for(int i=0;i<n;i++){
a[i] = readInt();
}
return a;
}
void solve() throws IOException{
int n = readInt();
if(n==1 || n==2){
out.println(-1);
}else{
for(int i=0;i<n;i++){
out.print(n-i+" ");
}
}
}
public long fn(long n) throws IOException{
return 0;
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int n;
int main() {
cin >> n;
if (n <= 2) {
cout << "-1";
} else {
for (int i = n; i >= 1; --i) {
cout << i << " ";
}
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n=int(raw_input())
if n<3:
print -1
else:
ans=range(1,n+1)[::-1]
print ' '.join(map(str,ans)) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n <= 2)
cout << "-1" << endl;
else {
while (n) {
cout << n << " ";
n -= 1;
}
}
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
public class A {
public static void main(String[] args) throws Exception {
FastScanner sc = new FastScanner(System.in);
Random rand = new Random();
int N = sc.nextInt();
int[] array = new int[N];
int[] begin = new int[N];
for(int a=0;a<N;a++)array[a]=N-a;
begin = array.clone();
// array[N-1]=N;
sort(array);
if(sorted(array))System.out.println("-1");
else {
for(int a=0;a<N;a++)System.out.print(begin[a]+" ");
}
//System.err.println(Arrays.toString(array));
}
private static boolean sorted(int[] array) {
for(int a=0;a<array.length-1;a++)
if(array[a]>array[a+1])return false;
return true;
}
private static void sort(int[] array) {
int N = array.length;
for(int i = 1-1;i<=N-1-1;i++){
for(int j=i;j<=N-1-1;j++){
if(array[j]>array[j+1]){
int temp = array[j];
array[j]=array[j+1];
array[j+1]=temp;
}
}
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) throws Exception{
br = new BufferedReader(new InputStreamReader(in));
st = new StringTokenizer(br.readLine().trim());
}
public int numTokens() throws Exception {
if(!st.hasMoreTokens()){
st = new StringTokenizer(br.readLine().trim());
return numTokens();
}
return st.countTokens();
}
public String next() throws Exception {
if(!st.hasMoreTokens()){
st = new StringTokenizer(br.readLine().trim());
return next();
}
return st.nextToken();
}
public double nextDouble() throws Exception{
return Double.parseDouble(next());
}
public float nextFloat() throws Exception{
return Float.parseFloat(next());
}
public long nextLong() throws Exception{
return Long.parseLong(next());
}
public int nextInt() throws Exception{
return Integer.parseInt(next());
}
public String nextLine() throws Exception{
return br.readLine().trim();
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.io.BufferedInputStream;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
public class BuggySorting {
static BufferedReader in;
static Scanner sn;
static StringTokenizer tk;
public static void main(String... args) throws IOException {
// in = new BufferedReader(new FileReader(".in"));
// in = new BufferedReader(new InputStreamReader(System.in));
// sn = new Scanner(new BufferedInputStream(new FileInputStream(".in")));
sn = new Scanner(new BufferedInputStream(System.in));
int n = sn.nextInt();
if (n <= 2){
System.out.println(-1);
} else {
for (int i = n; i >= 1; i--){
System.out.print(i);
if (i > 1){
System.out.print(" ");
}
}
System.out.println();
}
}
} | JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
if (n > 2) {
for (int i = 2; i <= n; ++i) {
cout << i << " ";
}
cout << 1 << endl;
} else {
cout << -1 << endl;
}
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
void solve() {
int n;
cin >> n;
if (n <= 2) {
cout << -1 << "\n";
} else {
for (int i = n; i >= 1; i--) {
cout << i << " ";
}
cout << "\n";
}
}
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(nullptr);
auto start = std::chrono::high_resolution_clock::now();
int t = 1;
while (t--) solve();
auto stop = std::chrono::high_resolution_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::nanoseconds>(stop - start);
cerr << "\nTime taken : "
<< ((long double)duration.count()) / ((long double)1e9) << " s " << endl;
return 0;
}
| CPP |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | import java.util.Scanner;
public class A_246_Buggy_Sorting {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if (n <= 2) {
System.out.println(-1);
} else {
for (int i = 0; i < n; i++) {
System.out.println((n - i) + " ");
}
}
}
}
| JAVA |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
print " ".join(map(str,range(n,0,-1))) if n > 2 else -1 | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | n = input()
print -1 if n <= 2 else " ".join(map(str, range(n, 0, -1))) | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | FILE = "P1"
try:
inFile = open(FILE+".txt")
except:
pass
def read():
try:
return inFile.readline().strip()
except:
return raw_input().strip()
n = int(read())
if n <= 2:
print -1
else:
for i in xrange(2,n+1):
print i,
print 1 | PYTHON |
246_A. Buggy Sorting | Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1, a2, ..., an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.
loop integer variable i from 1 to n - 1
loop integer variable j from i to n - 1
if (aj > aj + 1), then swap the values of elements aj and aj + 1
But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.
Input
You've got a single integer n (1 ≤ n ≤ 50) — the size of the sorted array.
Output
Print n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 100) — the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1.
If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.
Examples
Input
1
Output
-1 | 2 | 7 | from sys import stdin,stdout
import bisect
import math
def st():
return list(stdin.readline().strip())
def inp():
return int(stdin.readline())
def li():
return list(map(int,stdin.readline().split()))
def mp():
return map(int,stdin.readline().split())
def pr(n):
stdout.write(str(n)+"\n")
def soe(limit):
l=[1]*(limit+1)
prime=[]
for i in range(2,limit+1):
if l[i]:
for j in range(i*i,limit+1,i):
l[j]=0
for i in range(2,limit+1):
if l[i]:
prime.append(i)
return prime
def segsoe(low,high):
limit=int(high**0.5)+1
prime=soe(limit)
n=high-low+1
l=[0]*(n+1)
for i in range(len(prime)):
lowlimit=(low//prime[i])*prime[i]
if lowlimit<low:
lowlimit+=prime[i]
if lowlimit==prime[i]:
lowlimit+=prime[i]
for j in range(lowlimit,high+1,prime[i]):
l[j-low]=1
for i in range(low,high+1):
if not l[i-low]:
if i!=1:
print(i)
def power(a,n):
r=1
while n:
if n&1:
r=(r*a)
a*=a
n=n>>1
return r
def solve():
n=inp()
if n<=2:
pr(-1)
else:
for i in range(n,0,-1):
print(i,end=" ")
for _ in range(1):
solve()
| PYTHON3 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.