entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
pytorch_code
stringlengths
200
4.05k
Pooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/je/cje3udpfj5nwaq4lakytobuhk4kwgcmkt62m7sy65mea2frdue7u.py # Topologically Sorted Source Nodes: [avg_pool2d, sub], Original ATen: [aten.avg_pool2d, aten.sub] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # sub => sub # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [3, 3], [1, 1], [1, 1], False, False), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d, %arg0_1), kwargs = {}) triton_poi_fused_avg_pool2d_sub_0 = async_compile.triton('triton_poi_fused_avg_pool2d_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x3 = xindex tmp54 = tl.load(in_ptr0 + (x3), xmask) tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + x3), tmp10 & xmask, other=0.0) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + x3), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + x3), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + x3), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x3), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x3), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + x3), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + x3), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + x3), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))*((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) + (((4) * ((4) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (4)))*((4) * ((4) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))*((4) * ((4) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))*((4) * ((4) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (4)))) tmp53 = tmp51 / tmp52 tmp55 = tmp53 - tmp54 tl.store(in_out_ptr0 + (x3), tmp55, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [avg_pool2d, sub], Original ATen: [aten.avg_pool2d, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_sub_0.run(buf1, arg0_1, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Pooling(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): return self.pool(x) - x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x3 = xindex tmp54 = tl.load(in_ptr0 + x3, xmask) tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + x3), tmp10 & xmask, other=0.0) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + x3), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + x3), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + x3), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x3, tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x3), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + x3), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + x3), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + x3), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= - 1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (4 * (4 <= 2 + x0) + (2 + x0 ) * (2 + x0 < 4)) * (4 * (4 <= 2 + x1) + (2 + x1) * (2 + x1 < 4) ) + -1 * (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (4 * (4 <= 2 + x1) + (2 + x1) * (2 + x1 < 4)) + -1 * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (4 * (4 <= 2 + x0) + (2 + x0) * (2 + x0 < 4)) tmp53 = tmp51 / tmp52 tmp55 = tmp53 - tmp54 tl.store(in_out_ptr0 + x3, tmp55, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_avg_pool2d_sub_0[grid(256)](buf1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf1, class PoolingNew(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
TranNhiem/MA_SSRL_Pytorch
Pooling
false
1,141
[ "MIT" ]
0
87d946461850240fdd54de761603f13ef3710c2b
https://github.com/TranNhiem/MA_SSRL_Pytorch/tree/87d946461850240fdd54de761603f13ef3710c2b
import torch import torch.nn as nn class Model(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): return self.pool(x) - x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
TwoWordBilinearLabelProbe
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/v2/cv26xmd6uhnpasjiayrxny6gmnwndswt7vj57asgoudfza6xzwle.py # Topologically Sorted Source Nodes: [contiguous_1, matmul], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # contiguous_1 => clone_2 # matmul => view_1 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) # %view_1 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone_2, [64, 4]), kwargs = {}) triton_poi_fused_clone_view_0 = async_compile.triton('triton_poi_fused_clone_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*(x1 // 4))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7q/c7qgwbp7h2p2gm2mjyswszqjvgaiq3hw6ul3ljm3kx5kacqyu56x.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/nt/cntmnffcozkeu7dmnap4ub3giwedzhutvy2zd57fhzbmevu6xzld.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%bmm, %primals_4), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [proj], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_3, out=buf0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_1, matmul], Original ATen: [aten.clone, aten.view] stream0 = get_raw_stream(0) triton_poi_fused_clone_view_0.run(primals_1, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf1, buf0, out=buf2) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(primals_1, buf3, 256, grid=grid(256), stream=stream0) del primals_1 buf4 = empty_strided_cuda((64, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (64, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 0), 0), out=buf4) del buf2 buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf5, primals_4, 64, grid=grid(64), stream=stream0) del primals_4 return (reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (64, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf1, (4, 64), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data.dataloader class TwoWordBilinearLabelProbe(nn.Module): """ Computes a bilinear function of pairs of vectors. For a batch of sentences, computes all n^2 pairs of scores for each sentence in the batch. """ def __init__(self, model_dim, rank, prob, device): super(TwoWordBilinearLabelProbe, self).__init__() self.maximum_rank = rank self.model_dim = model_dim self.proj_L = nn.Parameter(data=torch.zeros(self.model_dim, self. maximum_rank)) self.proj_R = nn.Parameter(data=torch.zeros(self.maximum_rank, self .model_dim)) self.bias = nn.Parameter(data=torch.zeros(1)) nn.init.uniform_(self.proj_L, -0.05, 0.05) nn.init.uniform_(self.proj_R, -0.05, 0.05) nn.init.uniform_(self.bias, -0.05, 0.05) self self.dropout = nn.Dropout(p=prob) def forward(self, batch): """ Computes all n^2 pairs of attachment scores for each sentence in a batch. Computes h_i^TAh_j for all i,j where A = LR, L in R^{model_dim x maximum_rank}; R in R^{maximum_rank x model_rank} hence A is rank-constrained to maximum_rank. Args: batch: a batch of word representations of the shape (batch_size, max_seq_len, representation_dim) Returns: A tensor of scores of shape (batch_size, max_seq_len, max_seq_len) """ batchlen, seqlen, rank = batch.size() batch = self.dropout(batch) proj = torch.mm(self.proj_L, self.proj_R) batch_square = batch.unsqueeze(2).expand(batchlen, seqlen, seqlen, rank ) batch_transposed = batch.unsqueeze(1).expand(batchlen, seqlen, seqlen, rank).contiguous().view(batchlen * seqlen * seqlen, rank, 1 ) psd_transformed = torch.matmul(batch_square.contiguous(), proj).view( batchlen * seqlen * seqlen, 1, rank) logits = (torch.bmm(psd_transformed, batch_transposed) + self.bias ).view(batchlen, seqlen, seqlen) return logits def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'model_dim': 4, 'rank': 4, 'prob': 0.5, 'device': 0}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data.dataloader assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_view_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * (x1 // 4)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_2, primals_3, out=buf0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_view_0[grid(256)](primals_1, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf1, buf0, out=buf2) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(256)](primals_1, buf3, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_1 buf4 = empty_strided_cuda((64, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (64, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 0), 0), out=buf4) del buf2 buf5 = buf4 del buf4 triton_poi_fused_add_2[grid(64)](buf5, primals_4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 return reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf3, (64, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf1, (4, 64), (1, 4), 0), reinterpret_tensor( primals_2, (4, 4), (1, 4), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0) class TwoWordBilinearLabelProbeNew(nn.Module): """ Computes a bilinear function of pairs of vectors. For a batch of sentences, computes all n^2 pairs of scores for each sentence in the batch. """ def __init__(self, model_dim, rank, prob, device): super(TwoWordBilinearLabelProbeNew, self).__init__() self.maximum_rank = rank self.model_dim = model_dim self.proj_L = nn.Parameter(data=torch.zeros(self.model_dim, self. maximum_rank)) self.proj_R = nn.Parameter(data=torch.zeros(self.maximum_rank, self .model_dim)) self.bias = nn.Parameter(data=torch.zeros(1)) nn.init.uniform_(self.proj_L, -0.05, 0.05) nn.init.uniform_(self.proj_R, -0.05, 0.05) nn.init.uniform_(self.bias, -0.05, 0.05) self self.dropout = nn.Dropout(p=prob) def forward(self, input_0): primals_2 = self.proj_L primals_3 = self.proj_R primals_4 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
TimO96/NLP2
TwoWordBilinearLabelProbe
false
1,142
[ "MIT" ]
0
83f65a385457f68397c641f38b53df0110282578
https://github.com/TimO96/NLP2/tree/83f65a385457f68397c641f38b53df0110282578
import torch import torch.nn as nn import torch.utils.data.dataloader class Model(nn.Module): """ Computes a bilinear function of pairs of vectors. For a batch of sentences, computes all n^2 pairs of scores for each sentence in the batch. """ def __init__(self, model_dim, rank, prob, device): super().__init__() self.maximum_rank = rank self.model_dim = model_dim self.proj_L = nn.Parameter(data=torch.zeros(self.model_dim, self. maximum_rank)) self.proj_R = nn.Parameter(data=torch.zeros(self.maximum_rank, self .model_dim)) self.bias = nn.Parameter(data=torch.zeros(1)) nn.init.uniform_(self.proj_L, -0.05, 0.05) nn.init.uniform_(self.proj_R, -0.05, 0.05) nn.init.uniform_(self.bias, -0.05, 0.05) self self.dropout = nn.Dropout(p=prob) def forward(self, batch): """ Computes all n^2 pairs of attachment scores for each sentence in a batch. Computes h_i^TAh_j for all i,j where A = LR, L in R^{model_dim x maximum_rank}; R in R^{maximum_rank x model_rank} hence A is rank-constrained to maximum_rank. Args: batch: a batch of word representations of the shape (batch_size, max_seq_len, representation_dim) Returns: A tensor of scores of shape (batch_size, max_seq_len, max_seq_len) """ batchlen, seqlen, rank = batch.size() batch = self.dropout(batch) proj = torch.mm(self.proj_L, self.proj_R) batch_square = batch.unsqueeze(2).expand(batchlen, seqlen, seqlen, rank ) batch_transposed = batch.unsqueeze(1).expand(batchlen, seqlen, seqlen, rank).contiguous().view(batchlen * seqlen * seqlen, rank, 1 ) psd_transformed = torch.matmul(batch_square.contiguous(), proj).view( batchlen * seqlen * seqlen, 1, rank) logits = (torch.bmm(psd_transformed, batch_transposed) + self.bias ).view(batchlen, seqlen, seqlen) return logits def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4, 0.5, 0]
Policy
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (128, 4), (4, 1)) assert_size_stride(primals_4, (4, 128), (128, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 128), (1, 4), 0), out=buf0) del primals_3 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 8192, grid=grid(8192), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F class Policy(nn.Module): def __init__(self, act_dim, obs_dim): super(Policy, self).__init__() self.fc0 = nn.Linear(act_dim, 128) self.fc1 = nn.Linear(128, obs_dim) def forward(self, x): x = x.type_as(self.fc0.bias) x = F.relu(self.fc0(x)) x = F.dropout(x, training=self.training) x = self.fc1(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'act_dim': 4, 'obs_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (128, 4), (4, 1)) assert_size_stride(primals_4, (4, 128), (128, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 128), (1, 4), 0), out=buf0) del primals_3 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1, primals_2, buf3, 8192, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), primals_4, buf3 class PolicyNew(nn.Module): def __init__(self, act_dim, obs_dim): super(PolicyNew, self).__init__() self.fc0 = nn.Linear(act_dim, 128) self.fc1 = nn.Linear(128, obs_dim) def forward(self, input_0): primals_3 = self.fc0.weight primals_2 = self.fc0.bias primals_4 = self.fc1.weight primals_5 = self.fc1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
TommeyChang/CS294-Homework
Policy
false
1,143
[ "MIT" ]
0
17b525bf4366034b45c4febd89f1053d44550237
https://github.com/TommeyChang/CS294-Homework/tree/17b525bf4366034b45c4febd89f1053d44550237
import torch from torch import nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, act_dim, obs_dim): super().__init__() self.fc0 = nn.Linear(act_dim, 128) self.fc1 = nn.Linear(128, obs_dim) def forward(self, x): x = x.type_as(self.fc0.bias) x = F.relu(self.fc0(x)) x = F.dropout(x, training=self.training) x = self.fc1(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
CrossEntropyLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/65/c65frvogjvzvcjnoj7n72ziopkhhgusygsvovz7h4ukukiilkzeo.py # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # cross_entropy => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ig/cigklgjvndpfvc7rkzbq2ej3kvwcxbbuyizweiydfjy7unf2pgnl.py # Topologically Sorted Source Nodes: [label_batch, cross_entropy], Original ATen: [aten._to_copy, aten.nll_loss_forward] # Source node to ATen node mapping: # cross_entropy => full_default_1, ne_2, neg, sum_4, where_1 # label_batch => convert_element_type_1 # Graph fragment: # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%arg2_1, torch.int64), kwargs = {}) # %ne_2 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%convert_element_type_1, -1), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_2, %neg, %full_default_1), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_1,), kwargs = {}) triton_per_fused__to_copy_nll_loss_forward_1 = async_compile.triton('triton_per_fused__to_copy_nll_loss_forward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_nll_loss_forward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_nll_loss_forward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp12 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp1 = tmp0.to(tl.int64) tmp2 = tl.full([1, 1], -1, tl.int64) tmp3 = tmp1 != tmp2 tmp4 = tl.full([1, 1], 0, tl.int64) tmp5 = tl.where(tmp3, tmp1, tmp4) tmp6 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp7 = tmp5 + tmp6 tmp8 = tmp5 < 0 tmp9 = tl.where(tmp8, tmp7, tmp5) tl.device_assert((0 <= tmp9) & (tmp9 < 4), "index out of bounds: 0 <= tmp9 < 4") tmp11 = tl.load(in_ptr1 + (tmp9 + (4*r0)), None, eviction_policy='evict_last') tmp13 = tl_math.exp(tmp12) tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tl_math.log(tmp22) tmp24 = tmp11 - tmp23 tmp25 = -tmp24 tmp26 = 0.0 tmp27 = tl.where(tmp3, tmp25, tmp26) tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = tl.sum(tmp28, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp30, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/kd/ckd7oru5le43u4lcqhsj4wqfgosdbs3zxvplwfqb4rmznyztvnrb.py # Topologically Sorted Source Nodes: [ne, sum_1, total_sents, cross_entropy_loss], Original ATen: [aten.ne, aten.sum, aten._to_copy, aten.div] # Source node to ATen node mapping: # cross_entropy_loss => div # ne => ne # sum_1 => sum_1 # total_sents => convert_element_type # Graph fragment: # %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%arg1_1, 0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne,), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_1, torch.float32), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_4, %convert_element_type), kwargs = {}) triton_per_fused__to_copy_div_ne_sum_2 = async_compile.triton('triton_per_fused__to_copy_div_ne_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_div_ne_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_div_ne_sum_2(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp8 = tl.load(in_out_ptr0 + (0)) tmp9 = tl.broadcast_to(tmp8, [1]) tmp1 = 0.0 tmp2 = tmp0 != tmp1 tmp3 = tmp2.to(tl.int64) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tmp6.to(tl.float32) tmp10 = tmp9 / tmp7 tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp7, None) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [label_batch, cross_entropy], Original ATen: [aten._to_copy, aten.nll_loss_forward] triton_per_fused__to_copy_nll_loss_forward_1.run(arg2_1, buf0, buf1, 1, 16, grid=grid(1), stream=stream0) del arg2_1 del buf0 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [ne, sum_1, total_sents, cross_entropy_loss], Original ATen: [aten.ne, aten.sum, aten._to_copy, aten.div] triton_per_fused__to_copy_div_ne_sum_2.run(buf4, arg1_1, buf3, 1, 256, grid=grid(1), stream=stream0) del arg1_1 return (buf4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data.dataloader class CrossEntropyLoss(nn.Module): """Custom cross-entropy loss""" def __init__(self): super(CrossEntropyLoss, self).__init__() self.pytorch_ce_loss = torch.nn.CrossEntropyLoss(ignore_index=-1, reduction='sum') def forward(self, predictions, label_batch, length_batch): """ Computes and returns CrossEntropyLoss. Ignores all entries where label_batch=-1 Noralizes by the number of sentences in the batch. Args: predictions: A pytorch batch of logits label_batch: A pytorch batch of label indices length_batch: A pytorch batch of sentence lengths Returns: A tuple of: cross_entropy_loss: average loss in the batch total_sents: number of sentences in the batch """ batchlen, seqlen, class_count = predictions.size() total_sents = torch.sum(length_batch != 0).float() predictions = predictions.view(batchlen * seqlen, class_count) label_batch = label_batch.view(batchlen * seqlen).long() cross_entropy_loss = self.pytorch_ce_loss(predictions, label_batch ) / total_sents return cross_entropy_loss, total_sents def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([16]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data.dataloader assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_per_fused__to_copy_nll_loss_forward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp12 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp1 = tmp0.to(tl.int64) tmp2 = tl.full([1, 1], -1, tl.int64) tmp3 = tmp1 != tmp2 tmp4 = tl.full([1, 1], 0, tl.int64) tmp5 = tl.where(tmp3, tmp1, tmp4) tmp6 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp7 = tmp5 + tmp6 tmp8 = tmp5 < 0 tmp9 = tl.where(tmp8, tmp7, tmp5) tl.device_assert((0 <= tmp9) & (tmp9 < 4), 'index out of bounds: 0 <= tmp9 < 4') tmp11 = tl.load(in_ptr1 + (tmp9 + 4 * r0), None, eviction_policy= 'evict_last') tmp13 = tl_math.exp(tmp12) tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tl_math.log(tmp22) tmp24 = tmp11 - tmp23 tmp25 = -tmp24 tmp26 = 0.0 tmp27 = tl.where(tmp3, tmp25, tmp26) tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = tl.sum(tmp28, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp30, None) @triton.jit def triton_per_fused__to_copy_div_ne_sum_2(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp8 = tl.load(in_out_ptr0 + 0) tmp9 = tl.broadcast_to(tmp8, [1]) tmp1 = 0.0 tmp2 = tmp0 != tmp1 tmp3 = tmp2.to(tl.int64) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tmp6.to(tl.float32) tmp10 = tmp9 / tmp7 tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp7, None) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(64)](arg0_1, buf0, 64, XBLOCK= 64, num_warps=1, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) triton_per_fused__to_copy_nll_loss_forward_1[grid(1)](arg2_1, buf0, buf1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg2_1 del buf0 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf1 del buf1 triton_per_fused__to_copy_div_ne_sum_2[grid(1)](buf4, arg1_1, buf3, 1, 256, num_warps=2, num_stages=1) del arg1_1 return buf4, buf3 class CrossEntropyLossNew(nn.Module): """Custom cross-entropy loss""" def __init__(self): super(CrossEntropyLossNew, self).__init__() self.pytorch_ce_loss = torch.nn.CrossEntropyLoss(ignore_index=-1, reduction='sum') def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg2_1 = input_1 arg1_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
TimO96/NLP2
CrossEntropyLoss
false
1,144
[ "MIT" ]
0
83f65a385457f68397c641f38b53df0110282578
https://github.com/TimO96/NLP2/tree/83f65a385457f68397c641f38b53df0110282578
import torch import torch.nn as nn import torch.utils.data.dataloader class Model(nn.Module): """Custom cross-entropy loss""" def __init__(self): super().__init__() self.pytorch_ce_loss = torch.nn.CrossEntropyLoss(ignore_index=-1, reduction='sum') def forward(self, predictions, label_batch, length_batch): """ Computes and returns CrossEntropyLoss. Ignores all entries where label_batch=-1 Noralizes by the number of sentences in the batch. Args: predictions: A pytorch batch of logits label_batch: A pytorch batch of label indices length_batch: A pytorch batch of sentence lengths Returns: A tuple of: cross_entropy_loss: average loss in the batch total_sents: number of sentences in the batch """ batchlen, seqlen, class_count = predictions.size() total_sents = torch.sum(length_batch != 0).float() predictions = predictions.view(batchlen * seqlen, class_count) label_batch = label_batch.view(batchlen * seqlen).long() cross_entropy_loss = self.pytorch_ce_loss(predictions, label_batch ) / total_sents return cross_entropy_loss, total_sents def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([16]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
GlobalAttentionGeneral
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qi/cqinh332474qtv7bgen4bcfz2yfclns66jnudr7z7wmvlrgqoduc.py # Topologically Sorted Source Nodes: [targetT], Original ATen: [aten.clone, aten.transpose] # Source node to ATen node mapping: # targetT => clone # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %permute_5 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%clone, [0, 2, 1]), kwargs = {}) triton_poi_fused_clone_transpose_0 = async_compile.triton('triton_poi_fused_clone_transpose_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_transpose_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_transpose_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x1 + (16*y0)), xmask & ymask) tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) tl.store(out_ptr1 + (y2 + (4*x1) + (64*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_2 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/pm/cpmy57yidxxfl6wmlh5dsizlsat4uz6k43rz6t4r6h2u4z625i5l.py # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.clone] # Source node to ATen node mapping: # attn_4 => clone_1 # Graph fragment: # %clone_1 : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp1 = tl.load(in_ptr0 + ((4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + (16*y3)), tmp8, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (4, 4, 4, 1), (16, 4, 1, 1), 0), primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 1), (16, 4, 1, 1)) buf1 = empty_strided_cuda((4, 16, 4), (64, 1, 16), torch.float32) buf6 = empty_strided_cuda((4, 4, 16), (64, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [targetT], Original ATen: [aten.clone, aten.transpose] stream0 = get_raw_stream(0) triton_poi_fused_clone_transpose_0.run(primals_1, buf1, buf6, 16, 16, grid=grid(16, 16), stream=stream0) del primals_1 buf2 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [targetT, attn], Original ATen: [aten.clone, aten.bmm] extern_kernels.bmm(buf1, reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), out=buf2) buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf3, buf4, 16, 16, grid=grid(16, 16), stream=stream0) buf5 = reinterpret_tensor(buf3, (4, 4, 16), (64, 16, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [weightedContext], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), buf4, out=buf5) return (reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_3, reinterpret_tensor(primals_2, (4, 4, 4, 1), (16, 4, 1, 1), 0), buf2, reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (4, 16, 4), (64, 1, 16), 0), buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.onnx def conv1x1(in_planes, out_planes, bias=False): """1x1 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=bias) class GlobalAttentionGeneral(nn.Module): def __init__(self, idf, cdf): super(GlobalAttentionGeneral, self).__init__() self.conv_context = conv1x1(cdf, idf) self.sm = nn.Softmax() self.mask = None def applyMask(self, mask): self.mask = mask def forward(self, input, context): """ input: batch x idf x ih x iw (queryL=ihxiw) context: batch x cdf x sourceL """ ih, iw = input.size(2), input.size(3) queryL = ih * iw batch_size, sourceL = context.size(0), context.size(2) target = input.view(batch_size, -1, queryL) targetT = torch.transpose(target, 1, 2).contiguous() sourceT = context.unsqueeze(3) sourceT = self.conv_context(sourceT).squeeze(3) attn = torch.bmm(targetT, sourceT) attn = attn.view(batch_size * queryL, sourceL) if self.mask is not None: mask = self.mask.repeat(queryL, 1) attn.data.masked_fill_(mask.data.bool(), -float('inf')) attn = self.sm(attn) attn = attn.view(batch_size, queryL, sourceL) attn = torch.transpose(attn, 1, 2).contiguous() weightedContext = torch.bmm(sourceT, attn) weightedContext = weightedContext.view(batch_size, -1, ih, iw) attn = attn.view(batch_size, -1, ih, iw) return weightedContext, attn def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'idf': 4, 'cdf': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.parallel import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_transpose_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x1 + 16 * y0), xmask & ymask) tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) tl.store(out_ptr1 + (y2 + 4 * x1 + 64 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp1 = tl.load(in_ptr0 + (4 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + 16 * y3), tmp8, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (4, 4, 4, 1), (16, 4, 1, 1), 0), primals_3, stride=(1, 1), padding= (0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0 ), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 1), (16, 4, 1, 1)) buf1 = empty_strided_cuda((4, 16, 4), (64, 1, 16), torch.float32) buf6 = empty_strided_cuda((4, 4, 16), (64, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_clone_transpose_0[grid(16, 16)](primals_1, buf1, buf6, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf2 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) extern_kernels.bmm(buf1, reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), out=buf2) buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0) del buf1 triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) triton_poi_fused_clone_2[grid(16, 16)](buf3, buf4, 16, 16, XBLOCK= 16, YBLOCK=16, num_warps=4, num_stages=1) buf5 = reinterpret_tensor(buf3, (4, 4, 16), (64, 16, 1), 0) del buf3 extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), buf4, out=buf5) return reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_3, reinterpret_tensor(primals_2, (4, 4, 4, 1), (16, 4, 1, 1), 0), buf2, reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf4, (4, 16, 4), (64, 1, 16), 0), buf6 def conv1x1(in_planes, out_planes, bias=False): """1x1 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=bias) class GlobalAttentionGeneralNew(nn.Module): def __init__(self, idf, cdf): super(GlobalAttentionGeneralNew, self).__init__() self.conv_context = conv1x1(cdf, idf) self.sm = nn.Softmax() self.mask = None def applyMask(self, mask): self.mask = mask def forward(self, input_0, input_1): primals_3 = self.conv_context.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
Thesis-02F/Style-Attn
GlobalAttentionGeneral
false
1,145
[ "MIT" ]
0
55f78de4858e395ebf9750a23923fd772600290f
https://github.com/Thesis-02F/Style-Attn/tree/55f78de4858e395ebf9750a23923fd772600290f
import torch import torch.nn as nn import torch.nn.parallel import torch.onnx def conv1x1(in_planes, out_planes, bias=False): """1x1 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=bias) class Model(nn.Module): def __init__(self, idf, cdf): super().__init__() self.conv_context = conv1x1(cdf, idf) self.sm = nn.Softmax() self.mask = None def applyMask(self, mask): self.mask = mask def forward(self, input, context): """ input: batch x idf x ih x iw (queryL=ihxiw) context: batch x cdf x sourceL """ ih, iw = input.size(2), input.size(3) queryL = ih * iw batch_size, sourceL = context.size(0), context.size(2) target = input.view(batch_size, -1, queryL) targetT = torch.transpose(target, 1, 2).contiguous() sourceT = context.unsqueeze(3) sourceT = self.conv_context(sourceT).squeeze(3) attn = torch.bmm(targetT, sourceT) attn = attn.view(batch_size * queryL, sourceL) if self.mask is not None: mask = self.mask.repeat(queryL, 1) attn.data.masked_fill_(mask.data.bool(), -float('inf')) attn = self.sm(attn) attn = attn.view(batch_size, queryL, sourceL) attn = torch.transpose(attn, 1, 2).contiguous() weightedContext = torch.bmm(sourceT, attn) weightedContext = weightedContext.view(batch_size, -1, ih, iw) attn = attn.view(batch_size, -1, ih, iw) return weightedContext, attn def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4]
Mlp
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/tx/ctxovrltdhpfxjn2zu2smrgoqxlijsvlahl3ehyzgagcnkhtwqrh.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.gelu] # Source node to ATen node mapping: # x => convolution # x_1 => add, erf, mul, mul_1, mul_2 # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) triton_poi_fused_convolution_gelu_0 = async_compile.triton('triton_poi_fused_convolution_gelu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_gelu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_gelu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_2, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.gelu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_gelu_0.run(buf1, primals_2, buf2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf4, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf4, primals_1, primals_3, primals_4, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import warnings import torch.nn as nn def _no_grad_trunc_normal_(tensor, mean, std, a, b): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ def norm_cdf(x): """Computes standard normal cumulative distribution function""" return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if mean < a - 2 * std or mean > b + 2 * std: warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.' , stacklevel=2) with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class Mlp(nn.Module): """ Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W] """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import warnings import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_gelu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_gelu_0[grid(256)](buf1, primals_2, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_1[grid(256)](buf4, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf4, primals_1, primals_3, primals_4, buf1, buf2 def _no_grad_trunc_normal_(tensor, mean, std, a, b): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ def norm_cdf(x): """Computes standard normal cumulative distribution function""" return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if mean < a - 2 * std or mean > b + 2 * std: warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.' , stacklevel=2) with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class MlpNew(nn.Module): """ Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W] """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
TranNhiem/solo-learn
Mlp
false
1,146
[ "MIT" ]
0
7539732b68d153087d09a26a23e1edfdc49bc086
https://github.com/TranNhiem/solo-learn/tree/7539732b68d153087d09a26a23e1edfdc49bc086
import math import torch import warnings import torch.nn as nn def _no_grad_trunc_normal_(tensor, mean, std, a, b): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ def norm_cdf(x): """Computes standard normal cumulative distribution function""" return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if mean < a - 2 * std or mean > b + 2 * std: warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.' , stacklevel=2) with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class Model(nn.Module): """ Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W] """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
TokenMixer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ay/caylcn737p2wwjm32cacv462xdgdut6ho32ptwxfu34t3i2tr75z.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2o/c2oeyuwv7gxwqncpovtxrktvflvbh65akpqi3mvsjgsq3we4q3a7.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.add, aten.gelu] # Source node to ATen node mapping: # x_1 => add # x_2 => add_1, erf, mul, mul_1, mul_2 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {}) triton_poi_fused_add_gelu_1 = async_compile.triton('triton_poi_fused_add_gelu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_gelu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_gelu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dz/cdzzulj2qzikpeu5y24dznn2obh4nqag33ymhhfmhaiep723cu6g.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.add] # Source node to ATen node mapping: # x_5 => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_3, %primals_1), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.add, aten.gelu] triton_poi_fused_add_gelu_1.run(buf1, primals_3, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 4, 16, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf4, primals_5, primals_1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_5 return (buf4, primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class TokenMixer(nn.Module): def __init__(self, input_size, hidden_size, dropout=None): super(TokenMixer, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, input_size) self.dropout = None if dropout is not None: self.dropout = nn.Dropout(dropout) self.activation = nn.GELU() def forward(self, x): input = x x = torch.transpose(x, 1, 2) x = self.fc1(x) x = self.activation(x) if self.dropout is not None: x = self.dropout(x) x = self.fc2(x) if self.dropout is not None: x = self.dropout(x) x = torch.transpose(x, 1, 2) x = x + input return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_add_gelu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x4, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](primals_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_gelu_1[grid(256)](buf1, primals_3, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 4, 16, 1), 0) del buf3 triton_poi_fused_add_2[grid(256)](buf4, primals_5, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_5 return buf4, primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4 class TokenMixerNew(nn.Module): def __init__(self, input_size, hidden_size, dropout=None): super(TokenMixerNew, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, input_size) self.dropout = None if dropout is not None: self.dropout = nn.Dropout(dropout) self.activation = nn.GELU() def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
TheRealMarVin/mlp-mixer
TokenMixer
false
1,147
[ "MIT" ]
0
2124cb5c5adfc7af473cab535095471d4943adab
https://github.com/TheRealMarVin/mlp-mixer/tree/2124cb5c5adfc7af473cab535095471d4943adab
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_size, hidden_size, dropout=None): super().__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, input_size) self.dropout = None if dropout is not None: self.dropout = nn.Dropout(dropout) self.activation = nn.GELU() def forward(self, x): input = x x = torch.transpose(x, 1, 2) x = self.fc1(x) x = self.activation(x) if self.dropout is not None: x = self.dropout(x) x = self.fc2(x) if self.dropout is not None: x = self.dropout(x) x = torch.transpose(x, 1, 2) x = x + input return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
SelfAttention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/pw/cpwtsjylwmnmzrfjyguikuwbleavnwvse35uypvb2lu2crw6ztqm.py # Topologically Sorted Source Nodes: [wrapped_sqrt, truediv], Original ATen: [aten.sqrt, aten.div] # Source node to ATen node mapping: # truediv => div # wrapped_sqrt => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 2.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %full_default), kwargs = {}) triton_poi_fused_div_sqrt_0 = async_compile.triton('triton_poi_fused_div_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 2.0 tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [wrapped_sqrt, truediv], Original ATen: [aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_sqrt_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 1, 4), 0), out=buf1) del arg0_1 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4) del arg2_1 del buf3 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class SelfAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, dropout=0.1): super(SelfAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, mask=None): key_dim = key.size(-1) attn = torch.matmul(query / np.sqrt(key_dim), key.transpose(2, 3)) if mask is not None: mask = mask.unsqueeze(1) attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(torch.softmax(attn, dim=-1)) output = torch.matmul(attn, value) return output def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 2.0 tmp2 = tmp0 / tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_sqrt_0[grid(256)](arg1_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 1, 4), 0), out=buf1 ) del arg0_1 buf2 = buf0 del buf0 triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused__softmax_2[grid(256)](buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4 ) del arg2_1 del buf3 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), class SelfAttentionNew(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, dropout=0.1): super(SelfAttentionNew, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
TranQuocTrinh/image_captioning
SelfAttention
false
1,148
[ "MIT" ]
0
4c2d77426ba3b9fe9151a15a958320d5298aa190
https://github.com/TranQuocTrinh/image_captioning/tree/4c2d77426ba3b9fe9151a15a958320d5298aa190
import torch import numpy as np import torch.nn as nn class Model(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, dropout=0.1): super().__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, mask=None): key_dim = key.size(-1) attn = torch.matmul(query / np.sqrt(key_dim), key.transpose(2, 3)) if mask is not None: mask = mask.unsqueeze(1) attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(torch.softmax(attn, dim=-1)) output = torch.matmul(attn, value) return output def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
AveragePoolingLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/l3/cl3qgtljwm55hj7prrlq32vnxhqj5elf2qeptwkrprrhumnm7twn.py # Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class AveragePoolingLayer(nn.Module): """Implements the average pooling layer. Basically, this layer can be used to downsample feature maps from spatial domain. """ def __init__(self, scale_factor=2): super().__init__() self.scale_factor = scale_factor def forward(self, x): ksize = [self.scale_factor, self.scale_factor] strides = [self.scale_factor, self.scale_factor] return F.avg_pool2d(x, kernel_size=ksize, stride=strides, padding=0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class AveragePoolingLayerNew(nn.Module): """Implements the average pooling layer. Basically, this layer can be used to downsample feature maps from spatial domain. """ def __init__(self, scale_factor=2): super().__init__() self.scale_factor = scale_factor def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Twizwei/idinvert_pytorch
AveragePoolingLayer
false
1,149
[ "MIT" ]
0
11f1126aab517fbe32b488d92f6fdea339463d04
https://github.com/Twizwei/idinvert_pytorch/tree/11f1126aab517fbe32b488d92f6fdea339463d04
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """Implements the average pooling layer. Basically, this layer can be used to downsample feature maps from spatial domain. """ def __init__(self, scale_factor=2): super().__init__() self.scale_factor = scale_factor def forward(self, x): ksize = [self.scale_factor, self.scale_factor] strides = [self.scale_factor, self.scale_factor] return F.avg_pool2d(x, kernel_size=ksize, stride=strides, padding=0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
LayerNormChannel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zf/czfnaeipqg4a3qzttb2l6zy5ng44vshk3lfmp25jc2er665hxsmw.py # Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub] # Source node to ATen node mapping: # sub => sub # u => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xv/cxvd7z437vxfpacdwxehqwb4b4td64d2z3gex2vzjg46iitryrpn.py # Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # pow_1 => pow_1 # s => mean_1 # sqrt => sqrt # x => div # x_1 => add_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-05), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_1, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %unsqueeze_3), kwargs = {}) triton_poi_fused_add_div_mean_mul_pow_sqrt_1 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + (x3), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_mean_sub_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_pow_sqrt_1.run(primals_2, buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 del primals_3 return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNormChannel(nn.Module): """ LayerNorm only for Channel Dimension. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, eps=1e-05): super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x): u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight.unsqueeze(-1).unsqueeze(-1) * x + self.bias.unsqueeze( -1).unsqueeze(-1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x3, tmp21, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(256)](primals_2, buf0, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 del primals_3 return buf1, primals_1 class LayerNormChannelNew(nn.Module): """ LayerNorm only for Channel Dimension. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, eps=1e-05): super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
TranNhiem/MA_SSRL_Pytorch
LayerNormChannel
false
1,150
[ "MIT" ]
0
87d946461850240fdd54de761603f13ef3710c2b
https://github.com/TranNhiem/MA_SSRL_Pytorch/tree/87d946461850240fdd54de761603f13ef3710c2b
import torch import torch.nn as nn class Model(nn.Module): """ LayerNorm only for Channel Dimension. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, eps=1e-05): super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x): u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight.unsqueeze(-1).unsqueeze(-1) * x + self.bias.unsqueeze( -1).unsqueeze(-1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Whitening2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/pz/cpz2ab5bxm2jrtozlay24l6x3u34xfoykzic62oanlphvhbhsmqq.py # Topologically Sorted Source Nodes: [xn], Original ATen: [aten.sub] # Source node to ATen node mapping: # xn => sub # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze_1, %view_1), kwargs = {}) triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = 1.0 tmp11 = tmp9 / tmp10 tmp12 = tmp0 - tmp11 tl.store(out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/26/c26zwauaaytxanohrf6qcchljjpi4s5jhwcytcndqna5l35tfj5a.py # Topologically Sorted Source Nodes: [contiguous, T], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # T => view_2 # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1]), kwargs = {}) triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hp/chpqt2szom5jgqscppfvmprzb6esy645vi4ngfkax5vxbvcpriac.py # Topologically Sorted Source Nodes: [f_cov, mul, eye, eye_1, mul_1, f_cov_shrinked], Original ATen: [aten.div, aten.mul, aten.eye, aten._to_copy, aten.add] # Source node to ATen node mapping: # eye => eq, full_default, full_default_1, iota_1, where # eye_1 => device_put # f_cov => div # f_cov_shrinked => add # mul => mul # mul_1 => mul_1 # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mm, 3), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 1.0), kwargs = {}) # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cpu, requires_grad: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze_2, %iota_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %full_default_1), kwargs = {}) # %device_put : [num_users=2] = call_function[target=torch.ops.prims.device_put.default](args = (%where, cuda:0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%device_put, 0.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused__to_copy_add_div_eye_mul_2 = async_compile.triton('triton_poi_fused__to_copy_add_div_eye_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_div_eye_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_div_eye_mul_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = 0.3333333333333333 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = x1 tmp6 = x0 tmp7 = tmp5 == tmp6 tmp8 = 0.0 tmp9 = tl.where(tmp7, tmp3, tmp8) tmp10 = tmp9 * tmp8 tmp11 = tmp4 + tmp10 tl.store(in_out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/am/camagq7vaatmgdqo7yb5xw5letqk3v3jhganlmizmzy3sx2xi7gu.py # Topologically Sorted Source Nodes: [eye, eye_1], Original ATen: [aten.eye, aten._to_copy] # Source node to ATen node mapping: # eye => eq, full_default, full_default_1, iota_1, where # eye_1 => device_put # Graph fragment: # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cpu, requires_grad: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze_2, %iota_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %full_default_1), kwargs = {}) # %device_put : [num_users=2] = call_function[target=torch.ops.prims.device_put.default](args = (%where, cuda:0), kwargs = {}) triton_poi_fused__to_copy_eye_3 = async_compile.triton('triton_poi_fused__to_copy_eye_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_eye_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_eye_3(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = x1 tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [xn], Original ATen: [aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous, T], Original ATen: [aten.clone, aten.view] triton_poi_fused_clone_view_1.run(buf0, buf1, 4, 4, grid=grid(4, 4), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) del buf1 buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [f_cov, mul, eye, eye_1, mul_1, f_cov_shrinked], Original ATen: [aten.div, aten.mul, aten.eye, aten._to_copy, aten.add] triton_poi_fused__to_copy_add_div_eye_mul_2.run(buf3, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [f_cov, mul, eye, eye_1, mul_1, f_cov_shrinked, cholesky], Original ATen: [aten.div, aten.mul, aten.eye, aten._to_copy, aten.add, aten.cholesky] buf4 = torch.ops.aten.cholesky.default(buf3) buf5 = buf4 del buf4 buf6 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [eye, eye_1], Original ATen: [aten.eye, aten._to_copy] triton_poi_fused__to_copy_eye_3.run(buf6, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [eye, eye_1, triangular_solve], Original ATen: [aten.eye, aten._to_copy, aten.triangular_solve] buf7 = torch.ops.aten.triangular_solve.default(buf6, buf5, False) del buf5 buf8 = buf7[0] del buf7 buf10 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_view_1.run(buf8, buf10, 4, 4, grid=grid(4, 4), stream=stream0) del buf8 # Topologically Sorted Source Nodes: [decorrelated], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf0, reinterpret_tensor(buf10, (4, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 1, 1), (4, 1, 1, 1)) del buf0 del buf10 return (reinterpret_tensor(buf11, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.cuda.amp import custom_fwd from torch.nn.functional import conv2d class Whitening2d(nn.Module): def __init__(self, output_dim: 'int', eps: 'float'=0.0): """Layer that computes hard whitening for W-MSE using the Cholesky decomposition. Args: output_dim (int): number of dimension of projected features. eps (float, optional): eps for numerical stability in Cholesky decomposition. Defaults to 0.0. """ super(Whitening2d, self).__init__() self.output_dim = output_dim self.eps = eps @custom_fwd(cast_inputs=torch.float32) def forward(self, x: 'torch.Tensor') ->torch.Tensor: """Performs whitening using the Cholesky decomposition. Args: x (torch.Tensor): a batch or slice of projected features. Returns: torch.Tensor: a batch or slice of whitened features. """ x = x.unsqueeze(2).unsqueeze(3) m = x.mean(0).view(self.output_dim, -1).mean(-1).view(1, -1, 1, 1) xn = x - m T = xn.permute(1, 0, 2, 3).contiguous().view(self.output_dim, -1) f_cov = torch.mm(T, T.permute(1, 0)) / (T.shape[-1] - 1) eye = torch.eye(self.output_dim).type(f_cov.type()) f_cov_shrinked = (1 - self.eps) * f_cov + self.eps * eye inv_sqrt = torch.triangular_solve(eye, torch.cholesky( f_cov_shrinked), upper=False)[0] inv_sqrt = inv_sqrt.contiguous().view(self.output_dim, self. output_dim, 1, 1) decorrelated = conv2d(xn, inv_sqrt) return decorrelated.squeeze(2).squeeze(2) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = 1.0 tmp11 = tmp9 / tmp10 tmp12 = tmp0 - tmp11 tl.store(out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_clone_view_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__to_copy_add_div_eye_mul_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = 0.3333333333333333 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = x1 tmp6 = x0 tmp7 = tmp5 == tmp6 tmp8 = 0.0 tmp9 = tl.where(tmp7, tmp3, tmp8) tmp10 = tmp9 * tmp8 tmp11 = tmp4 + tmp10 tl.store(in_out_ptr0 + x2, tmp11, xmask) @triton.jit def triton_poi_fused__to_copy_eye_3(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = x1 tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_sub_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_clone_view_1[grid(4, 4)](buf0, buf1, 4, 4, XBLOCK= 4, YBLOCK=4, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) del buf1 buf3 = buf2 del buf2 triton_poi_fused__to_copy_add_div_eye_mul_2[grid(16)](buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = torch.ops.aten.cholesky.default(buf3) buf5 = buf4 del buf4 buf6 = buf3 del buf3 triton_poi_fused__to_copy_eye_3[grid(16)](buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = torch.ops.aten.triangular_solve.default(buf6, buf5, False) del buf5 buf8 = buf7[0] del buf7 buf10 = buf6 del buf6 triton_poi_fused_clone_view_1[grid(4, 4)](buf8, buf10, 4, 4, XBLOCK =4, YBLOCK=4, num_warps=1, num_stages=1) del buf8 buf11 = extern_kernels.convolution(buf0, reinterpret_tensor(buf10, (4, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 1, 1), (4, 1, 1, 1)) del buf0 del buf10 return reinterpret_tensor(buf11, (4, 4), (4, 1), 0), class Whitening2dNew(nn.Module): def __init__(self, output_dim: 'int', eps: 'float'=0.0): """Layer that computes hard whitening for W-MSE using the Cholesky decomposition. Args: output_dim (int): number of dimension of projected features. eps (float, optional): eps for numerical stability in Cholesky decomposition. Defaults to 0.0. """ super(Whitening2dNew, self).__init__() self.output_dim = output_dim self.eps = eps def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
TranNhiem/solo-learn
Whitening2d
false
1,151
[ "MIT" ]
0
7539732b68d153087d09a26a23e1edfdc49bc086
https://github.com/TranNhiem/solo-learn/tree/7539732b68d153087d09a26a23e1edfdc49bc086
import torch import torch.nn as nn from torch.cuda.amp import custom_fwd from torch.nn.functional import conv2d class Model(nn.Module): def __init__(self, output_dim: 'int', eps: 'float'=0.0): """Layer that computes hard whitening for W-MSE using the Cholesky decomposition. Args: output_dim (int): number of dimension of projected features. eps (float, optional): eps for numerical stability in Cholesky decomposition. Defaults to 0.0. """ super().__init__() self.output_dim = output_dim self.eps = eps @custom_fwd(cast_inputs=torch.float32) def forward(self, x: 'torch.Tensor') ->torch.Tensor: """Performs whitening using the Cholesky decomposition. Args: x (torch.Tensor): a batch or slice of projected features. Returns: torch.Tensor: a batch or slice of whitened features. """ x = x.unsqueeze(2).unsqueeze(3) m = x.mean(0).view(self.output_dim, -1).mean(-1).view(1, -1, 1, 1) xn = x - m T = xn.permute(1, 0, 2, 3).contiguous().view(self.output_dim, -1) f_cov = torch.mm(T, T.permute(1, 0)) / (T.shape[-1] - 1) eye = torch.eye(self.output_dim).type(f_cov.type()) f_cov_shrinked = (1 - self.eps) * f_cov + self.eps * eye inv_sqrt = torch.triangular_solve(eye, torch.cholesky( f_cov_shrinked), upper=False)[0] inv_sqrt = inv_sqrt.contiguous().view(self.output_dim, self. output_dim, 1, 1) decorrelated = conv2d(xn, inv_sqrt) return decorrelated.squeeze(2).squeeze(2) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4]
ClassificationModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/cb/ccbgymnr2fvk43axzcuowohjalipdfn2nc4qqvidfjzuqhtxsj6g.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/j5/cj5nf2owtsdm2zwcezqxpyn63iwddjyadpotkhm2ua52inoqxdcl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/co/ccosum7u5lx5fx5hf5opofiygxj2ntiq67yo5gfegevmhtkaru4r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/c2/cc24idh7iumu54cabqtyf4bwq723mqt6nb4chiwnswjfaoolg4us.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 184320 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wj/cwjii5g7vcokiqucazdgsrvnsqad3q7z4gbxiwezolbw7o6ilfmr.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # out => convolution # out_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/5d/c5denb5h7n772ohbbcrslg7gqns4fexacfz7q33ejdelmalo2d77.py # Topologically Sorted Source Nodes: [out_10, contiguous], Original ATen: [aten.convolution, aten.clone] # Source node to ATen node mapping: # contiguous => clone_2 # out_10 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_convolution_5 = async_compile.triton('triton_poi_fused_clone_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_convolution_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 46080 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 720 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (720, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (720, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 4, 3, 3), (36, 1, 12, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 1024, 9, grid=grid(1024, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_4 buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_6, buf3, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_8, buf4, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_8 buf5 = empty_strided_cuda((720, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_10, buf5, 184320, 9, grid=grid(184320, 9), stream=stream0) del primals_10 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf7, primals_2, 16384, grid=grid(16384), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf9, primals_5, 16384, grid=grid(16384), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf11, primals_7, 16384, grid=grid(16384), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [out_7, out_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf13, primals_9, 16384, grid=grid(16384), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [out_10], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 720, 4, 4), (11520, 1, 2880, 720)) buf15 = buf14; del buf14 # reuse buf16 = empty_strided_cuda((4, 4, 4, 9, 80), (11520, 2880, 720, 80, 1), torch.float32) # Topologically Sorted Source Nodes: [out_10, contiguous], Original ATen: [aten.convolution, aten.clone] triton_poi_fused_clone_convolution_5.run(buf15, primals_11, buf16, 46080, grid=grid(46080), stream=stream0) del primals_11 return (reinterpret_tensor(buf16, (4, 144, 80), (11520, 80, 1), 0), buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf9, buf11, buf13, buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((720, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((720, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ClassificationModel(nn.Module): def __init__(self, num_features_in, num_anchors=9, num_classes=80, prior=0.01, feature_size=256, dropout1=0.25, dropout2=0.25): super(ClassificationModel, self).__init__() self.num_classes = num_classes self.num_anchors = num_anchors self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1) self.act1 = nn.ReLU() self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act2 = nn.ReLU() self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act3 = nn.ReLU() self.dropout1 = nn.Dropout(p=dropout1) self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act4 = nn.ReLU() self.dropout2 = nn.Dropout(p=dropout2) self.output = nn.Conv2d(feature_size, num_anchors * num_classes, kernel_size=3, padding=1) self.output_act = nn.Sigmoid() def forward(self, x): out = self.conv1(x) out = self.act1(out) out = self.conv2(out) out = self.act2(out) out = self.conv3(out) out = self.act3(out) out = self.dropout1(out) out = self.conv4(out) out = self.act4(out) out = self.dropout2(out) out = self.output(out) out = self.output_act(out) out1 = out.permute(0, 2, 3, 1) batch_size, width, height, _channels = out1.shape out2 = out1.view(batch_size, width, height, self.num_anchors, self. num_classes) return out2.contiguous().view(x.shape[0], -1, self.num_classes) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_features_in': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_clone_convolution_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 46080 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 720 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (720, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (720,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 4, 3, 3), (36, 1, 12, 4), torch.float32 ) get_raw_stream(0) triton_poi_fused_0[grid(1024, 9)](primals_1, buf0, 1024, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_2[grid(65536, 9)](primals_4, buf2, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_2[grid(65536, 9)](primals_6, buf3, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_2[grid(65536, 9)](primals_8, buf4, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = empty_strided_cuda((720, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_3[grid(184320, 9)](primals_10, buf5, 184320, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_4[grid(16384)](buf7, primals_2, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf8 = extern_kernels.convolution(buf7, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_4[grid(16384)](buf9, primals_5, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf10 = extern_kernels.convolution(buf9, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_4[grid(16384)](buf11, primals_7, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf12 = extern_kernels.convolution(buf11, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_4[grid(16384)](buf13, primals_9, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf14 = extern_kernels.convolution(buf13, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 720, 4, 4), (11520, 1, 2880, 720)) buf15 = buf14 del buf14 buf16 = empty_strided_cuda((4, 4, 4, 9, 80), (11520, 2880, 720, 80, 1), torch.float32) triton_poi_fused_clone_convolution_5[grid(46080)](buf15, primals_11, buf16, 46080, XBLOCK=512, num_warps=4, num_stages=1) del primals_11 return reinterpret_tensor(buf16, (4, 144, 80), (11520, 80, 1), 0 ), buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf9, buf11, buf13, buf15 class ClassificationModelNew(nn.Module): def __init__(self, num_features_in, num_anchors=9, num_classes=80, prior=0.01, feature_size=256, dropout1=0.25, dropout2=0.25): super(ClassificationModelNew, self).__init__() self.num_classes = num_classes self.num_anchors = num_anchors self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1) self.act1 = nn.ReLU() self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act2 = nn.ReLU() self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act3 = nn.ReLU() self.dropout1 = nn.Dropout(p=dropout1) self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act4 = nn.ReLU() self.dropout2 = nn.Dropout(p=dropout2) self.output = nn.Conv2d(feature_size, num_anchors * num_classes, kernel_size=3, padding=1) self.output_act = nn.Sigmoid() def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.output.weight primals_11 = self.output.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
TobyChen0106/DeepQ_Final_B05901170
ClassificationModel
false
1,152
[ "Apache-2.0" ]
0
808a224c01272726a051eb7b7bb9e1b28887716e
https://github.com/TobyChen0106/DeepQ_Final_B05901170/tree/808a224c01272726a051eb7b7bb9e1b28887716e
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, num_features_in, num_anchors=9, num_classes=80, prior=0.01, feature_size=256, dropout1=0.25, dropout2=0.25): super().__init__() self.num_classes = num_classes self.num_anchors = num_anchors self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1) self.act1 = nn.ReLU() self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act2 = nn.ReLU() self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act3 = nn.ReLU() self.dropout1 = nn.Dropout(p=dropout1) self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act4 = nn.ReLU() self.dropout2 = nn.Dropout(p=dropout2) self.output = nn.Conv2d(feature_size, num_anchors * num_classes, kernel_size=3, padding=1) self.output_act = nn.Sigmoid() def forward(self, x): out = self.conv1(x) out = self.act1(out) out = self.conv2(out) out = self.act2(out) out = self.conv3(out) out = self.act3(out) out = self.dropout1(out) out = self.conv4(out) out = self.act4(out) out = self.dropout2(out) out = self.output(out) out = self.output_act(out) out1 = out.permute(0, 2, 3, 1) batch_size, width, height, _channels = out1.shape out2 = out1.view(batch_size, width, height, self.num_anchors, self. num_classes) return out2.contiguous().view(x.shape[0], -1, self.num_classes) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ContrastiveLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/vg/cvgidnhbzjfqodump67yyhbxdotu5ydihgvgmgmpsvm4p3qrqo4q.py # Topologically Sorted Source Nodes: [sub, pow_1, dist], Original ATen: [aten.sub, aten.pow, aten.sum] # Source node to ATen node mapping: # dist => sum_1 # pow_1 => pow_1 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%getitem, %getitem_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) triton_poi_fused_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_sub_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (128 + x0 + (64*x1)), xmask) tmp4 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (144 + x0 + (64*x1)), xmask) tmp9 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr0 + (160 + x0 + (64*x1)), xmask) tmp14 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr0 + (176 + x0 + (64*x1)), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/j5/cj55xji4corldscu2fvwxw4osguzugsn2pfvgmlufmwg77e3mt6e.py # Topologically Sorted Source Nodes: [mul, sub_1, sub_2, relu, mul_1, loss, mean, truediv], Original ATen: [aten.mul, aten.rsub, aten.relu, aten.add, aten.mean, aten.div] # Source node to ATen node mapping: # loss => add # mean => mean # mul => mul # mul_1 => mul_1 # relu => relu # sub_1 => sub_1 # sub_2 => sub_2 # truediv => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sum_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sum_1), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_2,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %relu), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mean, 2.0), kwargs = {}) triton_per_fused_add_div_mean_mul_relu_rsub_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_relu_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_relu_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_relu_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 32 tmp0 = tl.load(in_ptr0 + (r2), None) tmp1 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp0 tmp5 = tmp3 - tmp1 tmp6 = tl.full([1, 1], 0, tl.int32) tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp8 = tmp4 * tmp7 tmp9 = tmp2 + tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp13 = 128.0 tmp14 = tmp12 / tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 2, 4, 4), (32, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((2, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, pow_1, dist], Original ATen: [aten.sub, aten.pow, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_pow_sub_sum_0.run(arg0_1, buf0, 32, grid=grid(32), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [mul, sub_1, sub_2, relu, mul_1, loss, mean, truediv], Original ATen: [aten.mul, aten.rsub, aten.relu, aten.add, aten.mean, aten.div] triton_per_fused_add_div_mean_mul_relu_rsub_1.run(buf2, arg1_1, buf0, 1, 128, grid=grid(1), stream=stream0) del arg1_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 2, 4, 4), (32, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class ContrastiveLoss(nn.Module): """ contrastive loss L2 distance: L(a1,a2,y) = y * d(a1, a2) + (1-y)*max(0, m - d(a1, a2)) cosine distance: L(a1, a2, y) = y * (1 - d(a1,a2)) + (1-y) * max(0, d(a1,a2) -m) where y=1 if (a1,a2) relevant else 0 """ def __init__(self, margin=1.0, metric='l2'): super().__init__() self.margin = margin self.metric = metric metric_list = ['l2', 'cosine'] assert metric in metric_list, 'Error! contrastive metric %s not supported.' % metric self.metric_id = metric_list.index(metric) def forward(self, x, y): a, p = x.chunk(2, dim=0) if self.metric_id == 0: dist = torch.sum((a - p) ** 2, dim=1) loss = y * dist + (1 - y) * F.relu(self.margin - dist) else: dist = F.cosine_similarity(a, p) loss = y * (1 - dist) + (1 - y) * F.relu(dist - self.margin) return loss.mean() / 2.0 def extra_repr(self) ->str: return '?xD -> scalar (Loss)' def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 2, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_pow_sub_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (128 + x0 + 64 * x1), xmask) tmp4 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (144 + x0 + 64 * x1), xmask) tmp9 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr0 + (160 + x0 + 64 * x1), xmask) tmp14 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr0 + (176 + x0 + 64 * x1), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_per_fused_add_div_mean_mul_relu_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 32 tmp0 = tl.load(in_ptr0 + r2, None) tmp1 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp0 tmp5 = tmp3 - tmp1 tmp6 = tl.full([1, 1], 0, tl.int32) tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp8 = tmp4 * tmp7 tmp9 = tmp2 + tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp13 = 128.0 tmp14 = tmp12 / tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 2, 4, 4), (32, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((2, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_sub_sum_0[grid(32)](arg0_1, buf0, 32, XBLOCK= 32, num_warps=1, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_add_div_mean_mul_relu_rsub_1[grid(1)](buf2, arg1_1, buf0, 1, 128, XBLOCK=1, num_warps=2, num_stages=1) del arg1_1 del buf0 return buf2, class ContrastiveLossNew(nn.Module): """ contrastive loss L2 distance: L(a1,a2,y) = y * d(a1, a2) + (1-y)*max(0, m - d(a1, a2)) cosine distance: L(a1, a2, y) = y * (1 - d(a1,a2)) + (1-y) * max(0, d(a1,a2) -m) where y=1 if (a1,a2) relevant else 0 """ def __init__(self, margin=1.0, metric='l2'): super().__init__() self.margin = margin self.metric = metric metric_list = ['l2', 'cosine'] assert metric in metric_list, 'Error! contrastive metric %s not supported.' % metric self.metric_id = metric_list.index(metric) def extra_repr(self) ->str: return '?xD -> scalar (Loss)' def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
TuBui/deep_image_comparator
ContrastiveLoss
false
1,153
[ "MIT" ]
0
2dea7738d794b91a960ee9f41461a4e3ffcd5e44
https://github.com/TuBui/deep_image_comparator/tree/2dea7738d794b91a960ee9f41461a4e3ffcd5e44
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): """ contrastive loss L2 distance: L(a1,a2,y) = y * d(a1, a2) + (1-y)*max(0, m - d(a1, a2)) cosine distance: L(a1, a2, y) = y * (1 - d(a1,a2)) + (1-y) * max(0, d(a1,a2) -m) where y=1 if (a1,a2) relevant else 0 """ def __init__(self, margin=1.0, metric='l2'): super().__init__() self.margin = margin self.metric = metric metric_list = ['l2', 'cosine'] assert metric in metric_list, 'Error! contrastive metric %s not supported.' % metric self.metric_id = metric_list.index(metric) def forward(self, x, y): a, p = x.chunk(2, dim=0) if self.metric_id == 0: dist = torch.sum((a - p) ** 2, dim=1) loss = y * dist + (1 - y) * F.relu(self.margin - dist) else: dist = F.cosine_similarity(a, p) loss = y * (1 - dist) + (1 - y) * F.relu(dist - self.margin) return loss.mean() / 2.0 def extra_repr(self) ->str: return '?xD -> scalar (Loss)' def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 2, 4, 4])] def get_init_inputs(): return []
GreedyHashLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/au/cau5so7arj5gacdef6kj7djfhc7dlz27fly6cilgbqrxabo4ilda.py # Topologically Sorted Source Nodes: [b, abs_1, sub, pow_1, abs_2, loss], Original ATen: [aten.sign, aten.abs, aten.sub, aten.pow, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # b => sign # loss => mean # pow_1 => pow_1 # sub => sub # Graph fragment: # %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%arg0_1,), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 3), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%pow_1,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_2,), kwargs = {}) triton_per_fused_abs_mean_pow_sign_sub_0 = async_compile.triton('triton_per_fused_abs_mean_pow_sign_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_pow_sign_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_pow_sign_sub_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp1 < tmp0 tmp3 = tmp2.to(tl.int8) tmp4 = tmp0 < tmp1 tmp5 = tmp4.to(tl.int8) tmp6 = tmp3 - tmp5 tmp7 = tmp6.to(tmp0.dtype) tmp8 = tl_math.abs(tmp0) tmp9 = 1.0 tmp10 = tmp8 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tmp11 * tmp10 tmp13 = tl_math.abs(tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tl.store(out_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp7, None) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [b, abs_1, sub, pow_1, abs_2, loss], Original ATen: [aten.sign, aten.abs, aten.sub, aten.pow, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_pow_sign_sub_0.run(buf2, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class GreedyHashLoss(torch.nn.Module): def __init__(self): super(GreedyHashLoss, self).__init__() def forward(self, u): b = GreedyHashLoss.Hash.apply(u) loss = (u.abs() - 1).pow(3).abs().mean() return b, loss class Hash(torch.autograd.Function): @staticmethod def forward(ctx, input): return input.sign() @staticmethod def backward(ctx, grad_output): return grad_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_mean_pow_sign_sub_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp1 < tmp0 tmp3 = tmp2.to(tl.int8) tmp4 = tmp0 < tmp1 tmp5 = tmp4.to(tl.int8) tmp6 = tmp3 - tmp5 tmp7 = tmp6.to(tmp0.dtype) tmp8 = tl_math.abs(tmp0) tmp9 = 1.0 tmp10 = tmp8 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tmp11 * tmp10 tmp13 = tl_math.abs(tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tl.store(out_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp7, None) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_abs_mean_pow_sign_sub_0[grid(1)](buf2, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf0, buf2 class GreedyHashLossNew(torch.nn.Module): def __init__(self): super(GreedyHashLossNew, self).__init__() class Hash(torch.autograd.Function): @staticmethod def forward(ctx, input): return input.sign() @staticmethod def backward(ctx, grad_output): return grad_output def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0], output[1]
TuBui/deep_image_comparator
GreedyHashLoss
false
1,154
[ "MIT" ]
0
2dea7738d794b91a960ee9f41461a4e3ffcd5e44
https://github.com/TuBui/deep_image_comparator/tree/2dea7738d794b91a960ee9f41461a4e3ffcd5e44
import torch class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, u): b = GreedyHashLoss.Hash.apply(u) loss = (u.abs() - 1).pow(3).abs().mean() return b, loss class Hash(torch.autograd.Function): @staticmethod def forward(ctx, input): return input.sign() @staticmethod def backward(ctx, grad_output): return grad_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/rh/crhy6nilvaajphuuoyup37xl4ncuiyrcb3fnt5aboux6wyvcg7ie.py # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] # Source node to ATen node mapping: # attn => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xl/cxldlhjpfliyaeswhsohcdhtqevqxjlvece7kkxd6sy4o7gkfgo3.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, div_1, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 256 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mz/cmzlu2lip25blpsdqeby7ek5757op6xw3pdkxbdediou5szw32tx.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 16, grid=grid(16, 16), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5) buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_per_fused__softmax_1.run(buf5, buf8, 256, 16, grid=grid(256), stream=stream0) del buf5 buf9 = reinterpret_tensor(buf1, (4, 4, 16, 1), (64, 16, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_8, buf9, 16, 16, grid=grid(16, 16), stream=stream0) del primals_8 buf10 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (16, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf9, (16, 16, 1), (16, 1, 0), 0), out=buf10) buf11 = empty_strided_cuda((4, 16, 4, 1), (64, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf10, buf11, 64, 4, grid=grid(64, 4), stream=stream0) buf12 = reinterpret_tensor(buf10, (64, 4), (4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_11 return (reinterpret_tensor(buf12, (4, 16, 4), (64, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), buf8, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), primals_10, reinterpret_tensor(buf9, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class SelfAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, dropout=0.1): super(SelfAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, mask=None): key_dim = key.size(-1) attn = torch.matmul(query / np.sqrt(key_dim), key.transpose(2, 3)) if mask is not None: mask = mask.unsqueeze(1) attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(torch.softmax(attn, dim=-1)) output = torch.matmul(attn, value) return output class MultiHeadAttention(nn.Module): def __init__(self, embedding_dim, num_heads, dropout=0.1): super(MultiHeadAttention, self).__init__() self.embedding_dim = embedding_dim self.self_attention = SelfAttention(dropout) self.num_heads = num_heads self.dim_per_head = embedding_dim // num_heads self.query_projection = nn.Linear(embedding_dim, embedding_dim) self.key_projection = nn.Linear(embedding_dim, embedding_dim) self.value_projection = nn.Linear(embedding_dim, embedding_dim) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(embedding_dim, embedding_dim) def forward(self, query, key, value, mask=None): batch_size = query.size(0) query = self.query_projection(query) key = self.key_projection(key) value = self.value_projection(value) query = query.view(batch_size, -1, self.num_heads, self.dim_per_head ).transpose(1, 2) key = key.view(batch_size, -1, self.num_heads, self.dim_per_head ).transpose(1, 2) value = value.view(batch_size, -1, self.num_heads, self.dim_per_head ).transpose(1, 2) scores = self.self_attention(query, key, value, mask) output = scores.transpose(1, 2).contiguous().view(batch_size, -1, self.embedding_dim) output = self.out(output) return output def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'embedding_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 256 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 16)](buf0, primals_3, buf3, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 16)](buf1, primals_5, buf4, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5) buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch .float32) triton_per_fused__softmax_1[grid(256)](buf5, buf8, 256, 16, XBLOCK= 32, num_warps=4, num_stages=1) del buf5 buf9 = reinterpret_tensor(buf1, (4, 4, 16, 1), (64, 16, 1, 1), 0) del buf1 triton_poi_fused_clone_0[grid(16, 16)](buf2, primals_8, buf9, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_8 buf10 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf8, (16, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf9, (16, 16, 1), (16, 1, 0), 0), out=buf10) buf11 = empty_strided_cuda((4, 16, 4, 1), (64, 4, 1, 1), torch.float32) triton_poi_fused_clone_2[grid(64, 4)](buf10, buf11, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf12 = reinterpret_tensor(buf10, (64, 4), (4, 1), 0) del buf10 extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_11 return reinterpret_tensor(buf12, (4, 16, 4), (64, 4, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0 ), buf8, reinterpret_tensor(buf11, (64, 4), (4, 1), 0 ), primals_10, reinterpret_tensor(buf9, (16, 1, 16), (16, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0) class SelfAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, dropout=0.1): super(SelfAttention, self).__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, mask=None): key_dim = key.size(-1) attn = torch.matmul(query / np.sqrt(key_dim), key.transpose(2, 3)) if mask is not None: mask = mask.unsqueeze(1) attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(torch.softmax(attn, dim=-1)) output = torch.matmul(attn, value) return output class MultiHeadAttentionNew(nn.Module): def __init__(self, embedding_dim, num_heads, dropout=0.1): super(MultiHeadAttentionNew, self).__init__() self.embedding_dim = embedding_dim self.self_attention = SelfAttention(dropout) self.num_heads = num_heads self.dim_per_head = embedding_dim // num_heads self.query_projection = nn.Linear(embedding_dim, embedding_dim) self.key_projection = nn.Linear(embedding_dim, embedding_dim) self.value_projection = nn.Linear(embedding_dim, embedding_dim) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(embedding_dim, embedding_dim) def forward(self, input_0, input_1, input_2): primals_2 = self.query_projection.weight primals_3 = self.query_projection.bias primals_4 = self.key_projection.weight primals_5 = self.key_projection.bias primals_7 = self.value_projection.weight primals_8 = self.value_projection.bias primals_10 = self.out.weight primals_11 = self.out.bias primals_1 = input_0 primals_6 = input_1 primals_9 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
TranQuocTrinh/image_captioning
MultiHeadAttention
false
1,155
[ "MIT" ]
0
4c2d77426ba3b9fe9151a15a958320d5298aa190
https://github.com/TranQuocTrinh/image_captioning/tree/4c2d77426ba3b9fe9151a15a958320d5298aa190
import torch import numpy as np import torch.nn as nn class SelfAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, dropout=0.1): super().__init__() self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, mask=None): key_dim = key.size(-1) attn = torch.matmul(query / np.sqrt(key_dim), key.transpose(2, 3)) if mask is not None: mask = mask.unsqueeze(1) attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(torch.softmax(attn, dim=-1)) output = torch.matmul(attn, value) return output class Model(nn.Module): def __init__(self, embedding_dim, num_heads, dropout=0.1): super().__init__() self.embedding_dim = embedding_dim self.self_attention = SelfAttention(dropout) self.num_heads = num_heads self.dim_per_head = embedding_dim // num_heads self.query_projection = nn.Linear(embedding_dim, embedding_dim) self.key_projection = nn.Linear(embedding_dim, embedding_dim) self.value_projection = nn.Linear(embedding_dim, embedding_dim) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(embedding_dim, embedding_dim) def forward(self, query, key, value, mask=None): batch_size = query.size(0) query = self.query_projection(query) key = self.key_projection(key) value = self.value_projection(value) query = query.view(batch_size, -1, self.num_heads, self.dim_per_head ).transpose(1, 2) key = key.view(batch_size, -1, self.num_heads, self.dim_per_head ).transpose(1, 2) value = value.view(batch_size, -1, self.num_heads, self.dim_per_head ).transpose(1, 2) scores = self.self_attention(query, key, value, mask) output = scores.transpose(1, 2).contiguous().view(batch_size, -1, self.embedding_dim) output = self.out(output) return output def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
LastBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ey/cey4yc74rqvkmtcxtse2vt3dw6pfdi3zwtwezx7cdzkykhz4kzp7.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # x_1 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf1, 16, grid=grid(16), stream=stream0) return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class BatchNormLayer(nn.Module): """Implements batch normalization layer.""" def __init__(self, channels, gamma=False, beta=True, decay=0.9, epsilon =1e-05): """Initializes with basic settings. Args: channels: Number of channels of the input tensor. gamma: Whether the scale (weight) of the affine mapping is learnable. beta: Whether the center (bias) of the affine mapping is learnable. decay: Decay factor for moving average operations in this layer. epsilon: A value added to the denominator for numerical stability. """ super().__init__() self.bn = nn.BatchNorm2d(num_features=channels, affine=True, track_running_stats=True, momentum=1 - decay, eps=epsilon) self.bn.weight.requires_grad = gamma self.bn.bias.requires_grad = beta def forward(self, x): return self.bn(x) class LastBlock(nn.Module): """Implements the last block, which is a dense block.""" def __init__(self, in_channels, out_channels, use_wscale=False, wscale_gain=1.0, use_bn=False): super().__init__() self.fc = nn.Linear(in_features=in_channels, out_features= out_channels, bias=False) self.scale = wscale_gain / np.sqrt(in_channels) if use_wscale else 1.0 self.bn = BatchNormLayer(channels=out_channels ) if use_bn else nn.Identity() def forward(self, x): x = x.view(x.shape[0], -1) x = self.fc(x) * self.scale x = x.view(x.shape[0], x.shape[1], 1, 1) return self.bn(x).view(x.shape[0], x.shape[1]) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf1, primals_1 class BatchNormLayer(nn.Module): """Implements batch normalization layer.""" def __init__(self, channels, gamma=False, beta=True, decay=0.9, epsilon =1e-05): """Initializes with basic settings. Args: channels: Number of channels of the input tensor. gamma: Whether the scale (weight) of the affine mapping is learnable. beta: Whether the center (bias) of the affine mapping is learnable. decay: Decay factor for moving average operations in this layer. epsilon: A value added to the denominator for numerical stability. """ super().__init__() self.bn = nn.BatchNorm2d(num_features=channels, affine=True, track_running_stats=True, momentum=1 - decay, eps=epsilon) self.bn.weight.requires_grad = gamma self.bn.bias.requires_grad = beta def forward(self, x): return self.bn(x) class LastBlockNew(nn.Module): """Implements the last block, which is a dense block.""" def __init__(self, in_channels, out_channels, use_wscale=False, wscale_gain=1.0, use_bn=False): super().__init__() self.fc = nn.Linear(in_features=in_channels, out_features= out_channels, bias=False) self.scale = wscale_gain / np.sqrt(in_channels) if use_wscale else 1.0 self.bn = BatchNormLayer(channels=out_channels ) if use_bn else nn.Identity() def forward(self, input_0): primals_1 = self.fc.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
Twizwei/idinvert_pytorch
LastBlock
false
1,156
[ "MIT" ]
0
11f1126aab517fbe32b488d92f6fdea339463d04
https://github.com/Twizwei/idinvert_pytorch/tree/11f1126aab517fbe32b488d92f6fdea339463d04
import torch import numpy as np import torch.nn as nn class BatchNormLayer(nn.Module): """Implements batch normalization layer.""" def __init__(self, channels, gamma=False, beta=True, decay=0.9, epsilon =1e-05): """Initializes with basic settings. Args: channels: Number of channels of the input tensor. gamma: Whether the scale (weight) of the affine mapping is learnable. beta: Whether the center (bias) of the affine mapping is learnable. decay: Decay factor for moving average operations in this layer. epsilon: A value added to the denominator for numerical stability. """ super().__init__() self.bn = nn.BatchNorm2d(num_features=channels, affine=True, track_running_stats=True, momentum=1 - decay, eps=epsilon) self.bn.weight.requires_grad = gamma self.bn.bias.requires_grad = beta def forward(self, x): return self.bn(x) class Model(nn.Module): """Implements the last block, which is a dense block.""" def __init__(self, in_channels, out_channels, use_wscale=False, wscale_gain=1.0, use_bn=False): super().__init__() self.fc = nn.Linear(in_features=in_channels, out_features= out_channels, bias=False) self.scale = wscale_gain / np.sqrt(in_channels) if use_wscale else 1.0 self.bn = BatchNormLayer(channels=out_channels ) if use_bn else nn.Identity() def forward(self, x): x = x.view(x.shape[0], -1) x = self.fc(x) * self.scale x = x.view(x.shape[0], x.shape[1], 1, 1) return self.bn(x).view(x.shape[0], x.shape[1]) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
SineODE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/bk/cbkiytchil7drgaq6pb5atrw5yi2nhe4ukuncsiopwphvtjq2hra.py # Topologically Sorted Source Nodes: [mul, truediv, pow_1, mul_1, sin, mul_2, add, pow_2, sub, pow_3, mul_3, add_1], Original ATen: [aten.mul, aten.div, aten.pow, aten.sin, aten.add, aten.sub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # sin => sin # sub => sub # truediv => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 2), kwargs = {}) # %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %sin), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %mul_2), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %pow_2), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_3, 4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %mul_3), kwargs = {}) triton_poi_fused_add_div_mul_pow_sin_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sin_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sin_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_sin_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp4 = tmp2 / tmp3 tmp5 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp3 * tmp1 tmp8 = tl_math.sin(tmp7) tmp9 = tmp6 * tmp8 tmp10 = tmp4 + tmp9 tmp11 = tmp10 - tmp5 tmp12 = tmp5 * tmp3 tmp13 = 4.0 tmp14 = tmp12 * tmp13 tmp15 = tmp11 + tmp14 tl.store(out_ptr0 + (x0), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, truediv, pow_1, mul_1, sin, mul_2, add, pow_2, sub, pow_3, mul_3, add_1], Original ATen: [aten.mul, aten.div, aten.pow, aten.sin, aten.add, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sin_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch class SineODE(torch.nn.Module): def forward(self, t, y): return 2 * y / t + t ** 4 * torch.sin(2 * t) - t ** 2 + 4 * t ** 3 def y_exact(self, t): return -0.5 * t ** 4 * torch.cos(2 * t) + 0.5 * t ** 3 * torch.sin( 2 * t) + 0.25 * t ** 2 * torch.cos(2 * t) - t ** 3 + 2 * t ** 4 + ( math.pi - 0.25) * t ** 2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_pow_sin_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp4 = tmp2 / tmp3 tmp5 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp3 * tmp1 tmp8 = tl_math.sin(tmp7) tmp9 = tmp6 * tmp8 tmp10 = tmp4 + tmp9 tmp11 = tmp10 - tmp5 tmp12 = tmp5 * tmp3 tmp13 = 4.0 tmp14 = tmp12 * tmp13 tmp15 = tmp11 + tmp14 tl.store(out_ptr0 + x0, tmp15, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sin_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class SineODENew(torch.nn.Module): def y_exact(self, t): return -0.5 * t ** 4 * torch.cos(2 * t) + 0.5 * t ** 3 * torch.sin( 2 * t) + 0.25 * t ** 2 * torch.cos(2 * t) - t ** 3 + 2 * t ** 4 + ( math.pi - 0.25) * t ** 2 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
TylerChoi1224/torchdiffeq
SineODE
false
1,157
[ "MIT" ]
0
72f74d9651a58ab11cdadd60682f1b61e625ef53
https://github.com/TylerChoi1224/torchdiffeq/tree/72f74d9651a58ab11cdadd60682f1b61e625ef53
import math import torch class Model(torch.nn.Module): def forward(self, t, y): return 2 * y / t + t ** 4 * torch.sin(2 * t) - t ** 2 + 4 * t ** 3 def y_exact(self, t): return -0.5 * t ** 4 * torch.cos(2 * t) + 0.5 * t ** 3 * torch.sin( 2 * t) + 0.25 * t ** 2 * torch.cos(2 * t) - t ** 3 + 2 * t ** 4 + ( math.pi - 0.25) * t ** 2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ObjectClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ov/covqeptjvlw6cvbyljoclwhqmwhv5thm2trm3s6dbqmk4is7svay.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, clone, exp, sub, sum_1 # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (2)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp7 = tmp4 + tmp6 tmp8 = triton_helpers.maximum(tmp3, tmp7) tmp12 = tmp9 + tmp11 tmp13 = triton_helpers.maximum(tmp8, tmp12) tmp17 = tmp14 + tmp16 tmp18 = triton_helpers.maximum(tmp13, tmp17) tmp19 = tmp3 - tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = tmp7 - tmp18 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tmp12 - tmp18 tmp25 = tl_math.exp(tmp24) tmp26 = tmp23 + tmp25 tmp27 = tmp17 - tmp18 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tl.store(out_ptr0 + (x0), tmp18, xmask) tl.store(out_ptr1 + (x0), tmp29, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/un/cunzgq3pakpc3fjm7kt4dvxu4tuhtevgp73xalsrx2wb6cl64t3a.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, clone, log, sub, sub_1 # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (y3 + (16*x2)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (y1 + (4*x2)), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (y1 + (4*x2)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = tl_math.log(tmp5) tmp7 = tmp4 - tmp6 tl.store(out_ptr0 + (x2 + (4*y3)), tmp7, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 1, 4), (1, 16, 4), torch.float32) buf2 = empty_strided_cuda((4, 1, 4), (1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(buf0, primals_2, buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf0, primals_2, buf1, buf2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del buf0 del buf1 del buf2 del primals_2 return (buf3, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class ObjectClassifier(nn.Module): """ perform log likelihood over sequence data ie. log(softmax), permute dimension accordingly to meet NLLLoss requirement Input: [seq_len, bsz, d_input] Output: [bsz, num_classes, seq_len] Usage: bsz=5; seq=16; d_input=1024; num_classes=10 classiifer = ObjectClassifier(d_input, num_classes) x = torch.rand(seq, bsz, d_input) # 16x5x1024 out = classifier(x) # 5x10x16 """ def __init__(self, d_input, num_classes): super(ObjectClassifier, self).__init__() self.d_input = d_input self.num_classes = num_classes self.linear = nn.Linear(d_input, num_classes) self.classifier = nn.LogSoftmax(dim=1) self.init_weights() def init_weights(self): initrange = 0.1 self.linear.bias.data.zero_() self.linear.weight.data.uniform_(-initrange, initrange) def forward(self, x): out = self.linear(x) out = out.permute(1, 2, 0) return self.classifier(out) def extra_repr(self) ->str: return 'SxBx%d -> Bx%dxS' % (self.d_input, self.num_classes) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_input': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + 2) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr1 + 3) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp7 = tmp4 + tmp6 tmp8 = triton_helpers.maximum(tmp3, tmp7) tmp12 = tmp9 + tmp11 tmp13 = triton_helpers.maximum(tmp8, tmp12) tmp17 = tmp14 + tmp16 tmp18 = triton_helpers.maximum(tmp13, tmp17) tmp19 = tmp3 - tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = tmp7 - tmp18 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tmp12 - tmp18 tmp25 = tl_math.exp(tmp24) tmp26 = tmp23 + tmp25 tmp27 = tmp17 - tmp18 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tl.store(out_ptr0 + x0, tmp18, xmask) tl.store(out_ptr1 + x0, tmp29, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (y3 + 16 * x2), xmask & ymask, eviction_policy ='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (y1 + 4 * x2), xmask & ymask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr3 + (y1 + 4 * x2), xmask & ymask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = tl_math.log(tmp5) tmp7 = tmp4 - tmp6 tl.store(out_ptr0 + (x2 + 4 * y3), tmp7, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 1, 4), (1, 16, 4), torch.float32) buf2 = empty_strided_cuda((4, 1, 4), (1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(16)](buf0, primals_2, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(16, 4)](buf0, primals_2, buf1, buf2, buf3, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del buf0 del buf1 del buf2 del primals_2 return buf3, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf3 class ObjectClassifierNew(nn.Module): """ perform log likelihood over sequence data ie. log(softmax), permute dimension accordingly to meet NLLLoss requirement Input: [seq_len, bsz, d_input] Output: [bsz, num_classes, seq_len] Usage: bsz=5; seq=16; d_input=1024; num_classes=10 classiifer = ObjectClassifier(d_input, num_classes) x = torch.rand(seq, bsz, d_input) # 16x5x1024 out = classifier(x) # 5x10x16 """ def __init__(self, d_input, num_classes): super(ObjectClassifierNew, self).__init__() self.d_input = d_input self.num_classes = num_classes self.linear = nn.Linear(d_input, num_classes) self.classifier = nn.LogSoftmax(dim=1) self.init_weights() def init_weights(self): initrange = 0.1 self.linear.bias.data.zero_() self.linear.weight.data.uniform_(-initrange, initrange) def extra_repr(self) ->str: return 'SxBx%d -> Bx%dxS' % (self.d_input, self.num_classes) def forward(self, input_0): primals_1 = self.linear.weight primals_2 = self.linear.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
TuBui/deep_image_comparator
ObjectClassifier
false
1,158
[ "MIT" ]
0
2dea7738d794b91a960ee9f41461a4e3ffcd5e44
https://github.com/TuBui/deep_image_comparator/tree/2dea7738d794b91a960ee9f41461a4e3ffcd5e44
import torch from torch import nn class Model(nn.Module): """ perform log likelihood over sequence data ie. log(softmax), permute dimension accordingly to meet NLLLoss requirement Input: [seq_len, bsz, d_input] Output: [bsz, num_classes, seq_len] Usage: bsz=5; seq=16; d_input=1024; num_classes=10 classiifer = ObjectClassifier(d_input, num_classes) x = torch.rand(seq, bsz, d_input) # 16x5x1024 out = classifier(x) # 5x10x16 """ def __init__(self, d_input, num_classes): super().__init__() self.d_input = d_input self.num_classes = num_classes self.linear = nn.Linear(d_input, num_classes) self.classifier = nn.LogSoftmax(dim=1) self.init_weights() def init_weights(self): initrange = 0.1 self.linear.bias.data.zero_() self.linear.weight.data.uniform_(-initrange, initrange) def forward(self, x): out = self.linear(x) out = out.permute(1, 2, 0) return self.classifier(out) def extra_repr(self) ->str: return 'SxBx%d -> Bx%dxS' % (self.d_input, self.num_classes) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4]
ResidualBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/tp/ctpzszvfnvtd5ojaacosoetsfrtkj6wdllzm3am7qstqgarfm24q.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/sl/csliarpndhsybo23yhfn5b2r4tprynajz5cbsvye42aegbnyzw43.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_1 = async_compile.triton('triton_poi_fused_reflection_pad2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 36 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 6 x3 = (xindex // 6) y4 = yindex x5 = xindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x2))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x3))))) + (16*y4)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x5) + (4608*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cb/ccbds54cwkyq7jqwdqg7hx7relsicbkumz4trv6nl3ctaehzsqoy.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/eo/ceolj4dwu42mgxponwssjmza5ue5guayvvryjnz2a2vloax4vori.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.repeat] # Source node to ATen node mapping: # x_2 => repeat # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_4, [4]), kwargs = {}) triton_poi_fused_repeat_3 = async_compile.triton('triton_poi_fused_repeat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 128), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ur/curvfbwmi645mrjxmsitrqloj337hb7jgoszjdazdm3fu5onhv7j.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._native_batch_norm_legit] # Source node to ATen node mapping: # x_2 => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_per_fused__native_batch_norm_legit_4 = async_compile.triton('triton_per_fused__native_batch_norm_legit_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 512 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + ((128*r1) + (2048*(x0 // 128)) + (x0 % 128)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ou/coudlvtbu2mfzkslhudvyg5n42byzvjktxsgnf4o47oahwcsrzpo.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 128 x2 = (xindex // 2048) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x0 + (128*x2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (128*x2)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0 + (128*x2)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0 + (128*x2)), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jo/cjo24qbf57gf35zx5kkb5xonisd4y2rirqfg5yuv5ouhaf3glzwo.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x_4 => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_6 = async_compile.triton('triton_poi_fused_reflection_pad2d_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 6 x2 = (xindex // 768) % 6 x3 = (xindex // 4608) x4 = xindex tmp0 = tl.load(in_ptr0 + (1920 + x0 + ((-512)*(tl_math.abs((-3) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (2048*x3)), None) tl.store(out_ptr0 + (x4), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/in/cinjd7t36er3etzukhtxe2t6kdoofg4cde53pcjft626tdsuefeh.py # Topologically Sorted Source Nodes: [x_7, x_8], Original ATen: [aten.relu, aten.add] # Source node to ATen node mapping: # x_7 => relu_1 # x_8 => add_4 # Graph fragment: # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %relu_1), kwargs = {}) triton_poi_fused_add_relu_7 = async_compile.triton('triton_poi_fused_add_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 128], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 128 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y1 = (yindex // 16) y0 = yindex % 16 tmp0 = tl.load(in_ptr0 + (x2 + (128*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + (128*y3)), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x2 + (128*y1)), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + (x2 + (128*y1)), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + (x2 + (128*y1)), xmask & ymask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr5 + (x2 + (128*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp5 = tmp3 * tmp4 tmp7 = tmp5 * tmp6 tmp9 = tmp7 + tmp8 tmp10 = tl.full([1, 1], 0, tl.int32) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tmp0 + tmp11 tl.store(out_ptr0 + (y0 + (16*x2) + (2048*y1)), tmp12, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_2, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_3, (128, ), (1, )) assert_size_stride(primals_4, (128, ), (1, )) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, ), (1, )) assert_size_stride(primals_9, (128, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_2, buf0, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_2 buf1 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_6, buf1, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_6 buf2 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_1.run(primals_1, buf2, 512, 36, grid=grid(512, 36), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 4, 4), (2048, 1, 512, 128)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf4, primals_3, 8192, grid=grid(8192), stream=stream0) del primals_3 buf5 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.repeat] triton_poi_fused_repeat_3.run(primals_4, buf5, 512, grid=grid(512), stream=stream0) del primals_4 buf6 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.repeat] triton_poi_fused_repeat_3.run(primals_5, buf6, 512, grid=grid(512), stream=stream0) del primals_5 buf7 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf8 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf10 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_4.run(buf10, buf4, buf7, 512, 16, grid=grid(512), stream=stream0) buf11 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_5.run(buf4, buf7, buf10, buf5, buf6, buf11, 8192, grid=grid(8192), stream=stream0) buf12 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_6.run(buf11, buf12, 18432, grid=grid(18432), stream=stream0) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 128, 4, 4), (2048, 1, 512, 128)) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf14, primals_7, 8192, grid=grid(8192), stream=stream0) del primals_7 buf15 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.repeat] triton_poi_fused_repeat_3.run(primals_8, buf15, 512, grid=grid(512), stream=stream0) del primals_8 buf16 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.repeat] triton_poi_fused_repeat_3.run(primals_9, buf16, 512, grid=grid(512), stream=stream0) del primals_9 buf17 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf18 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf20 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_4.run(buf20, buf14, buf17, 512, 16, grid=grid(512), stream=stream0) buf21 = empty_strided_cuda((4, 128, 4, 4), (2048, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_7, x_8], Original ATen: [aten.relu, aten.add] triton_poi_fused_add_relu_7.run(buf11, buf14, buf17, buf20, buf15, buf16, buf21, 64, 128, grid=grid(64, 128), stream=stream0) del buf11 return (buf21, buf0, buf1, buf2, buf4, buf5, buf6, buf7, buf10, buf12, buf14, buf15, buf16, buf17, buf20, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GenericLayer(nn.Module): def __init__(self, layer, out_channels, padding=(0, 0, 0, 0), activation=None): super(GenericLayer, self).__init__() self._act = activation self._layer = layer self._norm = nn.InstanceNorm2d(out_channels, affine=True) self._pad = nn.ReflectionPad2d(padding) def forward(self, x): x = self._pad(x) x = self._layer(x) x = self._norm(x) if self._act is not None: x = self._act(x) return x class ResidualBlock(nn.Module): def __init__(self, channels, kernel_size, stride, padding=(0, 0, 0, 0)): super(ResidualBlock, self).__init__() self._conv_1 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) self._conv_2 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) def forward(self, x): x = self._conv_1(x) x = x + self._conv_2(x) return x def get_inputs(): return [torch.rand([4, 128, 4, 4])] def get_init_inputs(): return [[], {'channels': 4, 'kernel_size': 4, 'stride': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 512 xnumel = 36 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 6 x3 = xindex // 6 y4 = yindex x5 = xindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x2)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x3)) + 16 * y4), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + 128 * x5 + 4608 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_poi_fused_repeat_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 128, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 512 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (128 * r1 + 2048 * (x0 // 128) + x0 % 128), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused_relu_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 128 x2 = xindex // 2048 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (x0 + 128 * x2), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + (x0 + 128 * x2), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr3 + (x0 + 128 * x2), None, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr4 + (x0 + 128 * x2), None, eviction_policy= 'evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_reflection_pad2d_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 6 x2 = xindex // 768 % 6 x3 = xindex // 4608 x4 = xindex tmp0 = tl.load(in_ptr0 + (1920 + x0 + -512 * tl_math.abs(-3 + tl_math. abs(-1 + x2)) + -128 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 2048 * x3), None) tl.store(out_ptr0 + x4, tmp0, None) @triton.jit def triton_poi_fused_add_relu_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 64 xnumel = 128 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y1 = yindex // 16 y0 = yindex % 16 tmp0 = tl.load(in_ptr0 + (x2 + 128 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + 128 * y3), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x2 + 128 * y1), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + (x2 + 128 * y1), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + (x2 + 128 * y1), xmask & ymask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr5 + (x2 + 128 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp5 = tmp3 * tmp4 tmp7 = tmp5 * tmp6 tmp9 = tmp7 + tmp8 tmp10 = tl.full([1, 1], 0, tl.int32) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tmp0 + tmp11 tl.store(out_ptr0 + (y0 + 16 * x2 + 2048 * y1), tmp12, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_2, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_3, (128,), (1,)) assert_size_stride(primals_4, (128,), (1,)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128,), (1,)) assert_size_stride(primals_9, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16384, 9)](primals_2, buf0, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_0[grid(16384, 9)](primals_6, buf1, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf2 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32) triton_poi_fused_reflection_pad2d_1[grid(512, 36)](primals_1, buf2, 512, 36, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf3 = extern_kernels.convolution(buf2, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 4, 4), (2048, 1, 512, 128)) buf4 = buf3 del buf3 triton_poi_fused_convolution_2[grid(8192)](buf4, primals_3, 8192, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf5 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_3[grid(512)](primals_4, buf5, 512, XBLOCK= 256, num_warps=4, num_stages=1) del primals_4 buf6 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_3[grid(512)](primals_5, buf6, 512, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf7 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch .float32) buf8 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch .float32) buf10 = buf8 del buf8 triton_per_fused__native_batch_norm_legit_4[grid(512)](buf10, buf4, buf7, 512, 16, XBLOCK=8, num_warps=2, num_stages=1) buf11 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.float32) triton_poi_fused_relu_5[grid(8192)](buf4, buf7, buf10, buf5, buf6, buf11, 8192, XBLOCK=128, num_warps=4, num_stages=1) buf12 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32) triton_poi_fused_reflection_pad2d_6[grid(18432)](buf11, buf12, 18432, XBLOCK=256, num_warps=4, num_stages=1) buf13 = extern_kernels.convolution(buf12, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 128, 4, 4), (2048, 1, 512, 128)) buf14 = buf13 del buf13 triton_poi_fused_convolution_2[grid(8192)](buf14, primals_7, 8192, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf15 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_3[grid(512)](primals_8, buf15, 512, XBLOCK= 256, num_warps=4, num_stages=1) del primals_8 buf16 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_3[grid(512)](primals_9, buf16, 512, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf17 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf18 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf20 = buf18 del buf18 triton_per_fused__native_batch_norm_legit_4[grid(512)](buf20, buf14, buf17, 512, 16, XBLOCK=8, num_warps=2, num_stages=1) buf21 = empty_strided_cuda((4, 128, 4, 4), (2048, 16, 4, 1), torch. float32) triton_poi_fused_add_relu_7[grid(64, 128)](buf11, buf14, buf17, buf20, buf15, buf16, buf21, 64, 128, XBLOCK=4, YBLOCK=64, num_warps=4, num_stages=1) del buf11 return (buf21, buf0, buf1, buf2, buf4, buf5, buf6, buf7, buf10, buf12, buf14, buf15, buf16, buf17, buf20) class GenericLayer(nn.Module): def __init__(self, layer, out_channels, padding=(0, 0, 0, 0), activation=None): super(GenericLayer, self).__init__() self._act = activation self._layer = layer self._norm = nn.InstanceNorm2d(out_channels, affine=True) self._pad = nn.ReflectionPad2d(padding) def forward(self, x): x = self._pad(x) x = self._layer(x) x = self._norm(x) if self._act is not None: x = self._act(x) return x class ResidualBlockNew(nn.Module): def __init__(self, channels, kernel_size, stride, padding=(0, 0, 0, 0)): super(ResidualBlockNew, self).__init__() self._conv_1 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) self._conv_2 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) def forward(self, input_0): primals_2 = self._conv_1._layer.weight primals_3 = self._conv_1._layer.bias primals_4 = self._conv_1._norm.weight primals_5 = self._conv_1._norm.bias primals_6 = self._conv_2._layer.weight primals_7 = self._conv_2._layer.bias primals_8 = self._conv_2._norm.weight primals_9 = self._conv_2._norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
ThomasRanvier/cnn_style_transfer
ResidualBlock
false
1,159
[ "MIT" ]
0
90b6c76c20263c22f4e45184d572284726ecbd7b
https://github.com/ThomasRanvier/cnn_style_transfer/tree/90b6c76c20263c22f4e45184d572284726ecbd7b
import torch import torch.nn as nn class GenericLayer(nn.Module): def __init__(self, layer, out_channels, padding=(0, 0, 0, 0), activation=None): super().__init__() self._act = activation self._layer = layer self._norm = nn.InstanceNorm2d(out_channels, affine=True) self._pad = nn.ReflectionPad2d(padding) def forward(self, x): x = self._pad(x) x = self._layer(x) x = self._norm(x) if self._act is not None: x = self._act(x) return x class Model(nn.Module): def __init__(self, channels, kernel_size, stride, padding=(0, 0, 0, 0)): super().__init__() self._conv_1 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) self._conv_2 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) def forward(self, x): x = self._conv_1(x) x = x + self._conv_2(x) return x def get_inputs(): return [torch.rand([4, 128, 4, 4])] def get_init_inputs(): return [4, 4, 1]
FirstBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ro/crodqpemvzed7dwj6ikboerwmi47yfap7jg5xgrgodxuptzllrip.py # Topologically Sorted Source Nodes: [mul, leaky_relu], Original ATen: [aten.mul, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # leaky_relu => gt, mul_1, where # mul => mul # Graph fragment: # %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {}) triton_poi_fused_leaky_relu_leaky_relu_backward_mul_0 = async_compile.triton('triton_poi_fused_leaky_relu_leaky_relu_backward_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_leaky_relu_backward_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_mul_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(in_out_ptr0 + (x0), tmp7, xmask) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [mul, leaky_relu], Original ATen: [aten.mul, aten.leaky_relu, aten.leaky_relu_backward] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_leaky_relu_backward_mul_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0) return (buf1, primals_1, primals_2, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class BatchNormLayer(nn.Module): """Implements batch normalization layer.""" def __init__(self, channels, gamma=False, beta=True, decay=0.9, epsilon =1e-05): """Initializes with basic settings. Args: channels: Number of channels of the input tensor. gamma: Whether the scale (weight) of the affine mapping is learnable. beta: Whether the center (bias) of the affine mapping is learnable. decay: Decay factor for moving average operations in this layer. epsilon: A value added to the denominator for numerical stability. """ super().__init__() self.bn = nn.BatchNorm2d(num_features=channels, affine=True, track_running_stats=True, momentum=1 - decay, eps=epsilon) self.bn.weight.requires_grad = gamma self.bn.bias.requires_grad = beta def forward(self, x): return self.bn(x) class FirstBlock(nn.Module): """Implements the first block, which is a convolutional block.""" def __init__(self, in_channels, out_channels, use_wscale=False, wscale_gain=np.sqrt(2.0), use_bn=False, activation_type='lrelu'): super().__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.scale = wscale_gain / np.sqrt(in_channels * 3 * 3 ) if use_wscale else 1.0 self.bn = BatchNormLayer(channels=out_channels ) if use_bn else nn.Identity() if activation_type == 'linear': self.activate = nn.Identity() elif activation_type == 'lrelu': self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) else: raise NotImplementedError( f'Not implemented activation function: {activation_type}!') def forward(self, x): return self.activate(self.bn(self.conv(x) * self.scale)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_mul_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(in_out_ptr0 + x0, tmp7, xmask) tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_leaky_relu_leaky_relu_backward_mul_0[grid(256)](buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf1, primals_1, primals_2, buf2 class BatchNormLayer(nn.Module): """Implements batch normalization layer.""" def __init__(self, channels, gamma=False, beta=True, decay=0.9, epsilon =1e-05): """Initializes with basic settings. Args: channels: Number of channels of the input tensor. gamma: Whether the scale (weight) of the affine mapping is learnable. beta: Whether the center (bias) of the affine mapping is learnable. decay: Decay factor for moving average operations in this layer. epsilon: A value added to the denominator for numerical stability. """ super().__init__() self.bn = nn.BatchNorm2d(num_features=channels, affine=True, track_running_stats=True, momentum=1 - decay, eps=epsilon) self.bn.weight.requires_grad = gamma self.bn.bias.requires_grad = beta def forward(self, x): return self.bn(x) class FirstBlockNew(nn.Module): """Implements the first block, which is a convolutional block.""" def __init__(self, in_channels, out_channels, use_wscale=False, wscale_gain=np.sqrt(2.0), use_bn=False, activation_type='lrelu'): super().__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.scale = wscale_gain / np.sqrt(in_channels * 3 * 3 ) if use_wscale else 1.0 self.bn = BatchNormLayer(channels=out_channels ) if use_bn else nn.Identity() if activation_type == 'linear': self.activate = nn.Identity() elif activation_type == 'lrelu': self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) else: raise NotImplementedError( f'Not implemented activation function: {activation_type}!') def forward(self, input_0): primals_1 = self.conv.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
Twizwei/idinvert_pytorch
FirstBlock
false
1,160
[ "MIT" ]
0
11f1126aab517fbe32b488d92f6fdea339463d04
https://github.com/Twizwei/idinvert_pytorch/tree/11f1126aab517fbe32b488d92f6fdea339463d04
import torch import numpy as np import torch.nn as nn class BatchNormLayer(nn.Module): """Implements batch normalization layer.""" def __init__(self, channels, gamma=False, beta=True, decay=0.9, epsilon =1e-05): """Initializes with basic settings. Args: channels: Number of channels of the input tensor. gamma: Whether the scale (weight) of the affine mapping is learnable. beta: Whether the center (bias) of the affine mapping is learnable. decay: Decay factor for moving average operations in this layer. epsilon: A value added to the denominator for numerical stability. """ super().__init__() self.bn = nn.BatchNorm2d(num_features=channels, affine=True, track_running_stats=True, momentum=1 - decay, eps=epsilon) self.bn.weight.requires_grad = gamma self.bn.bias.requires_grad = beta def forward(self, x): return self.bn(x) class Model(nn.Module): """Implements the first block, which is a convolutional block.""" def __init__(self, in_channels, out_channels, use_wscale=False, wscale_gain=np.sqrt(2.0), use_bn=False, activation_type='lrelu'): super().__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.scale = wscale_gain / np.sqrt(in_channels * 3 * 3 ) if use_wscale else 1.0 self.bn = BatchNormLayer(channels=out_channels ) if use_bn else nn.Identity() if activation_type == 'linear': self.activate = nn.Identity() elif activation_type == 'lrelu': self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) else: raise NotImplementedError( f'Not implemented activation function: {activation_type}!') def forward(self, x): return self.activate(self.bn(self.conv(x) * self.scale)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
HR2O_NL
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/bu/cbugpb6sy2krqqw6gofr6xdgw2qe5awzyglopufmaia3yczs4fvt.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 262144 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/74/c74puez3sfsj5izoa4nzsrn6rwsxcpwkioksgkrbzorzfs2oledu.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ls/clsxanrdjy6vuj2bpvumllvohyhe3tm7hn75d4z5r2g6hejzqqgm.py # Topologically Sorted Source Nodes: [mul, sum_1], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # sum_1 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {}) triton_red_fused_mul_sum_2 = async_compile.triton('triton_red_fused_mul_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[65536, 512], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 65536 rnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 4096 x2 = (xindex // 16384) x4 = xindex % 16384 _tmp4 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x5 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp0 = tl.load(in_ptr0 + (r3 + (512*x0) + (2097152*x2)), rmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (r3 + (512*x4)), rmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = _tmp4 + tmp3 _tmp4 = tl.where(rmask, tmp5, _tmp4) tmp4 = tl.sum(_tmp4, 1)[:, None] tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/nb/cnbnicltnklwrb3lyiieb74krqfex3ugnyrw57jpumynzoellfo5.py # Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # att_1 => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 22.627416997969522), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4096 x2 = (xindex // 16384) tmp0 = tl.load(in_ptr0 + (x3), None) tmp3 = tl.load(in_ptr0 + (x0 + (16384*x2)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (4096 + x0 + (16384*x2)), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (8192 + x0 + (16384*x2)), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12288 + x0 + (16384*x2)), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.044194173824159216 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x3), tmp17, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ba/cbacxpyh6bhme7f2qneb7gf3damuwonjarfooiwlzn3n565swwzd.py # Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # att_1 => div_1, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y1 = (yindex // 4) y0 = yindex % 4 tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (x2 + (16384*y1)), ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4096 + x2 + (16384*y1)), ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8192 + x2 + (16384*y1)), ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12288 + x2 + (16384*y1)), ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (y0 + (4*x2) + (16384*y1)), tmp8, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6a/c6a3mxzx5j7ad2bj44gu2n2tflqq4umutwce7lnfdlx74u255xbv.py # Topologically Sorted Source Nodes: [mul_1, virt_feats], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul_1 => mul_1 # virt_feats => sum_3 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_2, %convolution_2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) triton_poi_fused_mul_sum_5 = async_compile.triton('triton_poi_fused_mul_sum_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8388608], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8388608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = (xindex // 512) x4 = xindex % 2097152 x5 = xindex tmp0 = tl.load(in_ptr0 + (4*x3), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x3)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (2097152 + x4), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x3)), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (4194304 + x4), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x3)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (6291456 + x4), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x5), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/oo/coov7m3uyy2j2bksnalgn4jtug226vz6ulyjvw4457ooqarrjlgy.py # Topologically Sorted Source Nodes: [virt_feats_1], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # virt_feats_1 => var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) triton_per_fused_native_group_norm_6 = async_compile.triton('triton_per_fused_native_group_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[65536, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 5, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 65536 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex x0 = xindex % 128 x1 = (xindex // 128) % 128 x2 = (xindex // 16384) x4 = xindex tmp0 = tl.load(in_ptr0 + ((4*x0) + (512*((r3 + (128*x1)) % 4096)) + (2097152*x2) + ((r3 + (128*x1)) // 4096)), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.full([XBLOCK, 1], 128, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tl.store(out_ptr0 + (x4), tmp8, None) tl.store(out_ptr1 + (x4), tmp13, None) tl.store(out_ptr2 + (x4), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6d/c6dozl777wqqkkbqxjpberj7tzb3xykuedsvyncdpamfyhbmmaal.py # Topologically Sorted Source Nodes: [virt_feats_1], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # virt_feats_1 => var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) triton_per_fused_native_group_norm_7 = async_compile.triton('triton_per_fused_native_group_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 512 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 128 x1 = (xindex // 128) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*r2) + (16384*x1)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (x0 + (128*r2) + (16384*x1)), xmask, other=0.0) tmp2 = tl.load(in_ptr2 + (x0 + (128*r2) + (16384*x1)), xmask, other=0.0) tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp3, 0) tmp8 = tl.where(xmask, tmp4, 0) tmp9 = tl.where(xmask, tmp5, 0) tmp10, tmp11, tmp12 = triton_helpers.welford(tmp7, tmp8, tmp9, 1) tmp13 = tmp10[:, None] tmp14 = tmp11[:, None] tmp15 = tmp12[:, None] tl.store(out_ptr0 + (x3), tmp13, xmask) tl.store(out_ptr1 + (x3), tmp14, xmask) tl.store(out_ptr2 + (x3), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vg/cvg4gd4pleupedkmk7sudp3ojzudfhlxqbdm6touhpkhbpiwgvev.py # Topologically Sorted Source Nodes: [virt_feats_1], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # virt_feats_1 => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_per_fused_native_group_norm_8 = async_compile.triton('triton_per_fused_native_group_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (128*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + (128*x0)), xmask, other=0.0) tmp2 = tl.load(in_ptr2 + (r1 + (128*x0)), xmask, other=0.0) tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp3, 0) tmp8 = tl.where(xmask, tmp4, 0) tmp9 = tl.where(xmask, tmp5, 0) tmp10, tmp11, tmp12 = triton_helpers.welford(tmp7, tmp8, tmp9, 1) tmp13 = tmp10[:, None] tmp14 = tmp11[:, None] tmp15 = tmp12[:, None] tmp16 = 2097152.0 tmp17 = tmp14 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(out_ptr2 + (x0), tmp20, xmask) tl.store(out_ptr0 + (x0), tmp13, xmask) tl.store(out_ptr1 + (x0), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/a3/ca3amw2gaefhv4xzpojtuerdftf6ozu5budywre4cxqypl2l3gbv.py # Topologically Sorted Source Nodes: [virt_feats_1, virt_feats_2], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # virt_feats_1 => add_1, mul_3 # virt_feats_2 => relu # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_8), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %unsqueeze_5), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) triton_poi_fused_native_group_norm_relu_9 = async_compile.triton('triton_poi_fused_native_group_norm_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8388608], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 8388608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x2 = (xindex // 2097152) x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x2), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 2097152.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(in_out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/m3/cm3lzwerekxorxerue5hlic7yboixaflorl27immll3gt7g23bmm.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.add] # Source node to ATen node mapping: # x => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %convolution_3), kwargs = {}) triton_poi_fused_add_10 = async_compile.triton('triton_poi_fused_add_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 512], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_10(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 512 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4096 y1 = (yindex // 4096) tmp0 = tl.load(in_ptr0 + (x2 + (512*y3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + (512*y3)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (y0 + (4096*x2) + (2097152*y1)), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_2, (4, 512, 64, 64), (2097152, 4096, 64, 1)) assert_size_stride(primals_3, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_4, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_5, (512, ), (1, )) assert_size_stride(primals_6, (512, ), (1, )) assert_size_stride(primals_7, (512, 512, 3, 3), (4608, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_2, buf1, 2048, 4096, grid=grid(2048, 4096), stream=stream0) del primals_2 buf2 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_3, buf2, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_3 buf3 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_4, buf3, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_4 buf4 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_7, buf4, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 512, 64, 64), (2097152, 1, 32768, 512)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf1, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 512, 64, 64), (2097152, 1, 32768, 512)) buf7 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sum_1], Original ATen: [aten.mul, aten.sum] triton_red_fused_mul_sum_2.run(buf5, buf6, buf7, 65536, 512, grid=grid(65536), stream=stream0) buf8 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf7, buf8, 65536, grid=grid(65536), stream=stream0) buf9 = reinterpret_tensor(buf7, (4, 4, 64, 64), (16384, 1, 256, 4), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf8, buf9, 16, 4096, grid=grid(16, 4096), stream=stream0) # Topologically Sorted Source Nodes: [value], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf1, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 512, 64, 64), (2097152, 1, 32768, 512)) buf11 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32) # Topologically Sorted Source Nodes: [mul_1, virt_feats], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_5.run(buf9, buf10, buf11, 8388608, grid=grid(8388608), stream=stream0) buf12 = reinterpret_tensor(buf8, (4, 1, 1, 1, 128, 128), (16384, 65536, 65536, 65536, 1, 128), 0); del buf8 # reuse buf13 = empty_strided_cuda((4, 1, 1, 1, 128, 128), (16384, 65536, 65536, 65536, 1, 128), torch.float32) buf14 = empty_strided_cuda((4, 1, 1, 1, 128, 128), (16384, 65536, 65536, 65536, 1, 128), torch.float32) # Topologically Sorted Source Nodes: [virt_feats_1], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_6.run(buf11, buf12, buf13, buf14, 65536, 128, grid=grid(65536), stream=stream0) buf15 = empty_strided_cuda((4, 1, 1, 1, 128), (128, 512, 512, 512, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 1, 1, 128), (128, 512, 512, 512, 1), torch.float32) buf17 = empty_strided_cuda((4, 1, 1, 1, 128), (128, 512, 512, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [virt_feats_1], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_7.run(buf12, buf13, buf14, buf15, buf16, buf17, 512, 128, grid=grid(512), stream=stream0) del buf12 del buf13 del buf14 buf18 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf19 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf21 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [virt_feats_1], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_8.run(buf15, buf16, buf17, buf18, buf19, buf21, 4, 128, grid=grid(4), stream=stream0) del buf15 del buf16 del buf17 buf22 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [virt_feats_1, virt_feats_2], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_9.run(buf22, buf18, buf19, primals_5, primals_6, 8388608, grid=grid(8388608), stream=stream0) del buf19 del primals_6 # Topologically Sorted Source Nodes: [virt_feats_3], Original ATen: [aten.convolution] buf23 = extern_kernels.convolution(buf22, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 512, 64, 64), (2097152, 1, 32768, 512)) buf24 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.add] triton_poi_fused_add_10.run(buf1, buf23, buf24, 16384, 512, grid=grid(16384, 512), stream=stream0) del buf23 return (buf24, buf0, buf1, buf2, buf3, primals_5, buf4, buf5, buf6, buf9, buf10, reinterpret_tensor(buf18, (4, 1), (1, 1), 0), reinterpret_tensor(buf21, (4, 1), (1, 1), 0), buf22, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class HR2O_NL(nn.Module): def __init__(self, hidden_dim=512, kernel_size=3, mlp_1x1=False): super(HR2O_NL, self).__init__() self.hidden_dim = hidden_dim padding = kernel_size // 2 self.conv_q = nn.Conv2d(hidden_dim, hidden_dim, kernel_size, padding=padding, bias=False) self.conv_k = nn.Conv2d(hidden_dim, hidden_dim, kernel_size, padding=padding, bias=False) self.conv_v = nn.Conv2d(hidden_dim, hidden_dim, kernel_size, padding=padding, bias=False) self.conv = nn.Conv2d(hidden_dim, hidden_dim, 1 if mlp_1x1 else kernel_size, padding=0 if mlp_1x1 else padding, bias=False) self.norm = nn.GroupNorm(1, hidden_dim, affine=True) self.dp = nn.Dropout(0.2) def forward(self, x): query = self.conv_q(x).unsqueeze(1) key = self.conv_k(x).unsqueeze(0) att = (query * key).sum(2) / self.hidden_dim ** 0.5 att = nn.Softmax(dim=1)(att) value = self.conv_v(x) virt_feats = (att.unsqueeze(2) * value).sum(1) virt_feats = self.norm(virt_feats) virt_feats = nn.functional.relu(virt_feats) virt_feats = self.conv(virt_feats) virt_feats = self.dp(virt_feats) x = x + virt_feats return x def get_inputs(): return [torch.rand([4, 512, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None) @triton.jit def triton_red_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): rnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 4096 x2 = xindex // 16384 x4 = xindex % 16384 _tmp4 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x5 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp0 = tl.load(in_ptr0 + (r3 + 512 * x0 + 2097152 * x2), rmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (r3 + 512 * x4), rmask, eviction_policy= 'evict_last', other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = _tmp4 + tmp3 _tmp4 = tl.where(rmask, tmp5, _tmp4) tmp4 = tl.sum(_tmp4, 1)[:, None] tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4096 x2 = xindex // 16384 tmp0 = tl.load(in_ptr0 + x3, None) tmp3 = tl.load(in_ptr0 + (x0 + 16384 * x2), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (4096 + x0 + 16384 * x2), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (8192 + x0 + 16384 * x2), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12288 + x0 + 16384 * x2), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.044194173824159216 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x3, tmp17, None) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y1 = yindex // 4 y0 = yindex % 4 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (x2 + 16384 * y1), ymask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4096 + x2 + 16384 * y1), ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8192 + x2 + 16384 * y1), ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12288 + x2 + 16384 * y1), ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (y0 + 4 * x2 + 16384 * y1), tmp8, ymask) @triton.jit def triton_poi_fused_mul_sum_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex // 512 x4 = xindex % 2097152 x5 = xindex tmp0 = tl.load(in_ptr0 + 4 * x3, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x3), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (2097152 + x4), None, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (2 + 4 * x3), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (4194304 + x4), None, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr0 + (3 + 4 * x3), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (6291456 + x4), None, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x5, tmp14, None) @triton.jit def triton_per_fused_native_group_norm_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex x0 = xindex % 128 x1 = xindex // 128 % 128 x2 = xindex // 16384 x4 = xindex tmp0 = tl.load(in_ptr0 + (4 * x0 + 512 * ((r3 + 128 * x1) % 4096) + 2097152 * x2 + (r3 + 128 * x1) // 4096), None, eviction_policy= 'evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.full([XBLOCK, 1], 128, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tl.store(out_ptr0 + x4, tmp8, None) tl.store(out_ptr1 + x4, tmp13, None) tl.store(out_ptr2 + x4, tmp7, None) @triton.jit def triton_per_fused_native_group_norm_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 512 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 128 x1 = xindex // 128 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * r2 + 16384 * x1), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (x0 + 128 * r2 + 16384 * x1), xmask, other=0.0) tmp2 = tl.load(in_ptr2 + (x0 + 128 * r2 + 16384 * x1), xmask, other=0.0) tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp3, 0) tmp8 = tl.where(xmask, tmp4, 0) tmp9 = tl.where(xmask, tmp5, 0) tmp10, tmp11, tmp12 = triton_helpers.welford(tmp7, tmp8, tmp9, 1) tmp13 = tmp10[:, None] tmp14 = tmp11[:, None] tmp15 = tmp12[:, None] tl.store(out_ptr0 + x3, tmp13, xmask) tl.store(out_ptr1 + x3, tmp14, xmask) tl.store(out_ptr2 + x3, tmp15, xmask) @triton.jit def triton_per_fused_native_group_norm_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 128 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + 128 * x0), xmask, other=0.0) tmp2 = tl.load(in_ptr2 + (r1 + 128 * x0), xmask, other=0.0) tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp5 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp7 = tl.where(xmask, tmp3, 0) tmp8 = tl.where(xmask, tmp4, 0) tmp9 = tl.where(xmask, tmp5, 0) tmp10, tmp11, tmp12 = triton_helpers.welford(tmp7, tmp8, tmp9, 1) tmp13 = tmp10[:, None] tmp14 = tmp11[:, None] tmp12[:, None] tmp16 = 2097152.0 tmp17 = tmp14 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(out_ptr2 + x0, tmp20, xmask) tl.store(out_ptr0 + x0, tmp13, xmask) tl.store(out_ptr1 + x0, tmp14, xmask) @triton.jit def triton_poi_fused_native_group_norm_relu_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x2 = xindex // 2097152 x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x2, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x0, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 2097152.0 tmp5 = tmp3 / tmp4 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(in_out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_add_10(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 512 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4096 y1 = yindex // 4096 tmp0 = tl.load(in_ptr0 + (x2 + 512 * y3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (x2 + 512 * y3), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (y0 + 4096 * x2 + 2097152 * y1), tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_2, (4, 512, 64, 64), (2097152, 4096, 64, 1)) assert_size_stride(primals_3, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_4, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_5, (512,), (1,)) assert_size_stride(primals_6, (512,), (1,)) assert_size_stride(primals_7, (512, 512, 3, 3), (4608, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(262144, 9)](primals_1, buf0, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512 ), torch.float32) triton_poi_fused_1[grid(2048, 4096)](primals_2, buf1, 2048, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_0[grid(262144, 9)](primals_3, buf2, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_3 buf3 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_0[grid(262144, 9)](primals_4, buf3, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf4 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_0[grid(262144, 9)](primals_7, buf4, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_7 buf5 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 512, 64, 64), (2097152, 1, 32768, 512)) buf6 = extern_kernels.convolution(buf1, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 512, 64, 64), (2097152, 1, 32768, 512)) buf7 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32) triton_red_fused_mul_sum_2[grid(65536)](buf5, buf6, buf7, 65536, 512, XBLOCK=64, RBLOCK=64, num_warps=16, num_stages=1) buf8 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32) triton_poi_fused__softmax_3[grid(65536)](buf7, buf8, 65536, XBLOCK= 256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4, 64, 64), (16384, 1, 256, 4), 0) del buf7 triton_poi_fused__softmax_4[grid(16, 4096)](buf8, buf9, 16, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) buf10 = extern_kernels.convolution(buf1, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 512, 64, 64), (2097152, 1, 32768, 512)) buf11 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32) triton_poi_fused_mul_sum_5[grid(8388608)](buf9, buf10, buf11, 8388608, XBLOCK=1024, num_warps=4, num_stages=1) buf12 = reinterpret_tensor(buf8, (4, 1, 1, 1, 128, 128), (16384, 65536, 65536, 65536, 1, 128), 0) del buf8 buf13 = empty_strided_cuda((4, 1, 1, 1, 128, 128), (16384, 65536, 65536, 65536, 1, 128), torch.float32) buf14 = empty_strided_cuda((4, 1, 1, 1, 128, 128), (16384, 65536, 65536, 65536, 1, 128), torch.float32) triton_per_fused_native_group_norm_6[grid(65536)](buf11, buf12, buf13, buf14, 65536, 128, XBLOCK=32, num_warps=8, num_stages=1) buf15 = empty_strided_cuda((4, 1, 1, 1, 128), (128, 512, 512, 512, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 1, 1, 128), (128, 512, 512, 512, 1), torch.float32) buf17 = empty_strided_cuda((4, 1, 1, 1, 128), (128, 512, 512, 512, 1), torch.float32) triton_per_fused_native_group_norm_7[grid(512)](buf12, buf13, buf14, buf15, buf16, buf17, 512, 128, XBLOCK=1, num_warps=2, num_stages=1) del buf12 del buf13 del buf14 buf18 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf19 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf21 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) triton_per_fused_native_group_norm_8[grid(4)](buf15, buf16, buf17, buf18, buf19, buf21, 4, 128, XBLOCK=1, num_warps=2, num_stages=1) del buf15 del buf16 del buf17 buf22 = buf11 del buf11 triton_poi_fused_native_group_norm_relu_9[grid(8388608)](buf22, buf18, buf19, primals_5, primals_6, 8388608, XBLOCK=512, num_warps=8, num_stages=1) del buf19 del primals_6 buf23 = extern_kernels.convolution(buf22, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 512, 64, 64), (2097152, 1, 32768, 512)) buf24 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1), torch.float32) triton_poi_fused_add_10[grid(16384, 512)](buf1, buf23, buf24, 16384, 512, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf23 return (buf24, buf0, buf1, buf2, buf3, primals_5, buf4, buf5, buf6, buf9, buf10, reinterpret_tensor(buf18, (4, 1), (1, 1), 0), reinterpret_tensor(buf21, (4, 1), (1, 1), 0), buf22) class HR2O_NLNew(nn.Module): def __init__(self, hidden_dim=512, kernel_size=3, mlp_1x1=False): super(HR2O_NLNew, self).__init__() self.hidden_dim = hidden_dim padding = kernel_size // 2 self.conv_q = nn.Conv2d(hidden_dim, hidden_dim, kernel_size, padding=padding, bias=False) self.conv_k = nn.Conv2d(hidden_dim, hidden_dim, kernel_size, padding=padding, bias=False) self.conv_v = nn.Conv2d(hidden_dim, hidden_dim, kernel_size, padding=padding, bias=False) self.conv = nn.Conv2d(hidden_dim, hidden_dim, 1 if mlp_1x1 else kernel_size, padding=0 if mlp_1x1 else padding, bias=False) self.norm = nn.GroupNorm(1, hidden_dim, affine=True) self.dp = nn.Dropout(0.2) def forward(self, input_0): primals_1 = self.conv_q.weight primals_3 = self.conv_k.weight primals_4 = self.conv_v.weight primals_7 = self.conv.weight primals_5 = self.norm.weight primals_6 = self.norm.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
StephenStorm/ACAR
HR2O_NL
false
1,161
[ "Apache-2.0" ]
0
21ef3eca7330bd62eccb645018c8e48d9fc52153
https://github.com/StephenStorm/ACAR/tree/21ef3eca7330bd62eccb645018c8e48d9fc52153
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, hidden_dim=512, kernel_size=3, mlp_1x1=False): super().__init__() self.hidden_dim = hidden_dim padding = kernel_size // 2 self.conv_q = nn.Conv2d(hidden_dim, hidden_dim, kernel_size, padding=padding, bias=False) self.conv_k = nn.Conv2d(hidden_dim, hidden_dim, kernel_size, padding=padding, bias=False) self.conv_v = nn.Conv2d(hidden_dim, hidden_dim, kernel_size, padding=padding, bias=False) self.conv = nn.Conv2d(hidden_dim, hidden_dim, 1 if mlp_1x1 else kernel_size, padding=0 if mlp_1x1 else padding, bias=False) self.norm = nn.GroupNorm(1, hidden_dim, affine=True) self.dp = nn.Dropout(0.2) def forward(self, x): query = self.conv_q(x).unsqueeze(1) key = self.conv_k(x).unsqueeze(0) att = (query * key).sum(2) / self.hidden_dim ** 0.5 att = nn.Softmax(dim=1)(att) value = self.conv_v(x) virt_feats = (att.unsqueeze(2) * value).sum(1) virt_feats = self.norm(virt_feats) virt_feats = nn.functional.relu(virt_feats) virt_feats = self.conv(virt_feats) virt_feats = self.dp(virt_feats) x = x + virt_feats return x def get_inputs(): return [torch.rand([4, 512, 64, 64])] def get_init_inputs(): return []
Gated_Recurrent_Unit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/yo/cyof62umdskzkj4eethr6hq4fh4mcsng3u7pc7rf73hxtpeptbh4.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.add] # Source node to ATen node mapping: # output => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu] triton_poi_fused_relu_0.run(primals_4, buf2, 256, grid=grid(256), stream=stream0) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3) del primals_5 buf4 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf4, primals_3, buf3, primals_6, 256, grid=grid(256), stream=stream0) del buf3 del primals_3 del primals_6 return (buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.transforms import functional as F import torch.utils.data from torch import nn import torch.nn.functional as F class Gated_Recurrent_Unit(nn.Module): def __init__(self, fea_size, dropout): super(Gated_Recurrent_Unit, self).__init__() self.wih = nn.Linear(fea_size, fea_size, bias=True) self.whh = nn.Linear(fea_size, fea_size, bias=True) self.dropout = dropout def forward(self, input, hidden): output = self.wih(F.relu(input)) + self.whh(F.relu(hidden)) if self.dropout: output = F.dropout(output, training=self.training) return output def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'fea_size': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_relu_0[grid(256)](primals_4, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3) del primals_5 buf4 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused_add_1[grid(256)](buf4, primals_3, buf3, primals_6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_3 del primals_6 return buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf2, (64, 4), (4, 1), 0) class Gated_Recurrent_UnitNew(nn.Module): def __init__(self, fea_size, dropout): super(Gated_Recurrent_UnitNew, self).__init__() self.wih = nn.Linear(fea_size, fea_size, bias=True) self.whh = nn.Linear(fea_size, fea_size, bias=True) self.dropout = dropout def forward(self, input_0, input_1): primals_2 = self.wih.weight primals_3 = self.wih.bias primals_5 = self.whh.weight primals_6 = self.whh.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
SpartaG117/scene_graph_benchmark
Gated_Recurrent_Unit
false
1,162
[ "MIT" ]
0
e2e49940dd2f752b1faf9ae26707435ba3441bcb
https://github.com/SpartaG117/scene_graph_benchmark/tree/e2e49940dd2f752b1faf9ae26707435ba3441bcb
import torch from torchvision.transforms import functional as F import torch.utils.data from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, fea_size, dropout): super().__init__() self.wih = nn.Linear(fea_size, fea_size, bias=True) self.whh = nn.Linear(fea_size, fea_size, bias=True) self.dropout = dropout def forward(self, input, hidden): output = self.wih(F.relu(input)) + self.whh(F.relu(hidden)) if self.dropout: output = F.dropout(output, training=self.training) return output def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 0.5]
ConstantODE
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/lz/clzgdfddrozy5odymngj4cdkrvkdttixpcmxu2nsxxlqvfkk3aed.py # Topologically Sorted Source Nodes: [mul, add, sub, pow_1, add_1], Original ATen: [aten.mul, aten.add, aten.sub, aten.pow] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # pow_1 => pow_1 # sub => sub # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_4, %add), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %pow_1), kwargs = {}) triton_poi_fused_add_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_add_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp3 = tl.load(in_ptr2 + (x0), xmask) tmp5 = tl.load(in_ptr3 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp4 = tmp1 * tmp3 tmp7 = tmp4 + tmp6 tmp8 = tmp2 - tmp7 tmp9 = tmp8 * tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp10 * tmp8 tmp12 = tmp1 + tmp11 tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (), ()) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add, sub, pow_1, add_1], Original ATen: [aten.mul, aten.add, aten.sub, aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_pow_sub_0.run(primals_1, primals_4, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0) return (buf0, primals_1, primals_2, primals_3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class ConstantODE(torch.nn.Module): def __init__(self): super(ConstantODE, self).__init__() self.a = torch.nn.Parameter(torch.tensor(0.2)) self.b = torch.nn.Parameter(torch.tensor(3.0)) def forward(self, t, y): return self.a + (y - (self.a * t + self.b)) ** 5 def y_exact(self, t): return self.a * t + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp3 = tl.load(in_ptr2 + x0, xmask) tmp5 = tl.load(in_ptr3 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp4 = tmp1 * tmp3 tmp7 = tmp4 + tmp6 tmp8 = tmp2 - tmp7 tmp9 = tmp8 * tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp10 * tmp8 tmp12 = tmp1 + tmp11 tl.store(out_ptr0 + x0, tmp12, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (), ()) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_pow_sub_0[grid(256)](primals_1, primals_4, primals_2, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf0, primals_1, primals_2, primals_3, primals_4 class ConstantODENew(torch.nn.Module): def __init__(self): super(ConstantODENew, self).__init__() self.a = torch.nn.Parameter(torch.tensor(0.2)) self.b = torch.nn.Parameter(torch.tensor(3.0)) def y_exact(self, t): return self.a * t + self.b def forward(self, input_0, input_1): primals_1 = self.a primals_3 = self.b primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
TylerChoi1224/torchdiffeq
ConstantODE
false
1,163
[ "MIT" ]
0
72f74d9651a58ab11cdadd60682f1b61e625ef53
https://github.com/TylerChoi1224/torchdiffeq/tree/72f74d9651a58ab11cdadd60682f1b61e625ef53
import torch class Model(torch.nn.Module): def __init__(self): super().__init__() self.a = torch.nn.Parameter(torch.tensor(0.2)) self.b = torch.nn.Parameter(torch.tensor(3.0)) def forward(self, t, y): return self.a + (y - (self.a * t + self.b)) ** 5 def y_exact(self, t): return self.a * t + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
GradientReversal
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/u5/cu56dhpcth43gy4shrd7mcexf4nfa6qetnnhwe4mno4v6ug76h6j.py # Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone] # Source node to ATen node mapping: # clone => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.autograd import Function import torch class GradientReversalFunction(Function): """ Gradient Reversal Layer from: Unsupervised Domain Adaptation by Backpropagation (Ganin & Lempitsky, 2015) Forward pass is the identity function. In the backward pass, the upstream gradients are multiplied by -lambda (i.e. gradient is reversed) """ @staticmethod def forward(ctx, x, lambda_): ctx.lambda_ = lambda_ return x.clone() @staticmethod def backward(ctx, grads): lambda_ = ctx.lambda_ lambda_ = grads.new_tensor(lambda_) dx = -lambda_ * grads return dx, None class GradientReversal(torch.nn.Module): def __init__(self, lambda_=1): super(GradientReversal, self).__init__() self.lambda_ = lambda_ def forward(self, x): return GradientReversalFunction.apply(x, self.lambda_) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.autograd import Function assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class GradientReversalFunction(Function): """ Gradient Reversal Layer from: Unsupervised Domain Adaptation by Backpropagation (Ganin & Lempitsky, 2015) Forward pass is the identity function. In the backward pass, the upstream gradients are multiplied by -lambda (i.e. gradient is reversed) """ @staticmethod def forward(ctx, x, lambda_): ctx.lambda_ = lambda_ return x.clone() @staticmethod def backward(ctx, grads): lambda_ = ctx.lambda_ lambda_ = grads.new_tensor(lambda_) dx = -lambda_ * grads return dx, None class GradientReversalNew(torch.nn.Module): def __init__(self, lambda_=1): super(GradientReversalNew, self).__init__() self.lambda_ = lambda_ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
TheElderMindseeker/pytorch-domain-adaptation
GradientReversal
false
1,164
[ "MIT" ]
0
70ca862708bd6e59b5eee5d7c8bd808ef3457dc8
https://github.com/TheElderMindseeker/pytorch-domain-adaptation/tree/70ca862708bd6e59b5eee5d7c8bd808ef3457dc8
from torch.autograd import Function import torch class GradientReversalFunction(Function): """ Gradient Reversal Layer from: Unsupervised Domain Adaptation by Backpropagation (Ganin & Lempitsky, 2015) Forward pass is the identity function. In the backward pass, the upstream gradients are multiplied by -lambda (i.e. gradient is reversed) """ @staticmethod def forward(ctx, x, lambda_): ctx.lambda_ = lambda_ return x.clone() @staticmethod def backward(ctx, grads): lambda_ = ctx.lambda_ lambda_ = grads.new_tensor(lambda_) dx = -lambda_ * grads return dx, None class Model(torch.nn.Module): def __init__(self, lambda_=1): super().__init__() self.lambda_ = lambda_ def forward(self, x): return GradientReversalFunction.apply(x, self.lambda_) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Decoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/tf/ctfrmkdzcncuvqa3lx5gfprtbhmrpnkdxzqqmfnra2srkxlmy2kn.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_6, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/re/creookpdgr2hf34ub6gmeaguf32rxk6p3rlylk2rt2cuu4sg2o5z.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.view] # Source node to ATen node mapping: # out_2 => view_7 # Graph fragment: # %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 20]), kwargs = {}) triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 20 x1 = (xindex // 20) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (20*x1) + (80*((x1 % 4) // 4)) + (320*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 20), (20, 1)) assert_size_stride(primals_5, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0); del buf0 # reuse buf4 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 1280, grid=grid(1280), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.view] triton_poi_fused_view_1.run(buf1, buf2, 1280, grid=grid(1280), stream=stream0) del buf1 buf3 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (20, 2), (1, 20), 0), alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 4, 2), (32, 8, 2, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((20, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self, latent_dim=4, obs_dim=2, nhidden=20): super(Decoder, self).__init__() self.relu = nn.ReLU(inplace=True) self.fc1 = nn.Linear(latent_dim, nhidden) self.fc2 = nn.Linear(nhidden, obs_dim) def forward(self, z): out = self.fc1(z) out = self.relu(out) out = self.fc2(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 20 x1 = xindex // 20 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 20 * x1 + 80 * (x1 % 4 // 4) + 320 * ((4 * (x1 // 4 % 4) + x1 % 4) // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 20), (20, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1280)](buf1, primals_2, buf4, 1280, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32) triton_poi_fused_view_1[grid(1280)](buf1, buf2, 1280, XBLOCK=256, num_warps=4, num_stages=1) del buf1 buf3 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (20, 2), (1, 20), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4, 2), (32, 8, 2, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf2, primals_4, buf4 class DecoderNew(nn.Module): def __init__(self, latent_dim=4, obs_dim=2, nhidden=20): super(DecoderNew, self).__init__() self.relu = nn.ReLU(inplace=True) self.fc1 = nn.Linear(latent_dim, nhidden) self.fc2 = nn.Linear(nhidden, obs_dim) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
TylerChoi1224/torchdiffeq
Decoder
false
1,165
[ "MIT" ]
0
72f74d9651a58ab11cdadd60682f1b61e625ef53
https://github.com/TylerChoi1224/torchdiffeq/tree/72f74d9651a58ab11cdadd60682f1b61e625ef53
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, latent_dim=4, obs_dim=2, nhidden=20): super().__init__() self.relu = nn.ReLU(inplace=True) self.fc1 = nn.Linear(latent_dim, nhidden) self.fc2 = nn.Linear(nhidden, obs_dim) def forward(self, z): out = self.fc1(z) out = self.relu(out) out = self.fc2(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
WeighedMSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3x/c3xujuw6s3ums2q52c2zz67wpzpwemh2jfeivhwqaaxdqvqxg2ya.py # Topologically Sorted Source Nodes: [loss, mul, mean], Original ATen: [aten.mse_loss, aten.mul, aten.mean] # Source node to ATen node mapping: # loss => pow_1, sub # mean => mean # mul => mul # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 4), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {}) triton_per_fused_mean_mse_loss_mul_0 = async_compile.triton('triton_per_fused_mean_mse_loss_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 4.0 tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 256.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [loss, mul, mean], Original ATen: [aten.mse_loss, aten.mul, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_mse_loss_mul_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch.nn import MSELoss class WeighedMSELoss(MSELoss): def __init__(self, weights): super().__init__(reduction='none') self.weights = weights def forward(self, input: 'Tensor', target: 'Tensor') ->Tensor: loss = super().forward(input, target) return (loss * self.weights).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'weights': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import MSELoss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 4.0 tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 256.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_mse_loss_mul_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class WeighedMSELossNew(MSELoss): def __init__(self, weights): super().__init__(reduction='none') self.weights = weights def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
UT-ADL/lidar-as-camera
WeighedMSELoss
false
1,166
[ "Apache-2.0" ]
0
daccb2ae21b4899ecfd8611b7a27f91681617383
https://github.com/UT-ADL/lidar-as-camera/tree/daccb2ae21b4899ecfd8611b7a27f91681617383
import torch from torch import Tensor from torch.nn import MSELoss class Model(MSELoss): def __init__(self, weights): super().__init__(reduction='none') self.weights = weights def forward(self, input: 'Tensor', target: 'Tensor') ->Tensor: loss = super().forward(input, target) return (loss * self.weights).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LanguageModelCriterion
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/y6/cy6c63inntzv3gk7tttvtntl47lyazeloek7emnkrhkhkqbx5kci.py # Topologically Sorted Source Nodes: [neg, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # neg => neg # output => mul # output_1 => div # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %arg2_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_per_fused_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_div_mul_neg_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr2 + (r0), None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last') tmp7 = -tmp6 tmp8 = tmp7.to(tl.float32) tmp10 = tmp8 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = tmp13 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [neg, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_mul_neg_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, 1, 16, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.int64) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.autograd import * class LanguageModelCriterion(nn.Module): def __init__(self): super(LanguageModelCriterion, self).__init__() def forward(self, input, target, mask): if target.ndim == 3: target = target.reshape(-1, target.shape[2]) mask = mask.reshape(-1, mask.shape[2]) target = target[:, :input.size(1)] mask = mask[:, :input.size(1)].float() output = -input.gather(2, target.unsqueeze(2)).squeeze(2) * mask output = torch.sum(output) / torch.sum(mask) return output def get_inputs(): return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4], dtype=torch.int64), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.autograd import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr2 + r0, None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy= 'evict_last') tmp7 = -tmp6 tmp8 = tmp7.to(tl.float32) tmp10 = tmp8 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = tmp13 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mul_neg_sum_0[grid(1)](buf2, arg0_1, arg1_1, arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class LanguageModelCriterionNew(nn.Module): def __init__(self): super(LanguageModelCriterionNew, self).__init__() def forward(self, input_0, input_1, input_2): arg1_1 = input_0 arg0_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
VISLANG-Lab/MGCL
LanguageModelCriterion
false
1,167
[ "MIT" ]
0
22da06ffa7410d9632bfda8eefb1b79e4f660de0
https://github.com/VISLANG-Lab/MGCL/tree/22da06ffa7410d9632bfda8eefb1b79e4f660de0
import torch import torch.nn as nn from torch.autograd import * class Model(nn.Module): def __init__(self): super().__init__() def forward(self, input, target, mask): if target.ndim == 3: target = target.reshape(-1, target.shape[2]) mask = mask.reshape(-1, mask.shape[2]) target = target[:, :input.size(1)] mask = mask[:, :input.size(1)].float() output = -input.gather(2, target.unsqueeze(2)).squeeze(2) * mask output = torch.sum(output) / torch.sum(mask) return output def get_inputs(): return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4], dtype=torch.int64), torch.rand([4, 4])] def get_init_inputs(): return []
PoolFormerBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/dr/cdrbbq25gaacwdmuqqn76ytppvbzlwbqwo7aazovogwtjetsi3kf.py # Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm => add, add_1, mul_1, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_7), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_4), kwargs = {}) triton_per_fused_native_group_norm_0 = async_compile.triton('triton_per_fused_native_group_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tl.store(out_ptr2 + (r1 + (64*x0)), tmp27, xmask) tl.store(out_ptr3 + (x0), tmp22, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ou/coupyg345piz42etl5al6lwpef5kkccwwnxo3krwbluktyaryaxz.py # Topologically Sorted Source Nodes: [avg_pool2d, group_norm_1], Original ATen: [aten.avg_pool2d, aten.native_group_norm] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # group_norm_1 => add_3, add_4, mul_4, rsqrt_1, var_mean_1 # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%add_1, [3, 3], [1, 1], [1, 1], False, False), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_15), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %unsqueeze_12), kwargs = {}) triton_per_fused_avg_pool2d_native_group_norm_1 = async_compile.triton('triton_per_fused_avg_pool2d_native_group_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_avg_pool2d_native_group_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 14, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_avg_pool2d_native_group_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = (rindex // 4) % 4 r1 = rindex % 4 r6 = rindex x0 = xindex r3 = (rindex // 16) tmp54 = tl.load(in_ptr1 + (r6 + (64*x0)), xmask, other=0.0) tmp55 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr0 + (r6 + (64*x0)), xmask, other=0.0) tmp83 = tl.load(in_ptr3 + (r3), None, eviction_policy='evict_last') tmp85 = tl.load(in_ptr4 + (r3), None, eviction_policy='evict_last') tmp0 = (-1) + r2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + r1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + r6 + (64*x0)), tmp10 & xmask, other=0.0) tmp12 = r1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + r6 + (64*x0)), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + r1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + r6 + (64*x0)), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = r2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + r6 + (64*x0)), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (r6 + (64*x0)), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + r6 + (64*x0)), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + r2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + r6 + (64*x0)), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + r6 + (64*x0)), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + r6 + (64*x0)), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (((0) * ((0) >= ((-1) + r1)) + ((-1) + r1) * (((-1) + r1) > (0)))*((0) * ((0) >= ((-1) + r2)) + ((-1) + r2) * (((-1) + r2) > (0)))) + (((4) * ((4) <= (2 + r1)) + (2 + r1) * ((2 + r1) < (4)))*((4) * ((4) <= (2 + r2)) + (2 + r2) * ((2 + r2) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + r1)) + ((-1) + r1) * (((-1) + r1) > (0)))*((4) * ((4) <= (2 + r2)) + (2 + r2) * ((2 + r2) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + r2)) + ((-1) + r2) * (((-1) + r2) > (0)))*((4) * ((4) <= (2 + r1)) + (2 + r1) * ((2 + r1) < (4)))) tmp53 = tmp51 / tmp52 tmp57 = tmp53 - tmp56 tmp58 = tmp55 * tmp57 tmp59 = tmp54 + tmp58 tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK]) tmp62 = tl.where(xmask, tmp60, 0) tmp63 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK]) tmp65 = tl.where(xmask, tmp63, 0) tmp66 = tl.sum(tmp65, 1)[:, None] tmp67 = tl.full([XBLOCK, 1], 64, tl.int32) tmp68 = tmp67.to(tl.float32) tmp69 = tmp66 / tmp68 tmp70 = tmp60 - tmp69 tmp71 = tmp70 * tmp70 tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK]) tmp74 = tl.where(xmask, tmp72, 0) tmp75 = tl.sum(tmp74, 1)[:, None] tmp76 = tmp59 - tmp69 tmp77 = 64.0 tmp78 = tmp75 / tmp77 tmp79 = 1e-05 tmp80 = tmp78 + tmp79 tmp81 = libdevice.rsqrt(tmp80) tmp82 = tmp76 * tmp81 tmp84 = tmp82 * tmp83 tmp86 = tmp84 + tmp85 tl.store(out_ptr0 + (r6 + (64*x0)), tmp53, xmask) tl.store(out_ptr3 + (r6 + (64*x0)), tmp86, xmask) tl.store(out_ptr4 + (x0), tmp81, xmask) tl.store(out_ptr1 + (x0), tmp69, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gd/cgdslzbvz4m7vmsmypc7vpzz4mhpkezpihgu3s34qnd5bo5vg7h5.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.gelu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => add_5, erf, mul_5, mul_6, mul_7 # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_4, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.5), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_6,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_7 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %add_5), kwargs = {}) triton_poi_fused_convolution_gelu_2 = async_compile.triton('triton_poi_fused_convolution_gelu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_gelu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_gelu_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2s/c2sr6yssngw5ceeda7lntygiwg4bblf5mrmsznbnzvcgr3mzmwrc.py # Topologically Sorted Source Nodes: [sub, mul, x, x_4, mul_1, x_6], Original ATen: [aten.sub, aten.mul, aten.add, aten.convolution] # Source node to ATen node mapping: # mul => mul_2 # mul_1 => mul_8 # sub => sub_1 # x => add_2 # x_4 => convolution_1 # x_6 => add_6 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d, %add_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_1, %sub_1), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %mul_2), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_7, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_9, %convolution_1), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_8), kwargs = {}) triton_poi_fused_add_convolution_mul_sub_3 = async_compile.triton('triton_poi_fused_add_convolution_mul_sub_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_sub_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_sub_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x3), xmask) tmp6 = tl.load(in_ptr4 + (x3), xmask) tmp10 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp7 = tmp5 - tmp6 tmp8 = tmp4 * tmp7 tmp9 = tmp3 + tmp8 tmp11 = tmp10 * tmp2 tmp12 = tmp9 + tmp11 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (4, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm] stream0 = get_raw_stream(0) triton_per_fused_native_group_norm_0.run(primals_4, primals_2, primals_3, buf0, buf3, buf16, 4, 64, grid=grid(4), stream=stream0) del primals_2 del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [avg_pool2d, group_norm_1], Original ATen: [aten.avg_pool2d, aten.native_group_norm] triton_per_fused_avg_pool2d_native_group_norm_1.run(buf3, primals_4, primals_1, primals_6, primals_7, buf4, buf5, buf8, buf9, 4, 64, grid=grid(4), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 4, 4), (256, 16, 4, 1)) buf11 = buf10; del buf10 # reuse buf12 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.gelu] triton_poi_fused_convolution_gelu_2.run(buf11, primals_9, buf12, 1024, grid=grid(1024), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 4, 4, 4), (64, 16, 4, 1)) buf14 = buf13; del buf13 # reuse buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, mul, x, x_4, mul_1, x_6], Original ATen: [aten.sub, aten.mul, aten.add, aten.convolution] triton_poi_fused_add_convolution_mul_sub_3.run(buf14, primals_11, primals_4, primals_1, buf4, buf3, primals_5, buf15, 256, grid=grid(256), stream=stream0) del primals_11 return (buf15, primals_1, primals_4, primals_5, primals_6, primals_8, primals_10, buf3, buf4, buf8, reinterpret_tensor(buf5, (4, 1), (1, 1), 0), reinterpret_tensor(buf9, (4, 1), (1, 1), 0), buf11, buf12, buf14, reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf16, (4, 1, 1), (1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import warnings import torch.nn as nn def _no_grad_trunc_normal_(tensor, mean, std, a, b): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ def norm_cdf(x): """Computes standard normal cumulative distribution function""" return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if mean < a - 2 * std or mean > b + 2 * std: warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.' , stacklevel=2) with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class GroupNorm(nn.GroupNorm): """ Group Normalization with 1 group. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, **kwargs): super().__init__(1, num_channels, **kwargs) class Pooling(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): return self.pool(x) - x class Mlp(nn.Module): """ Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W] """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class PoolFormerBlock(nn.Module): """ Implementation of one PoolFormer block. --dim: embedding dim --pool_size: pooling size --mlp_ratio: mlp expansion ratio --act_layer: activation --norm_layer: normalization --drop: dropout rate --drop path: Stochastic Depth, refer to https://arxiv.org/abs/1603.09382 --use_layer_scale, --layer_scale_init_value: LayerScale, refer to https://arxiv.org/abs/2103.17239 """ def __init__(self, dim, pool_size=3, mlp_ratio=4.0, act_layer=nn.GELU, norm_layer=GroupNorm, drop=0.0, drop_path=0.0, use_layer_scale=True, layer_scale_init_value=1e-05): super().__init__() self.norm1 = norm_layer(dim) self.token_mixer = Pooling(pool_size=pool_size) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = use_layer_scale if use_layer_scale: self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) def forward(self, x): if self.use_layer_scale: x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1). unsqueeze(-1) * self.token_mixer(self.norm1(x))) x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1). unsqueeze(-1) * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.token_mixer(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import warnings import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tl.store(out_ptr2 + (r1 + 64 * x0), tmp27, xmask) tl.store(out_ptr3 + x0, tmp22, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_per_fused_avg_pool2d_native_group_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex // 4 % 4 r1 = rindex % 4 r6 = rindex x0 = xindex r3 = rindex // 16 tmp54 = tl.load(in_ptr1 + (r6 + 64 * x0), xmask, other=0.0) tmp55 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr0 + (r6 + 64 * x0), xmask, other=0.0) tmp83 = tl.load(in_ptr3 + r3, None, eviction_policy='evict_last') tmp85 = tl.load(in_ptr4 + r3, None, eviction_policy='evict_last') tmp0 = -1 + r2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + r1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + r6 + 64 * x0), tmp10 & xmask, other=0.0) tmp12 = r1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + r6 + 64 * x0), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + r1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + r6 + 64 * x0), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = r2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + r6 + 64 * x0), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (r6 + 64 * x0), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + r6 + 64 * x0), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + r2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + r6 + 64 * x0), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + r6 + 64 * x0), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + r6 + 64 * x0), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (0 * (0 >= -1 + r1) + (-1 + r1) * (-1 + r1 > 0)) * (0 * (0 >= - 1 + r2) + (-1 + r2) * (-1 + r2 > 0)) + (4 * (4 <= 2 + r1) + (2 + r1 ) * (2 + r1 < 4)) * (4 * (4 <= 2 + r2) + (2 + r2) * (2 + r2 < 4) ) + -1 * (0 * (0 >= -1 + r1) + (-1 + r1) * (-1 + r1 > 0)) * (4 * (4 <= 2 + r2) + (2 + r2) * (2 + r2 < 4)) + -1 * (0 * (0 >= -1 + r2) + (-1 + r2) * (-1 + r2 > 0)) * (4 * (4 <= 2 + r1) + (2 + r1) * (2 + r1 < 4)) tmp53 = tmp51 / tmp52 tmp57 = tmp53 - tmp56 tmp58 = tmp55 * tmp57 tmp59 = tmp54 + tmp58 tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK]) tl.where(xmask, tmp60, 0) tmp63 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK]) tmp65 = tl.where(xmask, tmp63, 0) tmp66 = tl.sum(tmp65, 1)[:, None] tmp67 = tl.full([XBLOCK, 1], 64, tl.int32) tmp68 = tmp67.to(tl.float32) tmp69 = tmp66 / tmp68 tmp70 = tmp60 - tmp69 tmp71 = tmp70 * tmp70 tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK]) tmp74 = tl.where(xmask, tmp72, 0) tmp75 = tl.sum(tmp74, 1)[:, None] tmp76 = tmp59 - tmp69 tmp77 = 64.0 tmp78 = tmp75 / tmp77 tmp79 = 1e-05 tmp80 = tmp78 + tmp79 tmp81 = libdevice.rsqrt(tmp80) tmp82 = tmp76 * tmp81 tmp84 = tmp82 * tmp83 tmp86 = tmp84 + tmp85 tl.store(out_ptr0 + (r6 + 64 * x0), tmp53, xmask) tl.store(out_ptr3 + (r6 + 64 * x0), tmp86, xmask) tl.store(out_ptr4 + x0, tmp81, xmask) tl.store(out_ptr1 + x0, tmp69, xmask) @triton.jit def triton_poi_fused_convolution_gelu_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_add_convolution_mul_sub_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x3, xmask) tmp6 = tl.load(in_ptr4 + x3, xmask) tmp10 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp7 = tmp5 - tmp6 tmp8 = tmp4 * tmp7 tmp9 = tmp3 + tmp8 tmp11 = tmp10 * tmp2 tmp12 = tmp9 + tmp11 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (4, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) get_raw_stream(0) triton_per_fused_native_group_norm_0[grid(4)](primals_4, primals_2, primals_3, buf0, buf3, buf16, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) triton_per_fused_avg_pool2d_native_group_norm_1[grid(4)](buf3, primals_4, primals_1, primals_6, primals_7, buf4, buf5, buf8, buf9, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_7 buf10 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 4, 4), (256, 16, 4, 1)) buf11 = buf10 del buf10 buf12 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch. float32) triton_poi_fused_convolution_gelu_2[grid(1024)](buf11, primals_9, buf12, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf13 = extern_kernels.convolution(buf12, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 4, 4, 4), (64, 16, 4, 1)) buf14 = buf13 del buf13 buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_mul_sub_3[grid(256)](buf14, primals_11, primals_4, primals_1, buf4, buf3, primals_5, buf15, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 return (buf15, primals_1, primals_4, primals_5, primals_6, primals_8, primals_10, buf3, buf4, buf8, reinterpret_tensor(buf5, (4, 1), (1, 1), 0), reinterpret_tensor(buf9, (4, 1), (1, 1), 0), buf11, buf12, buf14, reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf16, (4, 1, 1), (1, 1, 1), 0)) def _no_grad_trunc_normal_(tensor, mean, std, a, b): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ def norm_cdf(x): """Computes standard normal cumulative distribution function""" return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if mean < a - 2 * std or mean > b + 2 * std: warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.' , stacklevel=2) with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class GroupNorm(nn.GroupNorm): """ Group Normalization with 1 group. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, **kwargs): super().__init__(1, num_channels, **kwargs) class Pooling(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): return self.pool(x) - x class Mlp(nn.Module): """ Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W] """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class PoolFormerBlockNew(nn.Module): """ Implementation of one PoolFormer block. --dim: embedding dim --pool_size: pooling size --mlp_ratio: mlp expansion ratio --act_layer: activation --norm_layer: normalization --drop: dropout rate --drop path: Stochastic Depth, refer to https://arxiv.org/abs/1603.09382 --use_layer_scale, --layer_scale_init_value: LayerScale, refer to https://arxiv.org/abs/2103.17239 """ def __init__(self, dim, pool_size=3, mlp_ratio=4.0, act_layer=nn.GELU, norm_layer=GroupNorm, drop=0.0, drop_path=0.0, use_layer_scale=True, layer_scale_init_value=1e-05): super().__init__() self.norm1 = norm_layer(dim) self.token_mixer = Pooling(pool_size=pool_size) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = use_layer_scale if use_layer_scale: self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) def forward(self, input_0): primals_1 = self.layer_scale_1 primals_2 = self.layer_scale_2 primals_3 = self.norm1.weight primals_5 = self.norm1.bias primals_6 = self.norm2.weight primals_7 = self.norm2.bias primals_8 = self.mlp.fc1.weight primals_9 = self.mlp.fc1.bias primals_10 = self.mlp.fc2.weight primals_11 = self.mlp.fc2.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
TranNhiem/solo-learn
PoolFormerBlock
false
1,168
[ "MIT" ]
0
7539732b68d153087d09a26a23e1edfdc49bc086
https://github.com/TranNhiem/solo-learn/tree/7539732b68d153087d09a26a23e1edfdc49bc086
import math import torch import warnings import torch.nn as nn def _no_grad_trunc_normal_(tensor, mean, std, a, b): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ def norm_cdf(x): """Computes standard normal cumulative distribution function""" return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if mean < a - 2 * std or mean > b + 2 * std: warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.' , stacklevel=2) with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class GroupNorm(nn.GroupNorm): """ Group Normalization with 1 group. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, **kwargs): super().__init__(1, num_channels, **kwargs) class Pooling(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): return self.pool(x) - x class Mlp(nn.Module): """ Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W] """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Model(nn.Module): """ Implementation of one PoolFormer block. --dim: embedding dim --pool_size: pooling size --mlp_ratio: mlp expansion ratio --act_layer: activation --norm_layer: normalization --drop: dropout rate --drop path: Stochastic Depth, refer to https://arxiv.org/abs/1603.09382 --use_layer_scale, --layer_scale_init_value: LayerScale, refer to https://arxiv.org/abs/2103.17239 """ def __init__(self, dim, pool_size=3, mlp_ratio=4.0, act_layer=nn.GELU, norm_layer=GroupNorm, drop=0.0, drop_path=0.0, use_layer_scale=True, layer_scale_init_value=1e-05): super().__init__() self.norm1 = norm_layer(dim) self.token_mixer = Pooling(pool_size=pool_size) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = use_layer_scale if use_layer_scale # ... truncated (>4000 chars) for memory efficiency
SelfAttn
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [ui], Original ATen: [aten.tanh] # Source node to ATen node mapping: # ui => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gj/cgjeqalj3tj2k5zxudyuzg5uvy3eelkmu2pzeffdkeicr4q7pgpz.py # Topologically Sorted Source Nodes: [ai], Original ATen: [aten._softmax] # Source node to ATen node mapping: # ai => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/f5/cf5347orlkm5ylmh4iouw6qvowwebewwg66dnqrhzt7tg7a4irp5.py # Topologically Sorted Source Nodes: [ai], Original ATen: [aten._softmax] # Source node to ATen node mapping: # ai => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hl/chlurvl25cmjpuzhx4f3avcjm5jhixwhpb3wd6dosusoswupaqcq.py # Topologically Sorted Source Nodes: [mul, o], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # o => sum_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %div), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [0]), kwargs = {}) triton_poi_fused_mul_sum_3 = async_compile.triton('triton_poi_fused_mul_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x2), xmask) tmp4 = tl.load(in_ptr1 + (16 + x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (128 + x2), xmask) tmp8 = tl.load(in_ptr1 + (32 + x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (192 + x2), xmask) tmp12 = tl.load(in_ptr1 + (48 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [ui], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [ai], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [ai], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [mul, o], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_3.run(primals_3, buf4, buf5, 64, grid=grid(64), stream=stream0) return (buf5, reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), primals_3, buf1, buf4, reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class SelfAttn(nn.Module): """ Self attention layer: aggreagating a sequence into a single vector. This implementation uses the attention formula proposed by Sukhbaatar etal. 2015 https://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf Usage: seq_len=10; bsz=16; in_dim=128 attn = SelfAtnn(in_dim) x = torch.rand(seq_len, bsz, in_dim) # 10x16x128 y, a = attn(x) # output y 16x128, attention weight a 10x16 """ def __init__(self, d_input, units=None): """ :param d_input: input feature dimension :param units: dimension of internal projection, if None it will be set to d_input """ super(SelfAttn, self).__init__() self.d_input = d_input self.units = units if units else d_input self.projection = nn.Linear(self.d_input, self.units) self.V = nn.Parameter(torch.Tensor(self.units, 1)) self.init_weights() def init_weights(self): initrange = 0.1 self.projection.bias.data.zero_() self.projection.weight.data.uniform_(-initrange, initrange) self.V.data.uniform_(-initrange, initrange) def forward(self, x, mask=None): """ ui = tanh(xW+b) a = softmax(uV) o = sum(a*x) :param x: input tensor [seq_len, bsz, feat_dim] :return: output tensor [bsz, feat_dim] """ ui = torch.tanh(self.projection(x)) ai = F.softmax(torch.matmul(ui, self.V), dim=0) if mask is not None: ai = ai * mask.unsqueeze(-1) ai = ai / ai.sum(dim=0, keepdim=True) o = torch.sum(x * ai, dim=0) return o, ai.squeeze(-1) def extra_repr(self): return 'Sx?x%d -> ?x%d' % (self.d_input, self.d_input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_input': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x2), xmask) tmp4 = tl.load(in_ptr1 + (16 + x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (128 + x2), xmask) tmp8 = tl.load(in_ptr1 + (32 + x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (192 + x2), xmask) tmp12 = tl.load(in_ptr1 + (48 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0) del buf3 triton_poi_fused_mul_sum_3[grid(64)](primals_3, buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf5, reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0 ), primals_3, buf1, buf4, reinterpret_tensor(primals_4, (1, 4), (1, 1), 0) class SelfAttnNew(nn.Module): """ Self attention layer: aggreagating a sequence into a single vector. This implementation uses the attention formula proposed by Sukhbaatar etal. 2015 https://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf Usage: seq_len=10; bsz=16; in_dim=128 attn = SelfAtnn(in_dim) x = torch.rand(seq_len, bsz, in_dim) # 10x16x128 y, a = attn(x) # output y 16x128, attention weight a 10x16 """ def __init__(self, d_input, units=None): """ :param d_input: input feature dimension :param units: dimension of internal projection, if None it will be set to d_input """ super(SelfAttnNew, self).__init__() self.d_input = d_input self.units = units if units else d_input self.projection = nn.Linear(self.d_input, self.units) self.V = nn.Parameter(torch.Tensor(self.units, 1)) self.init_weights() def init_weights(self): initrange = 0.1 self.projection.bias.data.zero_() self.projection.weight.data.uniform_(-initrange, initrange) self.V.data.uniform_(-initrange, initrange) def extra_repr(self): return 'Sx?x%d -> ?x%d' % (self.d_input, self.d_input) def forward(self, input_0): primals_4 = self.V primals_1 = self.projection.weight primals_2 = self.projection.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1]
TuBui/deep_image_comparator
SelfAttn
false
1,169
[ "MIT" ]
0
2dea7738d794b91a960ee9f41461a4e3ffcd5e44
https://github.com/TuBui/deep_image_comparator/tree/2dea7738d794b91a960ee9f41461a4e3ffcd5e44
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): """ Self attention layer: aggreagating a sequence into a single vector. This implementation uses the attention formula proposed by Sukhbaatar etal. 2015 https://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf Usage: seq_len=10; bsz=16; in_dim=128 attn = SelfAtnn(in_dim) x = torch.rand(seq_len, bsz, in_dim) # 10x16x128 y, a = attn(x) # output y 16x128, attention weight a 10x16 """ def __init__(self, d_input, units=None): """ :param d_input: input feature dimension :param units: dimension of internal projection, if None it will be set to d_input """ super().__init__() self.d_input = d_input self.units = units if units else d_input self.projection = nn.Linear(self.d_input, self.units) self.V = nn.Parameter(torch.Tensor(self.units, 1)) self.init_weights() def init_weights(self): initrange = 0.1 self.projection.bias.data.zero_() self.projection.weight.data.uniform_(-initrange, initrange) self.V.data.uniform_(-initrange, initrange) def forward(self, x, mask=None): """ ui = tanh(xW+b) a = softmax(uV) o = sum(a*x) :param x: input tensor [seq_len, bsz, feat_dim] :return: output tensor [bsz, feat_dim] """ ui = torch.tanh(self.projection(x)) ai = F.softmax(torch.matmul(ui, self.V), dim=0) if mask is not None: ai = ai * mask.unsqueeze(-1) ai = ai / ai.sum(dim=0, keepdim=True) o = torch.sum(x * ai, dim=0) return o, ai.squeeze(-1) def extra_repr(self): return 'Sx?x%d -> ?x%d' % (self.d_input, self.d_input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
SinkhornKnopp
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3g/c3gd5ipjfbufzu6hvujxufg6z3emufd62cvcqjyy3muqew2xvzbd.py # Topologically Sorted Source Nodes: [sum_Q], Original ATen: [aten.sum] # Source node to ATen node mapping: # sum_Q => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%permute,), kwargs = {}) triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 20.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/pb/cpb5rsib7fg2llnv7dg2enzvdhrqqrlufmxvryadr6zckhtmyysm.py # Topologically Sorted Source Nodes: [sum_of_rows], Original ATen: [aten.sum] # Source node to ATen node mapping: # sum_of_rows => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%permute_2, [1], True), kwargs = {}) triton_poi_fused_sum_1 = async_compile.triton('triton_poi_fused_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp4 = tl.load(in_ptr1 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (4 + x0), xmask) tmp12 = tl.load(in_ptr0 + (8 + x0), xmask) tmp17 = tl.load(in_ptr0 + (12 + x0), xmask) tmp1 = 20.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp6 = tmp3 / tmp5 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tmp9 / tmp5 tmp11 = tmp6 + tmp10 tmp13 = tmp12 * tmp1 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp5 tmp16 = tmp11 + tmp15 tmp18 = tmp17 * tmp1 tmp19 = tl_math.exp(tmp18) tmp20 = tmp19 / tmp5 tmp21 = tmp16 + tmp20 tl.store(out_ptr0 + (x0), tmp21, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ay/cayipr5tzejzfvzl7ba3w7cqhf2axor2ag2cqam22ambv3zsqfqn.py # Topologically Sorted Source Nodes: [sum_3], Original ATen: [aten.sum] # Source node to ATen node mapping: # sum_3 => sum_3 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%permute_6, [0], True), kwargs = {}) triton_poi_fused_sum_2 = async_compile.triton('triton_poi_fused_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sum_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr2 + (0)) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp12 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr2 + (1)) tmp17 = tl.broadcast_to(tmp16, [XBLOCK]) tmp21 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (2)) tmp26 = tl.broadcast_to(tmp25, [XBLOCK]) tmp30 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp34 = tl.load(in_ptr2 + (3)) tmp35 = tl.broadcast_to(tmp34, [XBLOCK]) tmp1 = 20.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp6 = tmp3 / tmp5 tmp9 = tmp6 / tmp8 tmp10 = 0.25 tmp11 = tmp9 * tmp10 tmp13 = tmp12 * tmp1 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp5 tmp18 = tmp15 / tmp17 tmp19 = tmp18 * tmp10 tmp20 = tmp11 + tmp19 tmp22 = tmp21 * tmp1 tmp23 = tl_math.exp(tmp22) tmp24 = tmp23 / tmp5 tmp27 = tmp24 / tmp26 tmp28 = tmp27 * tmp10 tmp29 = tmp20 + tmp28 tmp31 = tmp30 * tmp1 tmp32 = tl_math.exp(tmp31) tmp33 = tmp32 / tmp5 tmp36 = tmp33 / tmp35 tmp37 = tmp36 * tmp10 tmp38 = tmp29 + tmp37 tl.store(out_ptr0 + (x0), tmp38, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gf/cgfazley3l5rdd6ypj2skdwbxoltt6cdo3d3mpt4z3kqywdlsil5.py # Topologically Sorted Source Nodes: [sum_of_rows_1], Original ATen: [aten.sum] # Source node to ATen node mapping: # sum_of_rows_1 => sum_4 # Graph fragment: # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%permute_10, [1], True), kwargs = {}) triton_poi_fused_sum_3 = async_compile.triton('triton_poi_fused_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp4 = tl.load(in_ptr1 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr2 + (x0), xmask) tmp11 = tl.load(in_ptr3 + (0)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp15 = tl.load(in_ptr0 + (4 + x0), xmask) tmp21 = tl.load(in_ptr3 + (1)) tmp22 = tl.broadcast_to(tmp21, [XBLOCK]) tmp26 = tl.load(in_ptr0 + (8 + x0), xmask) tmp32 = tl.load(in_ptr3 + (2)) tmp33 = tl.broadcast_to(tmp32, [XBLOCK]) tmp37 = tl.load(in_ptr0 + (12 + x0), xmask) tmp43 = tl.load(in_ptr3 + (3)) tmp44 = tl.broadcast_to(tmp43, [XBLOCK]) tmp1 = 20.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp6 = tmp3 / tmp5 tmp8 = tmp6 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp13 = tmp10 / tmp12 tmp14 = tmp13 * tmp9 tmp16 = tmp15 * tmp1 tmp17 = tl_math.exp(tmp16) tmp18 = tmp17 / tmp5 tmp19 = tmp18 / tmp7 tmp20 = tmp19 * tmp9 tmp23 = tmp20 / tmp22 tmp24 = tmp23 * tmp9 tmp25 = tmp14 + tmp24 tmp27 = tmp26 * tmp1 tmp28 = tl_math.exp(tmp27) tmp29 = tmp28 / tmp5 tmp30 = tmp29 / tmp7 tmp31 = tmp30 * tmp9 tmp34 = tmp31 / tmp33 tmp35 = tmp34 * tmp9 tmp36 = tmp25 + tmp35 tmp38 = tmp37 * tmp1 tmp39 = tl_math.exp(tmp38) tmp40 = tmp39 / tmp5 tmp41 = tmp40 / tmp7 tmp42 = tmp41 * tmp9 tmp45 = tmp42 / tmp44 tmp46 = tmp45 * tmp9 tmp47 = tmp36 + tmp46 tl.store(out_ptr0 + (x0), tmp47, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/im/cimyq4ncn2lt7wfmnkrejd4t7hctagm26a6wsjpob7y2e6gdebuy.py # Topologically Sorted Source Nodes: [Q_7], Original ATen: [aten.div] # Source node to ATen node mapping: # Q_7 => div_7 # Graph fragment: # %div_7 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_12, 4), kwargs = {}) triton_poi_fused_div_4 = async_compile.triton('triton_poi_fused_div_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr1 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp1 = 20.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp6 = tmp3 / tmp5 tmp8 = tmp6 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp12 = tmp10 / tmp11 tmp13 = tmp12 * tmp9 tmp15 = tmp13 / tmp14 tmp16 = tmp15 * tmp9 tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/f4/cf4q6mh4hv4abtcbirw4vkce7au36jgqitbjdciddckwumhdqyiq.py # Topologically Sorted Source Nodes: [Q_9], Original ATen: [aten.div] # Source node to ATen node mapping: # Q_9 => div_9 # Graph fragment: # %div_9 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_16, 4), kwargs = {}) triton_poi_fused_div_5 = async_compile.triton('triton_poi_fused_div_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zl/czlhaiakbynkvvwkmvsahwmxzw7xdccr5ho7bxsxvn4m725ewzpe.py # Topologically Sorted Source Nodes: [Q_11], Original ATen: [aten.div] # Source node to ATen node mapping: # Q_11 => div_11 # Graph fragment: # %div_11 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_20, 4), kwargs = {}) triton_poi_fused_div_6 = async_compile.triton('triton_poi_fused_div_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/36/c36xk4rs42yzbwetmlob65txyg64pwcsheobuwb6xw3pwyopqghz.py # Topologically Sorted Source Nodes: [Q_14], Original ATen: [aten.mul] # Source node to ATen node mapping: # Q_14 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_26, 4), kwargs = {}) triton_poi_fused_mul_7 = async_compile.triton('triton_poi_fused_mul_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp11 = 4.0 tmp12 = tmp10 * tmp11 tl.store(out_ptr0 + (x1 + (4*y0)), tmp12, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dt/cdt2v5rbgu26tdvjkb5jbjk3tqziqwvnlr3boatkbhu2j3hsthua.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %permute_31 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%permute_30, [1, 0]), kwargs = {}) triton_poi_fused_8 = async_compile.triton('triton_poi_fused_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sum_Q], Original ATen: [aten.sum] stream0 = get_raw_stream(0) triton_per_fused_sum_0.run(arg0_1, buf0, 1, 16, grid=grid(1), stream=stream0) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [sum_of_rows], Original ATen: [aten.sum] triton_poi_fused_sum_1.run(arg0_1, buf0, buf1, 4, grid=grid(4), stream=stream0) buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_3], Original ATen: [aten.sum] triton_poi_fused_sum_2.run(arg0_1, buf0, buf1, buf2, 4, grid=grid(4), stream=stream0) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [sum_of_rows_1], Original ATen: [aten.sum] triton_poi_fused_sum_3.run(arg0_1, buf0, buf1, buf2, buf3, 4, grid=grid(4), stream=stream0) buf4 = empty_strided_cuda((4, 4), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [Q_7], Original ATen: [aten.div] triton_poi_fused_div_4.run(arg0_1, buf0, buf1, buf2, buf3, buf4, 16, grid=grid(16), stream=stream0) del arg0_1 del buf0 del buf1 del buf2 del buf3 buf5 = empty_strided_cuda((4, 4), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [Q_9], Original ATen: [aten.div] triton_poi_fused_div_5.run(buf4, buf5, 16, grid=grid(16), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [Q_11], Original ATen: [aten.div] triton_poi_fused_div_6.run(buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4), (4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [Q_14], Original ATen: [aten.mul] triton_poi_fused_mul_7.run(buf6, buf7, 4, 4, grid=grid(4, 4), stream=stream0) buf8 = reinterpret_tensor(buf6, (4, 4), (4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0) del buf7 return (buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.distributed as dist class SinkhornKnopp(torch.nn.Module): def __init__(self, num_iters: 'int'=3, epsilon: 'float'=0.05, world_size: 'int'=1): """Approximates optimal transport using the Sinkhorn-Knopp algorithm. A simple iterative method to approach the double stochastic matrix is to alternately rescale rows and columns of the matrix to sum to 1. Args: num_iters (int, optional): number of times to perform row and column normalization. Defaults to 3. epsilon (float, optional): weight for the entropy regularization term. Defaults to 0.05. world_size (int, optional): number of nodes for distributed training. Defaults to 1. """ super().__init__() self.num_iters = num_iters self.epsilon = epsilon self.world_size = world_size @torch.no_grad() def forward(self, Q: 'torch.Tensor') ->torch.Tensor: """Produces assignments using Sinkhorn-Knopp algorithm. Applies the entropy regularization, normalizes the Q matrix and then normalizes rows and columns in an alternating fashion for num_iter times. Before returning it normalizes again the columns in order for the output to be an assignment of samples to prototypes. Args: Q (torch.Tensor): cosine similarities between the features of the samples and the prototypes. Returns: torch.Tensor: assignment of samples to prototypes according to optimal transport. """ Q = torch.exp(Q / self.epsilon).t() B = Q.shape[1] * self.world_size K = Q.shape[0] sum_Q = torch.sum(Q) if dist.is_available() and dist.is_initialized(): dist.all_reduce(sum_Q) Q /= sum_Q for _ in range(self.num_iters): sum_of_rows = torch.sum(Q, dim=1, keepdim=True) if dist.is_available() and dist.is_initialized(): dist.all_reduce(sum_of_rows) Q /= sum_of_rows Q /= K Q /= torch.sum(Q, dim=0, keepdim=True) Q /= B Q *= B return Q.t() def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 20.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp6, None) @triton.jit def triton_poi_fused_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp4 = tl.load(in_ptr1 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (4 + x0), xmask) tmp12 = tl.load(in_ptr0 + (8 + x0), xmask) tmp17 = tl.load(in_ptr0 + (12 + x0), xmask) tmp1 = 20.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp6 = tmp3 / tmp5 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tmp9 / tmp5 tmp11 = tmp6 + tmp10 tmp13 = tmp12 * tmp1 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp5 tmp16 = tmp11 + tmp15 tmp18 = tmp17 * tmp1 tmp19 = tl_math.exp(tmp18) tmp20 = tmp19 / tmp5 tmp21 = tmp16 + tmp20 tl.store(out_ptr0 + x0, tmp21, xmask) @triton.jit def triton_poi_fused_sum_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr2 + 0) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp12 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr2 + 1) tmp17 = tl.broadcast_to(tmp16, [XBLOCK]) tmp21 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr2 + 2) tmp26 = tl.broadcast_to(tmp25, [XBLOCK]) tmp30 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp34 = tl.load(in_ptr2 + 3) tmp35 = tl.broadcast_to(tmp34, [XBLOCK]) tmp1 = 20.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp6 = tmp3 / tmp5 tmp9 = tmp6 / tmp8 tmp10 = 0.25 tmp11 = tmp9 * tmp10 tmp13 = tmp12 * tmp1 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp5 tmp18 = tmp15 / tmp17 tmp19 = tmp18 * tmp10 tmp20 = tmp11 + tmp19 tmp22 = tmp21 * tmp1 tmp23 = tl_math.exp(tmp22) tmp24 = tmp23 / tmp5 tmp27 = tmp24 / tmp26 tmp28 = tmp27 * tmp10 tmp29 = tmp20 + tmp28 tmp31 = tmp30 * tmp1 tmp32 = tl_math.exp(tmp31) tmp33 = tmp32 / tmp5 tmp36 = tmp33 / tmp35 tmp37 = tmp36 * tmp10 tmp38 = tmp29 + tmp37 tl.store(out_ptr0 + x0, tmp38, xmask) @triton.jit def triton_poi_fused_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp4 = tl.load(in_ptr1 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr2 + x0, xmask) tmp11 = tl.load(in_ptr3 + 0) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp15 = tl.load(in_ptr0 + (4 + x0), xmask) tmp21 = tl.load(in_ptr3 + 1) tmp22 = tl.broadcast_to(tmp21, [XBLOCK]) tmp26 = tl.load(in_ptr0 + (8 + x0), xmask) tmp32 = tl.load(in_ptr3 + 2) tmp33 = tl.broadcast_to(tmp32, [XBLOCK]) tmp37 = tl.load(in_ptr0 + (12 + x0), xmask) tmp43 = tl.load(in_ptr3 + 3) tmp44 = tl.broadcast_to(tmp43, [XBLOCK]) tmp1 = 20.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp6 = tmp3 / tmp5 tmp8 = tmp6 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp13 = tmp10 / tmp12 tmp14 = tmp13 * tmp9 tmp16 = tmp15 * tmp1 tmp17 = tl_math.exp(tmp16) tmp18 = tmp17 / tmp5 tmp19 = tmp18 / tmp7 tmp20 = tmp19 * tmp9 tmp23 = tmp20 / tmp22 tmp24 = tmp23 * tmp9 tmp25 = tmp14 + tmp24 tmp27 = tmp26 * tmp1 tmp28 = tl_math.exp(tmp27) tmp29 = tmp28 / tmp5 tmp30 = tmp29 / tmp7 tmp31 = tmp30 * tmp9 tmp34 = tmp31 / tmp33 tmp35 = tmp34 * tmp9 tmp36 = tmp25 + tmp35 tmp38 = tmp37 * tmp1 tmp39 = tl_math.exp(tmp38) tmp40 = tmp39 / tmp5 tmp41 = tmp40 / tmp7 tmp42 = tmp41 * tmp9 tmp45 = tmp42 / tmp44 tmp46 = tmp45 * tmp9 tmp47 = tmp36 + tmp46 tl.store(out_ptr0 + x0, tmp47, xmask) @triton.jit def triton_poi_fused_div_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr1 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp1 = 20.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp6 = tmp3 / tmp5 tmp8 = tmp6 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp12 = tmp10 / tmp11 tmp13 = tmp12 * tmp9 tmp15 = tmp13 / tmp14 tmp16 = tmp15 * tmp9 tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_div_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_div_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_mul_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp11 = 4.0 tmp12 = tmp10 * tmp11 tl.store(out_ptr0 + (x1 + 4 * y0), tmp12, xmask & ymask) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_sum_0[grid(1)](arg0_1, buf0, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_sum_1[grid(4)](arg0_1, buf0, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32) triton_poi_fused_sum_2[grid(4)](arg0_1, buf0, buf1, buf2, 4, XBLOCK =4, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_sum_3[grid(4)](arg0_1, buf0, buf1, buf2, buf3, 4, XBLOCK=4, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (1, 4), torch.float32) triton_poi_fused_div_4[grid(16)](arg0_1, buf0, buf1, buf2, buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del buf0 del buf1 del buf2 del buf3 buf5 = empty_strided_cuda((4, 4), (1, 4), torch.float32) triton_poi_fused_div_5[grid(16)](buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused_div_6[grid(16)](buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4), (4, 1), 0) del buf5 triton_poi_fused_mul_7[grid(4, 4)](buf6, buf7, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf8 = reinterpret_tensor(buf6, (4, 4), (4, 1), 0) del buf6 triton_poi_fused_8[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) del buf7 return buf8, class SinkhornKnoppNew(torch.nn.Module): def __init__(self, num_iters: 'int'=3, epsilon: 'float'=0.05, world_size: 'int'=1): """Approximates optimal transport using the Sinkhorn-Knopp algorithm. A simple iterative method to approach the double stochastic matrix is to alternately rescale rows and columns of the matrix to sum to 1. Args: num_iters (int, optional): number of times to perform row and column normalization. Defaults to 3. epsilon (float, optional): weight for the entropy regularization term. Defaults to 0.05. world_size (int, optional): number of nodes for distributed training. Defaults to 1. """ super().__init__() self.num_iters = num_iters self.epsilon = epsilon self.world_size = world_size def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
TranNhiem/solo-learn
SinkhornKnopp
false
1,170
[ "MIT" ]
0
7539732b68d153087d09a26a23e1edfdc49bc086
https://github.com/TranNhiem/solo-learn/tree/7539732b68d153087d09a26a23e1edfdc49bc086
import torch import torch.distributed as dist class Model(torch.nn.Module): def __init__(self, num_iters: 'int'=3, epsilon: 'float'=0.05, world_size: 'int'=1): """Approximates optimal transport using the Sinkhorn-Knopp algorithm. A simple iterative method to approach the double stochastic matrix is to alternately rescale rows and columns of the matrix to sum to 1. Args: num_iters (int, optional): number of times to perform row and column normalization. Defaults to 3. epsilon (float, optional): weight for the entropy regularization term. Defaults to 0.05. world_size (int, optional): number of nodes for distributed training. Defaults to 1. """ super().__init__() self.num_iters = num_iters self.epsilon = epsilon self.world_size = world_size @torch.no_grad() def forward(self, Q: 'torch.Tensor') ->torch.Tensor: """Produces assignments using Sinkhorn-Knopp algorithm. Applies the entropy regularization, normalizes the Q matrix and then normalizes rows and columns in an alternating fashion for num_iter times. Before returning it normalizes again the columns in order for the output to be an assignment of samples to prototypes. Args: Q (torch.Tensor): cosine similarities between the features of the samples and the prototypes. Returns: torch.Tensor: assignment of samples to prototypes according to optimal transport. """ Q = torch.exp(Q / self.epsilon).t() B = Q.shape[1] * self.world_size K = Q.shape[0] sum_Q = torch.sum(Q) if dist.is_available() and dist.is_initialized(): dist.all_reduce(sum_Q) Q /= sum_Q for _ in range(self.num_iters): sum_of_rows = torch.sum(Q, dim=1, keepdim=True) if dist.is_available() and dist.is_initialized(): dist.all_reduce(sum_of_rows) Q /= sum_of_rows Q /= K Q /= torch.sum(Q, dim=0, keepdim=True) Q /= B Q *= B return Q.t() def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return []
RewardCriterion
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/th/cthi7dvxte3xeavjjqrz6omclqig3gqujobvt5ooicycppv45vw4.py # Topologically Sorted Source Nodes: [neg, mul, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # mul => mul # neg => neg # output => mul_1 # output_1 => div # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%view,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %view_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %view_2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_2,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_per_fused_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_div_mul_neg_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr2 + (r0), None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last') tmp7 = -tmp6 tmp8 = tmp7.to(tl.float32) tmp10 = tmp8 * tmp9 tmp11 = r0 % 4 tmp12 = tl.full([1, 1], 0, tl.int64) tmp13 = tmp11 >= tmp12 tmp14 = tl.full([1, 1], 1, tl.int64) tmp15 = tmp11 < tmp14 tmp16 = 1.0 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp15, tmp16, tmp17) tmp19 = tmp11 >= tmp14 tmp20 = tl.full([1, 1], 4, tl.int64) tmp21 = tmp11 < tmp20 tmp22 = tl.load(in_ptr0 + (tl.broadcast_to((4*(r0 // 4)) + ((-1) + (r0 % 4)), [XBLOCK, RBLOCK])), tmp19, eviction_policy='evict_last', other=0.0) tmp23 = tmp22 > tmp12 tmp24 = tmp23.to(tl.float32) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp19, tmp24, tmp25) tmp27 = tl.where(tmp15, tmp18, tmp26) tmp28 = tmp10 * tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.sum(tmp29, 1)[:, None] tmp32 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp34 = tl.sum(tmp32, 1)[:, None] tmp35 = tmp31 / tmp34 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp35, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [neg, mul, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_mul_neg_sum_0.run(buf2, arg1_1, arg0_1, arg2_1, 1, 16, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.int64) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.autograd import * class RewardCriterion(nn.Module): def __init__(self): super(RewardCriterion, self).__init__() def forward(self, input, seq, reward): input = input.gather(2, seq.unsqueeze(2)).squeeze(2) input = input.reshape(-1) reward = reward.reshape(-1) mask = (seq > 0).float() mask = torch.cat([mask.new(mask.size(0), 1).fill_(1), mask[:, :-1]], 1 ).reshape(-1) output = -input * reward * mask output = torch.sum(output) / torch.sum(mask) return output def get_inputs(): return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4], dtype=torch.int64), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.autograd import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr2 + r0, None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy= 'evict_last') tmp7 = -tmp6 tmp8 = tmp7.to(tl.float32) tmp10 = tmp8 * tmp9 tmp11 = r0 % 4 tmp12 = tl.full([1, 1], 0, tl.int64) tmp14 = tl.full([1, 1], 1, tl.int64) tmp15 = tmp11 < tmp14 tmp16 = 1.0 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp15, tmp16, tmp17) tmp19 = tmp11 >= tmp14 tl.full([1, 1], 4, tl.int64) tmp22 = tl.load(in_ptr0 + tl.broadcast_to(4 * (r0 // 4) + (-1 + r0 % 4), [XBLOCK, RBLOCK]), tmp19, eviction_policy='evict_last', other=0.0) tmp23 = tmp22 > tmp12 tmp24 = tmp23.to(tl.float32) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp19, tmp24, tmp25) tmp27 = tl.where(tmp15, tmp18, tmp26) tmp28 = tmp10 * tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.sum(tmp29, 1)[:, None] tmp32 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp34 = tl.sum(tmp32, 1)[:, None] tmp35 = tmp31 / tmp34 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp35, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mul_neg_sum_0[grid(1)](buf2, arg1_1, arg0_1, arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class RewardCriterionNew(nn.Module): def __init__(self): super(RewardCriterionNew, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
VISLANG-Lab/MGCL
RewardCriterion
false
1,171
[ "MIT" ]
0
22da06ffa7410d9632bfda8eefb1b79e4f660de0
https://github.com/VISLANG-Lab/MGCL/tree/22da06ffa7410d9632bfda8eefb1b79e4f660de0
import torch import torch.nn as nn from torch.autograd import * class Model(nn.Module): def __init__(self): super().__init__() def forward(self, input, seq, reward): input = input.gather(2, seq.unsqueeze(2)).squeeze(2) input = input.reshape(-1) reward = reward.reshape(-1) mask = (seq > 0).float() mask = torch.cat([mask.new(mask.size(0), 1).fill_(1), mask[:, :-1]], 1 ).reshape(-1) output = -input * reward * mask output = torch.sum(output) / torch.sum(mask) return output def get_inputs(): return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4], dtype=torch.int64), torch.rand([4, 4])] def get_init_inputs(): return []
ResBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3j/c3jk4fd45xsskb354bmqh5ayvalm334wxs72twddoal7gsrew3wi.py # Topologically Sorted Source Nodes: [group_norm, out], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # group_norm => add, add_1, mul_1, rsqrt, var_mean # out => relu # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) triton_per_fused_native_group_norm_relu_0 = async_compile.triton('triton_per_fused_native_group_norm_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 16.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tmp28 = tl.full([1, 1], 0, tl.int32) tmp29 = triton_helpers.maximum(tmp28, tmp27) tl.store(out_ptr2 + (r1 + (16*x0)), tmp29, xmask) tl.store(out_ptr3 + (x0), tmp22, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/43/c43iah2ujzdzlzvirc5zcusvrhdz3liemhgusdpro5bcmzekdxpa.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add_4 # Graph fragment: # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_1), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [group_norm, out], Original ATen: [aten.native_group_norm, aten.relu] stream0 = get_raw_stream(0) triton_per_fused_native_group_norm_relu_0.run(primals_1, primals_2, primals_3, buf0, buf3, buf12, 16, 16, grid=grid(16), stream=stream0) del primals_2 del primals_3 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.native_group_norm, aten.relu] triton_per_fused_native_group_norm_relu_0.run(buf4, primals_5, primals_6, buf5, buf9, buf8, 16, 16, grid=grid(16), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf11, primals_1, 256, grid=grid(256), stream=stream0) return (buf11, primals_1, primals_4, primals_5, primals_7, buf3, buf4, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0), reinterpret_tensor(buf12, (4, 4, 1), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def norm(dim): return nn.GroupNorm(min(32, dim), dim) class ResBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(ResBlock, self).__init__() self.norm1 = norm(inplanes) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.conv1 = conv3x3(inplanes, planes, stride) self.norm2 = norm(planes) self.conv2 = conv3x3(planes, planes) def forward(self, x): shortcut = x out = self.relu(self.norm1(x)) if self.downsample is not None: shortcut = self.downsample(out) out = self.conv1(out) out = self.norm2(out) out = self.relu(out) out = self.conv2(out) return out + shortcut def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inplanes': 4, 'planes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_native_group_norm_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 16.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tmp28 = tl.full([1, 1], 0, tl.int32) tmp29 = triton_helpers.maximum(tmp28, tmp27) tl.store(out_ptr2 + (r1 + 16 * x0), tmp29, xmask) tl.store(out_ptr3 + x0, tmp22, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_per_fused_native_group_norm_relu_0[grid(16)](primals_1, primals_2, primals_3, buf0, buf3, buf12, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) triton_per_fused_native_group_norm_relu_0[grid(16)](buf4, primals_5, primals_6, buf5, buf9, buf8, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_6 buf10 = extern_kernels.convolution(buf9, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1)) buf11 = buf10 del buf10 triton_poi_fused_add_1[grid(256)](buf11, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) return (buf11, primals_1, primals_4, primals_5, primals_7, buf3, buf4, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor( buf8, (4, 4), (4, 1), 0), buf9, reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0), reinterpret_tensor(buf12, (4, 4, 1), (4, 1, 1), 0)) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def norm(dim): return nn.GroupNorm(min(32, dim), dim) class ResBlockNew(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(ResBlockNew, self).__init__() self.norm1 = norm(inplanes) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.conv1 = conv3x3(inplanes, planes, stride) self.norm2 = norm(planes) self.conv2 = conv3x3(planes, planes) def forward(self, input_0): primals_2 = self.norm1.weight primals_3 = self.norm1.bias primals_4 = self.conv1.weight primals_5 = self.norm2.weight primals_6 = self.norm2.bias primals_7 = self.conv2.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
TylerChoi1224/torchdiffeq
ResBlock
false
1,172
[ "MIT" ]
0
72f74d9651a58ab11cdadd60682f1b61e625ef53
https://github.com/TylerChoi1224/torchdiffeq/tree/72f74d9651a58ab11cdadd60682f1b61e625ef53
import torch import torch.nn as nn def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def norm(dim): return nn.GroupNorm(min(32, dim), dim) class Model(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super().__init__() self.norm1 = norm(inplanes) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.conv1 = conv3x3(inplanes, planes, stride) self.norm2 = norm(planes) self.conv2 = conv3x3(planes, planes) def forward(self, x): shortcut = x out = self.relu(self.norm1(x)) if self.downsample is not None: shortcut = self.downsample(out) out = self.conv1(out) out = self.norm2(out) out = self.relu(out) out = self.conv2(out) return out + shortcut def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
MultiheadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qw/cqw7yoyglmtjad3kirznl5odetqfs3k6pjtnfdbzklyhsdvuvgft.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/rh/crhjfwyl6xoj5ylcsbbh6lp2vlegits2zkdej3b3wb2q4ddfnejv.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/5z/c5zy7julai2lhuinuwjgyl62nx7cyws6ni5poe5jzp7qn532rcgh.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_2 buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf3, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0) del buf5 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0) buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_4.run(buf10, primals_1, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 return (buf10, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MultiheadAttention(nn.Module): """A warpper for torch.nn.MultiheadAttention. This module implements MultiheadAttention with residual connection, and positional encoding used in DETR is also passed as input. Args: embed_dims (int): The embedding dimension. num_heads (int): Parallel attention heads. Same as `nn.MultiheadAttention`. dropout (float): A Dropout layer on attn_output_weights. Default 0.0. """ def __init__(self, embed_dims, num_heads, dropout=0.0): super(MultiheadAttention, self).__init__() assert embed_dims % num_heads == 0, f'embed_dims must be divisible by num_heads. got {embed_dims} and {num_heads}.' self.embed_dims = embed_dims self.num_heads = num_heads self.dropout = dropout self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout) self.dropout = nn.Dropout(dropout) def forward(self, x, key=None, value=None, residual=None, query_pos= None, key_pos=None, attn_mask=None, key_padding_mask=None): """Forward function for `MultiheadAttention`. Args: x (Tensor): The input query with shape [num_query, bs, embed_dims]. Same in `nn.MultiheadAttention.forward`. key (Tensor): The key tensor with shape [num_key, bs, embed_dims]. Same in `nn.MultiheadAttention.forward`. Default None. If None, the `query` will be used. value (Tensor): The value tensor with same shape as `key`. Same in `nn.MultiheadAttention.forward`. Default None. If None, the `key` will be used. residual (Tensor): The tensor used for addition, with the same shape as `x`. Default None. If None, `x` will be used. query_pos (Tensor): The positional encoding for query, with the same shape as `x`. Default None. If not None, it will be added to `x` before forward function. key_pos (Tensor): The positional encoding for `key`, with the same shape as `key`. Default None. If not None, it will be added to `key` before forward function. If None, and `query_pos` has the same shape as `key`, then `query_pos` will be used for `key_pos`. attn_mask (Tensor): ByteTensor mask with shape [num_query, num_key]. Same in `nn.MultiheadAttention.forward`. Default None. key_padding_mask (Tensor): ByteTensor with shape [bs, num_key]. Same in `nn.MultiheadAttention.forward`. Default None. Returns: Tensor: forwarded results with shape [num_query, bs, embed_dims]. """ query = x if key is None: key = query if value is None: value = key if residual is None: residual = x if key_pos is None: if query_pos is not None and key is not None: if query_pos.shape == key.shape: key_pos = query_pos if query_pos is not None: query = query + query_pos if key_pos is not None: key = key + key_pos out = self.attn(query, key, value=value, attn_mask=attn_mask, key_padding_mask=key_padding_mask)[0] return residual + self.dropout(out) def __repr__(self): """str: a string that describes the module""" repr_str = self.__class__.__name__ repr_str += f'(embed_dims={self.embed_dims}, ' repr_str += f'num_heads={self.num_heads}, ' repr_str += f'dropout={self.dropout})' return repr_str def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'embed_dims': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_2 buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](buf3, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf5 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0) del buf7 extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9) buf10 = buf9 del buf9 triton_poi_fused_add_4[grid(16)](buf10, primals_1, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 return buf10, primals_1, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0 ), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0 ), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0 ), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0) class MultiheadAttentionNew(nn.Module): """A warpper for torch.nn.MultiheadAttention. This module implements MultiheadAttention with residual connection, and positional encoding used in DETR is also passed as input. Args: embed_dims (int): The embedding dimension. num_heads (int): Parallel attention heads. Same as `nn.MultiheadAttention`. dropout (float): A Dropout layer on attn_output_weights. Default 0.0. """ def __init__(self, embed_dims, num_heads, dropout=0.0): super(MultiheadAttentionNew, self).__init__() assert embed_dims % num_heads == 0, f'embed_dims must be divisible by num_heads. got {embed_dims} and {num_heads}.' self.embed_dims = embed_dims self.num_heads = num_heads self.dropout = dropout self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout) self.dropout = nn.Dropout(dropout) def __repr__(self): """str: a string that describes the module""" repr_str = self.__class__.__name__ repr_str += f'(embed_dims={self.embed_dims}, ' repr_str += f'num_heads={self.num_heads}, ' repr_str += f'dropout={self.dropout})' return repr_str def forward(self, input_0): primals_2 = self.attn.in_proj_weight primals_3 = self.attn.in_proj_bias primals_1 = self.attn.out_proj.weight primals_5 = self.attn.out_proj.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
VIRC-lab-csust/AGMNet
MultiheadAttention
false
1,173
[ "Apache-2.0" ]
0
ead95466da343cf9436774138c642d2ca12da4e4
https://github.com/VIRC-lab-csust/AGMNet/tree/ead95466da343cf9436774138c642d2ca12da4e4
import torch import torch.nn as nn class Model(nn.Module): """A warpper for torch.nn.MultiheadAttention. This module implements MultiheadAttention with residual connection, and positional encoding used in DETR is also passed as input. Args: embed_dims (int): The embedding dimension. num_heads (int): Parallel attention heads. Same as `nn.MultiheadAttention`. dropout (float): A Dropout layer on attn_output_weights. Default 0.0. """ def __init__(self, embed_dims, num_heads, dropout=0.0): super().__init__() assert embed_dims % num_heads == 0, f'embed_dims must be divisible by num_heads. got {embed_dims} and {num_heads}.' self.embed_dims = embed_dims self.num_heads = num_heads self.dropout = dropout self.attn = nn.MultiheadAttention(embed_dims, num_heads, dropout) self.dropout = nn.Dropout(dropout) def forward(self, x, key=None, value=None, residual=None, query_pos= None, key_pos=None, attn_mask=None, key_padding_mask=None): """Forward function for `MultiheadAttention`. Args: x (Tensor): The input query with shape [num_query, bs, embed_dims]. Same in `nn.MultiheadAttention.forward`. key (Tensor): The key tensor with shape [num_key, bs, embed_dims]. Same in `nn.MultiheadAttention.forward`. Default None. If None, the `query` will be used. value (Tensor): The value tensor with same shape as `key`. Same in `nn.MultiheadAttention.forward`. Default None. If None, the `key` will be used. residual (Tensor): The tensor used for addition, with the same shape as `x`. Default None. If None, `x` will be used. query_pos (Tensor): The positional encoding for query, with the same shape as `x`. Default None. If not None, it will be added to `x` before forward function. key_pos (Tensor): The positional encoding for `key`, with the same shape as `key`. Default None. If not None, it will be added to `key` before forward function. If None, and `query_pos` has the same shape as `key`, then `query_pos` will be used for `key_pos`. attn_mask (Tensor): ByteTensor mask with shape [num_query, num_key]. Same in `nn.MultiheadAttention.forward`. Default None. key_padding_mask (Tensor): ByteTensor with shape [bs, num_key]. Same in `nn.MultiheadAttention.forward`. Default None. Returns: Tensor: forwarded results with shape [num_query, bs, embed_dims]. """ query = x if key is None: key = query if value is None: value = key if residual is None: residual = x if key_pos is None: if query_pos is not None and key is not None: if query_pos.shape == key.shape: key_pos = query_pos if query_pos is not None: query = query + query_pos if key_pos is not None: key = key + key_pos out = self.attn(query, key, value=value, attn_mask=attn_mask, key_padding_mask=key_padding_mask)[0] return residual + self.dropout(out) def __repr__(self): """str: a string that describes the module""" repr_str = self.__class__.__name__ repr_str += f'(embed_dims={self.embed_dims}, ' repr_str += f'num_heads={self.num_heads}, ' repr_str += f'dropout={self.dropout})' return repr_str def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] # Source node to ATen node mapping: # out => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/b7/cb7yiqdigd2vu5it7f2y6axob3bgvkx2ecs3nmymezsrlxsu2jhl.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_4), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/b7/cb7iq44xucvx4o4uio3etz5hrrkllxx5igr3vjyglpwcku6mi232.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (32, 8), (8, 1)) assert_size_stride(primals_4, (32, ), (1, )) assert_size_stride(primals_5, (4, 32), (32, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (1, 32), (32, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 32), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf2, primals_4, 128, grid=grid(128), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_7, (32, 1), (1, 32), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_2.run(buf5, primals_8, 4, grid=grid(4), stream=stream0) del primals_8 return (reinterpret_tensor(buf3, (4, 2, 2), (4, 2, 1), 0), buf5, buf0, buf2, buf5, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, input_size, action_dim, conv=False, conv_size=16, fc_size=32, K=2): super(Model, self).__init__() self.input_size = input_size self.input_h = int(np.sqrt(input_size)) self.action_dim = action_dim self.K = K self.conv = conv self.conv_size = conv_size self.fc_size = fc_size if self.conv: self.conv1 = nn.Conv2d(1, self.conv_size, kernel_size=3, stride=1) self.conv2 = nn.Conv2d(self.conv_size, self.conv_size, kernel_size=3, stride=1) self.conv3 = nn.Conv2d(self.conv_size, self.conv_size, kernel_size=3, stride=1) self.conv4 = nn.Conv2d(self.conv_size, self.conv_size, kernel_size=3, stride=1) self.fc = nn.Linear(2 * 2 * self.conv_size + self.action_dim, self.fc_size) else: self.fc = nn.Linear(self.input_size + self.action_dim, self.fc_size ) self.rew_out = nn.Linear(self.fc_size, 1) self.pred_out = nn.Linear(self.fc_size, self.input_size) def forward(self, x, a): if self.conv: out = x.unsqueeze(1) out = F.relu(self.conv1(out)) out = F.relu(self.conv2(out)) out = F.relu(self.conv3(out)) out = F.relu(self.conv4(out)) out = out.view(out.size(0), -1) out = torch.cat((out, a), dim=-1) else: out = torch.cat((x, a), dim=-1) out = F.relu(self.fc(out)) return self.pred_out(out).reshape(out.size(0), self.input_h, self. input_h), torch.sigmoid(self.rew_out(out)) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'action_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (32, 8), (8, 1)) assert_size_stride(primals_4, (32,), (1,)) assert_size_stride(primals_5, (4, 32), (32, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (1, 32), (32, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 32), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1 del buf1 triton_poi_fused_relu_1[grid(128)](buf2, primals_4, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_7, (32, 1), (1, 32), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_sigmoid_2[grid(4)](buf5, primals_8, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_8 return reinterpret_tensor(buf3, (4, 2, 2), (4, 2, 1), 0 ), buf5, buf0, buf2, buf5, primals_7, primals_5 class ModelNew(nn.Module): def __init__(self, input_size, action_dim, conv=False, conv_size=16, fc_size=32, K=2): super(ModelNew, self).__init__() self.input_size = input_size self.input_h = int(np.sqrt(input_size)) self.action_dim = action_dim self.K = K self.conv = conv self.conv_size = conv_size self.fc_size = fc_size if self.conv: self.conv1 = nn.Conv2d(1, self.conv_size, kernel_size=3, stride=1) self.conv2 = nn.Conv2d(self.conv_size, self.conv_size, kernel_size=3, stride=1) self.conv3 = nn.Conv2d(self.conv_size, self.conv_size, kernel_size=3, stride=1) self.conv4 = nn.Conv2d(self.conv_size, self.conv_size, kernel_size=3, stride=1) self.fc = nn.Linear(2 * 2 * self.conv_size + self.action_dim, self.fc_size) else: self.fc = nn.Linear(self.input_size + self.action_dim, self.fc_size ) self.rew_out = nn.Linear(self.fc_size, 1) self.pred_out = nn.Linear(self.fc_size, self.input_size) def forward(self, input_0, input_1): primals_3 = self.fc.weight primals_4 = self.fc.bias primals_7 = self.rew_out.weight primals_8 = self.rew_out.bias primals_5 = self.pred_out.weight primals_6 = self.pred_out.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1]
VashishtMadhavan/pytorch-maml-rl
Model
false
1,174
[ "MIT" ]
0
d8821b8374d973869bb6a1393f1b2c369c9a664b
https://github.com/VashishtMadhavan/pytorch-maml-rl/tree/d8821b8374d973869bb6a1393f1b2c369c9a664b
import torch import numpy as np import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, input_size, action_dim, conv=False, conv_size=16, fc_size=32, K=2): super(Model, self).__init__() self.input_size = input_size self.input_h = int(np.sqrt(input_size)) self.action_dim = action_dim self.K = K self.conv = conv self.conv_size = conv_size self.fc_size = fc_size if self.conv: self.conv1 = nn.Conv2d(1, self.conv_size, kernel_size=3, stride=1) self.conv2 = nn.Conv2d(self.conv_size, self.conv_size, kernel_size=3, stride=1) self.conv3 = nn.Conv2d(self.conv_size, self.conv_size, kernel_size=3, stride=1) self.conv4 = nn.Conv2d(self.conv_size, self.conv_size, kernel_size=3, stride=1) self.fc = nn.Linear(2 * 2 * self.conv_size + self.action_dim, self.fc_size) else: self.fc = nn.Linear(self.input_size + self.action_dim, self.fc_size ) self.rew_out = nn.Linear(self.fc_size, 1) self.pred_out = nn.Linear(self.fc_size, self.input_size) def forward(self, x, a): if self.conv: out = x.unsqueeze(1) out = F.relu(self.conv1(out)) out = F.relu(self.conv2(out)) out = F.relu(self.conv3(out)) out = F.relu(self.conv4(out)) out = out.view(out.size(0), -1) out = torch.cat((out, a), dim=-1) else: out = torch.cat((x, a), dim=-1) out = F.relu(self.fc(out)) return self.pred_out(out).reshape(out.size(0), self.input_h, self. input_h), torch.sigmoid(self.rew_out(out)) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
SoftClDiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/2z/c2z52nbkqzfj3pb424z5u5ipfv34l5rrdunfhla6b4x2j5hkbbab.py # Topologically Sorted Source Nodes: [neg, neg_2, neg_4, neg_6, neg_8, neg_10], Original ATen: [aten.neg] # Source node to ATen node mapping: # neg => neg # neg_10 => neg_10 # neg_2 => neg_2 # neg_4 => neg_4 # neg_6 => neg_6 # neg_8 => neg_8 # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %neg_4 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %neg_6 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %neg_8 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %neg_10 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_neg_0 = async_compile.triton('triton_poi_fused_neg_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_neg_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = -tmp0 tl.store(out_ptr0 + (x0), tmp1, xmask) tl.store(out_ptr1 + (x0), tmp1, xmask) tl.store(out_ptr2 + (x0), tmp1, xmask) tl.store(out_ptr3 + (x0), tmp1, xmask) tl.store(out_ptr4 + (x0), tmp1, xmask) tl.store(out_ptr5 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ip/cipxs3ylzoary4hxycufopeumjuvo3z7qohbyxj2bt6bqzryv6uq.py # Topologically Sorted Source Nodes: [p1, p3, min_1, p2, min_2], Original ATen: [aten.neg, aten.minimum] # Source node to ATen node mapping: # min_1 => minimum # min_2 => minimum_1 # p1 => neg_1 # p2 => neg_3 # p3 => neg_5 # Graph fragment: # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem,), kwargs = {}) # %neg_5 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_4,), kwargs = {}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1, %neg_5), kwargs = {}) # %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_2,), kwargs = {}) # %minimum_1 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum, %neg_3), kwargs = {}) triton_poi_fused_minimum_neg_1 = async_compile.triton('triton_poi_fused_minimum_neg_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_minimum_neg_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_minimum_neg_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_out_ptr0 + (x0), xmask) tmp5 = tl.load(in_ptr1 + (x0), xmask) tmp1 = -tmp0 tmp3 = -tmp2 tmp4 = triton_helpers.minimum(tmp1, tmp3) tmp6 = -tmp5 tmp7 = triton_helpers.minimum(tmp4, tmp6) tl.store(in_out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mb/cmb6p6rbnihurmykwbijcopqwoqifvljhaqdogzdkvjx2qxcpe3d.py # Topologically Sorted Source Nodes: [p1_1, p3_1, min_3, p2_1, img, neg_12, neg_14, neg_16, neg_18, neg_20, neg_22], Original ATen: [aten.neg, aten.minimum] # Source node to ATen node mapping: # img => minimum_3 # min_3 => minimum_2 # neg_12 => neg_12 # neg_14 => neg_14 # neg_16 => neg_16 # neg_18 => neg_18 # neg_20 => neg_20 # neg_22 => neg_22 # p1_1 => neg_7 # p2_1 => neg_9 # p3_1 => neg_11 # Graph fragment: # %neg_7 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_8,), kwargs = {}) # %neg_11 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_12,), kwargs = {}) # %minimum_2 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_7, %neg_11), kwargs = {}) # %neg_9 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_10,), kwargs = {}) # %minimum_3 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_2, %neg_9), kwargs = {}) # %neg_12 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%minimum_3,), kwargs = {}) # %neg_14 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%minimum_3,), kwargs = {}) # %neg_16 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%minimum_3,), kwargs = {}) # %neg_18 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%minimum_3,), kwargs = {}) # %neg_20 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%minimum_3,), kwargs = {}) # %neg_22 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%minimum_3,), kwargs = {}) triton_poi_fused_minimum_neg_2 = async_compile.triton('triton_poi_fused_minimum_neg_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_minimum_neg_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_minimum_neg_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp5 = tl.load(in_ptr2 + (x0), xmask) tmp1 = -tmp0 tmp3 = -tmp2 tmp4 = triton_helpers.minimum(tmp1, tmp3) tmp6 = -tmp5 tmp7 = triton_helpers.minimum(tmp4, tmp6) tmp8 = -tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp8, xmask) tl.store(out_ptr2 + (x0), tmp8, xmask) tl.store(out_ptr3 + (x0), tmp8, xmask) tl.store(out_ptr4 + (x0), tmp8, xmask) tl.store(out_ptr5 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/th/cthwrbbxdwwanqojjtt5chxxmkjglywngkngkac2r6vpnuzpgql4.py # Topologically Sorted Source Nodes: [p1_2, p3_2, min_5, p2_2, min_6], Original ATen: [aten.neg, aten.minimum] # Source node to ATen node mapping: # min_5 => minimum_4 # min_6 => minimum_5 # p1_2 => neg_13 # p2_2 => neg_15 # p3_2 => neg_17 # Graph fragment: # %neg_13 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_14,), kwargs = {}) # %neg_17 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_18,), kwargs = {}) # %minimum_4 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_13, %neg_17), kwargs = {}) # %neg_15 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_16,), kwargs = {}) # %minimum_5 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_4, %neg_15), kwargs = {}) triton_poi_fused_minimum_neg_3 = async_compile.triton('triton_poi_fused_minimum_neg_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_minimum_neg_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_minimum_neg_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr0 + (x0), xmask) tmp5 = tl.load(in_ptr1 + (x0), xmask) tmp1 = -tmp0 tmp3 = -tmp2 tmp4 = triton_helpers.minimum(tmp1, tmp3) tmp6 = -tmp5 tmp7 = triton_helpers.minimum(tmp4, tmp6) tl.store(in_out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ww/cww6s7nwjtvg2ybwkuppshbo2yvgxddgy5yparllmleqccomaomq.py # Topologically Sorted Source Nodes: [p1_99, p3_99, min_199, p2_99, img_49, neg_600, neg_602, neg_604], Original ATen: [aten.neg, aten.minimum] # Source node to ATen node mapping: # img_49 => minimum_199 # min_199 => minimum_198 # neg_600 => neg_600 # neg_602 => neg_602 # neg_604 => neg_604 # p1_99 => neg_595 # p2_99 => neg_597 # p3_99 => neg_599 # Graph fragment: # %neg_595 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_694,), kwargs = {}) # %neg_599 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_698,), kwargs = {}) # %minimum_198 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_595, %neg_599), kwargs = {}) # %neg_597 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_696,), kwargs = {}) # %minimum_199 : [num_users=4] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_198, %neg_597), kwargs = {}) # %neg_600 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%minimum_199,), kwargs = {}) # %neg_602 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%minimum_199,), kwargs = {}) # %neg_604 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%minimum_199,), kwargs = {}) triton_poi_fused_minimum_neg_4 = async_compile.triton('triton_poi_fused_minimum_neg_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_minimum_neg_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_minimum_neg_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp5 = tl.load(in_ptr2 + (x0), xmask) tmp1 = -tmp0 tmp3 = -tmp2 tmp4 = triton_helpers.minimum(tmp1, tmp3) tmp6 = -tmp5 tmp7 = triton_helpers.minimum(tmp4, tmp6) tmp8 = -tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp8, xmask) tl.store(out_ptr2 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2j/c2j6qnrimplcljdjf3xksxfmllenyl573okraxpgsvaqf4wbzael.py # Topologically Sorted Source Nodes: [p1_102, p3_102, min_205, p2_102, img_50, p1_104, p3_104, min_209, p2_104, img_51, p1_106, p3_106, min_213, p2_106, img_52, p1_108, p3_108, min_217, p2_108, img_53, p1_110, p3_110, min_221, p2_110, img_54, p1_112, p3_112, min_225, p2_112, img_55, p1_114, p3_114, min_229, p2_114, img_56, p1_116, p3_116, min_233, p2_116, img_57, p1_118, p3_118, min_237, p2_118, img_58, p1_120, p3_120, min_241, p2_120, img_59, p1_122, p3_122, min_245, p2_122, img_60, p1_124, p3_124, min_249, p2_124, img_61, p1_126, p3_126, min_253, p2_126, img_62, p1_128, p3_128, min_257, p2_128, img_63, p1_130, p3_130, min_261, p2_130, img_64, p1_132, p3_132, min_265, p2_132, img_65, p1_134, p3_134, min_269, p2_134, img_66, p1_136, p3_136, min_273, p2_136, img_67, p1_138, p3_138, min_277, p2_138, img_68, p1_140, p3_140, min_281, p2_140, img_69, p1_142, p3_142, min_285, p2_142, img_70, p1_144, p3_144, min_289, p2_144, img_71, p1_146, p3_146, min_293, p2_146, img_72, p1_148, p3_148, min_297, p2_148, img_73, p1_150, p3_150, min_301, p2_150, img_74, p1_152, p3_152, min_305, p2_152, img_75, p1_154, p3_154, min_309, p2_154, img_76, p1_156, p3_156, min_313, p2_156, img_77, p1_158, p3_158, min_317, p2_158, img_78, p1_160, p3_160, min_321, p2_160, img_79, p1_162, p3_162, min_325, p2_162, img_80, p1_164, p3_164, min_329, p2_164, img_81, p1_166, p3_166, min_333, p2_166, img_82, p1_168, p3_168, min_337, p2_168, img_83, p1_170, p3_170, min_341, p2_170, img_84, p1_172, p3_172, min_345, p2_172, img_85, p1_174, p3_174, min_349, p2_174, img_86, p1_176, p3_176, min_353, p2_176, img_87, p1_178, p3_178, min_357, p2_178, img_88, p1_180, p3_180, min_361, p2_180, img_89, p1_182, p3_182, min_365, p2_182, img_90, p1_184, p3_184, min_369, p2_184, img_91, p1_186, p3_186, min_373, p2_186, img_92, p1_188, p3_188, min_377, p2_188, img_93, p1_190, p3_190, min_381, p2_190, img_94, p1_192, p3_192, min_385, p2_192, img_95, p1_194, p3_194, min_389, p2_194, img_96, p1_196, p3_196, min_393, p2_196, img_97, p1_198, p3_198, min_397, p2_198, img_98, p1_200, p3_200, min_401, p2_200, img_99, sub_101, skel_51, sub_102, delta_50, mul_50, sub_103, relu_103, skel_52, sub_104, delta_51, mul_51, sub_105, relu_105, skel_53, sub_106, delta_52, mul_52, sub_107, relu_107, skel_54, sub_108, delta_53, mul_53, sub_109, relu_109, skel_55, sub_110, delta_54, mul_54, sub_111, relu_111, skel_56, sub_112, delta_55, mul_55, sub_113, relu_113, skel_57, sub_114, delta_56, mul_56, sub_115, relu_115, skel_58, sub_116, delta_57, mul_57, sub_117, relu_117, skel_59, sub_118, delta_58, mul_58, sub_119, relu_119, skel_60, sub_120, delta_59, mul_59, sub_121, relu_121, skel_61, sub_122, delta_60, mul_60, sub_123, relu_123, skel_62, sub_124, delta_61, mul_61, sub_125, relu_125, skel_63, sub_126, delta_62, mul_62, sub_127, relu_127, skel_64, sub_128, delta_63, mul_63, sub_129, relu_129, skel_65, sub_130, delta_64, mul_64, sub_131, relu_131, skel_66, sub_132, delta_65, mul_65, sub_133, relu_133, skel_67, sub_134, delta_66, mul_66, sub_135, relu_135, skel_68, sub_136, delta_67, mul_67, sub_137, relu_137, skel_69, sub_138, delta_68, mul_68, sub_139, relu_139, skel_70, sub_140, delta_69, mul_69, sub_141, relu_141, skel_71, sub_142, delta_70, mul_70, sub_143, relu_143, skel_72, sub_144, delta_71, mul_71, sub_145, relu_145, skel_73, sub_146, delta_72, mul_72, sub_147, relu_147, skel_74, sub_148, delta_73, mul_73, sub_149, relu_149, skel_75, sub_150, delta_74, mul_74, sub_151, relu_151, skel_76, sub_152, delta_75, mul_75, sub_153, relu_153, skel_77, sub_154, delta_76, mul_76, sub_155, relu_155, skel_78, sub_156, delta_77, mul_77, sub_157, relu_157, skel_79, sub_158, delta_78, mul_78, sub_159, relu_159, skel_80, sub_160, delta_79, mul_79, sub_161, relu_161, skel_81, sub_162, delta_80, mul_80, sub_163, relu_163, skel_82, sub_164, delta_81, mul_81, sub_165, relu_165, skel_83, sub_166, delta_82, mul_82, sub_167, relu_167, skel_84, sub_168, delta_83, mul_83, sub_169, relu_169, skel_85, sub_170, delta_84, mul_84, sub_171, relu_171, skel_86, sub_172, delta_85, mul_85, sub_173, relu_173, skel_87, sub_174, delta_86, mul_86, sub_175, relu_175, skel_88, sub_176, delta_87, mul_87, sub_177, relu_177, skel_89, sub_178, delta_88, mul_88, sub_179, relu_179, skel_90, sub_180, delta_89, mul_89, sub_181, relu_181, skel_91, sub_182, delta_90, mul_90, sub_183, relu_183, skel_92, sub_184, delta_91, mul_91, sub_185, relu_185, skel_93, sub_186, delta_92, mul_92, sub_187, relu_187, skel_94, sub_188, delta_93, mul_93, sub_189, relu_189, skel_95, sub_190, delta_94, mul_94, sub_191, relu_191, skel_96, sub_192, delta_95, mul_95, sub_193, relu_193, skel_97, sub_194, delta_96, mul_96, sub_195, relu_195, skel_98, sub_196, delta_97, mul_97, sub_197, relu_197, skel_99, sub_198, delta_98, mul_98, sub_199, relu_199, skel_100, sub_200, delta_99, mul_99, sub_201, relu_201, skel_101], Original ATen: [aten.neg, aten.minimum, aten.sub, aten.relu, aten.mul, aten.add] # Source node to ATen node mapping: # delta_50 => relu_102 # delta_51 => relu_104 # delta_52 => relu_106 # delta_53 => relu_108 # delta_54 => relu_110 # delta_55 => relu_112 # delta_56 => relu_114 # delta_57 => relu_116 # delta_58 => relu_118 # delta_59 => relu_120 # delta_60 => relu_122 # delta_61 => relu_124 # delta_62 => relu_126 # delta_63 => relu_128 # delta_64 => relu_130 # delta_65 => relu_132 # delta_66 => relu_134 # delta_67 => relu_136 # delta_68 => relu_138 # delta_69 => relu_140 # delta_70 => relu_142 # delta_71 => relu_144 # delta_72 => relu_146 # delta_73 => relu_148 # delta_74 => relu_150 # delta_75 => relu_152 # delta_76 => relu_154 # delta_77 => relu_156 # delta_78 => relu_158 # delta_79 => relu_160 # delta_80 => relu_162 # delta_81 => relu_164 # delta_82 => relu_166 # delta_83 => relu_168 # delta_84 => relu_170 # delta_85 => relu_172 # delta_86 => relu_174 # delta_87 => relu_176 # delta_88 => relu_178 # delta_89 => relu_180 # delta_90 => relu_182 # delta_91 => relu_184 # delta_92 => relu_186 # delta_93 => relu_188 # delta_94 => relu_190 # delta_95 => relu_192 # delta_96 => relu_194 # delta_97 => relu_196 # delta_98 => relu_198 # delta_99 => relu_200 # img_50 => minimum_205 # img_51 => minimum_209 # img_52 => minimum_213 # img_53 => minimum_217 # img_54 => minimum_221 # img_55 => minimum_225 # img_56 => minimum_229 # img_57 => minimum_233 # img_58 => minimum_237 # img_59 => minimum_241 # img_60 => minimum_245 # img_61 => minimum_249 # img_62 => minimum_253 # img_63 => minimum_257 # img_64 => minimum_261 # img_65 => minimum_265 # img_66 => minimum_269 # img_67 => minimum_273 # img_68 => minimum_277 # img_69 => minimum_281 # img_70 => minimum_285 # img_71 => minimum_289 # img_72 => minimum_293 # img_73 => minimum_297 # img_74 => minimum_301 # img_75 => minimum_305 # img_76 => minimum_309 # img_77 => minimum_313 # img_78 => minimum_317 # img_79 => minimum_321 # img_80 => minimum_325 # img_81 => minimum_329 # img_82 => minimum_333 # img_83 => minimum_337 # img_84 => minimum_341 # img_85 => minimum_345 # img_86 => minimum_349 # img_87 => minimum_353 # img_88 => minimum_357 # img_89 => minimum_361 # img_90 => minimum_365 # img_91 => minimum_369 # img_92 => minimum_373 # img_93 => minimum_377 # img_94 => minimum_381 # img_95 => minimum_385 # img_96 => minimum_389 # img_97 => minimum_393 # img_98 => minimum_397 # img_99 => minimum_401 # min_205 => minimum_204 # min_209 => minimum_208 # min_213 => minimum_212 # min_217 => minimum_216 # min_221 => minimum_220 # min_225 => minimum_224 # min_229 => minimum_228 # min_233 => minimum_232 # min_237 => minimum_236 # min_241 => minimum_240 # min_245 => minimum_244 # min_249 => minimum_248 # min_253 => minimum_252 # min_257 => minimum_256 # min_261 => minimum_260 # min_265 => minimum_264 # min_269 => minimum_268 # min_273 => minimum_272 # min_277 => minimum_276 # min_281 => minimum_280 # min_285 => minimum_284 # min_289 => minimum_288 # min_293 => minimum_292 # min_297 => minimum_296 # min_301 => minimum_300 # min_305 => minimum_304 # min_309 => minimum_308 # min_313 => minimum_312 # min_317 => minimum_316 # min_321 => minimum_320 # min_325 => minimum_324 # min_329 => minimum_328 # min_333 => minimum_332 # min_337 => minimum_336 # min_341 => minimum_340 # min_345 => minimum_344 # min_349 => minimum_348 # min_353 => minimum_352 # min_357 => minimum_356 # min_361 => minimum_360 # min_365 => minimum_364 # min_369 => minimum_368 # min_373 => minimum_372 # min_377 => minimum_376 # min_381 => minimum_380 # min_385 => minimum_384 # min_389 => minimum_388 # min_393 => minimum_392 # min_397 => minimum_396 # min_401 => minimum_400 # mul_50 => mul_50 # mul_51 => mul_51 # mul_52 => mul_52 # mul_53 => mul_53 # mul_54 => mul_54 # mul_55 => mul_55 # mul_56 => mul_56 # mul_57 => mul_57 # mul_58 => mul_58 # mul_59 => mul_59 # mul_60 => mul_60 # mul_61 => mul_61 # mul_62 => mul_62 # mul_63 => mul_63 # mul_64 => mul_64 # mul_65 => mul_65 # mul_66 => mul_66 # mul_67 => mul_67 # mul_68 => mul_68 # mul_69 => mul_69 # mul_70 => mul_70 # mul_71 => mul_71 # mul_72 => mul_72 # mul_73 => mul_73 # mul_74 => mul_74 # mul_75 => mul_75 # mul_76 => mul_76 # mul_77 => mul_77 # mul_78 => mul_78 # mul_79 => mul_79 # mul_80 => mul_80 # mul_81 => mul_81 # mul_82 => mul_82 # mul_83 => mul_83 # mul_84 => mul_84 # mul_85 => mul_85 # mul_86 => mul_86 # mul_87 => mul_87 # mul_88 => mul_88 # mul_89 => mul_89 # mul_90 => mul_90 # mul_91 => mul_91 # mul_92 => mul_92 # mul_93 => mul_93 # mul_94 => mul_94 # mul_95 => mul_95 # mul_96 => mul_96 # mul_97 => mul_97 # mul_98 => mul_98 # mul_99 => mul_99 # p1_102 => neg_613 # p1_104 => neg_625 # p1_106 => neg_637 # p1_108 => neg_649 # p1_110 => neg_661 # p1_112 => neg_673 # p1_114 => neg_685 # p1_116 => neg_697 # p1_118 => neg_709 # p1_120 => neg_721 # p1_122 => neg_733 # p1_124 => neg_745 # p1_126 => neg_757 # p1_128 => neg_769 # p1_130 => neg_781 # p1_132 => neg_793 # p1_134 => neg_805 # p1_136 => neg_817 # p1_138 => neg_829 # p1_140 => neg_841 # p1_142 => neg_853 # p1_144 => neg_865 # p1_146 => neg_877 # p1_148 => neg_889 # p1_150 => neg_901 # p1_152 => neg_913 # p1_154 => neg_925 # p1_156 => neg_937 # p1_158 => neg_949 # p1_160 => neg_961 # p1_162 => neg_973 # p1_164 => neg_985 # p1_166 => neg_997 # p1_168 => neg_1009 # p1_170 => neg_1021 # p1_172 => neg_1033 # p1_174 => neg_1045 # p1_176 => neg_1057 # p1_178 => neg_1069 # p1_180 => neg_1081 # p1_182 => neg_1093 # p1_184 => neg_1105 # p1_186 => neg_1117 # p1_188 => neg_1129 # p1_190 => neg_1141 # p1_192 => neg_1153 # p1_194 => neg_1165 # p1_196 => neg_1177 # p1_198 => neg_1189 # p1_200 => neg_1201 # p2_102 => neg_615 # p2_104 => neg_627 # p2_106 => neg_639 # p2_108 => neg_651 # p2_110 => neg_663 # p2_112 => neg_675 # p2_114 => neg_687 # p2_116 => neg_699 # p2_118 => neg_711 # p2_120 => neg_723 # p2_122 => neg_735 # p2_124 => neg_747 # p2_126 => neg_759 # p2_128 => neg_771 # p2_130 => neg_783 # p2_132 => neg_795 # p2_134 => neg_807 # p2_136 => neg_819 # p2_138 => neg_831 # p2_140 => neg_843 # p2_142 => neg_855 # p2_144 => neg_867 # p2_146 => neg_879 # p2_148 => neg_891 # p2_150 => neg_903 # p2_152 => neg_915 # p2_154 => neg_927 # p2_156 => neg_939 # p2_158 => neg_951 # p2_160 => neg_963 # p2_162 => neg_975 # p2_164 => neg_987 # p2_166 => neg_999 # p2_168 => neg_1011 # p2_170 => neg_1023 # p2_172 => neg_1035 # p2_174 => neg_1047 # p2_176 => neg_1059 # p2_178 => neg_1071 # p2_180 => neg_1083 # p2_182 => neg_1095 # p2_184 => neg_1107 # p2_186 => neg_1119 # p2_188 => neg_1131 # p2_190 => neg_1143 # p2_192 => neg_1155 # p2_194 => neg_1167 # p2_196 => neg_1179 # p2_198 => neg_1191 # p2_200 => neg_1203 # p3_102 => neg_617 # p3_104 => neg_629 # p3_106 => neg_641 # p3_108 => neg_653 # p3_110 => neg_665 # p3_112 => neg_677 # p3_114 => neg_689 # p3_116 => neg_701 # p3_118 => neg_713 # p3_120 => neg_725 # p3_122 => neg_737 # p3_124 => neg_749 # p3_126 => neg_761 # p3_128 => neg_773 # p3_130 => neg_785 # p3_132 => neg_797 # p3_134 => neg_809 # p3_136 => neg_821 # p3_138 => neg_833 # p3_140 => neg_845 # p3_142 => neg_857 # p3_144 => neg_869 # p3_146 => neg_881 # p3_148 => neg_893 # p3_150 => neg_905 # p3_152 => neg_917 # p3_154 => neg_929 # p3_156 => neg_941 # p3_158 => neg_953 # p3_160 => neg_965 # p3_162 => neg_977 # p3_164 => neg_989 # p3_166 => neg_1001 # p3_168 => neg_1013 # p3_170 => neg_1025 # p3_172 => neg_1037 # p3_174 => neg_1049 # p3_176 => neg_1061 # p3_178 => neg_1073 # p3_180 => neg_1085 # p3_182 => neg_1097 # p3_184 => neg_1109 # p3_186 => neg_1121 # p3_188 => neg_1133 # p3_190 => neg_1145 # p3_192 => neg_1157 # p3_194 => neg_1169 # p3_196 => neg_1181 # p3_198 => neg_1193 # p3_200 => neg_1205 # relu_103 => relu_103 # relu_105 => relu_105 # relu_107 => relu_107 # relu_109 => relu_109 # relu_111 => relu_111 # relu_113 => relu_113 # relu_115 => relu_115 # relu_117 => relu_117 # relu_119 => relu_119 # relu_121 => relu_121 # relu_123 => relu_123 # relu_125 => relu_125 # relu_127 => relu_127 # relu_129 => relu_129 # relu_131 => relu_131 # relu_133 => relu_133 # relu_135 => relu_135 # relu_137 => relu_137 # relu_139 => relu_139 # relu_141 => relu_141 # relu_143 => relu_143 # relu_145 => relu_145 # relu_147 => relu_147 # relu_149 => relu_149 # relu_151 => relu_151 # relu_153 => relu_153 # relu_155 => relu_155 # relu_157 => relu_157 # relu_159 => relu_159 # relu_161 => relu_161 # relu_163 => relu_163 # relu_165 => relu_165 # relu_167 => relu_167 # relu_169 => relu_169 # relu_171 => relu_171 # relu_173 => relu_173 # relu_175 => relu_175 # relu_177 => relu_177 # relu_179 => relu_179 # relu_181 => relu_181 # relu_183 => relu_183 # relu_185 => relu_185 # relu_187 => relu_187 # relu_189 => relu_189 # relu_191 => relu_191 # relu_193 => relu_193 # relu_195 => relu_195 # relu_197 => relu_197 # relu_199 => relu_199 # relu_201 => relu_201 # skel_100 => add_98 # skel_101 => add_99 # skel_51 => relu_101 # skel_52 => add_50 # skel_53 => add_51 # skel_54 => add_52 # skel_55 => add_53 # skel_56 => add_54 # skel_57 => add_55 # skel_58 => add_56 # skel_59 => add_57 # skel_60 => add_58 # skel_61 => add_59 # skel_62 => add_60 # skel_63 => add_61 # skel_64 => add_62 # skel_65 => add_63 # skel_66 => add_64 # skel_67 => add_65 # skel_68 => add_66 # skel_69 => add_67 # skel_70 => add_68 # skel_71 => add_69 # skel_72 => add_70 # skel_73 => add_71 # skel_74 => add_72 # skel_75 => add_73 # skel_76 => add_74 # skel_77 => add_75 # skel_78 => add_76 # skel_79 => add_77 # skel_80 => add_78 # skel_81 => add_79 # skel_82 => add_80 # skel_83 => add_81 # skel_84 => add_82 # skel_85 => add_83 # skel_86 => add_84 # skel_87 => add_85 # skel_88 => add_86 # skel_89 => add_87 # skel_90 => add_88 # skel_91 => add_89 # skel_92 => add_90 # skel_93 => add_91 # skel_94 => add_92 # skel_95 => add_93 # skel_96 => add_94 # skel_97 => add_95 # skel_98 => add_96 # skel_99 => add_97 # sub_101 => sub_101 # sub_102 => sub_102 # sub_103 => sub_103 # sub_104 => sub_104 # sub_105 => sub_105 # sub_106 => sub_106 # sub_107 => sub_107 # sub_108 => sub_108 # sub_109 => sub_109 # sub_110 => sub_110 # sub_111 => sub_111 # sub_112 => sub_112 # sub_113 => sub_113 # sub_114 => sub_114 # sub_115 => sub_115 # sub_116 => sub_116 # sub_117 => sub_117 # sub_118 => sub_118 # sub_119 => sub_119 # sub_120 => sub_120 # sub_121 => sub_121 # sub_122 => sub_122 # sub_123 => sub_123 # sub_124 => sub_124 # sub_125 => sub_125 # sub_126 => sub_126 # sub_127 => sub_127 # sub_128 => sub_128 # sub_129 => sub_129 # sub_130 => sub_130 # sub_131 => sub_131 # sub_132 => sub_132 # sub_133 => sub_133 # sub_134 => sub_134 # sub_135 => sub_135 # sub_136 => sub_136 # sub_137 => sub_137 # sub_138 => sub_138 # sub_139 => sub_139 # sub_140 => sub_140 # sub_141 => sub_141 # sub_142 => sub_142 # sub_143 => sub_143 # sub_144 => sub_144 # sub_145 => sub_145 # sub_146 => sub_146 # sub_147 => sub_147 # sub_148 => sub_148 # sub_149 => sub_149 # sub_150 => sub_150 # sub_151 => sub_151 # sub_152 => sub_152 # sub_153 => sub_153 # sub_154 => sub_154 # sub_155 => sub_155 # sub_156 => sub_156 # sub_157 => sub_157 # sub_158 => sub_158 # sub_159 => sub_159 # sub_160 => sub_160 # sub_161 => sub_161 # sub_162 => sub_162 # sub_163 => sub_163 # sub_164 => sub_164 # sub_165 => sub_165 # sub_166 => sub_166 # sub_167 => sub_167 # sub_168 => sub_168 # sub_169 => sub_169 # sub_170 => sub_170 # sub_171 => sub_171 # sub_172 => sub_172 # sub_173 => sub_173 # sub_174 => sub_174 # sub_175 => sub_175 # sub_176 => sub_176 # sub_177 => sub_177 # sub_178 => sub_178 # sub_179 => sub_179 # sub_180 => sub_180 # sub_181 => sub_181 # sub_182 => sub_182 # sub_183 => sub_183 # sub_184 => sub_184 # sub_185 => sub_185 # sub_186 => sub_186 # sub_187 => sub_187 # sub_188 => sub_188 # sub_189 => sub_189 # sub_190 => sub_190 # sub_191 => sub_191 # sub_192 => sub_192 # sub_193 => sub_193 # sub_194 => sub_194 # sub_195 => sub_195 # sub_196 => sub_196 # sub_197 => sub_197 # sub_198 => sub_198 # sub_199 => sub_199 # sub_200 => sub_200 # sub_201 => sub_201 # Graph fragment: # %neg_613 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_716,), kwargs = {}) # %neg_617 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_720,), kwargs = {}) # %minimum_204 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_613, %neg_617), kwargs = {}) # %neg_615 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_718,), kwargs = {}) # %minimum_205 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_204, %neg_615), kwargs = {}) # %neg_625 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_730,), kwargs = {}) # %neg_629 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_734,), kwargs = {}) # %minimum_208 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_625, %neg_629), kwargs = {}) # %neg_627 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_732,), kwargs = {}) # %minimum_209 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_208, %neg_627), kwargs = {}) # %neg_637 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_744,), kwargs = {}) # %neg_641 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_748,), kwargs = {}) # %minimum_212 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_637, %neg_641), kwargs = {}) # %neg_639 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_746,), kwargs = {}) # %minimum_213 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_212, %neg_639), kwargs = {}) # %neg_649 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_758,), kwargs = {}) # %neg_653 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_762,), kwargs = {}) # %minimum_216 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_649, %neg_653), kwargs = {}) # %neg_651 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_760,), kwargs = {}) # %minimum_217 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_216, %neg_651), kwargs = {}) # %neg_661 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_772,), kwargs = {}) # %neg_665 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_776,), kwargs = {}) # %minimum_220 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_661, %neg_665), kwargs = {}) # %neg_663 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_774,), kwargs = {}) # %minimum_221 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_220, %neg_663), kwargs = {}) # %neg_673 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_786,), kwargs = {}) # %neg_677 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_790,), kwargs = {}) # %minimum_224 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_673, %neg_677), kwargs = {}) # %neg_675 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_788,), kwargs = {}) # %minimum_225 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_224, %neg_675), kwargs = {}) # %neg_685 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_800,), kwargs = {}) # %neg_689 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_804,), kwargs = {}) # %minimum_228 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_685, %neg_689), kwargs = {}) # %neg_687 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_802,), kwargs = {}) # %minimum_229 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_228, %neg_687), kwargs = {}) # %neg_697 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_814,), kwargs = {}) # %neg_701 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_818,), kwargs = {}) # %minimum_232 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_697, %neg_701), kwargs = {}) # %neg_699 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_816,), kwargs = {}) # %minimum_233 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_232, %neg_699), kwargs = {}) # %neg_709 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_828,), kwargs = {}) # %neg_713 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_832,), kwargs = {}) # %minimum_236 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_709, %neg_713), kwargs = {}) # %neg_711 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_830,), kwargs = {}) # %minimum_237 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_236, %neg_711), kwargs = {}) # %neg_721 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_842,), kwargs = {}) # %neg_725 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_846,), kwargs = {}) # %minimum_240 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_721, %neg_725), kwargs = {}) # %neg_723 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_844,), kwargs = {}) # %minimum_241 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_240, %neg_723), kwargs = {}) # %neg_733 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_856,), kwargs = {}) # %neg_737 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_860,), kwargs = {}) # %minimum_244 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_733, %neg_737), kwargs = {}) # %neg_735 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_858,), kwargs = {}) # %minimum_245 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_244, %neg_735), kwargs = {}) # %neg_745 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_870,), kwargs = {}) # %neg_749 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_874,), kwargs = {}) # %minimum_248 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_745, %neg_749), kwargs = {}) # %neg_747 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_872,), kwargs = {}) # %minimum_249 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_248, %neg_747), kwargs = {}) # %neg_757 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_884,), kwargs = {}) # %neg_761 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_888,), kwargs = {}) # %minimum_252 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_757, %neg_761), kwargs = {}) # %neg_759 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_886,), kwargs = {}) # %minimum_253 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_252, %neg_759), kwargs = {}) # %neg_769 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_898,), kwargs = {}) # %neg_773 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_902,), kwargs = {}) # %minimum_256 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_769, %neg_773), kwargs = {}) # %neg_771 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_900,), kwargs = {}) # %minimum_257 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_256, %neg_771), kwargs = {}) # %neg_781 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_912,), kwargs = {}) # %neg_785 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_916,), kwargs = {}) # %minimum_260 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_781, %neg_785), kwargs = {}) # %neg_783 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_914,), kwargs = {}) # %minimum_261 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_260, %neg_783), kwargs = {}) # %neg_793 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_926,), kwargs = {}) # %neg_797 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_930,), kwargs = {}) # %minimum_264 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_793, %neg_797), kwargs = {}) # %neg_795 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_928,), kwargs = {}) # %minimum_265 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_264, %neg_795), kwargs = {}) # %neg_805 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_940,), kwargs = {}) # %neg_809 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_944,), kwargs = {}) # %minimum_268 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_805, %neg_809), kwargs = {}) # %neg_807 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_942,), kwargs = {}) # %minimum_269 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_268, %neg_807), kwargs = {}) # %neg_817 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_954,), kwargs = {}) # %neg_821 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_958,), kwargs = {}) # %minimum_272 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_817, %neg_821), kwargs = {}) # %neg_819 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_956,), kwargs = {}) # %minimum_273 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_272, %neg_819), kwargs = {}) # %neg_829 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_968,), kwargs = {}) # %neg_833 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_972,), kwargs = {}) # %minimum_276 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_829, %neg_833), kwargs = {}) # %neg_831 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_970,), kwargs = {}) # %minimum_277 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_276, %neg_831), kwargs = {}) # %neg_841 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_982,), kwargs = {}) # %neg_845 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_986,), kwargs = {}) # %minimum_280 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_841, %neg_845), kwargs = {}) # %neg_843 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_984,), kwargs = {}) # %minimum_281 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_280, %neg_843), kwargs = {}) # %neg_853 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_996,), kwargs = {}) # %neg_857 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1000,), kwargs = {}) # %minimum_284 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_853, %neg_857), kwargs = {}) # %neg_855 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_998,), kwargs = {}) # %minimum_285 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_284, %neg_855), kwargs = {}) # %neg_865 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1010,), kwargs = {}) # %neg_869 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1014,), kwargs = {}) # %minimum_288 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_865, %neg_869), kwargs = {}) # %neg_867 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1012,), kwargs = {}) # %minimum_289 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_288, %neg_867), kwargs = {}) # %neg_877 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1024,), kwargs = {}) # %neg_881 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1028,), kwargs = {}) # %minimum_292 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_877, %neg_881), kwargs = {}) # %neg_879 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1026,), kwargs = {}) # %minimum_293 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_292, %neg_879), kwargs = {}) # %neg_889 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1038,), kwargs = {}) # %neg_893 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1042,), kwargs = {}) # %minimum_296 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_889, %neg_893), kwargs = {}) # %neg_891 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1040,), kwargs = {}) # %minimum_297 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_296, %neg_891), kwargs = {}) # %neg_901 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1052,), kwargs = {}) # %neg_905 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1056,), kwargs = {}) # %minimum_300 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_901, %neg_905), kwargs = {}) # %neg_903 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1054,), kwargs = {}) # %minimum_301 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_300, %neg_903), kwargs = {}) # %neg_913 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1066,), kwargs = {}) # %neg_917 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1070,), kwargs = {}) # %minimum_304 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_913, %neg_917), kwargs = {}) # %neg_915 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1068,), kwargs = {}) # %minimum_305 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_304, %neg_915), kwargs = {}) # %neg_925 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1080,), kwargs = {}) # %neg_929 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1084,), kwargs = {}) # %minimum_308 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_925, %neg_929), kwargs = {}) # %neg_927 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1082,), kwargs = {}) # %minimum_309 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_308, %neg_927), kwargs = {}) # %neg_937 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1094,), kwargs = {}) # %neg_941 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1098,), kwargs = {}) # %minimum_312 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_937, %neg_941), kwargs = {}) # %neg_939 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1096,), kwargs = {}) # %minimum_313 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_312, %neg_939), kwargs = {}) # %neg_949 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1108,), kwargs = {}) # %neg_953 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1112,), kwargs = {}) # %minimum_316 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_949, %neg_953), kwargs = {}) # %neg_951 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1110,), kwargs = {}) # %minimum_317 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_316, %neg_951), kwargs = {}) # %neg_961 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1122,), kwargs = {}) # %neg_965 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1126,), kwargs = {}) # %minimum_320 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_961, %neg_965), kwargs = {}) # %neg_963 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1124,), kwargs = {}) # %minimum_321 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_320, %neg_963), kwargs = {}) # %neg_973 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1136,), kwargs = {}) # %neg_977 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1140,), kwargs = {}) # %minimum_324 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_973, %neg_977), kwargs = {}) # %neg_975 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1138,), kwargs = {}) # %minimum_325 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_324, %neg_975), kwargs = {}) # %neg_985 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1150,), kwargs = {}) # %neg_989 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1154,), kwargs = {}) # %minimum_328 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_985, %neg_989), kwargs = {}) # %neg_987 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1152,), kwargs = {}) # %minimum_329 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_328, %neg_987), kwargs = {}) # %neg_997 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1164,), kwargs = {}) # %neg_1001 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1168,), kwargs = {}) # %minimum_332 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_997, %neg_1001), kwargs = {}) # %neg_999 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1166,), kwargs = {}) # %minimum_333 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_332, %neg_999), kwargs = {}) # %neg_1009 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1178,), kwargs = {}) # %neg_1013 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1182,), kwargs = {}) # %minimum_336 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1009, %neg_1013), kwargs = {}) # %neg_1011 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1180,), kwargs = {}) # %minimum_337 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_336, %neg_1011), kwargs = {}) # %neg_1021 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1192,), kwargs = {}) # %neg_1025 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1196,), kwargs = {}) # %minimum_340 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1021, %neg_1025), kwargs = {}) # %neg_1023 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1194,), kwargs = {}) # %minimum_341 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_340, %neg_1023), kwargs = {}) # %neg_1033 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1206,), kwargs = {}) # %neg_1037 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1210,), kwargs = {}) # %minimum_344 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1033, %neg_1037), kwargs = {}) # %neg_1035 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1208,), kwargs = {}) # %minimum_345 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_344, %neg_1035), kwargs = {}) # %neg_1045 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1220,), kwargs = {}) # %neg_1049 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1224,), kwargs = {}) # %minimum_348 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1045, %neg_1049), kwargs = {}) # %neg_1047 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1222,), kwargs = {}) # %minimum_349 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_348, %neg_1047), kwargs = {}) # %neg_1057 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1234,), kwargs = {}) # %neg_1061 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1238,), kwargs = {}) # %minimum_352 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1057, %neg_1061), kwargs = {}) # %neg_1059 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1236,), kwargs = {}) # %minimum_353 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_352, %neg_1059), kwargs = {}) # %neg_1069 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1248,), kwargs = {}) # %neg_1073 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1252,), kwargs = {}) # %minimum_356 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1069, %neg_1073), kwargs = {}) # %neg_1071 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1250,), kwargs = {}) # %minimum_357 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_356, %neg_1071), kwargs = {}) # %neg_1081 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1262,), kwargs = {}) # %neg_1085 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1266,), kwargs = {}) # %minimum_360 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1081, %neg_1085), kwargs = {}) # %neg_1083 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1264,), kwargs = {}) # %minimum_361 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_360, %neg_1083), kwargs = {}) # %neg_1093 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1276,), kwargs = {}) # %neg_1097 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1280,), kwargs = {}) # %minimum_364 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1093, %neg_1097), kwargs = {}) # %neg_1095 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1278,), kwargs = {}) # %minimum_365 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_364, %neg_1095), kwargs = {}) # %neg_1105 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1290,), kwargs = {}) # %neg_1109 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1294,), kwargs = {}) # %minimum_368 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1105, %neg_1109), kwargs = {}) # %neg_1107 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1292,), kwargs = {}) # %minimum_369 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_368, %neg_1107), kwargs = {}) # %neg_1117 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1304,), kwargs = {}) # %neg_1121 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1308,), kwargs = {}) # %minimum_372 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1117, %neg_1121), kwargs = {}) # %neg_1119 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1306,), kwargs = {}) # %minimum_373 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_372, %neg_1119), kwargs = {}) # %neg_1129 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1318,), kwargs = {}) # %neg_1133 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1322,), kwargs = {}) # %minimum_376 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1129, %neg_1133), kwargs = {}) # %neg_1131 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1320,), kwargs = {}) # %minimum_377 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_376, %neg_1131), kwargs = {}) # %neg_1141 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1332,), kwargs = {}) # %neg_1145 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1336,), kwargs = {}) # %minimum_380 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1141, %neg_1145), kwargs = {}) # %neg_1143 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1334,), kwargs = {}) # %minimum_381 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_380, %neg_1143), kwargs = {}) # %neg_1153 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1346,), kwargs = {}) # %neg_1157 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1350,), kwargs = {}) # %minimum_384 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1153, %neg_1157), kwargs = {}) # %neg_1155 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1348,), kwargs = {}) # %minimum_385 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_384, %neg_1155), kwargs = {}) # %neg_1165 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1360,), kwargs = {}) # %neg_1169 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1364,), kwargs = {}) # %minimum_388 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1165, %neg_1169), kwargs = {}) # %neg_1167 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1362,), kwargs = {}) # %minimum_389 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_388, %neg_1167), kwargs = {}) # %neg_1177 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1374,), kwargs = {}) # %neg_1181 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1378,), kwargs = {}) # %minimum_392 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1177, %neg_1181), kwargs = {}) # %neg_1179 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1376,), kwargs = {}) # %minimum_393 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_392, %neg_1179), kwargs = {}) # %neg_1189 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1388,), kwargs = {}) # %neg_1193 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1392,), kwargs = {}) # %minimum_396 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1189, %neg_1193), kwargs = {}) # %neg_1191 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1390,), kwargs = {}) # %minimum_397 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_396, %neg_1191), kwargs = {}) # %neg_1201 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1402,), kwargs = {}) # %neg_1205 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1406,), kwargs = {}) # %minimum_400 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_1201, %neg_1205), kwargs = {}) # %neg_1203 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_1404,), kwargs = {}) # %minimum_401 : [num_users=4] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_400, %neg_1203), kwargs = {}) # %sub_101 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %getitem_714), kwargs = {}) # %relu_101 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_101,), kwargs = {}) # %sub_102 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_205, %getitem_728), kwargs = {}) # %relu_102 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_102,), kwargs = {}) # %mul_50 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu_101, %relu_102), kwargs = {}) # %sub_103 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_102, %mul_50), kwargs = {}) # %relu_103 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_103,), kwargs = {}) # %add_50 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_101, %relu_103), kwargs = {}) # %sub_104 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_209, %getitem_742), kwargs = {}) # %relu_104 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_104,), kwargs = {}) # %mul_51 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_50, %relu_104), kwargs = {}) # %sub_105 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_104, %mul_51), kwargs = {}) # %relu_105 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_105,), kwargs = {}) # %add_51 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_50, %relu_105), kwargs = {}) # %sub_106 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_213, %getitem_756), kwargs = {}) # %relu_106 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_106,), kwargs = {}) # %mul_52 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_51, %relu_106), kwargs = {}) # %sub_107 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_106, %mul_52), kwargs = {}) # %relu_107 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_107,), kwargs = {}) # %add_52 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_51, %relu_107), kwargs = {}) # %sub_108 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_217, %getitem_770), kwargs = {}) # %relu_108 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_108,), kwargs = {}) # %mul_53 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_52, %relu_108), kwargs = {}) # %sub_109 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_108, %mul_53), kwargs = {}) # %relu_109 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_109,), kwargs = {}) # %add_53 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_52, %relu_109), kwargs = {}) # %sub_110 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_221, %getitem_784), kwargs = {}) # %relu_110 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_110,), kwargs = {}) # %mul_54 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_53, %relu_110), kwargs = {}) # %sub_111 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_110, %mul_54), kwargs = {}) # %relu_111 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_111,), kwargs = {}) # %add_54 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_53, %relu_111), kwargs = {}) # %sub_112 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_225, %getitem_798), kwargs = {}) # %relu_112 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_112,), kwargs = {}) # %mul_55 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_54, %relu_112), kwargs = {}) # %sub_113 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_112, %mul_55), kwargs = {}) # %relu_113 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_113,), kwargs = {}) # %add_55 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_54, %relu_113), kwargs = {}) # %sub_114 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_229, %getitem_812), kwargs = {}) # %relu_114 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_114,), kwargs = {}) # %mul_56 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_55, %relu_114), kwargs = {}) # %sub_115 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_114, %mul_56), kwargs = {}) # %relu_115 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_115,), kwargs = {}) # %add_56 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_55, %relu_115), kwargs = {}) # %sub_116 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_233, %getitem_826), kwargs = {}) # %relu_116 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_116,), kwargs = {}) # %mul_57 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_56, %relu_116), kwargs = {}) # %sub_117 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_116, %mul_57), kwargs = {}) # %relu_117 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_117,), kwargs = {}) # %add_57 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_56, %relu_117), kwargs = {}) # %sub_118 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_237, %getitem_840), kwargs = {}) # %relu_118 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_118,), kwargs = {}) # %mul_58 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_57, %relu_118), kwargs = {}) # %sub_119 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_118, %mul_58), kwargs = {}) # %relu_119 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_119,), kwargs = {}) # %add_58 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_57, %relu_119), kwargs = {}) # %sub_120 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_241, %getitem_854), kwargs = {}) # %relu_120 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_120,), kwargs = {}) # %mul_59 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_58, %relu_120), kwargs = {}) # %sub_121 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_120, %mul_59), kwargs = {}) # %relu_121 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_121,), kwargs = {}) # %add_59 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_58, %relu_121), kwargs = {}) # %sub_122 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_245, %getitem_868), kwargs = {}) # %relu_122 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_122,), kwargs = {}) # %mul_60 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_59, %relu_122), kwargs = {}) # %sub_123 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_122, %mul_60), kwargs = {}) # %relu_123 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_123,), kwargs = {}) # %add_60 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_59, %relu_123), kwargs = {}) # %sub_124 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_249, %getitem_882), kwargs = {}) # %relu_124 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_124,), kwargs = {}) # %mul_61 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_60, %relu_124), kwargs = {}) # %sub_125 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_124, %mul_61), kwargs = {}) # %relu_125 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_125,), kwargs = {}) # %add_61 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_60, %relu_125), kwargs = {}) # %sub_126 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_253, %getitem_896), kwargs = {}) # %relu_126 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_126,), kwargs = {}) # %mul_62 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_61, %relu_126), kwargs = {}) # %sub_127 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_126, %mul_62), kwargs = {}) # %relu_127 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_127,), kwargs = {}) # %add_62 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_61, %relu_127), kwargs = {}) # %sub_128 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_257, %getitem_910), kwargs = {}) # %relu_128 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_128,), kwargs = {}) # %mul_63 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_62, %relu_128), kwargs = {}) # %sub_129 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_128, %mul_63), kwargs = {}) # %relu_129 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_129,), kwargs = {}) # %add_63 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_62, %relu_129), kwargs = {}) # %sub_130 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_261, %getitem_924), kwargs = {}) # %relu_130 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_130,), kwargs = {}) # %mul_64 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_63, %relu_130), kwargs = {}) # %sub_131 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_130, %mul_64), kwargs = {}) # %relu_131 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_131,), kwargs = {}) # %add_64 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_63, %relu_131), kwargs = {}) # %sub_132 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_265, %getitem_938), kwargs = {}) # %relu_132 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_132,), kwargs = {}) # %mul_65 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_64, %relu_132), kwargs = {}) # %sub_133 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_132, %mul_65), kwargs = {}) # %relu_133 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_133,), kwargs = {}) # %add_65 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_64, %relu_133), kwargs = {}) # %sub_134 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_269, %getitem_952), kwargs = {}) # %relu_134 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_134,), kwargs = {}) # %mul_66 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_65, %relu_134), kwargs = {}) # %sub_135 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_134, %mul_66), kwargs = {}) # %relu_135 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_135,), kwargs = {}) # %add_66 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_65, %relu_135), kwargs = {}) # %sub_136 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_273, %getitem_966), kwargs = {}) # %relu_136 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_136,), kwargs = {}) # %mul_67 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_66, %relu_136), kwargs = {}) # %sub_137 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_136, %mul_67), kwargs = {}) # %relu_137 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_137,), kwargs = {}) # %add_67 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_66, %relu_137), kwargs = {}) # %sub_138 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_277, %getitem_980), kwargs = {}) # %relu_138 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_138,), kwargs = {}) # %mul_68 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_67, %relu_138), kwargs = {}) # %sub_139 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_138, %mul_68), kwargs = {}) # %relu_139 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_139,), kwargs = {}) # %add_68 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_67, %relu_139), kwargs = {}) # %sub_140 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_281, %getitem_994), kwargs = {}) # %relu_140 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_140,), kwargs = {}) # %mul_69 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_68, %relu_140), kwargs = {}) # %sub_141 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_140, %mul_69), kwargs = {}) # %relu_141 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_141,), kwargs = {}) # %add_69 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_68, %relu_141), kwargs = {}) # %sub_142 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_285, %getitem_1008), kwargs = {}) # %relu_142 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_142,), kwargs = {}) # %mul_70 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_69, %relu_142), kwargs = {}) # %sub_143 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_142, %mul_70), kwargs = {}) # %relu_143 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_143,), kwargs = {}) # %add_70 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_69, %relu_143), kwargs = {}) # %sub_144 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_289, %getitem_1022), kwargs = {}) # %relu_144 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_144,), kwargs = {}) # %mul_71 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_70, %relu_144), kwargs = {}) # %sub_145 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_144, %mul_71), kwargs = {}) # %relu_145 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_145,), kwargs = {}) # %add_71 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_70, %relu_145), kwargs = {}) # %sub_146 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_293, %getitem_1036), kwargs = {}) # %relu_146 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_146,), kwargs = {}) # %mul_72 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_71, %relu_146), kwargs = {}) # %sub_147 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_146, %mul_72), kwargs = {}) # %relu_147 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_147,), kwargs = {}) # %add_72 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_71, %relu_147), kwargs = {}) # %sub_148 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_297, %getitem_1050), kwargs = {}) # %relu_148 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_148,), kwargs = {}) # %mul_73 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_72, %relu_148), kwargs = {}) # %sub_149 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_148, %mul_73), kwargs = {}) # %relu_149 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_149,), kwargs = {}) # %add_73 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_72, %relu_149), kwargs = {}) # %sub_150 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_301, %getitem_1064), kwargs = {}) # %relu_150 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_150,), kwargs = {}) # %mul_74 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_73, %relu_150), kwargs = {}) # %sub_151 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_150, %mul_74), kwargs = {}) # %relu_151 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_151,), kwargs = {}) # %add_74 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_73, %relu_151), kwargs = {}) # %sub_152 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_305, %getitem_1078), kwargs = {}) # %relu_152 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_152,), kwargs = {}) # %mul_75 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_74, %relu_152), kwargs = {}) # %sub_153 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_152, %mul_75), kwargs = {}) # %relu_153 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_153,), kwargs = {}) # %add_75 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_74, %relu_153), kwargs = {}) # %sub_154 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_309, %getitem_1092), kwargs = {}) # %relu_154 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_154,), kwargs = {}) # %mul_76 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_75, %relu_154), kwargs = {}) # %sub_155 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_154, %mul_76), kwargs = {}) # %relu_155 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_155,), kwargs = {}) # %add_76 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_75, %relu_155), kwargs = {}) # %sub_156 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_313, %getitem_1106), kwargs = {}) # %relu_156 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_156,), kwargs = {}) # %mul_77 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_76, %relu_156), kwargs = {}) # %sub_157 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_156, %mul_77), kwargs = {}) # %relu_157 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_157,), kwargs = {}) # %add_77 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_76, %relu_157), kwargs = {}) # %sub_158 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_317, %getitem_1120), kwargs = {}) # %relu_158 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_158,), kwargs = {}) # %mul_78 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_77, %relu_158), kwargs = {}) # %sub_159 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_158, %mul_78), kwargs = {}) # %relu_159 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_159,), kwargs = {}) # %add_78 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_77, %relu_159), kwargs = {}) # %sub_160 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_321, %getitem_1134), kwargs = {}) # %relu_160 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_160,), kwargs = {}) # %mul_79 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_78, %relu_160), kwargs = {}) # %sub_161 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_160, %mul_79), kwargs = {}) # %relu_161 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_161,), kwargs = {}) # %add_79 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_78, %relu_161), kwargs = {}) # %sub_162 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_325, %getitem_1148), kwargs = {}) # %relu_162 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_162,), kwargs = {}) # %mul_80 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_79, %relu_162), kwargs = {}) # %sub_163 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_162, %mul_80), kwargs = {}) # %relu_163 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_163,), kwargs = {}) # %add_80 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_79, %relu_163), kwargs = {}) # %sub_164 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_329, %getitem_1162), kwargs = {}) # %relu_164 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_164,), kwargs = {}) # %mul_81 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_80, %relu_164), kwargs = {}) # %sub_165 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_164, %mul_81), kwargs = {}) # %relu_165 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_165,), kwargs = {}) # %add_81 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_80, %relu_165), kwargs = {}) # %sub_166 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_333, %getitem_1176), kwargs = {}) # %relu_166 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_166,), kwargs = {}) # %mul_82 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_81, %relu_166), kwargs = {}) # %sub_167 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_166, %mul_82), kwargs = {}) # %relu_167 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_167,), kwargs = {}) # %add_82 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_81, %relu_167), kwargs = {}) # %sub_168 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_337, %getitem_1190), kwargs = {}) # %relu_168 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_168,), kwargs = {}) # %mul_83 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_82, %relu_168), kwargs = {}) # %sub_169 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_168, %mul_83), kwargs = {}) # %relu_169 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_169,), kwargs = {}) # %add_83 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_82, %relu_169), kwargs = {}) # %sub_170 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_341, %getitem_1204), kwargs = {}) # %relu_170 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_170,), kwargs = {}) # %mul_84 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_83, %relu_170), kwargs = {}) # %sub_171 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_170, %mul_84), kwargs = {}) # %relu_171 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_171,), kwargs = {}) # %add_84 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_83, %relu_171), kwargs = {}) # %sub_172 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_345, %getitem_1218), kwargs = {}) # %relu_172 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_172,), kwargs = {}) # %mul_85 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_84, %relu_172), kwargs = {}) # %sub_173 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_172, %mul_85), kwargs = {}) # %relu_173 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_173,), kwargs = {}) # %add_85 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_84, %relu_173), kwargs = {}) # %sub_174 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_349, %getitem_1232), kwargs = {}) # %relu_174 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_174,), kwargs = {}) # %mul_86 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_85, %relu_174), kwargs = {}) # %sub_175 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_174, %mul_86), kwargs = {}) # %relu_175 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_175,), kwargs = {}) # %add_86 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_85, %relu_175), kwargs = {}) # %sub_176 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_353, %getitem_1246), kwargs = {}) # %relu_176 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_176,), kwargs = {}) # %mul_87 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_86, %relu_176), kwargs = {}) # %sub_177 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_176, %mul_87), kwargs = {}) # %relu_177 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_177,), kwargs = {}) # %add_87 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_86, %relu_177), kwargs = {}) # %sub_178 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_357, %getitem_1260), kwargs = {}) # %relu_178 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_178,), kwargs = {}) # %mul_88 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_87, %relu_178), kwargs = {}) # %sub_179 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_178, %mul_88), kwargs = {}) # %relu_179 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_179,), kwargs = {}) # %add_88 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_87, %relu_179), kwargs = {}) # %sub_180 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_361, %getitem_1274), kwargs = {}) # %relu_180 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_180,), kwargs = {}) # %mul_89 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_88, %relu_180), kwargs = {}) # %sub_181 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_180, %mul_89), kwargs = {}) # %relu_181 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_181,), kwargs = {}) # %add_89 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_88, %relu_181), kwargs = {}) # %sub_182 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_365, %getitem_1288), kwargs = {}) # %relu_182 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_182,), kwargs = {}) # %mul_90 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_89, %relu_182), kwargs = {}) # %sub_183 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_182, %mul_90), kwargs = {}) # %relu_183 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_183,), kwargs = {}) # %add_90 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_89, %relu_183), kwargs = {}) # %sub_184 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_369, %getitem_1302), kwargs = {}) # %relu_184 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_184,), kwargs = {}) # %mul_91 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_90, %relu_184), kwargs = {}) # %sub_185 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_184, %mul_91), kwargs = {}) # %relu_185 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_185,), kwargs = {}) # %add_91 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_90, %relu_185), kwargs = {}) # %sub_186 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_373, %getitem_1316), kwargs = {}) # %relu_186 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_186,), kwargs = {}) # %mul_92 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_91, %relu_186), kwargs = {}) # %sub_187 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_186, %mul_92), kwargs = {}) # %relu_187 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_187,), kwargs = {}) # %add_92 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_91, %relu_187), kwargs = {}) # %sub_188 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_377, %getitem_1330), kwargs = {}) # %relu_188 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_188,), kwargs = {}) # %mul_93 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_92, %relu_188), kwargs = {}) # %sub_189 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_188, %mul_93), kwargs = {}) # %relu_189 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_189,), kwargs = {}) # %add_93 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_92, %relu_189), kwargs = {}) # %sub_190 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_381, %getitem_1344), kwargs = {}) # %relu_190 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_190,), kwargs = {}) # %mul_94 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_93, %relu_190), kwargs = {}) # %sub_191 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_190, %mul_94), kwargs = {}) # %relu_191 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_191,), kwargs = {}) # %add_94 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_93, %relu_191), kwargs = {}) # %sub_192 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_385, %getitem_1358), kwargs = {}) # %relu_192 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_192,), kwargs = {}) # %mul_95 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_94, %relu_192), kwargs = {}) # %sub_193 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_192, %mul_95), kwargs = {}) # %relu_193 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_193,), kwargs = {}) # %add_95 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_94, %relu_193), kwargs = {}) # %sub_194 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_389, %getitem_1372), kwargs = {}) # %relu_194 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_194,), kwargs = {}) # %mul_96 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_95, %relu_194), kwargs = {}) # %sub_195 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_194, %mul_96), kwargs = {}) # %relu_195 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_195,), kwargs = {}) # %add_96 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_95, %relu_195), kwargs = {}) # %sub_196 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_393, %getitem_1386), kwargs = {}) # %relu_196 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_196,), kwargs = {}) # %mul_97 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_96, %relu_196), kwargs = {}) # %sub_197 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_196, %mul_97), kwargs = {}) # %relu_197 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_197,), kwargs = {}) # %add_97 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_96, %relu_197), kwargs = {}) # %sub_198 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_397, %getitem_1400), kwargs = {}) # %relu_198 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_198,), kwargs = {}) # %mul_98 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_97, %relu_198), kwargs = {}) # %sub_199 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_198, %mul_98), kwargs = {}) # %relu_199 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_199,), kwargs = {}) # %add_98 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_97, %relu_199), kwargs = {}) # %sub_200 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_401, %getitem_1414), kwargs = {}) # %relu_200 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_200,), kwargs = {}) # %mul_99 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_98, %relu_200), kwargs = {}) # %sub_201 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_200, %mul_99), kwargs = {}) # %relu_201 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_201,), kwargs = {}) # %add_99 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_98, %relu_201), kwargs = {}) triton_poi_fused_add_minimum_mul_neg_relu_sub_5 = async_compile.triton('triton_poi_fused_add_minimum_mul_neg_relu_sub_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: '*fp32', 66: '*fp32', 67: '*fp32', 68: '*fp32', 69: '*fp32', 70: '*fp32', 71: '*fp32', 72: '*fp32', 73: '*fp32', 74: '*fp32', 75: '*fp32', 76: '*fp32', 77: '*fp32', 78: '*fp32', 79: '*fp32', 80: '*fp32', 81: '*fp32', 82: '*fp32', 83: '*fp32', 84: '*fp32', 85: '*fp32', 86: '*fp32', 87: '*fp32', 88: '*fp32', 89: '*fp32', 90: '*fp32', 91: '*fp32', 92: '*fp32', 93: '*fp32', 94: '*fp32', 95: '*fp32', 96: '*fp32', 97: '*fp32', 98: '*fp32', 99: '*fp32', 100: '*fp32', 101: '*fp32', 102: '*fp32', 103: '*fp32', 104: '*fp32', 105: '*fp32', 106: '*fp32', 107: '*fp32', 108: '*fp32', 109: '*fp32', 110: '*fp32', 111: '*fp32', 112: '*fp32', 113: '*fp32', 114: '*fp32', 115: '*fp32', 116: '*fp32', 117: '*fp32', 118: '*fp32', 119: '*fp32', 120: '*fp32', 121: '*fp32', 122: '*fp32', 123: '*fp32', 124: '*fp32', 125: '*fp32', 126: '*fp32', 127: '*fp32', 128: '*fp32', 129: '*fp32', 130: '*fp32', 131: '*fp32', 132: '*fp32', 133: '*fp32', 134: '*fp32', 135: '*fp32', 136: '*fp32', 137: '*fp32', 138: '*fp32', 139: '*fp32', 140: '*fp32', 141: '*fp32', 142: '*fp32', 143: '*fp32', 144: '*fp32', 145: '*fp32', 146: '*fp32', 147: '*fp32', 148: '*fp32', 149: '*fp32', 150: '*fp32', 151: '*fp32', 152: '*fp32', 153: '*fp32', 154: '*fp32', 155: '*fp32', 156: '*fp32', 157: '*fp32', 158: '*fp32', 159: '*fp32', 160: '*fp32', 161: '*fp32', 162: '*fp32', 163: '*fp32', 164: '*fp32', 165: '*fp32', 166: '*fp32', 167: '*fp32', 168: '*fp32', 169: '*fp32', 170: '*fp32', 171: '*fp32', 172: '*fp32', 173: '*fp32', 174: '*fp32', 175: '*fp32', 176: '*fp32', 177: '*fp32', 178: '*fp32', 179: '*fp32', 180: '*fp32', 181: '*fp32', 182: '*fp32', 183: '*fp32', 184: '*fp32', 185: '*fp32', 186: '*fp32', 187: '*fp32', 188: '*fp32', 189: '*fp32', 190: '*fp32', 191: '*fp32', 192: '*fp32', 193: '*fp32', 194: '*fp32', 195: '*fp32', 196: '*fp32', 197: '*fp32', 198: '*fp32', 199: '*fp32', 200: '*fp32', 201: '*fp32', 202: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_minimum_mul_neg_relu_sub_5', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr10', 'in_out_ptr11', 'in_out_ptr12', 'in_out_ptr13', 'in_out_ptr14', 'in_out_ptr15', 'in_out_ptr16', 'in_out_ptr17', 'in_out_ptr18', 'in_out_ptr19', 'in_out_ptr2', 'in_out_ptr20', 'in_out_ptr21', 'in_out_ptr22', 'in_out_ptr23', 'in_out_ptr24', 'in_out_ptr25', 'in_out_ptr26', 'in_out_ptr27', 'in_out_ptr28', 'in_out_ptr29', 'in_out_ptr3', 'in_out_ptr30', 'in_out_ptr31', 'in_out_ptr32', 'in_out_ptr33', 'in_out_ptr34', 'in_out_ptr35', 'in_out_ptr36', 'in_out_ptr37', 'in_out_ptr38', 'in_out_ptr39', 'in_out_ptr4', 'in_out_ptr40', 'in_out_ptr41', 'in_out_ptr42', 'in_out_ptr43', 'in_out_ptr44', 'in_out_ptr45', 'in_out_ptr46', 'in_out_ptr47', 'in_out_ptr48', 'in_out_ptr49', 'in_out_ptr5', 'in_out_ptr6', 'in_out_ptr7', 'in_out_ptr8', 'in_out_ptr9'], 'no_x_dim': False, 'num_load': 202, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_minimum_mul_neg_relu_sub_5(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_out_ptr4, in_out_ptr5, in_out_ptr6, in_out_ptr7, in_out_ptr8, in_out_ptr9, in_out_ptr10, in_out_ptr11, in_out_ptr12, in_out_ptr13, in_out_ptr14, in_out_ptr15, in_out_ptr16, in_out_ptr17, in_out_ptr18, in_out_ptr19, in_out_ptr20, in_out_ptr21, in_out_ptr22, in_out_ptr23, in_out_ptr24, in_out_ptr25, in_out_ptr26, in_out_ptr27, in_out_ptr28, in_out_ptr29, in_out_ptr30, in_out_ptr31, in_out_ptr32, in_out_ptr33, in_out_ptr34, in_out_ptr35, in_out_ptr36, in_out_ptr37, in_out_ptr38, in_out_ptr39, in_out_ptr40, in_out_ptr41, in_out_ptr42, in_out_ptr43, in_out_ptr44, in_out_ptr45, in_out_ptr46, in_out_ptr47, in_out_ptr48, in_out_ptr49, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, in_ptr64, in_ptr65, in_ptr66, in_ptr67, in_ptr68, in_ptr69, in_ptr70, in_ptr71, in_ptr72, in_ptr73, in_ptr74, in_ptr75, in_ptr76, in_ptr77, in_ptr78, in_ptr79, in_ptr80, in_ptr81, in_ptr82, in_ptr83, in_ptr84, in_ptr85, in_ptr86, in_ptr87, in_ptr88, in_ptr89, in_ptr90, in_ptr91, in_ptr92, in_ptr93, in_ptr94, in_ptr95, in_ptr96, in_ptr97, in_ptr98, in_ptr99, in_ptr100, in_ptr101, in_ptr102, in_ptr103, in_ptr104, in_ptr105, in_ptr106, in_ptr107, in_ptr108, in_ptr109, in_ptr110, in_ptr111, in_ptr112, in_ptr113, in_ptr114, in_ptr115, in_ptr116, in_ptr117, in_ptr118, in_ptr119, in_ptr120, in_ptr121, in_ptr122, in_ptr123, in_ptr124, in_ptr125, in_ptr126, in_ptr127, in_ptr128, in_ptr129, in_ptr130, in_ptr131, in_ptr132, in_ptr133, in_ptr134, in_ptr135, in_ptr136, in_ptr137, in_ptr138, in_ptr139, in_ptr140, in_ptr141, in_ptr142, in_ptr143, in_ptr144, in_ptr145, in_ptr146, in_ptr147, in_ptr148, in_ptr149, in_ptr150, in_ptr151, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp5 = tl.load(in_ptr1 + (x0), xmask) tmp7 = tl.load(in_ptr2 + (x0), xmask) tmp10 = tl.load(in_ptr3 + (x0), xmask) tmp13 = tl.load(in_ptr4 + (x0), xmask) tmp20 = tl.load(in_out_ptr1 + (x0), xmask) tmp22 = tl.load(in_ptr5 + (x0), xmask) tmp25 = tl.load(in_ptr6 + (x0), xmask) tmp28 = tl.load(in_ptr7 + (x0), xmask) tmp35 = tl.load(in_out_ptr2 + (x0), xmask) tmp37 = tl.load(in_ptr8 + (x0), xmask) tmp40 = tl.load(in_ptr9 + (x0), xmask) tmp43 = tl.load(in_ptr10 + (x0), xmask) tmp50 = tl.load(in_out_ptr3 + (x0), xmask) tmp52 = tl.load(in_ptr11 + (x0), xmask) tmp55 = tl.load(in_ptr12 + (x0), xmask) tmp58 = tl.load(in_ptr13 + (x0), xmask) tmp65 = tl.load(in_out_ptr4 + (x0), xmask) tmp67 = tl.load(in_ptr14 + (x0), xmask) tmp70 = tl.load(in_ptr15 + (x0), xmask) tmp73 = tl.load(in_ptr16 + (x0), xmask) tmp80 = tl.load(in_out_ptr5 + (x0), xmask) tmp82 = tl.load(in_ptr17 + (x0), xmask) tmp85 = tl.load(in_ptr18 + (x0), xmask) tmp88 = tl.load(in_ptr19 + (x0), xmask) tmp95 = tl.load(in_out_ptr6 + (x0), xmask) tmp97 = tl.load(in_ptr20 + (x0), xmask) tmp100 = tl.load(in_ptr21 + (x0), xmask) tmp103 = tl.load(in_ptr22 + (x0), xmask) tmp110 = tl.load(in_out_ptr7 + (x0), xmask) tmp112 = tl.load(in_ptr23 + (x0), xmask) tmp115 = tl.load(in_ptr24 + (x0), xmask) tmp118 = tl.load(in_ptr25 + (x0), xmask) tmp125 = tl.load(in_out_ptr8 + (x0), xmask) tmp127 = tl.load(in_ptr26 + (x0), xmask) tmp130 = tl.load(in_ptr27 + (x0), xmask) tmp133 = tl.load(in_ptr28 + (x0), xmask) tmp140 = tl.load(in_out_ptr9 + (x0), xmask) tmp142 = tl.load(in_ptr29 + (x0), xmask) tmp145 = tl.load(in_ptr30 + (x0), xmask) tmp148 = tl.load(in_ptr31 + (x0), xmask) tmp155 = tl.load(in_out_ptr10 + (x0), xmask) tmp157 = tl.load(in_ptr32 + (x0), xmask) tmp160 = tl.load(in_ptr33 + (x0), xmask) tmp163 = tl.load(in_ptr34 + (x0), xmask) tmp170 = tl.load(in_out_ptr11 + (x0), xmask) tmp172 = tl.load(in_ptr35 + (x0), xmask) tmp175 = tl.load(in_ptr36 + (x0), xmask) tmp178 = tl.load(in_ptr37 + (x0), xmask) tmp185 = tl.load(in_out_ptr12 + (x0), xmask) tmp187 = tl.load(in_ptr38 + (x0), xmask) tmp190 = tl.load(in_ptr39 + (x0), xmask) tmp193 = tl.load(in_ptr40 + (x0), xmask) tmp200 = tl.load(in_out_ptr13 + (x0), xmask) tmp202 = tl.load(in_ptr41 + (x0), xmask) tmp205 = tl.load(in_ptr42 + (x0), xmask) tmp208 = tl.load(in_ptr43 + (x0), xmask) tmp215 = tl.load(in_out_ptr14 + (x0), xmask) tmp217 = tl.load(in_ptr44 + (x0), xmask) tmp220 = tl.load(in_ptr45 + (x0), xmask) tmp223 = tl.load(in_ptr46 + (x0), xmask) tmp230 = tl.load(in_out_ptr15 + (x0), xmask) tmp232 = tl.load(in_ptr47 + (x0), xmask) tmp235 = tl.load(in_ptr48 + (x0), xmask) tmp238 = tl.load(in_ptr49 + (x0), xmask) tmp245 = tl.load(in_out_ptr16 + (x0), xmask) tmp247 = tl.load(in_ptr50 + (x0), xmask) tmp250 = tl.load(in_ptr51 + (x0), xmask) tmp253 = tl.load(in_ptr52 + (x0), xmask) tmp260 = tl.load(in_out_ptr17 + (x0), xmask) tmp262 = tl.load(in_ptr53 + (x0), xmask) tmp265 = tl.load(in_ptr54 + (x0), xmask) tmp268 = tl.load(in_ptr55 + (x0), xmask) tmp275 = tl.load(in_out_ptr18 + (x0), xmask) tmp277 = tl.load(in_ptr56 + (x0), xmask) tmp280 = tl.load(in_ptr57 + (x0), xmask) tmp283 = tl.load(in_ptr58 + (x0), xmask) tmp290 = tl.load(in_out_ptr19 + (x0), xmask) tmp292 = tl.load(in_ptr59 + (x0), xmask) tmp295 = tl.load(in_ptr60 + (x0), xmask) tmp298 = tl.load(in_ptr61 + (x0), xmask) tmp305 = tl.load(in_out_ptr20 + (x0), xmask) tmp307 = tl.load(in_ptr62 + (x0), xmask) tmp310 = tl.load(in_ptr63 + (x0), xmask) tmp313 = tl.load(in_ptr64 + (x0), xmask) tmp320 = tl.load(in_out_ptr21 + (x0), xmask) tmp322 = tl.load(in_ptr65 + (x0), xmask) tmp325 = tl.load(in_ptr66 + (x0), xmask) tmp328 = tl.load(in_ptr67 + (x0), xmask) tmp335 = tl.load(in_out_ptr22 + (x0), xmask) tmp337 = tl.load(in_ptr68 + (x0), xmask) tmp340 = tl.load(in_ptr69 + (x0), xmask) tmp343 = tl.load(in_ptr70 + (x0), xmask) tmp350 = tl.load(in_out_ptr23 + (x0), xmask) tmp352 = tl.load(in_ptr71 + (x0), xmask) tmp355 = tl.load(in_ptr72 + (x0), xmask) tmp358 = tl.load(in_ptr73 + (x0), xmask) tmp365 = tl.load(in_out_ptr24 + (x0), xmask) tmp367 = tl.load(in_ptr74 + (x0), xmask) tmp370 = tl.load(in_ptr75 + (x0), xmask) tmp373 = tl.load(in_ptr76 + (x0), xmask) tmp380 = tl.load(in_out_ptr25 + (x0), xmask) tmp382 = tl.load(in_ptr77 + (x0), xmask) tmp385 = tl.load(in_ptr78 + (x0), xmask) tmp388 = tl.load(in_ptr79 + (x0), xmask) tmp395 = tl.load(in_out_ptr26 + (x0), xmask) tmp397 = tl.load(in_ptr80 + (x0), xmask) tmp400 = tl.load(in_ptr81 + (x0), xmask) tmp403 = tl.load(in_ptr82 + (x0), xmask) tmp410 = tl.load(in_out_ptr27 + (x0), xmask) tmp412 = tl.load(in_ptr83 + (x0), xmask) tmp415 = tl.load(in_ptr84 + (x0), xmask) tmp418 = tl.load(in_ptr85 + (x0), xmask) tmp425 = tl.load(in_out_ptr28 + (x0), xmask) tmp427 = tl.load(in_ptr86 + (x0), xmask) tmp430 = tl.load(in_ptr87 + (x0), xmask) tmp433 = tl.load(in_ptr88 + (x0), xmask) tmp440 = tl.load(in_out_ptr29 + (x0), xmask) tmp442 = tl.load(in_ptr89 + (x0), xmask) tmp445 = tl.load(in_ptr90 + (x0), xmask) tmp448 = tl.load(in_ptr91 + (x0), xmask) tmp455 = tl.load(in_out_ptr30 + (x0), xmask) tmp457 = tl.load(in_ptr92 + (x0), xmask) tmp460 = tl.load(in_ptr93 + (x0), xmask) tmp463 = tl.load(in_ptr94 + (x0), xmask) tmp470 = tl.load(in_out_ptr31 + (x0), xmask) tmp472 = tl.load(in_ptr95 + (x0), xmask) tmp475 = tl.load(in_ptr96 + (x0), xmask) tmp478 = tl.load(in_ptr97 + (x0), xmask) tmp485 = tl.load(in_out_ptr32 + (x0), xmask) tmp487 = tl.load(in_ptr98 + (x0), xmask) tmp490 = tl.load(in_ptr99 + (x0), xmask) tmp493 = tl.load(in_ptr100 + (x0), xmask) tmp500 = tl.load(in_out_ptr33 + (x0), xmask) tmp502 = tl.load(in_ptr101 + (x0), xmask) tmp505 = tl.load(in_ptr102 + (x0), xmask) tmp508 = tl.load(in_ptr103 + (x0), xmask) tmp515 = tl.load(in_out_ptr34 + (x0), xmask) tmp517 = tl.load(in_ptr104 + (x0), xmask) tmp520 = tl.load(in_ptr105 + (x0), xmask) tmp523 = tl.load(in_ptr106 + (x0), xmask) tmp530 = tl.load(in_out_ptr35 + (x0), xmask) tmp532 = tl.load(in_ptr107 + (x0), xmask) tmp535 = tl.load(in_ptr108 + (x0), xmask) tmp538 = tl.load(in_ptr109 + (x0), xmask) tmp545 = tl.load(in_out_ptr36 + (x0), xmask) tmp547 = tl.load(in_ptr110 + (x0), xmask) tmp550 = tl.load(in_ptr111 + (x0), xmask) tmp553 = tl.load(in_ptr112 + (x0), xmask) tmp560 = tl.load(in_out_ptr37 + (x0), xmask) tmp562 = tl.load(in_ptr113 + (x0), xmask) tmp565 = tl.load(in_ptr114 + (x0), xmask) tmp568 = tl.load(in_ptr115 + (x0), xmask) tmp575 = tl.load(in_out_ptr38 + (x0), xmask) tmp577 = tl.load(in_ptr116 + (x0), xmask) tmp580 = tl.load(in_ptr117 + (x0), xmask) tmp583 = tl.load(in_ptr118 + (x0), xmask) tmp590 = tl.load(in_out_ptr39 + (x0), xmask) tmp592 = tl.load(in_ptr119 + (x0), xmask) tmp595 = tl.load(in_ptr120 + (x0), xmask) tmp598 = tl.load(in_ptr121 + (x0), xmask) tmp605 = tl.load(in_out_ptr40 + (x0), xmask) tmp607 = tl.load(in_ptr122 + (x0), xmask) tmp610 = tl.load(in_ptr123 + (x0), xmask) tmp613 = tl.load(in_ptr124 + (x0), xmask) tmp620 = tl.load(in_out_ptr41 + (x0), xmask) tmp622 = tl.load(in_ptr125 + (x0), xmask) tmp625 = tl.load(in_ptr126 + (x0), xmask) tmp628 = tl.load(in_ptr127 + (x0), xmask) tmp635 = tl.load(in_out_ptr42 + (x0), xmask) tmp637 = tl.load(in_ptr128 + (x0), xmask) tmp640 = tl.load(in_ptr129 + (x0), xmask) tmp643 = tl.load(in_ptr130 + (x0), xmask) tmp650 = tl.load(in_out_ptr43 + (x0), xmask) tmp652 = tl.load(in_ptr131 + (x0), xmask) tmp655 = tl.load(in_ptr132 + (x0), xmask) tmp658 = tl.load(in_ptr133 + (x0), xmask) tmp665 = tl.load(in_out_ptr44 + (x0), xmask) tmp667 = tl.load(in_ptr134 + (x0), xmask) tmp670 = tl.load(in_ptr135 + (x0), xmask) tmp673 = tl.load(in_ptr136 + (x0), xmask) tmp680 = tl.load(in_out_ptr45 + (x0), xmask) tmp682 = tl.load(in_ptr137 + (x0), xmask) tmp685 = tl.load(in_ptr138 + (x0), xmask) tmp688 = tl.load(in_ptr139 + (x0), xmask) tmp695 = tl.load(in_out_ptr46 + (x0), xmask) tmp697 = tl.load(in_ptr140 + (x0), xmask) tmp700 = tl.load(in_ptr141 + (x0), xmask) tmp703 = tl.load(in_ptr142 + (x0), xmask) tmp710 = tl.load(in_out_ptr47 + (x0), xmask) tmp712 = tl.load(in_ptr143 + (x0), xmask) tmp715 = tl.load(in_ptr144 + (x0), xmask) tmp718 = tl.load(in_ptr145 + (x0), xmask) tmp725 = tl.load(in_out_ptr48 + (x0), xmask) tmp727 = tl.load(in_ptr146 + (x0), xmask) tmp730 = tl.load(in_ptr147 + (x0), xmask) tmp733 = tl.load(in_ptr148 + (x0), xmask) tmp740 = tl.load(in_out_ptr49 + (x0), xmask) tmp742 = tl.load(in_ptr149 + (x0), xmask) tmp745 = tl.load(in_ptr150 + (x0), xmask) tmp748 = tl.load(in_ptr151 + (x0), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = -tmp5 tmp8 = -tmp7 tmp9 = triton_helpers.minimum(tmp6, tmp8) tmp11 = -tmp10 tmp12 = triton_helpers.minimum(tmp9, tmp11) tmp14 = tmp12 - tmp13 tmp15 = triton_helpers.maximum(tmp3, tmp14) tmp16 = tmp4 * tmp15 tmp17 = tmp15 - tmp16 tmp18 = triton_helpers.maximum(tmp3, tmp17) tmp19 = tmp4 + tmp18 tmp21 = -tmp20 tmp23 = -tmp22 tmp24 = triton_helpers.minimum(tmp21, tmp23) tmp26 = -tmp25 tmp27 = triton_helpers.minimum(tmp24, tmp26) tmp29 = tmp27 - tmp28 tmp30 = triton_helpers.maximum(tmp3, tmp29) tmp31 = tmp19 * tmp30 tmp32 = tmp30 - tmp31 tmp33 = triton_helpers.maximum(tmp3, tmp32) tmp34 = tmp19 + tmp33 tmp36 = -tmp35 tmp38 = -tmp37 tmp39 = triton_helpers.minimum(tmp36, tmp38) tmp41 = -tmp40 tmp42 = triton_helpers.minimum(tmp39, tmp41) tmp44 = tmp42 - tmp43 tmp45 = triton_helpers.maximum(tmp3, tmp44) tmp46 = tmp34 * tmp45 tmp47 = tmp45 - tmp46 tmp48 = triton_helpers.maximum(tmp3, tmp47) tmp49 = tmp34 + tmp48 tmp51 = -tmp50 tmp53 = -tmp52 tmp54 = triton_helpers.minimum(tmp51, tmp53) tmp56 = -tmp55 tmp57 = triton_helpers.minimum(tmp54, tmp56) tmp59 = tmp57 - tmp58 tmp60 = triton_helpers.maximum(tmp3, tmp59) tmp61 = tmp49 * tmp60 tmp62 = tmp60 - tmp61 tmp63 = triton_helpers.maximum(tmp3, tmp62) tmp64 = tmp49 + tmp63 tmp66 = -tmp65 tmp68 = -tmp67 tmp69 = triton_helpers.minimum(tmp66, tmp68) tmp71 = -tmp70 tmp72 = triton_helpers.minimum(tmp69, tmp71) tmp74 = tmp72 - tmp73 tmp75 = triton_helpers.maximum(tmp3, tmp74) tmp76 = tmp64 * tmp75 tmp77 = tmp75 - tmp76 tmp78 = triton_helpers.maximum(tmp3, tmp77) tmp79 = tmp64 + tmp78 tmp81 = -tmp80 tmp83 = -tmp82 tmp84 = triton_helpers.minimum(tmp81, tmp83) tmp86 = -tmp85 tmp87 = triton_helpers.minimum(tmp84, tmp86) tmp89 = tmp87 - tmp88 tmp90 = triton_helpers.maximum(tmp3, tmp89) tmp91 = tmp79 * tmp90 tmp92 = tmp90 - tmp91 tmp93 = triton_helpers.maximum(tmp3, tmp92) tmp94 = tmp79 + tmp93 tmp96 = -tmp95 tmp98 = -tmp97 tmp99 = triton_helpers.minimum(tmp96, tmp98) tmp101 = -tmp100 tmp102 = triton_helpers.minimum(tmp99, tmp101) tmp104 = tmp102 - tmp103 tmp105 = triton_helpers.maximum(tmp3, tmp104) tmp106 = tmp94 * tmp105 tmp107 = tmp105 - tmp106 tmp108 = triton_helpers.maximum(tmp3, tmp107) tmp109 = tmp94 + tmp108 tmp111 = -tmp110 tmp113 = -tmp112 tmp114 = triton_helpers.minimum(tmp111, tmp113) tmp116 = -tmp115 tmp117 = triton_helpers.minimum(tmp114, tmp116) tmp119 = tmp117 - tmp118 tmp120 = triton_helpers.maximum(tmp3, tmp119) tmp121 = tmp109 * tmp120 tmp122 = tmp120 - tmp121 tmp123 = triton_helpers.maximum(tmp3, tmp122) tmp124 = tmp109 + tmp123 tmp126 = -tmp125 tmp128 = -tmp127 tmp129 = triton_helpers.minimum(tmp126, tmp128) tmp131 = -tmp130 tmp132 = triton_helpers.minimum(tmp129, tmp131) tmp134 = tmp132 - tmp133 tmp135 = triton_helpers.maximum(tmp3, tmp134) tmp136 = tmp124 * tmp135 tmp137 = tmp135 - tmp136 tmp138 = triton_helpers.maximum(tmp3, tmp137) tmp139 = tmp124 + tmp138 tmp141 = -tmp140 tmp143 = -tmp142 tmp144 = triton_helpers.minimum(tmp141, tmp143) tmp146 = -tmp145 tmp147 = triton_helpers.minimum(tmp144, tmp146) tmp149 = tmp147 - tmp148 tmp150 = triton_helpers.maximum(tmp3, tmp149) tmp151 = tmp139 * tmp150 tmp152 = tmp150 - tmp151 tmp153 = triton_helpers.maximum(tmp3, tmp152) tmp154 = tmp139 + tmp153 tmp156 = -tmp155 tmp158 = -tmp157 tmp159 = triton_helpers.minimum(tmp156, tmp158) tmp161 = -tmp160 tmp162 = triton_helpers.minimum(tmp159, tmp161) tmp164 = tmp162 - tmp163 tmp165 = triton_helpers.maximum(tmp3, tmp164) tmp166 = tmp154 * tmp165 tmp167 = tmp165 - tmp166 tmp168 = triton_helpers.maximum(tmp3, tmp167) tmp169 = tmp154 + tmp168 tmp171 = -tmp170 tmp173 = -tmp172 tmp174 = triton_helpers.minimum(tmp171, tmp173) tmp176 = -tmp175 tmp177 = triton_helpers.minimum(tmp174, tmp176) tmp179 = tmp177 - tmp178 tmp180 = triton_helpers.maximum(tmp3, tmp179) tmp181 = tmp169 * tmp180 tmp182 = tmp180 - tmp181 tmp183 = triton_helpers.maximum(tmp3, tmp182) tmp184 = tmp169 + tmp183 tmp186 = -tmp185 tmp188 = -tmp187 tmp189 = triton_helpers.minimum(tmp186, tmp188) tmp191 = -tmp190 tmp192 = triton_helpers.minimum(tmp189, tmp191) tmp194 = tmp192 - tmp193 tmp195 = triton_helpers.maximum(tmp3, tmp194) tmp196 = tmp184 * tmp195 tmp197 = tmp195 - tmp196 tmp198 = triton_helpers.maximum(tmp3, tmp197) tmp199 = tmp184 + tmp198 tmp201 = -tmp200 tmp203 = -tmp202 tmp204 = triton_helpers.minimum(tmp201, tmp203) tmp206 = -tmp205 tmp207 = triton_helpers.minimum(tmp204, tmp206) tmp209 = tmp207 - tmp208 tmp210 = triton_helpers.maximum(tmp3, tmp209) tmp211 = tmp199 * tmp210 tmp212 = tmp210 - tmp211 tmp213 = triton_helpers.maximum(tmp3, tmp212) tmp214 = tmp199 + tmp213 tmp216 = -tmp215 tmp218 = -tmp217 tmp219 = triton_helpers.minimum(tmp216, tmp218) tmp221 = -tmp220 tmp222 = triton_helpers.minimum(tmp219, tmp221) tmp224 = tmp222 - tmp223 tmp225 = triton_helpers.maximum(tmp3, tmp224) tmp226 = tmp214 * tmp225 tmp227 = tmp225 - tmp226 tmp228 = triton_helpers.maximum(tmp3, tmp227) tmp229 = tmp214 + tmp228 tmp231 = -tmp230 tmp233 = -tmp232 tmp234 = triton_helpers.minimum(tmp231, tmp233) tmp236 = -tmp235 tmp237 = triton_helpers.minimum(tmp234, tmp236) tmp239 = tmp237 - tmp238 tmp240 = triton_helpers.maximum(tmp3, tmp239) tmp241 = tmp229 * tmp240 tmp242 = tmp240 - tmp241 tmp243 = triton_helpers.maximum(tmp3, tmp242) tmp244 = tmp229 + tmp243 tmp246 = -tmp245 tmp248 = -tmp247 tmp249 = triton_helpers.minimum(tmp246, tmp248) tmp251 = -tmp250 tmp252 = triton_helpers.minimum(tmp249, tmp251) tmp254 = tmp252 - tmp253 tmp255 = triton_helpers.maximum(tmp3, tmp254) tmp256 = tmp244 * tmp255 tmp257 = tmp255 - tmp256 tmp258 = triton_helpers.maximum(tmp3, tmp257) tmp259 = tmp244 + tmp258 tmp261 = -tmp260 tmp263 = -tmp262 tmp264 = triton_helpers.minimum(tmp261, tmp263) tmp266 = -tmp265 tmp267 = triton_helpers.minimum(tmp264, tmp266) tmp269 = tmp267 - tmp268 tmp270 = triton_helpers.maximum(tmp3, tmp269) tmp271 = tmp259 * tmp270 tmp272 = tmp270 - tmp271 tmp273 = triton_helpers.maximum(tmp3, tmp272) tmp274 = tmp259 + tmp273 tmp276 = -tmp275 tmp278 = -tmp277 tmp279 = triton_helpers.minimum(tmp276, tmp278) tmp281 = -tmp280 tmp282 = triton_helpers.minimum(tmp279, tmp281) tmp284 = tmp282 - tmp283 tmp285 = triton_helpers.maximum(tmp3, tmp284) tmp286 = tmp274 * tmp285 tmp287 = tmp285 - tmp286 tmp288 = triton_helpers.maximum(tmp3, tmp287) tmp289 = tmp274 + tmp288 tmp291 = -tmp290 tmp293 = -tmp292 tmp294 = triton_helpers.minimum(tmp291, tmp293) tmp296 = -tmp295 tmp297 = triton_helpers.minimum(tmp294, tmp296) tmp299 = tmp297 - tmp298 tmp300 = triton_helpers.maximum(tmp3, tmp299) tmp301 = tmp289 * tmp300 tmp302 = tmp300 - tmp301 tmp303 = triton_helpers.maximum(tmp3, tmp302) tmp304 = tmp289 + tmp303 tmp306 = -tmp305 tmp308 = -tmp307 tmp309 = triton_helpers.minimum(tmp306, tmp308) tmp311 = -tmp310 tmp312 = triton_helpers.minimum(tmp309, tmp311) tmp314 = tmp312 - tmp313 tmp315 = triton_helpers.maximum(tmp3, tmp314) tmp316 = tmp304 * tmp315 tmp317 = tmp315 - tmp316 tmp318 = triton_helpers.maximum(tmp3, tmp317) tmp319 = tmp304 + tmp318 tmp321 = -tmp320 tmp323 = -tmp322 tmp324 = triton_helpers.minimum(tmp321, tmp323) tmp326 = -tmp325 tmp327 = triton_helpers.minimum(tmp324, tmp326) tmp329 = tmp327 - tmp328 tmp330 = triton_helpers.maximum(tmp3, tmp329) tmp331 = tmp319 * tmp330 tmp332 = tmp330 - tmp331 tmp333 = triton_helpers.maximum(tmp3, tmp332) tmp334 = tmp319 + tmp333 tmp336 = -tmp335 tmp338 = -tmp337 tmp339 = triton_helpers.minimum(tmp336, tmp338) tmp341 = -tmp340 tmp342 = triton_helpers.minimum(tmp339, tmp341) tmp344 = tmp342 - tmp343 tmp345 = triton_helpers.maximum(tmp3, tmp344) tmp346 = tmp334 * tmp345 tmp347 = tmp345 - tmp346 tmp348 = triton_helpers.maximum(tmp3, tmp347) tmp349 = tmp334 + tmp348 tmp351 = -tmp350 tmp353 = -tmp352 tmp354 = triton_helpers.minimum(tmp351, tmp353) tmp356 = -tmp355 tmp357 = triton_helpers.minimum(tmp354, tmp356) tmp359 = tmp357 - tmp358 tmp360 = triton_helpers.maximum(tmp3, tmp359) tmp361 = tmp349 * tmp360 tmp362 = tmp360 - tmp361 tmp363 = triton_helpers.maximum(tmp3, tmp362) tmp364 = tmp349 + tmp363 tmp366 = -tmp365 tmp368 = -tmp367 tmp369 = triton_helpers.minimum(tmp366, tmp368) tmp371 = -tmp370 tmp372 = triton_helpers.minimum(tmp369, tmp371) tmp374 = tmp372 - tmp373 tmp375 = triton_helpers.maximum(tmp3, tmp374) tmp376 = tmp364 * tmp375 tmp377 = tmp375 - tmp376 tmp378 = triton_helpers.maximum(tmp3, tmp377) tmp379 = tmp364 + tmp378 tmp381 = -tmp380 tmp383 = -tmp382 tmp384 = triton_helpers.minimum(tmp381, tmp383) tmp386 = -tmp385 tmp387 = triton_helpers.minimum(tmp384, tmp386) tmp389 = tmp387 - tmp388 tmp390 = triton_helpers.maximum(tmp3, tmp389) tmp391 = tmp379 * tmp390 tmp392 = tmp390 - tmp391 tmp393 = triton_helpers.maximum(tmp3, tmp392) tmp394 = tmp379 + tmp393 tmp396 = -tmp395 tmp398 = -tmp397 tmp399 = triton_helpers.minimum(tmp396, tmp398) tmp401 = -tmp400 tmp402 = triton_helpers.minimum(tmp399, tmp401) tmp404 = tmp402 - tmp403 tmp405 = triton_helpers.maximum(tmp3, tmp404) tmp406 = tmp394 * tmp405 tmp407 = tmp405 - tmp406 tmp408 = triton_helpers.maximum(tmp3, tmp407) tmp409 = tmp394 + tmp408 tmp411 = -tmp410 tmp413 = -tmp412 tmp414 = triton_helpers.minimum(tmp411, tmp413) tmp416 = -tmp415 tmp417 = triton_helpers.minimum(tmp414, tmp416) tmp419 = tmp417 - tmp418 tmp420 = triton_helpers.maximum(tmp3, tmp419) tmp421 = tmp409 * tmp420 tmp422 = tmp420 - tmp421 tmp423 = triton_helpers.maximum(tmp3, tmp422) tmp424 = tmp409 + tmp423 tmp426 = -tmp425 tmp428 = -tmp427 tmp429 = triton_helpers.minimum(tmp426, tmp428) tmp431 = -tmp430 tmp432 = triton_helpers.minimum(tmp429, tmp431) tmp434 = tmp432 - tmp433 tmp435 = triton_helpers.maximum(tmp3, tmp434) tmp436 = tmp424 * tmp435 tmp437 = tmp435 - tmp436 tmp438 = triton_helpers.maximum(tmp3, tmp437) tmp439 = tmp424 + tmp438 tmp441 = -tmp440 tmp443 = -tmp442 tmp444 = triton_helpers.minimum(tmp441, tmp443) tmp446 = -tmp445 tmp447 = triton_helpers.minimum(tmp444, tmp446) tmp449 = tmp447 - tmp448 tmp450 = triton_helpers.maximum(tmp3, tmp449) tmp451 = tmp439 * tmp450 tmp452 = tmp450 - tmp451 tmp453 = triton_helpers.maximum(tmp3, tmp452) tmp454 = tmp439 + tmp453 tmp456 = -tmp455 tmp458 = -tmp457 tmp459 = triton_helpers.minimum(tmp456, tmp458) tmp461 = -tmp460 tmp462 = triton_helpers.minimum(tmp459, tmp461) tmp464 = tmp462 - tmp463 tmp465 = triton_helpers.maximum(tmp3, tmp464) tmp466 = tmp454 * tmp465 tmp467 = tmp465 - tmp466 tmp468 = triton_helpers.maximum(tmp3, tmp467) tmp469 = tmp454 + tmp468 tmp471 = -tmp470 tmp473 = -tmp472 tmp474 = triton_helpers.minimum(tmp471, tmp473) tmp476 = -tmp475 tmp477 = triton_helpers.minimum(tmp474, tmp476) tmp479 = tmp477 - tmp478 tmp480 = triton_helpers.maximum(tmp3, tmp479) tmp481 = tmp469 * tmp480 tmp482 = tmp480 - tmp481 tmp483 = triton_helpers.maximum(tmp3, tmp482) tmp484 = tmp469 + tmp483 tmp486 = -tmp485 tmp488 = -tmp487 tmp489 = triton_helpers.minimum(tmp486, tmp488) tmp491 = -tmp490 tmp492 = triton_helpers.minimum(tmp489, tmp491) tmp494 = tmp492 - tmp493 tmp495 = triton_helpers.maximum(tmp3, tmp494) tmp496 = tmp484 * tmp495 tmp497 = tmp495 - tmp496 tmp498 = triton_helpers.maximum(tmp3, tmp497) tmp499 = tmp484 + tmp498 tmp501 = -tmp500 tmp503 = -tmp502 tmp504 = triton_helpers.minimum(tmp501, tmp503) tmp506 = -tmp505 tmp507 = triton_helpers.minimum(tmp504, tmp506) tmp509 = tmp507 - tmp508 tmp510 = triton_helpers.maximum(tmp3, tmp509) tmp511 = tmp499 * tmp510 tmp512 = tmp510 - tmp511 tmp513 = triton_helpers.maximum(tmp3, tmp512) tmp514 = tmp499 + tmp513 tmp516 = -tmp515 tmp518 = -tmp517 tmp519 = triton_helpers.minimum(tmp516, tmp518) tmp521 = -tmp520 tmp522 = triton_helpers.minimum(tmp519, tmp521) tmp524 = tmp522 - tmp523 tmp525 = triton_helpers.maximum(tmp3, tmp524) tmp526 = tmp514 * tmp525 tmp527 = tmp525 - tmp526 tmp528 = triton_helpers.maximum(tmp3, tmp527) tmp529 = tmp514 + tmp528 tmp531 = -tmp530 tmp533 = -tmp532 tmp534 = triton_helpers.minimum(tmp531, tmp533) tmp536 = -tmp535 tmp537 = triton_helpers.minimum(tmp534, tmp536) tmp539 = tmp537 - tmp538 tmp540 = triton_helpers.maximum(tmp3, tmp539) tmp541 = tmp529 * tmp540 tmp542 = tmp540 - tmp541 tmp543 = triton_helpers.maximum(tmp3, tmp542) tmp544 = tmp529 + tmp543 tmp546 = -tmp545 tmp548 = -tmp547 tmp549 = triton_helpers.minimum(tmp546, tmp548) tmp551 = -tmp550 tmp552 = triton_helpers.minimum(tmp549, tmp551) tmp554 = tmp552 - tmp553 tmp555 = triton_helpers.maximum(tmp3, tmp554) tmp556 = tmp544 * tmp555 tmp557 = tmp555 - tmp556 tmp558 = triton_helpers.maximum(tmp3, tmp557) tmp559 = tmp544 + tmp558 tmp561 = -tmp560 tmp563 = -tmp562 tmp564 = triton_helpers.minimum(tmp561, tmp563) tmp566 = -tmp565 tmp567 = triton_helpers.minimum(tmp564, tmp566) tmp569 = tmp567 - tmp568 tmp570 = triton_helpers.maximum(tmp3, tmp569) tmp571 = tmp559 * tmp570 tmp572 = tmp570 - tmp571 tmp573 = triton_helpers.maximum(tmp3, tmp572) tmp574 = tmp559 + tmp573 tmp576 = -tmp575 tmp578 = -tmp577 tmp579 = triton_helpers.minimum(tmp576, tmp578) tmp581 = -tmp580 tmp582 = triton_helpers.minimum(tmp579, tmp581) tmp584 = tmp582 - tmp583 tmp585 = triton_helpers.maximum(tmp3, tmp584) tmp586 = tmp574 * tmp585 tmp587 = tmp585 - tmp586 tmp588 = triton_helpers.maximum(tmp3, tmp587) tmp589 = tmp574 + tmp588 tmp591 = -tmp590 tmp593 = -tmp592 tmp594 = triton_helpers.minimum(tmp591, tmp593) tmp596 = -tmp595 tmp597 = triton_helpers.minimum(tmp594, tmp596) tmp599 = tmp597 - tmp598 tmp600 = triton_helpers.maximum(tmp3, tmp599) tmp601 = tmp589 * tmp600 tmp602 = tmp600 - tmp601 tmp603 = triton_helpers.maximum(tmp3, tmp602) tmp604 = tmp589 + tmp603 tmp606 = -tmp605 tmp608 = -tmp607 tmp609 = triton_helpers.minimum(tmp606, tmp608) tmp611 = -tmp610 tmp612 = triton_helpers.minimum(tmp609, tmp611) tmp614 = tmp612 - tmp613 tmp615 = triton_helpers.maximum(tmp3, tmp614) tmp616 = tmp604 * tmp615 tmp617 = tmp615 - tmp616 tmp618 = triton_helpers.maximum(tmp3, tmp617) tmp619 = tmp604 + tmp618 tmp621 = -tmp620 tmp623 = -tmp622 tmp624 = triton_helpers.minimum(tmp621, tmp623) tmp626 = -tmp625 tmp627 = triton_helpers.minimum(tmp624, tmp626) tmp629 = tmp627 - tmp628 tmp630 = triton_helpers.maximum(tmp3, tmp629) tmp631 = tmp619 * tmp630 tmp632 = tmp630 - tmp631 tmp633 = triton_helpers.maximum(tmp3, tmp632) tmp634 = tmp619 + tmp633 tmp636 = -tmp635 tmp638 = -tmp637 tmp639 = triton_helpers.minimum(tmp636, tmp638) tmp641 = -tmp640 tmp642 = triton_helpers.minimum(tmp639, tmp641) tmp644 = tmp642 - tmp643 tmp645 = triton_helpers.maximum(tmp3, tmp644) tmp646 = tmp634 * tmp645 tmp647 = tmp645 - tmp646 tmp648 = triton_helpers.maximum(tmp3, tmp647) tmp649 = tmp634 + tmp648 tmp651 = -tmp650 tmp653 = -tmp652 tmp654 = triton_helpers.minimum(tmp651, tmp653) tmp656 = -tmp655 tmp657 = triton_helpers.minimum(tmp654, tmp656) tmp659 = tmp657 - tmp658 tmp660 = triton_helpers.maximum(tmp3, tmp659) tmp661 = tmp649 * tmp660 tmp662 = tmp660 - tmp661 tmp663 = triton_helpers.maximum(tmp3, tmp662) tmp664 = tmp649 + tmp663 tmp666 = -tmp665 tmp668 = -tmp667 tmp669 = triton_helpers.minimum(tmp666, tmp668) tmp671 = -tmp670 tmp672 = triton_helpers.minimum(tmp669, tmp671) tmp674 = tmp672 - tmp673 tmp675 = triton_helpers.maximum(tmp3, tmp674) tmp676 = tmp664 * tmp675 tmp677 = tmp675 - tmp676 tmp678 = triton_helpers.maximum(tmp3, tmp677) tmp679 = tmp664 + tmp678 tmp681 = -tmp680 tmp683 = -tmp682 tmp684 = triton_helpers.minimum(tmp681, tmp683) tmp686 = -tmp685 tmp687 = triton_helpers.minimum(tmp684, tmp686) tmp689 = tmp687 - tmp688 tmp690 = triton_helpers.maximum(tmp3, tmp689) tmp691 = tmp679 * tmp690 tmp692 = tmp690 - tmp691 tmp693 = triton_helpers.maximum(tmp3, tmp692) tmp694 = tmp679 + tmp693 tmp696 = -tmp695 tmp698 = -tmp697 tmp699 = triton_helpers.minimum(tmp696, tmp698) tmp701 = -tmp700 tmp702 = triton_helpers.minimum(tmp699, tmp701) tmp704 = tmp702 - tmp703 tmp705 = triton_helpers.maximum(tmp3, tmp704) tmp706 = tmp694 * tmp705 tmp707 = tmp705 - tmp706 tmp708 = triton_helpers.maximum(tmp3, tmp707) tmp709 = tmp694 + tmp708 tmp711 = -tmp710 tmp713 = -tmp712 tmp714 = triton_helpers.minimum(tmp711, tmp713) tmp716 = -tmp715 tmp717 = triton_helpers.minimum(tmp714, tmp716) tmp719 = tmp717 - tmp718 tmp720 = triton_helpers.maximum(tmp3, tmp719) tmp721 = tmp709 * tmp720 tmp722 = tmp720 - tmp721 tmp723 = triton_helpers.maximum(tmp3, tmp722) tmp724 = tmp709 + tmp723 tmp726 = -tmp725 tmp728 = -tmp727 tmp729 = triton_helpers.minimum(tmp726, tmp728) tmp731 = -tmp730 tmp732 = triton_helpers.minimum(tmp729, tmp731) tmp734 = tmp732 - tmp733 tmp735 = triton_helpers.maximum(tmp3, tmp734) tmp736 = tmp724 * tmp735 tmp737 = tmp735 - tmp736 tmp738 = triton_helpers.maximum(tmp3, tmp737) tmp739 = tmp724 + tmp738 tmp741 = -tmp740 tmp743 = -tmp742 tmp744 = triton_helpers.minimum(tmp741, tmp743) tmp746 = -tmp745 tmp747 = triton_helpers.minimum(tmp744, tmp746) tmp749 = tmp747 - tmp748 tmp750 = triton_helpers.maximum(tmp3, tmp749) tmp751 = tmp739 * tmp750 tmp752 = tmp750 - tmp751 tmp753 = triton_helpers.maximum(tmp3, tmp752) tmp754 = tmp739 + tmp753 tl.store(in_out_ptr49 + (x0), tmp754, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/lj/clj4linx7ot7tqznp76xkrp65jwk2xskp6l567hzs75w3qtedynq.py # Topologically Sorted Source Nodes: [p1_1, p3_1, min_3, p2_1, img, p1_3, p3_3, min_7, p2_3, img_1, p1_5, p3_5, min_11, p2_5, img_2, p1_7, p3_7, min_15, p2_7, img_3, p1_9, p3_9, min_19, p2_9, img_4, p1_11, p3_11, min_23, p2_11, img_5, p1_13, p3_13, min_27, p2_13, img_6, p1_15, p3_15, min_31, p2_15, img_7, p1_17, p3_17, min_35, p2_17, img_8, p1_19, p3_19, min_39, p2_19, img_9, p1_21, p3_21, min_43, p2_21, img_10, p1_23, p3_23, min_47, p2_23, img_11, p1_25, p3_25, min_51, p2_25, img_12, p1_27, p3_27, min_55, p2_27, img_13, p1_29, p3_29, min_59, p2_29, img_14, p1_31, p3_31, min_63, p2_31, img_15, p1_33, p3_33, min_67, p2_33, img_16, p1_35, p3_35, min_71, p2_35, img_17, p1_37, p3_37, min_75, p2_37, img_18, p1_39, p3_39, min_79, p2_39, img_19, p1_41, p3_41, min_83, p2_41, img_20, p1_43, p3_43, min_87, p2_43, img_21, p1_45, p3_45, min_91, p2_45, img_22, p1_47, p3_47, min_95, p2_47, img_23, p1_49, p3_49, min_99, p2_49, img_24, p1_51, p3_51, min_103, p2_51, img_25, p1_53, p3_53, min_107, p2_53, img_26, p1_55, p3_55, min_111, p2_55, img_27, p1_57, p3_57, min_115, p2_57, img_28, p1_59, p3_59, min_119, p2_59, img_29, p1_61, p3_61, min_123, p2_61, img_30, p1_63, p3_63, min_127, p2_63, img_31, p1_65, p3_65, min_131, p2_65, img_32, p1_67, p3_67, min_135, p2_67, img_33, p1_69, p3_69, min_139, p2_69, img_34, p1_71, p3_71, min_143, p2_71, img_35, p1_73, p3_73, min_147, p2_73, img_36, p1_75, p3_75, min_151, p2_75, img_37, p1_77, p3_77, min_155, p2_77, img_38, p1_79, p3_79, min_159, p2_79, img_39, p1_81, p3_81, min_163, p2_81, img_40, p1_83, p3_83, min_167, p2_83, img_41, p1_85, p3_85, min_171, p2_85, img_42, p1_87, p3_87, min_175, p2_87, img_43, p1_89, p3_89, min_179, p2_89, img_44, p1_91, p3_91, min_183, p2_91, img_45, p1_93, p3_93, min_187, p2_93, img_46, p1_95, p3_95, min_191, p2_95, img_47, p1_97, p3_97, min_195, p2_97, img_48, p1_99, p3_99, min_199, p2_99, img_49, sub, skel, sub_1, delta, mul, sub_2, relu_2, skel_1, sub_3, delta_1, mul_1, sub_4, relu_4, skel_2, sub_5, delta_2, mul_2, sub_6, relu_6, skel_3, sub_7, delta_3, mul_3, sub_8, relu_8, skel_4, sub_9, delta_4, mul_4, sub_10, relu_10, skel_5, sub_11, delta_5, mul_5, sub_12, relu_12, skel_6, sub_13, delta_6, mul_6, sub_14, relu_14, skel_7, sub_15, delta_7, mul_7, sub_16, relu_16, skel_8, sub_17, delta_8, mul_8, sub_18, relu_18, skel_9, sub_19, delta_9, mul_9, sub_20, relu_20, skel_10, sub_21, delta_10, mul_10, sub_22, relu_22, skel_11, sub_23, delta_11, mul_11, sub_24, relu_24, skel_12, sub_25, delta_12, mul_12, sub_26, relu_26, skel_13, sub_27, delta_13, mul_13, sub_28, relu_28, skel_14, sub_29, delta_14, mul_14, sub_30, relu_30, skel_15, sub_31, delta_15, mul_15, sub_32, relu_32, skel_16, sub_33, delta_16, mul_16, sub_34, relu_34, skel_17, sub_35, delta_17, mul_17, sub_36, relu_36, skel_18, sub_37, delta_18, mul_18, sub_38, relu_38, skel_19, sub_39, delta_19, mul_19, sub_40, relu_40, skel_20, sub_41, delta_20, mul_20, sub_42, relu_42, skel_21, sub_43, delta_21, mul_21, sub_44, relu_44, skel_22, sub_45, delta_22, mul_22, sub_46, relu_46, skel_23, sub_47, delta_23, mul_23, sub_48, relu_48, skel_24, sub_49, delta_24, mul_24, sub_50, relu_50, skel_25, sub_51, delta_25, mul_25, sub_52, relu_52, skel_26, sub_53, delta_26, mul_26, sub_54, relu_54, skel_27, sub_55, delta_27, mul_27, sub_56, relu_56, skel_28, sub_57, delta_28, mul_28, sub_58, relu_58, skel_29, sub_59, delta_29, mul_29, sub_60, relu_60, skel_30, sub_61, delta_30, mul_30, sub_62, relu_62, skel_31, sub_63, delta_31, mul_31, sub_64, relu_64, skel_32, sub_65, delta_32, mul_32, sub_66, relu_66, skel_33, sub_67, delta_33, mul_33, sub_68, relu_68, skel_34, sub_69, delta_34, mul_34, sub_70, relu_70, skel_35, sub_71, delta_35, mul_35, sub_72, relu_72, skel_36, sub_73, delta_36, mul_36, sub_74, relu_74, skel_37, sub_75, delta_37, mul_37, sub_76, relu_76, skel_38, sub_77, delta_38, mul_38, sub_78, relu_78, skel_39, sub_79, delta_39, mul_39, sub_80, relu_80, skel_40, sub_81, delta_40, mul_40, sub_82, relu_82, skel_41, sub_83, delta_41, mul_41, sub_84, relu_84, skel_42, sub_85, delta_42, mul_42, sub_86, relu_86, skel_43, sub_87, delta_43, mul_43, sub_88, relu_88, skel_44, sub_89, delta_44, mul_44, sub_90, relu_90, skel_45, sub_91, delta_45, mul_45, sub_92, relu_92, skel_46, sub_93, delta_46, mul_46, sub_94, relu_94, skel_47, sub_95, delta_47, mul_47, sub_96, relu_96, skel_48, sub_97, delta_48, mul_48, sub_98, relu_98, skel_49, sub_99, delta_49, mul_49, sub_100, relu_100, skel_50], Original ATen: [aten.neg, aten.minimum, aten.sub, aten.relu, aten.mul, aten.add] # Source node to ATen node mapping: # delta => relu_1 # delta_1 => relu_3 # delta_10 => relu_21 # delta_11 => relu_23 # delta_12 => relu_25 # delta_13 => relu_27 # delta_14 => relu_29 # delta_15 => relu_31 # delta_16 => relu_33 # delta_17 => relu_35 # delta_18 => relu_37 # delta_19 => relu_39 # delta_2 => relu_5 # delta_20 => relu_41 # delta_21 => relu_43 # delta_22 => relu_45 # delta_23 => relu_47 # delta_24 => relu_49 # delta_25 => relu_51 # delta_26 => relu_53 # delta_27 => relu_55 # delta_28 => relu_57 # delta_29 => relu_59 # delta_3 => relu_7 # delta_30 => relu_61 # delta_31 => relu_63 # delta_32 => relu_65 # delta_33 => relu_67 # delta_34 => relu_69 # delta_35 => relu_71 # delta_36 => relu_73 # delta_37 => relu_75 # delta_38 => relu_77 # delta_39 => relu_79 # delta_4 => relu_9 # delta_40 => relu_81 # delta_41 => relu_83 # delta_42 => relu_85 # delta_43 => relu_87 # delta_44 => relu_89 # delta_45 => relu_91 # delta_46 => relu_93 # delta_47 => relu_95 # delta_48 => relu_97 # delta_49 => relu_99 # delta_5 => relu_11 # delta_6 => relu_13 # delta_7 => relu_15 # delta_8 => relu_17 # delta_9 => relu_19 # img => minimum_3 # img_1 => minimum_7 # img_10 => minimum_43 # img_11 => minimum_47 # img_12 => minimum_51 # img_13 => minimum_55 # img_14 => minimum_59 # img_15 => minimum_63 # img_16 => minimum_67 # img_17 => minimum_71 # img_18 => minimum_75 # img_19 => minimum_79 # img_2 => minimum_11 # img_20 => minimum_83 # img_21 => minimum_87 # img_22 => minimum_91 # img_23 => minimum_95 # img_24 => minimum_99 # img_25 => minimum_103 # img_26 => minimum_107 # img_27 => minimum_111 # img_28 => minimum_115 # img_29 => minimum_119 # img_3 => minimum_15 # img_30 => minimum_123 # img_31 => minimum_127 # img_32 => minimum_131 # img_33 => minimum_135 # img_34 => minimum_139 # img_35 => minimum_143 # img_36 => minimum_147 # img_37 => minimum_151 # img_38 => minimum_155 # img_39 => minimum_159 # img_4 => minimum_19 # img_40 => minimum_163 # img_41 => minimum_167 # img_42 => minimum_171 # img_43 => minimum_175 # img_44 => minimum_179 # img_45 => minimum_183 # img_46 => minimum_187 # img_47 => minimum_191 # img_48 => minimum_195 # img_49 => minimum_199 # img_5 => minimum_23 # img_6 => minimum_27 # img_7 => minimum_31 # img_8 => minimum_35 # img_9 => minimum_39 # min_103 => minimum_102 # min_107 => minimum_106 # min_11 => minimum_10 # min_111 => minimum_110 # min_115 => minimum_114 # min_119 => minimum_118 # min_123 => minimum_122 # min_127 => minimum_126 # min_131 => minimum_130 # min_135 => minimum_134 # min_139 => minimum_138 # min_143 => minimum_142 # min_147 => minimum_146 # min_15 => minimum_14 # min_151 => minimum_150 # min_155 => minimum_154 # min_159 => minimum_158 # min_163 => minimum_162 # min_167 => minimum_166 # min_171 => minimum_170 # min_175 => minimum_174 # min_179 => minimum_178 # min_183 => minimum_182 # min_187 => minimum_186 # min_19 => minimum_18 # min_191 => minimum_190 # min_195 => minimum_194 # min_199 => minimum_198 # min_23 => minimum_22 # min_27 => minimum_26 # min_3 => minimum_2 # min_31 => minimum_30 # min_35 => minimum_34 # min_39 => minimum_38 # min_43 => minimum_42 # min_47 => minimum_46 # min_51 => minimum_50 # min_55 => minimum_54 # min_59 => minimum_58 # min_63 => minimum_62 # min_67 => minimum_66 # min_7 => minimum_6 # min_71 => minimum_70 # min_75 => minimum_74 # min_79 => minimum_78 # min_83 => minimum_82 # min_87 => minimum_86 # min_91 => minimum_90 # min_95 => minimum_94 # min_99 => minimum_98 # mul => mul # mul_1 => mul_1 # mul_10 => mul_10 # mul_11 => mul_11 # mul_12 => mul_12 # mul_13 => mul_13 # mul_14 => mul_14 # mul_15 => mul_15 # mul_16 => mul_16 # mul_17 => mul_17 # mul_18 => mul_18 # mul_19 => mul_19 # mul_2 => mul_2 # mul_20 => mul_20 # mul_21 => mul_21 # mul_22 => mul_22 # mul_23 => mul_23 # mul_24 => mul_24 # mul_25 => mul_25 # mul_26 => mul_26 # mul_27 => mul_27 # mul_28 => mul_28 # mul_29 => mul_29 # mul_3 => mul_3 # mul_30 => mul_30 # mul_31 => mul_31 # mul_32 => mul_32 # mul_33 => mul_33 # mul_34 => mul_34 # mul_35 => mul_35 # mul_36 => mul_36 # mul_37 => mul_37 # mul_38 => mul_38 # mul_39 => mul_39 # mul_4 => mul_4 # mul_40 => mul_40 # mul_41 => mul_41 # mul_42 => mul_42 # mul_43 => mul_43 # mul_44 => mul_44 # mul_45 => mul_45 # mul_46 => mul_46 # mul_47 => mul_47 # mul_48 => mul_48 # mul_49 => mul_49 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # mul_8 => mul_8 # mul_9 => mul_9 # p1_1 => neg_7 # p1_11 => neg_67 # p1_13 => neg_79 # p1_15 => neg_91 # p1_17 => neg_103 # p1_19 => neg_115 # p1_21 => neg_127 # p1_23 => neg_139 # p1_25 => neg_151 # p1_27 => neg_163 # p1_29 => neg_175 # p1_3 => neg_19 # p1_31 => neg_187 # p1_33 => neg_199 # p1_35 => neg_211 # p1_37 => neg_223 # p1_39 => neg_235 # p1_41 => neg_247 # p1_43 => neg_259 # p1_45 => neg_271 # p1_47 => neg_283 # p1_49 => neg_295 # p1_5 => neg_31 # p1_51 => neg_307 # p1_53 => neg_319 # p1_55 => neg_331 # p1_57 => neg_343 # p1_59 => neg_355 # p1_61 => neg_367 # p1_63 => neg_379 # p1_65 => neg_391 # p1_67 => neg_403 # p1_69 => neg_415 # p1_7 => neg_43 # p1_71 => neg_427 # p1_73 => neg_439 # p1_75 => neg_451 # p1_77 => neg_463 # p1_79 => neg_475 # p1_81 => neg_487 # p1_83 => neg_499 # p1_85 => neg_511 # p1_87 => neg_523 # p1_89 => neg_535 # p1_9 => neg_55 # p1_91 => neg_547 # p1_93 => neg_559 # p1_95 => neg_571 # p1_97 => neg_583 # p1_99 => neg_595 # p2_1 => neg_9 # p2_11 => neg_69 # p2_13 => neg_81 # p2_15 => neg_93 # p2_17 => neg_105 # p2_19 => neg_117 # p2_21 => neg_129 # p2_23 => neg_141 # p2_25 => neg_153 # p2_27 => neg_165 # p2_29 => neg_177 # p2_3 => neg_21 # p2_31 => neg_189 # p2_33 => neg_201 # p2_35 => neg_213 # p2_37 => neg_225 # p2_39 => neg_237 # p2_41 => neg_249 # p2_43 => neg_261 # p2_45 => neg_273 # p2_47 => neg_285 # p2_49 => neg_297 # p2_5 => neg_33 # p2_51 => neg_309 # p2_53 => neg_321 # p2_55 => neg_333 # p2_57 => neg_345 # p2_59 => neg_357 # p2_61 => neg_369 # p2_63 => neg_381 # p2_65 => neg_393 # p2_67 => neg_405 # p2_69 => neg_417 # p2_7 => neg_45 # p2_71 => neg_429 # p2_73 => neg_441 # p2_75 => neg_453 # p2_77 => neg_465 # p2_79 => neg_477 # p2_81 => neg_489 # p2_83 => neg_501 # p2_85 => neg_513 # p2_87 => neg_525 # p2_89 => neg_537 # p2_9 => neg_57 # p2_91 => neg_549 # p2_93 => neg_561 # p2_95 => neg_573 # p2_97 => neg_585 # p2_99 => neg_597 # p3_1 => neg_11 # p3_11 => neg_71 # p3_13 => neg_83 # p3_15 => neg_95 # p3_17 => neg_107 # p3_19 => neg_119 # p3_21 => neg_131 # p3_23 => neg_143 # p3_25 => neg_155 # p3_27 => neg_167 # p3_29 => neg_179 # p3_3 => neg_23 # p3_31 => neg_191 # p3_33 => neg_203 # p3_35 => neg_215 # p3_37 => neg_227 # p3_39 => neg_239 # p3_41 => neg_251 # p3_43 => neg_263 # p3_45 => neg_275 # p3_47 => neg_287 # p3_49 => neg_299 # p3_5 => neg_35 # p3_51 => neg_311 # p3_53 => neg_323 # p3_55 => neg_335 # p3_57 => neg_347 # p3_59 => neg_359 # p3_61 => neg_371 # p3_63 => neg_383 # p3_65 => neg_395 # p3_67 => neg_407 # p3_69 => neg_419 # p3_7 => neg_47 # p3_71 => neg_431 # p3_73 => neg_443 # p3_75 => neg_455 # p3_77 => neg_467 # p3_79 => neg_479 # p3_81 => neg_491 # p3_83 => neg_503 # p3_85 => neg_515 # p3_87 => neg_527 # p3_89 => neg_539 # p3_9 => neg_59 # p3_91 => neg_551 # p3_93 => neg_563 # p3_95 => neg_575 # p3_97 => neg_587 # p3_99 => neg_599 # relu_10 => relu_10 # relu_100 => relu_100 # relu_12 => relu_12 # relu_14 => relu_14 # relu_16 => relu_16 # relu_18 => relu_18 # relu_2 => relu_2 # relu_20 => relu_20 # relu_22 => relu_22 # relu_24 => relu_24 # relu_26 => relu_26 # relu_28 => relu_28 # relu_30 => relu_30 # relu_32 => relu_32 # relu_34 => relu_34 # relu_36 => relu_36 # relu_38 => relu_38 # relu_4 => relu_4 # relu_40 => relu_40 # relu_42 => relu_42 # relu_44 => relu_44 # relu_46 => relu_46 # relu_48 => relu_48 # relu_50 => relu_50 # relu_52 => relu_52 # relu_54 => relu_54 # relu_56 => relu_56 # relu_58 => relu_58 # relu_6 => relu_6 # relu_60 => relu_60 # relu_62 => relu_62 # relu_64 => relu_64 # relu_66 => relu_66 # relu_68 => relu_68 # relu_70 => relu_70 # relu_72 => relu_72 # relu_74 => relu_74 # relu_76 => relu_76 # relu_78 => relu_78 # relu_8 => relu_8 # relu_80 => relu_80 # relu_82 => relu_82 # relu_84 => relu_84 # relu_86 => relu_86 # relu_88 => relu_88 # relu_90 => relu_90 # relu_92 => relu_92 # relu_94 => relu_94 # relu_96 => relu_96 # relu_98 => relu_98 # skel => relu # skel_1 => add # skel_10 => add_9 # skel_11 => add_10 # skel_12 => add_11 # skel_13 => add_12 # skel_14 => add_13 # skel_15 => add_14 # skel_16 => add_15 # skel_17 => add_16 # skel_18 => add_17 # skel_19 => add_18 # skel_2 => add_1 # skel_20 => add_19 # skel_21 => add_20 # skel_22 => add_21 # skel_23 => add_22 # skel_24 => add_23 # skel_25 => add_24 # skel_26 => add_25 # skel_27 => add_26 # skel_28 => add_27 # skel_29 => add_28 # skel_3 => add_2 # skel_30 => add_29 # skel_31 => add_30 # skel_32 => add_31 # skel_33 => add_32 # skel_34 => add_33 # skel_35 => add_34 # skel_36 => add_35 # skel_37 => add_36 # skel_38 => add_37 # skel_39 => add_38 # skel_4 => add_3 # skel_40 => add_39 # skel_41 => add_40 # skel_42 => add_41 # skel_43 => add_42 # skel_44 => add_43 # skel_45 => add_44 # skel_46 => add_45 # skel_47 => add_46 # skel_48 => add_47 # skel_49 => add_48 # skel_5 => add_4 # skel_50 => add_49 # skel_6 => add_5 # skel_7 => add_6 # skel_8 => add_7 # skel_9 => add_8 # sub => sub # sub_1 => sub_1 # sub_10 => sub_10 # sub_100 => sub_100 # sub_11 => sub_11 # sub_12 => sub_12 # sub_13 => sub_13 # sub_14 => sub_14 # sub_15 => sub_15 # sub_16 => sub_16 # sub_17 => sub_17 # sub_18 => sub_18 # sub_19 => sub_19 # sub_2 => sub_2 # sub_20 => sub_20 # sub_21 => sub_21 # sub_22 => sub_22 # sub_23 => sub_23 # sub_24 => sub_24 # sub_25 => sub_25 # sub_26 => sub_26 # sub_27 => sub_27 # sub_28 => sub_28 # sub_29 => sub_29 # sub_3 => sub_3 # sub_30 => sub_30 # sub_31 => sub_31 # sub_32 => sub_32 # sub_33 => sub_33 # sub_34 => sub_34 # sub_35 => sub_35 # sub_36 => sub_36 # sub_37 => sub_37 # sub_38 => sub_38 # sub_39 => sub_39 # sub_4 => sub_4 # sub_40 => sub_40 # sub_41 => sub_41 # sub_42 => sub_42 # sub_43 => sub_43 # sub_44 => sub_44 # sub_45 => sub_45 # sub_46 => sub_46 # sub_47 => sub_47 # sub_48 => sub_48 # sub_49 => sub_49 # sub_5 => sub_5 # sub_50 => sub_50 # sub_51 => sub_51 # sub_52 => sub_52 # sub_53 => sub_53 # sub_54 => sub_54 # sub_55 => sub_55 # sub_56 => sub_56 # sub_57 => sub_57 # sub_58 => sub_58 # sub_59 => sub_59 # sub_6 => sub_6 # sub_60 => sub_60 # sub_61 => sub_61 # sub_62 => sub_62 # sub_63 => sub_63 # sub_64 => sub_64 # sub_65 => sub_65 # sub_66 => sub_66 # sub_67 => sub_67 # sub_68 => sub_68 # sub_69 => sub_69 # sub_7 => sub_7 # sub_70 => sub_70 # sub_71 => sub_71 # sub_72 => sub_72 # sub_73 => sub_73 # sub_74 => sub_74 # sub_75 => sub_75 # sub_76 => sub_76 # sub_77 => sub_77 # sub_78 => sub_78 # sub_79 => sub_79 # sub_8 => sub_8 # sub_80 => sub_80 # sub_81 => sub_81 # sub_82 => sub_82 # sub_83 => sub_83 # sub_84 => sub_84 # sub_85 => sub_85 # sub_86 => sub_86 # sub_87 => sub_87 # sub_88 => sub_88 # sub_89 => sub_89 # sub_9 => sub_9 # sub_90 => sub_90 # sub_91 => sub_91 # sub_92 => sub_92 # sub_93 => sub_93 # sub_94 => sub_94 # sub_95 => sub_95 # sub_96 => sub_96 # sub_97 => sub_97 # sub_98 => sub_98 # sub_99 => sub_99 # Graph fragment: # %neg_7 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_8,), kwargs = {}) # %neg_11 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_12,), kwargs = {}) # %minimum_2 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_7, %neg_11), kwargs = {}) # %neg_9 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_10,), kwargs = {}) # %minimum_3 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_2, %neg_9), kwargs = {}) # %neg_19 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_22,), kwargs = {}) # %neg_23 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_26,), kwargs = {}) # %minimum_6 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_19, %neg_23), kwargs = {}) # %neg_21 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_24,), kwargs = {}) # %minimum_7 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_6, %neg_21), kwargs = {}) # %neg_31 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_36,), kwargs = {}) # %neg_35 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_40,), kwargs = {}) # %minimum_10 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_31, %neg_35), kwargs = {}) # %neg_33 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_38,), kwargs = {}) # %minimum_11 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_10, %neg_33), kwargs = {}) # %neg_43 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_50,), kwargs = {}) # %neg_47 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_54,), kwargs = {}) # %minimum_14 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_43, %neg_47), kwargs = {}) # %neg_45 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_52,), kwargs = {}) # %minimum_15 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_14, %neg_45), kwargs = {}) # %neg_55 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_64,), kwargs = {}) # %neg_59 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_68,), kwargs = {}) # %minimum_18 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_55, %neg_59), kwargs = {}) # %neg_57 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_66,), kwargs = {}) # %minimum_19 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_18, %neg_57), kwargs = {}) # %neg_67 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_78,), kwargs = {}) # %neg_71 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_82,), kwargs = {}) # %minimum_22 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_67, %neg_71), kwargs = {}) # %neg_69 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_80,), kwargs = {}) # %minimum_23 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_22, %neg_69), kwargs = {}) # %neg_79 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_92,), kwargs = {}) # %neg_83 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_96,), kwargs = {}) # %minimum_26 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_79, %neg_83), kwargs = {}) # %neg_81 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_94,), kwargs = {}) # %minimum_27 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_26, %neg_81), kwargs = {}) # %neg_91 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_106,), kwargs = {}) # %neg_95 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_110,), kwargs = {}) # %minimum_30 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_91, %neg_95), kwargs = {}) # %neg_93 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_108,), kwargs = {}) # %minimum_31 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_30, %neg_93), kwargs = {}) # %neg_103 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_120,), kwargs = {}) # %neg_107 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_124,), kwargs = {}) # %minimum_34 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_103, %neg_107), kwargs = {}) # %neg_105 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_122,), kwargs = {}) # %minimum_35 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_34, %neg_105), kwargs = {}) # %neg_115 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_134,), kwargs = {}) # %neg_119 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_138,), kwargs = {}) # %minimum_38 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_115, %neg_119), kwargs = {}) # %neg_117 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_136,), kwargs = {}) # %minimum_39 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_38, %neg_117), kwargs = {}) # %neg_127 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_148,), kwargs = {}) # %neg_131 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_152,), kwargs = {}) # %minimum_42 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_127, %neg_131), kwargs = {}) # %neg_129 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_150,), kwargs = {}) # %minimum_43 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_42, %neg_129), kwargs = {}) # %neg_139 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_162,), kwargs = {}) # %neg_143 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_166,), kwargs = {}) # %minimum_46 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_139, %neg_143), kwargs = {}) # %neg_141 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_164,), kwargs = {}) # %minimum_47 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_46, %neg_141), kwargs = {}) # %neg_151 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_176,), kwargs = {}) # %neg_155 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_180,), kwargs = {}) # %minimum_50 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_151, %neg_155), kwargs = {}) # %neg_153 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_178,), kwargs = {}) # %minimum_51 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_50, %neg_153), kwargs = {}) # %neg_163 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_190,), kwargs = {}) # %neg_167 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_194,), kwargs = {}) # %minimum_54 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_163, %neg_167), kwargs = {}) # %neg_165 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_192,), kwargs = {}) # %minimum_55 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_54, %neg_165), kwargs = {}) # %neg_175 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_204,), kwargs = {}) # %neg_179 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_208,), kwargs = {}) # %minimum_58 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_175, %neg_179), kwargs = {}) # %neg_177 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_206,), kwargs = {}) # %minimum_59 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_58, %neg_177), kwargs = {}) # %neg_187 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_218,), kwargs = {}) # %neg_191 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_222,), kwargs = {}) # %minimum_62 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_187, %neg_191), kwargs = {}) # %neg_189 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_220,), kwargs = {}) # %minimum_63 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_62, %neg_189), kwargs = {}) # %neg_199 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_232,), kwargs = {}) # %neg_203 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_236,), kwargs = {}) # %minimum_66 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_199, %neg_203), kwargs = {}) # %neg_201 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_234,), kwargs = {}) # %minimum_67 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_66, %neg_201), kwargs = {}) # %neg_211 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_246,), kwargs = {}) # %neg_215 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_250,), kwargs = {}) # %minimum_70 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_211, %neg_215), kwargs = {}) # %neg_213 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_248,), kwargs = {}) # %minimum_71 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_70, %neg_213), kwargs = {}) # %neg_223 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_260,), kwargs = {}) # %neg_227 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_264,), kwargs = {}) # %minimum_74 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_223, %neg_227), kwargs = {}) # %neg_225 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_262,), kwargs = {}) # %minimum_75 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_74, %neg_225), kwargs = {}) # %neg_235 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_274,), kwargs = {}) # %neg_239 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_278,), kwargs = {}) # %minimum_78 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_235, %neg_239), kwargs = {}) # %neg_237 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_276,), kwargs = {}) # %minimum_79 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_78, %neg_237), kwargs = {}) # %neg_247 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_288,), kwargs = {}) # %neg_251 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_292,), kwargs = {}) # %minimum_82 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_247, %neg_251), kwargs = {}) # %neg_249 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_290,), kwargs = {}) # %minimum_83 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_82, %neg_249), kwargs = {}) # %neg_259 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_302,), kwargs = {}) # %neg_263 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_306,), kwargs = {}) # %minimum_86 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_259, %neg_263), kwargs = {}) # %neg_261 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_304,), kwargs = {}) # %minimum_87 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_86, %neg_261), kwargs = {}) # %neg_271 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_316,), kwargs = {}) # %neg_275 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_320,), kwargs = {}) # %minimum_90 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_271, %neg_275), kwargs = {}) # %neg_273 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_318,), kwargs = {}) # %minimum_91 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_90, %neg_273), kwargs = {}) # %neg_283 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_330,), kwargs = {}) # %neg_287 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_334,), kwargs = {}) # %minimum_94 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_283, %neg_287), kwargs = {}) # %neg_285 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_332,), kwargs = {}) # %minimum_95 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_94, %neg_285), kwargs = {}) # %neg_295 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_344,), kwargs = {}) # %neg_299 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_348,), kwargs = {}) # %minimum_98 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_295, %neg_299), kwargs = {}) # %neg_297 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_346,), kwargs = {}) # %minimum_99 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_98, %neg_297), kwargs = {}) # %neg_307 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_358,), kwargs = {}) # %neg_311 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_362,), kwargs = {}) # %minimum_102 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_307, %neg_311), kwargs = {}) # %neg_309 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_360,), kwargs = {}) # %minimum_103 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_102, %neg_309), kwargs = {}) # %neg_319 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_372,), kwargs = {}) # %neg_323 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_376,), kwargs = {}) # %minimum_106 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_319, %neg_323), kwargs = {}) # %neg_321 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_374,), kwargs = {}) # %minimum_107 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_106, %neg_321), kwargs = {}) # %neg_331 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_386,), kwargs = {}) # %neg_335 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_390,), kwargs = {}) # %minimum_110 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_331, %neg_335), kwargs = {}) # %neg_333 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_388,), kwargs = {}) # %minimum_111 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_110, %neg_333), kwargs = {}) # %neg_343 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_400,), kwargs = {}) # %neg_347 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_404,), kwargs = {}) # %minimum_114 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_343, %neg_347), kwargs = {}) # %neg_345 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_402,), kwargs = {}) # %minimum_115 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_114, %neg_345), kwargs = {}) # %neg_355 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_414,), kwargs = {}) # %neg_359 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_418,), kwargs = {}) # %minimum_118 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_355, %neg_359), kwargs = {}) # %neg_357 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_416,), kwargs = {}) # %minimum_119 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_118, %neg_357), kwargs = {}) # %neg_367 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_428,), kwargs = {}) # %neg_371 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_432,), kwargs = {}) # %minimum_122 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_367, %neg_371), kwargs = {}) # %neg_369 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_430,), kwargs = {}) # %minimum_123 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_122, %neg_369), kwargs = {}) # %neg_379 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_442,), kwargs = {}) # %neg_383 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_446,), kwargs = {}) # %minimum_126 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_379, %neg_383), kwargs = {}) # %neg_381 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_444,), kwargs = {}) # %minimum_127 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_126, %neg_381), kwargs = {}) # %neg_391 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_456,), kwargs = {}) # %neg_395 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_460,), kwargs = {}) # %minimum_130 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_391, %neg_395), kwargs = {}) # %neg_393 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_458,), kwargs = {}) # %minimum_131 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_130, %neg_393), kwargs = {}) # %neg_403 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_470,), kwargs = {}) # %neg_407 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_474,), kwargs = {}) # %minimum_134 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_403, %neg_407), kwargs = {}) # %neg_405 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_472,), kwargs = {}) # %minimum_135 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_134, %neg_405), kwargs = {}) # %neg_415 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_484,), kwargs = {}) # %neg_419 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_488,), kwargs = {}) # %minimum_138 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_415, %neg_419), kwargs = {}) # %neg_417 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_486,), kwargs = {}) # %minimum_139 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_138, %neg_417), kwargs = {}) # %neg_427 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_498,), kwargs = {}) # %neg_431 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_502,), kwargs = {}) # %minimum_142 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_427, %neg_431), kwargs = {}) # %neg_429 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_500,), kwargs = {}) # %minimum_143 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_142, %neg_429), kwargs = {}) # %neg_439 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_512,), kwargs = {}) # %neg_443 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_516,), kwargs = {}) # %minimum_146 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_439, %neg_443), kwargs = {}) # %neg_441 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_514,), kwargs = {}) # %minimum_147 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_146, %neg_441), kwargs = {}) # %neg_451 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_526,), kwargs = {}) # %neg_455 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_530,), kwargs = {}) # %minimum_150 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_451, %neg_455), kwargs = {}) # %neg_453 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_528,), kwargs = {}) # %minimum_151 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_150, %neg_453), kwargs = {}) # %neg_463 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_540,), kwargs = {}) # %neg_467 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_544,), kwargs = {}) # %minimum_154 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_463, %neg_467), kwargs = {}) # %neg_465 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_542,), kwargs = {}) # %minimum_155 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_154, %neg_465), kwargs = {}) # %neg_475 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_554,), kwargs = {}) # %neg_479 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_558,), kwargs = {}) # %minimum_158 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_475, %neg_479), kwargs = {}) # %neg_477 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_556,), kwargs = {}) # %minimum_159 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_158, %neg_477), kwargs = {}) # %neg_487 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_568,), kwargs = {}) # %neg_491 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_572,), kwargs = {}) # %minimum_162 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_487, %neg_491), kwargs = {}) # %neg_489 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_570,), kwargs = {}) # %minimum_163 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_162, %neg_489), kwargs = {}) # %neg_499 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_582,), kwargs = {}) # %neg_503 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_586,), kwargs = {}) # %minimum_166 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_499, %neg_503), kwargs = {}) # %neg_501 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_584,), kwargs = {}) # %minimum_167 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_166, %neg_501), kwargs = {}) # %neg_511 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_596,), kwargs = {}) # %neg_515 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_600,), kwargs = {}) # %minimum_170 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_511, %neg_515), kwargs = {}) # %neg_513 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_598,), kwargs = {}) # %minimum_171 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_170, %neg_513), kwargs = {}) # %neg_523 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_610,), kwargs = {}) # %neg_527 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_614,), kwargs = {}) # %minimum_174 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_523, %neg_527), kwargs = {}) # %neg_525 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_612,), kwargs = {}) # %minimum_175 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_174, %neg_525), kwargs = {}) # %neg_535 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_624,), kwargs = {}) # %neg_539 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_628,), kwargs = {}) # %minimum_178 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_535, %neg_539), kwargs = {}) # %neg_537 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_626,), kwargs = {}) # %minimum_179 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_178, %neg_537), kwargs = {}) # %neg_547 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_638,), kwargs = {}) # %neg_551 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_642,), kwargs = {}) # %minimum_182 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_547, %neg_551), kwargs = {}) # %neg_549 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_640,), kwargs = {}) # %minimum_183 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_182, %neg_549), kwargs = {}) # %neg_559 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_652,), kwargs = {}) # %neg_563 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_656,), kwargs = {}) # %minimum_186 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_559, %neg_563), kwargs = {}) # %neg_561 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_654,), kwargs = {}) # %minimum_187 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_186, %neg_561), kwargs = {}) # %neg_571 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_666,), kwargs = {}) # %neg_575 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_670,), kwargs = {}) # %minimum_190 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_571, %neg_575), kwargs = {}) # %neg_573 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_668,), kwargs = {}) # %minimum_191 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_190, %neg_573), kwargs = {}) # %neg_583 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_680,), kwargs = {}) # %neg_587 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_684,), kwargs = {}) # %minimum_194 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_583, %neg_587), kwargs = {}) # %neg_585 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_682,), kwargs = {}) # %minimum_195 : [num_users=7] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_194, %neg_585), kwargs = {}) # %neg_595 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_694,), kwargs = {}) # %neg_599 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_698,), kwargs = {}) # %minimum_198 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%neg_595, %neg_599), kwargs = {}) # %neg_597 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%getitem_696,), kwargs = {}) # %minimum_199 : [num_users=4] = call_function[target=torch.ops.aten.minimum.default](args = (%minimum_198, %neg_597), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %getitem_6), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_3, %getitem_20), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %relu_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_1, %mul), kwargs = {}) # %relu_2 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_2,), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %relu_2), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_7, %getitem_34), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %relu_3), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_3, %mul_1), kwargs = {}) # %relu_4 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_4,), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %relu_4), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_11, %getitem_48), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_5,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %relu_5), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_5, %mul_2), kwargs = {}) # %relu_6 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_6,), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %relu_6), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_15, %getitem_62), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_7,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, %relu_7), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_7, %mul_3), kwargs = {}) # %relu_8 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_8,), kwargs = {}) # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %relu_8), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_19, %getitem_76), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_9,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, %relu_9), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_9, %mul_4), kwargs = {}) # %relu_10 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_10,), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %relu_10), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_23, %getitem_90), kwargs = {}) # %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_11,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, %relu_11), kwargs = {}) # %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_11, %mul_5), kwargs = {}) # %relu_12 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_12,), kwargs = {}) # %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %relu_12), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_27, %getitem_104), kwargs = {}) # %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_13,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, %relu_13), kwargs = {}) # %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_13, %mul_6), kwargs = {}) # %relu_14 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_14,), kwargs = {}) # %add_6 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %relu_14), kwargs = {}) # %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_31, %getitem_118), kwargs = {}) # %relu_15 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_15,), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, %relu_15), kwargs = {}) # %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_15, %mul_7), kwargs = {}) # %relu_16 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_16,), kwargs = {}) # %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %relu_16), kwargs = {}) # %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_35, %getitem_132), kwargs = {}) # %relu_17 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_17,), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, %relu_17), kwargs = {}) # %sub_18 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_17, %mul_8), kwargs = {}) # %relu_18 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_18,), kwargs = {}) # %add_8 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %relu_18), kwargs = {}) # %sub_19 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_39, %getitem_146), kwargs = {}) # %relu_19 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_19,), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, %relu_19), kwargs = {}) # %sub_20 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_19, %mul_9), kwargs = {}) # %relu_20 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_20,), kwargs = {}) # %add_9 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %relu_20), kwargs = {}) # %sub_21 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_43, %getitem_160), kwargs = {}) # %relu_21 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_21,), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, %relu_21), kwargs = {}) # %sub_22 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_21, %mul_10), kwargs = {}) # %relu_22 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_22,), kwargs = {}) # %add_10 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %relu_22), kwargs = {}) # %sub_23 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_47, %getitem_174), kwargs = {}) # %relu_23 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_23,), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_10, %relu_23), kwargs = {}) # %sub_24 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_23, %mul_11), kwargs = {}) # %relu_24 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_24,), kwargs = {}) # %add_11 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %relu_24), kwargs = {}) # %sub_25 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_51, %getitem_188), kwargs = {}) # %relu_25 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_25,), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_11, %relu_25), kwargs = {}) # %sub_26 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_25, %mul_12), kwargs = {}) # %relu_26 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_26,), kwargs = {}) # %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %relu_26), kwargs = {}) # %sub_27 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_55, %getitem_202), kwargs = {}) # %relu_27 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_27,), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_12, %relu_27), kwargs = {}) # %sub_28 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_27, %mul_13), kwargs = {}) # %relu_28 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_28,), kwargs = {}) # %add_13 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %relu_28), kwargs = {}) # %sub_29 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_59, %getitem_216), kwargs = {}) # %relu_29 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_29,), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_13, %relu_29), kwargs = {}) # %sub_30 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_29, %mul_14), kwargs = {}) # %relu_30 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_30,), kwargs = {}) # %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, %relu_30), kwargs = {}) # %sub_31 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_63, %getitem_230), kwargs = {}) # %relu_31 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_31,), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_14, %relu_31), kwargs = {}) # %sub_32 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_31, %mul_15), kwargs = {}) # %relu_32 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_32,), kwargs = {}) # %add_15 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_14, %relu_32), kwargs = {}) # %sub_33 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_67, %getitem_244), kwargs = {}) # %relu_33 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_33,), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_15, %relu_33), kwargs = {}) # %sub_34 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_33, %mul_16), kwargs = {}) # %relu_34 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_34,), kwargs = {}) # %add_16 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_15, %relu_34), kwargs = {}) # %sub_35 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_71, %getitem_258), kwargs = {}) # %relu_35 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_35,), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_16, %relu_35), kwargs = {}) # %sub_36 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_35, %mul_17), kwargs = {}) # %relu_36 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_36,), kwargs = {}) # %add_17 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_16, %relu_36), kwargs = {}) # %sub_37 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_75, %getitem_272), kwargs = {}) # %relu_37 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_37,), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_17, %relu_37), kwargs = {}) # %sub_38 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_37, %mul_18), kwargs = {}) # %relu_38 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_38,), kwargs = {}) # %add_18 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_17, %relu_38), kwargs = {}) # %sub_39 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_79, %getitem_286), kwargs = {}) # %relu_39 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_39,), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_18, %relu_39), kwargs = {}) # %sub_40 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_39, %mul_19), kwargs = {}) # %relu_40 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_40,), kwargs = {}) # %add_19 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_18, %relu_40), kwargs = {}) # %sub_41 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_83, %getitem_300), kwargs = {}) # %relu_41 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_41,), kwargs = {}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_19, %relu_41), kwargs = {}) # %sub_42 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_41, %mul_20), kwargs = {}) # %relu_42 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_42,), kwargs = {}) # %add_20 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_19, %relu_42), kwargs = {}) # %sub_43 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_87, %getitem_314), kwargs = {}) # %relu_43 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_43,), kwargs = {}) # %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_20, %relu_43), kwargs = {}) # %sub_44 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_43, %mul_21), kwargs = {}) # %relu_44 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_44,), kwargs = {}) # %add_21 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_20, %relu_44), kwargs = {}) # %sub_45 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_91, %getitem_328), kwargs = {}) # %relu_45 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_45,), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_21, %relu_45), kwargs = {}) # %sub_46 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_45, %mul_22), kwargs = {}) # %relu_46 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_46,), kwargs = {}) # %add_22 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_21, %relu_46), kwargs = {}) # %sub_47 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_95, %getitem_342), kwargs = {}) # %relu_47 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_47,), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_22, %relu_47), kwargs = {}) # %sub_48 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_47, %mul_23), kwargs = {}) # %relu_48 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_48,), kwargs = {}) # %add_23 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_22, %relu_48), kwargs = {}) # %sub_49 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_99, %getitem_356), kwargs = {}) # %relu_49 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_49,), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_23, %relu_49), kwargs = {}) # %sub_50 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_49, %mul_24), kwargs = {}) # %relu_50 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_50,), kwargs = {}) # %add_24 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_23, %relu_50), kwargs = {}) # %sub_51 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_103, %getitem_370), kwargs = {}) # %relu_51 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_51,), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_24, %relu_51), kwargs = {}) # %sub_52 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_51, %mul_25), kwargs = {}) # %relu_52 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_52,), kwargs = {}) # %add_25 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_24, %relu_52), kwargs = {}) # %sub_53 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_107, %getitem_384), kwargs = {}) # %relu_53 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_53,), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_25, %relu_53), kwargs = {}) # %sub_54 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_53, %mul_26), kwargs = {}) # %relu_54 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_54,), kwargs = {}) # %add_26 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_25, %relu_54), kwargs = {}) # %sub_55 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_111, %getitem_398), kwargs = {}) # %relu_55 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_55,), kwargs = {}) # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_26, %relu_55), kwargs = {}) # %sub_56 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_55, %mul_27), kwargs = {}) # %relu_56 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_56,), kwargs = {}) # %add_27 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_26, %relu_56), kwargs = {}) # %sub_57 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_115, %getitem_412), kwargs = {}) # %relu_57 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_57,), kwargs = {}) # %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_27, %relu_57), kwargs = {}) # %sub_58 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_57, %mul_28), kwargs = {}) # %relu_58 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_58,), kwargs = {}) # %add_28 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_27, %relu_58), kwargs = {}) # %sub_59 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_119, %getitem_426), kwargs = {}) # %relu_59 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_59,), kwargs = {}) # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_28, %relu_59), kwargs = {}) # %sub_60 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_59, %mul_29), kwargs = {}) # %relu_60 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_60,), kwargs = {}) # %add_29 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_28, %relu_60), kwargs = {}) # %sub_61 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_123, %getitem_440), kwargs = {}) # %relu_61 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_61,), kwargs = {}) # %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_29, %relu_61), kwargs = {}) # %sub_62 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_61, %mul_30), kwargs = {}) # %relu_62 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_62,), kwargs = {}) # %add_30 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_29, %relu_62), kwargs = {}) # %sub_63 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_127, %getitem_454), kwargs = {}) # %relu_63 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_63,), kwargs = {}) # %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_30, %relu_63), kwargs = {}) # %sub_64 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_63, %mul_31), kwargs = {}) # %relu_64 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_64,), kwargs = {}) # %add_31 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_30, %relu_64), kwargs = {}) # %sub_65 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_131, %getitem_468), kwargs = {}) # %relu_65 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_65,), kwargs = {}) # %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_31, %relu_65), kwargs = {}) # %sub_66 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_65, %mul_32), kwargs = {}) # %relu_66 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_66,), kwargs = {}) # %add_32 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_31, %relu_66), kwargs = {}) # %sub_67 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_135, %getitem_482), kwargs = {}) # %relu_67 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_67,), kwargs = {}) # %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_32, %relu_67), kwargs = {}) # %sub_68 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_67, %mul_33), kwargs = {}) # %relu_68 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_68,), kwargs = {}) # %add_33 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_32, %relu_68), kwargs = {}) # %sub_69 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_139, %getitem_496), kwargs = {}) # %relu_69 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_69,), kwargs = {}) # %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_33, %relu_69), kwargs = {}) # %sub_70 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_69, %mul_34), kwargs = {}) # %relu_70 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_70,), kwargs = {}) # %add_34 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_33, %relu_70), kwargs = {}) # %sub_71 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_143, %getitem_510), kwargs = {}) # %relu_71 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_71,), kwargs = {}) # %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_34, %relu_71), kwargs = {}) # %sub_72 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_71, %mul_35), kwargs = {}) # %relu_72 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_72,), kwargs = {}) # %add_35 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_34, %relu_72), kwargs = {}) # %sub_73 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_147, %getitem_524), kwargs = {}) # %relu_73 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_73,), kwargs = {}) # %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_35, %relu_73), kwargs = {}) # %sub_74 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_73, %mul_36), kwargs = {}) # %relu_74 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_74,), kwargs = {}) # %add_36 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_35, %relu_74), kwargs = {}) # %sub_75 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_151, %getitem_538), kwargs = {}) # %relu_75 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_75,), kwargs = {}) # %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_36, %relu_75), kwargs = {}) # %sub_76 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_75, %mul_37), kwargs = {}) # %relu_76 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_76,), kwargs = {}) # %add_37 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_36, %relu_76), kwargs = {}) # %sub_77 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_155, %getitem_552), kwargs = {}) # %relu_77 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_77,), kwargs = {}) # %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_37, %relu_77), kwargs = {}) # %sub_78 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_77, %mul_38), kwargs = {}) # %relu_78 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_78,), kwargs = {}) # %add_38 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_37, %relu_78), kwargs = {}) # %sub_79 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_159, %getitem_566), kwargs = {}) # %relu_79 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_79,), kwargs = {}) # %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_38, %relu_79), kwargs = {}) # %sub_80 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_79, %mul_39), kwargs = {}) # %relu_80 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_80,), kwargs = {}) # %add_39 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_38, %relu_80), kwargs = {}) # %sub_81 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_163, %getitem_580), kwargs = {}) # %relu_81 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_81,), kwargs = {}) # %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_39, %relu_81), kwargs = {}) # %sub_82 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_81, %mul_40), kwargs = {}) # %relu_82 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_82,), kwargs = {}) # %add_40 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_39, %relu_82), kwargs = {}) # %sub_83 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_167, %getitem_594), kwargs = {}) # %relu_83 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_83,), kwargs = {}) # %mul_41 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_40, %relu_83), kwargs = {}) # %sub_84 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_83, %mul_41), kwargs = {}) # %relu_84 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_84,), kwargs = {}) # %add_41 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_40, %relu_84), kwargs = {}) # %sub_85 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_171, %getitem_608), kwargs = {}) # %relu_85 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_85,), kwargs = {}) # %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_41, %relu_85), kwargs = {}) # %sub_86 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_85, %mul_42), kwargs = {}) # %relu_86 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_86,), kwargs = {}) # %add_42 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_41, %relu_86), kwargs = {}) # %sub_87 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_175, %getitem_622), kwargs = {}) # %relu_87 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_87,), kwargs = {}) # %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_42, %relu_87), kwargs = {}) # %sub_88 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_87, %mul_43), kwargs = {}) # %relu_88 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_88,), kwargs = {}) # %add_43 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_42, %relu_88), kwargs = {}) # %sub_89 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_179, %getitem_636), kwargs = {}) # %relu_89 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_89,), kwargs = {}) # %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_43, %relu_89), kwargs = {}) # %sub_90 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_89, %mul_44), kwargs = {}) # %relu_90 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_90,), kwargs = {}) # %add_44 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_43, %relu_90), kwargs = {}) # %sub_91 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_183, %getitem_650), kwargs = {}) # %relu_91 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_91,), kwargs = {}) # %mul_45 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_44, %relu_91), kwargs = {}) # %sub_92 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_91, %mul_45), kwargs = {}) # %relu_92 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_92,), kwargs = {}) # %add_45 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_44, %relu_92), kwargs = {}) # %sub_93 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_187, %getitem_664), kwargs = {}) # %relu_93 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_93,), kwargs = {}) # %mul_46 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_45, %relu_93), kwargs = {}) # %sub_94 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_93, %mul_46), kwargs = {}) # %relu_94 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_94,), kwargs = {}) # %add_46 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_45, %relu_94), kwargs = {}) # %sub_95 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_191, %getitem_678), kwargs = {}) # %relu_95 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_95,), kwargs = {}) # %mul_47 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_46, %relu_95), kwargs = {}) # %sub_96 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_95, %mul_47), kwargs = {}) # %relu_96 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_96,), kwargs = {}) # %add_47 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_46, %relu_96), kwargs = {}) # %sub_97 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_195, %getitem_692), kwargs = {}) # %relu_97 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_97,), kwargs = {}) # %mul_48 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_47, %relu_97), kwargs = {}) # %sub_98 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_97, %mul_48), kwargs = {}) # %relu_98 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_98,), kwargs = {}) # %add_48 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_47, %relu_98), kwargs = {}) # %sub_99 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_199, %getitem_706), kwargs = {}) # %relu_99 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub_99,), kwargs = {}) # %mul_49 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_48, %relu_99), kwargs = {}) # %sub_100 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu_99, %mul_49), kwargs = {}) # %relu_100 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_100,), kwargs = {}) # %add_49 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_48, %relu_100), kwargs = {}) triton_poi_fused_add_minimum_mul_neg_relu_sub_6 = async_compile.triton('triton_poi_fused_add_minimum_mul_neg_relu_sub_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: '*fp32', 66: '*fp32', 67: '*fp32', 68: '*fp32', 69: '*fp32', 70: '*fp32', 71: '*fp32', 72: '*fp32', 73: '*fp32', 74: '*fp32', 75: '*fp32', 76: '*fp32', 77: '*fp32', 78: '*fp32', 79: '*fp32', 80: '*fp32', 81: '*fp32', 82: '*fp32', 83: '*fp32', 84: '*fp32', 85: '*fp32', 86: '*fp32', 87: '*fp32', 88: '*fp32', 89: '*fp32', 90: '*fp32', 91: '*fp32', 92: '*fp32', 93: '*fp32', 94: '*fp32', 95: '*fp32', 96: '*fp32', 97: '*fp32', 98: '*fp32', 99: '*fp32', 100: '*fp32', 101: '*fp32', 102: '*fp32', 103: '*fp32', 104: '*fp32', 105: '*fp32', 106: '*fp32', 107: '*fp32', 108: '*fp32', 109: '*fp32', 110: '*fp32', 111: '*fp32', 112: '*fp32', 113: '*fp32', 114: '*fp32', 115: '*fp32', 116: '*fp32', 117: '*fp32', 118: '*fp32', 119: '*fp32', 120: '*fp32', 121: '*fp32', 122: '*fp32', 123: '*fp32', 124: '*fp32', 125: '*fp32', 126: '*fp32', 127: '*fp32', 128: '*fp32', 129: '*fp32', 130: '*fp32', 131: '*fp32', 132: '*fp32', 133: '*fp32', 134: '*fp32', 135: '*fp32', 136: '*fp32', 137: '*fp32', 138: '*fp32', 139: '*fp32', 140: '*fp32', 141: '*fp32', 142: '*fp32', 143: '*fp32', 144: '*fp32', 145: '*fp32', 146: '*fp32', 147: '*fp32', 148: '*fp32', 149: '*fp32', 150: '*fp32', 151: '*fp32', 152: '*fp32', 153: '*fp32', 154: '*fp32', 155: '*fp32', 156: '*fp32', 157: '*fp32', 158: '*fp32', 159: '*fp32', 160: '*fp32', 161: '*fp32', 162: '*fp32', 163: '*fp32', 164: '*fp32', 165: '*fp32', 166: '*fp32', 167: '*fp32', 168: '*fp32', 169: '*fp32', 170: '*fp32', 171: '*fp32', 172: '*fp32', 173: '*fp32', 174: '*fp32', 175: '*fp32', 176: '*fp32', 177: '*fp32', 178: '*fp32', 179: '*fp32', 180: '*fp32', 181: '*fp32', 182: '*fp32', 183: '*fp32', 184: '*fp32', 185: '*fp32', 186: '*fp32', 187: '*fp32', 188: '*fp32', 189: '*fp32', 190: '*fp32', 191: '*fp32', 192: '*fp32', 193: '*fp32', 194: '*fp32', 195: '*fp32', 196: '*fp32', 197: '*fp32', 198: '*fp32', 199: '*fp32', 200: '*fp32', 201: '*fp32', 202: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_minimum_mul_neg_relu_sub_6', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr10', 'in_out_ptr11', 'in_out_ptr12', 'in_out_ptr13', 'in_out_ptr14', 'in_out_ptr15', 'in_out_ptr16', 'in_out_ptr17', 'in_out_ptr18', 'in_out_ptr19', 'in_out_ptr2', 'in_out_ptr20', 'in_out_ptr21', 'in_out_ptr22', 'in_out_ptr3', 'in_out_ptr4', 'in_out_ptr5', 'in_out_ptr6', 'in_out_ptr7', 'in_out_ptr8', 'in_out_ptr9'], 'no_x_dim': False, 'num_load': 202, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_minimum_mul_neg_relu_sub_6(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_out_ptr4, in_out_ptr5, in_out_ptr6, in_out_ptr7, in_out_ptr8, in_out_ptr9, in_out_ptr10, in_out_ptr11, in_out_ptr12, in_out_ptr13, in_out_ptr14, in_out_ptr15, in_out_ptr16, in_out_ptr17, in_out_ptr18, in_out_ptr19, in_out_ptr20, in_out_ptr21, in_out_ptr22, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, in_ptr64, in_ptr65, in_ptr66, in_ptr67, in_ptr68, in_ptr69, in_ptr70, in_ptr71, in_ptr72, in_ptr73, in_ptr74, in_ptr75, in_ptr76, in_ptr77, in_ptr78, in_ptr79, in_ptr80, in_ptr81, in_ptr82, in_ptr83, in_ptr84, in_ptr85, in_ptr86, in_ptr87, in_ptr88, in_ptr89, in_ptr90, in_ptr91, in_ptr92, in_ptr93, in_ptr94, in_ptr95, in_ptr96, in_ptr97, in_ptr98, in_ptr99, in_ptr100, in_ptr101, in_ptr102, in_ptr103, in_ptr104, in_ptr105, in_ptr106, in_ptr107, in_ptr108, in_ptr109, in_ptr110, in_ptr111, in_ptr112, in_ptr113, in_ptr114, in_ptr115, in_ptr116, in_ptr117, in_ptr118, in_ptr119, in_ptr120, in_ptr121, in_ptr122, in_ptr123, in_ptr124, in_ptr125, in_ptr126, in_ptr127, in_ptr128, in_ptr129, in_ptr130, in_ptr131, in_ptr132, in_ptr133, in_ptr134, in_ptr135, in_ptr136, in_ptr137, in_ptr138, in_ptr139, in_ptr140, in_ptr141, in_ptr142, in_ptr143, in_ptr144, in_ptr145, in_ptr146, in_ptr147, in_ptr148, in_ptr149, in_ptr150, in_ptr151, in_ptr152, in_ptr153, in_ptr154, in_ptr155, in_ptr156, in_ptr157, in_ptr158, in_ptr159, in_ptr160, in_ptr161, in_ptr162, in_ptr163, in_ptr164, in_ptr165, in_ptr166, in_ptr167, in_ptr168, in_ptr169, in_ptr170, in_ptr171, in_ptr172, in_ptr173, in_ptr174, in_ptr175, in_ptr176, in_ptr177, in_ptr178, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp5 = tl.load(in_ptr1 + (x0), xmask) tmp7 = tl.load(in_ptr2 + (x0), xmask) tmp10 = tl.load(in_ptr3 + (x0), xmask) tmp13 = tl.load(in_ptr4 + (x0), xmask) tmp20 = tl.load(in_ptr5 + (x0), xmask) tmp22 = tl.load(in_ptr6 + (x0), xmask) tmp25 = tl.load(in_ptr7 + (x0), xmask) tmp28 = tl.load(in_ptr8 + (x0), xmask) tmp35 = tl.load(in_ptr9 + (x0), xmask) tmp37 = tl.load(in_ptr10 + (x0), xmask) tmp40 = tl.load(in_ptr11 + (x0), xmask) tmp43 = tl.load(in_ptr12 + (x0), xmask) tmp50 = tl.load(in_out_ptr1 + (x0), xmask) tmp52 = tl.load(in_ptr13 + (x0), xmask) tmp55 = tl.load(in_ptr14 + (x0), xmask) tmp58 = tl.load(in_ptr15 + (x0), xmask) tmp65 = tl.load(in_out_ptr2 + (x0), xmask) tmp67 = tl.load(in_ptr16 + (x0), xmask) tmp70 = tl.load(in_ptr17 + (x0), xmask) tmp73 = tl.load(in_ptr18 + (x0), xmask) tmp80 = tl.load(in_out_ptr3 + (x0), xmask) tmp82 = tl.load(in_ptr19 + (x0), xmask) tmp85 = tl.load(in_ptr20 + (x0), xmask) tmp88 = tl.load(in_ptr21 + (x0), xmask) tmp95 = tl.load(in_out_ptr4 + (x0), xmask) tmp97 = tl.load(in_ptr22 + (x0), xmask) tmp100 = tl.load(in_ptr23 + (x0), xmask) tmp103 = tl.load(in_ptr24 + (x0), xmask) tmp110 = tl.load(in_out_ptr5 + (x0), xmask) tmp112 = tl.load(in_ptr25 + (x0), xmask) tmp115 = tl.load(in_ptr26 + (x0), xmask) tmp118 = tl.load(in_ptr27 + (x0), xmask) tmp125 = tl.load(in_out_ptr6 + (x0), xmask) tmp127 = tl.load(in_ptr28 + (x0), xmask) tmp130 = tl.load(in_ptr29 + (x0), xmask) tmp133 = tl.load(in_ptr30 + (x0), xmask) tmp140 = tl.load(in_out_ptr7 + (x0), xmask) tmp142 = tl.load(in_ptr31 + (x0), xmask) tmp145 = tl.load(in_ptr32 + (x0), xmask) tmp148 = tl.load(in_ptr33 + (x0), xmask) tmp155 = tl.load(in_ptr34 + (x0), xmask) tmp157 = tl.load(in_ptr35 + (x0), xmask) tmp160 = tl.load(in_ptr36 + (x0), xmask) tmp163 = tl.load(in_ptr37 + (x0), xmask) tmp170 = tl.load(in_ptr38 + (x0), xmask) tmp172 = tl.load(in_ptr39 + (x0), xmask) tmp175 = tl.load(in_ptr40 + (x0), xmask) tmp178 = tl.load(in_ptr41 + (x0), xmask) tmp185 = tl.load(in_ptr42 + (x0), xmask) tmp187 = tl.load(in_ptr43 + (x0), xmask) tmp190 = tl.load(in_ptr44 + (x0), xmask) tmp193 = tl.load(in_ptr45 + (x0), xmask) tmp200 = tl.load(in_ptr46 + (x0), xmask) tmp202 = tl.load(in_ptr47 + (x0), xmask) tmp205 = tl.load(in_ptr48 + (x0), xmask) tmp208 = tl.load(in_ptr49 + (x0), xmask) tmp215 = tl.load(in_ptr50 + (x0), xmask) tmp217 = tl.load(in_ptr51 + (x0), xmask) tmp220 = tl.load(in_ptr52 + (x0), xmask) tmp223 = tl.load(in_ptr53 + (x0), xmask) tmp230 = tl.load(in_ptr54 + (x0), xmask) tmp232 = tl.load(in_ptr55 + (x0), xmask) tmp235 = tl.load(in_ptr56 + (x0), xmask) tmp238 = tl.load(in_ptr57 + (x0), xmask) tmp245 = tl.load(in_ptr58 + (x0), xmask) tmp247 = tl.load(in_ptr59 + (x0), xmask) tmp250 = tl.load(in_ptr60 + (x0), xmask) tmp253 = tl.load(in_ptr61 + (x0), xmask) tmp260 = tl.load(in_ptr62 + (x0), xmask) tmp262 = tl.load(in_ptr63 + (x0), xmask) tmp265 = tl.load(in_ptr64 + (x0), xmask) tmp268 = tl.load(in_ptr65 + (x0), xmask) tmp275 = tl.load(in_ptr66 + (x0), xmask) tmp277 = tl.load(in_ptr67 + (x0), xmask) tmp280 = tl.load(in_ptr68 + (x0), xmask) tmp283 = tl.load(in_ptr69 + (x0), xmask) tmp290 = tl.load(in_ptr70 + (x0), xmask) tmp292 = tl.load(in_ptr71 + (x0), xmask) tmp295 = tl.load(in_ptr72 + (x0), xmask) tmp298 = tl.load(in_ptr73 + (x0), xmask) tmp305 = tl.load(in_ptr74 + (x0), xmask) tmp307 = tl.load(in_ptr75 + (x0), xmask) tmp310 = tl.load(in_ptr76 + (x0), xmask) tmp313 = tl.load(in_ptr77 + (x0), xmask) tmp320 = tl.load(in_ptr78 + (x0), xmask) tmp322 = tl.load(in_ptr79 + (x0), xmask) tmp325 = tl.load(in_ptr80 + (x0), xmask) tmp328 = tl.load(in_ptr81 + (x0), xmask) tmp335 = tl.load(in_ptr82 + (x0), xmask) tmp337 = tl.load(in_ptr83 + (x0), xmask) tmp340 = tl.load(in_ptr84 + (x0), xmask) tmp343 = tl.load(in_ptr85 + (x0), xmask) tmp350 = tl.load(in_ptr86 + (x0), xmask) tmp352 = tl.load(in_ptr87 + (x0), xmask) tmp355 = tl.load(in_ptr88 + (x0), xmask) tmp358 = tl.load(in_ptr89 + (x0), xmask) tmp365 = tl.load(in_ptr90 + (x0), xmask) tmp367 = tl.load(in_ptr91 + (x0), xmask) tmp370 = tl.load(in_ptr92 + (x0), xmask) tmp373 = tl.load(in_ptr93 + (x0), xmask) tmp380 = tl.load(in_ptr94 + (x0), xmask) tmp382 = tl.load(in_ptr95 + (x0), xmask) tmp385 = tl.load(in_ptr96 + (x0), xmask) tmp388 = tl.load(in_ptr97 + (x0), xmask) tmp395 = tl.load(in_ptr98 + (x0), xmask) tmp397 = tl.load(in_ptr99 + (x0), xmask) tmp400 = tl.load(in_ptr100 + (x0), xmask) tmp403 = tl.load(in_ptr101 + (x0), xmask) tmp410 = tl.load(in_ptr102 + (x0), xmask) tmp412 = tl.load(in_ptr103 + (x0), xmask) tmp415 = tl.load(in_ptr104 + (x0), xmask) tmp418 = tl.load(in_ptr105 + (x0), xmask) tmp425 = tl.load(in_ptr106 + (x0), xmask) tmp427 = tl.load(in_ptr107 + (x0), xmask) tmp430 = tl.load(in_ptr108 + (x0), xmask) tmp433 = tl.load(in_ptr109 + (x0), xmask) tmp440 = tl.load(in_ptr110 + (x0), xmask) tmp442 = tl.load(in_ptr111 + (x0), xmask) tmp445 = tl.load(in_ptr112 + (x0), xmask) tmp448 = tl.load(in_ptr113 + (x0), xmask) tmp455 = tl.load(in_ptr114 + (x0), xmask) tmp457 = tl.load(in_ptr115 + (x0), xmask) tmp460 = tl.load(in_ptr116 + (x0), xmask) tmp463 = tl.load(in_ptr117 + (x0), xmask) tmp470 = tl.load(in_ptr118 + (x0), xmask) tmp472 = tl.load(in_ptr119 + (x0), xmask) tmp475 = tl.load(in_ptr120 + (x0), xmask) tmp478 = tl.load(in_ptr121 + (x0), xmask) tmp485 = tl.load(in_ptr122 + (x0), xmask) tmp487 = tl.load(in_ptr123 + (x0), xmask) tmp490 = tl.load(in_ptr124 + (x0), xmask) tmp493 = tl.load(in_ptr125 + (x0), xmask) tmp500 = tl.load(in_ptr126 + (x0), xmask) tmp502 = tl.load(in_ptr127 + (x0), xmask) tmp505 = tl.load(in_ptr128 + (x0), xmask) tmp508 = tl.load(in_ptr129 + (x0), xmask) tmp515 = tl.load(in_ptr130 + (x0), xmask) tmp517 = tl.load(in_ptr131 + (x0), xmask) tmp520 = tl.load(in_ptr132 + (x0), xmask) tmp523 = tl.load(in_ptr133 + (x0), xmask) tmp530 = tl.load(in_ptr134 + (x0), xmask) tmp532 = tl.load(in_ptr135 + (x0), xmask) tmp535 = tl.load(in_out_ptr8 + (x0), xmask) tmp538 = tl.load(in_ptr136 + (x0), xmask) tmp545 = tl.load(in_out_ptr9 + (x0), xmask) tmp547 = tl.load(in_ptr137 + (x0), xmask) tmp550 = tl.load(in_ptr138 + (x0), xmask) tmp553 = tl.load(in_ptr139 + (x0), xmask) tmp560 = tl.load(in_out_ptr10 + (x0), xmask) tmp562 = tl.load(in_ptr140 + (x0), xmask) tmp565 = tl.load(in_ptr141 + (x0), xmask) tmp568 = tl.load(in_ptr142 + (x0), xmask) tmp575 = tl.load(in_out_ptr11 + (x0), xmask) tmp577 = tl.load(in_ptr143 + (x0), xmask) tmp580 = tl.load(in_ptr144 + (x0), xmask) tmp583 = tl.load(in_ptr145 + (x0), xmask) tmp590 = tl.load(in_out_ptr12 + (x0), xmask) tmp592 = tl.load(in_ptr146 + (x0), xmask) tmp595 = tl.load(in_ptr147 + (x0), xmask) tmp598 = tl.load(in_ptr148 + (x0), xmask) tmp605 = tl.load(in_out_ptr13 + (x0), xmask) tmp607 = tl.load(in_ptr149 + (x0), xmask) tmp610 = tl.load(in_ptr150 + (x0), xmask) tmp613 = tl.load(in_ptr151 + (x0), xmask) tmp620 = tl.load(in_out_ptr14 + (x0), xmask) tmp622 = tl.load(in_ptr152 + (x0), xmask) tmp625 = tl.load(in_ptr153 + (x0), xmask) tmp628 = tl.load(in_ptr154 + (x0), xmask) tmp635 = tl.load(in_out_ptr15 + (x0), xmask) tmp637 = tl.load(in_ptr155 + (x0), xmask) tmp640 = tl.load(in_ptr156 + (x0), xmask) tmp643 = tl.load(in_ptr157 + (x0), xmask) tmp650 = tl.load(in_out_ptr16 + (x0), xmask) tmp652 = tl.load(in_ptr158 + (x0), xmask) tmp655 = tl.load(in_ptr159 + (x0), xmask) tmp658 = tl.load(in_ptr160 + (x0), xmask) tmp665 = tl.load(in_out_ptr17 + (x0), xmask) tmp667 = tl.load(in_ptr161 + (x0), xmask) tmp670 = tl.load(in_ptr162 + (x0), xmask) tmp673 = tl.load(in_ptr163 + (x0), xmask) tmp680 = tl.load(in_out_ptr18 + (x0), xmask) tmp682 = tl.load(in_ptr164 + (x0), xmask) tmp685 = tl.load(in_ptr165 + (x0), xmask) tmp688 = tl.load(in_ptr166 + (x0), xmask) tmp695 = tl.load(in_out_ptr19 + (x0), xmask) tmp697 = tl.load(in_ptr167 + (x0), xmask) tmp700 = tl.load(in_ptr168 + (x0), xmask) tmp703 = tl.load(in_ptr169 + (x0), xmask) tmp710 = tl.load(in_out_ptr20 + (x0), xmask) tmp712 = tl.load(in_ptr170 + (x0), xmask) tmp715 = tl.load(in_ptr171 + (x0), xmask) tmp718 = tl.load(in_ptr172 + (x0), xmask) tmp725 = tl.load(in_out_ptr21 + (x0), xmask) tmp727 = tl.load(in_ptr173 + (x0), xmask) tmp730 = tl.load(in_ptr174 + (x0), xmask) tmp733 = tl.load(in_ptr175 + (x0), xmask) tmp740 = tl.load(in_out_ptr22 + (x0), xmask) tmp742 = tl.load(in_ptr176 + (x0), xmask) tmp745 = tl.load(in_ptr177 + (x0), xmask) tmp748 = tl.load(in_ptr178 + (x0), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = -tmp5 tmp8 = -tmp7 tmp9 = triton_helpers.minimum(tmp6, tmp8) tmp11 = -tmp10 tmp12 = triton_helpers.minimum(tmp9, tmp11) tmp14 = tmp12 - tmp13 tmp15 = triton_helpers.maximum(tmp3, tmp14) tmp16 = tmp4 * tmp15 tmp17 = tmp15 - tmp16 tmp18 = triton_helpers.maximum(tmp3, tmp17) tmp19 = tmp4 + tmp18 tmp21 = -tmp20 tmp23 = -tmp22 tmp24 = triton_helpers.minimum(tmp21, tmp23) tmp26 = -tmp25 tmp27 = triton_helpers.minimum(tmp24, tmp26) tmp29 = tmp27 - tmp28 tmp30 = triton_helpers.maximum(tmp3, tmp29) tmp31 = tmp19 * tmp30 tmp32 = tmp30 - tmp31 tmp33 = triton_helpers.maximum(tmp3, tmp32) tmp34 = tmp19 + tmp33 tmp36 = -tmp35 tmp38 = -tmp37 tmp39 = triton_helpers.minimum(tmp36, tmp38) tmp41 = -tmp40 tmp42 = triton_helpers.minimum(tmp39, tmp41) tmp44 = tmp42 - tmp43 tmp45 = triton_helpers.maximum(tmp3, tmp44) tmp46 = tmp34 * tmp45 tmp47 = tmp45 - tmp46 tmp48 = triton_helpers.maximum(tmp3, tmp47) tmp49 = tmp34 + tmp48 tmp51 = -tmp50 tmp53 = -tmp52 tmp54 = triton_helpers.minimum(tmp51, tmp53) tmp56 = -tmp55 tmp57 = triton_helpers.minimum(tmp54, tmp56) tmp59 = tmp57 - tmp58 tmp60 = triton_helpers.maximum(tmp3, tmp59) tmp61 = tmp49 * tmp60 tmp62 = tmp60 - tmp61 tmp63 = triton_helpers.maximum(tmp3, tmp62) tmp64 = tmp49 + tmp63 tmp66 = -tmp65 tmp68 = -tmp67 tmp69 = triton_helpers.minimum(tmp66, tmp68) tmp71 = -tmp70 tmp72 = triton_helpers.minimum(tmp69, tmp71) tmp74 = tmp72 - tmp73 tmp75 = triton_helpers.maximum(tmp3, tmp74) tmp76 = tmp64 * tmp75 tmp77 = tmp75 - tmp76 tmp78 = triton_helpers.maximum(tmp3, tmp77) tmp79 = tmp64 + tmp78 tmp81 = -tmp80 tmp83 = -tmp82 tmp84 = triton_helpers.minimum(tmp81, tmp83) tmp86 = -tmp85 tmp87 = triton_helpers.minimum(tmp84, tmp86) tmp89 = tmp87 - tmp88 tmp90 = triton_helpers.maximum(tmp3, tmp89) tmp91 = tmp79 * tmp90 tmp92 = tmp90 - tmp91 tmp93 = triton_helpers.maximum(tmp3, tmp92) tmp94 = tmp79 + tmp93 tmp96 = -tmp95 tmp98 = -tmp97 tmp99 = triton_helpers.minimum(tmp96, tmp98) tmp101 = -tmp100 tmp102 = triton_helpers.minimum(tmp99, tmp101) tmp104 = tmp102 - tmp103 tmp105 = triton_helpers.maximum(tmp3, tmp104) tmp106 = tmp94 * tmp105 tmp107 = tmp105 - tmp106 tmp108 = triton_helpers.maximum(tmp3, tmp107) tmp109 = tmp94 + tmp108 tmp111 = -tmp110 tmp113 = -tmp112 tmp114 = triton_helpers.minimum(tmp111, tmp113) tmp116 = -tmp115 tmp117 = triton_helpers.minimum(tmp114, tmp116) tmp119 = tmp117 - tmp118 tmp120 = triton_helpers.maximum(tmp3, tmp119) tmp121 = tmp109 * tmp120 tmp122 = tmp120 - tmp121 tmp123 = triton_helpers.maximum(tmp3, tmp122) tmp124 = tmp109 + tmp123 tmp126 = -tmp125 tmp128 = -tmp127 tmp129 = triton_helpers.minimum(tmp126, tmp128) tmp131 = -tmp130 tmp132 = triton_helpers.minimum(tmp129, tmp131) tmp134 = tmp132 - tmp133 tmp135 = triton_helpers.maximum(tmp3, tmp134) tmp136 = tmp124 * tmp135 tmp137 = tmp135 - tmp136 tmp138 = triton_helpers.maximum(tmp3, tmp137) tmp139 = tmp124 + tmp138 tmp141 = -tmp140 tmp143 = -tmp142 tmp144 = triton_helpers.minimum(tmp141, tmp143) tmp146 = -tmp145 tmp147 = triton_helpers.minimum(tmp144, tmp146) tmp149 = tmp147 - tmp148 tmp150 = triton_helpers.maximum(tmp3, tmp149) tmp151 = tmp139 * tmp150 tmp152 = tmp150 - tmp151 tmp153 = triton_helpers.maximum(tmp3, tmp152) tmp154 = tmp139 + tmp153 tmp156 = -tmp155 tmp158 = -tmp157 tmp159 = triton_helpers.minimum(tmp156, tmp158) tmp161 = -tmp160 tmp162 = triton_helpers.minimum(tmp159, tmp161) tmp164 = tmp162 - tmp163 tmp165 = triton_helpers.maximum(tmp3, tmp164) tmp166 = tmp154 * tmp165 tmp167 = tmp165 - tmp166 tmp168 = triton_helpers.maximum(tmp3, tmp167) tmp169 = tmp154 + tmp168 tmp171 = -tmp170 tmp173 = -tmp172 tmp174 = triton_helpers.minimum(tmp171, tmp173) tmp176 = -tmp175 tmp177 = triton_helpers.minimum(tmp174, tmp176) tmp179 = tmp177 - tmp178 tmp180 = triton_helpers.maximum(tmp3, tmp179) tmp181 = tmp169 * tmp180 tmp182 = tmp180 - tmp181 tmp183 = triton_helpers.maximum(tmp3, tmp182) tmp184 = tmp169 + tmp183 tmp186 = -tmp185 tmp188 = -tmp187 tmp189 = triton_helpers.minimum(tmp186, tmp188) tmp191 = -tmp190 tmp192 = triton_helpers.minimum(tmp189, tmp191) tmp194 = tmp192 - tmp193 tmp195 = triton_helpers.maximum(tmp3, tmp194) tmp196 = tmp184 * tmp195 tmp197 = tmp195 - tmp196 tmp198 = triton_helpers.maximum(tmp3, tmp197) tmp199 = tmp184 + tmp198 tmp201 = -tmp200 tmp203 = -tmp202 tmp204 = triton_helpers.minimum(tmp201, tmp203) tmp206 = -tmp205 tmp207 = triton_helpers.minimum(tmp204, tmp206) tmp209 = tmp207 - tmp208 tmp210 = triton_helpers.maximum(tmp3, tmp209) tmp211 = tmp199 * tmp210 tmp212 = tmp210 - tmp211 tmp213 = triton_helpers.maximum(tmp3, tmp212) tmp214 = tmp199 + tmp213 tmp216 = -tmp215 tmp218 = -tmp217 tmp219 = triton_helpers.minimum(tmp216, tmp218) tmp221 = -tmp220 tmp222 = triton_helpers.minimum(tmp219, tmp221) tmp224 = tmp222 - tmp223 tmp225 = triton_helpers.maximum(tmp3, tmp224) tmp226 = tmp214 * tmp225 tmp227 = tmp225 - tmp226 tmp228 = triton_helpers.maximum(tmp3, tmp227) tmp229 = tmp214 + tmp228 tmp231 = -tmp230 tmp233 = -tmp232 tmp234 = triton_helpers.minimum(tmp231, tmp233) tmp236 = -tmp235 tmp237 = triton_helpers.minimum(tmp234, tmp236) tmp239 = tmp237 - tmp238 tmp240 = triton_helpers.maximum(tmp3, tmp239) tmp241 = tmp229 * tmp240 tmp242 = tmp240 - tmp241 tmp243 = triton_helpers.maximum(tmp3, tmp242) tmp244 = tmp229 + tmp243 tmp246 = -tmp245 tmp248 = -tmp247 tmp249 = triton_helpers.minimum(tmp246, tmp248) tmp251 = -tmp250 tmp252 = triton_helpers.minimum(tmp249, tmp251) tmp254 = tmp252 - tmp253 tmp255 = triton_helpers.maximum(tmp3, tmp254) tmp256 = tmp244 * tmp255 tmp257 = tmp255 - tmp256 tmp258 = triton_helpers.maximum(tmp3, tmp257) tmp259 = tmp244 + tmp258 tmp261 = -tmp260 tmp263 = -tmp262 tmp264 = triton_helpers.minimum(tmp261, tmp263) tmp266 = -tmp265 tmp267 = triton_helpers.minimum(tmp264, tmp266) tmp269 = tmp267 - tmp268 tmp270 = triton_helpers.maximum(tmp3, tmp269) tmp271 = tmp259 * tmp270 tmp272 = tmp270 - tmp271 tmp273 = triton_helpers.maximum(tmp3, tmp272) tmp274 = tmp259 + tmp273 tmp276 = -tmp275 tmp278 = -tmp277 tmp279 = triton_helpers.minimum(tmp276, tmp278) tmp281 = -tmp280 tmp282 = triton_helpers.minimum(tmp279, tmp281) tmp284 = tmp282 - tmp283 tmp285 = triton_helpers.maximum(tmp3, tmp284) tmp286 = tmp274 * tmp285 tmp287 = tmp285 - tmp286 tmp288 = triton_helpers.maximum(tmp3, tmp287) tmp289 = tmp274 + tmp288 tmp291 = -tmp290 tmp293 = -tmp292 tmp294 = triton_helpers.minimum(tmp291, tmp293) tmp296 = -tmp295 tmp297 = triton_helpers.minimum(tmp294, tmp296) tmp299 = tmp297 - tmp298 tmp300 = triton_helpers.maximum(tmp3, tmp299) tmp301 = tmp289 * tmp300 tmp302 = tmp300 - tmp301 tmp303 = triton_helpers.maximum(tmp3, tmp302) tmp304 = tmp289 + tmp303 tmp306 = -tmp305 tmp308 = -tmp307 tmp309 = triton_helpers.minimum(tmp306, tmp308) tmp311 = -tmp310 tmp312 = triton_helpers.minimum(tmp309, tmp311) tmp314 = tmp312 - tmp313 tmp315 = triton_helpers.maximum(tmp3, tmp314) tmp316 = tmp304 * tmp315 tmp317 = tmp315 - tmp316 tmp318 = triton_helpers.maximum(tmp3, tmp317) tmp319 = tmp304 + tmp318 tmp321 = -tmp320 tmp323 = -tmp322 tmp324 = triton_helpers.minimum(tmp321, tmp323) tmp326 = -tmp325 tmp327 = triton_helpers.minimum(tmp324, tmp326) tmp329 = tmp327 - tmp328 tmp330 = triton_helpers.maximum(tmp3, tmp329) tmp331 = tmp319 * tmp330 tmp332 = tmp330 - tmp331 tmp333 = triton_helpers.maximum(tmp3, tmp332) tmp334 = tmp319 + tmp333 tmp336 = -tmp335 tmp338 = -tmp337 tmp339 = triton_helpers.minimum(tmp336, tmp338) tmp341 = -tmp340 tmp342 = triton_helpers.minimum(tmp339, tmp341) tmp344 = tmp342 - tmp343 tmp345 = triton_helpers.maximum(tmp3, tmp344) tmp346 = tmp334 * tmp345 tmp347 = tmp345 - tmp346 tmp348 = triton_helpers.maximum(tmp3, tmp347) tmp349 = tmp334 + tmp348 tmp351 = -tmp350 tmp353 = -tmp352 tmp354 = triton_helpers.minimum(tmp351, tmp353) tmp356 = -tmp355 tmp357 = triton_helpers.minimum(tmp354, tmp356) tmp359 = tmp357 - tmp358 tmp360 = triton_helpers.maximum(tmp3, tmp359) tmp361 = tmp349 * tmp360 tmp362 = tmp360 - tmp361 tmp363 = triton_helpers.maximum(tmp3, tmp362) tmp364 = tmp349 + tmp363 tmp366 = -tmp365 tmp368 = -tmp367 tmp369 = triton_helpers.minimum(tmp366, tmp368) tmp371 = -tmp370 tmp372 = triton_helpers.minimum(tmp369, tmp371) tmp374 = tmp372 - tmp373 tmp375 = triton_helpers.maximum(tmp3, tmp374) tmp376 = tmp364 * tmp375 tmp377 = tmp375 - tmp376 tmp378 = triton_helpers.maximum(tmp3, tmp377) tmp379 = tmp364 + tmp378 tmp381 = -tmp380 tmp383 = -tmp382 tmp384 = triton_helpers.minimum(tmp381, tmp383) tmp386 = -tmp385 tmp387 = triton_helpers.minimum(tmp384, tmp386) tmp389 = tmp387 - tmp388 tmp390 = triton_helpers.maximum(tmp3, tmp389) tmp391 = tmp379 * tmp390 tmp392 = tmp390 - tmp391 tmp393 = triton_helpers.maximum(tmp3, tmp392) tmp394 = tmp379 + tmp393 tmp396 = -tmp395 tmp398 = -tmp397 tmp399 = triton_helpers.minimum(tmp396, tmp398) tmp401 = -tmp400 tmp402 = triton_helpers.minimum(tmp399, tmp401) tmp404 = tmp402 - tmp403 tmp405 = triton_helpers.maximum(tmp3, tmp404) tmp406 = tmp394 * tmp405 tmp407 = tmp405 - tmp406 tmp408 = triton_helpers.maximum(tmp3, tmp407) tmp409 = tmp394 + tmp408 tmp411 = -tmp410 tmp413 = -tmp412 tmp414 = triton_helpers.minimum(tmp411, tmp413) tmp416 = -tmp415 tmp417 = triton_helpers.minimum(tmp414, tmp416) tmp419 = tmp417 - tmp418 tmp420 = triton_helpers.maximum(tmp3, tmp419) tmp421 = tmp409 * tmp420 tmp422 = tmp420 - tmp421 tmp423 = triton_helpers.maximum(tmp3, tmp422) tmp424 = tmp409 + tmp423 tmp426 = -tmp425 tmp428 = -tmp427 tmp429 = triton_helpers.minimum(tmp426, tmp428) tmp431 = -tmp430 tmp432 = triton_helpers.minimum(tmp429, tmp431) tmp434 = tmp432 - tmp433 tmp435 = triton_helpers.maximum(tmp3, tmp434) tmp436 = tmp424 * tmp435 tmp437 = tmp435 - tmp436 tmp438 = triton_helpers.maximum(tmp3, tmp437) tmp439 = tmp424 + tmp438 tmp441 = -tmp440 tmp443 = -tmp442 tmp444 = triton_helpers.minimum(tmp441, tmp443) tmp446 = -tmp445 tmp447 = triton_helpers.minimum(tmp444, tmp446) tmp449 = tmp447 - tmp448 tmp450 = triton_helpers.maximum(tmp3, tmp449) tmp451 = tmp439 * tmp450 tmp452 = tmp450 - tmp451 tmp453 = triton_helpers.maximum(tmp3, tmp452) tmp454 = tmp439 + tmp453 tmp456 = -tmp455 tmp458 = -tmp457 tmp459 = triton_helpers.minimum(tmp456, tmp458) tmp461 = -tmp460 tmp462 = triton_helpers.minimum(tmp459, tmp461) tmp464 = tmp462 - tmp463 tmp465 = triton_helpers.maximum(tmp3, tmp464) tmp466 = tmp454 * tmp465 tmp467 = tmp465 - tmp466 tmp468 = triton_helpers.maximum(tmp3, tmp467) tmp469 = tmp454 + tmp468 tmp471 = -tmp470 tmp473 = -tmp472 tmp474 = triton_helpers.minimum(tmp471, tmp473) tmp476 = -tmp475 tmp477 = triton_helpers.minimum(tmp474, tmp476) tmp479 = tmp477 - tmp478 tmp480 = triton_helpers.maximum(tmp3, tmp479) tmp481 = tmp469 * tmp480 tmp482 = tmp480 - tmp481 tmp483 = triton_helpers.maximum(tmp3, tmp482) tmp484 = tmp469 + tmp483 tmp486 = -tmp485 tmp488 = -tmp487 tmp489 = triton_helpers.minimum(tmp486, tmp488) tmp491 = -tmp490 tmp492 = triton_helpers.minimum(tmp489, tmp491) tmp494 = tmp492 - tmp493 tmp495 = triton_helpers.maximum(tmp3, tmp494) tmp496 = tmp484 * tmp495 tmp497 = tmp495 - tmp496 tmp498 = triton_helpers.maximum(tmp3, tmp497) tmp499 = tmp484 + tmp498 tmp501 = -tmp500 tmp503 = -tmp502 tmp504 = triton_helpers.minimum(tmp501, tmp503) tmp506 = -tmp505 tmp507 = triton_helpers.minimum(tmp504, tmp506) tmp509 = tmp507 - tmp508 tmp510 = triton_helpers.maximum(tmp3, tmp509) tmp511 = tmp499 * tmp510 tmp512 = tmp510 - tmp511 tmp513 = triton_helpers.maximum(tmp3, tmp512) tmp514 = tmp499 + tmp513 tmp516 = -tmp515 tmp518 = -tmp517 tmp519 = triton_helpers.minimum(tmp516, tmp518) tmp521 = -tmp520 tmp522 = triton_helpers.minimum(tmp519, tmp521) tmp524 = tmp522 - tmp523 tmp525 = triton_helpers.maximum(tmp3, tmp524) tmp526 = tmp514 * tmp525 tmp527 = tmp525 - tmp526 tmp528 = triton_helpers.maximum(tmp3, tmp527) tmp529 = tmp514 + tmp528 tmp531 = -tmp530 tmp533 = -tmp532 tmp534 = triton_helpers.minimum(tmp531, tmp533) tmp536 = -tmp535 tmp537 = triton_helpers.minimum(tmp534, tmp536) tmp539 = tmp537 - tmp538 tmp540 = triton_helpers.maximum(tmp3, tmp539) tmp541 = tmp529 * tmp540 tmp542 = tmp540 - tmp541 tmp543 = triton_helpers.maximum(tmp3, tmp542) tmp544 = tmp529 + tmp543 tmp546 = -tmp545 tmp548 = -tmp547 tmp549 = triton_helpers.minimum(tmp546, tmp548) tmp551 = -tmp550 tmp552 = triton_helpers.minimum(tmp549, tmp551) tmp554 = tmp552 - tmp553 tmp555 = triton_helpers.maximum(tmp3, tmp554) tmp556 = tmp544 * tmp555 tmp557 = tmp555 - tmp556 tmp558 = triton_helpers.maximum(tmp3, tmp557) tmp559 = tmp544 + tmp558 tmp561 = -tmp560 tmp563 = -tmp562 tmp564 = triton_helpers.minimum(tmp561, tmp563) tmp566 = -tmp565 tmp567 = triton_helpers.minimum(tmp564, tmp566) tmp569 = tmp567 - tmp568 tmp570 = triton_helpers.maximum(tmp3, tmp569) tmp571 = tmp559 * tmp570 tmp572 = tmp570 - tmp571 tmp573 = triton_helpers.maximum(tmp3, tmp572) tmp574 = tmp559 + tmp573 tmp576 = -tmp575 tmp578 = -tmp577 tmp579 = triton_helpers.minimum(tmp576, tmp578) tmp581 = -tmp580 tmp582 = triton_helpers.minimum(tmp579, tmp581) tmp584 = tmp582 - tmp583 tmp585 = triton_helpers.maximum(tmp3, tmp584) tmp586 = tmp574 * tmp585 tmp587 = tmp585 - tmp586 tmp588 = triton_helpers.maximum(tmp3, tmp587) tmp589 = tmp574 + tmp588 tmp591 = -tmp590 tmp593 = -tmp592 tmp594 = triton_helpers.minimum(tmp591, tmp593) tmp596 = -tmp595 tmp597 = triton_helpers.minimum(tmp594, tmp596) tmp599 = tmp597 - tmp598 tmp600 = triton_helpers.maximum(tmp3, tmp599) tmp601 = tmp589 * tmp600 tmp602 = tmp600 - tmp601 tmp603 = triton_helpers.maximum(tmp3, tmp602) tmp604 = tmp589 + tmp603 tmp606 = -tmp605 tmp608 = -tmp607 tmp609 = triton_helpers.minimum(tmp606, tmp608) tmp611 = -tmp610 tmp612 = triton_helpers.minimum(tmp609, tmp611) tmp614 = tmp612 - tmp613 tmp615 = triton_helpers.maximum(tmp3, tmp614) tmp616 = tmp604 * tmp615 tmp617 = tmp615 - tmp616 tmp618 = triton_helpers.maximum(tmp3, tmp617) tmp619 = tmp604 + tmp618 tmp621 = -tmp620 tmp623 = -tmp622 tmp624 = triton_helpers.minimum(tmp621, tmp623) tmp626 = -tmp625 tmp627 = triton_helpers.minimum(tmp624, tmp626) tmp629 = tmp627 - tmp628 tmp630 = triton_helpers.maximum(tmp3, tmp629) tmp631 = tmp619 * tmp630 tmp632 = tmp630 - tmp631 tmp633 = triton_helpers.maximum(tmp3, tmp632) tmp634 = tmp619 + tmp633 tmp636 = -tmp635 tmp638 = -tmp637 tmp639 = triton_helpers.minimum(tmp636, tmp638) tmp641 = -tmp640 tmp642 = triton_helpers.minimum(tmp639, tmp641) tmp644 = tmp642 - tmp643 tmp645 = triton_helpers.maximum(tmp3, tmp644) tmp646 = tmp634 * tmp645 tmp647 = tmp645 - tmp646 tmp648 = triton_helpers.maximum(tmp3, tmp647) tmp649 = tmp634 + tmp648 tmp651 = -tmp650 tmp653 = -tmp652 tmp654 = triton_helpers.minimum(tmp651, tmp653) tmp656 = -tmp655 tmp657 = triton_helpers.minimum(tmp654, tmp656) tmp659 = tmp657 - tmp658 tmp660 = triton_helpers.maximum(tmp3, tmp659) tmp661 = tmp649 * tmp660 tmp662 = tmp660 - tmp661 tmp663 = triton_helpers.maximum(tmp3, tmp662) tmp664 = tmp649 + tmp663 tmp666 = -tmp665 tmp668 = -tmp667 tmp669 = triton_helpers.minimum(tmp666, tmp668) tmp671 = -tmp670 tmp672 = triton_helpers.minimum(tmp669, tmp671) tmp674 = tmp672 - tmp673 tmp675 = triton_helpers.maximum(tmp3, tmp674) tmp676 = tmp664 * tmp675 tmp677 = tmp675 - tmp676 tmp678 = triton_helpers.maximum(tmp3, tmp677) tmp679 = tmp664 + tmp678 tmp681 = -tmp680 tmp683 = -tmp682 tmp684 = triton_helpers.minimum(tmp681, tmp683) tmp686 = -tmp685 tmp687 = triton_helpers.minimum(tmp684, tmp686) tmp689 = tmp687 - tmp688 tmp690 = triton_helpers.maximum(tmp3, tmp689) tmp691 = tmp679 * tmp690 tmp692 = tmp690 - tmp691 tmp693 = triton_helpers.maximum(tmp3, tmp692) tmp694 = tmp679 + tmp693 tmp696 = -tmp695 tmp698 = -tmp697 tmp699 = triton_helpers.minimum(tmp696, tmp698) tmp701 = -tmp700 tmp702 = triton_helpers.minimum(tmp699, tmp701) tmp704 = tmp702 - tmp703 tmp705 = triton_helpers.maximum(tmp3, tmp704) tmp706 = tmp694 * tmp705 tmp707 = tmp705 - tmp706 tmp708 = triton_helpers.maximum(tmp3, tmp707) tmp709 = tmp694 + tmp708 tmp711 = -tmp710 tmp713 = -tmp712 tmp714 = triton_helpers.minimum(tmp711, tmp713) tmp716 = -tmp715 tmp717 = triton_helpers.minimum(tmp714, tmp716) tmp719 = tmp717 - tmp718 tmp720 = triton_helpers.maximum(tmp3, tmp719) tmp721 = tmp709 * tmp720 tmp722 = tmp720 - tmp721 tmp723 = triton_helpers.maximum(tmp3, tmp722) tmp724 = tmp709 + tmp723 tmp726 = -tmp725 tmp728 = -tmp727 tmp729 = triton_helpers.minimum(tmp726, tmp728) tmp731 = -tmp730 tmp732 = triton_helpers.minimum(tmp729, tmp731) tmp734 = tmp732 - tmp733 tmp735 = triton_helpers.maximum(tmp3, tmp734) tmp736 = tmp724 * tmp735 tmp737 = tmp735 - tmp736 tmp738 = triton_helpers.maximum(tmp3, tmp737) tmp739 = tmp724 + tmp738 tmp741 = -tmp740 tmp743 = -tmp742 tmp744 = triton_helpers.minimum(tmp741, tmp743) tmp746 = -tmp745 tmp747 = triton_helpers.minimum(tmp744, tmp746) tmp749 = tmp747 - tmp748 tmp750 = triton_helpers.maximum(tmp3, tmp749) tmp751 = tmp739 * tmp750 tmp752 = tmp750 - tmp751 tmp753 = triton_helpers.maximum(tmp3, tmp752) tmp754 = tmp739 + tmp753 tl.store(in_out_ptr22 + (x0), tmp754, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf24 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [neg, neg_2, neg_4, neg_6, neg_8, neg_10], Original ATen: [aten.neg] stream0 = get_raw_stream(0) triton_poi_fused_neg_0.run(arg0_1, buf0, buf4, buf8, buf16, buf20, buf24, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [neg, max_pool3d], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf1 = torch.ops.aten.max_pool3d_with_indices.default(buf0, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf0 buf2 = buf1[0] del buf1 # Topologically Sorted Source Nodes: [neg_2, max_pool3d_1], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf5 = torch.ops.aten.max_pool3d_with_indices.default(buf4, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf4 buf6 = buf5[0] del buf5 # Topologically Sorted Source Nodes: [neg_4, max_pool3d_2], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf9 = torch.ops.aten.max_pool3d_with_indices.default(buf8, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf8 buf10 = buf9[0] del buf9 buf12 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [p1, p3, min_1, p2, min_2], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_1.run(buf12, buf2, buf6, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1, p3, min_1, p2, min_2, img1], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf13 = torch.ops.aten.max_pool3d_with_indices.default(buf12, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf14 = buf13[0] del buf13 # Topologically Sorted Source Nodes: [neg_6, max_pool3d_4], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf17 = torch.ops.aten.max_pool3d_with_indices.default(buf16, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf18 = buf17[0] del buf17 # Topologically Sorted Source Nodes: [neg_8, max_pool3d_5], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf21 = torch.ops.aten.max_pool3d_with_indices.default(buf20, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf22 = buf21[0] del buf21 # Topologically Sorted Source Nodes: [neg_10, max_pool3d_6], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf25 = torch.ops.aten.max_pool3d_with_indices.default(buf24, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf26 = buf25[0] del buf25 buf28 = buf24; del buf24 # reuse buf32 = buf20; del buf20 # reuse buf36 = buf16; del buf16 # reuse buf44 = buf12; del buf12 # reuse buf48 = buf6; del buf6 # reuse buf52 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [p1_1, p3_1, min_3, p2_1, img, neg_12, neg_14, neg_16, neg_18, neg_20, neg_22], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf18, buf26, buf22, buf28, buf32, buf36, buf44, buf48, buf52, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_1, p3_1, min_3, p2_1, img, neg_12, max_pool3d_7], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf29 = torch.ops.aten.max_pool3d_with_indices.default(buf28, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf28 buf30 = buf29[0] del buf29 # Topologically Sorted Source Nodes: [p1_1, p3_1, min_3, p2_1, img, neg_14, max_pool3d_8], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf33 = torch.ops.aten.max_pool3d_with_indices.default(buf32, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf32 buf34 = buf33[0] del buf33 # Topologically Sorted Source Nodes: [p1_1, p3_1, min_3, p2_1, img, neg_16, max_pool3d_9], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf37 = torch.ops.aten.max_pool3d_with_indices.default(buf36, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf36 buf38 = buf37[0] del buf37 buf40 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [p1_2, p3_2, min_5, p2_2, min_6], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf40, buf38, buf34, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_2, p3_2, min_5, p2_2, min_6, img1_1], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf41 = torch.ops.aten.max_pool3d_with_indices.default(buf40, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf42 = buf41[0] del buf41 # Topologically Sorted Source Nodes: [p1_1, p3_1, min_3, p2_1, img, neg_18, max_pool3d_11], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf45 = torch.ops.aten.max_pool3d_with_indices.default(buf44, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf46 = buf45[0] del buf45 # Topologically Sorted Source Nodes: [p1_1, p3_1, min_3, p2_1, img, neg_20, max_pool3d_12], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf49 = torch.ops.aten.max_pool3d_with_indices.default(buf48, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf50 = buf49[0] del buf49 # Topologically Sorted Source Nodes: [p1_1, p3_1, min_3, p2_1, img, neg_22, max_pool3d_13], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf53 = torch.ops.aten.max_pool3d_with_indices.default(buf52, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf54 = buf53[0] del buf53 buf56 = buf52; del buf52 # reuse buf60 = buf48; del buf48 # reuse buf64 = buf44; del buf44 # reuse buf72 = buf40; del buf40 # reuse buf76 = buf38; del buf38 # reuse buf80 = buf34; del buf34 # reuse # Topologically Sorted Source Nodes: [p1_3, p3_3, min_7, p2_3, img_1, neg_24, neg_26, neg_28, neg_30, neg_32, neg_34], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf46, buf54, buf50, buf56, buf60, buf64, buf72, buf76, buf80, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_3, p3_3, min_7, p2_3, img_1, neg_24, max_pool3d_14], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf57 = torch.ops.aten.max_pool3d_with_indices.default(buf56, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf56 buf58 = buf57[0] del buf57 # Topologically Sorted Source Nodes: [p1_3, p3_3, min_7, p2_3, img_1, neg_26, max_pool3d_15], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf61 = torch.ops.aten.max_pool3d_with_indices.default(buf60, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf60 buf62 = buf61[0] del buf61 # Topologically Sorted Source Nodes: [p1_3, p3_3, min_7, p2_3, img_1, neg_28, max_pool3d_16], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf65 = torch.ops.aten.max_pool3d_with_indices.default(buf64, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf64 buf66 = buf65[0] del buf65 buf68 = buf58; del buf58 # reuse # Topologically Sorted Source Nodes: [p1_4, p3_4, min_9, p2_4, min_10], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf68, buf66, buf62, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_4, p3_4, min_9, p2_4, min_10, img1_2], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf69 = torch.ops.aten.max_pool3d_with_indices.default(buf68, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf70 = buf69[0] del buf69 # Topologically Sorted Source Nodes: [p1_3, p3_3, min_7, p2_3, img_1, neg_30, max_pool3d_18], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf73 = torch.ops.aten.max_pool3d_with_indices.default(buf72, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf74 = buf73[0] del buf73 # Topologically Sorted Source Nodes: [p1_3, p3_3, min_7, p2_3, img_1, neg_32, max_pool3d_19], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf77 = torch.ops.aten.max_pool3d_with_indices.default(buf76, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf78 = buf77[0] del buf77 # Topologically Sorted Source Nodes: [p1_3, p3_3, min_7, p2_3, img_1, neg_34, max_pool3d_20], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf81 = torch.ops.aten.max_pool3d_with_indices.default(buf80, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf82 = buf81[0] del buf81 buf84 = buf80; del buf80 # reuse buf88 = buf76; del buf76 # reuse buf92 = buf72; del buf72 # reuse buf100 = buf68; del buf68 # reuse buf104 = buf66; del buf66 # reuse buf108 = buf62; del buf62 # reuse # Topologically Sorted Source Nodes: [p1_5, p3_5, min_11, p2_5, img_2, neg_36, neg_38, neg_40, neg_42, neg_44, neg_46], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf74, buf82, buf78, buf84, buf88, buf92, buf100, buf104, buf108, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_5, p3_5, min_11, p2_5, img_2, neg_36, max_pool3d_21], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf85 = torch.ops.aten.max_pool3d_with_indices.default(buf84, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf84 buf86 = buf85[0] del buf85 # Topologically Sorted Source Nodes: [p1_5, p3_5, min_11, p2_5, img_2, neg_38, max_pool3d_22], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf89 = torch.ops.aten.max_pool3d_with_indices.default(buf88, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf88 buf90 = buf89[0] del buf89 # Topologically Sorted Source Nodes: [p1_5, p3_5, min_11, p2_5, img_2, neg_40, max_pool3d_23], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf93 = torch.ops.aten.max_pool3d_with_indices.default(buf92, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf92 buf94 = buf93[0] del buf93 buf96 = buf86; del buf86 # reuse # Topologically Sorted Source Nodes: [p1_6, p3_6, min_13, p2_6, min_14], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf96, buf94, buf90, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_6, p3_6, min_13, p2_6, min_14, img1_3], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf97 = torch.ops.aten.max_pool3d_with_indices.default(buf96, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf98 = buf97[0] del buf97 # Topologically Sorted Source Nodes: [p1_5, p3_5, min_11, p2_5, img_2, neg_42, max_pool3d_25], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf101 = torch.ops.aten.max_pool3d_with_indices.default(buf100, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf102 = buf101[0] del buf101 # Topologically Sorted Source Nodes: [p1_5, p3_5, min_11, p2_5, img_2, neg_44, max_pool3d_26], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf105 = torch.ops.aten.max_pool3d_with_indices.default(buf104, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf106 = buf105[0] del buf105 # Topologically Sorted Source Nodes: [p1_5, p3_5, min_11, p2_5, img_2, neg_46, max_pool3d_27], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf109 = torch.ops.aten.max_pool3d_with_indices.default(buf108, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf110 = buf109[0] del buf109 buf112 = buf108; del buf108 # reuse buf116 = buf104; del buf104 # reuse buf120 = buf100; del buf100 # reuse buf128 = buf96; del buf96 # reuse buf132 = buf94; del buf94 # reuse buf136 = buf90; del buf90 # reuse # Topologically Sorted Source Nodes: [p1_7, p3_7, min_15, p2_7, img_3, neg_48, neg_50, neg_52, neg_54, neg_56, neg_58], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf102, buf110, buf106, buf112, buf116, buf120, buf128, buf132, buf136, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_7, p3_7, min_15, p2_7, img_3, neg_48, max_pool3d_28], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf113 = torch.ops.aten.max_pool3d_with_indices.default(buf112, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf112 buf114 = buf113[0] del buf113 # Topologically Sorted Source Nodes: [p1_7, p3_7, min_15, p2_7, img_3, neg_50, max_pool3d_29], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf117 = torch.ops.aten.max_pool3d_with_indices.default(buf116, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf116 buf118 = buf117[0] del buf117 # Topologically Sorted Source Nodes: [p1_7, p3_7, min_15, p2_7, img_3, neg_52, max_pool3d_30], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf121 = torch.ops.aten.max_pool3d_with_indices.default(buf120, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf120 buf122 = buf121[0] del buf121 buf124 = buf114; del buf114 # reuse # Topologically Sorted Source Nodes: [p1_8, p3_8, min_17, p2_8, min_18], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf124, buf122, buf118, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_8, p3_8, min_17, p2_8, min_18, img1_4], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf125 = torch.ops.aten.max_pool3d_with_indices.default(buf124, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf126 = buf125[0] del buf125 # Topologically Sorted Source Nodes: [p1_7, p3_7, min_15, p2_7, img_3, neg_54, max_pool3d_32], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf129 = torch.ops.aten.max_pool3d_with_indices.default(buf128, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf130 = buf129[0] del buf129 # Topologically Sorted Source Nodes: [p1_7, p3_7, min_15, p2_7, img_3, neg_56, max_pool3d_33], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf133 = torch.ops.aten.max_pool3d_with_indices.default(buf132, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf134 = buf133[0] del buf133 # Topologically Sorted Source Nodes: [p1_7, p3_7, min_15, p2_7, img_3, neg_58, max_pool3d_34], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf137 = torch.ops.aten.max_pool3d_with_indices.default(buf136, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf138 = buf137[0] del buf137 buf140 = buf136; del buf136 # reuse buf144 = buf132; del buf132 # reuse buf148 = buf128; del buf128 # reuse buf156 = buf124; del buf124 # reuse buf160 = buf122; del buf122 # reuse buf164 = buf118; del buf118 # reuse # Topologically Sorted Source Nodes: [p1_9, p3_9, min_19, p2_9, img_4, neg_60, neg_62, neg_64, neg_66, neg_68, neg_70], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf130, buf138, buf134, buf140, buf144, buf148, buf156, buf160, buf164, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_9, p3_9, min_19, p2_9, img_4, neg_60, max_pool3d_35], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf141 = torch.ops.aten.max_pool3d_with_indices.default(buf140, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf140 buf142 = buf141[0] del buf141 # Topologically Sorted Source Nodes: [p1_9, p3_9, min_19, p2_9, img_4, neg_62, max_pool3d_36], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf145 = torch.ops.aten.max_pool3d_with_indices.default(buf144, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf144 buf146 = buf145[0] del buf145 # Topologically Sorted Source Nodes: [p1_9, p3_9, min_19, p2_9, img_4, neg_64, max_pool3d_37], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf149 = torch.ops.aten.max_pool3d_with_indices.default(buf148, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf148 buf150 = buf149[0] del buf149 buf152 = buf142; del buf142 # reuse # Topologically Sorted Source Nodes: [p1_10, p3_10, min_21, p2_10, min_22], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf152, buf150, buf146, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_10, p3_10, min_21, p2_10, min_22, img1_5], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf153 = torch.ops.aten.max_pool3d_with_indices.default(buf152, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf154 = buf153[0] del buf153 # Topologically Sorted Source Nodes: [p1_9, p3_9, min_19, p2_9, img_4, neg_66, max_pool3d_39], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf157 = torch.ops.aten.max_pool3d_with_indices.default(buf156, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf158 = buf157[0] del buf157 # Topologically Sorted Source Nodes: [p1_9, p3_9, min_19, p2_9, img_4, neg_68, max_pool3d_40], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf161 = torch.ops.aten.max_pool3d_with_indices.default(buf160, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf162 = buf161[0] del buf161 # Topologically Sorted Source Nodes: [p1_9, p3_9, min_19, p2_9, img_4, neg_70, max_pool3d_41], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf165 = torch.ops.aten.max_pool3d_with_indices.default(buf164, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf166 = buf165[0] del buf165 buf168 = buf164; del buf164 # reuse buf172 = buf160; del buf160 # reuse buf176 = buf156; del buf156 # reuse buf184 = buf152; del buf152 # reuse buf188 = buf150; del buf150 # reuse buf192 = buf146; del buf146 # reuse # Topologically Sorted Source Nodes: [p1_11, p3_11, min_23, p2_11, img_5, neg_72, neg_74, neg_76, neg_78, neg_80, neg_82], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf158, buf166, buf162, buf168, buf172, buf176, buf184, buf188, buf192, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_11, p3_11, min_23, p2_11, img_5, neg_72, max_pool3d_42], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf169 = torch.ops.aten.max_pool3d_with_indices.default(buf168, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf168 buf170 = buf169[0] del buf169 # Topologically Sorted Source Nodes: [p1_11, p3_11, min_23, p2_11, img_5, neg_74, max_pool3d_43], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf173 = torch.ops.aten.max_pool3d_with_indices.default(buf172, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf172 buf174 = buf173[0] del buf173 # Topologically Sorted Source Nodes: [p1_11, p3_11, min_23, p2_11, img_5, neg_76, max_pool3d_44], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf177 = torch.ops.aten.max_pool3d_with_indices.default(buf176, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf176 buf178 = buf177[0] del buf177 buf180 = buf170; del buf170 # reuse # Topologically Sorted Source Nodes: [p1_12, p3_12, min_25, p2_12, min_26], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf180, buf178, buf174, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_12, p3_12, min_25, p2_12, min_26, img1_6], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf181 = torch.ops.aten.max_pool3d_with_indices.default(buf180, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf182 = buf181[0] del buf181 # Topologically Sorted Source Nodes: [p1_11, p3_11, min_23, p2_11, img_5, neg_78, max_pool3d_46], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf185 = torch.ops.aten.max_pool3d_with_indices.default(buf184, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf186 = buf185[0] del buf185 # Topologically Sorted Source Nodes: [p1_11, p3_11, min_23, p2_11, img_5, neg_80, max_pool3d_47], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf189 = torch.ops.aten.max_pool3d_with_indices.default(buf188, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf190 = buf189[0] del buf189 # Topologically Sorted Source Nodes: [p1_11, p3_11, min_23, p2_11, img_5, neg_82, max_pool3d_48], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf193 = torch.ops.aten.max_pool3d_with_indices.default(buf192, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf194 = buf193[0] del buf193 buf196 = buf192; del buf192 # reuse buf200 = buf188; del buf188 # reuse buf204 = buf184; del buf184 # reuse buf212 = buf180; del buf180 # reuse buf216 = buf178; del buf178 # reuse buf220 = buf174; del buf174 # reuse # Topologically Sorted Source Nodes: [p1_13, p3_13, min_27, p2_13, img_6, neg_84, neg_86, neg_88, neg_90, neg_92, neg_94], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf186, buf194, buf190, buf196, buf200, buf204, buf212, buf216, buf220, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_13, p3_13, min_27, p2_13, img_6, neg_84, max_pool3d_49], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf197 = torch.ops.aten.max_pool3d_with_indices.default(buf196, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf196 buf198 = buf197[0] del buf197 # Topologically Sorted Source Nodes: [p1_13, p3_13, min_27, p2_13, img_6, neg_86, max_pool3d_50], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf201 = torch.ops.aten.max_pool3d_with_indices.default(buf200, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf200 buf202 = buf201[0] del buf201 # Topologically Sorted Source Nodes: [p1_13, p3_13, min_27, p2_13, img_6, neg_88, max_pool3d_51], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf205 = torch.ops.aten.max_pool3d_with_indices.default(buf204, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf204 buf206 = buf205[0] del buf205 buf208 = buf198; del buf198 # reuse # Topologically Sorted Source Nodes: [p1_14, p3_14, min_29, p2_14, min_30], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf208, buf206, buf202, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_14, p3_14, min_29, p2_14, min_30, img1_7], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf209 = torch.ops.aten.max_pool3d_with_indices.default(buf208, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf210 = buf209[0] del buf209 # Topologically Sorted Source Nodes: [p1_13, p3_13, min_27, p2_13, img_6, neg_90, max_pool3d_53], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf213 = torch.ops.aten.max_pool3d_with_indices.default(buf212, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf214 = buf213[0] del buf213 # Topologically Sorted Source Nodes: [p1_13, p3_13, min_27, p2_13, img_6, neg_92, max_pool3d_54], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf217 = torch.ops.aten.max_pool3d_with_indices.default(buf216, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf218 = buf217[0] del buf217 # Topologically Sorted Source Nodes: [p1_13, p3_13, min_27, p2_13, img_6, neg_94, max_pool3d_55], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf221 = torch.ops.aten.max_pool3d_with_indices.default(buf220, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf222 = buf221[0] del buf221 buf224 = buf220; del buf220 # reuse buf228 = buf216; del buf216 # reuse buf232 = buf212; del buf212 # reuse buf240 = buf208; del buf208 # reuse buf244 = buf206; del buf206 # reuse buf248 = buf202; del buf202 # reuse # Topologically Sorted Source Nodes: [p1_15, p3_15, min_31, p2_15, img_7, neg_96, neg_98, neg_100, neg_102, neg_104, neg_106], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf214, buf222, buf218, buf224, buf228, buf232, buf240, buf244, buf248, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_15, p3_15, min_31, p2_15, img_7, neg_96, max_pool3d_56], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf225 = torch.ops.aten.max_pool3d_with_indices.default(buf224, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf224 buf226 = buf225[0] del buf225 # Topologically Sorted Source Nodes: [p1_15, p3_15, min_31, p2_15, img_7, neg_98, max_pool3d_57], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf229 = torch.ops.aten.max_pool3d_with_indices.default(buf228, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf228 buf230 = buf229[0] del buf229 # Topologically Sorted Source Nodes: [p1_15, p3_15, min_31, p2_15, img_7, neg_100, max_pool3d_58], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf233 = torch.ops.aten.max_pool3d_with_indices.default(buf232, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf232 buf234 = buf233[0] del buf233 buf236 = buf226; del buf226 # reuse # Topologically Sorted Source Nodes: [p1_16, p3_16, min_33, p2_16, min_34], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf236, buf234, buf230, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_16, p3_16, min_33, p2_16, min_34, img1_8], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf237 = torch.ops.aten.max_pool3d_with_indices.default(buf236, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf238 = buf237[0] del buf237 # Topologically Sorted Source Nodes: [p1_15, p3_15, min_31, p2_15, img_7, neg_102, max_pool3d_60], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf241 = torch.ops.aten.max_pool3d_with_indices.default(buf240, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf242 = buf241[0] del buf241 # Topologically Sorted Source Nodes: [p1_15, p3_15, min_31, p2_15, img_7, neg_104, max_pool3d_61], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf245 = torch.ops.aten.max_pool3d_with_indices.default(buf244, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf246 = buf245[0] del buf245 # Topologically Sorted Source Nodes: [p1_15, p3_15, min_31, p2_15, img_7, neg_106, max_pool3d_62], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf249 = torch.ops.aten.max_pool3d_with_indices.default(buf248, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf250 = buf249[0] del buf249 buf252 = buf248; del buf248 # reuse buf256 = buf244; del buf244 # reuse buf260 = buf240; del buf240 # reuse buf268 = buf236; del buf236 # reuse buf272 = buf234; del buf234 # reuse buf276 = buf230; del buf230 # reuse # Topologically Sorted Source Nodes: [p1_17, p3_17, min_35, p2_17, img_8, neg_108, neg_110, neg_112, neg_114, neg_116, neg_118], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf242, buf250, buf246, buf252, buf256, buf260, buf268, buf272, buf276, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_17, p3_17, min_35, p2_17, img_8, neg_108, max_pool3d_63], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf253 = torch.ops.aten.max_pool3d_with_indices.default(buf252, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf252 buf254 = buf253[0] del buf253 # Topologically Sorted Source Nodes: [p1_17, p3_17, min_35, p2_17, img_8, neg_110, max_pool3d_64], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf257 = torch.ops.aten.max_pool3d_with_indices.default(buf256, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf256 buf258 = buf257[0] del buf257 # Topologically Sorted Source Nodes: [p1_17, p3_17, min_35, p2_17, img_8, neg_112, max_pool3d_65], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf261 = torch.ops.aten.max_pool3d_with_indices.default(buf260, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf260 buf262 = buf261[0] del buf261 buf264 = buf254; del buf254 # reuse # Topologically Sorted Source Nodes: [p1_18, p3_18, min_37, p2_18, min_38], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf264, buf262, buf258, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_18, p3_18, min_37, p2_18, min_38, img1_9], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf265 = torch.ops.aten.max_pool3d_with_indices.default(buf264, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf266 = buf265[0] del buf265 # Topologically Sorted Source Nodes: [p1_17, p3_17, min_35, p2_17, img_8, neg_114, max_pool3d_67], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf269 = torch.ops.aten.max_pool3d_with_indices.default(buf268, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf270 = buf269[0] del buf269 # Topologically Sorted Source Nodes: [p1_17, p3_17, min_35, p2_17, img_8, neg_116, max_pool3d_68], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf273 = torch.ops.aten.max_pool3d_with_indices.default(buf272, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf274 = buf273[0] del buf273 # Topologically Sorted Source Nodes: [p1_17, p3_17, min_35, p2_17, img_8, neg_118, max_pool3d_69], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf277 = torch.ops.aten.max_pool3d_with_indices.default(buf276, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf278 = buf277[0] del buf277 buf280 = buf276; del buf276 # reuse buf284 = buf272; del buf272 # reuse buf288 = buf268; del buf268 # reuse buf296 = buf264; del buf264 # reuse buf300 = buf262; del buf262 # reuse buf304 = buf258; del buf258 # reuse # Topologically Sorted Source Nodes: [p1_19, p3_19, min_39, p2_19, img_9, neg_120, neg_122, neg_124, neg_126, neg_128, neg_130], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf270, buf278, buf274, buf280, buf284, buf288, buf296, buf300, buf304, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_19, p3_19, min_39, p2_19, img_9, neg_120, max_pool3d_70], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf281 = torch.ops.aten.max_pool3d_with_indices.default(buf280, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf280 buf282 = buf281[0] del buf281 # Topologically Sorted Source Nodes: [p1_19, p3_19, min_39, p2_19, img_9, neg_122, max_pool3d_71], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf285 = torch.ops.aten.max_pool3d_with_indices.default(buf284, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf284 buf286 = buf285[0] del buf285 # Topologically Sorted Source Nodes: [p1_19, p3_19, min_39, p2_19, img_9, neg_124, max_pool3d_72], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf289 = torch.ops.aten.max_pool3d_with_indices.default(buf288, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf288 buf290 = buf289[0] del buf289 buf292 = buf282; del buf282 # reuse # Topologically Sorted Source Nodes: [p1_20, p3_20, min_41, p2_20, min_42], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf292, buf290, buf286, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_20, p3_20, min_41, p2_20, min_42, img1_10], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf293 = torch.ops.aten.max_pool3d_with_indices.default(buf292, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf294 = buf293[0] del buf293 # Topologically Sorted Source Nodes: [p1_19, p3_19, min_39, p2_19, img_9, neg_126, max_pool3d_74], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf297 = torch.ops.aten.max_pool3d_with_indices.default(buf296, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf298 = buf297[0] del buf297 # Topologically Sorted Source Nodes: [p1_19, p3_19, min_39, p2_19, img_9, neg_128, max_pool3d_75], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf301 = torch.ops.aten.max_pool3d_with_indices.default(buf300, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf302 = buf301[0] del buf301 # Topologically Sorted Source Nodes: [p1_19, p3_19, min_39, p2_19, img_9, neg_130, max_pool3d_76], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf305 = torch.ops.aten.max_pool3d_with_indices.default(buf304, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf306 = buf305[0] del buf305 buf308 = buf304; del buf304 # reuse buf312 = buf300; del buf300 # reuse buf316 = buf296; del buf296 # reuse buf324 = buf292; del buf292 # reuse buf328 = buf290; del buf290 # reuse buf332 = buf286; del buf286 # reuse # Topologically Sorted Source Nodes: [p1_21, p3_21, min_43, p2_21, img_10, neg_132, neg_134, neg_136, neg_138, neg_140, neg_142], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf298, buf306, buf302, buf308, buf312, buf316, buf324, buf328, buf332, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_21, p3_21, min_43, p2_21, img_10, neg_132, max_pool3d_77], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf309 = torch.ops.aten.max_pool3d_with_indices.default(buf308, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf308 buf310 = buf309[0] del buf309 # Topologically Sorted Source Nodes: [p1_21, p3_21, min_43, p2_21, img_10, neg_134, max_pool3d_78], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf313 = torch.ops.aten.max_pool3d_with_indices.default(buf312, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf312 buf314 = buf313[0] del buf313 # Topologically Sorted Source Nodes: [p1_21, p3_21, min_43, p2_21, img_10, neg_136, max_pool3d_79], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf317 = torch.ops.aten.max_pool3d_with_indices.default(buf316, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf316 buf318 = buf317[0] del buf317 buf320 = buf310; del buf310 # reuse # Topologically Sorted Source Nodes: [p1_22, p3_22, min_45, p2_22, min_46], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf320, buf318, buf314, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_22, p3_22, min_45, p2_22, min_46, img1_11], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf321 = torch.ops.aten.max_pool3d_with_indices.default(buf320, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf322 = buf321[0] del buf321 # Topologically Sorted Source Nodes: [p1_21, p3_21, min_43, p2_21, img_10, neg_138, max_pool3d_81], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf325 = torch.ops.aten.max_pool3d_with_indices.default(buf324, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf326 = buf325[0] del buf325 # Topologically Sorted Source Nodes: [p1_21, p3_21, min_43, p2_21, img_10, neg_140, max_pool3d_82], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf329 = torch.ops.aten.max_pool3d_with_indices.default(buf328, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf330 = buf329[0] del buf329 # Topologically Sorted Source Nodes: [p1_21, p3_21, min_43, p2_21, img_10, neg_142, max_pool3d_83], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf333 = torch.ops.aten.max_pool3d_with_indices.default(buf332, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf334 = buf333[0] del buf333 buf336 = buf332; del buf332 # reuse buf340 = buf328; del buf328 # reuse buf344 = buf324; del buf324 # reuse buf352 = buf320; del buf320 # reuse buf356 = buf318; del buf318 # reuse buf360 = buf314; del buf314 # reuse # Topologically Sorted Source Nodes: [p1_23, p3_23, min_47, p2_23, img_11, neg_144, neg_146, neg_148, neg_150, neg_152, neg_154], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf326, buf334, buf330, buf336, buf340, buf344, buf352, buf356, buf360, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_23, p3_23, min_47, p2_23, img_11, neg_144, max_pool3d_84], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf337 = torch.ops.aten.max_pool3d_with_indices.default(buf336, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf336 buf338 = buf337[0] del buf337 # Topologically Sorted Source Nodes: [p1_23, p3_23, min_47, p2_23, img_11, neg_146, max_pool3d_85], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf341 = torch.ops.aten.max_pool3d_with_indices.default(buf340, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf340 buf342 = buf341[0] del buf341 # Topologically Sorted Source Nodes: [p1_23, p3_23, min_47, p2_23, img_11, neg_148, max_pool3d_86], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf345 = torch.ops.aten.max_pool3d_with_indices.default(buf344, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf344 buf346 = buf345[0] del buf345 buf348 = buf338; del buf338 # reuse # Topologically Sorted Source Nodes: [p1_24, p3_24, min_49, p2_24, min_50], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf348, buf346, buf342, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_24, p3_24, min_49, p2_24, min_50, img1_12], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf349 = torch.ops.aten.max_pool3d_with_indices.default(buf348, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf350 = buf349[0] del buf349 # Topologically Sorted Source Nodes: [p1_23, p3_23, min_47, p2_23, img_11, neg_150, max_pool3d_88], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf353 = torch.ops.aten.max_pool3d_with_indices.default(buf352, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf354 = buf353[0] del buf353 # Topologically Sorted Source Nodes: [p1_23, p3_23, min_47, p2_23, img_11, neg_152, max_pool3d_89], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf357 = torch.ops.aten.max_pool3d_with_indices.default(buf356, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf358 = buf357[0] del buf357 # Topologically Sorted Source Nodes: [p1_23, p3_23, min_47, p2_23, img_11, neg_154, max_pool3d_90], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf361 = torch.ops.aten.max_pool3d_with_indices.default(buf360, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf362 = buf361[0] del buf361 buf364 = buf360; del buf360 # reuse buf368 = buf356; del buf356 # reuse buf372 = buf352; del buf352 # reuse buf380 = buf348; del buf348 # reuse buf384 = buf346; del buf346 # reuse buf388 = buf342; del buf342 # reuse # Topologically Sorted Source Nodes: [p1_25, p3_25, min_51, p2_25, img_12, neg_156, neg_158, neg_160, neg_162, neg_164, neg_166], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf354, buf362, buf358, buf364, buf368, buf372, buf380, buf384, buf388, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_25, p3_25, min_51, p2_25, img_12, neg_156, max_pool3d_91], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf365 = torch.ops.aten.max_pool3d_with_indices.default(buf364, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf364 buf366 = buf365[0] del buf365 # Topologically Sorted Source Nodes: [p1_25, p3_25, min_51, p2_25, img_12, neg_158, max_pool3d_92], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf369 = torch.ops.aten.max_pool3d_with_indices.default(buf368, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf368 buf370 = buf369[0] del buf369 # Topologically Sorted Source Nodes: [p1_25, p3_25, min_51, p2_25, img_12, neg_160, max_pool3d_93], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf373 = torch.ops.aten.max_pool3d_with_indices.default(buf372, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf372 buf374 = buf373[0] del buf373 buf376 = buf366; del buf366 # reuse # Topologically Sorted Source Nodes: [p1_26, p3_26, min_53, p2_26, min_54], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf376, buf374, buf370, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_26, p3_26, min_53, p2_26, min_54, img1_13], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf377 = torch.ops.aten.max_pool3d_with_indices.default(buf376, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf378 = buf377[0] del buf377 # Topologically Sorted Source Nodes: [p1_25, p3_25, min_51, p2_25, img_12, neg_162, max_pool3d_95], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf381 = torch.ops.aten.max_pool3d_with_indices.default(buf380, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf382 = buf381[0] del buf381 # Topologically Sorted Source Nodes: [p1_25, p3_25, min_51, p2_25, img_12, neg_164, max_pool3d_96], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf385 = torch.ops.aten.max_pool3d_with_indices.default(buf384, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf386 = buf385[0] del buf385 # Topologically Sorted Source Nodes: [p1_25, p3_25, min_51, p2_25, img_12, neg_166, max_pool3d_97], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf389 = torch.ops.aten.max_pool3d_with_indices.default(buf388, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf390 = buf389[0] del buf389 buf392 = buf388; del buf388 # reuse buf396 = buf384; del buf384 # reuse buf400 = buf380; del buf380 # reuse buf408 = buf376; del buf376 # reuse buf412 = buf374; del buf374 # reuse buf416 = buf370; del buf370 # reuse # Topologically Sorted Source Nodes: [p1_27, p3_27, min_55, p2_27, img_13, neg_168, neg_170, neg_172, neg_174, neg_176, neg_178], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf382, buf390, buf386, buf392, buf396, buf400, buf408, buf412, buf416, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_27, p3_27, min_55, p2_27, img_13, neg_168, max_pool3d_98], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf393 = torch.ops.aten.max_pool3d_with_indices.default(buf392, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf392 buf394 = buf393[0] del buf393 # Topologically Sorted Source Nodes: [p1_27, p3_27, min_55, p2_27, img_13, neg_170, max_pool3d_99], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf397 = torch.ops.aten.max_pool3d_with_indices.default(buf396, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf396 buf398 = buf397[0] del buf397 # Topologically Sorted Source Nodes: [p1_27, p3_27, min_55, p2_27, img_13, neg_172, max_pool3d_100], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf401 = torch.ops.aten.max_pool3d_with_indices.default(buf400, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf400 buf402 = buf401[0] del buf401 buf404 = buf394; del buf394 # reuse # Topologically Sorted Source Nodes: [p1_28, p3_28, min_57, p2_28, min_58], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf404, buf402, buf398, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_28, p3_28, min_57, p2_28, min_58, img1_14], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf405 = torch.ops.aten.max_pool3d_with_indices.default(buf404, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf406 = buf405[0] del buf405 # Topologically Sorted Source Nodes: [p1_27, p3_27, min_55, p2_27, img_13, neg_174, max_pool3d_102], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf409 = torch.ops.aten.max_pool3d_with_indices.default(buf408, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf410 = buf409[0] del buf409 # Topologically Sorted Source Nodes: [p1_27, p3_27, min_55, p2_27, img_13, neg_176, max_pool3d_103], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf413 = torch.ops.aten.max_pool3d_with_indices.default(buf412, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf414 = buf413[0] del buf413 # Topologically Sorted Source Nodes: [p1_27, p3_27, min_55, p2_27, img_13, neg_178, max_pool3d_104], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf417 = torch.ops.aten.max_pool3d_with_indices.default(buf416, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf418 = buf417[0] del buf417 buf420 = buf416; del buf416 # reuse buf424 = buf412; del buf412 # reuse buf428 = buf408; del buf408 # reuse buf436 = buf404; del buf404 # reuse buf440 = buf402; del buf402 # reuse buf444 = buf398; del buf398 # reuse # Topologically Sorted Source Nodes: [p1_29, p3_29, min_59, p2_29, img_14, neg_180, neg_182, neg_184, neg_186, neg_188, neg_190], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf410, buf418, buf414, buf420, buf424, buf428, buf436, buf440, buf444, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_29, p3_29, min_59, p2_29, img_14, neg_180, max_pool3d_105], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf421 = torch.ops.aten.max_pool3d_with_indices.default(buf420, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf420 buf422 = buf421[0] del buf421 # Topologically Sorted Source Nodes: [p1_29, p3_29, min_59, p2_29, img_14, neg_182, max_pool3d_106], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf425 = torch.ops.aten.max_pool3d_with_indices.default(buf424, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf424 buf426 = buf425[0] del buf425 # Topologically Sorted Source Nodes: [p1_29, p3_29, min_59, p2_29, img_14, neg_184, max_pool3d_107], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf429 = torch.ops.aten.max_pool3d_with_indices.default(buf428, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf428 buf430 = buf429[0] del buf429 buf432 = buf422; del buf422 # reuse # Topologically Sorted Source Nodes: [p1_30, p3_30, min_61, p2_30, min_62], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf432, buf430, buf426, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_30, p3_30, min_61, p2_30, min_62, img1_15], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf433 = torch.ops.aten.max_pool3d_with_indices.default(buf432, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf434 = buf433[0] del buf433 # Topologically Sorted Source Nodes: [p1_29, p3_29, min_59, p2_29, img_14, neg_186, max_pool3d_109], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf437 = torch.ops.aten.max_pool3d_with_indices.default(buf436, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf438 = buf437[0] del buf437 # Topologically Sorted Source Nodes: [p1_29, p3_29, min_59, p2_29, img_14, neg_188, max_pool3d_110], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf441 = torch.ops.aten.max_pool3d_with_indices.default(buf440, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf442 = buf441[0] del buf441 # Topologically Sorted Source Nodes: [p1_29, p3_29, min_59, p2_29, img_14, neg_190, max_pool3d_111], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf445 = torch.ops.aten.max_pool3d_with_indices.default(buf444, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf446 = buf445[0] del buf445 buf448 = buf444; del buf444 # reuse buf452 = buf440; del buf440 # reuse buf456 = buf436; del buf436 # reuse buf464 = buf432; del buf432 # reuse buf468 = buf430; del buf430 # reuse buf472 = buf426; del buf426 # reuse # Topologically Sorted Source Nodes: [p1_31, p3_31, min_63, p2_31, img_15, neg_192, neg_194, neg_196, neg_198, neg_200, neg_202], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf438, buf446, buf442, buf448, buf452, buf456, buf464, buf468, buf472, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_31, p3_31, min_63, p2_31, img_15, neg_192, max_pool3d_112], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf449 = torch.ops.aten.max_pool3d_with_indices.default(buf448, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf448 buf450 = buf449[0] del buf449 # Topologically Sorted Source Nodes: [p1_31, p3_31, min_63, p2_31, img_15, neg_194, max_pool3d_113], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf453 = torch.ops.aten.max_pool3d_with_indices.default(buf452, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf452 buf454 = buf453[0] del buf453 # Topologically Sorted Source Nodes: [p1_31, p3_31, min_63, p2_31, img_15, neg_196, max_pool3d_114], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf457 = torch.ops.aten.max_pool3d_with_indices.default(buf456, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf456 buf458 = buf457[0] del buf457 buf460 = buf450; del buf450 # reuse # Topologically Sorted Source Nodes: [p1_32, p3_32, min_65, p2_32, min_66], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf460, buf458, buf454, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_32, p3_32, min_65, p2_32, min_66, img1_16], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf461 = torch.ops.aten.max_pool3d_with_indices.default(buf460, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf462 = buf461[0] del buf461 # Topologically Sorted Source Nodes: [p1_31, p3_31, min_63, p2_31, img_15, neg_198, max_pool3d_116], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf465 = torch.ops.aten.max_pool3d_with_indices.default(buf464, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf466 = buf465[0] del buf465 # Topologically Sorted Source Nodes: [p1_31, p3_31, min_63, p2_31, img_15, neg_200, max_pool3d_117], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf469 = torch.ops.aten.max_pool3d_with_indices.default(buf468, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf470 = buf469[0] del buf469 # Topologically Sorted Source Nodes: [p1_31, p3_31, min_63, p2_31, img_15, neg_202, max_pool3d_118], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf473 = torch.ops.aten.max_pool3d_with_indices.default(buf472, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf474 = buf473[0] del buf473 buf476 = buf472; del buf472 # reuse buf480 = buf468; del buf468 # reuse buf484 = buf464; del buf464 # reuse buf492 = buf460; del buf460 # reuse buf496 = buf458; del buf458 # reuse buf500 = buf454; del buf454 # reuse # Topologically Sorted Source Nodes: [p1_33, p3_33, min_67, p2_33, img_16, neg_204, neg_206, neg_208, neg_210, neg_212, neg_214], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf466, buf474, buf470, buf476, buf480, buf484, buf492, buf496, buf500, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_33, p3_33, min_67, p2_33, img_16, neg_204, max_pool3d_119], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf477 = torch.ops.aten.max_pool3d_with_indices.default(buf476, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf476 buf478 = buf477[0] del buf477 # Topologically Sorted Source Nodes: [p1_33, p3_33, min_67, p2_33, img_16, neg_206, max_pool3d_120], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf481 = torch.ops.aten.max_pool3d_with_indices.default(buf480, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf480 buf482 = buf481[0] del buf481 # Topologically Sorted Source Nodes: [p1_33, p3_33, min_67, p2_33, img_16, neg_208, max_pool3d_121], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf485 = torch.ops.aten.max_pool3d_with_indices.default(buf484, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf484 buf486 = buf485[0] del buf485 buf488 = buf478; del buf478 # reuse # Topologically Sorted Source Nodes: [p1_34, p3_34, min_69, p2_34, min_70], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf488, buf486, buf482, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_34, p3_34, min_69, p2_34, min_70, img1_17], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf489 = torch.ops.aten.max_pool3d_with_indices.default(buf488, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf490 = buf489[0] del buf489 # Topologically Sorted Source Nodes: [p1_33, p3_33, min_67, p2_33, img_16, neg_210, max_pool3d_123], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf493 = torch.ops.aten.max_pool3d_with_indices.default(buf492, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf494 = buf493[0] del buf493 # Topologically Sorted Source Nodes: [p1_33, p3_33, min_67, p2_33, img_16, neg_212, max_pool3d_124], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf497 = torch.ops.aten.max_pool3d_with_indices.default(buf496, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf498 = buf497[0] del buf497 # Topologically Sorted Source Nodes: [p1_33, p3_33, min_67, p2_33, img_16, neg_214, max_pool3d_125], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf501 = torch.ops.aten.max_pool3d_with_indices.default(buf500, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf502 = buf501[0] del buf501 buf504 = buf500; del buf500 # reuse buf508 = buf496; del buf496 # reuse buf512 = buf492; del buf492 # reuse buf520 = buf488; del buf488 # reuse buf524 = buf486; del buf486 # reuse buf528 = buf482; del buf482 # reuse # Topologically Sorted Source Nodes: [p1_35, p3_35, min_71, p2_35, img_17, neg_216, neg_218, neg_220, neg_222, neg_224, neg_226], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf494, buf502, buf498, buf504, buf508, buf512, buf520, buf524, buf528, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_35, p3_35, min_71, p2_35, img_17, neg_216, max_pool3d_126], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf505 = torch.ops.aten.max_pool3d_with_indices.default(buf504, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf504 buf506 = buf505[0] del buf505 # Topologically Sorted Source Nodes: [p1_35, p3_35, min_71, p2_35, img_17, neg_218, max_pool3d_127], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf509 = torch.ops.aten.max_pool3d_with_indices.default(buf508, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf508 buf510 = buf509[0] del buf509 # Topologically Sorted Source Nodes: [p1_35, p3_35, min_71, p2_35, img_17, neg_220, max_pool3d_128], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf513 = torch.ops.aten.max_pool3d_with_indices.default(buf512, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf512 buf514 = buf513[0] del buf513 buf516 = buf506; del buf506 # reuse # Topologically Sorted Source Nodes: [p1_36, p3_36, min_73, p2_36, min_74], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf516, buf514, buf510, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_36, p3_36, min_73, p2_36, min_74, img1_18], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf517 = torch.ops.aten.max_pool3d_with_indices.default(buf516, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf518 = buf517[0] del buf517 # Topologically Sorted Source Nodes: [p1_35, p3_35, min_71, p2_35, img_17, neg_222, max_pool3d_130], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf521 = torch.ops.aten.max_pool3d_with_indices.default(buf520, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf522 = buf521[0] del buf521 # Topologically Sorted Source Nodes: [p1_35, p3_35, min_71, p2_35, img_17, neg_224, max_pool3d_131], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf525 = torch.ops.aten.max_pool3d_with_indices.default(buf524, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf526 = buf525[0] del buf525 # Topologically Sorted Source Nodes: [p1_35, p3_35, min_71, p2_35, img_17, neg_226, max_pool3d_132], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf529 = torch.ops.aten.max_pool3d_with_indices.default(buf528, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf530 = buf529[0] del buf529 buf532 = buf528; del buf528 # reuse buf536 = buf524; del buf524 # reuse buf540 = buf520; del buf520 # reuse buf548 = buf516; del buf516 # reuse buf552 = buf514; del buf514 # reuse buf556 = buf510; del buf510 # reuse # Topologically Sorted Source Nodes: [p1_37, p3_37, min_75, p2_37, img_18, neg_228, neg_230, neg_232, neg_234, neg_236, neg_238], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf522, buf530, buf526, buf532, buf536, buf540, buf548, buf552, buf556, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_37, p3_37, min_75, p2_37, img_18, neg_228, max_pool3d_133], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf533 = torch.ops.aten.max_pool3d_with_indices.default(buf532, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf532 buf534 = buf533[0] del buf533 # Topologically Sorted Source Nodes: [p1_37, p3_37, min_75, p2_37, img_18, neg_230, max_pool3d_134], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf537 = torch.ops.aten.max_pool3d_with_indices.default(buf536, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf536 buf538 = buf537[0] del buf537 # Topologically Sorted Source Nodes: [p1_37, p3_37, min_75, p2_37, img_18, neg_232, max_pool3d_135], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf541 = torch.ops.aten.max_pool3d_with_indices.default(buf540, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf540 buf542 = buf541[0] del buf541 buf544 = buf534; del buf534 # reuse # Topologically Sorted Source Nodes: [p1_38, p3_38, min_77, p2_38, min_78], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf544, buf542, buf538, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_38, p3_38, min_77, p2_38, min_78, img1_19], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf545 = torch.ops.aten.max_pool3d_with_indices.default(buf544, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf546 = buf545[0] del buf545 # Topologically Sorted Source Nodes: [p1_37, p3_37, min_75, p2_37, img_18, neg_234, max_pool3d_137], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf549 = torch.ops.aten.max_pool3d_with_indices.default(buf548, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf550 = buf549[0] del buf549 # Topologically Sorted Source Nodes: [p1_37, p3_37, min_75, p2_37, img_18, neg_236, max_pool3d_138], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf553 = torch.ops.aten.max_pool3d_with_indices.default(buf552, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf554 = buf553[0] del buf553 # Topologically Sorted Source Nodes: [p1_37, p3_37, min_75, p2_37, img_18, neg_238, max_pool3d_139], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf557 = torch.ops.aten.max_pool3d_with_indices.default(buf556, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf558 = buf557[0] del buf557 buf560 = buf556; del buf556 # reuse buf564 = buf552; del buf552 # reuse buf568 = buf548; del buf548 # reuse buf576 = buf544; del buf544 # reuse buf580 = buf542; del buf542 # reuse buf584 = buf538; del buf538 # reuse # Topologically Sorted Source Nodes: [p1_39, p3_39, min_79, p2_39, img_19, neg_240, neg_242, neg_244, neg_246, neg_248, neg_250], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf550, buf558, buf554, buf560, buf564, buf568, buf576, buf580, buf584, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_39, p3_39, min_79, p2_39, img_19, neg_240, max_pool3d_140], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf561 = torch.ops.aten.max_pool3d_with_indices.default(buf560, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf560 buf562 = buf561[0] del buf561 # Topologically Sorted Source Nodes: [p1_39, p3_39, min_79, p2_39, img_19, neg_242, max_pool3d_141], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf565 = torch.ops.aten.max_pool3d_with_indices.default(buf564, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf564 buf566 = buf565[0] del buf565 # Topologically Sorted Source Nodes: [p1_39, p3_39, min_79, p2_39, img_19, neg_244, max_pool3d_142], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf569 = torch.ops.aten.max_pool3d_with_indices.default(buf568, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf568 buf570 = buf569[0] del buf569 buf572 = buf562; del buf562 # reuse # Topologically Sorted Source Nodes: [p1_40, p3_40, min_81, p2_40, min_82], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf572, buf570, buf566, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_40, p3_40, min_81, p2_40, min_82, img1_20], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf573 = torch.ops.aten.max_pool3d_with_indices.default(buf572, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf574 = buf573[0] del buf573 # Topologically Sorted Source Nodes: [p1_39, p3_39, min_79, p2_39, img_19, neg_246, max_pool3d_144], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf577 = torch.ops.aten.max_pool3d_with_indices.default(buf576, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf578 = buf577[0] del buf577 # Topologically Sorted Source Nodes: [p1_39, p3_39, min_79, p2_39, img_19, neg_248, max_pool3d_145], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf581 = torch.ops.aten.max_pool3d_with_indices.default(buf580, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf582 = buf581[0] del buf581 # Topologically Sorted Source Nodes: [p1_39, p3_39, min_79, p2_39, img_19, neg_250, max_pool3d_146], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf585 = torch.ops.aten.max_pool3d_with_indices.default(buf584, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf586 = buf585[0] del buf585 buf588 = buf584; del buf584 # reuse buf592 = buf580; del buf580 # reuse buf596 = buf576; del buf576 # reuse buf604 = buf572; del buf572 # reuse buf608 = buf570; del buf570 # reuse buf612 = buf566; del buf566 # reuse # Topologically Sorted Source Nodes: [p1_41, p3_41, min_83, p2_41, img_20, neg_252, neg_254, neg_256, neg_258, neg_260, neg_262], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf578, buf586, buf582, buf588, buf592, buf596, buf604, buf608, buf612, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_41, p3_41, min_83, p2_41, img_20, neg_252, max_pool3d_147], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf589 = torch.ops.aten.max_pool3d_with_indices.default(buf588, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf588 buf590 = buf589[0] del buf589 # Topologically Sorted Source Nodes: [p1_41, p3_41, min_83, p2_41, img_20, neg_254, max_pool3d_148], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf593 = torch.ops.aten.max_pool3d_with_indices.default(buf592, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf592 buf594 = buf593[0] del buf593 # Topologically Sorted Source Nodes: [p1_41, p3_41, min_83, p2_41, img_20, neg_256, max_pool3d_149], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf597 = torch.ops.aten.max_pool3d_with_indices.default(buf596, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf596 buf598 = buf597[0] del buf597 buf600 = buf590; del buf590 # reuse # Topologically Sorted Source Nodes: [p1_42, p3_42, min_85, p2_42, min_86], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf600, buf598, buf594, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_42, p3_42, min_85, p2_42, min_86, img1_21], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf601 = torch.ops.aten.max_pool3d_with_indices.default(buf600, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf602 = buf601[0] del buf601 # Topologically Sorted Source Nodes: [p1_41, p3_41, min_83, p2_41, img_20, neg_258, max_pool3d_151], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf605 = torch.ops.aten.max_pool3d_with_indices.default(buf604, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf606 = buf605[0] del buf605 # Topologically Sorted Source Nodes: [p1_41, p3_41, min_83, p2_41, img_20, neg_260, max_pool3d_152], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf609 = torch.ops.aten.max_pool3d_with_indices.default(buf608, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf610 = buf609[0] del buf609 # Topologically Sorted Source Nodes: [p1_41, p3_41, min_83, p2_41, img_20, neg_262, max_pool3d_153], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf613 = torch.ops.aten.max_pool3d_with_indices.default(buf612, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf614 = buf613[0] del buf613 buf616 = buf612; del buf612 # reuse buf620 = buf608; del buf608 # reuse buf624 = buf604; del buf604 # reuse buf632 = buf600; del buf600 # reuse buf636 = buf598; del buf598 # reuse buf640 = buf594; del buf594 # reuse # Topologically Sorted Source Nodes: [p1_43, p3_43, min_87, p2_43, img_21, neg_264, neg_266, neg_268, neg_270, neg_272, neg_274], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf606, buf614, buf610, buf616, buf620, buf624, buf632, buf636, buf640, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_43, p3_43, min_87, p2_43, img_21, neg_264, max_pool3d_154], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf617 = torch.ops.aten.max_pool3d_with_indices.default(buf616, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf616 buf618 = buf617[0] del buf617 # Topologically Sorted Source Nodes: [p1_43, p3_43, min_87, p2_43, img_21, neg_266, max_pool3d_155], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf621 = torch.ops.aten.max_pool3d_with_indices.default(buf620, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf620 buf622 = buf621[0] del buf621 # Topologically Sorted Source Nodes: [p1_43, p3_43, min_87, p2_43, img_21, neg_268, max_pool3d_156], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf625 = torch.ops.aten.max_pool3d_with_indices.default(buf624, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf624 buf626 = buf625[0] del buf625 buf628 = buf618; del buf618 # reuse # Topologically Sorted Source Nodes: [p1_44, p3_44, min_89, p2_44, min_90], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf628, buf626, buf622, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_44, p3_44, min_89, p2_44, min_90, img1_22], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf629 = torch.ops.aten.max_pool3d_with_indices.default(buf628, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf630 = buf629[0] del buf629 # Topologically Sorted Source Nodes: [p1_43, p3_43, min_87, p2_43, img_21, neg_270, max_pool3d_158], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf633 = torch.ops.aten.max_pool3d_with_indices.default(buf632, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf634 = buf633[0] del buf633 # Topologically Sorted Source Nodes: [p1_43, p3_43, min_87, p2_43, img_21, neg_272, max_pool3d_159], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf637 = torch.ops.aten.max_pool3d_with_indices.default(buf636, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf638 = buf637[0] del buf637 # Topologically Sorted Source Nodes: [p1_43, p3_43, min_87, p2_43, img_21, neg_274, max_pool3d_160], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf641 = torch.ops.aten.max_pool3d_with_indices.default(buf640, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf642 = buf641[0] del buf641 buf644 = buf640; del buf640 # reuse buf648 = buf636; del buf636 # reuse buf652 = buf632; del buf632 # reuse buf660 = buf628; del buf628 # reuse buf664 = buf626; del buf626 # reuse buf668 = buf622; del buf622 # reuse # Topologically Sorted Source Nodes: [p1_45, p3_45, min_91, p2_45, img_22, neg_276, neg_278, neg_280, neg_282, neg_284, neg_286], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf634, buf642, buf638, buf644, buf648, buf652, buf660, buf664, buf668, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_45, p3_45, min_91, p2_45, img_22, neg_276, max_pool3d_161], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf645 = torch.ops.aten.max_pool3d_with_indices.default(buf644, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf644 buf646 = buf645[0] del buf645 # Topologically Sorted Source Nodes: [p1_45, p3_45, min_91, p2_45, img_22, neg_278, max_pool3d_162], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf649 = torch.ops.aten.max_pool3d_with_indices.default(buf648, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf648 buf650 = buf649[0] del buf649 # Topologically Sorted Source Nodes: [p1_45, p3_45, min_91, p2_45, img_22, neg_280, max_pool3d_163], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf653 = torch.ops.aten.max_pool3d_with_indices.default(buf652, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf652 buf654 = buf653[0] del buf653 buf656 = buf646; del buf646 # reuse # Topologically Sorted Source Nodes: [p1_46, p3_46, min_93, p2_46, min_94], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf656, buf654, buf650, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_46, p3_46, min_93, p2_46, min_94, img1_23], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf657 = torch.ops.aten.max_pool3d_with_indices.default(buf656, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf658 = buf657[0] del buf657 # Topologically Sorted Source Nodes: [p1_45, p3_45, min_91, p2_45, img_22, neg_282, max_pool3d_165], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf661 = torch.ops.aten.max_pool3d_with_indices.default(buf660, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf662 = buf661[0] del buf661 # Topologically Sorted Source Nodes: [p1_45, p3_45, min_91, p2_45, img_22, neg_284, max_pool3d_166], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf665 = torch.ops.aten.max_pool3d_with_indices.default(buf664, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf666 = buf665[0] del buf665 # Topologically Sorted Source Nodes: [p1_45, p3_45, min_91, p2_45, img_22, neg_286, max_pool3d_167], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf669 = torch.ops.aten.max_pool3d_with_indices.default(buf668, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf670 = buf669[0] del buf669 buf672 = buf668; del buf668 # reuse buf676 = buf664; del buf664 # reuse buf680 = buf660; del buf660 # reuse buf688 = buf656; del buf656 # reuse buf692 = buf654; del buf654 # reuse buf696 = buf650; del buf650 # reuse # Topologically Sorted Source Nodes: [p1_47, p3_47, min_95, p2_47, img_23, neg_288, neg_290, neg_292, neg_294, neg_296, neg_298], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf662, buf670, buf666, buf672, buf676, buf680, buf688, buf692, buf696, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_47, p3_47, min_95, p2_47, img_23, neg_288, max_pool3d_168], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf673 = torch.ops.aten.max_pool3d_with_indices.default(buf672, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf672 buf674 = buf673[0] del buf673 # Topologically Sorted Source Nodes: [p1_47, p3_47, min_95, p2_47, img_23, neg_290, max_pool3d_169], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf677 = torch.ops.aten.max_pool3d_with_indices.default(buf676, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf676 buf678 = buf677[0] del buf677 # Topologically Sorted Source Nodes: [p1_47, p3_47, min_95, p2_47, img_23, neg_292, max_pool3d_170], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf681 = torch.ops.aten.max_pool3d_with_indices.default(buf680, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf680 buf682 = buf681[0] del buf681 buf684 = buf674; del buf674 # reuse # Topologically Sorted Source Nodes: [p1_48, p3_48, min_97, p2_48, min_98], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf684, buf682, buf678, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_48, p3_48, min_97, p2_48, min_98, img1_24], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf685 = torch.ops.aten.max_pool3d_with_indices.default(buf684, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf686 = buf685[0] del buf685 # Topologically Sorted Source Nodes: [p1_47, p3_47, min_95, p2_47, img_23, neg_294, max_pool3d_172], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf689 = torch.ops.aten.max_pool3d_with_indices.default(buf688, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf690 = buf689[0] del buf689 # Topologically Sorted Source Nodes: [p1_47, p3_47, min_95, p2_47, img_23, neg_296, max_pool3d_173], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf693 = torch.ops.aten.max_pool3d_with_indices.default(buf692, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf694 = buf693[0] del buf693 # Topologically Sorted Source Nodes: [p1_47, p3_47, min_95, p2_47, img_23, neg_298, max_pool3d_174], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf697 = torch.ops.aten.max_pool3d_with_indices.default(buf696, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf698 = buf697[0] del buf697 buf700 = buf696; del buf696 # reuse buf704 = buf692; del buf692 # reuse buf708 = buf688; del buf688 # reuse buf716 = buf684; del buf684 # reuse buf720 = buf682; del buf682 # reuse buf724 = buf678; del buf678 # reuse # Topologically Sorted Source Nodes: [p1_49, p3_49, min_99, p2_49, img_24, neg_300, neg_302, neg_304, neg_306, neg_308, neg_310], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf690, buf698, buf694, buf700, buf704, buf708, buf716, buf720, buf724, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_49, p3_49, min_99, p2_49, img_24, neg_300, max_pool3d_175], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf701 = torch.ops.aten.max_pool3d_with_indices.default(buf700, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf700 buf702 = buf701[0] del buf701 # Topologically Sorted Source Nodes: [p1_49, p3_49, min_99, p2_49, img_24, neg_302, max_pool3d_176], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf705 = torch.ops.aten.max_pool3d_with_indices.default(buf704, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf704 buf706 = buf705[0] del buf705 # Topologically Sorted Source Nodes: [p1_49, p3_49, min_99, p2_49, img_24, neg_304, max_pool3d_177], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf709 = torch.ops.aten.max_pool3d_with_indices.default(buf708, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf708 buf710 = buf709[0] del buf709 buf712 = buf702; del buf702 # reuse # Topologically Sorted Source Nodes: [p1_50, p3_50, min_101, p2_50, min_102], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf712, buf710, buf706, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_50, p3_50, min_101, p2_50, min_102, img1_25], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf713 = torch.ops.aten.max_pool3d_with_indices.default(buf712, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf714 = buf713[0] del buf713 # Topologically Sorted Source Nodes: [p1_49, p3_49, min_99, p2_49, img_24, neg_306, max_pool3d_179], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf717 = torch.ops.aten.max_pool3d_with_indices.default(buf716, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf718 = buf717[0] del buf717 # Topologically Sorted Source Nodes: [p1_49, p3_49, min_99, p2_49, img_24, neg_308, max_pool3d_180], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf721 = torch.ops.aten.max_pool3d_with_indices.default(buf720, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf722 = buf721[0] del buf721 # Topologically Sorted Source Nodes: [p1_49, p3_49, min_99, p2_49, img_24, neg_310, max_pool3d_181], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf725 = torch.ops.aten.max_pool3d_with_indices.default(buf724, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf726 = buf725[0] del buf725 buf728 = buf724; del buf724 # reuse buf732 = buf720; del buf720 # reuse buf736 = buf716; del buf716 # reuse buf744 = buf712; del buf712 # reuse buf748 = buf710; del buf710 # reuse buf752 = buf706; del buf706 # reuse # Topologically Sorted Source Nodes: [p1_51, p3_51, min_103, p2_51, img_25, neg_312, neg_314, neg_316, neg_318, neg_320, neg_322], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf718, buf726, buf722, buf728, buf732, buf736, buf744, buf748, buf752, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_51, p3_51, min_103, p2_51, img_25, neg_312, max_pool3d_182], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf729 = torch.ops.aten.max_pool3d_with_indices.default(buf728, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf728 buf730 = buf729[0] del buf729 # Topologically Sorted Source Nodes: [p1_51, p3_51, min_103, p2_51, img_25, neg_314, max_pool3d_183], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf733 = torch.ops.aten.max_pool3d_with_indices.default(buf732, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf732 buf734 = buf733[0] del buf733 # Topologically Sorted Source Nodes: [p1_51, p3_51, min_103, p2_51, img_25, neg_316, max_pool3d_184], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf737 = torch.ops.aten.max_pool3d_with_indices.default(buf736, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf736 buf738 = buf737[0] del buf737 buf740 = buf730; del buf730 # reuse # Topologically Sorted Source Nodes: [p1_52, p3_52, min_105, p2_52, min_106], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf740, buf738, buf734, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_52, p3_52, min_105, p2_52, min_106, img1_26], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf741 = torch.ops.aten.max_pool3d_with_indices.default(buf740, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf742 = buf741[0] del buf741 # Topologically Sorted Source Nodes: [p1_51, p3_51, min_103, p2_51, img_25, neg_318, max_pool3d_186], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf745 = torch.ops.aten.max_pool3d_with_indices.default(buf744, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf746 = buf745[0] del buf745 # Topologically Sorted Source Nodes: [p1_51, p3_51, min_103, p2_51, img_25, neg_320, max_pool3d_187], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf749 = torch.ops.aten.max_pool3d_with_indices.default(buf748, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf750 = buf749[0] del buf749 # Topologically Sorted Source Nodes: [p1_51, p3_51, min_103, p2_51, img_25, neg_322, max_pool3d_188], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf753 = torch.ops.aten.max_pool3d_with_indices.default(buf752, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf754 = buf753[0] del buf753 buf756 = buf752; del buf752 # reuse buf760 = buf748; del buf748 # reuse buf764 = buf744; del buf744 # reuse buf772 = buf740; del buf740 # reuse buf776 = buf738; del buf738 # reuse buf780 = buf734; del buf734 # reuse # Topologically Sorted Source Nodes: [p1_53, p3_53, min_107, p2_53, img_26, neg_324, neg_326, neg_328, neg_330, neg_332, neg_334], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf746, buf754, buf750, buf756, buf760, buf764, buf772, buf776, buf780, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_53, p3_53, min_107, p2_53, img_26, neg_324, max_pool3d_189], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf757 = torch.ops.aten.max_pool3d_with_indices.default(buf756, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf756 buf758 = buf757[0] del buf757 # Topologically Sorted Source Nodes: [p1_53, p3_53, min_107, p2_53, img_26, neg_326, max_pool3d_190], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf761 = torch.ops.aten.max_pool3d_with_indices.default(buf760, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf760 buf762 = buf761[0] del buf761 # Topologically Sorted Source Nodes: [p1_53, p3_53, min_107, p2_53, img_26, neg_328, max_pool3d_191], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf765 = torch.ops.aten.max_pool3d_with_indices.default(buf764, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf764 buf766 = buf765[0] del buf765 buf768 = buf758; del buf758 # reuse # Topologically Sorted Source Nodes: [p1_54, p3_54, min_109, p2_54, min_110], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf768, buf766, buf762, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_54, p3_54, min_109, p2_54, min_110, img1_27], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf769 = torch.ops.aten.max_pool3d_with_indices.default(buf768, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf770 = buf769[0] del buf769 # Topologically Sorted Source Nodes: [p1_53, p3_53, min_107, p2_53, img_26, neg_330, max_pool3d_193], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf773 = torch.ops.aten.max_pool3d_with_indices.default(buf772, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf774 = buf773[0] del buf773 # Topologically Sorted Source Nodes: [p1_53, p3_53, min_107, p2_53, img_26, neg_332, max_pool3d_194], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf777 = torch.ops.aten.max_pool3d_with_indices.default(buf776, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf778 = buf777[0] del buf777 # Topologically Sorted Source Nodes: [p1_53, p3_53, min_107, p2_53, img_26, neg_334, max_pool3d_195], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf781 = torch.ops.aten.max_pool3d_with_indices.default(buf780, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf782 = buf781[0] del buf781 buf784 = buf780; del buf780 # reuse buf788 = buf776; del buf776 # reuse buf792 = buf772; del buf772 # reuse buf800 = buf768; del buf768 # reuse buf804 = buf766; del buf766 # reuse buf808 = buf762; del buf762 # reuse # Topologically Sorted Source Nodes: [p1_55, p3_55, min_111, p2_55, img_27, neg_336, neg_338, neg_340, neg_342, neg_344, neg_346], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf774, buf782, buf778, buf784, buf788, buf792, buf800, buf804, buf808, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_55, p3_55, min_111, p2_55, img_27, neg_336, max_pool3d_196], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf785 = torch.ops.aten.max_pool3d_with_indices.default(buf784, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf784 buf786 = buf785[0] del buf785 # Topologically Sorted Source Nodes: [p1_55, p3_55, min_111, p2_55, img_27, neg_338, max_pool3d_197], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf789 = torch.ops.aten.max_pool3d_with_indices.default(buf788, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf788 buf790 = buf789[0] del buf789 # Topologically Sorted Source Nodes: [p1_55, p3_55, min_111, p2_55, img_27, neg_340, max_pool3d_198], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf793 = torch.ops.aten.max_pool3d_with_indices.default(buf792, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf792 buf794 = buf793[0] del buf793 buf796 = buf786; del buf786 # reuse # Topologically Sorted Source Nodes: [p1_56, p3_56, min_113, p2_56, min_114], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf796, buf794, buf790, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_56, p3_56, min_113, p2_56, min_114, img1_28], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf797 = torch.ops.aten.max_pool3d_with_indices.default(buf796, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf798 = buf797[0] del buf797 # Topologically Sorted Source Nodes: [p1_55, p3_55, min_111, p2_55, img_27, neg_342, max_pool3d_200], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf801 = torch.ops.aten.max_pool3d_with_indices.default(buf800, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf802 = buf801[0] del buf801 # Topologically Sorted Source Nodes: [p1_55, p3_55, min_111, p2_55, img_27, neg_344, max_pool3d_201], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf805 = torch.ops.aten.max_pool3d_with_indices.default(buf804, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf806 = buf805[0] del buf805 # Topologically Sorted Source Nodes: [p1_55, p3_55, min_111, p2_55, img_27, neg_346, max_pool3d_202], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf809 = torch.ops.aten.max_pool3d_with_indices.default(buf808, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf810 = buf809[0] del buf809 buf812 = buf808; del buf808 # reuse buf816 = buf804; del buf804 # reuse buf820 = buf800; del buf800 # reuse buf828 = buf796; del buf796 # reuse buf832 = buf794; del buf794 # reuse buf836 = buf790; del buf790 # reuse # Topologically Sorted Source Nodes: [p1_57, p3_57, min_115, p2_57, img_28, neg_348, neg_350, neg_352, neg_354, neg_356, neg_358], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf802, buf810, buf806, buf812, buf816, buf820, buf828, buf832, buf836, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_57, p3_57, min_115, p2_57, img_28, neg_348, max_pool3d_203], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf813 = torch.ops.aten.max_pool3d_with_indices.default(buf812, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf812 buf814 = buf813[0] del buf813 # Topologically Sorted Source Nodes: [p1_57, p3_57, min_115, p2_57, img_28, neg_350, max_pool3d_204], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf817 = torch.ops.aten.max_pool3d_with_indices.default(buf816, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf816 buf818 = buf817[0] del buf817 # Topologically Sorted Source Nodes: [p1_57, p3_57, min_115, p2_57, img_28, neg_352, max_pool3d_205], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf821 = torch.ops.aten.max_pool3d_with_indices.default(buf820, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf820 buf822 = buf821[0] del buf821 buf824 = buf814; del buf814 # reuse # Topologically Sorted Source Nodes: [p1_58, p3_58, min_117, p2_58, min_118], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf824, buf822, buf818, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_58, p3_58, min_117, p2_58, min_118, img1_29], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf825 = torch.ops.aten.max_pool3d_with_indices.default(buf824, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf826 = buf825[0] del buf825 # Topologically Sorted Source Nodes: [p1_57, p3_57, min_115, p2_57, img_28, neg_354, max_pool3d_207], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf829 = torch.ops.aten.max_pool3d_with_indices.default(buf828, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf830 = buf829[0] del buf829 # Topologically Sorted Source Nodes: [p1_57, p3_57, min_115, p2_57, img_28, neg_356, max_pool3d_208], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf833 = torch.ops.aten.max_pool3d_with_indices.default(buf832, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf834 = buf833[0] del buf833 # Topologically Sorted Source Nodes: [p1_57, p3_57, min_115, p2_57, img_28, neg_358, max_pool3d_209], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf837 = torch.ops.aten.max_pool3d_with_indices.default(buf836, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf838 = buf837[0] del buf837 buf840 = buf836; del buf836 # reuse buf844 = buf832; del buf832 # reuse buf848 = buf828; del buf828 # reuse buf856 = buf824; del buf824 # reuse buf860 = buf822; del buf822 # reuse buf864 = buf818; del buf818 # reuse # Topologically Sorted Source Nodes: [p1_59, p3_59, min_119, p2_59, img_29, neg_360, neg_362, neg_364, neg_366, neg_368, neg_370], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf830, buf838, buf834, buf840, buf844, buf848, buf856, buf860, buf864, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_59, p3_59, min_119, p2_59, img_29, neg_360, max_pool3d_210], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf841 = torch.ops.aten.max_pool3d_with_indices.default(buf840, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf840 buf842 = buf841[0] del buf841 # Topologically Sorted Source Nodes: [p1_59, p3_59, min_119, p2_59, img_29, neg_362, max_pool3d_211], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf845 = torch.ops.aten.max_pool3d_with_indices.default(buf844, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf844 buf846 = buf845[0] del buf845 # Topologically Sorted Source Nodes: [p1_59, p3_59, min_119, p2_59, img_29, neg_364, max_pool3d_212], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf849 = torch.ops.aten.max_pool3d_with_indices.default(buf848, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf848 buf850 = buf849[0] del buf849 buf852 = buf842; del buf842 # reuse # Topologically Sorted Source Nodes: [p1_60, p3_60, min_121, p2_60, min_122], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf852, buf850, buf846, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_60, p3_60, min_121, p2_60, min_122, img1_30], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf853 = torch.ops.aten.max_pool3d_with_indices.default(buf852, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf854 = buf853[0] del buf853 # Topologically Sorted Source Nodes: [p1_59, p3_59, min_119, p2_59, img_29, neg_366, max_pool3d_214], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf857 = torch.ops.aten.max_pool3d_with_indices.default(buf856, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf858 = buf857[0] del buf857 # Topologically Sorted Source Nodes: [p1_59, p3_59, min_119, p2_59, img_29, neg_368, max_pool3d_215], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf861 = torch.ops.aten.max_pool3d_with_indices.default(buf860, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf862 = buf861[0] del buf861 # Topologically Sorted Source Nodes: [p1_59, p3_59, min_119, p2_59, img_29, neg_370, max_pool3d_216], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf865 = torch.ops.aten.max_pool3d_with_indices.default(buf864, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf866 = buf865[0] del buf865 buf868 = buf864; del buf864 # reuse buf872 = buf860; del buf860 # reuse buf876 = buf856; del buf856 # reuse buf884 = buf852; del buf852 # reuse buf888 = buf850; del buf850 # reuse buf892 = buf846; del buf846 # reuse # Topologically Sorted Source Nodes: [p1_61, p3_61, min_123, p2_61, img_30, neg_372, neg_374, neg_376, neg_378, neg_380, neg_382], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf858, buf866, buf862, buf868, buf872, buf876, buf884, buf888, buf892, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_61, p3_61, min_123, p2_61, img_30, neg_372, max_pool3d_217], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf869 = torch.ops.aten.max_pool3d_with_indices.default(buf868, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf868 buf870 = buf869[0] del buf869 # Topologically Sorted Source Nodes: [p1_61, p3_61, min_123, p2_61, img_30, neg_374, max_pool3d_218], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf873 = torch.ops.aten.max_pool3d_with_indices.default(buf872, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf872 buf874 = buf873[0] del buf873 # Topologically Sorted Source Nodes: [p1_61, p3_61, min_123, p2_61, img_30, neg_376, max_pool3d_219], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf877 = torch.ops.aten.max_pool3d_with_indices.default(buf876, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf876 buf878 = buf877[0] del buf877 buf880 = buf870; del buf870 # reuse # Topologically Sorted Source Nodes: [p1_62, p3_62, min_125, p2_62, min_126], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf880, buf878, buf874, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_62, p3_62, min_125, p2_62, min_126, img1_31], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf881 = torch.ops.aten.max_pool3d_with_indices.default(buf880, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf882 = buf881[0] del buf881 # Topologically Sorted Source Nodes: [p1_61, p3_61, min_123, p2_61, img_30, neg_378, max_pool3d_221], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf885 = torch.ops.aten.max_pool3d_with_indices.default(buf884, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf886 = buf885[0] del buf885 # Topologically Sorted Source Nodes: [p1_61, p3_61, min_123, p2_61, img_30, neg_380, max_pool3d_222], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf889 = torch.ops.aten.max_pool3d_with_indices.default(buf888, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf890 = buf889[0] del buf889 # Topologically Sorted Source Nodes: [p1_61, p3_61, min_123, p2_61, img_30, neg_382, max_pool3d_223], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf893 = torch.ops.aten.max_pool3d_with_indices.default(buf892, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf894 = buf893[0] del buf893 buf896 = buf892; del buf892 # reuse buf900 = buf888; del buf888 # reuse buf904 = buf884; del buf884 # reuse buf912 = buf880; del buf880 # reuse buf916 = buf878; del buf878 # reuse buf920 = buf874; del buf874 # reuse # Topologically Sorted Source Nodes: [p1_63, p3_63, min_127, p2_63, img_31, neg_384, neg_386, neg_388, neg_390, neg_392, neg_394], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf886, buf894, buf890, buf896, buf900, buf904, buf912, buf916, buf920, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_63, p3_63, min_127, p2_63, img_31, neg_384, max_pool3d_224], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf897 = torch.ops.aten.max_pool3d_with_indices.default(buf896, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf896 buf898 = buf897[0] del buf897 # Topologically Sorted Source Nodes: [p1_63, p3_63, min_127, p2_63, img_31, neg_386, max_pool3d_225], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf901 = torch.ops.aten.max_pool3d_with_indices.default(buf900, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf900 buf902 = buf901[0] del buf901 # Topologically Sorted Source Nodes: [p1_63, p3_63, min_127, p2_63, img_31, neg_388, max_pool3d_226], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf905 = torch.ops.aten.max_pool3d_with_indices.default(buf904, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf904 buf906 = buf905[0] del buf905 buf908 = buf898; del buf898 # reuse # Topologically Sorted Source Nodes: [p1_64, p3_64, min_129, p2_64, min_130], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf908, buf906, buf902, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_64, p3_64, min_129, p2_64, min_130, img1_32], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf909 = torch.ops.aten.max_pool3d_with_indices.default(buf908, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf910 = buf909[0] del buf909 # Topologically Sorted Source Nodes: [p1_63, p3_63, min_127, p2_63, img_31, neg_390, max_pool3d_228], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf913 = torch.ops.aten.max_pool3d_with_indices.default(buf912, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf914 = buf913[0] del buf913 # Topologically Sorted Source Nodes: [p1_63, p3_63, min_127, p2_63, img_31, neg_392, max_pool3d_229], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf917 = torch.ops.aten.max_pool3d_with_indices.default(buf916, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf918 = buf917[0] del buf917 # Topologically Sorted Source Nodes: [p1_63, p3_63, min_127, p2_63, img_31, neg_394, max_pool3d_230], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf921 = torch.ops.aten.max_pool3d_with_indices.default(buf920, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf922 = buf921[0] del buf921 buf924 = buf920; del buf920 # reuse buf928 = buf916; del buf916 # reuse buf932 = buf912; del buf912 # reuse buf940 = buf908; del buf908 # reuse buf944 = buf906; del buf906 # reuse buf948 = buf902; del buf902 # reuse # Topologically Sorted Source Nodes: [p1_65, p3_65, min_131, p2_65, img_32, neg_396, neg_398, neg_400, neg_402, neg_404, neg_406], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf914, buf922, buf918, buf924, buf928, buf932, buf940, buf944, buf948, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_65, p3_65, min_131, p2_65, img_32, neg_396, max_pool3d_231], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf925 = torch.ops.aten.max_pool3d_with_indices.default(buf924, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf924 buf926 = buf925[0] del buf925 # Topologically Sorted Source Nodes: [p1_65, p3_65, min_131, p2_65, img_32, neg_398, max_pool3d_232], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf929 = torch.ops.aten.max_pool3d_with_indices.default(buf928, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf928 buf930 = buf929[0] del buf929 # Topologically Sorted Source Nodes: [p1_65, p3_65, min_131, p2_65, img_32, neg_400, max_pool3d_233], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf933 = torch.ops.aten.max_pool3d_with_indices.default(buf932, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf932 buf934 = buf933[0] del buf933 buf936 = buf926; del buf926 # reuse # Topologically Sorted Source Nodes: [p1_66, p3_66, min_133, p2_66, min_134], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf936, buf934, buf930, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_66, p3_66, min_133, p2_66, min_134, img1_33], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf937 = torch.ops.aten.max_pool3d_with_indices.default(buf936, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf938 = buf937[0] del buf937 # Topologically Sorted Source Nodes: [p1_65, p3_65, min_131, p2_65, img_32, neg_402, max_pool3d_235], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf941 = torch.ops.aten.max_pool3d_with_indices.default(buf940, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf942 = buf941[0] del buf941 # Topologically Sorted Source Nodes: [p1_65, p3_65, min_131, p2_65, img_32, neg_404, max_pool3d_236], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf945 = torch.ops.aten.max_pool3d_with_indices.default(buf944, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf946 = buf945[0] del buf945 # Topologically Sorted Source Nodes: [p1_65, p3_65, min_131, p2_65, img_32, neg_406, max_pool3d_237], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf949 = torch.ops.aten.max_pool3d_with_indices.default(buf948, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf950 = buf949[0] del buf949 buf952 = buf948; del buf948 # reuse buf956 = buf944; del buf944 # reuse buf960 = buf940; del buf940 # reuse buf968 = buf936; del buf936 # reuse buf972 = buf934; del buf934 # reuse buf976 = buf930; del buf930 # reuse # Topologically Sorted Source Nodes: [p1_67, p3_67, min_135, p2_67, img_33, neg_408, neg_410, neg_412, neg_414, neg_416, neg_418], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf942, buf950, buf946, buf952, buf956, buf960, buf968, buf972, buf976, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_67, p3_67, min_135, p2_67, img_33, neg_408, max_pool3d_238], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf953 = torch.ops.aten.max_pool3d_with_indices.default(buf952, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf952 buf954 = buf953[0] del buf953 # Topologically Sorted Source Nodes: [p1_67, p3_67, min_135, p2_67, img_33, neg_410, max_pool3d_239], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf957 = torch.ops.aten.max_pool3d_with_indices.default(buf956, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf956 buf958 = buf957[0] del buf957 # Topologically Sorted Source Nodes: [p1_67, p3_67, min_135, p2_67, img_33, neg_412, max_pool3d_240], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf961 = torch.ops.aten.max_pool3d_with_indices.default(buf960, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf960 buf962 = buf961[0] del buf961 buf964 = buf954; del buf954 # reuse # Topologically Sorted Source Nodes: [p1_68, p3_68, min_137, p2_68, min_138], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf964, buf962, buf958, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_68, p3_68, min_137, p2_68, min_138, img1_34], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf965 = torch.ops.aten.max_pool3d_with_indices.default(buf964, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf966 = buf965[0] del buf965 # Topologically Sorted Source Nodes: [p1_67, p3_67, min_135, p2_67, img_33, neg_414, max_pool3d_242], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf969 = torch.ops.aten.max_pool3d_with_indices.default(buf968, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf970 = buf969[0] del buf969 # Topologically Sorted Source Nodes: [p1_67, p3_67, min_135, p2_67, img_33, neg_416, max_pool3d_243], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf973 = torch.ops.aten.max_pool3d_with_indices.default(buf972, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf974 = buf973[0] del buf973 # Topologically Sorted Source Nodes: [p1_67, p3_67, min_135, p2_67, img_33, neg_418, max_pool3d_244], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf977 = torch.ops.aten.max_pool3d_with_indices.default(buf976, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf978 = buf977[0] del buf977 buf980 = buf976; del buf976 # reuse buf984 = buf972; del buf972 # reuse buf988 = buf968; del buf968 # reuse buf996 = buf964; del buf964 # reuse buf1000 = buf962; del buf962 # reuse buf1004 = buf958; del buf958 # reuse # Topologically Sorted Source Nodes: [p1_69, p3_69, min_139, p2_69, img_34, neg_420, neg_422, neg_424, neg_426, neg_428, neg_430], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf970, buf978, buf974, buf980, buf984, buf988, buf996, buf1000, buf1004, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_69, p3_69, min_139, p2_69, img_34, neg_420, max_pool3d_245], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf981 = torch.ops.aten.max_pool3d_with_indices.default(buf980, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf980 buf982 = buf981[0] del buf981 # Topologically Sorted Source Nodes: [p1_69, p3_69, min_139, p2_69, img_34, neg_422, max_pool3d_246], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf985 = torch.ops.aten.max_pool3d_with_indices.default(buf984, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf984 buf986 = buf985[0] del buf985 # Topologically Sorted Source Nodes: [p1_69, p3_69, min_139, p2_69, img_34, neg_424, max_pool3d_247], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf989 = torch.ops.aten.max_pool3d_with_indices.default(buf988, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf988 buf990 = buf989[0] del buf989 buf992 = buf982; del buf982 # reuse # Topologically Sorted Source Nodes: [p1_70, p3_70, min_141, p2_70, min_142], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf992, buf990, buf986, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_70, p3_70, min_141, p2_70, min_142, img1_35], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf993 = torch.ops.aten.max_pool3d_with_indices.default(buf992, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf994 = buf993[0] del buf993 # Topologically Sorted Source Nodes: [p1_69, p3_69, min_139, p2_69, img_34, neg_426, max_pool3d_249], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf997 = torch.ops.aten.max_pool3d_with_indices.default(buf996, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf998 = buf997[0] del buf997 # Topologically Sorted Source Nodes: [p1_69, p3_69, min_139, p2_69, img_34, neg_428, max_pool3d_250], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1001 = torch.ops.aten.max_pool3d_with_indices.default(buf1000, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1002 = buf1001[0] del buf1001 # Topologically Sorted Source Nodes: [p1_69, p3_69, min_139, p2_69, img_34, neg_430, max_pool3d_251], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1005 = torch.ops.aten.max_pool3d_with_indices.default(buf1004, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1006 = buf1005[0] del buf1005 buf1008 = buf1004; del buf1004 # reuse buf1012 = buf1000; del buf1000 # reuse buf1016 = buf996; del buf996 # reuse buf1024 = buf992; del buf992 # reuse buf1028 = buf990; del buf990 # reuse buf1032 = buf986; del buf986 # reuse # Topologically Sorted Source Nodes: [p1_71, p3_71, min_143, p2_71, img_35, neg_432, neg_434, neg_436, neg_438, neg_440, neg_442], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf998, buf1006, buf1002, buf1008, buf1012, buf1016, buf1024, buf1028, buf1032, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_71, p3_71, min_143, p2_71, img_35, neg_432, max_pool3d_252], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1009 = torch.ops.aten.max_pool3d_with_indices.default(buf1008, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1008 buf1010 = buf1009[0] del buf1009 # Topologically Sorted Source Nodes: [p1_71, p3_71, min_143, p2_71, img_35, neg_434, max_pool3d_253], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1013 = torch.ops.aten.max_pool3d_with_indices.default(buf1012, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1012 buf1014 = buf1013[0] del buf1013 # Topologically Sorted Source Nodes: [p1_71, p3_71, min_143, p2_71, img_35, neg_436, max_pool3d_254], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1017 = torch.ops.aten.max_pool3d_with_indices.default(buf1016, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1016 buf1018 = buf1017[0] del buf1017 buf1020 = buf1010; del buf1010 # reuse # Topologically Sorted Source Nodes: [p1_72, p3_72, min_145, p2_72, min_146], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1020, buf1018, buf1014, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_72, p3_72, min_145, p2_72, min_146, img1_36], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1021 = torch.ops.aten.max_pool3d_with_indices.default(buf1020, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1022 = buf1021[0] del buf1021 # Topologically Sorted Source Nodes: [p1_71, p3_71, min_143, p2_71, img_35, neg_438, max_pool3d_256], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1025 = torch.ops.aten.max_pool3d_with_indices.default(buf1024, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1026 = buf1025[0] del buf1025 # Topologically Sorted Source Nodes: [p1_71, p3_71, min_143, p2_71, img_35, neg_440, max_pool3d_257], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1029 = torch.ops.aten.max_pool3d_with_indices.default(buf1028, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1030 = buf1029[0] del buf1029 # Topologically Sorted Source Nodes: [p1_71, p3_71, min_143, p2_71, img_35, neg_442, max_pool3d_258], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1033 = torch.ops.aten.max_pool3d_with_indices.default(buf1032, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1034 = buf1033[0] del buf1033 buf1036 = buf1032; del buf1032 # reuse buf1040 = buf1028; del buf1028 # reuse buf1044 = buf1024; del buf1024 # reuse buf1052 = buf1020; del buf1020 # reuse buf1056 = buf1018; del buf1018 # reuse buf1060 = buf1014; del buf1014 # reuse # Topologically Sorted Source Nodes: [p1_73, p3_73, min_147, p2_73, img_36, neg_444, neg_446, neg_448, neg_450, neg_452, neg_454], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1026, buf1034, buf1030, buf1036, buf1040, buf1044, buf1052, buf1056, buf1060, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_73, p3_73, min_147, p2_73, img_36, neg_444, max_pool3d_259], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1037 = torch.ops.aten.max_pool3d_with_indices.default(buf1036, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1036 buf1038 = buf1037[0] del buf1037 # Topologically Sorted Source Nodes: [p1_73, p3_73, min_147, p2_73, img_36, neg_446, max_pool3d_260], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1041 = torch.ops.aten.max_pool3d_with_indices.default(buf1040, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1040 buf1042 = buf1041[0] del buf1041 # Topologically Sorted Source Nodes: [p1_73, p3_73, min_147, p2_73, img_36, neg_448, max_pool3d_261], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1045 = torch.ops.aten.max_pool3d_with_indices.default(buf1044, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1044 buf1046 = buf1045[0] del buf1045 buf1048 = buf1038; del buf1038 # reuse # Topologically Sorted Source Nodes: [p1_74, p3_74, min_149, p2_74, min_150], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1048, buf1046, buf1042, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_74, p3_74, min_149, p2_74, min_150, img1_37], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1049 = torch.ops.aten.max_pool3d_with_indices.default(buf1048, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1050 = buf1049[0] del buf1049 # Topologically Sorted Source Nodes: [p1_73, p3_73, min_147, p2_73, img_36, neg_450, max_pool3d_263], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1053 = torch.ops.aten.max_pool3d_with_indices.default(buf1052, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1054 = buf1053[0] del buf1053 # Topologically Sorted Source Nodes: [p1_73, p3_73, min_147, p2_73, img_36, neg_452, max_pool3d_264], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1057 = torch.ops.aten.max_pool3d_with_indices.default(buf1056, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1058 = buf1057[0] del buf1057 # Topologically Sorted Source Nodes: [p1_73, p3_73, min_147, p2_73, img_36, neg_454, max_pool3d_265], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1061 = torch.ops.aten.max_pool3d_with_indices.default(buf1060, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1062 = buf1061[0] del buf1061 buf1064 = buf1060; del buf1060 # reuse buf1068 = buf1056; del buf1056 # reuse buf1072 = buf1052; del buf1052 # reuse buf1080 = buf1048; del buf1048 # reuse buf1084 = buf1046; del buf1046 # reuse buf1088 = buf1042; del buf1042 # reuse # Topologically Sorted Source Nodes: [p1_75, p3_75, min_151, p2_75, img_37, neg_456, neg_458, neg_460, neg_462, neg_464, neg_466], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1054, buf1062, buf1058, buf1064, buf1068, buf1072, buf1080, buf1084, buf1088, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_75, p3_75, min_151, p2_75, img_37, neg_456, max_pool3d_266], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1065 = torch.ops.aten.max_pool3d_with_indices.default(buf1064, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1064 buf1066 = buf1065[0] del buf1065 # Topologically Sorted Source Nodes: [p1_75, p3_75, min_151, p2_75, img_37, neg_458, max_pool3d_267], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1069 = torch.ops.aten.max_pool3d_with_indices.default(buf1068, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1068 buf1070 = buf1069[0] del buf1069 # Topologically Sorted Source Nodes: [p1_75, p3_75, min_151, p2_75, img_37, neg_460, max_pool3d_268], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1073 = torch.ops.aten.max_pool3d_with_indices.default(buf1072, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1072 buf1074 = buf1073[0] del buf1073 buf1076 = buf1066; del buf1066 # reuse # Topologically Sorted Source Nodes: [p1_76, p3_76, min_153, p2_76, min_154], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1076, buf1074, buf1070, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_76, p3_76, min_153, p2_76, min_154, img1_38], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1077 = torch.ops.aten.max_pool3d_with_indices.default(buf1076, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1078 = buf1077[0] del buf1077 # Topologically Sorted Source Nodes: [p1_75, p3_75, min_151, p2_75, img_37, neg_462, max_pool3d_270], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1081 = torch.ops.aten.max_pool3d_with_indices.default(buf1080, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1082 = buf1081[0] del buf1081 # Topologically Sorted Source Nodes: [p1_75, p3_75, min_151, p2_75, img_37, neg_464, max_pool3d_271], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1085 = torch.ops.aten.max_pool3d_with_indices.default(buf1084, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1086 = buf1085[0] del buf1085 # Topologically Sorted Source Nodes: [p1_75, p3_75, min_151, p2_75, img_37, neg_466, max_pool3d_272], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1089 = torch.ops.aten.max_pool3d_with_indices.default(buf1088, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1090 = buf1089[0] del buf1089 buf1092 = buf1088; del buf1088 # reuse buf1096 = buf1084; del buf1084 # reuse buf1100 = buf1080; del buf1080 # reuse buf1108 = buf1076; del buf1076 # reuse buf1112 = buf1074; del buf1074 # reuse buf1116 = buf1070; del buf1070 # reuse # Topologically Sorted Source Nodes: [p1_77, p3_77, min_155, p2_77, img_38, neg_468, neg_470, neg_472, neg_474, neg_476, neg_478], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1082, buf1090, buf1086, buf1092, buf1096, buf1100, buf1108, buf1112, buf1116, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_77, p3_77, min_155, p2_77, img_38, neg_468, max_pool3d_273], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1093 = torch.ops.aten.max_pool3d_with_indices.default(buf1092, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1092 buf1094 = buf1093[0] del buf1093 # Topologically Sorted Source Nodes: [p1_77, p3_77, min_155, p2_77, img_38, neg_470, max_pool3d_274], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1097 = torch.ops.aten.max_pool3d_with_indices.default(buf1096, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1096 buf1098 = buf1097[0] del buf1097 # Topologically Sorted Source Nodes: [p1_77, p3_77, min_155, p2_77, img_38, neg_472, max_pool3d_275], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1101 = torch.ops.aten.max_pool3d_with_indices.default(buf1100, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1100 buf1102 = buf1101[0] del buf1101 buf1104 = buf1094; del buf1094 # reuse # Topologically Sorted Source Nodes: [p1_78, p3_78, min_157, p2_78, min_158], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1104, buf1102, buf1098, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_78, p3_78, min_157, p2_78, min_158, img1_39], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1105 = torch.ops.aten.max_pool3d_with_indices.default(buf1104, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1106 = buf1105[0] del buf1105 # Topologically Sorted Source Nodes: [p1_77, p3_77, min_155, p2_77, img_38, neg_474, max_pool3d_277], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1109 = torch.ops.aten.max_pool3d_with_indices.default(buf1108, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1110 = buf1109[0] del buf1109 # Topologically Sorted Source Nodes: [p1_77, p3_77, min_155, p2_77, img_38, neg_476, max_pool3d_278], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1113 = torch.ops.aten.max_pool3d_with_indices.default(buf1112, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1114 = buf1113[0] del buf1113 # Topologically Sorted Source Nodes: [p1_77, p3_77, min_155, p2_77, img_38, neg_478, max_pool3d_279], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1117 = torch.ops.aten.max_pool3d_with_indices.default(buf1116, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1118 = buf1117[0] del buf1117 buf1120 = buf1116; del buf1116 # reuse buf1124 = buf1112; del buf1112 # reuse buf1128 = buf1108; del buf1108 # reuse buf1136 = buf1104; del buf1104 # reuse buf1140 = buf1102; del buf1102 # reuse buf1144 = buf1098; del buf1098 # reuse # Topologically Sorted Source Nodes: [p1_79, p3_79, min_159, p2_79, img_39, neg_480, neg_482, neg_484, neg_486, neg_488, neg_490], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1110, buf1118, buf1114, buf1120, buf1124, buf1128, buf1136, buf1140, buf1144, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_79, p3_79, min_159, p2_79, img_39, neg_480, max_pool3d_280], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1121 = torch.ops.aten.max_pool3d_with_indices.default(buf1120, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1120 buf1122 = buf1121[0] del buf1121 # Topologically Sorted Source Nodes: [p1_79, p3_79, min_159, p2_79, img_39, neg_482, max_pool3d_281], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1125 = torch.ops.aten.max_pool3d_with_indices.default(buf1124, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1124 buf1126 = buf1125[0] del buf1125 # Topologically Sorted Source Nodes: [p1_79, p3_79, min_159, p2_79, img_39, neg_484, max_pool3d_282], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1129 = torch.ops.aten.max_pool3d_with_indices.default(buf1128, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1128 buf1130 = buf1129[0] del buf1129 buf1132 = buf1122; del buf1122 # reuse # Topologically Sorted Source Nodes: [p1_80, p3_80, min_161, p2_80, min_162], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1132, buf1130, buf1126, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_80, p3_80, min_161, p2_80, min_162, img1_40], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1133 = torch.ops.aten.max_pool3d_with_indices.default(buf1132, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1134 = buf1133[0] del buf1133 # Topologically Sorted Source Nodes: [p1_79, p3_79, min_159, p2_79, img_39, neg_486, max_pool3d_284], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1137 = torch.ops.aten.max_pool3d_with_indices.default(buf1136, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1138 = buf1137[0] del buf1137 # Topologically Sorted Source Nodes: [p1_79, p3_79, min_159, p2_79, img_39, neg_488, max_pool3d_285], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1141 = torch.ops.aten.max_pool3d_with_indices.default(buf1140, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1142 = buf1141[0] del buf1141 # Topologically Sorted Source Nodes: [p1_79, p3_79, min_159, p2_79, img_39, neg_490, max_pool3d_286], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1145 = torch.ops.aten.max_pool3d_with_indices.default(buf1144, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1146 = buf1145[0] del buf1145 buf1148 = buf1144; del buf1144 # reuse buf1152 = buf1140; del buf1140 # reuse buf1156 = buf1136; del buf1136 # reuse buf1164 = buf1132; del buf1132 # reuse buf1168 = buf1130; del buf1130 # reuse buf1172 = buf1126; del buf1126 # reuse # Topologically Sorted Source Nodes: [p1_81, p3_81, min_163, p2_81, img_40, neg_492, neg_494, neg_496, neg_498, neg_500, neg_502], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1138, buf1146, buf1142, buf1148, buf1152, buf1156, buf1164, buf1168, buf1172, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_81, p3_81, min_163, p2_81, img_40, neg_492, max_pool3d_287], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1149 = torch.ops.aten.max_pool3d_with_indices.default(buf1148, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1148 buf1150 = buf1149[0] del buf1149 # Topologically Sorted Source Nodes: [p1_81, p3_81, min_163, p2_81, img_40, neg_494, max_pool3d_288], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1153 = torch.ops.aten.max_pool3d_with_indices.default(buf1152, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1152 buf1154 = buf1153[0] del buf1153 # Topologically Sorted Source Nodes: [p1_81, p3_81, min_163, p2_81, img_40, neg_496, max_pool3d_289], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1157 = torch.ops.aten.max_pool3d_with_indices.default(buf1156, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1156 buf1158 = buf1157[0] del buf1157 buf1160 = buf1150; del buf1150 # reuse # Topologically Sorted Source Nodes: [p1_82, p3_82, min_165, p2_82, min_166], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1160, buf1158, buf1154, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_82, p3_82, min_165, p2_82, min_166, img1_41], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1161 = torch.ops.aten.max_pool3d_with_indices.default(buf1160, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1162 = buf1161[0] del buf1161 # Topologically Sorted Source Nodes: [p1_81, p3_81, min_163, p2_81, img_40, neg_498, max_pool3d_291], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1165 = torch.ops.aten.max_pool3d_with_indices.default(buf1164, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1166 = buf1165[0] del buf1165 # Topologically Sorted Source Nodes: [p1_81, p3_81, min_163, p2_81, img_40, neg_500, max_pool3d_292], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1169 = torch.ops.aten.max_pool3d_with_indices.default(buf1168, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1170 = buf1169[0] del buf1169 # Topologically Sorted Source Nodes: [p1_81, p3_81, min_163, p2_81, img_40, neg_502, max_pool3d_293], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1173 = torch.ops.aten.max_pool3d_with_indices.default(buf1172, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1174 = buf1173[0] del buf1173 buf1176 = buf1172; del buf1172 # reuse buf1180 = buf1168; del buf1168 # reuse buf1184 = buf1164; del buf1164 # reuse buf1192 = buf1160; del buf1160 # reuse buf1196 = buf1158; del buf1158 # reuse buf1200 = buf1154; del buf1154 # reuse # Topologically Sorted Source Nodes: [p1_83, p3_83, min_167, p2_83, img_41, neg_504, neg_506, neg_508, neg_510, neg_512, neg_514], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1166, buf1174, buf1170, buf1176, buf1180, buf1184, buf1192, buf1196, buf1200, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_83, p3_83, min_167, p2_83, img_41, neg_504, max_pool3d_294], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1177 = torch.ops.aten.max_pool3d_with_indices.default(buf1176, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1176 buf1178 = buf1177[0] del buf1177 # Topologically Sorted Source Nodes: [p1_83, p3_83, min_167, p2_83, img_41, neg_506, max_pool3d_295], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1181 = torch.ops.aten.max_pool3d_with_indices.default(buf1180, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1180 buf1182 = buf1181[0] del buf1181 # Topologically Sorted Source Nodes: [p1_83, p3_83, min_167, p2_83, img_41, neg_508, max_pool3d_296], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1185 = torch.ops.aten.max_pool3d_with_indices.default(buf1184, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1184 buf1186 = buf1185[0] del buf1185 buf1188 = buf1178; del buf1178 # reuse # Topologically Sorted Source Nodes: [p1_84, p3_84, min_169, p2_84, min_170], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1188, buf1186, buf1182, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_84, p3_84, min_169, p2_84, min_170, img1_42], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1189 = torch.ops.aten.max_pool3d_with_indices.default(buf1188, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1190 = buf1189[0] del buf1189 # Topologically Sorted Source Nodes: [p1_83, p3_83, min_167, p2_83, img_41, neg_510, max_pool3d_298], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1193 = torch.ops.aten.max_pool3d_with_indices.default(buf1192, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1194 = buf1193[0] del buf1193 # Topologically Sorted Source Nodes: [p1_83, p3_83, min_167, p2_83, img_41, neg_512, max_pool3d_299], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1197 = torch.ops.aten.max_pool3d_with_indices.default(buf1196, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1198 = buf1197[0] del buf1197 # Topologically Sorted Source Nodes: [p1_83, p3_83, min_167, p2_83, img_41, neg_514, max_pool3d_300], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1201 = torch.ops.aten.max_pool3d_with_indices.default(buf1200, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1202 = buf1201[0] del buf1201 buf1204 = buf1200; del buf1200 # reuse buf1208 = buf1196; del buf1196 # reuse buf1212 = buf1192; del buf1192 # reuse buf1220 = buf1188; del buf1188 # reuse buf1224 = buf1186; del buf1186 # reuse buf1228 = buf1182; del buf1182 # reuse # Topologically Sorted Source Nodes: [p1_85, p3_85, min_171, p2_85, img_42, neg_516, neg_518, neg_520, neg_522, neg_524, neg_526], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1194, buf1202, buf1198, buf1204, buf1208, buf1212, buf1220, buf1224, buf1228, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_85, p3_85, min_171, p2_85, img_42, neg_516, max_pool3d_301], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1205 = torch.ops.aten.max_pool3d_with_indices.default(buf1204, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1204 buf1206 = buf1205[0] del buf1205 # Topologically Sorted Source Nodes: [p1_85, p3_85, min_171, p2_85, img_42, neg_518, max_pool3d_302], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1209 = torch.ops.aten.max_pool3d_with_indices.default(buf1208, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1208 buf1210 = buf1209[0] del buf1209 # Topologically Sorted Source Nodes: [p1_85, p3_85, min_171, p2_85, img_42, neg_520, max_pool3d_303], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1213 = torch.ops.aten.max_pool3d_with_indices.default(buf1212, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1212 buf1214 = buf1213[0] del buf1213 buf1216 = buf1206; del buf1206 # reuse # Topologically Sorted Source Nodes: [p1_86, p3_86, min_173, p2_86, min_174], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1216, buf1214, buf1210, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_86, p3_86, min_173, p2_86, min_174, img1_43], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1217 = torch.ops.aten.max_pool3d_with_indices.default(buf1216, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1218 = buf1217[0] del buf1217 # Topologically Sorted Source Nodes: [p1_85, p3_85, min_171, p2_85, img_42, neg_522, max_pool3d_305], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1221 = torch.ops.aten.max_pool3d_with_indices.default(buf1220, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1222 = buf1221[0] del buf1221 # Topologically Sorted Source Nodes: [p1_85, p3_85, min_171, p2_85, img_42, neg_524, max_pool3d_306], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1225 = torch.ops.aten.max_pool3d_with_indices.default(buf1224, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1226 = buf1225[0] del buf1225 # Topologically Sorted Source Nodes: [p1_85, p3_85, min_171, p2_85, img_42, neg_526, max_pool3d_307], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1229 = torch.ops.aten.max_pool3d_with_indices.default(buf1228, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1230 = buf1229[0] del buf1229 buf1232 = buf1228; del buf1228 # reuse buf1236 = buf1224; del buf1224 # reuse buf1240 = buf1220; del buf1220 # reuse buf1248 = buf1216; del buf1216 # reuse buf1252 = buf1214; del buf1214 # reuse buf1256 = buf1210; del buf1210 # reuse # Topologically Sorted Source Nodes: [p1_87, p3_87, min_175, p2_87, img_43, neg_528, neg_530, neg_532, neg_534, neg_536, neg_538], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1222, buf1230, buf1226, buf1232, buf1236, buf1240, buf1248, buf1252, buf1256, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_87, p3_87, min_175, p2_87, img_43, neg_528, max_pool3d_308], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1233 = torch.ops.aten.max_pool3d_with_indices.default(buf1232, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1232 buf1234 = buf1233[0] del buf1233 # Topologically Sorted Source Nodes: [p1_87, p3_87, min_175, p2_87, img_43, neg_530, max_pool3d_309], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1237 = torch.ops.aten.max_pool3d_with_indices.default(buf1236, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1236 buf1238 = buf1237[0] del buf1237 # Topologically Sorted Source Nodes: [p1_87, p3_87, min_175, p2_87, img_43, neg_532, max_pool3d_310], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1241 = torch.ops.aten.max_pool3d_with_indices.default(buf1240, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1240 buf1242 = buf1241[0] del buf1241 buf1244 = buf1234; del buf1234 # reuse # Topologically Sorted Source Nodes: [p1_88, p3_88, min_177, p2_88, min_178], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1244, buf1242, buf1238, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_88, p3_88, min_177, p2_88, min_178, img1_44], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1245 = torch.ops.aten.max_pool3d_with_indices.default(buf1244, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1246 = buf1245[0] del buf1245 # Topologically Sorted Source Nodes: [p1_87, p3_87, min_175, p2_87, img_43, neg_534, max_pool3d_312], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1249 = torch.ops.aten.max_pool3d_with_indices.default(buf1248, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1250 = buf1249[0] del buf1249 # Topologically Sorted Source Nodes: [p1_87, p3_87, min_175, p2_87, img_43, neg_536, max_pool3d_313], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1253 = torch.ops.aten.max_pool3d_with_indices.default(buf1252, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1254 = buf1253[0] del buf1253 # Topologically Sorted Source Nodes: [p1_87, p3_87, min_175, p2_87, img_43, neg_538, max_pool3d_314], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1257 = torch.ops.aten.max_pool3d_with_indices.default(buf1256, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1258 = buf1257[0] del buf1257 buf1260 = buf1256; del buf1256 # reuse buf1264 = buf1252; del buf1252 # reuse buf1268 = buf1248; del buf1248 # reuse buf1276 = buf1244; del buf1244 # reuse buf1280 = buf1242; del buf1242 # reuse buf1284 = buf1238; del buf1238 # reuse # Topologically Sorted Source Nodes: [p1_89, p3_89, min_179, p2_89, img_44, neg_540, neg_542, neg_544, neg_546, neg_548, neg_550], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1250, buf1258, buf1254, buf1260, buf1264, buf1268, buf1276, buf1280, buf1284, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_89, p3_89, min_179, p2_89, img_44, neg_540, max_pool3d_315], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1261 = torch.ops.aten.max_pool3d_with_indices.default(buf1260, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1260 buf1262 = buf1261[0] del buf1261 # Topologically Sorted Source Nodes: [p1_89, p3_89, min_179, p2_89, img_44, neg_542, max_pool3d_316], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1265 = torch.ops.aten.max_pool3d_with_indices.default(buf1264, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1264 buf1266 = buf1265[0] del buf1265 # Topologically Sorted Source Nodes: [p1_89, p3_89, min_179, p2_89, img_44, neg_544, max_pool3d_317], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1269 = torch.ops.aten.max_pool3d_with_indices.default(buf1268, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1268 buf1270 = buf1269[0] del buf1269 buf1272 = buf1262; del buf1262 # reuse # Topologically Sorted Source Nodes: [p1_90, p3_90, min_181, p2_90, min_182], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1272, buf1270, buf1266, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_90, p3_90, min_181, p2_90, min_182, img1_45], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1273 = torch.ops.aten.max_pool3d_with_indices.default(buf1272, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1274 = buf1273[0] del buf1273 # Topologically Sorted Source Nodes: [p1_89, p3_89, min_179, p2_89, img_44, neg_546, max_pool3d_319], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1277 = torch.ops.aten.max_pool3d_with_indices.default(buf1276, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1278 = buf1277[0] del buf1277 # Topologically Sorted Source Nodes: [p1_89, p3_89, min_179, p2_89, img_44, neg_548, max_pool3d_320], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1281 = torch.ops.aten.max_pool3d_with_indices.default(buf1280, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1282 = buf1281[0] del buf1281 # Topologically Sorted Source Nodes: [p1_89, p3_89, min_179, p2_89, img_44, neg_550, max_pool3d_321], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1285 = torch.ops.aten.max_pool3d_with_indices.default(buf1284, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1286 = buf1285[0] del buf1285 buf1288 = buf1284; del buf1284 # reuse buf1292 = buf1280; del buf1280 # reuse buf1296 = buf1276; del buf1276 # reuse buf1304 = buf1272; del buf1272 # reuse buf1308 = buf1270; del buf1270 # reuse buf1312 = buf1266; del buf1266 # reuse # Topologically Sorted Source Nodes: [p1_91, p3_91, min_183, p2_91, img_45, neg_552, neg_554, neg_556, neg_558, neg_560, neg_562], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1278, buf1286, buf1282, buf1288, buf1292, buf1296, buf1304, buf1308, buf1312, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_91, p3_91, min_183, p2_91, img_45, neg_552, max_pool3d_322], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1289 = torch.ops.aten.max_pool3d_with_indices.default(buf1288, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1288 buf1290 = buf1289[0] del buf1289 # Topologically Sorted Source Nodes: [p1_91, p3_91, min_183, p2_91, img_45, neg_554, max_pool3d_323], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1293 = torch.ops.aten.max_pool3d_with_indices.default(buf1292, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1292 buf1294 = buf1293[0] del buf1293 # Topologically Sorted Source Nodes: [p1_91, p3_91, min_183, p2_91, img_45, neg_556, max_pool3d_324], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1297 = torch.ops.aten.max_pool3d_with_indices.default(buf1296, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1296 buf1298 = buf1297[0] del buf1297 buf1300 = buf1290; del buf1290 # reuse # Topologically Sorted Source Nodes: [p1_92, p3_92, min_185, p2_92, min_186], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1300, buf1298, buf1294, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_92, p3_92, min_185, p2_92, min_186, img1_46], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1301 = torch.ops.aten.max_pool3d_with_indices.default(buf1300, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1302 = buf1301[0] del buf1301 # Topologically Sorted Source Nodes: [p1_91, p3_91, min_183, p2_91, img_45, neg_558, max_pool3d_326], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1305 = torch.ops.aten.max_pool3d_with_indices.default(buf1304, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1306 = buf1305[0] del buf1305 # Topologically Sorted Source Nodes: [p1_91, p3_91, min_183, p2_91, img_45, neg_560, max_pool3d_327], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1309 = torch.ops.aten.max_pool3d_with_indices.default(buf1308, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1310 = buf1309[0] del buf1309 # Topologically Sorted Source Nodes: [p1_91, p3_91, min_183, p2_91, img_45, neg_562, max_pool3d_328], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1313 = torch.ops.aten.max_pool3d_with_indices.default(buf1312, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1314 = buf1313[0] del buf1313 buf1316 = buf1312; del buf1312 # reuse buf1320 = buf1308; del buf1308 # reuse buf1324 = buf1304; del buf1304 # reuse buf1332 = buf1300; del buf1300 # reuse buf1336 = buf1298; del buf1298 # reuse buf1340 = buf1294; del buf1294 # reuse # Topologically Sorted Source Nodes: [p1_93, p3_93, min_187, p2_93, img_46, neg_564, neg_566, neg_568, neg_570, neg_572, neg_574], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1306, buf1314, buf1310, buf1316, buf1320, buf1324, buf1332, buf1336, buf1340, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_93, p3_93, min_187, p2_93, img_46, neg_564, max_pool3d_329], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1317 = torch.ops.aten.max_pool3d_with_indices.default(buf1316, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1316 buf1318 = buf1317[0] del buf1317 # Topologically Sorted Source Nodes: [p1_93, p3_93, min_187, p2_93, img_46, neg_566, max_pool3d_330], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1321 = torch.ops.aten.max_pool3d_with_indices.default(buf1320, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1320 buf1322 = buf1321[0] del buf1321 # Topologically Sorted Source Nodes: [p1_93, p3_93, min_187, p2_93, img_46, neg_568, max_pool3d_331], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1325 = torch.ops.aten.max_pool3d_with_indices.default(buf1324, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1324 buf1326 = buf1325[0] del buf1325 buf1328 = buf1318; del buf1318 # reuse # Topologically Sorted Source Nodes: [p1_94, p3_94, min_189, p2_94, min_190], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1328, buf1326, buf1322, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_94, p3_94, min_189, p2_94, min_190, img1_47], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1329 = torch.ops.aten.max_pool3d_with_indices.default(buf1328, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1330 = buf1329[0] del buf1329 # Topologically Sorted Source Nodes: [p1_93, p3_93, min_187, p2_93, img_46, neg_570, max_pool3d_333], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1333 = torch.ops.aten.max_pool3d_with_indices.default(buf1332, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1334 = buf1333[0] del buf1333 # Topologically Sorted Source Nodes: [p1_93, p3_93, min_187, p2_93, img_46, neg_572, max_pool3d_334], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1337 = torch.ops.aten.max_pool3d_with_indices.default(buf1336, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1338 = buf1337[0] del buf1337 # Topologically Sorted Source Nodes: [p1_93, p3_93, min_187, p2_93, img_46, neg_574, max_pool3d_335], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1341 = torch.ops.aten.max_pool3d_with_indices.default(buf1340, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1342 = buf1341[0] del buf1341 buf1344 = buf1340; del buf1340 # reuse buf1348 = buf1336; del buf1336 # reuse buf1352 = buf1332; del buf1332 # reuse buf1360 = buf1328; del buf1328 # reuse buf1364 = buf1326; del buf1326 # reuse buf1368 = buf1322; del buf1322 # reuse # Topologically Sorted Source Nodes: [p1_95, p3_95, min_191, p2_95, img_47, neg_576, neg_578, neg_580, neg_582, neg_584, neg_586], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1334, buf1342, buf1338, buf1344, buf1348, buf1352, buf1360, buf1364, buf1368, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_95, p3_95, min_191, p2_95, img_47, neg_576, max_pool3d_336], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1345 = torch.ops.aten.max_pool3d_with_indices.default(buf1344, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1344 buf1346 = buf1345[0] del buf1345 # Topologically Sorted Source Nodes: [p1_95, p3_95, min_191, p2_95, img_47, neg_578, max_pool3d_337], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1349 = torch.ops.aten.max_pool3d_with_indices.default(buf1348, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1348 buf1350 = buf1349[0] del buf1349 # Topologically Sorted Source Nodes: [p1_95, p3_95, min_191, p2_95, img_47, neg_580, max_pool3d_338], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1353 = torch.ops.aten.max_pool3d_with_indices.default(buf1352, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1352 buf1354 = buf1353[0] del buf1353 buf1356 = buf1346; del buf1346 # reuse # Topologically Sorted Source Nodes: [p1_96, p3_96, min_193, p2_96, min_194], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1356, buf1354, buf1350, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_96, p3_96, min_193, p2_96, min_194, img1_48], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1357 = torch.ops.aten.max_pool3d_with_indices.default(buf1356, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1358 = buf1357[0] del buf1357 # Topologically Sorted Source Nodes: [p1_95, p3_95, min_191, p2_95, img_47, neg_582, max_pool3d_340], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1361 = torch.ops.aten.max_pool3d_with_indices.default(buf1360, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1362 = buf1361[0] del buf1361 # Topologically Sorted Source Nodes: [p1_95, p3_95, min_191, p2_95, img_47, neg_584, max_pool3d_341], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1365 = torch.ops.aten.max_pool3d_with_indices.default(buf1364, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1366 = buf1365[0] del buf1365 # Topologically Sorted Source Nodes: [p1_95, p3_95, min_191, p2_95, img_47, neg_586, max_pool3d_342], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1369 = torch.ops.aten.max_pool3d_with_indices.default(buf1368, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1370 = buf1369[0] del buf1369 buf1372 = buf1368; del buf1368 # reuse buf1376 = buf1364; del buf1364 # reuse buf1380 = buf1360; del buf1360 # reuse buf1388 = buf1356; del buf1356 # reuse buf1392 = buf1354; del buf1354 # reuse buf1396 = buf1350; del buf1350 # reuse # Topologically Sorted Source Nodes: [p1_97, p3_97, min_195, p2_97, img_48, neg_588, neg_590, neg_592, neg_594, neg_596, neg_598], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1362, buf1370, buf1366, buf1372, buf1376, buf1380, buf1388, buf1392, buf1396, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_97, p3_97, min_195, p2_97, img_48, neg_588, max_pool3d_343], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1373 = torch.ops.aten.max_pool3d_with_indices.default(buf1372, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1372 buf1374 = buf1373[0] del buf1373 # Topologically Sorted Source Nodes: [p1_97, p3_97, min_195, p2_97, img_48, neg_590, max_pool3d_344], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1377 = torch.ops.aten.max_pool3d_with_indices.default(buf1376, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1376 buf1378 = buf1377[0] del buf1377 # Topologically Sorted Source Nodes: [p1_97, p3_97, min_195, p2_97, img_48, neg_592, max_pool3d_345], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1381 = torch.ops.aten.max_pool3d_with_indices.default(buf1380, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1380 buf1382 = buf1381[0] del buf1381 buf1384 = buf1374; del buf1374 # reuse # Topologically Sorted Source Nodes: [p1_98, p3_98, min_197, p2_98, min_198], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1384, buf1382, buf1378, 256, grid=grid(256), stream=stream0) del buf1378 del buf1382 # Topologically Sorted Source Nodes: [p1_98, p3_98, min_197, p2_98, min_198, img1_49], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1385 = torch.ops.aten.max_pool3d_with_indices.default(buf1384, [3, 3, 3], [1, 1, 1], [1, 1, 1]) del buf1384 buf1386 = buf1385[0] del buf1385 # Topologically Sorted Source Nodes: [p1_97, p3_97, min_195, p2_97, img_48, neg_594, max_pool3d_347], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1389 = torch.ops.aten.max_pool3d_with_indices.default(buf1388, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1390 = buf1389[0] del buf1389 # Topologically Sorted Source Nodes: [p1_97, p3_97, min_195, p2_97, img_48, neg_596, max_pool3d_348], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1393 = torch.ops.aten.max_pool3d_with_indices.default(buf1392, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1394 = buf1393[0] del buf1393 # Topologically Sorted Source Nodes: [p1_97, p3_97, min_195, p2_97, img_48, neg_598, max_pool3d_349], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1397 = torch.ops.aten.max_pool3d_with_indices.default(buf1396, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1398 = buf1397[0] del buf1397 buf1400 = buf1396; del buf1396 # reuse buf1404 = buf1392; del buf1392 # reuse buf1408 = buf1388; del buf1388 # reuse # Topologically Sorted Source Nodes: [p1_99, p3_99, min_199, p2_99, img_49, neg_600, neg_602, neg_604], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_4.run(buf1390, buf1398, buf1394, buf1400, buf1404, buf1408, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_99, p3_99, min_199, p2_99, img_49, neg_600, max_pool3d_350], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1401 = torch.ops.aten.max_pool3d_with_indices.default(buf1400, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1402 = buf1401[0] del buf1401 # Topologically Sorted Source Nodes: [p1_99, p3_99, min_199, p2_99, img_49, neg_602, max_pool3d_351], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1405 = torch.ops.aten.max_pool3d_with_indices.default(buf1404, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1406 = buf1405[0] del buf1405 # Topologically Sorted Source Nodes: [p1_99, p3_99, min_199, p2_99, img_49, neg_604, max_pool3d_352], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1409 = torch.ops.aten.max_pool3d_with_indices.default(buf1408, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1410 = buf1409[0] del buf1409 buf1412 = buf1402; del buf1402 # reuse # Topologically Sorted Source Nodes: [p1_100, p3_100, min_201, p2_100, min_202], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1412, buf1410, buf1406, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_100, p3_100, min_201, p2_100, min_202, img1_50], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1413 = torch.ops.aten.max_pool3d_with_indices.default(buf1412, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1414 = buf1413[0] del buf1413 buf1416 = buf1412; del buf1412 # reuse buf1420 = buf1410; del buf1410 # reuse buf1424 = buf1406; del buf1406 # reuse buf1432 = buf1408; del buf1408 # reuse buf1436 = buf1404; del buf1404 # reuse buf1440 = buf1400; del buf1400 # reuse # Topologically Sorted Source Nodes: [neg_606, neg_608, neg_610, neg_612, neg_614, neg_616], Original ATen: [aten.neg] triton_poi_fused_neg_0.run(arg1_1, buf1416, buf1420, buf1424, buf1432, buf1436, buf1440, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [neg_606, max_pool3d_354], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf1417 = torch.ops.aten.max_pool3d_with_indices.default(buf1416, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1416 buf1418 = buf1417[0] del buf1417 # Topologically Sorted Source Nodes: [neg_608, max_pool3d_355], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf1421 = torch.ops.aten.max_pool3d_with_indices.default(buf1420, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1420 buf1422 = buf1421[0] del buf1421 # Topologically Sorted Source Nodes: [neg_610, max_pool3d_356], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf1425 = torch.ops.aten.max_pool3d_with_indices.default(buf1424, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1424 buf1426 = buf1425[0] del buf1425 buf1428 = buf1418; del buf1418 # reuse # Topologically Sorted Source Nodes: [p1_101, p3_101, min_203, p2_101, min_204], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1428, buf1426, buf1422, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_101, p3_101, min_203, p2_101, min_204, img1_51], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1429 = torch.ops.aten.max_pool3d_with_indices.default(buf1428, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1430 = buf1429[0] del buf1429 # Topologically Sorted Source Nodes: [neg_612, max_pool3d_358], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf1433 = torch.ops.aten.max_pool3d_with_indices.default(buf1432, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1434 = buf1433[0] del buf1433 # Topologically Sorted Source Nodes: [neg_614, max_pool3d_359], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf1437 = torch.ops.aten.max_pool3d_with_indices.default(buf1436, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1438 = buf1437[0] del buf1437 # Topologically Sorted Source Nodes: [neg_616, max_pool3d_360], Original ATen: [aten.neg, aten.max_pool3d_with_indices] buf1441 = torch.ops.aten.max_pool3d_with_indices.default(buf1440, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1442 = buf1441[0] del buf1441 buf1444 = buf1440; del buf1440 # reuse buf1448 = buf1436; del buf1436 # reuse buf1452 = buf1432; del buf1432 # reuse buf1460 = buf1428; del buf1428 # reuse buf1464 = buf1426; del buf1426 # reuse buf1468 = buf1422; del buf1422 # reuse # Topologically Sorted Source Nodes: [p1_102, p3_102, min_205, p2_102, img_50, neg_618, neg_620, neg_622, neg_624, neg_626, neg_628], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1434, buf1442, buf1438, buf1444, buf1448, buf1452, buf1460, buf1464, buf1468, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_102, p3_102, min_205, p2_102, img_50, neg_618, max_pool3d_361], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1445 = torch.ops.aten.max_pool3d_with_indices.default(buf1444, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1444 buf1446 = buf1445[0] del buf1445 # Topologically Sorted Source Nodes: [p1_102, p3_102, min_205, p2_102, img_50, neg_620, max_pool3d_362], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1449 = torch.ops.aten.max_pool3d_with_indices.default(buf1448, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1448 buf1450 = buf1449[0] del buf1449 # Topologically Sorted Source Nodes: [p1_102, p3_102, min_205, p2_102, img_50, neg_622, max_pool3d_363], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1453 = torch.ops.aten.max_pool3d_with_indices.default(buf1452, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1452 buf1454 = buf1453[0] del buf1453 buf1456 = buf1446; del buf1446 # reuse # Topologically Sorted Source Nodes: [p1_103, p3_103, min_207, p2_103, min_208], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1456, buf1454, buf1450, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_103, p3_103, min_207, p2_103, min_208, img1_52], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1457 = torch.ops.aten.max_pool3d_with_indices.default(buf1456, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1458 = buf1457[0] del buf1457 # Topologically Sorted Source Nodes: [p1_102, p3_102, min_205, p2_102, img_50, neg_624, max_pool3d_365], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1461 = torch.ops.aten.max_pool3d_with_indices.default(buf1460, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1462 = buf1461[0] del buf1461 # Topologically Sorted Source Nodes: [p1_102, p3_102, min_205, p2_102, img_50, neg_626, max_pool3d_366], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1465 = torch.ops.aten.max_pool3d_with_indices.default(buf1464, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1466 = buf1465[0] del buf1465 # Topologically Sorted Source Nodes: [p1_102, p3_102, min_205, p2_102, img_50, neg_628, max_pool3d_367], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1469 = torch.ops.aten.max_pool3d_with_indices.default(buf1468, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1470 = buf1469[0] del buf1469 buf1472 = buf1468; del buf1468 # reuse buf1476 = buf1464; del buf1464 # reuse buf1480 = buf1460; del buf1460 # reuse buf1488 = buf1456; del buf1456 # reuse buf1492 = buf1454; del buf1454 # reuse buf1496 = buf1450; del buf1450 # reuse # Topologically Sorted Source Nodes: [p1_104, p3_104, min_209, p2_104, img_51, neg_630, neg_632, neg_634, neg_636, neg_638, neg_640], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1462, buf1470, buf1466, buf1472, buf1476, buf1480, buf1488, buf1492, buf1496, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_104, p3_104, min_209, p2_104, img_51, neg_630, max_pool3d_368], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1473 = torch.ops.aten.max_pool3d_with_indices.default(buf1472, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1472 buf1474 = buf1473[0] del buf1473 # Topologically Sorted Source Nodes: [p1_104, p3_104, min_209, p2_104, img_51, neg_632, max_pool3d_369], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1477 = torch.ops.aten.max_pool3d_with_indices.default(buf1476, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1476 buf1478 = buf1477[0] del buf1477 # Topologically Sorted Source Nodes: [p1_104, p3_104, min_209, p2_104, img_51, neg_634, max_pool3d_370], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1481 = torch.ops.aten.max_pool3d_with_indices.default(buf1480, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1480 buf1482 = buf1481[0] del buf1481 buf1484 = buf1474; del buf1474 # reuse # Topologically Sorted Source Nodes: [p1_105, p3_105, min_211, p2_105, min_212], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1484, buf1482, buf1478, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_105, p3_105, min_211, p2_105, min_212, img1_53], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1485 = torch.ops.aten.max_pool3d_with_indices.default(buf1484, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1486 = buf1485[0] del buf1485 # Topologically Sorted Source Nodes: [p1_104, p3_104, min_209, p2_104, img_51, neg_636, max_pool3d_372], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1489 = torch.ops.aten.max_pool3d_with_indices.default(buf1488, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1490 = buf1489[0] del buf1489 # Topologically Sorted Source Nodes: [p1_104, p3_104, min_209, p2_104, img_51, neg_638, max_pool3d_373], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1493 = torch.ops.aten.max_pool3d_with_indices.default(buf1492, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1494 = buf1493[0] del buf1493 # Topologically Sorted Source Nodes: [p1_104, p3_104, min_209, p2_104, img_51, neg_640, max_pool3d_374], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1497 = torch.ops.aten.max_pool3d_with_indices.default(buf1496, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1498 = buf1497[0] del buf1497 buf1500 = buf1496; del buf1496 # reuse buf1504 = buf1492; del buf1492 # reuse buf1508 = buf1488; del buf1488 # reuse buf1516 = buf1484; del buf1484 # reuse buf1520 = buf1482; del buf1482 # reuse buf1524 = buf1478; del buf1478 # reuse # Topologically Sorted Source Nodes: [p1_106, p3_106, min_213, p2_106, img_52, neg_642, neg_644, neg_646, neg_648, neg_650, neg_652], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1490, buf1498, buf1494, buf1500, buf1504, buf1508, buf1516, buf1520, buf1524, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_106, p3_106, min_213, p2_106, img_52, neg_642, max_pool3d_375], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1501 = torch.ops.aten.max_pool3d_with_indices.default(buf1500, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1500 buf1502 = buf1501[0] del buf1501 # Topologically Sorted Source Nodes: [p1_106, p3_106, min_213, p2_106, img_52, neg_644, max_pool3d_376], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1505 = torch.ops.aten.max_pool3d_with_indices.default(buf1504, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1504 buf1506 = buf1505[0] del buf1505 # Topologically Sorted Source Nodes: [p1_106, p3_106, min_213, p2_106, img_52, neg_646, max_pool3d_377], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1509 = torch.ops.aten.max_pool3d_with_indices.default(buf1508, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1508 buf1510 = buf1509[0] del buf1509 buf1512 = buf1502; del buf1502 # reuse # Topologically Sorted Source Nodes: [p1_107, p3_107, min_215, p2_107, min_216], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1512, buf1510, buf1506, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_107, p3_107, min_215, p2_107, min_216, img1_54], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1513 = torch.ops.aten.max_pool3d_with_indices.default(buf1512, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1514 = buf1513[0] del buf1513 # Topologically Sorted Source Nodes: [p1_106, p3_106, min_213, p2_106, img_52, neg_648, max_pool3d_379], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1517 = torch.ops.aten.max_pool3d_with_indices.default(buf1516, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1518 = buf1517[0] del buf1517 # Topologically Sorted Source Nodes: [p1_106, p3_106, min_213, p2_106, img_52, neg_650, max_pool3d_380], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1521 = torch.ops.aten.max_pool3d_with_indices.default(buf1520, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1522 = buf1521[0] del buf1521 # Topologically Sorted Source Nodes: [p1_106, p3_106, min_213, p2_106, img_52, neg_652, max_pool3d_381], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1525 = torch.ops.aten.max_pool3d_with_indices.default(buf1524, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1526 = buf1525[0] del buf1525 buf1528 = buf1524; del buf1524 # reuse buf1532 = buf1520; del buf1520 # reuse buf1536 = buf1516; del buf1516 # reuse buf1544 = buf1512; del buf1512 # reuse buf1548 = buf1510; del buf1510 # reuse buf1552 = buf1506; del buf1506 # reuse # Topologically Sorted Source Nodes: [p1_108, p3_108, min_217, p2_108, img_53, neg_654, neg_656, neg_658, neg_660, neg_662, neg_664], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1518, buf1526, buf1522, buf1528, buf1532, buf1536, buf1544, buf1548, buf1552, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_108, p3_108, min_217, p2_108, img_53, neg_654, max_pool3d_382], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1529 = torch.ops.aten.max_pool3d_with_indices.default(buf1528, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1528 buf1530 = buf1529[0] del buf1529 # Topologically Sorted Source Nodes: [p1_108, p3_108, min_217, p2_108, img_53, neg_656, max_pool3d_383], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1533 = torch.ops.aten.max_pool3d_with_indices.default(buf1532, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1532 buf1534 = buf1533[0] del buf1533 # Topologically Sorted Source Nodes: [p1_108, p3_108, min_217, p2_108, img_53, neg_658, max_pool3d_384], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1537 = torch.ops.aten.max_pool3d_with_indices.default(buf1536, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1536 buf1538 = buf1537[0] del buf1537 buf1540 = buf1530; del buf1530 # reuse # Topologically Sorted Source Nodes: [p1_109, p3_109, min_219, p2_109, min_220], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1540, buf1538, buf1534, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_109, p3_109, min_219, p2_109, min_220, img1_55], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1541 = torch.ops.aten.max_pool3d_with_indices.default(buf1540, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1542 = buf1541[0] del buf1541 # Topologically Sorted Source Nodes: [p1_108, p3_108, min_217, p2_108, img_53, neg_660, max_pool3d_386], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1545 = torch.ops.aten.max_pool3d_with_indices.default(buf1544, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1546 = buf1545[0] del buf1545 # Topologically Sorted Source Nodes: [p1_108, p3_108, min_217, p2_108, img_53, neg_662, max_pool3d_387], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1549 = torch.ops.aten.max_pool3d_with_indices.default(buf1548, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1550 = buf1549[0] del buf1549 # Topologically Sorted Source Nodes: [p1_108, p3_108, min_217, p2_108, img_53, neg_664, max_pool3d_388], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1553 = torch.ops.aten.max_pool3d_with_indices.default(buf1552, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1554 = buf1553[0] del buf1553 buf1556 = buf1552; del buf1552 # reuse buf1560 = buf1548; del buf1548 # reuse buf1564 = buf1544; del buf1544 # reuse buf1572 = buf1540; del buf1540 # reuse buf1576 = buf1538; del buf1538 # reuse buf1580 = buf1534; del buf1534 # reuse # Topologically Sorted Source Nodes: [p1_110, p3_110, min_221, p2_110, img_54, neg_666, neg_668, neg_670, neg_672, neg_674, neg_676], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1546, buf1554, buf1550, buf1556, buf1560, buf1564, buf1572, buf1576, buf1580, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_110, p3_110, min_221, p2_110, img_54, neg_666, max_pool3d_389], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1557 = torch.ops.aten.max_pool3d_with_indices.default(buf1556, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1556 buf1558 = buf1557[0] del buf1557 # Topologically Sorted Source Nodes: [p1_110, p3_110, min_221, p2_110, img_54, neg_668, max_pool3d_390], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1561 = torch.ops.aten.max_pool3d_with_indices.default(buf1560, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1560 buf1562 = buf1561[0] del buf1561 # Topologically Sorted Source Nodes: [p1_110, p3_110, min_221, p2_110, img_54, neg_670, max_pool3d_391], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1565 = torch.ops.aten.max_pool3d_with_indices.default(buf1564, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1564 buf1566 = buf1565[0] del buf1565 buf1568 = buf1558; del buf1558 # reuse # Topologically Sorted Source Nodes: [p1_111, p3_111, min_223, p2_111, min_224], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1568, buf1566, buf1562, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_111, p3_111, min_223, p2_111, min_224, img1_56], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1569 = torch.ops.aten.max_pool3d_with_indices.default(buf1568, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1570 = buf1569[0] del buf1569 # Topologically Sorted Source Nodes: [p1_110, p3_110, min_221, p2_110, img_54, neg_672, max_pool3d_393], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1573 = torch.ops.aten.max_pool3d_with_indices.default(buf1572, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1574 = buf1573[0] del buf1573 # Topologically Sorted Source Nodes: [p1_110, p3_110, min_221, p2_110, img_54, neg_674, max_pool3d_394], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1577 = torch.ops.aten.max_pool3d_with_indices.default(buf1576, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1578 = buf1577[0] del buf1577 # Topologically Sorted Source Nodes: [p1_110, p3_110, min_221, p2_110, img_54, neg_676, max_pool3d_395], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1581 = torch.ops.aten.max_pool3d_with_indices.default(buf1580, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1582 = buf1581[0] del buf1581 buf1584 = buf1580; del buf1580 # reuse buf1588 = buf1576; del buf1576 # reuse buf1592 = buf1572; del buf1572 # reuse buf1600 = buf1568; del buf1568 # reuse buf1604 = buf1566; del buf1566 # reuse buf1608 = buf1562; del buf1562 # reuse # Topologically Sorted Source Nodes: [p1_112, p3_112, min_225, p2_112, img_55, neg_678, neg_680, neg_682, neg_684, neg_686, neg_688], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1574, buf1582, buf1578, buf1584, buf1588, buf1592, buf1600, buf1604, buf1608, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_112, p3_112, min_225, p2_112, img_55, neg_678, max_pool3d_396], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1585 = torch.ops.aten.max_pool3d_with_indices.default(buf1584, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1584 buf1586 = buf1585[0] del buf1585 # Topologically Sorted Source Nodes: [p1_112, p3_112, min_225, p2_112, img_55, neg_680, max_pool3d_397], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1589 = torch.ops.aten.max_pool3d_with_indices.default(buf1588, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1588 buf1590 = buf1589[0] del buf1589 # Topologically Sorted Source Nodes: [p1_112, p3_112, min_225, p2_112, img_55, neg_682, max_pool3d_398], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1593 = torch.ops.aten.max_pool3d_with_indices.default(buf1592, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1592 buf1594 = buf1593[0] del buf1593 buf1596 = buf1586; del buf1586 # reuse # Topologically Sorted Source Nodes: [p1_113, p3_113, min_227, p2_113, min_228], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1596, buf1594, buf1590, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_113, p3_113, min_227, p2_113, min_228, img1_57], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1597 = torch.ops.aten.max_pool3d_with_indices.default(buf1596, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1598 = buf1597[0] del buf1597 # Topologically Sorted Source Nodes: [p1_112, p3_112, min_225, p2_112, img_55, neg_684, max_pool3d_400], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1601 = torch.ops.aten.max_pool3d_with_indices.default(buf1600, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1602 = buf1601[0] del buf1601 # Topologically Sorted Source Nodes: [p1_112, p3_112, min_225, p2_112, img_55, neg_686, max_pool3d_401], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1605 = torch.ops.aten.max_pool3d_with_indices.default(buf1604, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1606 = buf1605[0] del buf1605 # Topologically Sorted Source Nodes: [p1_112, p3_112, min_225, p2_112, img_55, neg_688, max_pool3d_402], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1609 = torch.ops.aten.max_pool3d_with_indices.default(buf1608, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1610 = buf1609[0] del buf1609 buf1612 = buf1608; del buf1608 # reuse buf1616 = buf1604; del buf1604 # reuse buf1620 = buf1600; del buf1600 # reuse buf1628 = buf1596; del buf1596 # reuse buf1632 = buf1594; del buf1594 # reuse buf1636 = buf1590; del buf1590 # reuse # Topologically Sorted Source Nodes: [p1_114, p3_114, min_229, p2_114, img_56, neg_690, neg_692, neg_694, neg_696, neg_698, neg_700], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1602, buf1610, buf1606, buf1612, buf1616, buf1620, buf1628, buf1632, buf1636, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_114, p3_114, min_229, p2_114, img_56, neg_690, max_pool3d_403], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1613 = torch.ops.aten.max_pool3d_with_indices.default(buf1612, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1612 buf1614 = buf1613[0] del buf1613 # Topologically Sorted Source Nodes: [p1_114, p3_114, min_229, p2_114, img_56, neg_692, max_pool3d_404], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1617 = torch.ops.aten.max_pool3d_with_indices.default(buf1616, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1616 buf1618 = buf1617[0] del buf1617 # Topologically Sorted Source Nodes: [p1_114, p3_114, min_229, p2_114, img_56, neg_694, max_pool3d_405], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1621 = torch.ops.aten.max_pool3d_with_indices.default(buf1620, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1620 buf1622 = buf1621[0] del buf1621 buf1624 = buf1614; del buf1614 # reuse # Topologically Sorted Source Nodes: [p1_115, p3_115, min_231, p2_115, min_232], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1624, buf1622, buf1618, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_115, p3_115, min_231, p2_115, min_232, img1_58], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1625 = torch.ops.aten.max_pool3d_with_indices.default(buf1624, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1626 = buf1625[0] del buf1625 # Topologically Sorted Source Nodes: [p1_114, p3_114, min_229, p2_114, img_56, neg_696, max_pool3d_407], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1629 = torch.ops.aten.max_pool3d_with_indices.default(buf1628, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1630 = buf1629[0] del buf1629 # Topologically Sorted Source Nodes: [p1_114, p3_114, min_229, p2_114, img_56, neg_698, max_pool3d_408], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1633 = torch.ops.aten.max_pool3d_with_indices.default(buf1632, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1634 = buf1633[0] del buf1633 # Topologically Sorted Source Nodes: [p1_114, p3_114, min_229, p2_114, img_56, neg_700, max_pool3d_409], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1637 = torch.ops.aten.max_pool3d_with_indices.default(buf1636, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1638 = buf1637[0] del buf1637 buf1640 = buf1636; del buf1636 # reuse buf1644 = buf1632; del buf1632 # reuse buf1648 = buf1628; del buf1628 # reuse buf1656 = buf1624; del buf1624 # reuse buf1660 = buf1622; del buf1622 # reuse buf1664 = buf1618; del buf1618 # reuse # Topologically Sorted Source Nodes: [p1_116, p3_116, min_233, p2_116, img_57, neg_702, neg_704, neg_706, neg_708, neg_710, neg_712], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1630, buf1638, buf1634, buf1640, buf1644, buf1648, buf1656, buf1660, buf1664, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_116, p3_116, min_233, p2_116, img_57, neg_702, max_pool3d_410], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1641 = torch.ops.aten.max_pool3d_with_indices.default(buf1640, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1640 buf1642 = buf1641[0] del buf1641 # Topologically Sorted Source Nodes: [p1_116, p3_116, min_233, p2_116, img_57, neg_704, max_pool3d_411], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1645 = torch.ops.aten.max_pool3d_with_indices.default(buf1644, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1644 buf1646 = buf1645[0] del buf1645 # Topologically Sorted Source Nodes: [p1_116, p3_116, min_233, p2_116, img_57, neg_706, max_pool3d_412], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1649 = torch.ops.aten.max_pool3d_with_indices.default(buf1648, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1648 buf1650 = buf1649[0] del buf1649 buf1652 = buf1642; del buf1642 # reuse # Topologically Sorted Source Nodes: [p1_117, p3_117, min_235, p2_117, min_236], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1652, buf1650, buf1646, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_117, p3_117, min_235, p2_117, min_236, img1_59], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1653 = torch.ops.aten.max_pool3d_with_indices.default(buf1652, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1654 = buf1653[0] del buf1653 # Topologically Sorted Source Nodes: [p1_116, p3_116, min_233, p2_116, img_57, neg_708, max_pool3d_414], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1657 = torch.ops.aten.max_pool3d_with_indices.default(buf1656, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1658 = buf1657[0] del buf1657 # Topologically Sorted Source Nodes: [p1_116, p3_116, min_233, p2_116, img_57, neg_710, max_pool3d_415], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1661 = torch.ops.aten.max_pool3d_with_indices.default(buf1660, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1662 = buf1661[0] del buf1661 # Topologically Sorted Source Nodes: [p1_116, p3_116, min_233, p2_116, img_57, neg_712, max_pool3d_416], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1665 = torch.ops.aten.max_pool3d_with_indices.default(buf1664, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1666 = buf1665[0] del buf1665 buf1668 = buf1664; del buf1664 # reuse buf1672 = buf1660; del buf1660 # reuse buf1676 = buf1656; del buf1656 # reuse buf1684 = buf1652; del buf1652 # reuse buf1688 = buf1650; del buf1650 # reuse buf1692 = buf1646; del buf1646 # reuse # Topologically Sorted Source Nodes: [p1_118, p3_118, min_237, p2_118, img_58, neg_714, neg_716, neg_718, neg_720, neg_722, neg_724], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1658, buf1666, buf1662, buf1668, buf1672, buf1676, buf1684, buf1688, buf1692, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_118, p3_118, min_237, p2_118, img_58, neg_714, max_pool3d_417], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1669 = torch.ops.aten.max_pool3d_with_indices.default(buf1668, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1668 buf1670 = buf1669[0] del buf1669 # Topologically Sorted Source Nodes: [p1_118, p3_118, min_237, p2_118, img_58, neg_716, max_pool3d_418], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1673 = torch.ops.aten.max_pool3d_with_indices.default(buf1672, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1672 buf1674 = buf1673[0] del buf1673 # Topologically Sorted Source Nodes: [p1_118, p3_118, min_237, p2_118, img_58, neg_718, max_pool3d_419], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1677 = torch.ops.aten.max_pool3d_with_indices.default(buf1676, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1676 buf1678 = buf1677[0] del buf1677 buf1680 = buf1670; del buf1670 # reuse # Topologically Sorted Source Nodes: [p1_119, p3_119, min_239, p2_119, min_240], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1680, buf1678, buf1674, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_119, p3_119, min_239, p2_119, min_240, img1_60], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1681 = torch.ops.aten.max_pool3d_with_indices.default(buf1680, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1682 = buf1681[0] del buf1681 # Topologically Sorted Source Nodes: [p1_118, p3_118, min_237, p2_118, img_58, neg_720, max_pool3d_421], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1685 = torch.ops.aten.max_pool3d_with_indices.default(buf1684, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1686 = buf1685[0] del buf1685 # Topologically Sorted Source Nodes: [p1_118, p3_118, min_237, p2_118, img_58, neg_722, max_pool3d_422], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1689 = torch.ops.aten.max_pool3d_with_indices.default(buf1688, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1690 = buf1689[0] del buf1689 # Topologically Sorted Source Nodes: [p1_118, p3_118, min_237, p2_118, img_58, neg_724, max_pool3d_423], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1693 = torch.ops.aten.max_pool3d_with_indices.default(buf1692, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1694 = buf1693[0] del buf1693 buf1696 = buf1692; del buf1692 # reuse buf1700 = buf1688; del buf1688 # reuse buf1704 = buf1684; del buf1684 # reuse buf1712 = buf1680; del buf1680 # reuse buf1716 = buf1678; del buf1678 # reuse buf1720 = buf1674; del buf1674 # reuse # Topologically Sorted Source Nodes: [p1_120, p3_120, min_241, p2_120, img_59, neg_726, neg_728, neg_730, neg_732, neg_734, neg_736], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1686, buf1694, buf1690, buf1696, buf1700, buf1704, buf1712, buf1716, buf1720, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_120, p3_120, min_241, p2_120, img_59, neg_726, max_pool3d_424], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1697 = torch.ops.aten.max_pool3d_with_indices.default(buf1696, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1696 buf1698 = buf1697[0] del buf1697 # Topologically Sorted Source Nodes: [p1_120, p3_120, min_241, p2_120, img_59, neg_728, max_pool3d_425], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1701 = torch.ops.aten.max_pool3d_with_indices.default(buf1700, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1700 buf1702 = buf1701[0] del buf1701 # Topologically Sorted Source Nodes: [p1_120, p3_120, min_241, p2_120, img_59, neg_730, max_pool3d_426], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1705 = torch.ops.aten.max_pool3d_with_indices.default(buf1704, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1704 buf1706 = buf1705[0] del buf1705 buf1708 = buf1698; del buf1698 # reuse # Topologically Sorted Source Nodes: [p1_121, p3_121, min_243, p2_121, min_244], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1708, buf1706, buf1702, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_121, p3_121, min_243, p2_121, min_244, img1_61], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1709 = torch.ops.aten.max_pool3d_with_indices.default(buf1708, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1710 = buf1709[0] del buf1709 # Topologically Sorted Source Nodes: [p1_120, p3_120, min_241, p2_120, img_59, neg_732, max_pool3d_428], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1713 = torch.ops.aten.max_pool3d_with_indices.default(buf1712, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1714 = buf1713[0] del buf1713 # Topologically Sorted Source Nodes: [p1_120, p3_120, min_241, p2_120, img_59, neg_734, max_pool3d_429], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1717 = torch.ops.aten.max_pool3d_with_indices.default(buf1716, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1718 = buf1717[0] del buf1717 # Topologically Sorted Source Nodes: [p1_120, p3_120, min_241, p2_120, img_59, neg_736, max_pool3d_430], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1721 = torch.ops.aten.max_pool3d_with_indices.default(buf1720, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1722 = buf1721[0] del buf1721 buf1724 = buf1720; del buf1720 # reuse buf1728 = buf1716; del buf1716 # reuse buf1732 = buf1712; del buf1712 # reuse buf1740 = buf1708; del buf1708 # reuse buf1744 = buf1706; del buf1706 # reuse buf1748 = buf1702; del buf1702 # reuse # Topologically Sorted Source Nodes: [p1_122, p3_122, min_245, p2_122, img_60, neg_738, neg_740, neg_742, neg_744, neg_746, neg_748], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1714, buf1722, buf1718, buf1724, buf1728, buf1732, buf1740, buf1744, buf1748, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_122, p3_122, min_245, p2_122, img_60, neg_738, max_pool3d_431], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1725 = torch.ops.aten.max_pool3d_with_indices.default(buf1724, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1724 buf1726 = buf1725[0] del buf1725 # Topologically Sorted Source Nodes: [p1_122, p3_122, min_245, p2_122, img_60, neg_740, max_pool3d_432], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1729 = torch.ops.aten.max_pool3d_with_indices.default(buf1728, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1728 buf1730 = buf1729[0] del buf1729 # Topologically Sorted Source Nodes: [p1_122, p3_122, min_245, p2_122, img_60, neg_742, max_pool3d_433], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1733 = torch.ops.aten.max_pool3d_with_indices.default(buf1732, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1732 buf1734 = buf1733[0] del buf1733 buf1736 = buf1726; del buf1726 # reuse # Topologically Sorted Source Nodes: [p1_123, p3_123, min_247, p2_123, min_248], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1736, buf1734, buf1730, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_123, p3_123, min_247, p2_123, min_248, img1_62], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1737 = torch.ops.aten.max_pool3d_with_indices.default(buf1736, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1738 = buf1737[0] del buf1737 # Topologically Sorted Source Nodes: [p1_122, p3_122, min_245, p2_122, img_60, neg_744, max_pool3d_435], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1741 = torch.ops.aten.max_pool3d_with_indices.default(buf1740, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1742 = buf1741[0] del buf1741 # Topologically Sorted Source Nodes: [p1_122, p3_122, min_245, p2_122, img_60, neg_746, max_pool3d_436], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1745 = torch.ops.aten.max_pool3d_with_indices.default(buf1744, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1746 = buf1745[0] del buf1745 # Topologically Sorted Source Nodes: [p1_122, p3_122, min_245, p2_122, img_60, neg_748, max_pool3d_437], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1749 = torch.ops.aten.max_pool3d_with_indices.default(buf1748, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1750 = buf1749[0] del buf1749 buf1752 = buf1748; del buf1748 # reuse buf1756 = buf1744; del buf1744 # reuse buf1760 = buf1740; del buf1740 # reuse buf1768 = buf1736; del buf1736 # reuse buf1772 = buf1734; del buf1734 # reuse buf1776 = buf1730; del buf1730 # reuse # Topologically Sorted Source Nodes: [p1_124, p3_124, min_249, p2_124, img_61, neg_750, neg_752, neg_754, neg_756, neg_758, neg_760], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1742, buf1750, buf1746, buf1752, buf1756, buf1760, buf1768, buf1772, buf1776, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_124, p3_124, min_249, p2_124, img_61, neg_750, max_pool3d_438], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1753 = torch.ops.aten.max_pool3d_with_indices.default(buf1752, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1752 buf1754 = buf1753[0] del buf1753 # Topologically Sorted Source Nodes: [p1_124, p3_124, min_249, p2_124, img_61, neg_752, max_pool3d_439], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1757 = torch.ops.aten.max_pool3d_with_indices.default(buf1756, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1756 buf1758 = buf1757[0] del buf1757 # Topologically Sorted Source Nodes: [p1_124, p3_124, min_249, p2_124, img_61, neg_754, max_pool3d_440], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1761 = torch.ops.aten.max_pool3d_with_indices.default(buf1760, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1760 buf1762 = buf1761[0] del buf1761 buf1764 = buf1754; del buf1754 # reuse # Topologically Sorted Source Nodes: [p1_125, p3_125, min_251, p2_125, min_252], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1764, buf1762, buf1758, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_125, p3_125, min_251, p2_125, min_252, img1_63], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1765 = torch.ops.aten.max_pool3d_with_indices.default(buf1764, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1766 = buf1765[0] del buf1765 # Topologically Sorted Source Nodes: [p1_124, p3_124, min_249, p2_124, img_61, neg_756, max_pool3d_442], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1769 = torch.ops.aten.max_pool3d_with_indices.default(buf1768, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1770 = buf1769[0] del buf1769 # Topologically Sorted Source Nodes: [p1_124, p3_124, min_249, p2_124, img_61, neg_758, max_pool3d_443], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1773 = torch.ops.aten.max_pool3d_with_indices.default(buf1772, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1774 = buf1773[0] del buf1773 # Topologically Sorted Source Nodes: [p1_124, p3_124, min_249, p2_124, img_61, neg_760, max_pool3d_444], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1777 = torch.ops.aten.max_pool3d_with_indices.default(buf1776, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1778 = buf1777[0] del buf1777 buf1780 = buf1776; del buf1776 # reuse buf1784 = buf1772; del buf1772 # reuse buf1788 = buf1768; del buf1768 # reuse buf1796 = buf1764; del buf1764 # reuse buf1800 = buf1762; del buf1762 # reuse buf1804 = buf1758; del buf1758 # reuse # Topologically Sorted Source Nodes: [p1_126, p3_126, min_253, p2_126, img_62, neg_762, neg_764, neg_766, neg_768, neg_770, neg_772], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1770, buf1778, buf1774, buf1780, buf1784, buf1788, buf1796, buf1800, buf1804, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_126, p3_126, min_253, p2_126, img_62, neg_762, max_pool3d_445], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1781 = torch.ops.aten.max_pool3d_with_indices.default(buf1780, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1780 buf1782 = buf1781[0] del buf1781 # Topologically Sorted Source Nodes: [p1_126, p3_126, min_253, p2_126, img_62, neg_764, max_pool3d_446], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1785 = torch.ops.aten.max_pool3d_with_indices.default(buf1784, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1784 buf1786 = buf1785[0] del buf1785 # Topologically Sorted Source Nodes: [p1_126, p3_126, min_253, p2_126, img_62, neg_766, max_pool3d_447], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1789 = torch.ops.aten.max_pool3d_with_indices.default(buf1788, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1788 buf1790 = buf1789[0] del buf1789 buf1792 = buf1782; del buf1782 # reuse # Topologically Sorted Source Nodes: [p1_127, p3_127, min_255, p2_127, min_256], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1792, buf1790, buf1786, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_127, p3_127, min_255, p2_127, min_256, img1_64], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1793 = torch.ops.aten.max_pool3d_with_indices.default(buf1792, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1794 = buf1793[0] del buf1793 # Topologically Sorted Source Nodes: [p1_126, p3_126, min_253, p2_126, img_62, neg_768, max_pool3d_449], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1797 = torch.ops.aten.max_pool3d_with_indices.default(buf1796, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1798 = buf1797[0] del buf1797 # Topologically Sorted Source Nodes: [p1_126, p3_126, min_253, p2_126, img_62, neg_770, max_pool3d_450], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1801 = torch.ops.aten.max_pool3d_with_indices.default(buf1800, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1802 = buf1801[0] del buf1801 # Topologically Sorted Source Nodes: [p1_126, p3_126, min_253, p2_126, img_62, neg_772, max_pool3d_451], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1805 = torch.ops.aten.max_pool3d_with_indices.default(buf1804, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1806 = buf1805[0] del buf1805 buf1808 = buf1804; del buf1804 # reuse buf1812 = buf1800; del buf1800 # reuse buf1816 = buf1796; del buf1796 # reuse buf1824 = buf1792; del buf1792 # reuse buf1828 = buf1790; del buf1790 # reuse buf1832 = buf1786; del buf1786 # reuse # Topologically Sorted Source Nodes: [p1_128, p3_128, min_257, p2_128, img_63, neg_774, neg_776, neg_778, neg_780, neg_782, neg_784], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1798, buf1806, buf1802, buf1808, buf1812, buf1816, buf1824, buf1828, buf1832, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_128, p3_128, min_257, p2_128, img_63, neg_774, max_pool3d_452], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1809 = torch.ops.aten.max_pool3d_with_indices.default(buf1808, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1808 buf1810 = buf1809[0] del buf1809 # Topologically Sorted Source Nodes: [p1_128, p3_128, min_257, p2_128, img_63, neg_776, max_pool3d_453], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1813 = torch.ops.aten.max_pool3d_with_indices.default(buf1812, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1812 buf1814 = buf1813[0] del buf1813 # Topologically Sorted Source Nodes: [p1_128, p3_128, min_257, p2_128, img_63, neg_778, max_pool3d_454], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1817 = torch.ops.aten.max_pool3d_with_indices.default(buf1816, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1816 buf1818 = buf1817[0] del buf1817 buf1820 = buf1810; del buf1810 # reuse # Topologically Sorted Source Nodes: [p1_129, p3_129, min_259, p2_129, min_260], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1820, buf1818, buf1814, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_129, p3_129, min_259, p2_129, min_260, img1_65], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1821 = torch.ops.aten.max_pool3d_with_indices.default(buf1820, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1822 = buf1821[0] del buf1821 # Topologically Sorted Source Nodes: [p1_128, p3_128, min_257, p2_128, img_63, neg_780, max_pool3d_456], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1825 = torch.ops.aten.max_pool3d_with_indices.default(buf1824, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1826 = buf1825[0] del buf1825 # Topologically Sorted Source Nodes: [p1_128, p3_128, min_257, p2_128, img_63, neg_782, max_pool3d_457], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1829 = torch.ops.aten.max_pool3d_with_indices.default(buf1828, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1830 = buf1829[0] del buf1829 # Topologically Sorted Source Nodes: [p1_128, p3_128, min_257, p2_128, img_63, neg_784, max_pool3d_458], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1833 = torch.ops.aten.max_pool3d_with_indices.default(buf1832, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1834 = buf1833[0] del buf1833 buf1836 = buf1832; del buf1832 # reuse buf1840 = buf1828; del buf1828 # reuse buf1844 = buf1824; del buf1824 # reuse buf1852 = buf1820; del buf1820 # reuse buf1856 = buf1818; del buf1818 # reuse buf1860 = buf1814; del buf1814 # reuse # Topologically Sorted Source Nodes: [p1_130, p3_130, min_261, p2_130, img_64, neg_786, neg_788, neg_790, neg_792, neg_794, neg_796], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1826, buf1834, buf1830, buf1836, buf1840, buf1844, buf1852, buf1856, buf1860, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_130, p3_130, min_261, p2_130, img_64, neg_786, max_pool3d_459], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1837 = torch.ops.aten.max_pool3d_with_indices.default(buf1836, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1836 buf1838 = buf1837[0] del buf1837 # Topologically Sorted Source Nodes: [p1_130, p3_130, min_261, p2_130, img_64, neg_788, max_pool3d_460], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1841 = torch.ops.aten.max_pool3d_with_indices.default(buf1840, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1840 buf1842 = buf1841[0] del buf1841 # Topologically Sorted Source Nodes: [p1_130, p3_130, min_261, p2_130, img_64, neg_790, max_pool3d_461], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1845 = torch.ops.aten.max_pool3d_with_indices.default(buf1844, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1844 buf1846 = buf1845[0] del buf1845 buf1848 = buf1838; del buf1838 # reuse # Topologically Sorted Source Nodes: [p1_131, p3_131, min_263, p2_131, min_264], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1848, buf1846, buf1842, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_131, p3_131, min_263, p2_131, min_264, img1_66], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1849 = torch.ops.aten.max_pool3d_with_indices.default(buf1848, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1850 = buf1849[0] del buf1849 # Topologically Sorted Source Nodes: [p1_130, p3_130, min_261, p2_130, img_64, neg_792, max_pool3d_463], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1853 = torch.ops.aten.max_pool3d_with_indices.default(buf1852, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1854 = buf1853[0] del buf1853 # Topologically Sorted Source Nodes: [p1_130, p3_130, min_261, p2_130, img_64, neg_794, max_pool3d_464], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1857 = torch.ops.aten.max_pool3d_with_indices.default(buf1856, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1858 = buf1857[0] del buf1857 # Topologically Sorted Source Nodes: [p1_130, p3_130, min_261, p2_130, img_64, neg_796, max_pool3d_465], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1861 = torch.ops.aten.max_pool3d_with_indices.default(buf1860, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1862 = buf1861[0] del buf1861 buf1864 = buf1860; del buf1860 # reuse buf1868 = buf1856; del buf1856 # reuse buf1872 = buf1852; del buf1852 # reuse buf1880 = buf1848; del buf1848 # reuse buf1884 = buf1846; del buf1846 # reuse buf1888 = buf1842; del buf1842 # reuse # Topologically Sorted Source Nodes: [p1_132, p3_132, min_265, p2_132, img_65, neg_798, neg_800, neg_802, neg_804, neg_806, neg_808], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1854, buf1862, buf1858, buf1864, buf1868, buf1872, buf1880, buf1884, buf1888, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_132, p3_132, min_265, p2_132, img_65, neg_798, max_pool3d_466], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1865 = torch.ops.aten.max_pool3d_with_indices.default(buf1864, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1864 buf1866 = buf1865[0] del buf1865 # Topologically Sorted Source Nodes: [p1_132, p3_132, min_265, p2_132, img_65, neg_800, max_pool3d_467], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1869 = torch.ops.aten.max_pool3d_with_indices.default(buf1868, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1868 buf1870 = buf1869[0] del buf1869 # Topologically Sorted Source Nodes: [p1_132, p3_132, min_265, p2_132, img_65, neg_802, max_pool3d_468], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1873 = torch.ops.aten.max_pool3d_with_indices.default(buf1872, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1872 buf1874 = buf1873[0] del buf1873 buf1876 = buf1866; del buf1866 # reuse # Topologically Sorted Source Nodes: [p1_133, p3_133, min_267, p2_133, min_268], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1876, buf1874, buf1870, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_133, p3_133, min_267, p2_133, min_268, img1_67], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1877 = torch.ops.aten.max_pool3d_with_indices.default(buf1876, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1878 = buf1877[0] del buf1877 # Topologically Sorted Source Nodes: [p1_132, p3_132, min_265, p2_132, img_65, neg_804, max_pool3d_470], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1881 = torch.ops.aten.max_pool3d_with_indices.default(buf1880, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1882 = buf1881[0] del buf1881 # Topologically Sorted Source Nodes: [p1_132, p3_132, min_265, p2_132, img_65, neg_806, max_pool3d_471], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1885 = torch.ops.aten.max_pool3d_with_indices.default(buf1884, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1886 = buf1885[0] del buf1885 # Topologically Sorted Source Nodes: [p1_132, p3_132, min_265, p2_132, img_65, neg_808, max_pool3d_472], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1889 = torch.ops.aten.max_pool3d_with_indices.default(buf1888, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1890 = buf1889[0] del buf1889 buf1892 = buf1888; del buf1888 # reuse buf1896 = buf1884; del buf1884 # reuse buf1900 = buf1880; del buf1880 # reuse buf1908 = buf1876; del buf1876 # reuse buf1912 = buf1874; del buf1874 # reuse buf1916 = buf1870; del buf1870 # reuse # Topologically Sorted Source Nodes: [p1_134, p3_134, min_269, p2_134, img_66, neg_810, neg_812, neg_814, neg_816, neg_818, neg_820], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1882, buf1890, buf1886, buf1892, buf1896, buf1900, buf1908, buf1912, buf1916, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_134, p3_134, min_269, p2_134, img_66, neg_810, max_pool3d_473], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1893 = torch.ops.aten.max_pool3d_with_indices.default(buf1892, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1892 buf1894 = buf1893[0] del buf1893 # Topologically Sorted Source Nodes: [p1_134, p3_134, min_269, p2_134, img_66, neg_812, max_pool3d_474], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1897 = torch.ops.aten.max_pool3d_with_indices.default(buf1896, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1896 buf1898 = buf1897[0] del buf1897 # Topologically Sorted Source Nodes: [p1_134, p3_134, min_269, p2_134, img_66, neg_814, max_pool3d_475], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1901 = torch.ops.aten.max_pool3d_with_indices.default(buf1900, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1900 buf1902 = buf1901[0] del buf1901 buf1904 = buf1894; del buf1894 # reuse # Topologically Sorted Source Nodes: [p1_135, p3_135, min_271, p2_135, min_272], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1904, buf1902, buf1898, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_135, p3_135, min_271, p2_135, min_272, img1_68], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1905 = torch.ops.aten.max_pool3d_with_indices.default(buf1904, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1906 = buf1905[0] del buf1905 # Topologically Sorted Source Nodes: [p1_134, p3_134, min_269, p2_134, img_66, neg_816, max_pool3d_477], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1909 = torch.ops.aten.max_pool3d_with_indices.default(buf1908, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1910 = buf1909[0] del buf1909 # Topologically Sorted Source Nodes: [p1_134, p3_134, min_269, p2_134, img_66, neg_818, max_pool3d_478], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1913 = torch.ops.aten.max_pool3d_with_indices.default(buf1912, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1914 = buf1913[0] del buf1913 # Topologically Sorted Source Nodes: [p1_134, p3_134, min_269, p2_134, img_66, neg_820, max_pool3d_479], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1917 = torch.ops.aten.max_pool3d_with_indices.default(buf1916, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1918 = buf1917[0] del buf1917 buf1920 = buf1916; del buf1916 # reuse buf1924 = buf1912; del buf1912 # reuse buf1928 = buf1908; del buf1908 # reuse buf1936 = buf1904; del buf1904 # reuse buf1940 = buf1902; del buf1902 # reuse buf1944 = buf1898; del buf1898 # reuse # Topologically Sorted Source Nodes: [p1_136, p3_136, min_273, p2_136, img_67, neg_822, neg_824, neg_826, neg_828, neg_830, neg_832], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1910, buf1918, buf1914, buf1920, buf1924, buf1928, buf1936, buf1940, buf1944, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_136, p3_136, min_273, p2_136, img_67, neg_822, max_pool3d_480], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1921 = torch.ops.aten.max_pool3d_with_indices.default(buf1920, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1920 buf1922 = buf1921[0] del buf1921 # Topologically Sorted Source Nodes: [p1_136, p3_136, min_273, p2_136, img_67, neg_824, max_pool3d_481], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1925 = torch.ops.aten.max_pool3d_with_indices.default(buf1924, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1924 buf1926 = buf1925[0] del buf1925 # Topologically Sorted Source Nodes: [p1_136, p3_136, min_273, p2_136, img_67, neg_826, max_pool3d_482], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1929 = torch.ops.aten.max_pool3d_with_indices.default(buf1928, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1928 buf1930 = buf1929[0] del buf1929 buf1932 = buf1922; del buf1922 # reuse # Topologically Sorted Source Nodes: [p1_137, p3_137, min_275, p2_137, min_276], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1932, buf1930, buf1926, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_137, p3_137, min_275, p2_137, min_276, img1_69], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1933 = torch.ops.aten.max_pool3d_with_indices.default(buf1932, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1934 = buf1933[0] del buf1933 # Topologically Sorted Source Nodes: [p1_136, p3_136, min_273, p2_136, img_67, neg_828, max_pool3d_484], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1937 = torch.ops.aten.max_pool3d_with_indices.default(buf1936, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1938 = buf1937[0] del buf1937 # Topologically Sorted Source Nodes: [p1_136, p3_136, min_273, p2_136, img_67, neg_830, max_pool3d_485], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1941 = torch.ops.aten.max_pool3d_with_indices.default(buf1940, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1942 = buf1941[0] del buf1941 # Topologically Sorted Source Nodes: [p1_136, p3_136, min_273, p2_136, img_67, neg_832, max_pool3d_486], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1945 = torch.ops.aten.max_pool3d_with_indices.default(buf1944, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1946 = buf1945[0] del buf1945 buf1948 = buf1944; del buf1944 # reuse buf1952 = buf1940; del buf1940 # reuse buf1956 = buf1936; del buf1936 # reuse buf1964 = buf1932; del buf1932 # reuse buf1968 = buf1930; del buf1930 # reuse buf1972 = buf1926; del buf1926 # reuse # Topologically Sorted Source Nodes: [p1_138, p3_138, min_277, p2_138, img_68, neg_834, neg_836, neg_838, neg_840, neg_842, neg_844], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1938, buf1946, buf1942, buf1948, buf1952, buf1956, buf1964, buf1968, buf1972, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_138, p3_138, min_277, p2_138, img_68, neg_834, max_pool3d_487], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1949 = torch.ops.aten.max_pool3d_with_indices.default(buf1948, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1948 buf1950 = buf1949[0] del buf1949 # Topologically Sorted Source Nodes: [p1_138, p3_138, min_277, p2_138, img_68, neg_836, max_pool3d_488], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1953 = torch.ops.aten.max_pool3d_with_indices.default(buf1952, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1952 buf1954 = buf1953[0] del buf1953 # Topologically Sorted Source Nodes: [p1_138, p3_138, min_277, p2_138, img_68, neg_838, max_pool3d_489], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1957 = torch.ops.aten.max_pool3d_with_indices.default(buf1956, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1956 buf1958 = buf1957[0] del buf1957 buf1960 = buf1950; del buf1950 # reuse # Topologically Sorted Source Nodes: [p1_139, p3_139, min_279, p2_139, min_280], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1960, buf1958, buf1954, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_139, p3_139, min_279, p2_139, min_280, img1_70], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1961 = torch.ops.aten.max_pool3d_with_indices.default(buf1960, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1962 = buf1961[0] del buf1961 # Topologically Sorted Source Nodes: [p1_138, p3_138, min_277, p2_138, img_68, neg_840, max_pool3d_491], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1965 = torch.ops.aten.max_pool3d_with_indices.default(buf1964, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1966 = buf1965[0] del buf1965 # Topologically Sorted Source Nodes: [p1_138, p3_138, min_277, p2_138, img_68, neg_842, max_pool3d_492], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1969 = torch.ops.aten.max_pool3d_with_indices.default(buf1968, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1970 = buf1969[0] del buf1969 # Topologically Sorted Source Nodes: [p1_138, p3_138, min_277, p2_138, img_68, neg_844, max_pool3d_493], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1973 = torch.ops.aten.max_pool3d_with_indices.default(buf1972, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1974 = buf1973[0] del buf1973 buf1976 = buf1972; del buf1972 # reuse buf1980 = buf1968; del buf1968 # reuse buf1984 = buf1964; del buf1964 # reuse buf1992 = buf1960; del buf1960 # reuse buf1996 = buf1958; del buf1958 # reuse buf2000 = buf1954; del buf1954 # reuse # Topologically Sorted Source Nodes: [p1_140, p3_140, min_281, p2_140, img_69, neg_846, neg_848, neg_850, neg_852, neg_854, neg_856], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1966, buf1974, buf1970, buf1976, buf1980, buf1984, buf1992, buf1996, buf2000, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_140, p3_140, min_281, p2_140, img_69, neg_846, max_pool3d_494], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1977 = torch.ops.aten.max_pool3d_with_indices.default(buf1976, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1976 buf1978 = buf1977[0] del buf1977 # Topologically Sorted Source Nodes: [p1_140, p3_140, min_281, p2_140, img_69, neg_848, max_pool3d_495], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1981 = torch.ops.aten.max_pool3d_with_indices.default(buf1980, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1980 buf1982 = buf1981[0] del buf1981 # Topologically Sorted Source Nodes: [p1_140, p3_140, min_281, p2_140, img_69, neg_850, max_pool3d_496], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1985 = torch.ops.aten.max_pool3d_with_indices.default(buf1984, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1984 buf1986 = buf1985[0] del buf1985 buf1988 = buf1978; del buf1978 # reuse # Topologically Sorted Source Nodes: [p1_141, p3_141, min_283, p2_141, min_284], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf1988, buf1986, buf1982, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_141, p3_141, min_283, p2_141, min_284, img1_71], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1989 = torch.ops.aten.max_pool3d_with_indices.default(buf1988, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1990 = buf1989[0] del buf1989 # Topologically Sorted Source Nodes: [p1_140, p3_140, min_281, p2_140, img_69, neg_852, max_pool3d_498], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1993 = torch.ops.aten.max_pool3d_with_indices.default(buf1992, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1994 = buf1993[0] del buf1993 # Topologically Sorted Source Nodes: [p1_140, p3_140, min_281, p2_140, img_69, neg_854, max_pool3d_499], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf1997 = torch.ops.aten.max_pool3d_with_indices.default(buf1996, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1998 = buf1997[0] del buf1997 # Topologically Sorted Source Nodes: [p1_140, p3_140, min_281, p2_140, img_69, neg_856, max_pool3d_500], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2001 = torch.ops.aten.max_pool3d_with_indices.default(buf2000, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2002 = buf2001[0] del buf2001 buf2004 = buf2000; del buf2000 # reuse buf2008 = buf1996; del buf1996 # reuse buf2012 = buf1992; del buf1992 # reuse buf2020 = buf1988; del buf1988 # reuse buf2024 = buf1986; del buf1986 # reuse buf2028 = buf1982; del buf1982 # reuse # Topologically Sorted Source Nodes: [p1_142, p3_142, min_285, p2_142, img_70, neg_858, neg_860, neg_862, neg_864, neg_866, neg_868], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf1994, buf2002, buf1998, buf2004, buf2008, buf2012, buf2020, buf2024, buf2028, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_142, p3_142, min_285, p2_142, img_70, neg_858, max_pool3d_501], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2005 = torch.ops.aten.max_pool3d_with_indices.default(buf2004, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2004 buf2006 = buf2005[0] del buf2005 # Topologically Sorted Source Nodes: [p1_142, p3_142, min_285, p2_142, img_70, neg_860, max_pool3d_502], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2009 = torch.ops.aten.max_pool3d_with_indices.default(buf2008, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2008 buf2010 = buf2009[0] del buf2009 # Topologically Sorted Source Nodes: [p1_142, p3_142, min_285, p2_142, img_70, neg_862, max_pool3d_503], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2013 = torch.ops.aten.max_pool3d_with_indices.default(buf2012, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2012 buf2014 = buf2013[0] del buf2013 buf2016 = buf2006; del buf2006 # reuse # Topologically Sorted Source Nodes: [p1_143, p3_143, min_287, p2_143, min_288], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2016, buf2014, buf2010, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_143, p3_143, min_287, p2_143, min_288, img1_72], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2017 = torch.ops.aten.max_pool3d_with_indices.default(buf2016, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2018 = buf2017[0] del buf2017 # Topologically Sorted Source Nodes: [p1_142, p3_142, min_285, p2_142, img_70, neg_864, max_pool3d_505], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2021 = torch.ops.aten.max_pool3d_with_indices.default(buf2020, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2022 = buf2021[0] del buf2021 # Topologically Sorted Source Nodes: [p1_142, p3_142, min_285, p2_142, img_70, neg_866, max_pool3d_506], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2025 = torch.ops.aten.max_pool3d_with_indices.default(buf2024, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2026 = buf2025[0] del buf2025 # Topologically Sorted Source Nodes: [p1_142, p3_142, min_285, p2_142, img_70, neg_868, max_pool3d_507], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2029 = torch.ops.aten.max_pool3d_with_indices.default(buf2028, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2030 = buf2029[0] del buf2029 buf2032 = buf2028; del buf2028 # reuse buf2036 = buf2024; del buf2024 # reuse buf2040 = buf2020; del buf2020 # reuse buf2048 = buf2016; del buf2016 # reuse buf2052 = buf2014; del buf2014 # reuse buf2056 = buf2010; del buf2010 # reuse # Topologically Sorted Source Nodes: [p1_144, p3_144, min_289, p2_144, img_71, neg_870, neg_872, neg_874, neg_876, neg_878, neg_880], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2022, buf2030, buf2026, buf2032, buf2036, buf2040, buf2048, buf2052, buf2056, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_144, p3_144, min_289, p2_144, img_71, neg_870, max_pool3d_508], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2033 = torch.ops.aten.max_pool3d_with_indices.default(buf2032, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2032 buf2034 = buf2033[0] del buf2033 # Topologically Sorted Source Nodes: [p1_144, p3_144, min_289, p2_144, img_71, neg_872, max_pool3d_509], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2037 = torch.ops.aten.max_pool3d_with_indices.default(buf2036, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2036 buf2038 = buf2037[0] del buf2037 # Topologically Sorted Source Nodes: [p1_144, p3_144, min_289, p2_144, img_71, neg_874, max_pool3d_510], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2041 = torch.ops.aten.max_pool3d_with_indices.default(buf2040, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2040 buf2042 = buf2041[0] del buf2041 buf2044 = buf2034; del buf2034 # reuse # Topologically Sorted Source Nodes: [p1_145, p3_145, min_291, p2_145, min_292], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2044, buf2042, buf2038, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_145, p3_145, min_291, p2_145, min_292, img1_73], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2045 = torch.ops.aten.max_pool3d_with_indices.default(buf2044, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2046 = buf2045[0] del buf2045 # Topologically Sorted Source Nodes: [p1_144, p3_144, min_289, p2_144, img_71, neg_876, max_pool3d_512], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2049 = torch.ops.aten.max_pool3d_with_indices.default(buf2048, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2050 = buf2049[0] del buf2049 # Topologically Sorted Source Nodes: [p1_144, p3_144, min_289, p2_144, img_71, neg_878, max_pool3d_513], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2053 = torch.ops.aten.max_pool3d_with_indices.default(buf2052, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2054 = buf2053[0] del buf2053 # Topologically Sorted Source Nodes: [p1_144, p3_144, min_289, p2_144, img_71, neg_880, max_pool3d_514], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2057 = torch.ops.aten.max_pool3d_with_indices.default(buf2056, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2058 = buf2057[0] del buf2057 buf2060 = buf2056; del buf2056 # reuse buf2064 = buf2052; del buf2052 # reuse buf2068 = buf2048; del buf2048 # reuse buf2076 = buf2044; del buf2044 # reuse buf2080 = buf2042; del buf2042 # reuse buf2084 = buf2038; del buf2038 # reuse # Topologically Sorted Source Nodes: [p1_146, p3_146, min_293, p2_146, img_72, neg_882, neg_884, neg_886, neg_888, neg_890, neg_892], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2050, buf2058, buf2054, buf2060, buf2064, buf2068, buf2076, buf2080, buf2084, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_146, p3_146, min_293, p2_146, img_72, neg_882, max_pool3d_515], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2061 = torch.ops.aten.max_pool3d_with_indices.default(buf2060, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2060 buf2062 = buf2061[0] del buf2061 # Topologically Sorted Source Nodes: [p1_146, p3_146, min_293, p2_146, img_72, neg_884, max_pool3d_516], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2065 = torch.ops.aten.max_pool3d_with_indices.default(buf2064, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2064 buf2066 = buf2065[0] del buf2065 # Topologically Sorted Source Nodes: [p1_146, p3_146, min_293, p2_146, img_72, neg_886, max_pool3d_517], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2069 = torch.ops.aten.max_pool3d_with_indices.default(buf2068, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2068 buf2070 = buf2069[0] del buf2069 buf2072 = buf2062; del buf2062 # reuse # Topologically Sorted Source Nodes: [p1_147, p3_147, min_295, p2_147, min_296], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2072, buf2070, buf2066, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_147, p3_147, min_295, p2_147, min_296, img1_74], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2073 = torch.ops.aten.max_pool3d_with_indices.default(buf2072, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2074 = buf2073[0] del buf2073 # Topologically Sorted Source Nodes: [p1_146, p3_146, min_293, p2_146, img_72, neg_888, max_pool3d_519], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2077 = torch.ops.aten.max_pool3d_with_indices.default(buf2076, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2078 = buf2077[0] del buf2077 # Topologically Sorted Source Nodes: [p1_146, p3_146, min_293, p2_146, img_72, neg_890, max_pool3d_520], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2081 = torch.ops.aten.max_pool3d_with_indices.default(buf2080, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2082 = buf2081[0] del buf2081 # Topologically Sorted Source Nodes: [p1_146, p3_146, min_293, p2_146, img_72, neg_892, max_pool3d_521], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2085 = torch.ops.aten.max_pool3d_with_indices.default(buf2084, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2086 = buf2085[0] del buf2085 buf2088 = buf2084; del buf2084 # reuse buf2092 = buf2080; del buf2080 # reuse buf2096 = buf2076; del buf2076 # reuse buf2104 = buf2072; del buf2072 # reuse buf2108 = buf2070; del buf2070 # reuse buf2112 = buf2066; del buf2066 # reuse # Topologically Sorted Source Nodes: [p1_148, p3_148, min_297, p2_148, img_73, neg_894, neg_896, neg_898, neg_900, neg_902, neg_904], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2078, buf2086, buf2082, buf2088, buf2092, buf2096, buf2104, buf2108, buf2112, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_148, p3_148, min_297, p2_148, img_73, neg_894, max_pool3d_522], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2089 = torch.ops.aten.max_pool3d_with_indices.default(buf2088, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2088 buf2090 = buf2089[0] del buf2089 # Topologically Sorted Source Nodes: [p1_148, p3_148, min_297, p2_148, img_73, neg_896, max_pool3d_523], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2093 = torch.ops.aten.max_pool3d_with_indices.default(buf2092, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2092 buf2094 = buf2093[0] del buf2093 # Topologically Sorted Source Nodes: [p1_148, p3_148, min_297, p2_148, img_73, neg_898, max_pool3d_524], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2097 = torch.ops.aten.max_pool3d_with_indices.default(buf2096, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2096 buf2098 = buf2097[0] del buf2097 buf2100 = buf2090; del buf2090 # reuse # Topologically Sorted Source Nodes: [p1_149, p3_149, min_299, p2_149, min_300], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2100, buf2098, buf2094, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_149, p3_149, min_299, p2_149, min_300, img1_75], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2101 = torch.ops.aten.max_pool3d_with_indices.default(buf2100, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2102 = buf2101[0] del buf2101 # Topologically Sorted Source Nodes: [p1_148, p3_148, min_297, p2_148, img_73, neg_900, max_pool3d_526], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2105 = torch.ops.aten.max_pool3d_with_indices.default(buf2104, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2106 = buf2105[0] del buf2105 # Topologically Sorted Source Nodes: [p1_148, p3_148, min_297, p2_148, img_73, neg_902, max_pool3d_527], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2109 = torch.ops.aten.max_pool3d_with_indices.default(buf2108, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2110 = buf2109[0] del buf2109 # Topologically Sorted Source Nodes: [p1_148, p3_148, min_297, p2_148, img_73, neg_904, max_pool3d_528], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2113 = torch.ops.aten.max_pool3d_with_indices.default(buf2112, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2114 = buf2113[0] del buf2113 buf2116 = buf2112; del buf2112 # reuse buf2120 = buf2108; del buf2108 # reuse buf2124 = buf2104; del buf2104 # reuse buf2132 = buf2100; del buf2100 # reuse buf2136 = buf2098; del buf2098 # reuse buf2140 = buf2094; del buf2094 # reuse # Topologically Sorted Source Nodes: [p1_150, p3_150, min_301, p2_150, img_74, neg_906, neg_908, neg_910, neg_912, neg_914, neg_916], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2106, buf2114, buf2110, buf2116, buf2120, buf2124, buf2132, buf2136, buf2140, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_150, p3_150, min_301, p2_150, img_74, neg_906, max_pool3d_529], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2117 = torch.ops.aten.max_pool3d_with_indices.default(buf2116, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2116 buf2118 = buf2117[0] del buf2117 # Topologically Sorted Source Nodes: [p1_150, p3_150, min_301, p2_150, img_74, neg_908, max_pool3d_530], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2121 = torch.ops.aten.max_pool3d_with_indices.default(buf2120, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2120 buf2122 = buf2121[0] del buf2121 # Topologically Sorted Source Nodes: [p1_150, p3_150, min_301, p2_150, img_74, neg_910, max_pool3d_531], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2125 = torch.ops.aten.max_pool3d_with_indices.default(buf2124, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2124 buf2126 = buf2125[0] del buf2125 buf2128 = buf2118; del buf2118 # reuse # Topologically Sorted Source Nodes: [p1_151, p3_151, min_303, p2_151, min_304], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2128, buf2126, buf2122, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_151, p3_151, min_303, p2_151, min_304, img1_76], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2129 = torch.ops.aten.max_pool3d_with_indices.default(buf2128, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2130 = buf2129[0] del buf2129 # Topologically Sorted Source Nodes: [p1_150, p3_150, min_301, p2_150, img_74, neg_912, max_pool3d_533], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2133 = torch.ops.aten.max_pool3d_with_indices.default(buf2132, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2134 = buf2133[0] del buf2133 # Topologically Sorted Source Nodes: [p1_150, p3_150, min_301, p2_150, img_74, neg_914, max_pool3d_534], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2137 = torch.ops.aten.max_pool3d_with_indices.default(buf2136, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2138 = buf2137[0] del buf2137 # Topologically Sorted Source Nodes: [p1_150, p3_150, min_301, p2_150, img_74, neg_916, max_pool3d_535], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2141 = torch.ops.aten.max_pool3d_with_indices.default(buf2140, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2142 = buf2141[0] del buf2141 buf2144 = buf2140; del buf2140 # reuse buf2148 = buf2136; del buf2136 # reuse buf2152 = buf2132; del buf2132 # reuse buf2160 = buf2128; del buf2128 # reuse buf2164 = buf2126; del buf2126 # reuse buf2168 = buf2122; del buf2122 # reuse # Topologically Sorted Source Nodes: [p1_152, p3_152, min_305, p2_152, img_75, neg_918, neg_920, neg_922, neg_924, neg_926, neg_928], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2134, buf2142, buf2138, buf2144, buf2148, buf2152, buf2160, buf2164, buf2168, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_152, p3_152, min_305, p2_152, img_75, neg_918, max_pool3d_536], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2145 = torch.ops.aten.max_pool3d_with_indices.default(buf2144, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2144 buf2146 = buf2145[0] del buf2145 # Topologically Sorted Source Nodes: [p1_152, p3_152, min_305, p2_152, img_75, neg_920, max_pool3d_537], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2149 = torch.ops.aten.max_pool3d_with_indices.default(buf2148, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2148 buf2150 = buf2149[0] del buf2149 # Topologically Sorted Source Nodes: [p1_152, p3_152, min_305, p2_152, img_75, neg_922, max_pool3d_538], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2153 = torch.ops.aten.max_pool3d_with_indices.default(buf2152, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2152 buf2154 = buf2153[0] del buf2153 buf2156 = buf2146; del buf2146 # reuse # Topologically Sorted Source Nodes: [p1_153, p3_153, min_307, p2_153, min_308], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2156, buf2154, buf2150, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_153, p3_153, min_307, p2_153, min_308, img1_77], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2157 = torch.ops.aten.max_pool3d_with_indices.default(buf2156, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2158 = buf2157[0] del buf2157 # Topologically Sorted Source Nodes: [p1_152, p3_152, min_305, p2_152, img_75, neg_924, max_pool3d_540], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2161 = torch.ops.aten.max_pool3d_with_indices.default(buf2160, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2162 = buf2161[0] del buf2161 # Topologically Sorted Source Nodes: [p1_152, p3_152, min_305, p2_152, img_75, neg_926, max_pool3d_541], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2165 = torch.ops.aten.max_pool3d_with_indices.default(buf2164, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2166 = buf2165[0] del buf2165 # Topologically Sorted Source Nodes: [p1_152, p3_152, min_305, p2_152, img_75, neg_928, max_pool3d_542], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2169 = torch.ops.aten.max_pool3d_with_indices.default(buf2168, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2170 = buf2169[0] del buf2169 buf2172 = buf2168; del buf2168 # reuse buf2176 = buf2164; del buf2164 # reuse buf2180 = buf2160; del buf2160 # reuse buf2188 = buf2156; del buf2156 # reuse buf2192 = buf2154; del buf2154 # reuse buf2196 = buf2150; del buf2150 # reuse # Topologically Sorted Source Nodes: [p1_154, p3_154, min_309, p2_154, img_76, neg_930, neg_932, neg_934, neg_936, neg_938, neg_940], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2162, buf2170, buf2166, buf2172, buf2176, buf2180, buf2188, buf2192, buf2196, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_154, p3_154, min_309, p2_154, img_76, neg_930, max_pool3d_543], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2173 = torch.ops.aten.max_pool3d_with_indices.default(buf2172, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2172 buf2174 = buf2173[0] del buf2173 # Topologically Sorted Source Nodes: [p1_154, p3_154, min_309, p2_154, img_76, neg_932, max_pool3d_544], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2177 = torch.ops.aten.max_pool3d_with_indices.default(buf2176, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2176 buf2178 = buf2177[0] del buf2177 # Topologically Sorted Source Nodes: [p1_154, p3_154, min_309, p2_154, img_76, neg_934, max_pool3d_545], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2181 = torch.ops.aten.max_pool3d_with_indices.default(buf2180, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2180 buf2182 = buf2181[0] del buf2181 buf2184 = buf2174; del buf2174 # reuse # Topologically Sorted Source Nodes: [p1_155, p3_155, min_311, p2_155, min_312], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2184, buf2182, buf2178, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_155, p3_155, min_311, p2_155, min_312, img1_78], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2185 = torch.ops.aten.max_pool3d_with_indices.default(buf2184, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2186 = buf2185[0] del buf2185 # Topologically Sorted Source Nodes: [p1_154, p3_154, min_309, p2_154, img_76, neg_936, max_pool3d_547], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2189 = torch.ops.aten.max_pool3d_with_indices.default(buf2188, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2190 = buf2189[0] del buf2189 # Topologically Sorted Source Nodes: [p1_154, p3_154, min_309, p2_154, img_76, neg_938, max_pool3d_548], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2193 = torch.ops.aten.max_pool3d_with_indices.default(buf2192, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2194 = buf2193[0] del buf2193 # Topologically Sorted Source Nodes: [p1_154, p3_154, min_309, p2_154, img_76, neg_940, max_pool3d_549], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2197 = torch.ops.aten.max_pool3d_with_indices.default(buf2196, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2198 = buf2197[0] del buf2197 buf2200 = buf2196; del buf2196 # reuse buf2204 = buf2192; del buf2192 # reuse buf2208 = buf2188; del buf2188 # reuse buf2216 = buf2184; del buf2184 # reuse buf2220 = buf2182; del buf2182 # reuse buf2224 = buf2178; del buf2178 # reuse # Topologically Sorted Source Nodes: [p1_156, p3_156, min_313, p2_156, img_77, neg_942, neg_944, neg_946, neg_948, neg_950, neg_952], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2190, buf2198, buf2194, buf2200, buf2204, buf2208, buf2216, buf2220, buf2224, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_156, p3_156, min_313, p2_156, img_77, neg_942, max_pool3d_550], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2201 = torch.ops.aten.max_pool3d_with_indices.default(buf2200, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2200 buf2202 = buf2201[0] del buf2201 # Topologically Sorted Source Nodes: [p1_156, p3_156, min_313, p2_156, img_77, neg_944, max_pool3d_551], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2205 = torch.ops.aten.max_pool3d_with_indices.default(buf2204, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2204 buf2206 = buf2205[0] del buf2205 # Topologically Sorted Source Nodes: [p1_156, p3_156, min_313, p2_156, img_77, neg_946, max_pool3d_552], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2209 = torch.ops.aten.max_pool3d_with_indices.default(buf2208, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2208 buf2210 = buf2209[0] del buf2209 buf2212 = buf2202; del buf2202 # reuse # Topologically Sorted Source Nodes: [p1_157, p3_157, min_315, p2_157, min_316], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2212, buf2210, buf2206, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_157, p3_157, min_315, p2_157, min_316, img1_79], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2213 = torch.ops.aten.max_pool3d_with_indices.default(buf2212, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2214 = buf2213[0] del buf2213 # Topologically Sorted Source Nodes: [p1_156, p3_156, min_313, p2_156, img_77, neg_948, max_pool3d_554], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2217 = torch.ops.aten.max_pool3d_with_indices.default(buf2216, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2218 = buf2217[0] del buf2217 # Topologically Sorted Source Nodes: [p1_156, p3_156, min_313, p2_156, img_77, neg_950, max_pool3d_555], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2221 = torch.ops.aten.max_pool3d_with_indices.default(buf2220, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2222 = buf2221[0] del buf2221 # Topologically Sorted Source Nodes: [p1_156, p3_156, min_313, p2_156, img_77, neg_952, max_pool3d_556], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2225 = torch.ops.aten.max_pool3d_with_indices.default(buf2224, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2226 = buf2225[0] del buf2225 buf2228 = buf2224; del buf2224 # reuse buf2232 = buf2220; del buf2220 # reuse buf2236 = buf2216; del buf2216 # reuse buf2244 = buf2212; del buf2212 # reuse buf2248 = buf2210; del buf2210 # reuse buf2252 = buf2206; del buf2206 # reuse # Topologically Sorted Source Nodes: [p1_158, p3_158, min_317, p2_158, img_78, neg_954, neg_956, neg_958, neg_960, neg_962, neg_964], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2218, buf2226, buf2222, buf2228, buf2232, buf2236, buf2244, buf2248, buf2252, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_158, p3_158, min_317, p2_158, img_78, neg_954, max_pool3d_557], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2229 = torch.ops.aten.max_pool3d_with_indices.default(buf2228, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2228 buf2230 = buf2229[0] del buf2229 # Topologically Sorted Source Nodes: [p1_158, p3_158, min_317, p2_158, img_78, neg_956, max_pool3d_558], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2233 = torch.ops.aten.max_pool3d_with_indices.default(buf2232, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2232 buf2234 = buf2233[0] del buf2233 # Topologically Sorted Source Nodes: [p1_158, p3_158, min_317, p2_158, img_78, neg_958, max_pool3d_559], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2237 = torch.ops.aten.max_pool3d_with_indices.default(buf2236, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2236 buf2238 = buf2237[0] del buf2237 buf2240 = buf2230; del buf2230 # reuse # Topologically Sorted Source Nodes: [p1_159, p3_159, min_319, p2_159, min_320], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2240, buf2238, buf2234, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_159, p3_159, min_319, p2_159, min_320, img1_80], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2241 = torch.ops.aten.max_pool3d_with_indices.default(buf2240, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2242 = buf2241[0] del buf2241 # Topologically Sorted Source Nodes: [p1_158, p3_158, min_317, p2_158, img_78, neg_960, max_pool3d_561], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2245 = torch.ops.aten.max_pool3d_with_indices.default(buf2244, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2246 = buf2245[0] del buf2245 # Topologically Sorted Source Nodes: [p1_158, p3_158, min_317, p2_158, img_78, neg_962, max_pool3d_562], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2249 = torch.ops.aten.max_pool3d_with_indices.default(buf2248, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2250 = buf2249[0] del buf2249 # Topologically Sorted Source Nodes: [p1_158, p3_158, min_317, p2_158, img_78, neg_964, max_pool3d_563], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2253 = torch.ops.aten.max_pool3d_with_indices.default(buf2252, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2254 = buf2253[0] del buf2253 buf2256 = buf2252; del buf2252 # reuse buf2260 = buf2248; del buf2248 # reuse buf2264 = buf2244; del buf2244 # reuse buf2272 = buf2240; del buf2240 # reuse buf2276 = buf2238; del buf2238 # reuse buf2280 = buf2234; del buf2234 # reuse # Topologically Sorted Source Nodes: [p1_160, p3_160, min_321, p2_160, img_79, neg_966, neg_968, neg_970, neg_972, neg_974, neg_976], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2246, buf2254, buf2250, buf2256, buf2260, buf2264, buf2272, buf2276, buf2280, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_160, p3_160, min_321, p2_160, img_79, neg_966, max_pool3d_564], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2257 = torch.ops.aten.max_pool3d_with_indices.default(buf2256, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2256 buf2258 = buf2257[0] del buf2257 # Topologically Sorted Source Nodes: [p1_160, p3_160, min_321, p2_160, img_79, neg_968, max_pool3d_565], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2261 = torch.ops.aten.max_pool3d_with_indices.default(buf2260, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2260 buf2262 = buf2261[0] del buf2261 # Topologically Sorted Source Nodes: [p1_160, p3_160, min_321, p2_160, img_79, neg_970, max_pool3d_566], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2265 = torch.ops.aten.max_pool3d_with_indices.default(buf2264, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2264 buf2266 = buf2265[0] del buf2265 buf2268 = buf2258; del buf2258 # reuse # Topologically Sorted Source Nodes: [p1_161, p3_161, min_323, p2_161, min_324], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2268, buf2266, buf2262, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_161, p3_161, min_323, p2_161, min_324, img1_81], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2269 = torch.ops.aten.max_pool3d_with_indices.default(buf2268, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2270 = buf2269[0] del buf2269 # Topologically Sorted Source Nodes: [p1_160, p3_160, min_321, p2_160, img_79, neg_972, max_pool3d_568], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2273 = torch.ops.aten.max_pool3d_with_indices.default(buf2272, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2274 = buf2273[0] del buf2273 # Topologically Sorted Source Nodes: [p1_160, p3_160, min_321, p2_160, img_79, neg_974, max_pool3d_569], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2277 = torch.ops.aten.max_pool3d_with_indices.default(buf2276, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2278 = buf2277[0] del buf2277 # Topologically Sorted Source Nodes: [p1_160, p3_160, min_321, p2_160, img_79, neg_976, max_pool3d_570], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2281 = torch.ops.aten.max_pool3d_with_indices.default(buf2280, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2282 = buf2281[0] del buf2281 buf2284 = buf2280; del buf2280 # reuse buf2288 = buf2276; del buf2276 # reuse buf2292 = buf2272; del buf2272 # reuse buf2300 = buf2268; del buf2268 # reuse buf2304 = buf2266; del buf2266 # reuse buf2308 = buf2262; del buf2262 # reuse # Topologically Sorted Source Nodes: [p1_162, p3_162, min_325, p2_162, img_80, neg_978, neg_980, neg_982, neg_984, neg_986, neg_988], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2274, buf2282, buf2278, buf2284, buf2288, buf2292, buf2300, buf2304, buf2308, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_162, p3_162, min_325, p2_162, img_80, neg_978, max_pool3d_571], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2285 = torch.ops.aten.max_pool3d_with_indices.default(buf2284, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2284 buf2286 = buf2285[0] del buf2285 # Topologically Sorted Source Nodes: [p1_162, p3_162, min_325, p2_162, img_80, neg_980, max_pool3d_572], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2289 = torch.ops.aten.max_pool3d_with_indices.default(buf2288, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2288 buf2290 = buf2289[0] del buf2289 # Topologically Sorted Source Nodes: [p1_162, p3_162, min_325, p2_162, img_80, neg_982, max_pool3d_573], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2293 = torch.ops.aten.max_pool3d_with_indices.default(buf2292, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2292 buf2294 = buf2293[0] del buf2293 buf2296 = buf2286; del buf2286 # reuse # Topologically Sorted Source Nodes: [p1_163, p3_163, min_327, p2_163, min_328], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2296, buf2294, buf2290, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_163, p3_163, min_327, p2_163, min_328, img1_82], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2297 = torch.ops.aten.max_pool3d_with_indices.default(buf2296, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2298 = buf2297[0] del buf2297 # Topologically Sorted Source Nodes: [p1_162, p3_162, min_325, p2_162, img_80, neg_984, max_pool3d_575], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2301 = torch.ops.aten.max_pool3d_with_indices.default(buf2300, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2302 = buf2301[0] del buf2301 # Topologically Sorted Source Nodes: [p1_162, p3_162, min_325, p2_162, img_80, neg_986, max_pool3d_576], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2305 = torch.ops.aten.max_pool3d_with_indices.default(buf2304, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2306 = buf2305[0] del buf2305 # Topologically Sorted Source Nodes: [p1_162, p3_162, min_325, p2_162, img_80, neg_988, max_pool3d_577], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2309 = torch.ops.aten.max_pool3d_with_indices.default(buf2308, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2310 = buf2309[0] del buf2309 buf2312 = buf2308; del buf2308 # reuse buf2316 = buf2304; del buf2304 # reuse buf2320 = buf2300; del buf2300 # reuse buf2328 = buf2296; del buf2296 # reuse buf2332 = buf2294; del buf2294 # reuse buf2336 = buf2290; del buf2290 # reuse # Topologically Sorted Source Nodes: [p1_164, p3_164, min_329, p2_164, img_81, neg_990, neg_992, neg_994, neg_996, neg_998, neg_1000], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2302, buf2310, buf2306, buf2312, buf2316, buf2320, buf2328, buf2332, buf2336, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_164, p3_164, min_329, p2_164, img_81, neg_990, max_pool3d_578], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2313 = torch.ops.aten.max_pool3d_with_indices.default(buf2312, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2312 buf2314 = buf2313[0] del buf2313 # Topologically Sorted Source Nodes: [p1_164, p3_164, min_329, p2_164, img_81, neg_992, max_pool3d_579], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2317 = torch.ops.aten.max_pool3d_with_indices.default(buf2316, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2316 buf2318 = buf2317[0] del buf2317 # Topologically Sorted Source Nodes: [p1_164, p3_164, min_329, p2_164, img_81, neg_994, max_pool3d_580], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2321 = torch.ops.aten.max_pool3d_with_indices.default(buf2320, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2320 buf2322 = buf2321[0] del buf2321 buf2324 = buf2314; del buf2314 # reuse # Topologically Sorted Source Nodes: [p1_165, p3_165, min_331, p2_165, min_332], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2324, buf2322, buf2318, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_165, p3_165, min_331, p2_165, min_332, img1_83], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2325 = torch.ops.aten.max_pool3d_with_indices.default(buf2324, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2326 = buf2325[0] del buf2325 # Topologically Sorted Source Nodes: [p1_164, p3_164, min_329, p2_164, img_81, neg_996, max_pool3d_582], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2329 = torch.ops.aten.max_pool3d_with_indices.default(buf2328, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2330 = buf2329[0] del buf2329 # Topologically Sorted Source Nodes: [p1_164, p3_164, min_329, p2_164, img_81, neg_998, max_pool3d_583], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2333 = torch.ops.aten.max_pool3d_with_indices.default(buf2332, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2334 = buf2333[0] del buf2333 # Topologically Sorted Source Nodes: [p1_164, p3_164, min_329, p2_164, img_81, neg_1000, max_pool3d_584], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2337 = torch.ops.aten.max_pool3d_with_indices.default(buf2336, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2338 = buf2337[0] del buf2337 buf2340 = buf2336; del buf2336 # reuse buf2344 = buf2332; del buf2332 # reuse buf2348 = buf2328; del buf2328 # reuse buf2356 = buf2324; del buf2324 # reuse buf2360 = buf2322; del buf2322 # reuse buf2364 = buf2318; del buf2318 # reuse # Topologically Sorted Source Nodes: [p1_166, p3_166, min_333, p2_166, img_82, neg_1002, neg_1004, neg_1006, neg_1008, neg_1010, neg_1012], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2330, buf2338, buf2334, buf2340, buf2344, buf2348, buf2356, buf2360, buf2364, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_166, p3_166, min_333, p2_166, img_82, neg_1002, max_pool3d_585], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2341 = torch.ops.aten.max_pool3d_with_indices.default(buf2340, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2340 buf2342 = buf2341[0] del buf2341 # Topologically Sorted Source Nodes: [p1_166, p3_166, min_333, p2_166, img_82, neg_1004, max_pool3d_586], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2345 = torch.ops.aten.max_pool3d_with_indices.default(buf2344, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2344 buf2346 = buf2345[0] del buf2345 # Topologically Sorted Source Nodes: [p1_166, p3_166, min_333, p2_166, img_82, neg_1006, max_pool3d_587], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2349 = torch.ops.aten.max_pool3d_with_indices.default(buf2348, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2348 buf2350 = buf2349[0] del buf2349 buf2352 = buf2342; del buf2342 # reuse # Topologically Sorted Source Nodes: [p1_167, p3_167, min_335, p2_167, min_336], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2352, buf2350, buf2346, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_167, p3_167, min_335, p2_167, min_336, img1_84], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2353 = torch.ops.aten.max_pool3d_with_indices.default(buf2352, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2354 = buf2353[0] del buf2353 # Topologically Sorted Source Nodes: [p1_166, p3_166, min_333, p2_166, img_82, neg_1008, max_pool3d_589], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2357 = torch.ops.aten.max_pool3d_with_indices.default(buf2356, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2358 = buf2357[0] del buf2357 # Topologically Sorted Source Nodes: [p1_166, p3_166, min_333, p2_166, img_82, neg_1010, max_pool3d_590], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2361 = torch.ops.aten.max_pool3d_with_indices.default(buf2360, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2362 = buf2361[0] del buf2361 # Topologically Sorted Source Nodes: [p1_166, p3_166, min_333, p2_166, img_82, neg_1012, max_pool3d_591], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2365 = torch.ops.aten.max_pool3d_with_indices.default(buf2364, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2366 = buf2365[0] del buf2365 buf2368 = buf2364; del buf2364 # reuse buf2372 = buf2360; del buf2360 # reuse buf2376 = buf2356; del buf2356 # reuse buf2384 = buf2352; del buf2352 # reuse buf2388 = buf2350; del buf2350 # reuse buf2392 = buf2346; del buf2346 # reuse # Topologically Sorted Source Nodes: [p1_168, p3_168, min_337, p2_168, img_83, neg_1014, neg_1016, neg_1018, neg_1020, neg_1022, neg_1024], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2358, buf2366, buf2362, buf2368, buf2372, buf2376, buf2384, buf2388, buf2392, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_168, p3_168, min_337, p2_168, img_83, neg_1014, max_pool3d_592], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2369 = torch.ops.aten.max_pool3d_with_indices.default(buf2368, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2368 buf2370 = buf2369[0] del buf2369 # Topologically Sorted Source Nodes: [p1_168, p3_168, min_337, p2_168, img_83, neg_1016, max_pool3d_593], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2373 = torch.ops.aten.max_pool3d_with_indices.default(buf2372, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2372 buf2374 = buf2373[0] del buf2373 # Topologically Sorted Source Nodes: [p1_168, p3_168, min_337, p2_168, img_83, neg_1018, max_pool3d_594], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2377 = torch.ops.aten.max_pool3d_with_indices.default(buf2376, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2376 buf2378 = buf2377[0] del buf2377 buf2380 = buf2370; del buf2370 # reuse # Topologically Sorted Source Nodes: [p1_169, p3_169, min_339, p2_169, min_340], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2380, buf2378, buf2374, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_169, p3_169, min_339, p2_169, min_340, img1_85], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2381 = torch.ops.aten.max_pool3d_with_indices.default(buf2380, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2382 = buf2381[0] del buf2381 # Topologically Sorted Source Nodes: [p1_168, p3_168, min_337, p2_168, img_83, neg_1020, max_pool3d_596], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2385 = torch.ops.aten.max_pool3d_with_indices.default(buf2384, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2386 = buf2385[0] del buf2385 # Topologically Sorted Source Nodes: [p1_168, p3_168, min_337, p2_168, img_83, neg_1022, max_pool3d_597], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2389 = torch.ops.aten.max_pool3d_with_indices.default(buf2388, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2390 = buf2389[0] del buf2389 # Topologically Sorted Source Nodes: [p1_168, p3_168, min_337, p2_168, img_83, neg_1024, max_pool3d_598], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2393 = torch.ops.aten.max_pool3d_with_indices.default(buf2392, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2394 = buf2393[0] del buf2393 buf2396 = buf2392; del buf2392 # reuse buf2400 = buf2388; del buf2388 # reuse buf2404 = buf2384; del buf2384 # reuse buf2412 = buf2380; del buf2380 # reuse buf2416 = buf2378; del buf2378 # reuse buf2420 = buf2374; del buf2374 # reuse # Topologically Sorted Source Nodes: [p1_170, p3_170, min_341, p2_170, img_84, neg_1026, neg_1028, neg_1030, neg_1032, neg_1034, neg_1036], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2386, buf2394, buf2390, buf2396, buf2400, buf2404, buf2412, buf2416, buf2420, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_170, p3_170, min_341, p2_170, img_84, neg_1026, max_pool3d_599], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2397 = torch.ops.aten.max_pool3d_with_indices.default(buf2396, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2396 buf2398 = buf2397[0] del buf2397 # Topologically Sorted Source Nodes: [p1_170, p3_170, min_341, p2_170, img_84, neg_1028, max_pool3d_600], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2401 = torch.ops.aten.max_pool3d_with_indices.default(buf2400, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2400 buf2402 = buf2401[0] del buf2401 # Topologically Sorted Source Nodes: [p1_170, p3_170, min_341, p2_170, img_84, neg_1030, max_pool3d_601], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2405 = torch.ops.aten.max_pool3d_with_indices.default(buf2404, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2404 buf2406 = buf2405[0] del buf2405 buf2408 = buf2398; del buf2398 # reuse # Topologically Sorted Source Nodes: [p1_171, p3_171, min_343, p2_171, min_344], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2408, buf2406, buf2402, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_171, p3_171, min_343, p2_171, min_344, img1_86], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2409 = torch.ops.aten.max_pool3d_with_indices.default(buf2408, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2410 = buf2409[0] del buf2409 # Topologically Sorted Source Nodes: [p1_170, p3_170, min_341, p2_170, img_84, neg_1032, max_pool3d_603], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2413 = torch.ops.aten.max_pool3d_with_indices.default(buf2412, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2414 = buf2413[0] del buf2413 # Topologically Sorted Source Nodes: [p1_170, p3_170, min_341, p2_170, img_84, neg_1034, max_pool3d_604], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2417 = torch.ops.aten.max_pool3d_with_indices.default(buf2416, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2418 = buf2417[0] del buf2417 # Topologically Sorted Source Nodes: [p1_170, p3_170, min_341, p2_170, img_84, neg_1036, max_pool3d_605], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2421 = torch.ops.aten.max_pool3d_with_indices.default(buf2420, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2422 = buf2421[0] del buf2421 buf2424 = buf2420; del buf2420 # reuse buf2428 = buf2416; del buf2416 # reuse buf2432 = buf2412; del buf2412 # reuse buf2440 = buf2408; del buf2408 # reuse buf2444 = buf2406; del buf2406 # reuse buf2448 = buf2402; del buf2402 # reuse # Topologically Sorted Source Nodes: [p1_172, p3_172, min_345, p2_172, img_85, neg_1038, neg_1040, neg_1042, neg_1044, neg_1046, neg_1048], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2414, buf2422, buf2418, buf2424, buf2428, buf2432, buf2440, buf2444, buf2448, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_172, p3_172, min_345, p2_172, img_85, neg_1038, max_pool3d_606], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2425 = torch.ops.aten.max_pool3d_with_indices.default(buf2424, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2424 buf2426 = buf2425[0] del buf2425 # Topologically Sorted Source Nodes: [p1_172, p3_172, min_345, p2_172, img_85, neg_1040, max_pool3d_607], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2429 = torch.ops.aten.max_pool3d_with_indices.default(buf2428, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2428 buf2430 = buf2429[0] del buf2429 # Topologically Sorted Source Nodes: [p1_172, p3_172, min_345, p2_172, img_85, neg_1042, max_pool3d_608], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2433 = torch.ops.aten.max_pool3d_with_indices.default(buf2432, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2432 buf2434 = buf2433[0] del buf2433 buf2436 = buf2426; del buf2426 # reuse # Topologically Sorted Source Nodes: [p1_173, p3_173, min_347, p2_173, min_348], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2436, buf2434, buf2430, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_173, p3_173, min_347, p2_173, min_348, img1_87], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2437 = torch.ops.aten.max_pool3d_with_indices.default(buf2436, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2438 = buf2437[0] del buf2437 # Topologically Sorted Source Nodes: [p1_172, p3_172, min_345, p2_172, img_85, neg_1044, max_pool3d_610], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2441 = torch.ops.aten.max_pool3d_with_indices.default(buf2440, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2442 = buf2441[0] del buf2441 # Topologically Sorted Source Nodes: [p1_172, p3_172, min_345, p2_172, img_85, neg_1046, max_pool3d_611], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2445 = torch.ops.aten.max_pool3d_with_indices.default(buf2444, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2446 = buf2445[0] del buf2445 # Topologically Sorted Source Nodes: [p1_172, p3_172, min_345, p2_172, img_85, neg_1048, max_pool3d_612], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2449 = torch.ops.aten.max_pool3d_with_indices.default(buf2448, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2450 = buf2449[0] del buf2449 buf2452 = buf2448; del buf2448 # reuse buf2456 = buf2444; del buf2444 # reuse buf2460 = buf2440; del buf2440 # reuse buf2468 = buf2436; del buf2436 # reuse buf2472 = buf2434; del buf2434 # reuse buf2476 = buf2430; del buf2430 # reuse # Topologically Sorted Source Nodes: [p1_174, p3_174, min_349, p2_174, img_86, neg_1050, neg_1052, neg_1054, neg_1056, neg_1058, neg_1060], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2442, buf2450, buf2446, buf2452, buf2456, buf2460, buf2468, buf2472, buf2476, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_174, p3_174, min_349, p2_174, img_86, neg_1050, max_pool3d_613], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2453 = torch.ops.aten.max_pool3d_with_indices.default(buf2452, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2452 buf2454 = buf2453[0] del buf2453 # Topologically Sorted Source Nodes: [p1_174, p3_174, min_349, p2_174, img_86, neg_1052, max_pool3d_614], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2457 = torch.ops.aten.max_pool3d_with_indices.default(buf2456, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2456 buf2458 = buf2457[0] del buf2457 # Topologically Sorted Source Nodes: [p1_174, p3_174, min_349, p2_174, img_86, neg_1054, max_pool3d_615], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2461 = torch.ops.aten.max_pool3d_with_indices.default(buf2460, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2460 buf2462 = buf2461[0] del buf2461 buf2464 = buf2454; del buf2454 # reuse # Topologically Sorted Source Nodes: [p1_175, p3_175, min_351, p2_175, min_352], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2464, buf2462, buf2458, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_175, p3_175, min_351, p2_175, min_352, img1_88], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2465 = torch.ops.aten.max_pool3d_with_indices.default(buf2464, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2466 = buf2465[0] del buf2465 # Topologically Sorted Source Nodes: [p1_174, p3_174, min_349, p2_174, img_86, neg_1056, max_pool3d_617], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2469 = torch.ops.aten.max_pool3d_with_indices.default(buf2468, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2470 = buf2469[0] del buf2469 # Topologically Sorted Source Nodes: [p1_174, p3_174, min_349, p2_174, img_86, neg_1058, max_pool3d_618], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2473 = torch.ops.aten.max_pool3d_with_indices.default(buf2472, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2474 = buf2473[0] del buf2473 # Topologically Sorted Source Nodes: [p1_174, p3_174, min_349, p2_174, img_86, neg_1060, max_pool3d_619], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2477 = torch.ops.aten.max_pool3d_with_indices.default(buf2476, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2478 = buf2477[0] del buf2477 buf2480 = buf2476; del buf2476 # reuse buf2484 = buf2472; del buf2472 # reuse buf2488 = buf2468; del buf2468 # reuse buf2496 = buf2464; del buf2464 # reuse buf2500 = buf2462; del buf2462 # reuse buf2504 = buf2458; del buf2458 # reuse # Topologically Sorted Source Nodes: [p1_176, p3_176, min_353, p2_176, img_87, neg_1062, neg_1064, neg_1066, neg_1068, neg_1070, neg_1072], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2470, buf2478, buf2474, buf2480, buf2484, buf2488, buf2496, buf2500, buf2504, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_176, p3_176, min_353, p2_176, img_87, neg_1062, max_pool3d_620], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2481 = torch.ops.aten.max_pool3d_with_indices.default(buf2480, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2480 buf2482 = buf2481[0] del buf2481 # Topologically Sorted Source Nodes: [p1_176, p3_176, min_353, p2_176, img_87, neg_1064, max_pool3d_621], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2485 = torch.ops.aten.max_pool3d_with_indices.default(buf2484, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2484 buf2486 = buf2485[0] del buf2485 # Topologically Sorted Source Nodes: [p1_176, p3_176, min_353, p2_176, img_87, neg_1066, max_pool3d_622], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2489 = torch.ops.aten.max_pool3d_with_indices.default(buf2488, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2488 buf2490 = buf2489[0] del buf2489 buf2492 = buf2482; del buf2482 # reuse # Topologically Sorted Source Nodes: [p1_177, p3_177, min_355, p2_177, min_356], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2492, buf2490, buf2486, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_177, p3_177, min_355, p2_177, min_356, img1_89], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2493 = torch.ops.aten.max_pool3d_with_indices.default(buf2492, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2494 = buf2493[0] del buf2493 # Topologically Sorted Source Nodes: [p1_176, p3_176, min_353, p2_176, img_87, neg_1068, max_pool3d_624], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2497 = torch.ops.aten.max_pool3d_with_indices.default(buf2496, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2498 = buf2497[0] del buf2497 # Topologically Sorted Source Nodes: [p1_176, p3_176, min_353, p2_176, img_87, neg_1070, max_pool3d_625], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2501 = torch.ops.aten.max_pool3d_with_indices.default(buf2500, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2502 = buf2501[0] del buf2501 # Topologically Sorted Source Nodes: [p1_176, p3_176, min_353, p2_176, img_87, neg_1072, max_pool3d_626], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2505 = torch.ops.aten.max_pool3d_with_indices.default(buf2504, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2506 = buf2505[0] del buf2505 buf2508 = buf2504; del buf2504 # reuse buf2512 = buf2500; del buf2500 # reuse buf2516 = buf2496; del buf2496 # reuse buf2524 = buf2492; del buf2492 # reuse buf2528 = buf2490; del buf2490 # reuse buf2532 = buf2486; del buf2486 # reuse # Topologically Sorted Source Nodes: [p1_178, p3_178, min_357, p2_178, img_88, neg_1074, neg_1076, neg_1078, neg_1080, neg_1082, neg_1084], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2498, buf2506, buf2502, buf2508, buf2512, buf2516, buf2524, buf2528, buf2532, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_178, p3_178, min_357, p2_178, img_88, neg_1074, max_pool3d_627], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2509 = torch.ops.aten.max_pool3d_with_indices.default(buf2508, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2508 buf2510 = buf2509[0] del buf2509 # Topologically Sorted Source Nodes: [p1_178, p3_178, min_357, p2_178, img_88, neg_1076, max_pool3d_628], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2513 = torch.ops.aten.max_pool3d_with_indices.default(buf2512, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2512 buf2514 = buf2513[0] del buf2513 # Topologically Sorted Source Nodes: [p1_178, p3_178, min_357, p2_178, img_88, neg_1078, max_pool3d_629], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2517 = torch.ops.aten.max_pool3d_with_indices.default(buf2516, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2516 buf2518 = buf2517[0] del buf2517 buf2520 = buf2510; del buf2510 # reuse # Topologically Sorted Source Nodes: [p1_179, p3_179, min_359, p2_179, min_360], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2520, buf2518, buf2514, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_179, p3_179, min_359, p2_179, min_360, img1_90], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2521 = torch.ops.aten.max_pool3d_with_indices.default(buf2520, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2522 = buf2521[0] del buf2521 # Topologically Sorted Source Nodes: [p1_178, p3_178, min_357, p2_178, img_88, neg_1080, max_pool3d_631], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2525 = torch.ops.aten.max_pool3d_with_indices.default(buf2524, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2526 = buf2525[0] del buf2525 # Topologically Sorted Source Nodes: [p1_178, p3_178, min_357, p2_178, img_88, neg_1082, max_pool3d_632], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2529 = torch.ops.aten.max_pool3d_with_indices.default(buf2528, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2530 = buf2529[0] del buf2529 # Topologically Sorted Source Nodes: [p1_178, p3_178, min_357, p2_178, img_88, neg_1084, max_pool3d_633], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2533 = torch.ops.aten.max_pool3d_with_indices.default(buf2532, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2534 = buf2533[0] del buf2533 buf2536 = buf2532; del buf2532 # reuse buf2540 = buf2528; del buf2528 # reuse buf2544 = buf2524; del buf2524 # reuse buf2552 = buf2520; del buf2520 # reuse buf2556 = buf2518; del buf2518 # reuse buf2560 = buf2514; del buf2514 # reuse # Topologically Sorted Source Nodes: [p1_180, p3_180, min_361, p2_180, img_89, neg_1086, neg_1088, neg_1090, neg_1092, neg_1094, neg_1096], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2526, buf2534, buf2530, buf2536, buf2540, buf2544, buf2552, buf2556, buf2560, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_180, p3_180, min_361, p2_180, img_89, neg_1086, max_pool3d_634], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2537 = torch.ops.aten.max_pool3d_with_indices.default(buf2536, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2536 buf2538 = buf2537[0] del buf2537 # Topologically Sorted Source Nodes: [p1_180, p3_180, min_361, p2_180, img_89, neg_1088, max_pool3d_635], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2541 = torch.ops.aten.max_pool3d_with_indices.default(buf2540, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2540 buf2542 = buf2541[0] del buf2541 # Topologically Sorted Source Nodes: [p1_180, p3_180, min_361, p2_180, img_89, neg_1090, max_pool3d_636], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2545 = torch.ops.aten.max_pool3d_with_indices.default(buf2544, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2544 buf2546 = buf2545[0] del buf2545 buf2548 = buf2538; del buf2538 # reuse # Topologically Sorted Source Nodes: [p1_181, p3_181, min_363, p2_181, min_364], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2548, buf2546, buf2542, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_181, p3_181, min_363, p2_181, min_364, img1_91], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2549 = torch.ops.aten.max_pool3d_with_indices.default(buf2548, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2550 = buf2549[0] del buf2549 # Topologically Sorted Source Nodes: [p1_180, p3_180, min_361, p2_180, img_89, neg_1092, max_pool3d_638], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2553 = torch.ops.aten.max_pool3d_with_indices.default(buf2552, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2554 = buf2553[0] del buf2553 # Topologically Sorted Source Nodes: [p1_180, p3_180, min_361, p2_180, img_89, neg_1094, max_pool3d_639], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2557 = torch.ops.aten.max_pool3d_with_indices.default(buf2556, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2558 = buf2557[0] del buf2557 # Topologically Sorted Source Nodes: [p1_180, p3_180, min_361, p2_180, img_89, neg_1096, max_pool3d_640], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2561 = torch.ops.aten.max_pool3d_with_indices.default(buf2560, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2562 = buf2561[0] del buf2561 buf2564 = buf2560; del buf2560 # reuse buf2568 = buf2556; del buf2556 # reuse buf2572 = buf2552; del buf2552 # reuse buf2580 = buf2548; del buf2548 # reuse buf2584 = buf2546; del buf2546 # reuse buf2588 = buf2542; del buf2542 # reuse # Topologically Sorted Source Nodes: [p1_182, p3_182, min_365, p2_182, img_90, neg_1098, neg_1100, neg_1102, neg_1104, neg_1106, neg_1108], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2554, buf2562, buf2558, buf2564, buf2568, buf2572, buf2580, buf2584, buf2588, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_182, p3_182, min_365, p2_182, img_90, neg_1098, max_pool3d_641], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2565 = torch.ops.aten.max_pool3d_with_indices.default(buf2564, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2564 buf2566 = buf2565[0] del buf2565 # Topologically Sorted Source Nodes: [p1_182, p3_182, min_365, p2_182, img_90, neg_1100, max_pool3d_642], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2569 = torch.ops.aten.max_pool3d_with_indices.default(buf2568, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2568 buf2570 = buf2569[0] del buf2569 # Topologically Sorted Source Nodes: [p1_182, p3_182, min_365, p2_182, img_90, neg_1102, max_pool3d_643], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2573 = torch.ops.aten.max_pool3d_with_indices.default(buf2572, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2572 buf2574 = buf2573[0] del buf2573 buf2576 = buf2566; del buf2566 # reuse # Topologically Sorted Source Nodes: [p1_183, p3_183, min_367, p2_183, min_368], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2576, buf2574, buf2570, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_183, p3_183, min_367, p2_183, min_368, img1_92], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2577 = torch.ops.aten.max_pool3d_with_indices.default(buf2576, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2578 = buf2577[0] del buf2577 # Topologically Sorted Source Nodes: [p1_182, p3_182, min_365, p2_182, img_90, neg_1104, max_pool3d_645], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2581 = torch.ops.aten.max_pool3d_with_indices.default(buf2580, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2582 = buf2581[0] del buf2581 # Topologically Sorted Source Nodes: [p1_182, p3_182, min_365, p2_182, img_90, neg_1106, max_pool3d_646], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2585 = torch.ops.aten.max_pool3d_with_indices.default(buf2584, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2586 = buf2585[0] del buf2585 # Topologically Sorted Source Nodes: [p1_182, p3_182, min_365, p2_182, img_90, neg_1108, max_pool3d_647], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2589 = torch.ops.aten.max_pool3d_with_indices.default(buf2588, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2590 = buf2589[0] del buf2589 buf2592 = buf2588; del buf2588 # reuse buf2596 = buf2584; del buf2584 # reuse buf2600 = buf2580; del buf2580 # reuse buf2608 = buf2576; del buf2576 # reuse buf2612 = buf2574; del buf2574 # reuse buf2616 = buf2570; del buf2570 # reuse # Topologically Sorted Source Nodes: [p1_184, p3_184, min_369, p2_184, img_91, neg_1110, neg_1112, neg_1114, neg_1116, neg_1118, neg_1120], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2582, buf2590, buf2586, buf2592, buf2596, buf2600, buf2608, buf2612, buf2616, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_184, p3_184, min_369, p2_184, img_91, neg_1110, max_pool3d_648], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2593 = torch.ops.aten.max_pool3d_with_indices.default(buf2592, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2592 buf2594 = buf2593[0] del buf2593 # Topologically Sorted Source Nodes: [p1_184, p3_184, min_369, p2_184, img_91, neg_1112, max_pool3d_649], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2597 = torch.ops.aten.max_pool3d_with_indices.default(buf2596, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2596 buf2598 = buf2597[0] del buf2597 # Topologically Sorted Source Nodes: [p1_184, p3_184, min_369, p2_184, img_91, neg_1114, max_pool3d_650], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2601 = torch.ops.aten.max_pool3d_with_indices.default(buf2600, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2600 buf2602 = buf2601[0] del buf2601 buf2604 = buf2594; del buf2594 # reuse # Topologically Sorted Source Nodes: [p1_185, p3_185, min_371, p2_185, min_372], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2604, buf2602, buf2598, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_185, p3_185, min_371, p2_185, min_372, img1_93], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2605 = torch.ops.aten.max_pool3d_with_indices.default(buf2604, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2606 = buf2605[0] del buf2605 # Topologically Sorted Source Nodes: [p1_184, p3_184, min_369, p2_184, img_91, neg_1116, max_pool3d_652], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2609 = torch.ops.aten.max_pool3d_with_indices.default(buf2608, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2610 = buf2609[0] del buf2609 # Topologically Sorted Source Nodes: [p1_184, p3_184, min_369, p2_184, img_91, neg_1118, max_pool3d_653], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2613 = torch.ops.aten.max_pool3d_with_indices.default(buf2612, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2614 = buf2613[0] del buf2613 # Topologically Sorted Source Nodes: [p1_184, p3_184, min_369, p2_184, img_91, neg_1120, max_pool3d_654], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2617 = torch.ops.aten.max_pool3d_with_indices.default(buf2616, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2618 = buf2617[0] del buf2617 buf2620 = buf2616; del buf2616 # reuse buf2624 = buf2612; del buf2612 # reuse buf2628 = buf2608; del buf2608 # reuse buf2636 = buf2604; del buf2604 # reuse buf2640 = buf2602; del buf2602 # reuse buf2644 = buf2598; del buf2598 # reuse # Topologically Sorted Source Nodes: [p1_186, p3_186, min_373, p2_186, img_92, neg_1122, neg_1124, neg_1126, neg_1128, neg_1130, neg_1132], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2610, buf2618, buf2614, buf2620, buf2624, buf2628, buf2636, buf2640, buf2644, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_186, p3_186, min_373, p2_186, img_92, neg_1122, max_pool3d_655], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2621 = torch.ops.aten.max_pool3d_with_indices.default(buf2620, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2620 buf2622 = buf2621[0] del buf2621 # Topologically Sorted Source Nodes: [p1_186, p3_186, min_373, p2_186, img_92, neg_1124, max_pool3d_656], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2625 = torch.ops.aten.max_pool3d_with_indices.default(buf2624, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2624 buf2626 = buf2625[0] del buf2625 # Topologically Sorted Source Nodes: [p1_186, p3_186, min_373, p2_186, img_92, neg_1126, max_pool3d_657], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2629 = torch.ops.aten.max_pool3d_with_indices.default(buf2628, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2628 buf2630 = buf2629[0] del buf2629 buf2632 = buf2622; del buf2622 # reuse # Topologically Sorted Source Nodes: [p1_187, p3_187, min_375, p2_187, min_376], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2632, buf2630, buf2626, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_187, p3_187, min_375, p2_187, min_376, img1_94], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2633 = torch.ops.aten.max_pool3d_with_indices.default(buf2632, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2634 = buf2633[0] del buf2633 # Topologically Sorted Source Nodes: [p1_186, p3_186, min_373, p2_186, img_92, neg_1128, max_pool3d_659], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2637 = torch.ops.aten.max_pool3d_with_indices.default(buf2636, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2638 = buf2637[0] del buf2637 # Topologically Sorted Source Nodes: [p1_186, p3_186, min_373, p2_186, img_92, neg_1130, max_pool3d_660], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2641 = torch.ops.aten.max_pool3d_with_indices.default(buf2640, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2642 = buf2641[0] del buf2641 # Topologically Sorted Source Nodes: [p1_186, p3_186, min_373, p2_186, img_92, neg_1132, max_pool3d_661], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2645 = torch.ops.aten.max_pool3d_with_indices.default(buf2644, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2646 = buf2645[0] del buf2645 buf2648 = buf2644; del buf2644 # reuse buf2652 = buf2640; del buf2640 # reuse buf2656 = buf2636; del buf2636 # reuse buf2664 = buf2632; del buf2632 # reuse buf2668 = buf2630; del buf2630 # reuse buf2672 = buf2626; del buf2626 # reuse # Topologically Sorted Source Nodes: [p1_188, p3_188, min_377, p2_188, img_93, neg_1134, neg_1136, neg_1138, neg_1140, neg_1142, neg_1144], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2638, buf2646, buf2642, buf2648, buf2652, buf2656, buf2664, buf2668, buf2672, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_188, p3_188, min_377, p2_188, img_93, neg_1134, max_pool3d_662], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2649 = torch.ops.aten.max_pool3d_with_indices.default(buf2648, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2648 buf2650 = buf2649[0] del buf2649 # Topologically Sorted Source Nodes: [p1_188, p3_188, min_377, p2_188, img_93, neg_1136, max_pool3d_663], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2653 = torch.ops.aten.max_pool3d_with_indices.default(buf2652, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2652 buf2654 = buf2653[0] del buf2653 # Topologically Sorted Source Nodes: [p1_188, p3_188, min_377, p2_188, img_93, neg_1138, max_pool3d_664], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2657 = torch.ops.aten.max_pool3d_with_indices.default(buf2656, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2656 buf2658 = buf2657[0] del buf2657 buf2660 = buf2650; del buf2650 # reuse # Topologically Sorted Source Nodes: [p1_189, p3_189, min_379, p2_189, min_380], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2660, buf2658, buf2654, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_189, p3_189, min_379, p2_189, min_380, img1_95], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2661 = torch.ops.aten.max_pool3d_with_indices.default(buf2660, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2662 = buf2661[0] del buf2661 # Topologically Sorted Source Nodes: [p1_188, p3_188, min_377, p2_188, img_93, neg_1140, max_pool3d_666], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2665 = torch.ops.aten.max_pool3d_with_indices.default(buf2664, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2666 = buf2665[0] del buf2665 # Topologically Sorted Source Nodes: [p1_188, p3_188, min_377, p2_188, img_93, neg_1142, max_pool3d_667], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2669 = torch.ops.aten.max_pool3d_with_indices.default(buf2668, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2670 = buf2669[0] del buf2669 # Topologically Sorted Source Nodes: [p1_188, p3_188, min_377, p2_188, img_93, neg_1144, max_pool3d_668], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2673 = torch.ops.aten.max_pool3d_with_indices.default(buf2672, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2674 = buf2673[0] del buf2673 buf2676 = buf2672; del buf2672 # reuse buf2680 = buf2668; del buf2668 # reuse buf2684 = buf2664; del buf2664 # reuse buf2692 = buf2660; del buf2660 # reuse buf2696 = buf2658; del buf2658 # reuse buf2700 = buf2654; del buf2654 # reuse # Topologically Sorted Source Nodes: [p1_190, p3_190, min_381, p2_190, img_94, neg_1146, neg_1148, neg_1150, neg_1152, neg_1154, neg_1156], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2666, buf2674, buf2670, buf2676, buf2680, buf2684, buf2692, buf2696, buf2700, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_190, p3_190, min_381, p2_190, img_94, neg_1146, max_pool3d_669], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2677 = torch.ops.aten.max_pool3d_with_indices.default(buf2676, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2676 buf2678 = buf2677[0] del buf2677 # Topologically Sorted Source Nodes: [p1_190, p3_190, min_381, p2_190, img_94, neg_1148, max_pool3d_670], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2681 = torch.ops.aten.max_pool3d_with_indices.default(buf2680, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2680 buf2682 = buf2681[0] del buf2681 # Topologically Sorted Source Nodes: [p1_190, p3_190, min_381, p2_190, img_94, neg_1150, max_pool3d_671], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2685 = torch.ops.aten.max_pool3d_with_indices.default(buf2684, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2684 buf2686 = buf2685[0] del buf2685 buf2688 = buf2678; del buf2678 # reuse # Topologically Sorted Source Nodes: [p1_191, p3_191, min_383, p2_191, min_384], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2688, buf2686, buf2682, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_191, p3_191, min_383, p2_191, min_384, img1_96], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2689 = torch.ops.aten.max_pool3d_with_indices.default(buf2688, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2690 = buf2689[0] del buf2689 # Topologically Sorted Source Nodes: [p1_190, p3_190, min_381, p2_190, img_94, neg_1152, max_pool3d_673], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2693 = torch.ops.aten.max_pool3d_with_indices.default(buf2692, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2694 = buf2693[0] del buf2693 # Topologically Sorted Source Nodes: [p1_190, p3_190, min_381, p2_190, img_94, neg_1154, max_pool3d_674], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2697 = torch.ops.aten.max_pool3d_with_indices.default(buf2696, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2698 = buf2697[0] del buf2697 # Topologically Sorted Source Nodes: [p1_190, p3_190, min_381, p2_190, img_94, neg_1156, max_pool3d_675], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2701 = torch.ops.aten.max_pool3d_with_indices.default(buf2700, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2702 = buf2701[0] del buf2701 buf2704 = buf2700; del buf2700 # reuse buf2708 = buf2696; del buf2696 # reuse buf2712 = buf2692; del buf2692 # reuse buf2720 = buf2688; del buf2688 # reuse buf2724 = buf2686; del buf2686 # reuse buf2728 = buf2682; del buf2682 # reuse # Topologically Sorted Source Nodes: [p1_192, p3_192, min_385, p2_192, img_95, neg_1158, neg_1160, neg_1162, neg_1164, neg_1166, neg_1168], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2694, buf2702, buf2698, buf2704, buf2708, buf2712, buf2720, buf2724, buf2728, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_192, p3_192, min_385, p2_192, img_95, neg_1158, max_pool3d_676], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2705 = torch.ops.aten.max_pool3d_with_indices.default(buf2704, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2704 buf2706 = buf2705[0] del buf2705 # Topologically Sorted Source Nodes: [p1_192, p3_192, min_385, p2_192, img_95, neg_1160, max_pool3d_677], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2709 = torch.ops.aten.max_pool3d_with_indices.default(buf2708, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2708 buf2710 = buf2709[0] del buf2709 # Topologically Sorted Source Nodes: [p1_192, p3_192, min_385, p2_192, img_95, neg_1162, max_pool3d_678], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2713 = torch.ops.aten.max_pool3d_with_indices.default(buf2712, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2712 buf2714 = buf2713[0] del buf2713 buf2716 = buf2706; del buf2706 # reuse # Topologically Sorted Source Nodes: [p1_193, p3_193, min_387, p2_193, min_388], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2716, buf2714, buf2710, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_193, p3_193, min_387, p2_193, min_388, img1_97], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2717 = torch.ops.aten.max_pool3d_with_indices.default(buf2716, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2718 = buf2717[0] del buf2717 # Topologically Sorted Source Nodes: [p1_192, p3_192, min_385, p2_192, img_95, neg_1164, max_pool3d_680], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2721 = torch.ops.aten.max_pool3d_with_indices.default(buf2720, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2722 = buf2721[0] del buf2721 # Topologically Sorted Source Nodes: [p1_192, p3_192, min_385, p2_192, img_95, neg_1166, max_pool3d_681], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2725 = torch.ops.aten.max_pool3d_with_indices.default(buf2724, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2726 = buf2725[0] del buf2725 # Topologically Sorted Source Nodes: [p1_192, p3_192, min_385, p2_192, img_95, neg_1168, max_pool3d_682], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2729 = torch.ops.aten.max_pool3d_with_indices.default(buf2728, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2730 = buf2729[0] del buf2729 buf2732 = buf2728; del buf2728 # reuse buf2736 = buf2724; del buf2724 # reuse buf2740 = buf2720; del buf2720 # reuse buf2748 = buf2716; del buf2716 # reuse buf2752 = buf2714; del buf2714 # reuse buf2756 = buf2710; del buf2710 # reuse # Topologically Sorted Source Nodes: [p1_194, p3_194, min_389, p2_194, img_96, neg_1170, neg_1172, neg_1174, neg_1176, neg_1178, neg_1180], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2722, buf2730, buf2726, buf2732, buf2736, buf2740, buf2748, buf2752, buf2756, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_194, p3_194, min_389, p2_194, img_96, neg_1170, max_pool3d_683], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2733 = torch.ops.aten.max_pool3d_with_indices.default(buf2732, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2732 buf2734 = buf2733[0] del buf2733 # Topologically Sorted Source Nodes: [p1_194, p3_194, min_389, p2_194, img_96, neg_1172, max_pool3d_684], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2737 = torch.ops.aten.max_pool3d_with_indices.default(buf2736, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2736 buf2738 = buf2737[0] del buf2737 # Topologically Sorted Source Nodes: [p1_194, p3_194, min_389, p2_194, img_96, neg_1174, max_pool3d_685], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2741 = torch.ops.aten.max_pool3d_with_indices.default(buf2740, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2740 buf2742 = buf2741[0] del buf2741 buf2744 = buf2734; del buf2734 # reuse # Topologically Sorted Source Nodes: [p1_195, p3_195, min_391, p2_195, min_392], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2744, buf2742, buf2738, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_195, p3_195, min_391, p2_195, min_392, img1_98], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2745 = torch.ops.aten.max_pool3d_with_indices.default(buf2744, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2746 = buf2745[0] del buf2745 # Topologically Sorted Source Nodes: [p1_194, p3_194, min_389, p2_194, img_96, neg_1176, max_pool3d_687], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2749 = torch.ops.aten.max_pool3d_with_indices.default(buf2748, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2750 = buf2749[0] del buf2749 # Topologically Sorted Source Nodes: [p1_194, p3_194, min_389, p2_194, img_96, neg_1178, max_pool3d_688], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2753 = torch.ops.aten.max_pool3d_with_indices.default(buf2752, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2754 = buf2753[0] del buf2753 # Topologically Sorted Source Nodes: [p1_194, p3_194, min_389, p2_194, img_96, neg_1180, max_pool3d_689], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2757 = torch.ops.aten.max_pool3d_with_indices.default(buf2756, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2758 = buf2757[0] del buf2757 buf2760 = buf2756; del buf2756 # reuse buf2764 = buf2752; del buf2752 # reuse buf2768 = buf2748; del buf2748 # reuse buf2776 = buf2744; del buf2744 # reuse buf2780 = buf2742; del buf2742 # reuse buf2784 = buf2738; del buf2738 # reuse # Topologically Sorted Source Nodes: [p1_196, p3_196, min_393, p2_196, img_97, neg_1182, neg_1184, neg_1186, neg_1188, neg_1190, neg_1192], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2750, buf2758, buf2754, buf2760, buf2764, buf2768, buf2776, buf2780, buf2784, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_196, p3_196, min_393, p2_196, img_97, neg_1182, max_pool3d_690], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2761 = torch.ops.aten.max_pool3d_with_indices.default(buf2760, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2760 buf2762 = buf2761[0] del buf2761 # Topologically Sorted Source Nodes: [p1_196, p3_196, min_393, p2_196, img_97, neg_1184, max_pool3d_691], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2765 = torch.ops.aten.max_pool3d_with_indices.default(buf2764, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2764 buf2766 = buf2765[0] del buf2765 # Topologically Sorted Source Nodes: [p1_196, p3_196, min_393, p2_196, img_97, neg_1186, max_pool3d_692], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2769 = torch.ops.aten.max_pool3d_with_indices.default(buf2768, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2768 buf2770 = buf2769[0] del buf2769 buf2772 = buf2762; del buf2762 # reuse # Topologically Sorted Source Nodes: [p1_197, p3_197, min_395, p2_197, min_396], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2772, buf2770, buf2766, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_197, p3_197, min_395, p2_197, min_396, img1_99], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2773 = torch.ops.aten.max_pool3d_with_indices.default(buf2772, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2774 = buf2773[0] del buf2773 # Topologically Sorted Source Nodes: [p1_196, p3_196, min_393, p2_196, img_97, neg_1188, max_pool3d_694], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2777 = torch.ops.aten.max_pool3d_with_indices.default(buf2776, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2778 = buf2777[0] del buf2777 # Topologically Sorted Source Nodes: [p1_196, p3_196, min_393, p2_196, img_97, neg_1190, max_pool3d_695], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2781 = torch.ops.aten.max_pool3d_with_indices.default(buf2780, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2782 = buf2781[0] del buf2781 # Topologically Sorted Source Nodes: [p1_196, p3_196, min_393, p2_196, img_97, neg_1192, max_pool3d_696], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2785 = torch.ops.aten.max_pool3d_with_indices.default(buf2784, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2786 = buf2785[0] del buf2785 buf2788 = buf2784; del buf2784 # reuse buf2792 = buf2780; del buf2780 # reuse buf2796 = buf2776; del buf2776 # reuse buf2804 = buf2772; del buf2772 # reuse buf2808 = buf2770; del buf2770 # reuse buf2812 = buf2766; del buf2766 # reuse # Topologically Sorted Source Nodes: [p1_198, p3_198, min_397, p2_198, img_98, neg_1194, neg_1196, neg_1198, neg_1200, neg_1202, neg_1204], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_2.run(buf2778, buf2786, buf2782, buf2788, buf2792, buf2796, buf2804, buf2808, buf2812, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_198, p3_198, min_397, p2_198, img_98, neg_1194, max_pool3d_697], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2789 = torch.ops.aten.max_pool3d_with_indices.default(buf2788, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2788 buf2790 = buf2789[0] del buf2789 # Topologically Sorted Source Nodes: [p1_198, p3_198, min_397, p2_198, img_98, neg_1196, max_pool3d_698], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2793 = torch.ops.aten.max_pool3d_with_indices.default(buf2792, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2792 buf2794 = buf2793[0] del buf2793 # Topologically Sorted Source Nodes: [p1_198, p3_198, min_397, p2_198, img_98, neg_1198, max_pool3d_699], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2797 = torch.ops.aten.max_pool3d_with_indices.default(buf2796, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2796 buf2798 = buf2797[0] del buf2797 buf2800 = buf2790; del buf2790 # reuse # Topologically Sorted Source Nodes: [p1_199, p3_199, min_399, p2_199, min_400], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2800, buf2798, buf2794, 256, grid=grid(256), stream=stream0) del buf2794 del buf2798 # Topologically Sorted Source Nodes: [p1_199, p3_199, min_399, p2_199, min_400, img1_100], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2801 = torch.ops.aten.max_pool3d_with_indices.default(buf2800, [3, 3, 3], [1, 1, 1], [1, 1, 1]) del buf2800 buf2802 = buf2801[0] del buf2801 # Topologically Sorted Source Nodes: [p1_198, p3_198, min_397, p2_198, img_98, neg_1200, max_pool3d_701], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2805 = torch.ops.aten.max_pool3d_with_indices.default(buf2804, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2806 = buf2805[0] del buf2805 # Topologically Sorted Source Nodes: [p1_198, p3_198, min_397, p2_198, img_98, neg_1202, max_pool3d_702], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2809 = torch.ops.aten.max_pool3d_with_indices.default(buf2808, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2810 = buf2809[0] del buf2809 # Topologically Sorted Source Nodes: [p1_198, p3_198, min_397, p2_198, img_98, neg_1204, max_pool3d_703], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2813 = torch.ops.aten.max_pool3d_with_indices.default(buf2812, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2814 = buf2813[0] del buf2813 buf2816 = buf2812; del buf2812 # reuse buf2820 = buf2808; del buf2808 # reuse buf2824 = buf2804; del buf2804 # reuse # Topologically Sorted Source Nodes: [p1_200, p3_200, min_401, p2_200, img_99, neg_1206, neg_1208, neg_1210], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_4.run(buf2806, buf2814, buf2810, buf2816, buf2820, buf2824, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [p1_200, p3_200, min_401, p2_200, img_99, neg_1206, max_pool3d_704], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2817 = torch.ops.aten.max_pool3d_with_indices.default(buf2816, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2816 buf2818 = buf2817[0] del buf2817 # Topologically Sorted Source Nodes: [p1_200, p3_200, min_401, p2_200, img_99, neg_1208, max_pool3d_705], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2821 = torch.ops.aten.max_pool3d_with_indices.default(buf2820, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2820 buf2822 = buf2821[0] del buf2821 # Topologically Sorted Source Nodes: [p1_200, p3_200, min_401, p2_200, img_99, neg_1210, max_pool3d_706], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2825 = torch.ops.aten.max_pool3d_with_indices.default(buf2824, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2824 buf2826 = buf2825[0] del buf2825 buf2828 = buf2818; del buf2818 # reuse # Topologically Sorted Source Nodes: [p1_201, p3_201, min_403, p2_201, min_404], Original ATen: [aten.neg, aten.minimum] triton_poi_fused_minimum_neg_3.run(buf2828, buf2826, buf2822, 256, grid=grid(256), stream=stream0) del buf2822 del buf2826 # Topologically Sorted Source Nodes: [p1_201, p3_201, min_403, p2_201, min_404, img1_101], Original ATen: [aten.neg, aten.minimum, aten.max_pool3d_with_indices] buf2829 = torch.ops.aten.max_pool3d_with_indices.default(buf2828, [3, 3, 3], [1, 1, 1], [1, 1, 1]) del buf2828 buf2830 = buf2829[0] del buf2829 buf2832 = buf1430; del buf1430 # reuse buf2833 = buf1462; del buf1462 # reuse buf2834 = buf1490; del buf1490 # reuse buf2835 = buf1518; del buf1518 # reuse buf2836 = buf1546; del buf1546 # reuse buf2837 = buf1574; del buf1574 # reuse buf2838 = buf1602; del buf1602 # reuse buf2839 = buf1630; del buf1630 # reuse buf2840 = buf1658; del buf1658 # reuse buf2841 = buf1686; del buf1686 # reuse buf2842 = buf1714; del buf1714 # reuse buf2843 = buf1742; del buf1742 # reuse buf2844 = buf1770; del buf1770 # reuse buf2845 = buf1798; del buf1798 # reuse buf2846 = buf1826; del buf1826 # reuse buf2847 = buf1854; del buf1854 # reuse buf2848 = buf1882; del buf1882 # reuse buf2849 = buf1910; del buf1910 # reuse buf2850 = buf1938; del buf1938 # reuse buf2851 = buf1966; del buf1966 # reuse buf2852 = buf1994; del buf1994 # reuse buf2853 = buf2022; del buf2022 # reuse buf2854 = buf2050; del buf2050 # reuse buf2855 = buf2078; del buf2078 # reuse buf2856 = buf2106; del buf2106 # reuse buf2857 = buf2134; del buf2134 # reuse buf2858 = buf2162; del buf2162 # reuse buf2859 = buf2190; del buf2190 # reuse buf2860 = buf2218; del buf2218 # reuse buf2861 = buf2246; del buf2246 # reuse buf2862 = buf2274; del buf2274 # reuse buf2863 = buf2302; del buf2302 # reuse buf2864 = buf2330; del buf2330 # reuse buf2865 = buf2358; del buf2358 # reuse buf2866 = buf2386; del buf2386 # reuse buf2867 = buf2414; del buf2414 # reuse buf2868 = buf2442; del buf2442 # reuse buf2869 = buf2470; del buf2470 # reuse buf2870 = buf2498; del buf2498 # reuse buf2871 = buf2526; del buf2526 # reuse buf2872 = buf2554; del buf2554 # reuse buf2873 = buf2582; del buf2582 # reuse buf2874 = buf2610; del buf2610 # reuse buf2875 = buf2638; del buf2638 # reuse buf2876 = buf2666; del buf2666 # reuse buf2877 = buf2694; del buf2694 # reuse buf2878 = buf2722; del buf2722 # reuse buf2879 = buf2750; del buf2750 # reuse buf2880 = buf2778; del buf2778 # reuse buf2881 = buf2806; del buf2806 # reuse # Topologically Sorted Source Nodes: [p1_102, p3_102, min_205, p2_102, img_50, p1_104, p3_104, min_209, p2_104, img_51, p1_106, p3_106, min_213, p2_106, img_52, p1_108, p3_108, min_217, p2_108, img_53, p1_110, p3_110, min_221, p2_110, img_54, p1_112, p3_112, min_225, p2_112, img_55, p1_114, p3_114, min_229, p2_114, img_56, p1_116, p3_116, min_233, p2_116, img_57, p1_118, p3_118, min_237, p2_118, img_58, p1_120, p3_120, min_241, p2_120, img_59, p1_122, p3_122, min_245, p2_122, img_60, p1_124, p3_124, min_249, p2_124, img_61, p1_126, p3_126, min_253, p2_126, img_62, p1_128, p3_128, min_257, p2_128, img_63, p1_130, p3_130, min_261, p2_130, img_64, p1_132, p3_132, min_265, p2_132, img_65, p1_134, p3_134, min_269, p2_134, img_66, p1_136, p3_136, min_273, p2_136, img_67, p1_138, p3_138, min_277, p2_138, img_68, p1_140, p3_140, min_281, p2_140, img_69, p1_142, p3_142, min_285, p2_142, img_70, p1_144, p3_144, min_289, p2_144, img_71, p1_146, p3_146, min_293, p2_146, img_72, p1_148, p3_148, min_297, p2_148, img_73, p1_150, p3_150, min_301, p2_150, img_74, p1_152, p3_152, min_305, p2_152, img_75, p1_154, p3_154, min_309, p2_154, img_76, p1_156, p3_156, min_313, p2_156, img_77, p1_158, p3_158, min_317, p2_158, img_78, p1_160, p3_160, min_321, p2_160, img_79, p1_162, p3_162, min_325, p2_162, img_80, p1_164, p3_164, min_329, p2_164, img_81, p1_166, p3_166, min_333, p2_166, img_82, p1_168, p3_168, min_337, p2_168, img_83, p1_170, p3_170, min_341, p2_170, img_84, p1_172, p3_172, min_345, p2_172, img_85, p1_174, p3_174, min_349, p2_174, img_86, p1_176, p3_176, min_353, p2_176, img_87, p1_178, p3_178, min_357, p2_178, img_88, p1_180, p3_180, min_361, p2_180, img_89, p1_182, p3_182, min_365, p2_182, img_90, p1_184, p3_184, min_369, p2_184, img_91, p1_186, p3_186, min_373, p2_186, img_92, p1_188, p3_188, min_377, p2_188, img_93, p1_190, p3_190, min_381, p2_190, img_94, p1_192, p3_192, min_385, p2_192, img_95, p1_194, p3_194, min_389, p2_194, img_96, p1_196, p3_196, min_393, p2_196, img_97, p1_198, p3_198, min_397, p2_198, img_98, p1_200, p3_200, min_401, p2_200, img_99, sub_101, skel_51, sub_102, delta_50, mul_50, sub_103, relu_103, skel_52, sub_104, delta_51, mul_51, sub_105, relu_105, skel_53, sub_106, delta_52, mul_52, sub_107, relu_107, skel_54, sub_108, delta_53, mul_53, sub_109, relu_109, skel_55, sub_110, delta_54, mul_54, sub_111, relu_111, skel_56, sub_112, delta_55, mul_55, sub_113, relu_113, skel_57, sub_114, delta_56, mul_56, sub_115, relu_115, skel_58, sub_116, delta_57, mul_57, sub_117, relu_117, skel_59, sub_118, delta_58, mul_58, sub_119, relu_119, skel_60, sub_120, delta_59, mul_59, sub_121, relu_121, skel_61, sub_122, delta_60, mul_60, sub_123, relu_123, skel_62, sub_124, delta_61, mul_61, sub_125, relu_125, skel_63, sub_126, delta_62, mul_62, sub_127, relu_127, skel_64, sub_128, delta_63, mul_63, sub_129, relu_129, skel_65, sub_130, delta_64, mul_64, sub_131, relu_131, skel_66, sub_132, delta_65, mul_65, sub_133, relu_133, skel_67, sub_134, delta_66, mul_66, sub_135, relu_135, skel_68, sub_136, delta_67, mul_67, sub_137, relu_137, skel_69, sub_138, delta_68, mul_68, sub_139, relu_139, skel_70, sub_140, delta_69, mul_69, sub_141, relu_141, skel_71, sub_142, delta_70, mul_70, sub_143, relu_143, skel_72, sub_144, delta_71, mul_71, sub_145, relu_145, skel_73, sub_146, delta_72, mul_72, sub_147, relu_147, skel_74, sub_148, delta_73, mul_73, sub_149, relu_149, skel_75, sub_150, delta_74, mul_74, sub_151, relu_151, skel_76, sub_152, delta_75, mul_75, sub_153, relu_153, skel_77, sub_154, delta_76, mul_76, sub_155, relu_155, skel_78, sub_156, delta_77, mul_77, sub_157, relu_157, skel_79, sub_158, delta_78, mul_78, sub_159, relu_159, skel_80, sub_160, delta_79, mul_79, sub_161, relu_161, skel_81, sub_162, delta_80, mul_80, sub_163, relu_163, skel_82, sub_164, delta_81, mul_81, sub_165, relu_165, skel_83, sub_166, delta_82, mul_82, sub_167, relu_167, skel_84, sub_168, delta_83, mul_83, sub_169, relu_169, skel_85, sub_170, delta_84, mul_84, sub_171, relu_171, skel_86, sub_172, delta_85, mul_85, sub_173, relu_173, skel_87, sub_174, delta_86, mul_86, sub_175, relu_175, skel_88, sub_176, delta_87, mul_87, sub_177, relu_177, skel_89, sub_178, delta_88, mul_88, sub_179, relu_179, skel_90, sub_180, delta_89, mul_89, sub_181, relu_181, skel_91, sub_182, delta_90, mul_90, sub_183, relu_183, skel_92, sub_184, delta_91, mul_91, sub_185, relu_185, skel_93, sub_186, delta_92, mul_92, sub_187, relu_187, skel_94, sub_188, delta_93, mul_93, sub_189, relu_189, skel_95, sub_190, delta_94, mul_94, sub_191, relu_191, skel_96, sub_192, delta_95, mul_95, sub_193, relu_193, skel_97, sub_194, delta_96, mul_96, sub_195, relu_195, skel_98, sub_196, delta_97, mul_97, sub_197, relu_197, skel_99, sub_198, delta_98, mul_98, sub_199, relu_199, skel_100, sub_200, delta_99, mul_99, sub_201, relu_201, skel_101], Original ATen: [aten.neg, aten.minimum, aten.sub, aten.relu, aten.mul, aten.add] triton_poi_fused_add_minimum_mul_neg_relu_sub_5.run(buf2832, buf2833, buf2834, buf2835, buf2836, buf2837, buf2838, buf2839, buf2840, buf2841, buf2842, buf2843, buf2844, buf2845, buf2846, buf2847, buf2848, buf2849, buf2850, buf2851, buf2852, buf2853, buf2854, buf2855, buf2856, buf2857, buf2858, buf2859, buf2860, buf2861, buf2862, buf2863, buf2864, buf2865, buf2866, buf2867, buf2868, buf2869, buf2870, buf2871, buf2872, buf2873, buf2874, buf2875, buf2876, buf2877, buf2878, buf2879, buf2880, buf2881, arg1_1, buf1434, buf1442, buf1438, buf1458, buf1470, buf1466, buf1486, buf1498, buf1494, buf1514, buf1526, buf1522, buf1542, buf1554, buf1550, buf1570, buf1582, buf1578, buf1598, buf1610, buf1606, buf1626, buf1638, buf1634, buf1654, buf1666, buf1662, buf1682, buf1694, buf1690, buf1710, buf1722, buf1718, buf1738, buf1750, buf1746, buf1766, buf1778, buf1774, buf1794, buf1806, buf1802, buf1822, buf1834, buf1830, buf1850, buf1862, buf1858, buf1878, buf1890, buf1886, buf1906, buf1918, buf1914, buf1934, buf1946, buf1942, buf1962, buf1974, buf1970, buf1990, buf2002, buf1998, buf2018, buf2030, buf2026, buf2046, buf2058, buf2054, buf2074, buf2086, buf2082, buf2102, buf2114, buf2110, buf2130, buf2142, buf2138, buf2158, buf2170, buf2166, buf2186, buf2198, buf2194, buf2214, buf2226, buf2222, buf2242, buf2254, buf2250, buf2270, buf2282, buf2278, buf2298, buf2310, buf2306, buf2326, buf2338, buf2334, buf2354, buf2366, buf2362, buf2382, buf2394, buf2390, buf2410, buf2422, buf2418, buf2438, buf2450, buf2446, buf2466, buf2478, buf2474, buf2494, buf2506, buf2502, buf2522, buf2534, buf2530, buf2550, buf2562, buf2558, buf2578, buf2590, buf2586, buf2606, buf2618, buf2614, buf2634, buf2646, buf2642, buf2662, buf2674, buf2670, buf2690, buf2702, buf2698, buf2718, buf2730, buf2726, buf2746, buf2758, buf2754, buf2774, buf2786, buf2782, buf2802, buf2814, buf2810, buf2830, 256, grid=grid(256), stream=stream0) del arg1_1 del buf1434 del buf1438 del buf1442 del buf1458 del buf1466 del buf1470 del buf1486 del buf1494 del buf1498 del buf1514 del buf1522 del buf1526 del buf1542 del buf1550 del buf1554 del buf1570 del buf1578 del buf1582 del buf1598 del buf1606 del buf1610 del buf1626 del buf1634 del buf1638 del buf1654 del buf1662 del buf1666 del buf1682 del buf1690 del buf1694 del buf1710 del buf1718 del buf1722 del buf1738 del buf1746 del buf1750 del buf1766 del buf1774 del buf1778 del buf1794 del buf1802 del buf1806 del buf1822 del buf1830 del buf1834 del buf1850 del buf1858 del buf1862 del buf1878 del buf1886 del buf1890 del buf1906 del buf1914 del buf1918 del buf1934 del buf1942 del buf1946 del buf1962 del buf1970 del buf1974 del buf1990 del buf1998 del buf2002 del buf2018 del buf2026 del buf2030 del buf2046 del buf2054 del buf2058 del buf2074 del buf2082 del buf2086 del buf2102 del buf2110 del buf2114 del buf2130 del buf2138 del buf2142 del buf2158 del buf2166 del buf2170 del buf2186 del buf2194 del buf2198 del buf2214 del buf2222 del buf2226 del buf2242 del buf2250 del buf2254 del buf2270 del buf2278 del buf2282 del buf2298 del buf2306 del buf2310 del buf2326 del buf2334 del buf2338 del buf2354 del buf2362 del buf2366 del buf2382 del buf2390 del buf2394 del buf2410 del buf2418 del buf2422 del buf2438 del buf2446 del buf2450 del buf2466 del buf2474 del buf2478 del buf2494 del buf2502 del buf2506 del buf2522 del buf2530 del buf2534 del buf2550 del buf2558 del buf2562 del buf2578 del buf2586 del buf2590 del buf2606 del buf2614 del buf2618 del buf2634 del buf2642 del buf2646 del buf2662 del buf2670 del buf2674 del buf2690 del buf2698 del buf2702 del buf2718 del buf2726 del buf2730 del buf2746 del buf2754 del buf2758 del buf2774 del buf2782 del buf2786 del buf2802 del buf2810 del buf2814 del buf2830 del buf2832 del buf2833 del buf2834 del buf2835 del buf2836 del buf2837 del buf2838 del buf2839 del buf2840 del buf2841 del buf2842 del buf2843 del buf2844 del buf2845 del buf2846 del buf2847 del buf2848 del buf2849 del buf2850 del buf2851 del buf2852 del buf2853 del buf2854 del buf2855 del buf2856 del buf2857 del buf2858 del buf2859 del buf2860 del buf2861 del buf2862 del buf2863 del buf2864 del buf2865 del buf2866 del buf2867 del buf2868 del buf2869 del buf2870 del buf2871 del buf2872 del buf2873 del buf2874 del buf2875 del buf2876 del buf2877 del buf2878 del buf2879 del buf2880 buf2882 = buf14; del buf14 # reuse buf2883 = buf2882; del buf2882 # reuse buf2884 = buf2883; del buf2883 # reuse buf2885 = buf102; del buf102 # reuse buf2886 = buf130; del buf130 # reuse buf2887 = buf158; del buf158 # reuse buf2888 = buf186; del buf186 # reuse buf2889 = buf214; del buf214 # reuse buf2890 = buf242; del buf242 # reuse buf2891 = buf270; del buf270 # reuse buf2892 = buf2891; del buf2891 # reuse buf2893 = buf2892; del buf2892 # reuse buf2894 = buf2893; del buf2893 # reuse buf2895 = buf2894; del buf2894 # reuse buf2896 = buf2895; del buf2895 # reuse buf2897 = buf2896; del buf2896 # reuse buf2898 = buf2897; del buf2897 # reuse buf2899 = buf2898; del buf2898 # reuse buf2900 = buf2899; del buf2899 # reuse buf2901 = buf2900; del buf2900 # reuse buf2902 = buf2901; del buf2901 # reuse buf2903 = buf2902; del buf2902 # reuse buf2904 = buf2903; del buf2903 # reuse buf2905 = buf2904; del buf2904 # reuse buf2906 = buf2905; del buf2905 # reuse buf2907 = buf2906; del buf2906 # reuse buf2908 = buf2907; del buf2907 # reuse buf2909 = buf2908; del buf2908 # reuse buf2910 = buf2909; del buf2909 # reuse buf2911 = buf2910; del buf2910 # reuse buf2912 = buf2911; del buf2911 # reuse buf2913 = buf2912; del buf2912 # reuse buf2914 = buf2913; del buf2913 # reuse buf2915 = buf2914; del buf2914 # reuse buf2916 = buf2915; del buf2915 # reuse buf2917 = buf1002; del buf1002 # reuse buf2918 = buf1026; del buf1026 # reuse buf2919 = buf1054; del buf1054 # reuse buf2920 = buf1082; del buf1082 # reuse buf2921 = buf1110; del buf1110 # reuse buf2922 = buf1138; del buf1138 # reuse buf2923 = buf1166; del buf1166 # reuse buf2924 = buf1194; del buf1194 # reuse buf2925 = buf1222; del buf1222 # reuse buf2926 = buf1250; del buf1250 # reuse buf2927 = buf1278; del buf1278 # reuse buf2928 = buf1306; del buf1306 # reuse buf2929 = buf1334; del buf1334 # reuse buf2930 = buf1362; del buf1362 # reuse buf2931 = buf1390; del buf1390 # reuse # Topologically Sorted Source Nodes: [p1_1, p3_1, min_3, p2_1, img, p1_3, p3_3, min_7, p2_3, img_1, p1_5, p3_5, min_11, p2_5, img_2, p1_7, p3_7, min_15, p2_7, img_3, p1_9, p3_9, min_19, p2_9, img_4, p1_11, p3_11, min_23, p2_11, img_5, p1_13, p3_13, min_27, p2_13, img_6, p1_15, p3_15, min_31, p2_15, img_7, p1_17, p3_17, min_35, p2_17, img_8, p1_19, p3_19, min_39, p2_19, img_9, p1_21, p3_21, min_43, p2_21, img_10, p1_23, p3_23, min_47, p2_23, img_11, p1_25, p3_25, min_51, p2_25, img_12, p1_27, p3_27, min_55, p2_27, img_13, p1_29, p3_29, min_59, p2_29, img_14, p1_31, p3_31, min_63, p2_31, img_15, p1_33, p3_33, min_67, p2_33, img_16, p1_35, p3_35, min_71, p2_35, img_17, p1_37, p3_37, min_75, p2_37, img_18, p1_39, p3_39, min_79, p2_39, img_19, p1_41, p3_41, min_83, p2_41, img_20, p1_43, p3_43, min_87, p2_43, img_21, p1_45, p3_45, min_91, p2_45, img_22, p1_47, p3_47, min_95, p2_47, img_23, p1_49, p3_49, min_99, p2_49, img_24, p1_51, p3_51, min_103, p2_51, img_25, p1_53, p3_53, min_107, p2_53, img_26, p1_55, p3_55, min_111, p2_55, img_27, p1_57, p3_57, min_115, p2_57, img_28, p1_59, p3_59, min_119, p2_59, img_29, p1_61, p3_61, min_123, p2_61, img_30, p1_63, p3_63, min_127, p2_63, img_31, p1_65, p3_65, min_131, p2_65, img_32, p1_67, p3_67, min_135, p2_67, img_33, p1_69, p3_69, min_139, p2_69, img_34, p1_71, p3_71, min_143, p2_71, img_35, p1_73, p3_73, min_147, p2_73, img_36, p1_75, p3_75, min_151, p2_75, img_37, p1_77, p3_77, min_155, p2_77, img_38, p1_79, p3_79, min_159, p2_79, img_39, p1_81, p3_81, min_163, p2_81, img_40, p1_83, p3_83, min_167, p2_83, img_41, p1_85, p3_85, min_171, p2_85, img_42, p1_87, p3_87, min_175, p2_87, img_43, p1_89, p3_89, min_179, p2_89, img_44, p1_91, p3_91, min_183, p2_91, img_45, p1_93, p3_93, min_187, p2_93, img_46, p1_95, p3_95, min_191, p2_95, img_47, p1_97, p3_97, min_195, p2_97, img_48, p1_99, p3_99, min_199, p2_99, img_49, sub, skel, sub_1, delta, mul, sub_2, relu_2, skel_1, sub_3, delta_1, mul_1, sub_4, relu_4, skel_2, sub_5, delta_2, mul_2, sub_6, relu_6, skel_3, sub_7, delta_3, mul_3, sub_8, relu_8, skel_4, sub_9, delta_4, mul_4, sub_10, relu_10, skel_5, sub_11, delta_5, mul_5, sub_12, relu_12, skel_6, sub_13, delta_6, mul_6, sub_14, relu_14, skel_7, sub_15, delta_7, mul_7, sub_16, relu_16, skel_8, sub_17, delta_8, mul_8, sub_18, relu_18, skel_9, sub_19, delta_9, mul_9, sub_20, relu_20, skel_10, sub_21, delta_10, mul_10, sub_22, relu_22, skel_11, sub_23, delta_11, mul_11, sub_24, relu_24, skel_12, sub_25, delta_12, mul_12, sub_26, relu_26, skel_13, sub_27, delta_13, mul_13, sub_28, relu_28, skel_14, sub_29, delta_14, mul_14, sub_30, relu_30, skel_15, sub_31, delta_15, mul_15, sub_32, relu_32, skel_16, sub_33, delta_16, mul_16, sub_34, relu_34, skel_17, sub_35, delta_17, mul_17, sub_36, relu_36, skel_18, sub_37, delta_18, mul_18, sub_38, relu_38, skel_19, sub_39, delta_19, mul_19, sub_40, relu_40, skel_20, sub_41, delta_20, mul_20, sub_42, relu_42, skel_21, sub_43, delta_21, mul_21, sub_44, relu_44, skel_22, sub_45, delta_22, mul_22, sub_46, relu_46, skel_23, sub_47, delta_23, mul_23, sub_48, relu_48, skel_24, sub_49, delta_24, mul_24, sub_50, relu_50, skel_25, sub_51, delta_25, mul_25, sub_52, relu_52, skel_26, sub_53, delta_26, mul_26, sub_54, relu_54, skel_27, sub_55, delta_27, mul_27, sub_56, relu_56, skel_28, sub_57, delta_28, mul_28, sub_58, relu_58, skel_29, sub_59, delta_29, mul_29, sub_60, relu_60, skel_30, sub_61, delta_30, mul_30, sub_62, relu_62, skel_31, sub_63, delta_31, mul_31, sub_64, relu_64, skel_32, sub_65, delta_32, mul_32, sub_66, relu_66, skel_33, sub_67, delta_33, mul_33, sub_68, relu_68, skel_34, sub_69, delta_34, mul_34, sub_70, relu_70, skel_35, sub_71, delta_35, mul_35, sub_72, relu_72, skel_36, sub_73, delta_36, mul_36, sub_74, relu_74, skel_37, sub_75, delta_37, mul_37, sub_76, relu_76, skel_38, sub_77, delta_38, mul_38, sub_78, relu_78, skel_39, sub_79, delta_39, mul_39, sub_80, relu_80, skel_40, sub_81, delta_40, mul_40, sub_82, relu_82, skel_41, sub_83, delta_41, mul_41, sub_84, relu_84, skel_42, sub_85, delta_42, mul_42, sub_86, relu_86, skel_43, sub_87, delta_43, mul_43, sub_88, relu_88, skel_44, sub_89, delta_44, mul_44, sub_90, relu_90, skel_45, sub_91, delta_45, mul_45, sub_92, relu_92, skel_46, sub_93, delta_46, mul_46, sub_94, relu_94, skel_47, sub_95, delta_47, mul_47, sub_96, relu_96, skel_48, sub_97, delta_48, mul_48, sub_98, relu_98, skel_49, sub_99, delta_49, mul_49, sub_100, relu_100, skel_50], Original ATen: [aten.neg, aten.minimum, aten.sub, aten.relu, aten.mul, aten.add] triton_poi_fused_add_minimum_mul_neg_relu_sub_6.run(buf2884, buf2885, buf2886, buf2887, buf2888, buf2889, buf2890, buf2916, buf2917, buf2918, buf2919, buf2920, buf2921, buf2922, buf2923, buf2924, buf2925, buf2926, buf2927, buf2928, buf2929, buf2930, buf2931, arg0_1, buf18, buf26, buf22, buf42, buf46, buf54, buf50, buf70, buf74, buf82, buf78, buf98, buf110, buf106, buf126, buf138, buf134, buf154, buf166, buf162, buf182, buf194, buf190, buf210, buf222, buf218, buf238, buf250, buf246, buf266, buf278, buf274, buf294, buf298, buf306, buf302, buf322, buf326, buf334, buf330, buf350, buf354, buf362, buf358, buf378, buf382, buf390, buf386, buf406, buf410, buf418, buf414, buf434, buf438, buf446, buf442, buf462, buf466, buf474, buf470, buf490, buf494, buf502, buf498, buf518, buf522, buf530, buf526, buf546, buf550, buf558, buf554, buf574, buf578, buf586, buf582, buf602, buf606, buf614, buf610, buf630, buf634, buf642, buf638, buf658, buf662, buf670, buf666, buf686, buf690, buf698, buf694, buf714, buf718, buf726, buf722, buf742, buf746, buf754, buf750, buf770, buf774, buf782, buf778, buf798, buf802, buf810, buf806, buf826, buf830, buf838, buf834, buf854, buf858, buf866, buf862, buf882, buf886, buf894, buf890, buf910, buf914, buf922, buf918, buf938, buf942, buf950, buf946, buf966, buf970, buf978, buf974, buf994, buf998, buf1006, buf1022, buf1034, buf1030, buf1050, buf1062, buf1058, buf1078, buf1090, buf1086, buf1106, buf1118, buf1114, buf1134, buf1146, buf1142, buf1162, buf1174, buf1170, buf1190, buf1202, buf1198, buf1218, buf1230, buf1226, buf1246, buf1258, buf1254, buf1274, buf1286, buf1282, buf1302, buf1314, buf1310, buf1330, buf1342, buf1338, buf1358, buf1370, buf1366, buf1386, buf1398, buf1394, buf1414, 256, grid=grid(256), stream=stream0) del arg0_1 del buf1006 del buf1022 del buf1030 del buf1034 del buf1050 del buf1058 del buf106 del buf1062 del buf1078 del buf1086 del buf1090 del buf110 del buf1106 del buf1114 del buf1118 del buf1134 del buf1142 del buf1146 del buf1162 del buf1170 del buf1174 del buf1190 del buf1198 del buf1202 del buf1218 del buf1226 del buf1230 del buf1246 del buf1254 del buf1258 del buf126 del buf1274 del buf1282 del buf1286 del buf1302 del buf1310 del buf1314 del buf1330 del buf1338 del buf134 del buf1342 del buf1358 del buf1366 del buf1370 del buf138 del buf1386 del buf1394 del buf1398 del buf1414 del buf154 del buf162 del buf166 del buf18 del buf182 del buf190 del buf194 del buf210 del buf218 del buf22 del buf222 del buf238 del buf246 del buf250 del buf26 del buf266 del buf274 del buf278 del buf2884 del buf2885 del buf2886 del buf2887 del buf2888 del buf2889 del buf2890 del buf2916 del buf2917 del buf2918 del buf2919 del buf2920 del buf2921 del buf2922 del buf2923 del buf2924 del buf2925 del buf2926 del buf2927 del buf2928 del buf2929 del buf2930 del buf294 del buf298 del buf302 del buf306 del buf322 del buf326 del buf330 del buf334 del buf350 del buf354 del buf358 del buf362 del buf378 del buf382 del buf386 del buf390 del buf406 del buf410 del buf414 del buf418 del buf42 del buf434 del buf438 del buf442 del buf446 del buf46 del buf462 del buf466 del buf470 del buf474 del buf490 del buf494 del buf498 del buf50 del buf502 del buf518 del buf522 del buf526 del buf530 del buf54 del buf546 del buf550 del buf554 del buf558 del buf574 del buf578 del buf582 del buf586 del buf602 del buf606 del buf610 del buf614 del buf630 del buf634 del buf638 del buf642 del buf658 del buf662 del buf666 del buf670 del buf686 del buf690 del buf694 del buf698 del buf70 del buf714 del buf718 del buf722 del buf726 del buf74 del buf742 del buf746 del buf750 del buf754 del buf770 del buf774 del buf778 del buf78 del buf782 del buf798 del buf802 del buf806 del buf810 del buf82 del buf826 del buf830 del buf834 del buf838 del buf854 del buf858 del buf862 del buf866 del buf882 del buf886 del buf890 del buf894 del buf910 del buf914 del buf918 del buf922 del buf938 del buf942 del buf946 del buf950 del buf966 del buf970 del buf974 del buf978 del buf98 del buf994 del buf998 return (buf2881, buf2931, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn import torch.jit import torch.nn.functional as F import torch.nn.functional def sum_tensor(inp, axes, keepdim=False): axes = np.unique(axes).astype(int) if keepdim: for ax in axes: inp = inp.sum(int(ax), keepdim=True) else: for ax in sorted(axes, reverse=True): inp = inp.sum(int(ax)) return inp def get_tp_fp_fn_tn(net_output, gt, axes=None, mask=None, square=False): """ net_output must be (b, c, x, y(, z))) gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z)) if mask is provided it must have shape (b, 1, x, y(, z))) :param net_output: :param gt: :param axes: can be (, ) = no summation :param mask: mask must be 1 for valid pixels and 0 for invalid pixels :param square: if True then fp, tp and fn will be squared before summation :return: """ if axes is None: axes = tuple(range(2, len(net_output.size()))) shp_x = net_output.shape shp_y = gt.shape with torch.no_grad(): if len(shp_x) != len(shp_y): gt = gt.view((shp_y[0], 1, *shp_y[1:])) if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]): y_onehot = gt else: gt = gt.long() y_onehot = torch.zeros(shp_x) if net_output.device.type == 'cuda': y_onehot = y_onehot y_onehot.scatter_(1, gt, 1) tp = net_output * y_onehot fp = net_output * (1 - y_onehot) fn = (1 - net_output) * y_onehot tn = (1 - net_output) * (1 - y_onehot) if mask is not None: tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1) fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1) fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1) tn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tn, dim=1)), dim=1) if square: tp = tp ** 2 fp = fp ** 2 fn = fn ** 2 tn = tn ** 2 if len(axes) > 0: tp = sum_tensor(tp, axes, keepdim=False) fp = sum_tensor(fp, axes, keepdim=False) fn = sum_tensor(fn, axes, keepdim=False) tn = sum_tensor(tn, axes, keepdim=False) return tp, fp, fn, tn def soft_erode(I): p1 = -F.max_pool3d(-I, (3, 1, 1), (1, 1, 1), (1, 0, 0)) p2 = -F.max_pool3d(-I, (1, 3, 1), (1, 1, 1), (0, 1, 0)) p3 = -F.max_pool3d(-I, (1, 1, 3), (1, 1, 1), (0, 0, 1)) return torch.min(torch.min(p1, p3), p2) def soft_dilate(I): return F.max_pool3d(I, (3, 3, 3), (1, 1, 1), (1, 1, 1)) def soft_open(I): return soft_dilate(soft_erode(I)) def soft_skel(img, k=50): img1 = soft_open(img) skel = F.relu(img - img1) for iter in range(k): img = soft_erode(img) img1 = soft_open(img) delta = F.relu(img - img1) skel = skel + F.relu(delta - skel * delta) if torch.cuda.is_available(): del img1 del delta return skel class SoftClDiceLoss(nn.Module): def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True, smooth=1.0, k=2): """ """ super(SoftClDiceLoss, self).__init__() self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth self.k = k def softCenterline(self, I): max = nn.MaxPool3d(3, stride=1, padding=1) relu = nn.ReLU() Ip = max(-max(-I)) cl = relu(I - Ip) for iter in range(self.k): I = -max(-I) Ip = max(-max(-I)) cl = cl + cl * relu(I - Ip) return cl def forward(self, x, y, loss_mask=None): shp_x = x.shape if self.batch_dice: axes = [0] + list(range(2, len(shp_x))) else: axes = list(range(2, len(shp_x))) if self.apply_nonlin is not None: x = self.apply_nonlin(x) clp = soft_skel(x) cll = soft_skel(y) tp, _fp, fn, _tn = get_tp_fp_fn_tn(x, cll, axes, loss_mask, False) tpc, fpc, _fnc, _tnc = get_tp_fp_fn_tn(clp, y, axes, loss_mask, False) clp2vollnom = tpc + self.smooth clp2vollden = tpc + fpc + self.smooth clp2voll = clp2vollnom / clp2vollden cll2volpnom = tp + self.smooth cll2volpden = tp + fn + self.smooth cll2volp = cll2volpnom / cll2volpden dc = 2 * clp2voll * cll2volp / (cll2volp + clp2voll + 1e-08) if not self.do_bg: if self.batch_dice: dc = dc[1:] else: dc = dc[:, 1:] dc = dc.mean() return 1 - dc def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np from torch import nn import torch.jit import torch.nn.functional as F import torch.nn.functional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_neg_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = -tmp0 tl.store(out_ptr0 + x0, tmp1, xmask) tl.store(out_ptr1 + x0, tmp1, xmask) tl.store(out_ptr2 + x0, tmp1, xmask) tl.store(out_ptr3 + x0, tmp1, xmask) tl.store(out_ptr4 + x0, tmp1, xmask) tl.store(out_ptr5 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_minimum_neg_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_out_ptr0 + x0, xmask) tmp5 = tl.load(in_ptr1 + x0, xmask) tmp1 = -tmp0 tmp3 = -tmp2 tmp4 = triton_helpers.minimum(tmp1, tmp3) tmp6 = -tmp5 tmp7 = triton_helpers.minimum(tmp4, tmp6) tl.store(in_out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_minimum_neg_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp5 = tl.load(in_ptr2 + x0, xmask) tmp1 = -tmp0 tmp3 = -tmp2 tmp4 = triton_helpers.minimum(tmp1, tmp3) tmp6 = -tmp5 tmp7 = triton_helpers.minimum(tmp4, tmp6) tmp8 = -tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp8, xmask) tl.store(out_ptr2 + x0, tmp8, xmask) tl.store(out_ptr3 + x0, tmp8, xmask) tl.store(out_ptr4 + x0, tmp8, xmask) tl.store(out_ptr5 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_minimum_neg_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr0 + x0, xmask) tmp5 = tl.load(in_ptr1 + x0, xmask) tmp1 = -tmp0 tmp3 = -tmp2 tmp4 = triton_helpers.minimum(tmp1, tmp3) tmp6 = -tmp5 tmp7 = triton_helpers.minimum(tmp4, tmp6) tl.store(in_out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_minimum_neg_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp5 = tl.load(in_ptr2 + x0, xmask) tmp1 = -tmp0 tmp3 = -tmp2 tmp4 = triton_helpers.minimum(tmp1, tmp3) tmp6 = -tmp5 tmp7 = triton_helpers.minimum(tmp4, tmp6) tmp8 = -tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp8, xmask) tl.store(out_ptr2 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_minimum_mul_neg_relu_sub_5(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_out_ptr4, in_out_ptr5, in_out_ptr6, in_out_ptr7, in_out_ptr8, in_out_ptr9, in_out_ptr10, in_out_ptr11, in_out_ptr12, in_out_ptr13, in_out_ptr14, in_out_ptr15, in_out_ptr16, in_out_ptr17, in_out_ptr18, in_out_ptr19, in_out_ptr20, in_out_ptr21, in_out_ptr22, in_out_ptr23, in_out_ptr24, in_out_ptr25, in_out_ptr26, in_out_ptr27, in_out_ptr28, in_out_ptr29, in_out_ptr30, in_out_ptr31, in_out_ptr32, in_out_ptr33, in_out_ptr34, in_out_ptr35, in_out_ptr36, in_out_ptr37, in_out_ptr38, in_out_ptr39, in_out_ptr40, in_out_ptr41, in_out_ptr42, in_out_ptr43, in_out_ptr44, in_out_ptr45, in_out_ptr46, in_out_ptr47, in_out_ptr48, in_out_ptr49, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, in_ptr64, in_ptr65, in_ptr66, in_ptr67, in_ptr68, in_ptr69, in_ptr70, in_ptr71, in_ptr72, in_ptr73, in_ptr74, in_ptr75, in_ptr76, in_ptr77, in_ptr78, in_ptr79, in_ptr80, in_ptr81, in_ptr82, in_ptr83, in_ptr84, in_ptr85, in_ptr86, in_ptr87, in_ptr88, in_ptr89, in_ptr90, in_ptr91, in_ptr92, in_ptr93, in_ptr94, in_ptr95, in_ptr96, in_ptr97, in_ptr98, in_ptr99, in_ptr100, in_ptr101, in_ptr102, in_ptr103, in_ptr104, in_ptr105, in_ptr106, in_ptr107, in_ptr108, in_ptr109, in_ptr110, in_ptr111, in_ptr112, in_ptr113, in_ptr114, in_ptr115, in_ptr116, in_ptr117, in_ptr118, in_ptr119, in_ptr120, in_ptr121, in_ptr122, in_ptr123, in_ptr124, in_ptr125, in_ptr126, in_ptr127, in_ptr128, in_ptr129, in_ptr130, in_ptr131, in_ptr132, in_ptr133, in_ptr134, in_ptr135, in_ptr136, in_ptr137, in_ptr138, in_ptr139, in_ptr140, in_ptr141, in_ptr142, in_ptr143, in_ptr144, in_ptr145, in_ptr146, in_ptr147, in_ptr148, in_ptr149, in_ptr150, in_ptr151, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp5 = tl.load(in_ptr1 + x0, xmask) tmp7 = tl.load(in_ptr2 + x0, xmask) tmp10 = tl.load(in_ptr3 + x0, xmask) tmp13 = tl.load(in_ptr4 + x0, xmask) tmp20 = tl.load(in_out_ptr1 + x0, xmask) tmp22 = tl.load(in_ptr5 + x0, xmask) tmp25 = tl.load(in_ptr6 + x0, xmask) tmp28 = tl.load(in_ptr7 + x0, xmask) tmp35 = tl.load(in_out_ptr2 + x0, xmask) tmp37 = tl.load(in_ptr8 + x0, xmask) tmp40 = tl.load(in_ptr9 + x0, xmask) tmp43 = tl.load(in_ptr10 + x0, xmask) tmp50 = tl.load(in_out_ptr3 + x0, xmask) tmp52 = tl.load(in_ptr11 + x0, xmask) tmp55 = tl.load(in_ptr12 + x0, xmask) tmp58 = tl.load(in_ptr13 + x0, xmask) tmp65 = tl.load(in_out_ptr4 + x0, xmask) tmp67 = tl.load(in_ptr14 + x0, xmask) tmp70 = tl.load(in_ptr15 + x0, xmask) tmp73 = tl.load(in_ptr16 + x0, xmask) tmp80 = tl.load(in_out_ptr5 + x0, xmask) tmp82 = tl.load(in_ptr17 + x0, xmask) tmp85 = tl.load(in_ptr18 + x0, xmask) tmp88 = tl.load(in_ptr19 + x0, xmask) tmp95 = tl.load(in_out_ptr6 + x0, xmask) tmp97 = tl.load(in_ptr20 + x0, xmask) tmp100 = tl.load(in_ptr21 + x0, xmask) tmp103 = tl.load(in_ptr22 + x0, xmask) tmp110 = tl.load(in_out_ptr7 + x0, xmask) tmp112 = tl.load(in_ptr23 + x0, xmask) tmp115 = tl.load(in_ptr24 + x0, xmask) tmp118 = tl.load(in_ptr25 + x0, xmask) tmp125 = tl.load(in_out_ptr8 + x0, xmask) tmp127 = tl.load(in_ptr26 + x0, xmask) tmp130 = tl.load(in_ptr27 + x0, xmask) tmp133 = tl.load(in_ptr28 + x0, xmask) tmp140 = tl.load(in_out_ptr9 + x0, xmask) tmp142 = tl.load(in_ptr29 + x0, xmask) tmp145 = tl.load(in_ptr30 + x0, xmask) tmp148 = tl.load(in_ptr31 + x0, xmask) tmp155 = tl.load(in_out_ptr10 + x0, xmask) tmp157 = tl.load(in_ptr32 + x0, xmask) tmp160 = tl.load(in_ptr33 + x0, xmask) tmp163 = tl.load(in_ptr34 + x0, xmask) tmp170 = tl.load(in_out_ptr11 + x0, xmask) tmp172 = tl.load(in_ptr35 + x0, xmask) tmp175 = tl.load(in_ptr36 + x0, xmask) tmp178 = tl.load(in_ptr37 + x0, xmask) tmp185 = tl.load(in_out_ptr12 + x0, xmask) tmp187 = tl.load(in_ptr38 + x0, xmask) tmp190 = tl.load(in_ptr39 + x0, xmask) tmp193 = tl.load(in_ptr40 + x0, xmask) tmp200 = tl.load(in_out_ptr13 + x0, xmask) tmp202 = tl.load(in_ptr41 + x0, xmask) tmp205 = tl.load(in_ptr42 + x0, xmask) tmp208 = tl.load(in_ptr43 + x0, xmask) tmp215 = tl.load(in_out_ptr14 + x0, xmask) tmp217 = tl.load(in_ptr44 + x0, xmask) tmp220 = tl.load(in_ptr45 + x0, xmask) tmp223 = tl.load(in_ptr46 + x0, xmask) tmp230 = tl.load(in_out_ptr15 + x0, xmask) tmp232 = tl.load(in_ptr47 + x0, xmask) tmp235 = tl.load(in_ptr48 + x0, xmask) tmp238 = tl.load(in_ptr49 + x0, xmask) tmp245 = tl.load(in_out_ptr16 + x0, xmask) tmp247 = tl.load(in_ptr50 + x0, xmask) tmp250 = tl.load(in_ptr51 + x0, xmask) tmp253 = tl.load(in_ptr52 + x0, xmask) tmp260 = tl.load(in_out_ptr17 + x0, xmask) tmp262 = tl.load(in_ptr53 + x0, xmask) tmp265 = tl.load(in_ptr54 + x0, xmask) tmp268 = tl.load(in_ptr55 + x0, xmask) tmp275 = tl.load(in_out_ptr18 + x0, xmask) tmp277 = tl.load(in_ptr56 + x0, xmask) tmp280 = tl.load(in_ptr57 + x0, xmask) tmp283 = tl.load(in_ptr58 + x0, xmask) tmp290 = tl.load(in_out_ptr19 + x0, xmask) tmp292 = tl.load(in_ptr59 + x0, xmask) tmp295 = tl.load(in_ptr60 + x0, xmask) tmp298 = tl.load(in_ptr61 + x0, xmask) tmp305 = tl.load(in_out_ptr20 + x0, xmask) tmp307 = tl.load(in_ptr62 + x0, xmask) tmp310 = tl.load(in_ptr63 + x0, xmask) tmp313 = tl.load(in_ptr64 + x0, xmask) tmp320 = tl.load(in_out_ptr21 + x0, xmask) tmp322 = tl.load(in_ptr65 + x0, xmask) tmp325 = tl.load(in_ptr66 + x0, xmask) tmp328 = tl.load(in_ptr67 + x0, xmask) tmp335 = tl.load(in_out_ptr22 + x0, xmask) tmp337 = tl.load(in_ptr68 + x0, xmask) tmp340 = tl.load(in_ptr69 + x0, xmask) tmp343 = tl.load(in_ptr70 + x0, xmask) tmp350 = tl.load(in_out_ptr23 + x0, xmask) tmp352 = tl.load(in_ptr71 + x0, xmask) tmp355 = tl.load(in_ptr72 + x0, xmask) tmp358 = tl.load(in_ptr73 + x0, xmask) tmp365 = tl.load(in_out_ptr24 + x0, xmask) tmp367 = tl.load(in_ptr74 + x0, xmask) tmp370 = tl.load(in_ptr75 + x0, xmask) tmp373 = tl.load(in_ptr76 + x0, xmask) tmp380 = tl.load(in_out_ptr25 + x0, xmask) tmp382 = tl.load(in_ptr77 + x0, xmask) tmp385 = tl.load(in_ptr78 + x0, xmask) tmp388 = tl.load(in_ptr79 + x0, xmask) tmp395 = tl.load(in_out_ptr26 + x0, xmask) tmp397 = tl.load(in_ptr80 + x0, xmask) tmp400 = tl.load(in_ptr81 + x0, xmask) tmp403 = tl.load(in_ptr82 + x0, xmask) tmp410 = tl.load(in_out_ptr27 + x0, xmask) tmp412 = tl.load(in_ptr83 + x0, xmask) tmp415 = tl.load(in_ptr84 + x0, xmask) tmp418 = tl.load(in_ptr85 + x0, xmask) tmp425 = tl.load(in_out_ptr28 + x0, xmask) tmp427 = tl.load(in_ptr86 + x0, xmask) tmp430 = tl.load(in_ptr87 + x0, xmask) tmp433 = tl.load(in_ptr88 + x0, xmask) tmp440 = tl.load(in_out_ptr29 + x0, xmask) tmp442 = tl.load(in_ptr89 + x0, xmask) tmp445 = tl.load(in_ptr90 + x0, xmask) tmp448 = tl.load(in_ptr91 + x0, xmask) tmp455 = tl.load(in_out_ptr30 + x0, xmask) tmp457 = tl.load(in_ptr92 + x0, xmask) tmp460 = tl.load(in_ptr93 + x0, xmask) tmp463 = tl.load(in_ptr94 + x0, xmask) tmp470 = tl.load(in_out_ptr31 + x0, xmask) tmp472 = tl.load(in_ptr95 + x0, xmask) tmp475 = tl.load(in_ptr96 + x0, xmask) tmp478 = tl.load(in_ptr97 + x0, xmask) tmp485 = tl.load(in_out_ptr32 + x0, xmask) tmp487 = tl.load(in_ptr98 + x0, xmask) tmp490 = tl.load(in_ptr99 + x0, xmask) tmp493 = tl.load(in_ptr100 + x0, xmask) tmp500 = tl.load(in_out_ptr33 + x0, xmask) tmp502 = tl.load(in_ptr101 + x0, xmask) tmp505 = tl.load(in_ptr102 + x0, xmask) tmp508 = tl.load(in_ptr103 + x0, xmask) tmp515 = tl.load(in_out_ptr34 + x0, xmask) tmp517 = tl.load(in_ptr104 + x0, xmask) tmp520 = tl.load(in_ptr105 + x0, xmask) tmp523 = tl.load(in_ptr106 + x0, xmask) tmp530 = tl.load(in_out_ptr35 + x0, xmask) tmp532 = tl.load(in_ptr107 + x0, xmask) tmp535 = tl.load(in_ptr108 + x0, xmask) tmp538 = tl.load(in_ptr109 + x0, xmask) tmp545 = tl.load(in_out_ptr36 + x0, xmask) tmp547 = tl.load(in_ptr110 + x0, xmask) tmp550 = tl.load(in_ptr111 + x0, xmask) tmp553 = tl.load(in_ptr112 + x0, xmask) tmp560 = tl.load(in_out_ptr37 + x0, xmask) tmp562 = tl.load(in_ptr113 + x0, xmask) tmp565 = tl.load(in_ptr114 + x0, xmask) tmp568 = tl.load(in_ptr115 + x0, xmask) tmp575 = tl.load(in_out_ptr38 + x0, xmask) tmp577 = tl.load(in_ptr116 + x0, xmask) tmp580 = tl.load(in_ptr117 + x0, xmask) tmp583 = tl.load(in_ptr118 + x0, xmask) tmp590 = tl.load(in_out_ptr39 + x0, xmask) tmp592 = tl.load(in_ptr119 + x0, xmask) tmp595 = tl.load(in_ptr120 + x0, xmask) tmp598 = tl.load(in_ptr121 + x0, xmask) tmp605 = tl.load(in_out_ptr40 + x0, xmask) tmp607 = tl.load(in_ptr122 + x0, xmask) tmp610 = tl.load(in_ptr123 + x0, xmask) tmp613 = tl.load(in_ptr124 + x0, xmask) tmp620 = tl.load(in_out_ptr41 + x0, xmask) tmp622 = tl.load(in_ptr125 + x0, xmask) tmp625 = tl.load(in_ptr126 + x0, xmask) tmp628 = tl.load(in_ptr127 + x0, xmask) tmp635 = tl.load(in_out_ptr42 + x0, xmask) tmp637 = tl.load(in_ptr128 + x0, xmask) tmp640 = tl.load(in_ptr129 + x0, xmask) tmp643 = tl.load(in_ptr130 + x0, xmask) tmp650 = tl.load(in_out_ptr43 + x0, xmask) tmp652 = tl.load(in_ptr131 + x0, xmask) tmp655 = tl.load(in_ptr132 + x0, xmask) tmp658 = tl.load(in_ptr133 + x0, xmask) tmp665 = tl.load(in_out_ptr44 + x0, xmask) tmp667 = tl.load(in_ptr134 + x0, xmask) tmp670 = tl.load(in_ptr135 + x0, xmask) tmp673 = tl.load(in_ptr136 + x0, xmask) tmp680 = tl.load(in_out_ptr45 + x0, xmask) tmp682 = tl.load(in_ptr137 + x0, xmask) tmp685 = tl.load(in_ptr138 + x0, xmask) tmp688 = tl.load(in_ptr139 + x0, xmask) tmp695 = tl.load(in_out_ptr46 + x0, xmask) tmp697 = tl.load(in_ptr140 + x0, xmask) tmp700 = tl.load(in_ptr141 + x0, xmask) tmp703 = tl.load(in_ptr142 + x0, xmask) tmp710 = tl.load(in_out_ptr47 + x0, xmask) tmp712 = tl.load(in_ptr143 + x0, xmask) tmp715 = tl.load(in_ptr144 + x0, xmask) tmp718 = tl.load(in_ptr145 + x0, xmask) tmp725 = tl.load(in_out_ptr48 + x0, xmask) tmp727 = tl.load(in_ptr146 + x0, xmask) tmp730 = tl.load(in_ptr147 + x0, xmask) tmp733 = tl.load(in_ptr148 + x0, xmask) tmp740 = tl.load(in_out_ptr49 + x0, xmask) tmp742 = tl.load(in_ptr149 + x0, xmask) tmp745 = tl.load(in_ptr150 + x0, xmask) tmp748 = tl.load(in_ptr151 + x0, xmask) tmp2 = tmp0 - tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = -tmp5 tmp8 = -tmp7 tmp9 = triton_helpers.minimum(tmp6, tmp8) tmp11 = -tmp10 tmp12 = triton_helpers.minimum(tmp9, tmp11) tmp14 = tmp12 - tmp13 tmp15 = triton_helpers.maximum(tmp3, tmp14) tmp16 = tmp4 * tmp15 tmp17 = tmp15 - tmp16 tmp18 = triton_helpers.maximum(tmp3, tmp17) tmp19 = tmp4 + tmp18 tmp21 = -tmp20 tmp23 = -tmp22 tmp24 = triton_helpers.minimum(tmp21, tmp23) tmp26 = -tmp25 tmp27 = triton_helpers.minimum(tmp24, tmp26) tmp29 = tmp27 - tmp28 tmp30 = triton_helpers.maximum(tmp3, tmp29) tmp31 = tmp19 * tmp30 tmp32 = tmp30 - tmp31 tmp33 = triton_helpers.maximum(tmp3, tmp32) tmp34 = tmp19 + tmp33 tmp36 = -tmp35 tmp38 = -tmp37 tmp39 = triton_helpers.minimum(tmp36, tmp38) tmp41 = -tmp40 tmp42 = triton_helpers.minimum(tmp39, tmp41) tmp44 = tmp42 - tmp43 tmp45 = triton_helpers.maximum(tmp3, tmp44) tmp46 = tmp34 * tmp45 tmp47 = tmp45 - tmp46 tmp48 = triton_helpers.maximum(tmp3, tmp47) tmp49 = tmp34 + tmp48 tmp51 = -tmp50 tmp53 = -tmp52 tmp54 = triton_helpers.minimum(tmp51, tmp53) tmp56 = -tmp55 tmp57 = triton_helpers.minimum(tmp54, tmp56) tmp59 = tmp57 - tmp58 tmp60 = triton_helpers.maximum(tmp3, tmp59) tmp61 = tmp49 * tmp60 tmp62 = tmp60 - tmp61 tmp63 = triton_helpers.maximum(tmp3, tmp62) tmp64 = tmp49 + tmp63 tmp66 = -tmp65 tmp68 = -tmp67 tmp69 = triton_helpers.minimum(tmp66, tmp68) tmp71 = -tmp70 tmp72 = triton_helpers.minimum(tmp69, tmp71) tmp74 = tmp72 - tmp73 tmp75 = triton_helpers.maximum(tmp3, tmp74) tmp76 = tmp64 * tmp75 tmp77 = tmp75 - tmp76 tmp78 = triton_helpers.maximum(tmp3, tmp77) tmp79 = tmp64 + tmp78 tmp81 = -tmp80 tmp83 = -tmp82 tmp84 = triton_helpers.minimum(tmp81, tmp83) tmp86 = -tmp85 tmp87 = triton_helpers.minimum(tmp84, tmp86) tmp89 = tmp87 - tmp88 tmp90 = triton_helpers.maximum(tmp3, tmp89) tmp91 = tmp79 * tmp90 tmp92 = tmp90 - tmp91 tmp93 = triton_helpers.maximum(tmp3, tmp92) tmp94 = tmp79 + tmp93 tmp96 = -tmp95 tmp98 = -tmp97 tmp99 = triton_helpers.minimum(tmp96, tmp98) tmp101 = -tmp100 tmp102 = triton_helpers.minimum(tmp99, tmp101) tmp104 = tmp102 - tmp103 tmp105 = triton_helpers.maximum(tmp3, tmp104) tmp106 = tmp94 * tmp105 tmp107 = tmp105 - tmp106 tmp108 = triton_helpers.maximum(tmp3, tmp107) tmp109 = tmp94 + tmp108 tmp111 = -tmp110 tmp113 = -tmp112 tmp114 = triton_helpers.minimum(tmp111, tmp113) tmp116 = -tmp115 tmp117 = triton_helpers.minimum(tmp114, tmp116) tmp119 = tmp117 - tmp118 tmp120 = triton_helpers.maximum(tmp3, tmp119) tmp121 = tmp109 * tmp120 tmp122 = tmp120 - tmp121 tmp123 = triton_helpers.maximum(tmp3, tmp122) tmp124 = tmp109 + tmp123 tmp126 = -tmp125 tmp128 = -tmp127 tmp129 = triton_helpers.minimum(tmp126, tmp128) tmp131 = -tmp130 tmp132 = triton_helpers.minimum(tmp129, tmp131) tmp134 = tmp132 - tmp133 tmp135 = triton_helpers.maximum(tmp3, tmp134) tmp136 = tmp124 * tmp135 tmp137 = tmp135 - tmp136 tmp138 = triton_helpers.maximum(tmp3, tmp137) tmp139 = tmp124 + tmp138 tmp141 = -tmp140 tmp143 = -tmp142 tmp144 = triton_helpers.minimum(tmp141, tmp143) tmp146 = -tmp145 tmp147 = triton_helpers.minimum(tmp144, tmp146) tmp149 = tmp147 - tmp148 tmp150 = triton_helpers.maximum(tmp3, tmp149) tmp151 = tmp139 * tmp150 tmp152 = tmp150 - tmp151 tmp153 = triton_helpers.maximum(tmp3, tmp152) tmp154 = tmp139 + tmp153 tmp156 = -tmp155 tmp158 = -tmp157 tmp159 = triton_helpers.minimum(tmp156, tmp158) tmp161 = -tmp160 tmp162 = triton_helpers.minimum(tmp159, tmp161) tmp164 = tmp162 - tmp163 tmp165 = triton_helpers.maximum(tmp3, tmp164) tmp166 = tmp154 * tmp165 tmp167 = tmp165 - tmp166 tmp168 = triton_helpers.maximum(tmp3, tmp167) tmp169 = tmp154 + tmp168 tmp171 = -tmp170 tmp173 = -tmp172 tmp174 = triton_helpers.minimum(tmp171, tmp173) tmp176 = -tmp175 tmp177 = triton_helpers.minimum(tmp174, tmp176) tmp179 = tmp177 - tmp178 tmp180 = triton_helpers.maximum(tmp3, tmp179) tmp181 = tmp169 * tmp180 tmp182 = tmp180 - tmp181 tmp183 = triton_helpers.maximum(tmp3, tmp182) tmp184 = tmp169 + tmp183 tmp186 = -tmp185 tmp188 = -tmp187 tmp189 = triton_helpers.minimum(tmp186, tmp188) tmp191 = -tmp190 tmp192 = triton_helpers.minimum(tmp189, tmp191) tmp194 = tmp192 - tmp193 tmp195 = triton_helpers.maximum(tmp3, tmp194) tmp196 = tmp184 * tmp195 tmp197 = tmp195 - tmp196 tmp198 = triton_helpers.maximum(tmp3, tmp197) tmp199 = tmp184 + tmp198 tmp201 = -tmp200 tmp203 = -tmp202 tmp204 = triton_helpers.minimum(tmp201, tmp203) tmp206 = -tmp205 tmp207 = triton_helpers.minimum(tmp204, tmp206) tmp209 = tmp207 - tmp208 tmp210 = triton_helpers.maximum(tmp3, tmp209) tmp211 = tmp199 * tmp210 tmp212 = tmp210 - tmp211 tmp213 = triton_helpers.maximum(tmp3, tmp212) tmp214 = tmp199 + tmp213 tmp216 = -tmp215 tmp218 = -tmp217 tmp219 = triton_helpers.minimum(tmp216, tmp218) tmp221 = -tmp220 tmp222 = triton_helpers.minimum(tmp219, tmp221) tmp224 = tmp222 - tmp223 tmp225 = triton_helpers.maximum(tmp3, tmp224) tmp226 = tmp214 * tmp225 tmp227 = tmp225 - tmp226 tmp228 = triton_helpers.maximum(tmp3, tmp227) tmp229 = tmp214 + tmp228 tmp231 = -tmp230 tmp233 = -tmp232 tmp234 = triton_helpers.minimum(tmp231, tmp233) tmp236 = -tmp235 tmp237 = triton_helpers.minimum(tmp234, tmp236) tmp239 = tmp237 - tmp238 tmp240 = triton_helpers.maximum(tmp3, tmp239) tmp241 = tmp229 * tmp240 tmp242 = tmp240 - tmp241 tmp243 = triton_helpers.maximum(tmp3, tmp242) tmp244 = tmp229 + tmp243 tmp246 = -tmp245 tmp248 = -tmp247 tmp249 = triton_helpers.minimum(tmp246, tmp248) tmp251 = -tmp250 tmp252 = triton_helpers.minimum(tmp249, tmp251) tmp254 = tmp252 - tmp253 tmp255 = triton_helpers.maximum(tmp3, tmp254) tmp256 = tmp244 * tmp255 tmp257 = tmp255 - tmp256 tmp258 = triton_helpers.maximum(tmp3, tmp257) tmp259 = tmp244 + tmp258 tmp261 = -tmp260 tmp263 = -tmp262 tmp264 = triton_helpers.minimum(tmp261, tmp263) tmp266 = -tmp265 tmp267 = triton_helpers.minimum(tmp264, tmp266) tmp269 = tmp267 - tmp268 tmp270 = triton_helpers.maximum(tmp3, tmp269) tmp271 = tmp259 * tmp270 tmp272 = tmp270 - tmp271 tmp273 = triton_helpers.maximum(tmp3, tmp272) tmp274 = tmp259 + tmp273 tmp276 = -tmp275 tmp278 = -tmp277 tmp279 = triton_helpers.minimum(tmp276, tmp278) tmp281 = -tmp280 tmp282 = triton_helpers.minimum(tmp279, tmp281) tmp284 = tmp282 - tmp283 tmp285 = triton_helpers.maximum(tmp3, tmp284) tmp286 = tmp274 * tmp285 tmp287 = tmp285 - tmp286 tmp288 = triton_helpers.maximum(tmp3, tmp287) tmp289 = tmp274 + tmp288 tmp291 = -tmp290 tmp293 = -tmp292 tmp294 = triton_helpers.minimum(tmp291, tmp293) tmp296 = -tmp295 tmp297 = triton_helpers.minimum(tmp294, tmp296) tmp299 = tmp297 - tmp298 tmp300 = triton_helpers.maximum(tmp3, tmp299) tmp301 = tmp289 * tmp300 tmp302 = tmp300 - tmp301 tmp303 = triton_helpers.maximum(tmp3, tmp302) tmp304 = tmp289 + tmp303 tmp306 = -tmp305 tmp308 = -tmp307 tmp309 = triton_helpers.minimum(tmp306, tmp308) tmp311 = -tmp310 tmp312 = triton_helpers.minimum(tmp309, tmp311) tmp314 = tmp312 - tmp313 tmp315 = triton_helpers.maximum(tmp3, tmp314) tmp316 = tmp304 * tmp315 tmp317 = tmp315 - tmp316 tmp318 = triton_helpers.maximum(tmp3, tmp317) tmp319 = tmp304 + tmp318 tmp321 = -tmp320 tmp323 = -tmp322 tmp324 = triton_helpers.minimum(tmp321, tmp323) tmp326 = -tmp325 tmp327 = triton_helpers.minimum(tmp324, tmp326) tmp329 = tmp327 - tmp328 tmp330 = triton_helpers.maximum(tmp3, tmp329) tmp331 = tmp319 * tmp330 tmp332 = tmp330 - tmp331 tmp333 = triton_helpers.maximum(tmp3, tmp332) tmp334 = tmp319 + tmp333 tmp336 = -tmp335 tmp338 = -tmp337 tmp339 = triton_helpers.minimum(tmp336, tmp338) tmp341 = -tmp340 tmp342 = triton_helpers.minimum(tmp339, tmp341) tmp344 = tmp342 - tmp343 tmp345 = triton_helpers.maximum(tmp3, tmp344) tmp346 = tmp334 * tmp345 tmp347 = tmp345 - tmp346 tmp348 = triton_helpers.maximum(tmp3, tmp347) tmp349 = tmp334 + tmp348 tmp351 = -tmp350 tmp353 = -tmp352 tmp354 = triton_helpers.minimum(tmp351, tmp353) tmp356 = -tmp355 tmp357 = triton_helpers.minimum(tmp354, tmp356) tmp359 = tmp357 - tmp358 tmp360 = triton_helpers.maximum(tmp3, tmp359) tmp361 = tmp349 * tmp360 tmp362 = tmp360 - tmp361 tmp363 = triton_helpers.maximum(tmp3, tmp362) tmp364 = tmp349 + tmp363 tmp366 = -tmp365 tmp368 = -tmp367 tmp369 = triton_helpers.minimum(tmp366, tmp368) tmp371 = -tmp370 tmp372 = triton_helpers.minimum(tmp369, tmp371) tmp374 = tmp372 - tmp373 tmp375 = triton_helpers.maximum(tmp3, tmp374) tmp376 = tmp364 * tmp375 tmp377 = tmp375 - tmp376 tmp378 = triton_helpers.maximum(tmp3, tmp377) tmp379 = tmp364 + tmp378 tmp381 = -tmp380 tmp383 = -tmp382 tmp384 = triton_helpers.minimum(tmp381, tmp383) tmp386 = -tmp385 tmp387 = triton_helpers.minimum(tmp384, tmp386) tmp389 = tmp387 - tmp388 tmp390 = triton_helpers.maximum(tmp3, tmp389) tmp391 = tmp379 * tmp390 tmp392 = tmp390 - tmp391 tmp393 = triton_helpers.maximum(tmp3, tmp392) tmp394 = tmp379 + tmp393 tmp396 = -tmp395 tmp398 = -tmp397 tmp399 = triton_helpers.minimum(tmp396, tmp398) tmp401 = -tmp400 tmp402 = triton_helpers.minimum(tmp399, tmp401) tmp404 = tmp402 - tmp403 tmp405 = triton_helpers.maximum(tmp3, tmp404) tmp406 = tmp394 * tmp405 tmp407 = tmp405 - tmp406 tmp408 = triton_helpers.maximum(tmp3, tmp407) tmp409 = tmp394 + tmp408 tmp411 = -tmp410 tmp413 = -tmp412 tmp414 = triton_helpers.minimum(tmp411, tmp413) tmp416 = -tmp415 tmp417 = triton_helpers.minimum(tmp414, tmp416) tmp419 = tmp417 - tmp418 tmp420 = triton_helpers.maximum(tmp3, tmp419) tmp421 = tmp409 * tmp420 tmp422 = tmp420 - tmp421 tmp423 = triton_helpers.maximum(tmp3, tmp422) tmp424 = tmp409 + tmp423 tmp426 = -tmp425 tmp428 = -tmp427 tmp429 = triton_helpers.minimum(tmp426, tmp428) tmp431 = -tmp430 tmp432 = triton_helpers.minimum(tmp429, tmp431) tmp434 = tmp432 - tmp433 tmp435 = triton_helpers.maximum(tmp3, tmp434) tmp436 = tmp424 * tmp435 tmp437 = tmp435 - tmp436 tmp438 = triton_helpers.maximum(tmp3, tmp437) tmp439 = tmp424 + tmp438 tmp441 = -tmp440 tmp443 = -tmp442 tmp444 = triton_helpers.minimum(tmp441, tmp443) tmp446 = -tmp445 tmp447 = triton_helpers.minimum(tmp444, tmp446) tmp449 = tmp447 - tmp448 tmp450 = triton_helpers.maximum(tmp3, tmp449) tmp451 = tmp439 * tmp450 tmp452 = tmp450 - tmp451 tmp453 = triton_helpers.maximum(tmp3, tmp452) tmp454 = tmp439 + tmp453 tmp456 = -tmp455 tmp458 = -tmp457 tmp459 = triton_helpers.minimum(tmp456, tmp458) tmp461 = -tmp460 tmp462 = triton_helpers.minimum(tmp459, tmp461) tmp464 = tmp462 - tmp463 tmp465 = triton_helpers.maximum(tmp3, tmp464) tmp466 = tmp454 * tmp465 tmp467 = tmp465 - tmp466 tmp468 = triton_helpers.maximum(tmp3, tmp467) tmp469 = tmp454 + tmp468 tmp471 = -tmp470 tmp473 = -tmp472 tmp474 = triton_helpers.minimum(tmp471, tmp473) tmp476 = -tmp475 tmp477 = triton_helpers.minimum(tmp474, tmp476) tmp479 = tmp477 - tmp478 tmp480 = triton_helpers.maximum(tmp3, tmp479) tmp481 = tmp469 * tmp480 tmp482 = tmp480 - tmp481 tmp483 = triton_helpers.maximum(tmp3, tmp482) tmp484 = tmp469 + tmp483 tmp486 = -tmp485 tmp488 = -tmp487 tmp489 = triton_helpers.minimum(tmp486, tmp488) tmp491 = -tmp490 tmp492 = triton_helpers.minimum(tmp489, tmp491) tmp494 = tmp492 - tmp493 tmp495 = triton_helpers.maximum(tmp3, tmp494) tmp496 = tmp484 * tmp495 tmp497 = tmp495 - tmp496 tmp498 = triton_helpers.maximum(tmp3, tmp497) tmp499 = tmp484 + tmp498 tmp501 = -tmp500 tmp503 = -tmp502 tmp504 = triton_helpers.minimum(tmp501, tmp503) tmp506 = -tmp505 tmp507 = triton_helpers.minimum(tmp504, tmp506) tmp509 = tmp507 - tmp508 tmp510 = triton_helpers.maximum(tmp3, tmp509) tmp511 = tmp499 * tmp510 tmp512 = tmp510 - tmp511 tmp513 = triton_helpers.maximum(tmp3, tmp512) tmp514 = tmp499 + tmp513 tmp516 = -tmp515 tmp518 = -tmp517 tmp519 = triton_helpers.minimum(tmp516, tmp518) tmp521 = -tmp520 tmp522 = triton_helpers.minimum(tmp519, tmp521) tmp524 = tmp522 - tmp523 tmp525 = triton_helpers.maximum(tmp3, tmp524) tmp526 = tmp514 * tmp525 tmp527 = tmp525 - tmp526 tmp528 = triton_helpers.maximum(tmp3, tmp527) tmp529 = tmp514 + tmp528 tmp531 = -tmp530 tmp533 = -tmp532 tmp534 = triton_helpers.minimum(tmp531, tmp533) tmp536 = -tmp535 tmp537 = triton_helpers.minimum(tmp534, tmp536) tmp539 = tmp537 - tmp538 tmp540 = triton_helpers.maximum(tmp3, tmp539) tmp541 = tmp529 * tmp540 tmp542 = tmp540 - tmp541 tmp543 = triton_helpers.maximum(tmp3, tmp542) tmp544 = tmp529 + tmp543 tmp546 = -tmp545 tmp548 = -tmp547 tmp549 = triton_helpers.minimum(tmp546, tmp548) tmp551 = -tmp550 tmp552 = triton_helpers.minimum(tmp549, tmp551) tmp554 = tmp552 - tmp553 tmp555 = triton_helpers.maximum(tmp3, tmp554) tmp556 = tmp544 * tmp555 tmp557 = tmp555 - tmp556 tmp558 = triton_helpers.maximum(tmp3, tmp557) tmp559 = tmp544 + tmp558 tmp561 = -tmp560 tmp563 = -tmp562 tmp564 = triton_helpers.minimum(tmp561, tmp563) tmp566 = -tmp565 tmp567 = triton_helpers.minimum(tmp564, tmp566) tmp569 = tmp567 - tmp568 tmp570 = triton_helpers.maximum(tmp3, tmp569) tmp571 = tmp559 * tmp570 tmp572 = tmp570 - tmp571 tmp573 = triton_helpers.maximum(tmp3, tmp572) tmp574 = tmp559 + tmp573 tmp576 = -tmp575 tmp578 = -tmp577 tmp579 = triton_helpers.minimum(tmp576, tmp578) tmp581 = -tmp580 tmp582 = triton_helpers.minimum(tmp579, tmp581) tmp584 = tmp582 - tmp583 tmp585 = triton_helpers.maximum(tmp3, tmp584) tmp586 = tmp574 * tmp585 tmp587 = tmp585 - tmp586 tmp588 = triton_helpers.maximum(tmp3, tmp587) tmp589 = tmp574 + tmp588 tmp591 = -tmp590 tmp593 = -tmp592 tmp594 = triton_helpers.minimum(tmp591, tmp593) tmp596 = -tmp595 tmp597 = triton_helpers.minimum(tmp594, tmp596) tmp599 = tmp597 - tmp598 tmp600 = triton_helpers.maximum(tmp3, tmp599) tmp601 = tmp589 * tmp600 tmp602 = tmp600 - tmp601 tmp603 = triton_helpers.maximum(tmp3, tmp602) tmp604 = tmp589 + tmp603 tmp606 = -tmp605 tmp608 = -tmp607 tmp609 = triton_helpers.minimum(tmp606, tmp608) tmp611 = -tmp610 tmp612 = triton_helpers.minimum(tmp609, tmp611) tmp614 = tmp612 - tmp613 tmp615 = triton_helpers.maximum(tmp3, tmp614) tmp616 = tmp604 * tmp615 tmp617 = tmp615 - tmp616 tmp618 = triton_helpers.maximum(tmp3, tmp617) tmp619 = tmp604 + tmp618 tmp621 = -tmp620 tmp623 = -tmp622 tmp624 = triton_helpers.minimum(tmp621, tmp623) tmp626 = -tmp625 tmp627 = triton_helpers.minimum(tmp624, tmp626) tmp629 = tmp627 - tmp628 tmp630 = triton_helpers.maximum(tmp3, tmp629) tmp631 = tmp619 * tmp630 tmp632 = tmp630 - tmp631 tmp633 = triton_helpers.maximum(tmp3, tmp632) tmp634 = tmp619 + tmp633 tmp636 = -tmp635 tmp638 = -tmp637 tmp639 = triton_helpers.minimum(tmp636, tmp638) tmp641 = -tmp640 tmp642 = triton_helpers.minimum(tmp639, tmp641) tmp644 = tmp642 - tmp643 tmp645 = triton_helpers.maximum(tmp3, tmp644) tmp646 = tmp634 * tmp645 tmp647 = tmp645 - tmp646 tmp648 = triton_helpers.maximum(tmp3, tmp647) tmp649 = tmp634 + tmp648 tmp651 = -tmp650 tmp653 = -tmp652 tmp654 = triton_helpers.minimum(tmp651, tmp653) tmp656 = -tmp655 tmp657 = triton_helpers.minimum(tmp654, tmp656) tmp659 = tmp657 - tmp658 tmp660 = triton_helpers.maximum(tmp3, tmp659) tmp661 = tmp649 * tmp660 tmp662 = tmp660 - tmp661 tmp663 = triton_helpers.maximum(tmp3, tmp662) tmp664 = tmp649 + tmp663 tmp666 = -tmp665 tmp668 = -tmp667 tmp669 = triton_helpers.minimum(tmp666, tmp668) tmp671 = -tmp670 tmp672 = triton_helpers.minimum(tmp669, tmp671) tmp674 = tmp672 - tmp673 tmp675 = triton_helpers.maximum(tmp3, tmp674) tmp676 = tmp664 * tmp675 tmp677 = tmp675 - tmp676 tmp678 = triton_helpers.maximum(tmp3, tmp677) tmp679 = tmp664 + tmp678 tmp681 = -tmp680 tmp683 = -tmp682 tmp684 = triton_helpers.minimum(tmp681, tmp683) tmp686 = -tmp685 tmp687 = triton_helpers.minimum(tmp684, tmp686) tmp689 = tmp687 - tmp688 tmp690 = triton_helpers.maximum(tmp3, tmp689) tmp691 = tmp679 * tmp690 tmp692 = tmp690 - tmp691 tmp693 = triton_helpers.maximum(tmp3, tmp692) tmp694 = tmp679 + tmp693 tmp696 = -tmp695 tmp698 = -tmp697 tmp699 = triton_helpers.minimum(tmp696, tmp698) tmp701 = -tmp700 tmp702 = triton_helpers.minimum(tmp699, tmp701) tmp704 = tmp702 - tmp703 tmp705 = triton_helpers.maximum(tmp3, tmp704) tmp706 = tmp694 * tmp705 tmp707 = tmp705 - tmp706 tmp708 = triton_helpers.maximum(tmp3, tmp707) tmp709 = tmp694 + tmp708 tmp711 = -tmp710 tmp713 = -tmp712 tmp714 = triton_helpers.minimum(tmp711, tmp713) tmp716 = -tmp715 tmp717 = triton_helpers.minimum(tmp714, tmp716) tmp719 = tmp717 - tmp718 tmp720 = triton_helpers.maximum(tmp3, tmp719) tmp721 = tmp709 * tmp720 tmp722 = tmp720 - tmp721 tmp723 = triton_helpers.maximum(tmp3, tmp722) tmp724 = tmp709 + tmp723 tmp726 = -tmp725 tmp728 = -tmp727 tmp729 = triton_helpers.minimum(tmp726, tmp728) tmp731 = -tmp730 tmp732 = triton_helpers.minimum(tmp729, tmp731) tmp734 = tmp732 - tmp733 tmp735 = triton_helpers.maximum(tmp3, tmp734) tmp736 = tmp724 * tmp735 tmp737 = tmp735 - tmp736 tmp738 = triton_helpers.maximum(tmp3, tmp737) tmp739 = tmp724 + tmp738 tmp741 = -tmp740 tmp743 = -tmp742 tmp744 = triton_helpers.minimum(tmp741, tmp743) tmp746 = -tmp745 tmp747 = triton_helpers.minimum(tmp744, tmp746) tmp749 = tmp747 - tmp748 tmp750 = triton_helpers.maximum(tmp3, tmp749) tmp751 = tmp739 * tmp750 tmp752 = tmp750 - tmp751 tmp753 = triton_helpers.maximum(tmp3, tmp752) tmp754 = tmp739 + tmp753 tl.store(in_out_ptr49 + x0, tmp754, xmask) @triton.jit def triton_poi_fused_add_minimum_mul_neg_relu_sub_6(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_out_ptr4, in_out_ptr5, in_out_ptr6, in_out_ptr7, in_out_ptr8, in_out_ptr9, in_out_ptr10, in_out_ptr11, in_out_ptr12, in_out_ptr13, in_out_ptr14, in_out_ptr15, in_out_ptr16, in_out_ptr17, in_out_ptr18, in_out_ptr19, in_out_ptr20, in_out_ptr21, in_out_ptr22, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, in_ptr64, in_ptr65, in_ptr66, in_ptr67, in_ptr68, in_ptr69, in_ptr70, in_ptr71, in_ptr72, in_ptr73, in_ptr74, in_ptr75, in_ptr76, in_ptr77, in_ptr78, in_ptr79, in_ptr80, in_ptr81, in_ptr82, in_ptr83, in_ptr84, in_ptr85, in_ptr86, in_ptr87, in_ptr88, in_ptr89, in_ptr90, in_ptr91, in_ptr92, in_ptr93, in_ptr94, in_ptr95, in_ptr96, in_ptr97, in_ptr98, in_ptr99, in_ptr100, in_ptr101, in_ptr102, in_ptr103, in_ptr104, in_ptr105, in_ptr106, in_ptr107, in_ptr108, in_ptr109, in_ptr110, in_ptr111, in_ptr112, in_ptr113, in_ptr114, in_ptr115, in_ptr116, in_ptr117, in_ptr118, in_ptr119, in_ptr120, in_ptr121, in_ptr122, in_ptr123, in_ptr124, in_ptr125, in_ptr126, in_ptr127, in_ptr128, in_ptr129, in_ptr130, in_ptr131, in_ptr132, in_ptr133, in_ptr134, in_ptr135, in_ptr136, in_ptr137, in_ptr138, in_ptr139, in_ptr140, in_ptr141, in_ptr142, in_ptr143, in_ptr144, in_ptr145, in_ptr146, in_ptr147, in_ptr148, in_ptr149, in_ptr150, in_ptr151, in_ptr152, in_ptr153, in_ptr154, in_ptr155, in_ptr156, in_ptr157, in_ptr158, in_ptr159, in_ptr160, in_ptr161, in_ptr162, in_ptr163, in_ptr164, in_ptr165, in_ptr166, in_ptr167, in_ptr168, in_ptr169, in_ptr170, in_ptr171, in_ptr172, in_ptr173, in_ptr174, in_ptr175, in_ptr176, in_ptr177, in_ptr178, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp5 = tl.load(in_ptr1 + x0, xmask) tmp7 = tl.load(in_ptr2 + x0, xmask) tmp10 = tl.load(in_ptr3 + x0, xmask) tmp13 = tl.load(in_ptr4 + x0, xmask) tmp20 = tl.load(in_ptr5 + x0, xmask) tmp22 = tl.load(in_ptr6 + x0, xmask) tmp25 = tl.load(in_ptr7 + x0, xmask) tmp28 = tl.load(in_ptr8 + x0, xmask) tmp35 = tl.load(in_ptr9 + x0, xmask) tmp37 = tl.load(in_ptr10 + x0, xmask) tmp40 = tl.load(in_ptr11 + x0, xmask) tmp43 = tl.load(in_ptr12 + x0, xmask) tmp50 = tl.load(in_out_ptr1 + x0, xmask) tmp52 = tl.load(in_ptr13 + x0, xmask) tmp55 = tl.load(in_ptr14 + x0, xmask) tmp58 = tl.load(in_ptr15 + x0, xmask) tmp65 = tl.load(in_out_ptr2 + x0, xmask) tmp67 = tl.load(in_ptr16 + x0, xmask) tmp70 = tl.load(in_ptr17 + x0, xmask) tmp73 = tl.load(in_ptr18 + x0, xmask) tmp80 = tl.load(in_out_ptr3 + x0, xmask) tmp82 = tl.load(in_ptr19 + x0, xmask) tmp85 = tl.load(in_ptr20 + x0, xmask) tmp88 = tl.load(in_ptr21 + x0, xmask) tmp95 = tl.load(in_out_ptr4 + x0, xmask) tmp97 = tl.load(in_ptr22 + x0, xmask) tmp100 = tl.load(in_ptr23 + x0, xmask) tmp103 = tl.load(in_ptr24 + x0, xmask) tmp110 = tl.load(in_out_ptr5 + x0, xmask) tmp112 = tl.load(in_ptr25 + x0, xmask) tmp115 = tl.load(in_ptr26 + x0, xmask) tmp118 = tl.load(in_ptr27 + x0, xmask) tmp125 = tl.load(in_out_ptr6 + x0, xmask) tmp127 = tl.load(in_ptr28 + x0, xmask) tmp130 = tl.load(in_ptr29 + x0, xmask) tmp133 = tl.load(in_ptr30 + x0, xmask) tmp140 = tl.load(in_out_ptr7 + x0, xmask) tmp142 = tl.load(in_ptr31 + x0, xmask) tmp145 = tl.load(in_ptr32 + x0, xmask) tmp148 = tl.load(in_ptr33 + x0, xmask) tmp155 = tl.load(in_ptr34 + x0, xmask) tmp157 = tl.load(in_ptr35 + x0, xmask) tmp160 = tl.load(in_ptr36 + x0, xmask) tmp163 = tl.load(in_ptr37 + x0, xmask) tmp170 = tl.load(in_ptr38 + x0, xmask) tmp172 = tl.load(in_ptr39 + x0, xmask) tmp175 = tl.load(in_ptr40 + x0, xmask) tmp178 = tl.load(in_ptr41 + x0, xmask) tmp185 = tl.load(in_ptr42 + x0, xmask) tmp187 = tl.load(in_ptr43 + x0, xmask) tmp190 = tl.load(in_ptr44 + x0, xmask) tmp193 = tl.load(in_ptr45 + x0, xmask) tmp200 = tl.load(in_ptr46 + x0, xmask) tmp202 = tl.load(in_ptr47 + x0, xmask) tmp205 = tl.load(in_ptr48 + x0, xmask) tmp208 = tl.load(in_ptr49 + x0, xmask) tmp215 = tl.load(in_ptr50 + x0, xmask) tmp217 = tl.load(in_ptr51 + x0, xmask) tmp220 = tl.load(in_ptr52 + x0, xmask) tmp223 = tl.load(in_ptr53 + x0, xmask) tmp230 = tl.load(in_ptr54 + x0, xmask) tmp232 = tl.load(in_ptr55 + x0, xmask) tmp235 = tl.load(in_ptr56 + x0, xmask) tmp238 = tl.load(in_ptr57 + x0, xmask) tmp245 = tl.load(in_ptr58 + x0, xmask) tmp247 = tl.load(in_ptr59 + x0, xmask) tmp250 = tl.load(in_ptr60 + x0, xmask) tmp253 = tl.load(in_ptr61 + x0, xmask) tmp260 = tl.load(in_ptr62 + x0, xmask) tmp262 = tl.load(in_ptr63 + x0, xmask) tmp265 = tl.load(in_ptr64 + x0, xmask) tmp268 = tl.load(in_ptr65 + x0, xmask) tmp275 = tl.load(in_ptr66 + x0, xmask) tmp277 = tl.load(in_ptr67 + x0, xmask) tmp280 = tl.load(in_ptr68 + x0, xmask) tmp283 = tl.load(in_ptr69 + x0, xmask) tmp290 = tl.load(in_ptr70 + x0, xmask) tmp292 = tl.load(in_ptr71 + x0, xmask) tmp295 = tl.load(in_ptr72 + x0, xmask) tmp298 = tl.load(in_ptr73 + x0, xmask) tmp305 = tl.load(in_ptr74 + x0, xmask) tmp307 = tl.load(in_ptr75 + x0, xmask) tmp310 = tl.load(in_ptr76 + x0, xmask) tmp313 = tl.load(in_ptr77 + x0, xmask) tmp320 = tl.load(in_ptr78 + x0, xmask) tmp322 = tl.load(in_ptr79 + x0, xmask) tmp325 = tl.load(in_ptr80 + x0, xmask) tmp328 = tl.load(in_ptr81 + x0, xmask) tmp335 = tl.load(in_ptr82 + x0, xmask) tmp337 = tl.load(in_ptr83 + x0, xmask) tmp340 = tl.load(in_ptr84 + x0, xmask) tmp343 = tl.load(in_ptr85 + x0, xmask) tmp350 = tl.load(in_ptr86 + x0, xmask) tmp352 = tl.load(in_ptr87 + x0, xmask) tmp355 = tl.load(in_ptr88 + x0, xmask) tmp358 = tl.load(in_ptr89 + x0, xmask) tmp365 = tl.load(in_ptr90 + x0, xmask) tmp367 = tl.load(in_ptr91 + x0, xmask) tmp370 = tl.load(in_ptr92 + x0, xmask) tmp373 = tl.load(in_ptr93 + x0, xmask) tmp380 = tl.load(in_ptr94 + x0, xmask) tmp382 = tl.load(in_ptr95 + x0, xmask) tmp385 = tl.load(in_ptr96 + x0, xmask) tmp388 = tl.load(in_ptr97 + x0, xmask) tmp395 = tl.load(in_ptr98 + x0, xmask) tmp397 = tl.load(in_ptr99 + x0, xmask) tmp400 = tl.load(in_ptr100 + x0, xmask) tmp403 = tl.load(in_ptr101 + x0, xmask) tmp410 = tl.load(in_ptr102 + x0, xmask) tmp412 = tl.load(in_ptr103 + x0, xmask) tmp415 = tl.load(in_ptr104 + x0, xmask) tmp418 = tl.load(in_ptr105 + x0, xmask) tmp425 = tl.load(in_ptr106 + x0, xmask) tmp427 = tl.load(in_ptr107 + x0, xmask) tmp430 = tl.load(in_ptr108 + x0, xmask) tmp433 = tl.load(in_ptr109 + x0, xmask) tmp440 = tl.load(in_ptr110 + x0, xmask) tmp442 = tl.load(in_ptr111 + x0, xmask) tmp445 = tl.load(in_ptr112 + x0, xmask) tmp448 = tl.load(in_ptr113 + x0, xmask) tmp455 = tl.load(in_ptr114 + x0, xmask) tmp457 = tl.load(in_ptr115 + x0, xmask) tmp460 = tl.load(in_ptr116 + x0, xmask) tmp463 = tl.load(in_ptr117 + x0, xmask) tmp470 = tl.load(in_ptr118 + x0, xmask) tmp472 = tl.load(in_ptr119 + x0, xmask) tmp475 = tl.load(in_ptr120 + x0, xmask) tmp478 = tl.load(in_ptr121 + x0, xmask) tmp485 = tl.load(in_ptr122 + x0, xmask) tmp487 = tl.load(in_ptr123 + x0, xmask) tmp490 = tl.load(in_ptr124 + x0, xmask) tmp493 = tl.load(in_ptr125 + x0, xmask) tmp500 = tl.load(in_ptr126 + x0, xmask) tmp502 = tl.load(in_ptr127 + x0, xmask) tmp505 = tl.load(in_ptr128 + x0, xmask) tmp508 = tl.load(in_ptr129 + x0, xmask) tmp515 = tl.load(in_ptr130 + x0, xmask) tmp517 = tl.load(in_ptr131 + x0, xmask) tmp520 = tl.load(in_ptr132 + x0, xmask) tmp523 = tl.load(in_ptr133 + x0, xmask) tmp530 = tl.load(in_ptr134 + x0, xmask) tmp532 = tl.load(in_ptr135 + x0, xmask) tmp535 = tl.load(in_out_ptr8 + x0, xmask) tmp538 = tl.load(in_ptr136 + x0, xmask) tmp545 = tl.load(in_out_ptr9 + x0, xmask) tmp547 = tl.load(in_ptr137 + x0, xmask) tmp550 = tl.load(in_ptr138 + x0, xmask) tmp553 = tl.load(in_ptr139 + x0, xmask) tmp560 = tl.load(in_out_ptr10 + x0, xmask) tmp562 = tl.load(in_ptr140 + x0, xmask) tmp565 = tl.load(in_ptr141 + x0, xmask) tmp568 = tl.load(in_ptr142 + x0, xmask) tmp575 = tl.load(in_out_ptr11 + x0, xmask) tmp577 = tl.load(in_ptr143 + x0, xmask) tmp580 = tl.load(in_ptr144 + x0, xmask) tmp583 = tl.load(in_ptr145 + x0, xmask) tmp590 = tl.load(in_out_ptr12 + x0, xmask) tmp592 = tl.load(in_ptr146 + x0, xmask) tmp595 = tl.load(in_ptr147 + x0, xmask) tmp598 = tl.load(in_ptr148 + x0, xmask) tmp605 = tl.load(in_out_ptr13 + x0, xmask) tmp607 = tl.load(in_ptr149 + x0, xmask) tmp610 = tl.load(in_ptr150 + x0, xmask) tmp613 = tl.load(in_ptr151 + x0, xmask) tmp620 = tl.load(in_out_ptr14 + x0, xmask) tmp622 = tl.load(in_ptr152 + x0, xmask) tmp625 = tl.load(in_ptr153 + x0, xmask) tmp628 = tl.load(in_ptr154 + x0, xmask) tmp635 = tl.load(in_out_ptr15 + x0, xmask) tmp637 = tl.load(in_ptr155 + x0, xmask) tmp640 = tl.load(in_ptr156 + x0, xmask) tmp643 = tl.load(in_ptr157 + x0, xmask) tmp650 = tl.load(in_out_ptr16 + x0, xmask) tmp652 = tl.load(in_ptr158 + x0, xmask) tmp655 = tl.load(in_ptr159 + x0, xmask) tmp658 = tl.load(in_ptr160 + x0, xmask) tmp665 = tl.load(in_out_ptr17 + x0, xmask) tmp667 = tl.load(in_ptr161 + x0, xmask) tmp670 = tl.load(in_ptr162 + x0, xmask) tmp673 = tl.load(in_ptr163 + x0, xmask) tmp680 = tl.load(in_out_ptr18 + x0, xmask) tmp682 = tl.load(in_ptr164 + x0, xmask) tmp685 = tl.load(in_ptr165 + x0, xmask) tmp688 = tl.load(in_ptr166 + x0, xmask) tmp695 = tl.load(in_out_ptr19 + x0, xmask) tmp697 = tl.load(in_ptr167 + x0, xmask) tmp700 = tl.load(in_ptr168 + x0, xmask) tmp703 = tl.load(in_ptr169 + x0, xmask) tmp710 = tl.load(in_out_ptr20 + x0, xmask) tmp712 = tl.load(in_ptr170 + x0, xmask) tmp715 = tl.load(in_ptr171 + x0, xmask) tmp718 = tl.load(in_ptr172 + x0, xmask) tmp725 = tl.load(in_out_ptr21 + x0, xmask) tmp727 = tl.load(in_ptr173 + x0, xmask) tmp730 = tl.load(in_ptr174 + x0, xmask) tmp733 = tl.load(in_ptr175 + x0, xmask) tmp740 = tl.load(in_out_ptr22 + x0, xmask) tmp742 = tl.load(in_ptr176 + x0, xmask) tmp745 = tl.load(in_ptr177 + x0, xmask) tmp748 = tl.load(in_ptr178 + x0, xmask) tmp2 = tmp0 - tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = -tmp5 tmp8 = -tmp7 tmp9 = triton_helpers.minimum(tmp6, tmp8) tmp11 = -tmp10 tmp12 = triton_helpers.minimum(tmp9, tmp11) tmp14 = tmp12 - tmp13 tmp15 = triton_helpers.maximum(tmp3, tmp14) tmp16 = tmp4 * tmp15 tmp17 = tmp15 - tmp16 tmp18 = triton_helpers.maximum(tmp3, tmp17) tmp19 = tmp4 + tmp18 tmp21 = -tmp20 tmp23 = -tmp22 tmp24 = triton_helpers.minimum(tmp21, tmp23) tmp26 = -tmp25 tmp27 = triton_helpers.minimum(tmp24, tmp26) tmp29 = tmp27 - tmp28 tmp30 = triton_helpers.maximum(tmp3, tmp29) tmp31 = tmp19 * tmp30 tmp32 = tmp30 - tmp31 tmp33 = triton_helpers.maximum(tmp3, tmp32) tmp34 = tmp19 + tmp33 tmp36 = -tmp35 tmp38 = -tmp37 tmp39 = triton_helpers.minimum(tmp36, tmp38) tmp41 = -tmp40 tmp42 = triton_helpers.minimum(tmp39, tmp41) tmp44 = tmp42 - tmp43 tmp45 = triton_helpers.maximum(tmp3, tmp44) tmp46 = tmp34 * tmp45 tmp47 = tmp45 - tmp46 tmp48 = triton_helpers.maximum(tmp3, tmp47) tmp49 = tmp34 + tmp48 tmp51 = -tmp50 tmp53 = -tmp52 tmp54 = triton_helpers.minimum(tmp51, tmp53) tmp56 = -tmp55 tmp57 = triton_helpers.minimum(tmp54, tmp56) tmp59 = tmp57 - tmp58 tmp60 = triton_helpers.maximum(tmp3, tmp59) tmp61 = tmp49 * tmp60 tmp62 = tmp60 - tmp61 tmp63 = triton_helpers.maximum(tmp3, tmp62) tmp64 = tmp49 + tmp63 tmp66 = -tmp65 tmp68 = -tmp67 tmp69 = triton_helpers.minimum(tmp66, tmp68) tmp71 = -tmp70 tmp72 = triton_helpers.minimum(tmp69, tmp71) tmp74 = tmp72 - tmp73 tmp75 = triton_helpers.maximum(tmp3, tmp74) tmp76 = tmp64 * tmp75 tmp77 = tmp75 - tmp76 tmp78 = triton_helpers.maximum(tmp3, tmp77) tmp79 = tmp64 + tmp78 tmp81 = -tmp80 tmp83 = -tmp82 tmp84 = triton_helpers.minimum(tmp81, tmp83) tmp86 = -tmp85 tmp87 = triton_helpers.minimum(tmp84, tmp86) tmp89 = tmp87 - tmp88 tmp90 = triton_helpers.maximum(tmp3, tmp89) tmp91 = tmp79 * tmp90 tmp92 = tmp90 - tmp91 tmp93 = triton_helpers.maximum(tmp3, tmp92) tmp94 = tmp79 + tmp93 tmp96 = -tmp95 tmp98 = -tmp97 tmp99 = triton_helpers.minimum(tmp96, tmp98) tmp101 = -tmp100 tmp102 = triton_helpers.minimum(tmp99, tmp101) tmp104 = tmp102 - tmp103 tmp105 = triton_helpers.maximum(tmp3, tmp104) tmp106 = tmp94 * tmp105 tmp107 = tmp105 - tmp106 tmp108 = triton_helpers.maximum(tmp3, tmp107) tmp109 = tmp94 + tmp108 tmp111 = -tmp110 tmp113 = -tmp112 tmp114 = triton_helpers.minimum(tmp111, tmp113) tmp116 = -tmp115 tmp117 = triton_helpers.minimum(tmp114, tmp116) tmp119 = tmp117 - tmp118 tmp120 = triton_helpers.maximum(tmp3, tmp119) tmp121 = tmp109 * tmp120 tmp122 = tmp120 - tmp121 tmp123 = triton_helpers.maximum(tmp3, tmp122) tmp124 = tmp109 + tmp123 tmp126 = -tmp125 tmp128 = -tmp127 tmp129 = triton_helpers.minimum(tmp126, tmp128) tmp131 = -tmp130 tmp132 = triton_helpers.minimum(tmp129, tmp131) tmp134 = tmp132 - tmp133 tmp135 = triton_helpers.maximum(tmp3, tmp134) tmp136 = tmp124 * tmp135 tmp137 = tmp135 - tmp136 tmp138 = triton_helpers.maximum(tmp3, tmp137) tmp139 = tmp124 + tmp138 tmp141 = -tmp140 tmp143 = -tmp142 tmp144 = triton_helpers.minimum(tmp141, tmp143) tmp146 = -tmp145 tmp147 = triton_helpers.minimum(tmp144, tmp146) tmp149 = tmp147 - tmp148 tmp150 = triton_helpers.maximum(tmp3, tmp149) tmp151 = tmp139 * tmp150 tmp152 = tmp150 - tmp151 tmp153 = triton_helpers.maximum(tmp3, tmp152) tmp154 = tmp139 + tmp153 tmp156 = -tmp155 tmp158 = -tmp157 tmp159 = triton_helpers.minimum(tmp156, tmp158) tmp161 = -tmp160 tmp162 = triton_helpers.minimum(tmp159, tmp161) tmp164 = tmp162 - tmp163 tmp165 = triton_helpers.maximum(tmp3, tmp164) tmp166 = tmp154 * tmp165 tmp167 = tmp165 - tmp166 tmp168 = triton_helpers.maximum(tmp3, tmp167) tmp169 = tmp154 + tmp168 tmp171 = -tmp170 tmp173 = -tmp172 tmp174 = triton_helpers.minimum(tmp171, tmp173) tmp176 = -tmp175 tmp177 = triton_helpers.minimum(tmp174, tmp176) tmp179 = tmp177 - tmp178 tmp180 = triton_helpers.maximum(tmp3, tmp179) tmp181 = tmp169 * tmp180 tmp182 = tmp180 - tmp181 tmp183 = triton_helpers.maximum(tmp3, tmp182) tmp184 = tmp169 + tmp183 tmp186 = -tmp185 tmp188 = -tmp187 tmp189 = triton_helpers.minimum(tmp186, tmp188) tmp191 = -tmp190 tmp192 = triton_helpers.minimum(tmp189, tmp191) tmp194 = tmp192 - tmp193 tmp195 = triton_helpers.maximum(tmp3, tmp194) tmp196 = tmp184 * tmp195 tmp197 = tmp195 - tmp196 tmp198 = triton_helpers.maximum(tmp3, tmp197) tmp199 = tmp184 + tmp198 tmp201 = -tmp200 tmp203 = -tmp202 tmp204 = triton_helpers.minimum(tmp201, tmp203) tmp206 = -tmp205 tmp207 = triton_helpers.minimum(tmp204, tmp206) tmp209 = tmp207 - tmp208 tmp210 = triton_helpers.maximum(tmp3, tmp209) tmp211 = tmp199 * tmp210 tmp212 = tmp210 - tmp211 tmp213 = triton_helpers.maximum(tmp3, tmp212) tmp214 = tmp199 + tmp213 tmp216 = -tmp215 tmp218 = -tmp217 tmp219 = triton_helpers.minimum(tmp216, tmp218) tmp221 = -tmp220 tmp222 = triton_helpers.minimum(tmp219, tmp221) tmp224 = tmp222 - tmp223 tmp225 = triton_helpers.maximum(tmp3, tmp224) tmp226 = tmp214 * tmp225 tmp227 = tmp225 - tmp226 tmp228 = triton_helpers.maximum(tmp3, tmp227) tmp229 = tmp214 + tmp228 tmp231 = -tmp230 tmp233 = -tmp232 tmp234 = triton_helpers.minimum(tmp231, tmp233) tmp236 = -tmp235 tmp237 = triton_helpers.minimum(tmp234, tmp236) tmp239 = tmp237 - tmp238 tmp240 = triton_helpers.maximum(tmp3, tmp239) tmp241 = tmp229 * tmp240 tmp242 = tmp240 - tmp241 tmp243 = triton_helpers.maximum(tmp3, tmp242) tmp244 = tmp229 + tmp243 tmp246 = -tmp245 tmp248 = -tmp247 tmp249 = triton_helpers.minimum(tmp246, tmp248) tmp251 = -tmp250 tmp252 = triton_helpers.minimum(tmp249, tmp251) tmp254 = tmp252 - tmp253 tmp255 = triton_helpers.maximum(tmp3, tmp254) tmp256 = tmp244 * tmp255 tmp257 = tmp255 - tmp256 tmp258 = triton_helpers.maximum(tmp3, tmp257) tmp259 = tmp244 + tmp258 tmp261 = -tmp260 tmp263 = -tmp262 tmp264 = triton_helpers.minimum(tmp261, tmp263) tmp266 = -tmp265 tmp267 = triton_helpers.minimum(tmp264, tmp266) tmp269 = tmp267 - tmp268 tmp270 = triton_helpers.maximum(tmp3, tmp269) tmp271 = tmp259 * tmp270 tmp272 = tmp270 - tmp271 tmp273 = triton_helpers.maximum(tmp3, tmp272) tmp274 = tmp259 + tmp273 tmp276 = -tmp275 tmp278 = -tmp277 tmp279 = triton_helpers.minimum(tmp276, tmp278) tmp281 = -tmp280 tmp282 = triton_helpers.minimum(tmp279, tmp281) tmp284 = tmp282 - tmp283 tmp285 = triton_helpers.maximum(tmp3, tmp284) tmp286 = tmp274 * tmp285 tmp287 = tmp285 - tmp286 tmp288 = triton_helpers.maximum(tmp3, tmp287) tmp289 = tmp274 + tmp288 tmp291 = -tmp290 tmp293 = -tmp292 tmp294 = triton_helpers.minimum(tmp291, tmp293) tmp296 = -tmp295 tmp297 = triton_helpers.minimum(tmp294, tmp296) tmp299 = tmp297 - tmp298 tmp300 = triton_helpers.maximum(tmp3, tmp299) tmp301 = tmp289 * tmp300 tmp302 = tmp300 - tmp301 tmp303 = triton_helpers.maximum(tmp3, tmp302) tmp304 = tmp289 + tmp303 tmp306 = -tmp305 tmp308 = -tmp307 tmp309 = triton_helpers.minimum(tmp306, tmp308) tmp311 = -tmp310 tmp312 = triton_helpers.minimum(tmp309, tmp311) tmp314 = tmp312 - tmp313 tmp315 = triton_helpers.maximum(tmp3, tmp314) tmp316 = tmp304 * tmp315 tmp317 = tmp315 - tmp316 tmp318 = triton_helpers.maximum(tmp3, tmp317) tmp319 = tmp304 + tmp318 tmp321 = -tmp320 tmp323 = -tmp322 tmp324 = triton_helpers.minimum(tmp321, tmp323) tmp326 = -tmp325 tmp327 = triton_helpers.minimum(tmp324, tmp326) tmp329 = tmp327 - tmp328 tmp330 = triton_helpers.maximum(tmp3, tmp329) tmp331 = tmp319 * tmp330 tmp332 = tmp330 - tmp331 tmp333 = triton_helpers.maximum(tmp3, tmp332) tmp334 = tmp319 + tmp333 tmp336 = -tmp335 tmp338 = -tmp337 tmp339 = triton_helpers.minimum(tmp336, tmp338) tmp341 = -tmp340 tmp342 = triton_helpers.minimum(tmp339, tmp341) tmp344 = tmp342 - tmp343 tmp345 = triton_helpers.maximum(tmp3, tmp344) tmp346 = tmp334 * tmp345 tmp347 = tmp345 - tmp346 tmp348 = triton_helpers.maximum(tmp3, tmp347) tmp349 = tmp334 + tmp348 tmp351 = -tmp350 tmp353 = -tmp352 tmp354 = triton_helpers.minimum(tmp351, tmp353) tmp356 = -tmp355 tmp357 = triton_helpers.minimum(tmp354, tmp356) tmp359 = tmp357 - tmp358 tmp360 = triton_helpers.maximum(tmp3, tmp359) tmp361 = tmp349 * tmp360 tmp362 = tmp360 - tmp361 tmp363 = triton_helpers.maximum(tmp3, tmp362) tmp364 = tmp349 + tmp363 tmp366 = -tmp365 tmp368 = -tmp367 tmp369 = triton_helpers.minimum(tmp366, tmp368) tmp371 = -tmp370 tmp372 = triton_helpers.minimum(tmp369, tmp371) tmp374 = tmp372 - tmp373 tmp375 = triton_helpers.maximum(tmp3, tmp374) tmp376 = tmp364 * tmp375 tmp377 = tmp375 - tmp376 tmp378 = triton_helpers.maximum(tmp3, tmp377) tmp379 = tmp364 + tmp378 tmp381 = -tmp380 tmp383 = -tmp382 tmp384 = triton_helpers.minimum(tmp381, tmp383) tmp386 = -tmp385 tmp387 = triton_helpers.minimum(tmp384, tmp386) tmp389 = tmp387 - tmp388 tmp390 = triton_helpers.maximum(tmp3, tmp389) tmp391 = tmp379 * tmp390 tmp392 = tmp390 - tmp391 tmp393 = triton_helpers.maximum(tmp3, tmp392) tmp394 = tmp379 + tmp393 tmp396 = -tmp395 tmp398 = -tmp397 tmp399 = triton_helpers.minimum(tmp396, tmp398) tmp401 = -tmp400 tmp402 = triton_helpers.minimum(tmp399, tmp401) tmp404 = tmp402 - tmp403 tmp405 = triton_helpers.maximum(tmp3, tmp404) tmp406 = tmp394 * tmp405 tmp407 = tmp405 - tmp406 tmp408 = triton_helpers.maximum(tmp3, tmp407) tmp409 = tmp394 + tmp408 tmp411 = -tmp410 tmp413 = -tmp412 tmp414 = triton_helpers.minimum(tmp411, tmp413) tmp416 = -tmp415 tmp417 = triton_helpers.minimum(tmp414, tmp416) tmp419 = tmp417 - tmp418 tmp420 = triton_helpers.maximum(tmp3, tmp419) tmp421 = tmp409 * tmp420 tmp422 = tmp420 - tmp421 tmp423 = triton_helpers.maximum(tmp3, tmp422) tmp424 = tmp409 + tmp423 tmp426 = -tmp425 tmp428 = -tmp427 tmp429 = triton_helpers.minimum(tmp426, tmp428) tmp431 = -tmp430 tmp432 = triton_helpers.minimum(tmp429, tmp431) tmp434 = tmp432 - tmp433 tmp435 = triton_helpers.maximum(tmp3, tmp434) tmp436 = tmp424 * tmp435 tmp437 = tmp435 - tmp436 tmp438 = triton_helpers.maximum(tmp3, tmp437) tmp439 = tmp424 + tmp438 tmp441 = -tmp440 tmp443 = -tmp442 tmp444 = triton_helpers.minimum(tmp441, tmp443) tmp446 = -tmp445 tmp447 = triton_helpers.minimum(tmp444, tmp446) tmp449 = tmp447 - tmp448 tmp450 = triton_helpers.maximum(tmp3, tmp449) tmp451 = tmp439 * tmp450 tmp452 = tmp450 - tmp451 tmp453 = triton_helpers.maximum(tmp3, tmp452) tmp454 = tmp439 + tmp453 tmp456 = -tmp455 tmp458 = -tmp457 tmp459 = triton_helpers.minimum(tmp456, tmp458) tmp461 = -tmp460 tmp462 = triton_helpers.minimum(tmp459, tmp461) tmp464 = tmp462 - tmp463 tmp465 = triton_helpers.maximum(tmp3, tmp464) tmp466 = tmp454 * tmp465 tmp467 = tmp465 - tmp466 tmp468 = triton_helpers.maximum(tmp3, tmp467) tmp469 = tmp454 + tmp468 tmp471 = -tmp470 tmp473 = -tmp472 tmp474 = triton_helpers.minimum(tmp471, tmp473) tmp476 = -tmp475 tmp477 = triton_helpers.minimum(tmp474, tmp476) tmp479 = tmp477 - tmp478 tmp480 = triton_helpers.maximum(tmp3, tmp479) tmp481 = tmp469 * tmp480 tmp482 = tmp480 - tmp481 tmp483 = triton_helpers.maximum(tmp3, tmp482) tmp484 = tmp469 + tmp483 tmp486 = -tmp485 tmp488 = -tmp487 tmp489 = triton_helpers.minimum(tmp486, tmp488) tmp491 = -tmp490 tmp492 = triton_helpers.minimum(tmp489, tmp491) tmp494 = tmp492 - tmp493 tmp495 = triton_helpers.maximum(tmp3, tmp494) tmp496 = tmp484 * tmp495 tmp497 = tmp495 - tmp496 tmp498 = triton_helpers.maximum(tmp3, tmp497) tmp499 = tmp484 + tmp498 tmp501 = -tmp500 tmp503 = -tmp502 tmp504 = triton_helpers.minimum(tmp501, tmp503) tmp506 = -tmp505 tmp507 = triton_helpers.minimum(tmp504, tmp506) tmp509 = tmp507 - tmp508 tmp510 = triton_helpers.maximum(tmp3, tmp509) tmp511 = tmp499 * tmp510 tmp512 = tmp510 - tmp511 tmp513 = triton_helpers.maximum(tmp3, tmp512) tmp514 = tmp499 + tmp513 tmp516 = -tmp515 tmp518 = -tmp517 tmp519 = triton_helpers.minimum(tmp516, tmp518) tmp521 = -tmp520 tmp522 = triton_helpers.minimum(tmp519, tmp521) tmp524 = tmp522 - tmp523 tmp525 = triton_helpers.maximum(tmp3, tmp524) tmp526 = tmp514 * tmp525 tmp527 = tmp525 - tmp526 tmp528 = triton_helpers.maximum(tmp3, tmp527) tmp529 = tmp514 + tmp528 tmp531 = -tmp530 tmp533 = -tmp532 tmp534 = triton_helpers.minimum(tmp531, tmp533) tmp536 = -tmp535 tmp537 = triton_helpers.minimum(tmp534, tmp536) tmp539 = tmp537 - tmp538 tmp540 = triton_helpers.maximum(tmp3, tmp539) tmp541 = tmp529 * tmp540 tmp542 = tmp540 - tmp541 tmp543 = triton_helpers.maximum(tmp3, tmp542) tmp544 = tmp529 + tmp543 tmp546 = -tmp545 tmp548 = -tmp547 tmp549 = triton_helpers.minimum(tmp546, tmp548) tmp551 = -tmp550 tmp552 = triton_helpers.minimum(tmp549, tmp551) tmp554 = tmp552 - tmp553 tmp555 = triton_helpers.maximum(tmp3, tmp554) tmp556 = tmp544 * tmp555 tmp557 = tmp555 - tmp556 tmp558 = triton_helpers.maximum(tmp3, tmp557) tmp559 = tmp544 + tmp558 tmp561 = -tmp560 tmp563 = -tmp562 tmp564 = triton_helpers.minimum(tmp561, tmp563) tmp566 = -tmp565 tmp567 = triton_helpers.minimum(tmp564, tmp566) tmp569 = tmp567 - tmp568 tmp570 = triton_helpers.maximum(tmp3, tmp569) tmp571 = tmp559 * tmp570 tmp572 = tmp570 - tmp571 tmp573 = triton_helpers.maximum(tmp3, tmp572) tmp574 = tmp559 + tmp573 tmp576 = -tmp575 tmp578 = -tmp577 tmp579 = triton_helpers.minimum(tmp576, tmp578) tmp581 = -tmp580 tmp582 = triton_helpers.minimum(tmp579, tmp581) tmp584 = tmp582 - tmp583 tmp585 = triton_helpers.maximum(tmp3, tmp584) tmp586 = tmp574 * tmp585 tmp587 = tmp585 - tmp586 tmp588 = triton_helpers.maximum(tmp3, tmp587) tmp589 = tmp574 + tmp588 tmp591 = -tmp590 tmp593 = -tmp592 tmp594 = triton_helpers.minimum(tmp591, tmp593) tmp596 = -tmp595 tmp597 = triton_helpers.minimum(tmp594, tmp596) tmp599 = tmp597 - tmp598 tmp600 = triton_helpers.maximum(tmp3, tmp599) tmp601 = tmp589 * tmp600 tmp602 = tmp600 - tmp601 tmp603 = triton_helpers.maximum(tmp3, tmp602) tmp604 = tmp589 + tmp603 tmp606 = -tmp605 tmp608 = -tmp607 tmp609 = triton_helpers.minimum(tmp606, tmp608) tmp611 = -tmp610 tmp612 = triton_helpers.minimum(tmp609, tmp611) tmp614 = tmp612 - tmp613 tmp615 = triton_helpers.maximum(tmp3, tmp614) tmp616 = tmp604 * tmp615 tmp617 = tmp615 - tmp616 tmp618 = triton_helpers.maximum(tmp3, tmp617) tmp619 = tmp604 + tmp618 tmp621 = -tmp620 tmp623 = -tmp622 tmp624 = triton_helpers.minimum(tmp621, tmp623) tmp626 = -tmp625 tmp627 = triton_helpers.minimum(tmp624, tmp626) tmp629 = tmp627 - tmp628 tmp630 = triton_helpers.maximum(tmp3, tmp629) tmp631 = tmp619 * tmp630 tmp632 = tmp630 - tmp631 tmp633 = triton_helpers.maximum(tmp3, tmp632) tmp634 = tmp619 + tmp633 tmp636 = -tmp635 tmp638 = -tmp637 tmp639 = triton_helpers.minimum(tmp636, tmp638) tmp641 = -tmp640 tmp642 = triton_helpers.minimum(tmp639, tmp641) tmp644 = tmp642 - tmp643 tmp645 = triton_helpers.maximum(tmp3, tmp644) tmp646 = tmp634 * tmp645 tmp647 = tmp645 - tmp646 tmp648 = triton_helpers.maximum(tmp3, tmp647) tmp649 = tmp634 + tmp648 tmp651 = -tmp650 tmp653 = -tmp652 tmp654 = triton_helpers.minimum(tmp651, tmp653) tmp656 = -tmp655 tmp657 = triton_helpers.minimum(tmp654, tmp656) tmp659 = tmp657 - tmp658 tmp660 = triton_helpers.maximum(tmp3, tmp659) tmp661 = tmp649 * tmp660 tmp662 = tmp660 - tmp661 tmp663 = triton_helpers.maximum(tmp3, tmp662) tmp664 = tmp649 + tmp663 tmp666 = -tmp665 tmp668 = -tmp667 tmp669 = triton_helpers.minimum(tmp666, tmp668) tmp671 = -tmp670 tmp672 = triton_helpers.minimum(tmp669, tmp671) tmp674 = tmp672 - tmp673 tmp675 = triton_helpers.maximum(tmp3, tmp674) tmp676 = tmp664 * tmp675 tmp677 = tmp675 - tmp676 tmp678 = triton_helpers.maximum(tmp3, tmp677) tmp679 = tmp664 + tmp678 tmp681 = -tmp680 tmp683 = -tmp682 tmp684 = triton_helpers.minimum(tmp681, tmp683) tmp686 = -tmp685 tmp687 = triton_helpers.minimum(tmp684, tmp686) tmp689 = tmp687 - tmp688 tmp690 = triton_helpers.maximum(tmp3, tmp689) tmp691 = tmp679 * tmp690 tmp692 = tmp690 - tmp691 tmp693 = triton_helpers.maximum(tmp3, tmp692) tmp694 = tmp679 + tmp693 tmp696 = -tmp695 tmp698 = -tmp697 tmp699 = triton_helpers.minimum(tmp696, tmp698) tmp701 = -tmp700 tmp702 = triton_helpers.minimum(tmp699, tmp701) tmp704 = tmp702 - tmp703 tmp705 = triton_helpers.maximum(tmp3, tmp704) tmp706 = tmp694 * tmp705 tmp707 = tmp705 - tmp706 tmp708 = triton_helpers.maximum(tmp3, tmp707) tmp709 = tmp694 + tmp708 tmp711 = -tmp710 tmp713 = -tmp712 tmp714 = triton_helpers.minimum(tmp711, tmp713) tmp716 = -tmp715 tmp717 = triton_helpers.minimum(tmp714, tmp716) tmp719 = tmp717 - tmp718 tmp720 = triton_helpers.maximum(tmp3, tmp719) tmp721 = tmp709 * tmp720 tmp722 = tmp720 - tmp721 tmp723 = triton_helpers.maximum(tmp3, tmp722) tmp724 = tmp709 + tmp723 tmp726 = -tmp725 tmp728 = -tmp727 tmp729 = triton_helpers.minimum(tmp726, tmp728) tmp731 = -tmp730 tmp732 = triton_helpers.minimum(tmp729, tmp731) tmp734 = tmp732 - tmp733 tmp735 = triton_helpers.maximum(tmp3, tmp734) tmp736 = tmp724 * tmp735 tmp737 = tmp735 - tmp736 tmp738 = triton_helpers.maximum(tmp3, tmp737) tmp739 = tmp724 + tmp738 tmp741 = -tmp740 tmp743 = -tmp742 tmp744 = triton_helpers.minimum(tmp741, tmp743) tmp746 = -tmp745 tmp747 = triton_helpers.minimum(tmp744, tmp746) tmp749 = tmp747 - tmp748 tmp750 = triton_helpers.maximum(tmp3, tmp749) tmp751 = tmp739 * tmp750 tmp752 = tmp750 - tmp751 tmp753 = triton_helpers.maximum(tmp3, tmp752) tmp754 = tmp739 + tmp753 tl.store(in_out_ptr22 + x0, tmp754, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf24 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_neg_0[grid(256)](arg0_1, buf0, buf4, buf8, buf16, buf20, buf24, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1 = torch.ops.aten.max_pool3d_with_indices.default(buf0, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf0 buf2 = buf1[0] del buf1 buf5 = torch.ops.aten.max_pool3d_with_indices.default(buf4, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf4 buf6 = buf5[0] del buf5 buf9 = torch.ops.aten.max_pool3d_with_indices.default(buf8, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf8 buf10 = buf9[0] del buf9 buf12 = buf10 del buf10 triton_poi_fused_minimum_neg_1[grid(256)](buf12, buf2, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf13 = torch.ops.aten.max_pool3d_with_indices.default(buf12, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf14 = buf13[0] del buf13 buf17 = torch.ops.aten.max_pool3d_with_indices.default(buf16, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf18 = buf17[0] del buf17 buf21 = torch.ops.aten.max_pool3d_with_indices.default(buf20, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf22 = buf21[0] del buf21 buf25 = torch.ops.aten.max_pool3d_with_indices.default(buf24, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf26 = buf25[0] del buf25 buf28 = buf24 del buf24 buf32 = buf20 del buf20 buf36 = buf16 del buf16 buf44 = buf12 del buf12 buf48 = buf6 del buf6 buf52 = buf2 del buf2 triton_poi_fused_minimum_neg_2[grid(256)](buf18, buf26, buf22, buf28, buf32, buf36, buf44, buf48, buf52, 256, XBLOCK=128, num_warps=4, num_stages=1) buf29 = torch.ops.aten.max_pool3d_with_indices.default(buf28, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf28 buf30 = buf29[0] del buf29 buf33 = torch.ops.aten.max_pool3d_with_indices.default(buf32, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf32 buf34 = buf33[0] del buf33 buf37 = torch.ops.aten.max_pool3d_with_indices.default(buf36, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf36 buf38 = buf37[0] del buf37 buf40 = buf30 del buf30 triton_poi_fused_minimum_neg_3[grid(256)](buf40, buf38, buf34, 256, XBLOCK=256, num_warps=4, num_stages=1) buf41 = torch.ops.aten.max_pool3d_with_indices.default(buf40, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf42 = buf41[0] del buf41 buf45 = torch.ops.aten.max_pool3d_with_indices.default(buf44, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf46 = buf45[0] del buf45 buf49 = torch.ops.aten.max_pool3d_with_indices.default(buf48, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf50 = buf49[0] del buf49 buf53 = torch.ops.aten.max_pool3d_with_indices.default(buf52, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf54 = buf53[0] del buf53 buf56 = buf52 del buf52 buf60 = buf48 del buf48 buf64 = buf44 del buf44 buf72 = buf40 del buf40 buf76 = buf38 del buf38 buf80 = buf34 del buf34 triton_poi_fused_minimum_neg_2[grid(256)](buf46, buf54, buf50, buf56, buf60, buf64, buf72, buf76, buf80, 256, XBLOCK=128, num_warps=4, num_stages=1) buf57 = torch.ops.aten.max_pool3d_with_indices.default(buf56, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf56 buf58 = buf57[0] del buf57 buf61 = torch.ops.aten.max_pool3d_with_indices.default(buf60, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf60 buf62 = buf61[0] del buf61 buf65 = torch.ops.aten.max_pool3d_with_indices.default(buf64, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf64 buf66 = buf65[0] del buf65 buf68 = buf58 del buf58 triton_poi_fused_minimum_neg_3[grid(256)](buf68, buf66, buf62, 256, XBLOCK=256, num_warps=4, num_stages=1) buf69 = torch.ops.aten.max_pool3d_with_indices.default(buf68, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf70 = buf69[0] del buf69 buf73 = torch.ops.aten.max_pool3d_with_indices.default(buf72, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf74 = buf73[0] del buf73 buf77 = torch.ops.aten.max_pool3d_with_indices.default(buf76, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf78 = buf77[0] del buf77 buf81 = torch.ops.aten.max_pool3d_with_indices.default(buf80, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf82 = buf81[0] del buf81 buf84 = buf80 del buf80 buf88 = buf76 del buf76 buf92 = buf72 del buf72 buf100 = buf68 del buf68 buf104 = buf66 del buf66 buf108 = buf62 del buf62 triton_poi_fused_minimum_neg_2[grid(256)](buf74, buf82, buf78, buf84, buf88, buf92, buf100, buf104, buf108, 256, XBLOCK=128, num_warps=4, num_stages=1) buf85 = torch.ops.aten.max_pool3d_with_indices.default(buf84, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf84 buf86 = buf85[0] del buf85 buf89 = torch.ops.aten.max_pool3d_with_indices.default(buf88, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf88 buf90 = buf89[0] del buf89 buf93 = torch.ops.aten.max_pool3d_with_indices.default(buf92, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf92 buf94 = buf93[0] del buf93 buf96 = buf86 del buf86 triton_poi_fused_minimum_neg_3[grid(256)](buf96, buf94, buf90, 256, XBLOCK=256, num_warps=4, num_stages=1) buf97 = torch.ops.aten.max_pool3d_with_indices.default(buf96, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf98 = buf97[0] del buf97 buf101 = torch.ops.aten.max_pool3d_with_indices.default(buf100, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf102 = buf101[0] del buf101 buf105 = torch.ops.aten.max_pool3d_with_indices.default(buf104, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf106 = buf105[0] del buf105 buf109 = torch.ops.aten.max_pool3d_with_indices.default(buf108, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf110 = buf109[0] del buf109 buf112 = buf108 del buf108 buf116 = buf104 del buf104 buf120 = buf100 del buf100 buf128 = buf96 del buf96 buf132 = buf94 del buf94 buf136 = buf90 del buf90 triton_poi_fused_minimum_neg_2[grid(256)](buf102, buf110, buf106, buf112, buf116, buf120, buf128, buf132, buf136, 256, XBLOCK=128, num_warps=4, num_stages=1) buf113 = torch.ops.aten.max_pool3d_with_indices.default(buf112, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf112 buf114 = buf113[0] del buf113 buf117 = torch.ops.aten.max_pool3d_with_indices.default(buf116, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf116 buf118 = buf117[0] del buf117 buf121 = torch.ops.aten.max_pool3d_with_indices.default(buf120, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf120 buf122 = buf121[0] del buf121 buf124 = buf114 del buf114 triton_poi_fused_minimum_neg_3[grid(256)](buf124, buf122, buf118, 256, XBLOCK=256, num_warps=4, num_stages=1) buf125 = torch.ops.aten.max_pool3d_with_indices.default(buf124, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf126 = buf125[0] del buf125 buf129 = torch.ops.aten.max_pool3d_with_indices.default(buf128, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf130 = buf129[0] del buf129 buf133 = torch.ops.aten.max_pool3d_with_indices.default(buf132, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf134 = buf133[0] del buf133 buf137 = torch.ops.aten.max_pool3d_with_indices.default(buf136, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf138 = buf137[0] del buf137 buf140 = buf136 del buf136 buf144 = buf132 del buf132 buf148 = buf128 del buf128 buf156 = buf124 del buf124 buf160 = buf122 del buf122 buf164 = buf118 del buf118 triton_poi_fused_minimum_neg_2[grid(256)](buf130, buf138, buf134, buf140, buf144, buf148, buf156, buf160, buf164, 256, XBLOCK=128, num_warps=4, num_stages=1) buf141 = torch.ops.aten.max_pool3d_with_indices.default(buf140, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf140 buf142 = buf141[0] del buf141 buf145 = torch.ops.aten.max_pool3d_with_indices.default(buf144, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf144 buf146 = buf145[0] del buf145 buf149 = torch.ops.aten.max_pool3d_with_indices.default(buf148, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf148 buf150 = buf149[0] del buf149 buf152 = buf142 del buf142 triton_poi_fused_minimum_neg_3[grid(256)](buf152, buf150, buf146, 256, XBLOCK=256, num_warps=4, num_stages=1) buf153 = torch.ops.aten.max_pool3d_with_indices.default(buf152, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf154 = buf153[0] del buf153 buf157 = torch.ops.aten.max_pool3d_with_indices.default(buf156, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf158 = buf157[0] del buf157 buf161 = torch.ops.aten.max_pool3d_with_indices.default(buf160, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf162 = buf161[0] del buf161 buf165 = torch.ops.aten.max_pool3d_with_indices.default(buf164, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf166 = buf165[0] del buf165 buf168 = buf164 del buf164 buf172 = buf160 del buf160 buf176 = buf156 del buf156 buf184 = buf152 del buf152 buf188 = buf150 del buf150 buf192 = buf146 del buf146 triton_poi_fused_minimum_neg_2[grid(256)](buf158, buf166, buf162, buf168, buf172, buf176, buf184, buf188, buf192, 256, XBLOCK=128, num_warps=4, num_stages=1) buf169 = torch.ops.aten.max_pool3d_with_indices.default(buf168, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf168 buf170 = buf169[0] del buf169 buf173 = torch.ops.aten.max_pool3d_with_indices.default(buf172, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf172 buf174 = buf173[0] del buf173 buf177 = torch.ops.aten.max_pool3d_with_indices.default(buf176, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf176 buf178 = buf177[0] del buf177 buf180 = buf170 del buf170 triton_poi_fused_minimum_neg_3[grid(256)](buf180, buf178, buf174, 256, XBLOCK=256, num_warps=4, num_stages=1) buf181 = torch.ops.aten.max_pool3d_with_indices.default(buf180, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf182 = buf181[0] del buf181 buf185 = torch.ops.aten.max_pool3d_with_indices.default(buf184, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf186 = buf185[0] del buf185 buf189 = torch.ops.aten.max_pool3d_with_indices.default(buf188, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf190 = buf189[0] del buf189 buf193 = torch.ops.aten.max_pool3d_with_indices.default(buf192, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf194 = buf193[0] del buf193 buf196 = buf192 del buf192 buf200 = buf188 del buf188 buf204 = buf184 del buf184 buf212 = buf180 del buf180 buf216 = buf178 del buf178 buf220 = buf174 del buf174 triton_poi_fused_minimum_neg_2[grid(256)](buf186, buf194, buf190, buf196, buf200, buf204, buf212, buf216, buf220, 256, XBLOCK=128, num_warps=4, num_stages=1) buf197 = torch.ops.aten.max_pool3d_with_indices.default(buf196, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf196 buf198 = buf197[0] del buf197 buf201 = torch.ops.aten.max_pool3d_with_indices.default(buf200, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf200 buf202 = buf201[0] del buf201 buf205 = torch.ops.aten.max_pool3d_with_indices.default(buf204, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf204 buf206 = buf205[0] del buf205 buf208 = buf198 del buf198 triton_poi_fused_minimum_neg_3[grid(256)](buf208, buf206, buf202, 256, XBLOCK=256, num_warps=4, num_stages=1) buf209 = torch.ops.aten.max_pool3d_with_indices.default(buf208, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf210 = buf209[0] del buf209 buf213 = torch.ops.aten.max_pool3d_with_indices.default(buf212, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf214 = buf213[0] del buf213 buf217 = torch.ops.aten.max_pool3d_with_indices.default(buf216, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf218 = buf217[0] del buf217 buf221 = torch.ops.aten.max_pool3d_with_indices.default(buf220, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf222 = buf221[0] del buf221 buf224 = buf220 del buf220 buf228 = buf216 del buf216 buf232 = buf212 del buf212 buf240 = buf208 del buf208 buf244 = buf206 del buf206 buf248 = buf202 del buf202 triton_poi_fused_minimum_neg_2[grid(256)](buf214, buf222, buf218, buf224, buf228, buf232, buf240, buf244, buf248, 256, XBLOCK=128, num_warps=4, num_stages=1) buf225 = torch.ops.aten.max_pool3d_with_indices.default(buf224, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf224 buf226 = buf225[0] del buf225 buf229 = torch.ops.aten.max_pool3d_with_indices.default(buf228, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf228 buf230 = buf229[0] del buf229 buf233 = torch.ops.aten.max_pool3d_with_indices.default(buf232, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf232 buf234 = buf233[0] del buf233 buf236 = buf226 del buf226 triton_poi_fused_minimum_neg_3[grid(256)](buf236, buf234, buf230, 256, XBLOCK=256, num_warps=4, num_stages=1) buf237 = torch.ops.aten.max_pool3d_with_indices.default(buf236, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf238 = buf237[0] del buf237 buf241 = torch.ops.aten.max_pool3d_with_indices.default(buf240, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf242 = buf241[0] del buf241 buf245 = torch.ops.aten.max_pool3d_with_indices.default(buf244, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf246 = buf245[0] del buf245 buf249 = torch.ops.aten.max_pool3d_with_indices.default(buf248, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf250 = buf249[0] del buf249 buf252 = buf248 del buf248 buf256 = buf244 del buf244 buf260 = buf240 del buf240 buf268 = buf236 del buf236 buf272 = buf234 del buf234 buf276 = buf230 del buf230 triton_poi_fused_minimum_neg_2[grid(256)](buf242, buf250, buf246, buf252, buf256, buf260, buf268, buf272, buf276, 256, XBLOCK=128, num_warps=4, num_stages=1) buf253 = torch.ops.aten.max_pool3d_with_indices.default(buf252, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf252 buf254 = buf253[0] del buf253 buf257 = torch.ops.aten.max_pool3d_with_indices.default(buf256, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf256 buf258 = buf257[0] del buf257 buf261 = torch.ops.aten.max_pool3d_with_indices.default(buf260, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf260 buf262 = buf261[0] del buf261 buf264 = buf254 del buf254 triton_poi_fused_minimum_neg_3[grid(256)](buf264, buf262, buf258, 256, XBLOCK=256, num_warps=4, num_stages=1) buf265 = torch.ops.aten.max_pool3d_with_indices.default(buf264, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf266 = buf265[0] del buf265 buf269 = torch.ops.aten.max_pool3d_with_indices.default(buf268, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf270 = buf269[0] del buf269 buf273 = torch.ops.aten.max_pool3d_with_indices.default(buf272, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf274 = buf273[0] del buf273 buf277 = torch.ops.aten.max_pool3d_with_indices.default(buf276, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf278 = buf277[0] del buf277 buf280 = buf276 del buf276 buf284 = buf272 del buf272 buf288 = buf268 del buf268 buf296 = buf264 del buf264 buf300 = buf262 del buf262 buf304 = buf258 del buf258 triton_poi_fused_minimum_neg_2[grid(256)](buf270, buf278, buf274, buf280, buf284, buf288, buf296, buf300, buf304, 256, XBLOCK=128, num_warps=4, num_stages=1) buf281 = torch.ops.aten.max_pool3d_with_indices.default(buf280, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf280 buf282 = buf281[0] del buf281 buf285 = torch.ops.aten.max_pool3d_with_indices.default(buf284, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf284 buf286 = buf285[0] del buf285 buf289 = torch.ops.aten.max_pool3d_with_indices.default(buf288, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf288 buf290 = buf289[0] del buf289 buf292 = buf282 del buf282 triton_poi_fused_minimum_neg_3[grid(256)](buf292, buf290, buf286, 256, XBLOCK=256, num_warps=4, num_stages=1) buf293 = torch.ops.aten.max_pool3d_with_indices.default(buf292, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf294 = buf293[0] del buf293 buf297 = torch.ops.aten.max_pool3d_with_indices.default(buf296, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf298 = buf297[0] del buf297 buf301 = torch.ops.aten.max_pool3d_with_indices.default(buf300, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf302 = buf301[0] del buf301 buf305 = torch.ops.aten.max_pool3d_with_indices.default(buf304, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf306 = buf305[0] del buf305 buf308 = buf304 del buf304 buf312 = buf300 del buf300 buf316 = buf296 del buf296 buf324 = buf292 del buf292 buf328 = buf290 del buf290 buf332 = buf286 del buf286 triton_poi_fused_minimum_neg_2[grid(256)](buf298, buf306, buf302, buf308, buf312, buf316, buf324, buf328, buf332, 256, XBLOCK=128, num_warps=4, num_stages=1) buf309 = torch.ops.aten.max_pool3d_with_indices.default(buf308, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf308 buf310 = buf309[0] del buf309 buf313 = torch.ops.aten.max_pool3d_with_indices.default(buf312, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf312 buf314 = buf313[0] del buf313 buf317 = torch.ops.aten.max_pool3d_with_indices.default(buf316, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf316 buf318 = buf317[0] del buf317 buf320 = buf310 del buf310 triton_poi_fused_minimum_neg_3[grid(256)](buf320, buf318, buf314, 256, XBLOCK=256, num_warps=4, num_stages=1) buf321 = torch.ops.aten.max_pool3d_with_indices.default(buf320, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf322 = buf321[0] del buf321 buf325 = torch.ops.aten.max_pool3d_with_indices.default(buf324, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf326 = buf325[0] del buf325 buf329 = torch.ops.aten.max_pool3d_with_indices.default(buf328, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf330 = buf329[0] del buf329 buf333 = torch.ops.aten.max_pool3d_with_indices.default(buf332, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf334 = buf333[0] del buf333 buf336 = buf332 del buf332 buf340 = buf328 del buf328 buf344 = buf324 del buf324 buf352 = buf320 del buf320 buf356 = buf318 del buf318 buf360 = buf314 del buf314 triton_poi_fused_minimum_neg_2[grid(256)](buf326, buf334, buf330, buf336, buf340, buf344, buf352, buf356, buf360, 256, XBLOCK=128, num_warps=4, num_stages=1) buf337 = torch.ops.aten.max_pool3d_with_indices.default(buf336, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf336 buf338 = buf337[0] del buf337 buf341 = torch.ops.aten.max_pool3d_with_indices.default(buf340, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf340 buf342 = buf341[0] del buf341 buf345 = torch.ops.aten.max_pool3d_with_indices.default(buf344, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf344 buf346 = buf345[0] del buf345 buf348 = buf338 del buf338 triton_poi_fused_minimum_neg_3[grid(256)](buf348, buf346, buf342, 256, XBLOCK=256, num_warps=4, num_stages=1) buf349 = torch.ops.aten.max_pool3d_with_indices.default(buf348, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf350 = buf349[0] del buf349 buf353 = torch.ops.aten.max_pool3d_with_indices.default(buf352, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf354 = buf353[0] del buf353 buf357 = torch.ops.aten.max_pool3d_with_indices.default(buf356, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf358 = buf357[0] del buf357 buf361 = torch.ops.aten.max_pool3d_with_indices.default(buf360, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf362 = buf361[0] del buf361 buf364 = buf360 del buf360 buf368 = buf356 del buf356 buf372 = buf352 del buf352 buf380 = buf348 del buf348 buf384 = buf346 del buf346 buf388 = buf342 del buf342 triton_poi_fused_minimum_neg_2[grid(256)](buf354, buf362, buf358, buf364, buf368, buf372, buf380, buf384, buf388, 256, XBLOCK=128, num_warps=4, num_stages=1) buf365 = torch.ops.aten.max_pool3d_with_indices.default(buf364, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf364 buf366 = buf365[0] del buf365 buf369 = torch.ops.aten.max_pool3d_with_indices.default(buf368, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf368 buf370 = buf369[0] del buf369 buf373 = torch.ops.aten.max_pool3d_with_indices.default(buf372, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf372 buf374 = buf373[0] del buf373 buf376 = buf366 del buf366 triton_poi_fused_minimum_neg_3[grid(256)](buf376, buf374, buf370, 256, XBLOCK=256, num_warps=4, num_stages=1) buf377 = torch.ops.aten.max_pool3d_with_indices.default(buf376, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf378 = buf377[0] del buf377 buf381 = torch.ops.aten.max_pool3d_with_indices.default(buf380, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf382 = buf381[0] del buf381 buf385 = torch.ops.aten.max_pool3d_with_indices.default(buf384, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf386 = buf385[0] del buf385 buf389 = torch.ops.aten.max_pool3d_with_indices.default(buf388, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf390 = buf389[0] del buf389 buf392 = buf388 del buf388 buf396 = buf384 del buf384 buf400 = buf380 del buf380 buf408 = buf376 del buf376 buf412 = buf374 del buf374 buf416 = buf370 del buf370 triton_poi_fused_minimum_neg_2[grid(256)](buf382, buf390, buf386, buf392, buf396, buf400, buf408, buf412, buf416, 256, XBLOCK=128, num_warps=4, num_stages=1) buf393 = torch.ops.aten.max_pool3d_with_indices.default(buf392, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf392 buf394 = buf393[0] del buf393 buf397 = torch.ops.aten.max_pool3d_with_indices.default(buf396, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf396 buf398 = buf397[0] del buf397 buf401 = torch.ops.aten.max_pool3d_with_indices.default(buf400, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf400 buf402 = buf401[0] del buf401 buf404 = buf394 del buf394 triton_poi_fused_minimum_neg_3[grid(256)](buf404, buf402, buf398, 256, XBLOCK=256, num_warps=4, num_stages=1) buf405 = torch.ops.aten.max_pool3d_with_indices.default(buf404, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf406 = buf405[0] del buf405 buf409 = torch.ops.aten.max_pool3d_with_indices.default(buf408, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf410 = buf409[0] del buf409 buf413 = torch.ops.aten.max_pool3d_with_indices.default(buf412, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf414 = buf413[0] del buf413 buf417 = torch.ops.aten.max_pool3d_with_indices.default(buf416, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf418 = buf417[0] del buf417 buf420 = buf416 del buf416 buf424 = buf412 del buf412 buf428 = buf408 del buf408 buf436 = buf404 del buf404 buf440 = buf402 del buf402 buf444 = buf398 del buf398 triton_poi_fused_minimum_neg_2[grid(256)](buf410, buf418, buf414, buf420, buf424, buf428, buf436, buf440, buf444, 256, XBLOCK=128, num_warps=4, num_stages=1) buf421 = torch.ops.aten.max_pool3d_with_indices.default(buf420, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf420 buf422 = buf421[0] del buf421 buf425 = torch.ops.aten.max_pool3d_with_indices.default(buf424, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf424 buf426 = buf425[0] del buf425 buf429 = torch.ops.aten.max_pool3d_with_indices.default(buf428, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf428 buf430 = buf429[0] del buf429 buf432 = buf422 del buf422 triton_poi_fused_minimum_neg_3[grid(256)](buf432, buf430, buf426, 256, XBLOCK=256, num_warps=4, num_stages=1) buf433 = torch.ops.aten.max_pool3d_with_indices.default(buf432, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf434 = buf433[0] del buf433 buf437 = torch.ops.aten.max_pool3d_with_indices.default(buf436, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf438 = buf437[0] del buf437 buf441 = torch.ops.aten.max_pool3d_with_indices.default(buf440, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf442 = buf441[0] del buf441 buf445 = torch.ops.aten.max_pool3d_with_indices.default(buf444, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf446 = buf445[0] del buf445 buf448 = buf444 del buf444 buf452 = buf440 del buf440 buf456 = buf436 del buf436 buf464 = buf432 del buf432 buf468 = buf430 del buf430 buf472 = buf426 del buf426 triton_poi_fused_minimum_neg_2[grid(256)](buf438, buf446, buf442, buf448, buf452, buf456, buf464, buf468, buf472, 256, XBLOCK=128, num_warps=4, num_stages=1) buf449 = torch.ops.aten.max_pool3d_with_indices.default(buf448, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf448 buf450 = buf449[0] del buf449 buf453 = torch.ops.aten.max_pool3d_with_indices.default(buf452, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf452 buf454 = buf453[0] del buf453 buf457 = torch.ops.aten.max_pool3d_with_indices.default(buf456, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf456 buf458 = buf457[0] del buf457 buf460 = buf450 del buf450 triton_poi_fused_minimum_neg_3[grid(256)](buf460, buf458, buf454, 256, XBLOCK=256, num_warps=4, num_stages=1) buf461 = torch.ops.aten.max_pool3d_with_indices.default(buf460, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf462 = buf461[0] del buf461 buf465 = torch.ops.aten.max_pool3d_with_indices.default(buf464, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf466 = buf465[0] del buf465 buf469 = torch.ops.aten.max_pool3d_with_indices.default(buf468, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf470 = buf469[0] del buf469 buf473 = torch.ops.aten.max_pool3d_with_indices.default(buf472, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf474 = buf473[0] del buf473 buf476 = buf472 del buf472 buf480 = buf468 del buf468 buf484 = buf464 del buf464 buf492 = buf460 del buf460 buf496 = buf458 del buf458 buf500 = buf454 del buf454 triton_poi_fused_minimum_neg_2[grid(256)](buf466, buf474, buf470, buf476, buf480, buf484, buf492, buf496, buf500, 256, XBLOCK=128, num_warps=4, num_stages=1) buf477 = torch.ops.aten.max_pool3d_with_indices.default(buf476, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf476 buf478 = buf477[0] del buf477 buf481 = torch.ops.aten.max_pool3d_with_indices.default(buf480, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf480 buf482 = buf481[0] del buf481 buf485 = torch.ops.aten.max_pool3d_with_indices.default(buf484, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf484 buf486 = buf485[0] del buf485 buf488 = buf478 del buf478 triton_poi_fused_minimum_neg_3[grid(256)](buf488, buf486, buf482, 256, XBLOCK=256, num_warps=4, num_stages=1) buf489 = torch.ops.aten.max_pool3d_with_indices.default(buf488, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf490 = buf489[0] del buf489 buf493 = torch.ops.aten.max_pool3d_with_indices.default(buf492, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf494 = buf493[0] del buf493 buf497 = torch.ops.aten.max_pool3d_with_indices.default(buf496, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf498 = buf497[0] del buf497 buf501 = torch.ops.aten.max_pool3d_with_indices.default(buf500, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf502 = buf501[0] del buf501 buf504 = buf500 del buf500 buf508 = buf496 del buf496 buf512 = buf492 del buf492 buf520 = buf488 del buf488 buf524 = buf486 del buf486 buf528 = buf482 del buf482 triton_poi_fused_minimum_neg_2[grid(256)](buf494, buf502, buf498, buf504, buf508, buf512, buf520, buf524, buf528, 256, XBLOCK=128, num_warps=4, num_stages=1) buf505 = torch.ops.aten.max_pool3d_with_indices.default(buf504, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf504 buf506 = buf505[0] del buf505 buf509 = torch.ops.aten.max_pool3d_with_indices.default(buf508, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf508 buf510 = buf509[0] del buf509 buf513 = torch.ops.aten.max_pool3d_with_indices.default(buf512, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf512 buf514 = buf513[0] del buf513 buf516 = buf506 del buf506 triton_poi_fused_minimum_neg_3[grid(256)](buf516, buf514, buf510, 256, XBLOCK=256, num_warps=4, num_stages=1) buf517 = torch.ops.aten.max_pool3d_with_indices.default(buf516, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf518 = buf517[0] del buf517 buf521 = torch.ops.aten.max_pool3d_with_indices.default(buf520, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf522 = buf521[0] del buf521 buf525 = torch.ops.aten.max_pool3d_with_indices.default(buf524, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf526 = buf525[0] del buf525 buf529 = torch.ops.aten.max_pool3d_with_indices.default(buf528, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf530 = buf529[0] del buf529 buf532 = buf528 del buf528 buf536 = buf524 del buf524 buf540 = buf520 del buf520 buf548 = buf516 del buf516 buf552 = buf514 del buf514 buf556 = buf510 del buf510 triton_poi_fused_minimum_neg_2[grid(256)](buf522, buf530, buf526, buf532, buf536, buf540, buf548, buf552, buf556, 256, XBLOCK=128, num_warps=4, num_stages=1) buf533 = torch.ops.aten.max_pool3d_with_indices.default(buf532, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf532 buf534 = buf533[0] del buf533 buf537 = torch.ops.aten.max_pool3d_with_indices.default(buf536, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf536 buf538 = buf537[0] del buf537 buf541 = torch.ops.aten.max_pool3d_with_indices.default(buf540, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf540 buf542 = buf541[0] del buf541 buf544 = buf534 del buf534 triton_poi_fused_minimum_neg_3[grid(256)](buf544, buf542, buf538, 256, XBLOCK=256, num_warps=4, num_stages=1) buf545 = torch.ops.aten.max_pool3d_with_indices.default(buf544, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf546 = buf545[0] del buf545 buf549 = torch.ops.aten.max_pool3d_with_indices.default(buf548, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf550 = buf549[0] del buf549 buf553 = torch.ops.aten.max_pool3d_with_indices.default(buf552, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf554 = buf553[0] del buf553 buf557 = torch.ops.aten.max_pool3d_with_indices.default(buf556, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf558 = buf557[0] del buf557 buf560 = buf556 del buf556 buf564 = buf552 del buf552 buf568 = buf548 del buf548 buf576 = buf544 del buf544 buf580 = buf542 del buf542 buf584 = buf538 del buf538 triton_poi_fused_minimum_neg_2[grid(256)](buf550, buf558, buf554, buf560, buf564, buf568, buf576, buf580, buf584, 256, XBLOCK=128, num_warps=4, num_stages=1) buf561 = torch.ops.aten.max_pool3d_with_indices.default(buf560, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf560 buf562 = buf561[0] del buf561 buf565 = torch.ops.aten.max_pool3d_with_indices.default(buf564, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf564 buf566 = buf565[0] del buf565 buf569 = torch.ops.aten.max_pool3d_with_indices.default(buf568, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf568 buf570 = buf569[0] del buf569 buf572 = buf562 del buf562 triton_poi_fused_minimum_neg_3[grid(256)](buf572, buf570, buf566, 256, XBLOCK=256, num_warps=4, num_stages=1) buf573 = torch.ops.aten.max_pool3d_with_indices.default(buf572, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf574 = buf573[0] del buf573 buf577 = torch.ops.aten.max_pool3d_with_indices.default(buf576, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf578 = buf577[0] del buf577 buf581 = torch.ops.aten.max_pool3d_with_indices.default(buf580, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf582 = buf581[0] del buf581 buf585 = torch.ops.aten.max_pool3d_with_indices.default(buf584, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf586 = buf585[0] del buf585 buf588 = buf584 del buf584 buf592 = buf580 del buf580 buf596 = buf576 del buf576 buf604 = buf572 del buf572 buf608 = buf570 del buf570 buf612 = buf566 del buf566 triton_poi_fused_minimum_neg_2[grid(256)](buf578, buf586, buf582, buf588, buf592, buf596, buf604, buf608, buf612, 256, XBLOCK=128, num_warps=4, num_stages=1) buf589 = torch.ops.aten.max_pool3d_with_indices.default(buf588, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf588 buf590 = buf589[0] del buf589 buf593 = torch.ops.aten.max_pool3d_with_indices.default(buf592, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf592 buf594 = buf593[0] del buf593 buf597 = torch.ops.aten.max_pool3d_with_indices.default(buf596, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf596 buf598 = buf597[0] del buf597 buf600 = buf590 del buf590 triton_poi_fused_minimum_neg_3[grid(256)](buf600, buf598, buf594, 256, XBLOCK=256, num_warps=4, num_stages=1) buf601 = torch.ops.aten.max_pool3d_with_indices.default(buf600, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf602 = buf601[0] del buf601 buf605 = torch.ops.aten.max_pool3d_with_indices.default(buf604, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf606 = buf605[0] del buf605 buf609 = torch.ops.aten.max_pool3d_with_indices.default(buf608, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf610 = buf609[0] del buf609 buf613 = torch.ops.aten.max_pool3d_with_indices.default(buf612, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf614 = buf613[0] del buf613 buf616 = buf612 del buf612 buf620 = buf608 del buf608 buf624 = buf604 del buf604 buf632 = buf600 del buf600 buf636 = buf598 del buf598 buf640 = buf594 del buf594 triton_poi_fused_minimum_neg_2[grid(256)](buf606, buf614, buf610, buf616, buf620, buf624, buf632, buf636, buf640, 256, XBLOCK=128, num_warps=4, num_stages=1) buf617 = torch.ops.aten.max_pool3d_with_indices.default(buf616, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf616 buf618 = buf617[0] del buf617 buf621 = torch.ops.aten.max_pool3d_with_indices.default(buf620, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf620 buf622 = buf621[0] del buf621 buf625 = torch.ops.aten.max_pool3d_with_indices.default(buf624, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf624 buf626 = buf625[0] del buf625 buf628 = buf618 del buf618 triton_poi_fused_minimum_neg_3[grid(256)](buf628, buf626, buf622, 256, XBLOCK=256, num_warps=4, num_stages=1) buf629 = torch.ops.aten.max_pool3d_with_indices.default(buf628, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf630 = buf629[0] del buf629 buf633 = torch.ops.aten.max_pool3d_with_indices.default(buf632, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf634 = buf633[0] del buf633 buf637 = torch.ops.aten.max_pool3d_with_indices.default(buf636, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf638 = buf637[0] del buf637 buf641 = torch.ops.aten.max_pool3d_with_indices.default(buf640, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf642 = buf641[0] del buf641 buf644 = buf640 del buf640 buf648 = buf636 del buf636 buf652 = buf632 del buf632 buf660 = buf628 del buf628 buf664 = buf626 del buf626 buf668 = buf622 del buf622 triton_poi_fused_minimum_neg_2[grid(256)](buf634, buf642, buf638, buf644, buf648, buf652, buf660, buf664, buf668, 256, XBLOCK=128, num_warps=4, num_stages=1) buf645 = torch.ops.aten.max_pool3d_with_indices.default(buf644, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf644 buf646 = buf645[0] del buf645 buf649 = torch.ops.aten.max_pool3d_with_indices.default(buf648, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf648 buf650 = buf649[0] del buf649 buf653 = torch.ops.aten.max_pool3d_with_indices.default(buf652, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf652 buf654 = buf653[0] del buf653 buf656 = buf646 del buf646 triton_poi_fused_minimum_neg_3[grid(256)](buf656, buf654, buf650, 256, XBLOCK=256, num_warps=4, num_stages=1) buf657 = torch.ops.aten.max_pool3d_with_indices.default(buf656, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf658 = buf657[0] del buf657 buf661 = torch.ops.aten.max_pool3d_with_indices.default(buf660, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf662 = buf661[0] del buf661 buf665 = torch.ops.aten.max_pool3d_with_indices.default(buf664, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf666 = buf665[0] del buf665 buf669 = torch.ops.aten.max_pool3d_with_indices.default(buf668, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf670 = buf669[0] del buf669 buf672 = buf668 del buf668 buf676 = buf664 del buf664 buf680 = buf660 del buf660 buf688 = buf656 del buf656 buf692 = buf654 del buf654 buf696 = buf650 del buf650 triton_poi_fused_minimum_neg_2[grid(256)](buf662, buf670, buf666, buf672, buf676, buf680, buf688, buf692, buf696, 256, XBLOCK=128, num_warps=4, num_stages=1) buf673 = torch.ops.aten.max_pool3d_with_indices.default(buf672, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf672 buf674 = buf673[0] del buf673 buf677 = torch.ops.aten.max_pool3d_with_indices.default(buf676, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf676 buf678 = buf677[0] del buf677 buf681 = torch.ops.aten.max_pool3d_with_indices.default(buf680, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf680 buf682 = buf681[0] del buf681 buf684 = buf674 del buf674 triton_poi_fused_minimum_neg_3[grid(256)](buf684, buf682, buf678, 256, XBLOCK=256, num_warps=4, num_stages=1) buf685 = torch.ops.aten.max_pool3d_with_indices.default(buf684, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf686 = buf685[0] del buf685 buf689 = torch.ops.aten.max_pool3d_with_indices.default(buf688, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf690 = buf689[0] del buf689 buf693 = torch.ops.aten.max_pool3d_with_indices.default(buf692, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf694 = buf693[0] del buf693 buf697 = torch.ops.aten.max_pool3d_with_indices.default(buf696, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf698 = buf697[0] del buf697 buf700 = buf696 del buf696 buf704 = buf692 del buf692 buf708 = buf688 del buf688 buf716 = buf684 del buf684 buf720 = buf682 del buf682 buf724 = buf678 del buf678 triton_poi_fused_minimum_neg_2[grid(256)](buf690, buf698, buf694, buf700, buf704, buf708, buf716, buf720, buf724, 256, XBLOCK=128, num_warps=4, num_stages=1) buf701 = torch.ops.aten.max_pool3d_with_indices.default(buf700, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf700 buf702 = buf701[0] del buf701 buf705 = torch.ops.aten.max_pool3d_with_indices.default(buf704, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf704 buf706 = buf705[0] del buf705 buf709 = torch.ops.aten.max_pool3d_with_indices.default(buf708, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf708 buf710 = buf709[0] del buf709 buf712 = buf702 del buf702 triton_poi_fused_minimum_neg_3[grid(256)](buf712, buf710, buf706, 256, XBLOCK=256, num_warps=4, num_stages=1) buf713 = torch.ops.aten.max_pool3d_with_indices.default(buf712, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf714 = buf713[0] del buf713 buf717 = torch.ops.aten.max_pool3d_with_indices.default(buf716, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf718 = buf717[0] del buf717 buf721 = torch.ops.aten.max_pool3d_with_indices.default(buf720, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf722 = buf721[0] del buf721 buf725 = torch.ops.aten.max_pool3d_with_indices.default(buf724, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf726 = buf725[0] del buf725 buf728 = buf724 del buf724 buf732 = buf720 del buf720 buf736 = buf716 del buf716 buf744 = buf712 del buf712 buf748 = buf710 del buf710 buf752 = buf706 del buf706 triton_poi_fused_minimum_neg_2[grid(256)](buf718, buf726, buf722, buf728, buf732, buf736, buf744, buf748, buf752, 256, XBLOCK=128, num_warps=4, num_stages=1) buf729 = torch.ops.aten.max_pool3d_with_indices.default(buf728, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf728 buf730 = buf729[0] del buf729 buf733 = torch.ops.aten.max_pool3d_with_indices.default(buf732, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf732 buf734 = buf733[0] del buf733 buf737 = torch.ops.aten.max_pool3d_with_indices.default(buf736, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf736 buf738 = buf737[0] del buf737 buf740 = buf730 del buf730 triton_poi_fused_minimum_neg_3[grid(256)](buf740, buf738, buf734, 256, XBLOCK=256, num_warps=4, num_stages=1) buf741 = torch.ops.aten.max_pool3d_with_indices.default(buf740, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf742 = buf741[0] del buf741 buf745 = torch.ops.aten.max_pool3d_with_indices.default(buf744, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf746 = buf745[0] del buf745 buf749 = torch.ops.aten.max_pool3d_with_indices.default(buf748, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf750 = buf749[0] del buf749 buf753 = torch.ops.aten.max_pool3d_with_indices.default(buf752, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf754 = buf753[0] del buf753 buf756 = buf752 del buf752 buf760 = buf748 del buf748 buf764 = buf744 del buf744 buf772 = buf740 del buf740 buf776 = buf738 del buf738 buf780 = buf734 del buf734 triton_poi_fused_minimum_neg_2[grid(256)](buf746, buf754, buf750, buf756, buf760, buf764, buf772, buf776, buf780, 256, XBLOCK=128, num_warps=4, num_stages=1) buf757 = torch.ops.aten.max_pool3d_with_indices.default(buf756, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf756 buf758 = buf757[0] del buf757 buf761 = torch.ops.aten.max_pool3d_with_indices.default(buf760, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf760 buf762 = buf761[0] del buf761 buf765 = torch.ops.aten.max_pool3d_with_indices.default(buf764, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf764 buf766 = buf765[0] del buf765 buf768 = buf758 del buf758 triton_poi_fused_minimum_neg_3[grid(256)](buf768, buf766, buf762, 256, XBLOCK=256, num_warps=4, num_stages=1) buf769 = torch.ops.aten.max_pool3d_with_indices.default(buf768, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf770 = buf769[0] del buf769 buf773 = torch.ops.aten.max_pool3d_with_indices.default(buf772, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf774 = buf773[0] del buf773 buf777 = torch.ops.aten.max_pool3d_with_indices.default(buf776, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf778 = buf777[0] del buf777 buf781 = torch.ops.aten.max_pool3d_with_indices.default(buf780, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf782 = buf781[0] del buf781 buf784 = buf780 del buf780 buf788 = buf776 del buf776 buf792 = buf772 del buf772 buf800 = buf768 del buf768 buf804 = buf766 del buf766 buf808 = buf762 del buf762 triton_poi_fused_minimum_neg_2[grid(256)](buf774, buf782, buf778, buf784, buf788, buf792, buf800, buf804, buf808, 256, XBLOCK=128, num_warps=4, num_stages=1) buf785 = torch.ops.aten.max_pool3d_with_indices.default(buf784, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf784 buf786 = buf785[0] del buf785 buf789 = torch.ops.aten.max_pool3d_with_indices.default(buf788, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf788 buf790 = buf789[0] del buf789 buf793 = torch.ops.aten.max_pool3d_with_indices.default(buf792, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf792 buf794 = buf793[0] del buf793 buf796 = buf786 del buf786 triton_poi_fused_minimum_neg_3[grid(256)](buf796, buf794, buf790, 256, XBLOCK=256, num_warps=4, num_stages=1) buf797 = torch.ops.aten.max_pool3d_with_indices.default(buf796, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf798 = buf797[0] del buf797 buf801 = torch.ops.aten.max_pool3d_with_indices.default(buf800, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf802 = buf801[0] del buf801 buf805 = torch.ops.aten.max_pool3d_with_indices.default(buf804, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf806 = buf805[0] del buf805 buf809 = torch.ops.aten.max_pool3d_with_indices.default(buf808, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf810 = buf809[0] del buf809 buf812 = buf808 del buf808 buf816 = buf804 del buf804 buf820 = buf800 del buf800 buf828 = buf796 del buf796 buf832 = buf794 del buf794 buf836 = buf790 del buf790 triton_poi_fused_minimum_neg_2[grid(256)](buf802, buf810, buf806, buf812, buf816, buf820, buf828, buf832, buf836, 256, XBLOCK=128, num_warps=4, num_stages=1) buf813 = torch.ops.aten.max_pool3d_with_indices.default(buf812, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf812 buf814 = buf813[0] del buf813 buf817 = torch.ops.aten.max_pool3d_with_indices.default(buf816, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf816 buf818 = buf817[0] del buf817 buf821 = torch.ops.aten.max_pool3d_with_indices.default(buf820, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf820 buf822 = buf821[0] del buf821 buf824 = buf814 del buf814 triton_poi_fused_minimum_neg_3[grid(256)](buf824, buf822, buf818, 256, XBLOCK=256, num_warps=4, num_stages=1) buf825 = torch.ops.aten.max_pool3d_with_indices.default(buf824, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf826 = buf825[0] del buf825 buf829 = torch.ops.aten.max_pool3d_with_indices.default(buf828, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf830 = buf829[0] del buf829 buf833 = torch.ops.aten.max_pool3d_with_indices.default(buf832, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf834 = buf833[0] del buf833 buf837 = torch.ops.aten.max_pool3d_with_indices.default(buf836, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf838 = buf837[0] del buf837 buf840 = buf836 del buf836 buf844 = buf832 del buf832 buf848 = buf828 del buf828 buf856 = buf824 del buf824 buf860 = buf822 del buf822 buf864 = buf818 del buf818 triton_poi_fused_minimum_neg_2[grid(256)](buf830, buf838, buf834, buf840, buf844, buf848, buf856, buf860, buf864, 256, XBLOCK=128, num_warps=4, num_stages=1) buf841 = torch.ops.aten.max_pool3d_with_indices.default(buf840, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf840 buf842 = buf841[0] del buf841 buf845 = torch.ops.aten.max_pool3d_with_indices.default(buf844, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf844 buf846 = buf845[0] del buf845 buf849 = torch.ops.aten.max_pool3d_with_indices.default(buf848, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf848 buf850 = buf849[0] del buf849 buf852 = buf842 del buf842 triton_poi_fused_minimum_neg_3[grid(256)](buf852, buf850, buf846, 256, XBLOCK=256, num_warps=4, num_stages=1) buf853 = torch.ops.aten.max_pool3d_with_indices.default(buf852, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf854 = buf853[0] del buf853 buf857 = torch.ops.aten.max_pool3d_with_indices.default(buf856, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf858 = buf857[0] del buf857 buf861 = torch.ops.aten.max_pool3d_with_indices.default(buf860, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf862 = buf861[0] del buf861 buf865 = torch.ops.aten.max_pool3d_with_indices.default(buf864, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf866 = buf865[0] del buf865 buf868 = buf864 del buf864 buf872 = buf860 del buf860 buf876 = buf856 del buf856 buf884 = buf852 del buf852 buf888 = buf850 del buf850 buf892 = buf846 del buf846 triton_poi_fused_minimum_neg_2[grid(256)](buf858, buf866, buf862, buf868, buf872, buf876, buf884, buf888, buf892, 256, XBLOCK=128, num_warps=4, num_stages=1) buf869 = torch.ops.aten.max_pool3d_with_indices.default(buf868, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf868 buf870 = buf869[0] del buf869 buf873 = torch.ops.aten.max_pool3d_with_indices.default(buf872, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf872 buf874 = buf873[0] del buf873 buf877 = torch.ops.aten.max_pool3d_with_indices.default(buf876, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf876 buf878 = buf877[0] del buf877 buf880 = buf870 del buf870 triton_poi_fused_minimum_neg_3[grid(256)](buf880, buf878, buf874, 256, XBLOCK=256, num_warps=4, num_stages=1) buf881 = torch.ops.aten.max_pool3d_with_indices.default(buf880, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf882 = buf881[0] del buf881 buf885 = torch.ops.aten.max_pool3d_with_indices.default(buf884, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf886 = buf885[0] del buf885 buf889 = torch.ops.aten.max_pool3d_with_indices.default(buf888, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf890 = buf889[0] del buf889 buf893 = torch.ops.aten.max_pool3d_with_indices.default(buf892, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf894 = buf893[0] del buf893 buf896 = buf892 del buf892 buf900 = buf888 del buf888 buf904 = buf884 del buf884 buf912 = buf880 del buf880 buf916 = buf878 del buf878 buf920 = buf874 del buf874 triton_poi_fused_minimum_neg_2[grid(256)](buf886, buf894, buf890, buf896, buf900, buf904, buf912, buf916, buf920, 256, XBLOCK=128, num_warps=4, num_stages=1) buf897 = torch.ops.aten.max_pool3d_with_indices.default(buf896, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf896 buf898 = buf897[0] del buf897 buf901 = torch.ops.aten.max_pool3d_with_indices.default(buf900, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf900 buf902 = buf901[0] del buf901 buf905 = torch.ops.aten.max_pool3d_with_indices.default(buf904, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf904 buf906 = buf905[0] del buf905 buf908 = buf898 del buf898 triton_poi_fused_minimum_neg_3[grid(256)](buf908, buf906, buf902, 256, XBLOCK=256, num_warps=4, num_stages=1) buf909 = torch.ops.aten.max_pool3d_with_indices.default(buf908, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf910 = buf909[0] del buf909 buf913 = torch.ops.aten.max_pool3d_with_indices.default(buf912, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf914 = buf913[0] del buf913 buf917 = torch.ops.aten.max_pool3d_with_indices.default(buf916, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf918 = buf917[0] del buf917 buf921 = torch.ops.aten.max_pool3d_with_indices.default(buf920, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf922 = buf921[0] del buf921 buf924 = buf920 del buf920 buf928 = buf916 del buf916 buf932 = buf912 del buf912 buf940 = buf908 del buf908 buf944 = buf906 del buf906 buf948 = buf902 del buf902 triton_poi_fused_minimum_neg_2[grid(256)](buf914, buf922, buf918, buf924, buf928, buf932, buf940, buf944, buf948, 256, XBLOCK=128, num_warps=4, num_stages=1) buf925 = torch.ops.aten.max_pool3d_with_indices.default(buf924, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf924 buf926 = buf925[0] del buf925 buf929 = torch.ops.aten.max_pool3d_with_indices.default(buf928, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf928 buf930 = buf929[0] del buf929 buf933 = torch.ops.aten.max_pool3d_with_indices.default(buf932, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf932 buf934 = buf933[0] del buf933 buf936 = buf926 del buf926 triton_poi_fused_minimum_neg_3[grid(256)](buf936, buf934, buf930, 256, XBLOCK=256, num_warps=4, num_stages=1) buf937 = torch.ops.aten.max_pool3d_with_indices.default(buf936, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf938 = buf937[0] del buf937 buf941 = torch.ops.aten.max_pool3d_with_indices.default(buf940, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf942 = buf941[0] del buf941 buf945 = torch.ops.aten.max_pool3d_with_indices.default(buf944, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf946 = buf945[0] del buf945 buf949 = torch.ops.aten.max_pool3d_with_indices.default(buf948, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf950 = buf949[0] del buf949 buf952 = buf948 del buf948 buf956 = buf944 del buf944 buf960 = buf940 del buf940 buf968 = buf936 del buf936 buf972 = buf934 del buf934 buf976 = buf930 del buf930 triton_poi_fused_minimum_neg_2[grid(256)](buf942, buf950, buf946, buf952, buf956, buf960, buf968, buf972, buf976, 256, XBLOCK=128, num_warps=4, num_stages=1) buf953 = torch.ops.aten.max_pool3d_with_indices.default(buf952, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf952 buf954 = buf953[0] del buf953 buf957 = torch.ops.aten.max_pool3d_with_indices.default(buf956, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf956 buf958 = buf957[0] del buf957 buf961 = torch.ops.aten.max_pool3d_with_indices.default(buf960, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf960 buf962 = buf961[0] del buf961 buf964 = buf954 del buf954 triton_poi_fused_minimum_neg_3[grid(256)](buf964, buf962, buf958, 256, XBLOCK=256, num_warps=4, num_stages=1) buf965 = torch.ops.aten.max_pool3d_with_indices.default(buf964, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf966 = buf965[0] del buf965 buf969 = torch.ops.aten.max_pool3d_with_indices.default(buf968, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf970 = buf969[0] del buf969 buf973 = torch.ops.aten.max_pool3d_with_indices.default(buf972, [1, 3, 1], [1, 1, 1], [0, 1, 0]) buf974 = buf973[0] del buf973 buf977 = torch.ops.aten.max_pool3d_with_indices.default(buf976, [1, 1, 3], [1, 1, 1], [0, 0, 1]) buf978 = buf977[0] del buf977 buf980 = buf976 del buf976 buf984 = buf972 del buf972 buf988 = buf968 del buf968 buf996 = buf964 del buf964 buf1000 = buf962 del buf962 buf1004 = buf958 del buf958 triton_poi_fused_minimum_neg_2[grid(256)](buf970, buf978, buf974, buf980, buf984, buf988, buf996, buf1000, buf1004, 256, XBLOCK= 128, num_warps=4, num_stages=1) buf981 = torch.ops.aten.max_pool3d_with_indices.default(buf980, [3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf980 buf982 = buf981[0] del buf981 buf985 = torch.ops.aten.max_pool3d_with_indices.default(buf984, [1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf984 buf986 = buf985[0] del buf985 buf989 = torch.ops.aten.max_pool3d_with_indices.default(buf988, [1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf988 buf990 = buf989[0] del buf989 buf992 = buf982 del buf982 triton_poi_fused_minimum_neg_3[grid(256)](buf992, buf990, buf986, 256, XBLOCK=256, num_warps=4, num_stages=1) buf993 = torch.ops.aten.max_pool3d_with_indices.default(buf992, [3, 3, 3], [1, 1, 1], [1, 1, 1]) buf994 = buf993[0] del buf993 buf997 = torch.ops.aten.max_pool3d_with_indices.default(buf996, [3, 1, 1], [1, 1, 1], [1, 0, 0]) buf998 = buf997[0] del buf997 buf1001 = torch.ops.aten.max_pool3d_with_indices.default(buf1000, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1002 = buf1001[0] del buf1001 buf1005 = torch.ops.aten.max_pool3d_with_indices.default(buf1004, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1006 = buf1005[0] del buf1005 buf1008 = buf1004 del buf1004 buf1012 = buf1000 del buf1000 buf1016 = buf996 del buf996 buf1024 = buf992 del buf992 buf1028 = buf990 del buf990 buf1032 = buf986 del buf986 triton_poi_fused_minimum_neg_2[grid(256)](buf998, buf1006, buf1002, buf1008, buf1012, buf1016, buf1024, buf1028, buf1032, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1009 = torch.ops.aten.max_pool3d_with_indices.default(buf1008, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1008 buf1010 = buf1009[0] del buf1009 buf1013 = torch.ops.aten.max_pool3d_with_indices.default(buf1012, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1012 buf1014 = buf1013[0] del buf1013 buf1017 = torch.ops.aten.max_pool3d_with_indices.default(buf1016, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1016 buf1018 = buf1017[0] del buf1017 buf1020 = buf1010 del buf1010 triton_poi_fused_minimum_neg_3[grid(256)](buf1020, buf1018, buf1014, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1021 = torch.ops.aten.max_pool3d_with_indices.default(buf1020, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1022 = buf1021[0] del buf1021 buf1025 = torch.ops.aten.max_pool3d_with_indices.default(buf1024, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1026 = buf1025[0] del buf1025 buf1029 = torch.ops.aten.max_pool3d_with_indices.default(buf1028, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1030 = buf1029[0] del buf1029 buf1033 = torch.ops.aten.max_pool3d_with_indices.default(buf1032, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1034 = buf1033[0] del buf1033 buf1036 = buf1032 del buf1032 buf1040 = buf1028 del buf1028 buf1044 = buf1024 del buf1024 buf1052 = buf1020 del buf1020 buf1056 = buf1018 del buf1018 buf1060 = buf1014 del buf1014 triton_poi_fused_minimum_neg_2[grid(256)](buf1026, buf1034, buf1030, buf1036, buf1040, buf1044, buf1052, buf1056, buf1060, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1037 = torch.ops.aten.max_pool3d_with_indices.default(buf1036, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1036 buf1038 = buf1037[0] del buf1037 buf1041 = torch.ops.aten.max_pool3d_with_indices.default(buf1040, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1040 buf1042 = buf1041[0] del buf1041 buf1045 = torch.ops.aten.max_pool3d_with_indices.default(buf1044, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1044 buf1046 = buf1045[0] del buf1045 buf1048 = buf1038 del buf1038 triton_poi_fused_minimum_neg_3[grid(256)](buf1048, buf1046, buf1042, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1049 = torch.ops.aten.max_pool3d_with_indices.default(buf1048, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1050 = buf1049[0] del buf1049 buf1053 = torch.ops.aten.max_pool3d_with_indices.default(buf1052, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1054 = buf1053[0] del buf1053 buf1057 = torch.ops.aten.max_pool3d_with_indices.default(buf1056, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1058 = buf1057[0] del buf1057 buf1061 = torch.ops.aten.max_pool3d_with_indices.default(buf1060, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1062 = buf1061[0] del buf1061 buf1064 = buf1060 del buf1060 buf1068 = buf1056 del buf1056 buf1072 = buf1052 del buf1052 buf1080 = buf1048 del buf1048 buf1084 = buf1046 del buf1046 buf1088 = buf1042 del buf1042 triton_poi_fused_minimum_neg_2[grid(256)](buf1054, buf1062, buf1058, buf1064, buf1068, buf1072, buf1080, buf1084, buf1088, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1065 = torch.ops.aten.max_pool3d_with_indices.default(buf1064, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1064 buf1066 = buf1065[0] del buf1065 buf1069 = torch.ops.aten.max_pool3d_with_indices.default(buf1068, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1068 buf1070 = buf1069[0] del buf1069 buf1073 = torch.ops.aten.max_pool3d_with_indices.default(buf1072, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1072 buf1074 = buf1073[0] del buf1073 buf1076 = buf1066 del buf1066 triton_poi_fused_minimum_neg_3[grid(256)](buf1076, buf1074, buf1070, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1077 = torch.ops.aten.max_pool3d_with_indices.default(buf1076, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1078 = buf1077[0] del buf1077 buf1081 = torch.ops.aten.max_pool3d_with_indices.default(buf1080, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1082 = buf1081[0] del buf1081 buf1085 = torch.ops.aten.max_pool3d_with_indices.default(buf1084, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1086 = buf1085[0] del buf1085 buf1089 = torch.ops.aten.max_pool3d_with_indices.default(buf1088, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1090 = buf1089[0] del buf1089 buf1092 = buf1088 del buf1088 buf1096 = buf1084 del buf1084 buf1100 = buf1080 del buf1080 buf1108 = buf1076 del buf1076 buf1112 = buf1074 del buf1074 buf1116 = buf1070 del buf1070 triton_poi_fused_minimum_neg_2[grid(256)](buf1082, buf1090, buf1086, buf1092, buf1096, buf1100, buf1108, buf1112, buf1116, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1093 = torch.ops.aten.max_pool3d_with_indices.default(buf1092, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1092 buf1094 = buf1093[0] del buf1093 buf1097 = torch.ops.aten.max_pool3d_with_indices.default(buf1096, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1096 buf1098 = buf1097[0] del buf1097 buf1101 = torch.ops.aten.max_pool3d_with_indices.default(buf1100, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1100 buf1102 = buf1101[0] del buf1101 buf1104 = buf1094 del buf1094 triton_poi_fused_minimum_neg_3[grid(256)](buf1104, buf1102, buf1098, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1105 = torch.ops.aten.max_pool3d_with_indices.default(buf1104, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1106 = buf1105[0] del buf1105 buf1109 = torch.ops.aten.max_pool3d_with_indices.default(buf1108, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1110 = buf1109[0] del buf1109 buf1113 = torch.ops.aten.max_pool3d_with_indices.default(buf1112, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1114 = buf1113[0] del buf1113 buf1117 = torch.ops.aten.max_pool3d_with_indices.default(buf1116, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1118 = buf1117[0] del buf1117 buf1120 = buf1116 del buf1116 buf1124 = buf1112 del buf1112 buf1128 = buf1108 del buf1108 buf1136 = buf1104 del buf1104 buf1140 = buf1102 del buf1102 buf1144 = buf1098 del buf1098 triton_poi_fused_minimum_neg_2[grid(256)](buf1110, buf1118, buf1114, buf1120, buf1124, buf1128, buf1136, buf1140, buf1144, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1121 = torch.ops.aten.max_pool3d_with_indices.default(buf1120, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1120 buf1122 = buf1121[0] del buf1121 buf1125 = torch.ops.aten.max_pool3d_with_indices.default(buf1124, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1124 buf1126 = buf1125[0] del buf1125 buf1129 = torch.ops.aten.max_pool3d_with_indices.default(buf1128, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1128 buf1130 = buf1129[0] del buf1129 buf1132 = buf1122 del buf1122 triton_poi_fused_minimum_neg_3[grid(256)](buf1132, buf1130, buf1126, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1133 = torch.ops.aten.max_pool3d_with_indices.default(buf1132, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1134 = buf1133[0] del buf1133 buf1137 = torch.ops.aten.max_pool3d_with_indices.default(buf1136, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1138 = buf1137[0] del buf1137 buf1141 = torch.ops.aten.max_pool3d_with_indices.default(buf1140, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1142 = buf1141[0] del buf1141 buf1145 = torch.ops.aten.max_pool3d_with_indices.default(buf1144, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1146 = buf1145[0] del buf1145 buf1148 = buf1144 del buf1144 buf1152 = buf1140 del buf1140 buf1156 = buf1136 del buf1136 buf1164 = buf1132 del buf1132 buf1168 = buf1130 del buf1130 buf1172 = buf1126 del buf1126 triton_poi_fused_minimum_neg_2[grid(256)](buf1138, buf1146, buf1142, buf1148, buf1152, buf1156, buf1164, buf1168, buf1172, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1149 = torch.ops.aten.max_pool3d_with_indices.default(buf1148, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1148 buf1150 = buf1149[0] del buf1149 buf1153 = torch.ops.aten.max_pool3d_with_indices.default(buf1152, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1152 buf1154 = buf1153[0] del buf1153 buf1157 = torch.ops.aten.max_pool3d_with_indices.default(buf1156, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1156 buf1158 = buf1157[0] del buf1157 buf1160 = buf1150 del buf1150 triton_poi_fused_minimum_neg_3[grid(256)](buf1160, buf1158, buf1154, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1161 = torch.ops.aten.max_pool3d_with_indices.default(buf1160, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1162 = buf1161[0] del buf1161 buf1165 = torch.ops.aten.max_pool3d_with_indices.default(buf1164, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1166 = buf1165[0] del buf1165 buf1169 = torch.ops.aten.max_pool3d_with_indices.default(buf1168, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1170 = buf1169[0] del buf1169 buf1173 = torch.ops.aten.max_pool3d_with_indices.default(buf1172, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1174 = buf1173[0] del buf1173 buf1176 = buf1172 del buf1172 buf1180 = buf1168 del buf1168 buf1184 = buf1164 del buf1164 buf1192 = buf1160 del buf1160 buf1196 = buf1158 del buf1158 buf1200 = buf1154 del buf1154 triton_poi_fused_minimum_neg_2[grid(256)](buf1166, buf1174, buf1170, buf1176, buf1180, buf1184, buf1192, buf1196, buf1200, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1177 = torch.ops.aten.max_pool3d_with_indices.default(buf1176, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1176 buf1178 = buf1177[0] del buf1177 buf1181 = torch.ops.aten.max_pool3d_with_indices.default(buf1180, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1180 buf1182 = buf1181[0] del buf1181 buf1185 = torch.ops.aten.max_pool3d_with_indices.default(buf1184, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1184 buf1186 = buf1185[0] del buf1185 buf1188 = buf1178 del buf1178 triton_poi_fused_minimum_neg_3[grid(256)](buf1188, buf1186, buf1182, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1189 = torch.ops.aten.max_pool3d_with_indices.default(buf1188, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1190 = buf1189[0] del buf1189 buf1193 = torch.ops.aten.max_pool3d_with_indices.default(buf1192, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1194 = buf1193[0] del buf1193 buf1197 = torch.ops.aten.max_pool3d_with_indices.default(buf1196, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1198 = buf1197[0] del buf1197 buf1201 = torch.ops.aten.max_pool3d_with_indices.default(buf1200, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1202 = buf1201[0] del buf1201 buf1204 = buf1200 del buf1200 buf1208 = buf1196 del buf1196 buf1212 = buf1192 del buf1192 buf1220 = buf1188 del buf1188 buf1224 = buf1186 del buf1186 buf1228 = buf1182 del buf1182 triton_poi_fused_minimum_neg_2[grid(256)](buf1194, buf1202, buf1198, buf1204, buf1208, buf1212, buf1220, buf1224, buf1228, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1205 = torch.ops.aten.max_pool3d_with_indices.default(buf1204, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1204 buf1206 = buf1205[0] del buf1205 buf1209 = torch.ops.aten.max_pool3d_with_indices.default(buf1208, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1208 buf1210 = buf1209[0] del buf1209 buf1213 = torch.ops.aten.max_pool3d_with_indices.default(buf1212, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1212 buf1214 = buf1213[0] del buf1213 buf1216 = buf1206 del buf1206 triton_poi_fused_minimum_neg_3[grid(256)](buf1216, buf1214, buf1210, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1217 = torch.ops.aten.max_pool3d_with_indices.default(buf1216, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1218 = buf1217[0] del buf1217 buf1221 = torch.ops.aten.max_pool3d_with_indices.default(buf1220, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1222 = buf1221[0] del buf1221 buf1225 = torch.ops.aten.max_pool3d_with_indices.default(buf1224, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1226 = buf1225[0] del buf1225 buf1229 = torch.ops.aten.max_pool3d_with_indices.default(buf1228, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1230 = buf1229[0] del buf1229 buf1232 = buf1228 del buf1228 buf1236 = buf1224 del buf1224 buf1240 = buf1220 del buf1220 buf1248 = buf1216 del buf1216 buf1252 = buf1214 del buf1214 buf1256 = buf1210 del buf1210 triton_poi_fused_minimum_neg_2[grid(256)](buf1222, buf1230, buf1226, buf1232, buf1236, buf1240, buf1248, buf1252, buf1256, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1233 = torch.ops.aten.max_pool3d_with_indices.default(buf1232, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1232 buf1234 = buf1233[0] del buf1233 buf1237 = torch.ops.aten.max_pool3d_with_indices.default(buf1236, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1236 buf1238 = buf1237[0] del buf1237 buf1241 = torch.ops.aten.max_pool3d_with_indices.default(buf1240, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1240 buf1242 = buf1241[0] del buf1241 buf1244 = buf1234 del buf1234 triton_poi_fused_minimum_neg_3[grid(256)](buf1244, buf1242, buf1238, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1245 = torch.ops.aten.max_pool3d_with_indices.default(buf1244, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1246 = buf1245[0] del buf1245 buf1249 = torch.ops.aten.max_pool3d_with_indices.default(buf1248, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1250 = buf1249[0] del buf1249 buf1253 = torch.ops.aten.max_pool3d_with_indices.default(buf1252, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1254 = buf1253[0] del buf1253 buf1257 = torch.ops.aten.max_pool3d_with_indices.default(buf1256, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1258 = buf1257[0] del buf1257 buf1260 = buf1256 del buf1256 buf1264 = buf1252 del buf1252 buf1268 = buf1248 del buf1248 buf1276 = buf1244 del buf1244 buf1280 = buf1242 del buf1242 buf1284 = buf1238 del buf1238 triton_poi_fused_minimum_neg_2[grid(256)](buf1250, buf1258, buf1254, buf1260, buf1264, buf1268, buf1276, buf1280, buf1284, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1261 = torch.ops.aten.max_pool3d_with_indices.default(buf1260, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1260 buf1262 = buf1261[0] del buf1261 buf1265 = torch.ops.aten.max_pool3d_with_indices.default(buf1264, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1264 buf1266 = buf1265[0] del buf1265 buf1269 = torch.ops.aten.max_pool3d_with_indices.default(buf1268, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1268 buf1270 = buf1269[0] del buf1269 buf1272 = buf1262 del buf1262 triton_poi_fused_minimum_neg_3[grid(256)](buf1272, buf1270, buf1266, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1273 = torch.ops.aten.max_pool3d_with_indices.default(buf1272, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1274 = buf1273[0] del buf1273 buf1277 = torch.ops.aten.max_pool3d_with_indices.default(buf1276, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1278 = buf1277[0] del buf1277 buf1281 = torch.ops.aten.max_pool3d_with_indices.default(buf1280, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1282 = buf1281[0] del buf1281 buf1285 = torch.ops.aten.max_pool3d_with_indices.default(buf1284, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1286 = buf1285[0] del buf1285 buf1288 = buf1284 del buf1284 buf1292 = buf1280 del buf1280 buf1296 = buf1276 del buf1276 buf1304 = buf1272 del buf1272 buf1308 = buf1270 del buf1270 buf1312 = buf1266 del buf1266 triton_poi_fused_minimum_neg_2[grid(256)](buf1278, buf1286, buf1282, buf1288, buf1292, buf1296, buf1304, buf1308, buf1312, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1289 = torch.ops.aten.max_pool3d_with_indices.default(buf1288, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1288 buf1290 = buf1289[0] del buf1289 buf1293 = torch.ops.aten.max_pool3d_with_indices.default(buf1292, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1292 buf1294 = buf1293[0] del buf1293 buf1297 = torch.ops.aten.max_pool3d_with_indices.default(buf1296, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1296 buf1298 = buf1297[0] del buf1297 buf1300 = buf1290 del buf1290 triton_poi_fused_minimum_neg_3[grid(256)](buf1300, buf1298, buf1294, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1301 = torch.ops.aten.max_pool3d_with_indices.default(buf1300, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1302 = buf1301[0] del buf1301 buf1305 = torch.ops.aten.max_pool3d_with_indices.default(buf1304, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1306 = buf1305[0] del buf1305 buf1309 = torch.ops.aten.max_pool3d_with_indices.default(buf1308, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1310 = buf1309[0] del buf1309 buf1313 = torch.ops.aten.max_pool3d_with_indices.default(buf1312, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1314 = buf1313[0] del buf1313 buf1316 = buf1312 del buf1312 buf1320 = buf1308 del buf1308 buf1324 = buf1304 del buf1304 buf1332 = buf1300 del buf1300 buf1336 = buf1298 del buf1298 buf1340 = buf1294 del buf1294 triton_poi_fused_minimum_neg_2[grid(256)](buf1306, buf1314, buf1310, buf1316, buf1320, buf1324, buf1332, buf1336, buf1340, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1317 = torch.ops.aten.max_pool3d_with_indices.default(buf1316, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1316 buf1318 = buf1317[0] del buf1317 buf1321 = torch.ops.aten.max_pool3d_with_indices.default(buf1320, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1320 buf1322 = buf1321[0] del buf1321 buf1325 = torch.ops.aten.max_pool3d_with_indices.default(buf1324, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1324 buf1326 = buf1325[0] del buf1325 buf1328 = buf1318 del buf1318 triton_poi_fused_minimum_neg_3[grid(256)](buf1328, buf1326, buf1322, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1329 = torch.ops.aten.max_pool3d_with_indices.default(buf1328, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1330 = buf1329[0] del buf1329 buf1333 = torch.ops.aten.max_pool3d_with_indices.default(buf1332, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1334 = buf1333[0] del buf1333 buf1337 = torch.ops.aten.max_pool3d_with_indices.default(buf1336, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1338 = buf1337[0] del buf1337 buf1341 = torch.ops.aten.max_pool3d_with_indices.default(buf1340, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1342 = buf1341[0] del buf1341 buf1344 = buf1340 del buf1340 buf1348 = buf1336 del buf1336 buf1352 = buf1332 del buf1332 buf1360 = buf1328 del buf1328 buf1364 = buf1326 del buf1326 buf1368 = buf1322 del buf1322 triton_poi_fused_minimum_neg_2[grid(256)](buf1334, buf1342, buf1338, buf1344, buf1348, buf1352, buf1360, buf1364, buf1368, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1345 = torch.ops.aten.max_pool3d_with_indices.default(buf1344, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1344 buf1346 = buf1345[0] del buf1345 buf1349 = torch.ops.aten.max_pool3d_with_indices.default(buf1348, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1348 buf1350 = buf1349[0] del buf1349 buf1353 = torch.ops.aten.max_pool3d_with_indices.default(buf1352, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1352 buf1354 = buf1353[0] del buf1353 buf1356 = buf1346 del buf1346 triton_poi_fused_minimum_neg_3[grid(256)](buf1356, buf1354, buf1350, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1357 = torch.ops.aten.max_pool3d_with_indices.default(buf1356, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1358 = buf1357[0] del buf1357 buf1361 = torch.ops.aten.max_pool3d_with_indices.default(buf1360, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1362 = buf1361[0] del buf1361 buf1365 = torch.ops.aten.max_pool3d_with_indices.default(buf1364, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1366 = buf1365[0] del buf1365 buf1369 = torch.ops.aten.max_pool3d_with_indices.default(buf1368, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1370 = buf1369[0] del buf1369 buf1372 = buf1368 del buf1368 buf1376 = buf1364 del buf1364 buf1380 = buf1360 del buf1360 buf1388 = buf1356 del buf1356 buf1392 = buf1354 del buf1354 buf1396 = buf1350 del buf1350 triton_poi_fused_minimum_neg_2[grid(256)](buf1362, buf1370, buf1366, buf1372, buf1376, buf1380, buf1388, buf1392, buf1396, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1373 = torch.ops.aten.max_pool3d_with_indices.default(buf1372, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1372 buf1374 = buf1373[0] del buf1373 buf1377 = torch.ops.aten.max_pool3d_with_indices.default(buf1376, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1376 buf1378 = buf1377[0] del buf1377 buf1381 = torch.ops.aten.max_pool3d_with_indices.default(buf1380, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1380 buf1382 = buf1381[0] del buf1381 buf1384 = buf1374 del buf1374 triton_poi_fused_minimum_neg_3[grid(256)](buf1384, buf1382, buf1378, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1378 del buf1382 buf1385 = torch.ops.aten.max_pool3d_with_indices.default(buf1384, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) del buf1384 buf1386 = buf1385[0] del buf1385 buf1389 = torch.ops.aten.max_pool3d_with_indices.default(buf1388, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1390 = buf1389[0] del buf1389 buf1393 = torch.ops.aten.max_pool3d_with_indices.default(buf1392, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1394 = buf1393[0] del buf1393 buf1397 = torch.ops.aten.max_pool3d_with_indices.default(buf1396, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1398 = buf1397[0] del buf1397 buf1400 = buf1396 del buf1396 buf1404 = buf1392 del buf1392 buf1408 = buf1388 del buf1388 triton_poi_fused_minimum_neg_4[grid(256)](buf1390, buf1398, buf1394, buf1400, buf1404, buf1408, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1401 = torch.ops.aten.max_pool3d_with_indices.default(buf1400, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1402 = buf1401[0] del buf1401 buf1405 = torch.ops.aten.max_pool3d_with_indices.default(buf1404, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1406 = buf1405[0] del buf1405 buf1409 = torch.ops.aten.max_pool3d_with_indices.default(buf1408, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1410 = buf1409[0] del buf1409 buf1412 = buf1402 del buf1402 triton_poi_fused_minimum_neg_3[grid(256)](buf1412, buf1410, buf1406, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1413 = torch.ops.aten.max_pool3d_with_indices.default(buf1412, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1414 = buf1413[0] del buf1413 buf1416 = buf1412 del buf1412 buf1420 = buf1410 del buf1410 buf1424 = buf1406 del buf1406 buf1432 = buf1408 del buf1408 buf1436 = buf1404 del buf1404 buf1440 = buf1400 del buf1400 triton_poi_fused_neg_0[grid(256)](arg1_1, buf1416, buf1420, buf1424, buf1432, buf1436, buf1440, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1417 = torch.ops.aten.max_pool3d_with_indices.default(buf1416, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1416 buf1418 = buf1417[0] del buf1417 buf1421 = torch.ops.aten.max_pool3d_with_indices.default(buf1420, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1420 buf1422 = buf1421[0] del buf1421 buf1425 = torch.ops.aten.max_pool3d_with_indices.default(buf1424, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1424 buf1426 = buf1425[0] del buf1425 buf1428 = buf1418 del buf1418 triton_poi_fused_minimum_neg_3[grid(256)](buf1428, buf1426, buf1422, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1429 = torch.ops.aten.max_pool3d_with_indices.default(buf1428, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1430 = buf1429[0] del buf1429 buf1433 = torch.ops.aten.max_pool3d_with_indices.default(buf1432, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1434 = buf1433[0] del buf1433 buf1437 = torch.ops.aten.max_pool3d_with_indices.default(buf1436, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1438 = buf1437[0] del buf1437 buf1441 = torch.ops.aten.max_pool3d_with_indices.default(buf1440, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1442 = buf1441[0] del buf1441 buf1444 = buf1440 del buf1440 buf1448 = buf1436 del buf1436 buf1452 = buf1432 del buf1432 buf1460 = buf1428 del buf1428 buf1464 = buf1426 del buf1426 buf1468 = buf1422 del buf1422 triton_poi_fused_minimum_neg_2[grid(256)](buf1434, buf1442, buf1438, buf1444, buf1448, buf1452, buf1460, buf1464, buf1468, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1445 = torch.ops.aten.max_pool3d_with_indices.default(buf1444, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1444 buf1446 = buf1445[0] del buf1445 buf1449 = torch.ops.aten.max_pool3d_with_indices.default(buf1448, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1448 buf1450 = buf1449[0] del buf1449 buf1453 = torch.ops.aten.max_pool3d_with_indices.default(buf1452, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1452 buf1454 = buf1453[0] del buf1453 buf1456 = buf1446 del buf1446 triton_poi_fused_minimum_neg_3[grid(256)](buf1456, buf1454, buf1450, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1457 = torch.ops.aten.max_pool3d_with_indices.default(buf1456, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1458 = buf1457[0] del buf1457 buf1461 = torch.ops.aten.max_pool3d_with_indices.default(buf1460, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1462 = buf1461[0] del buf1461 buf1465 = torch.ops.aten.max_pool3d_with_indices.default(buf1464, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1466 = buf1465[0] del buf1465 buf1469 = torch.ops.aten.max_pool3d_with_indices.default(buf1468, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1470 = buf1469[0] del buf1469 buf1472 = buf1468 del buf1468 buf1476 = buf1464 del buf1464 buf1480 = buf1460 del buf1460 buf1488 = buf1456 del buf1456 buf1492 = buf1454 del buf1454 buf1496 = buf1450 del buf1450 triton_poi_fused_minimum_neg_2[grid(256)](buf1462, buf1470, buf1466, buf1472, buf1476, buf1480, buf1488, buf1492, buf1496, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1473 = torch.ops.aten.max_pool3d_with_indices.default(buf1472, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1472 buf1474 = buf1473[0] del buf1473 buf1477 = torch.ops.aten.max_pool3d_with_indices.default(buf1476, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1476 buf1478 = buf1477[0] del buf1477 buf1481 = torch.ops.aten.max_pool3d_with_indices.default(buf1480, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1480 buf1482 = buf1481[0] del buf1481 buf1484 = buf1474 del buf1474 triton_poi_fused_minimum_neg_3[grid(256)](buf1484, buf1482, buf1478, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1485 = torch.ops.aten.max_pool3d_with_indices.default(buf1484, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1486 = buf1485[0] del buf1485 buf1489 = torch.ops.aten.max_pool3d_with_indices.default(buf1488, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1490 = buf1489[0] del buf1489 buf1493 = torch.ops.aten.max_pool3d_with_indices.default(buf1492, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1494 = buf1493[0] del buf1493 buf1497 = torch.ops.aten.max_pool3d_with_indices.default(buf1496, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1498 = buf1497[0] del buf1497 buf1500 = buf1496 del buf1496 buf1504 = buf1492 del buf1492 buf1508 = buf1488 del buf1488 buf1516 = buf1484 del buf1484 buf1520 = buf1482 del buf1482 buf1524 = buf1478 del buf1478 triton_poi_fused_minimum_neg_2[grid(256)](buf1490, buf1498, buf1494, buf1500, buf1504, buf1508, buf1516, buf1520, buf1524, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1501 = torch.ops.aten.max_pool3d_with_indices.default(buf1500, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1500 buf1502 = buf1501[0] del buf1501 buf1505 = torch.ops.aten.max_pool3d_with_indices.default(buf1504, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1504 buf1506 = buf1505[0] del buf1505 buf1509 = torch.ops.aten.max_pool3d_with_indices.default(buf1508, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1508 buf1510 = buf1509[0] del buf1509 buf1512 = buf1502 del buf1502 triton_poi_fused_minimum_neg_3[grid(256)](buf1512, buf1510, buf1506, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1513 = torch.ops.aten.max_pool3d_with_indices.default(buf1512, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1514 = buf1513[0] del buf1513 buf1517 = torch.ops.aten.max_pool3d_with_indices.default(buf1516, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1518 = buf1517[0] del buf1517 buf1521 = torch.ops.aten.max_pool3d_with_indices.default(buf1520, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1522 = buf1521[0] del buf1521 buf1525 = torch.ops.aten.max_pool3d_with_indices.default(buf1524, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1526 = buf1525[0] del buf1525 buf1528 = buf1524 del buf1524 buf1532 = buf1520 del buf1520 buf1536 = buf1516 del buf1516 buf1544 = buf1512 del buf1512 buf1548 = buf1510 del buf1510 buf1552 = buf1506 del buf1506 triton_poi_fused_minimum_neg_2[grid(256)](buf1518, buf1526, buf1522, buf1528, buf1532, buf1536, buf1544, buf1548, buf1552, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1529 = torch.ops.aten.max_pool3d_with_indices.default(buf1528, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1528 buf1530 = buf1529[0] del buf1529 buf1533 = torch.ops.aten.max_pool3d_with_indices.default(buf1532, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1532 buf1534 = buf1533[0] del buf1533 buf1537 = torch.ops.aten.max_pool3d_with_indices.default(buf1536, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1536 buf1538 = buf1537[0] del buf1537 buf1540 = buf1530 del buf1530 triton_poi_fused_minimum_neg_3[grid(256)](buf1540, buf1538, buf1534, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1541 = torch.ops.aten.max_pool3d_with_indices.default(buf1540, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1542 = buf1541[0] del buf1541 buf1545 = torch.ops.aten.max_pool3d_with_indices.default(buf1544, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1546 = buf1545[0] del buf1545 buf1549 = torch.ops.aten.max_pool3d_with_indices.default(buf1548, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1550 = buf1549[0] del buf1549 buf1553 = torch.ops.aten.max_pool3d_with_indices.default(buf1552, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1554 = buf1553[0] del buf1553 buf1556 = buf1552 del buf1552 buf1560 = buf1548 del buf1548 buf1564 = buf1544 del buf1544 buf1572 = buf1540 del buf1540 buf1576 = buf1538 del buf1538 buf1580 = buf1534 del buf1534 triton_poi_fused_minimum_neg_2[grid(256)](buf1546, buf1554, buf1550, buf1556, buf1560, buf1564, buf1572, buf1576, buf1580, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1557 = torch.ops.aten.max_pool3d_with_indices.default(buf1556, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1556 buf1558 = buf1557[0] del buf1557 buf1561 = torch.ops.aten.max_pool3d_with_indices.default(buf1560, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1560 buf1562 = buf1561[0] del buf1561 buf1565 = torch.ops.aten.max_pool3d_with_indices.default(buf1564, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1564 buf1566 = buf1565[0] del buf1565 buf1568 = buf1558 del buf1558 triton_poi_fused_minimum_neg_3[grid(256)](buf1568, buf1566, buf1562, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1569 = torch.ops.aten.max_pool3d_with_indices.default(buf1568, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1570 = buf1569[0] del buf1569 buf1573 = torch.ops.aten.max_pool3d_with_indices.default(buf1572, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1574 = buf1573[0] del buf1573 buf1577 = torch.ops.aten.max_pool3d_with_indices.default(buf1576, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1578 = buf1577[0] del buf1577 buf1581 = torch.ops.aten.max_pool3d_with_indices.default(buf1580, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1582 = buf1581[0] del buf1581 buf1584 = buf1580 del buf1580 buf1588 = buf1576 del buf1576 buf1592 = buf1572 del buf1572 buf1600 = buf1568 del buf1568 buf1604 = buf1566 del buf1566 buf1608 = buf1562 del buf1562 triton_poi_fused_minimum_neg_2[grid(256)](buf1574, buf1582, buf1578, buf1584, buf1588, buf1592, buf1600, buf1604, buf1608, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1585 = torch.ops.aten.max_pool3d_with_indices.default(buf1584, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1584 buf1586 = buf1585[0] del buf1585 buf1589 = torch.ops.aten.max_pool3d_with_indices.default(buf1588, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1588 buf1590 = buf1589[0] del buf1589 buf1593 = torch.ops.aten.max_pool3d_with_indices.default(buf1592, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1592 buf1594 = buf1593[0] del buf1593 buf1596 = buf1586 del buf1586 triton_poi_fused_minimum_neg_3[grid(256)](buf1596, buf1594, buf1590, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1597 = torch.ops.aten.max_pool3d_with_indices.default(buf1596, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1598 = buf1597[0] del buf1597 buf1601 = torch.ops.aten.max_pool3d_with_indices.default(buf1600, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1602 = buf1601[0] del buf1601 buf1605 = torch.ops.aten.max_pool3d_with_indices.default(buf1604, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1606 = buf1605[0] del buf1605 buf1609 = torch.ops.aten.max_pool3d_with_indices.default(buf1608, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1610 = buf1609[0] del buf1609 buf1612 = buf1608 del buf1608 buf1616 = buf1604 del buf1604 buf1620 = buf1600 del buf1600 buf1628 = buf1596 del buf1596 buf1632 = buf1594 del buf1594 buf1636 = buf1590 del buf1590 triton_poi_fused_minimum_neg_2[grid(256)](buf1602, buf1610, buf1606, buf1612, buf1616, buf1620, buf1628, buf1632, buf1636, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1613 = torch.ops.aten.max_pool3d_with_indices.default(buf1612, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1612 buf1614 = buf1613[0] del buf1613 buf1617 = torch.ops.aten.max_pool3d_with_indices.default(buf1616, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1616 buf1618 = buf1617[0] del buf1617 buf1621 = torch.ops.aten.max_pool3d_with_indices.default(buf1620, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1620 buf1622 = buf1621[0] del buf1621 buf1624 = buf1614 del buf1614 triton_poi_fused_minimum_neg_3[grid(256)](buf1624, buf1622, buf1618, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1625 = torch.ops.aten.max_pool3d_with_indices.default(buf1624, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1626 = buf1625[0] del buf1625 buf1629 = torch.ops.aten.max_pool3d_with_indices.default(buf1628, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1630 = buf1629[0] del buf1629 buf1633 = torch.ops.aten.max_pool3d_with_indices.default(buf1632, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1634 = buf1633[0] del buf1633 buf1637 = torch.ops.aten.max_pool3d_with_indices.default(buf1636, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1638 = buf1637[0] del buf1637 buf1640 = buf1636 del buf1636 buf1644 = buf1632 del buf1632 buf1648 = buf1628 del buf1628 buf1656 = buf1624 del buf1624 buf1660 = buf1622 del buf1622 buf1664 = buf1618 del buf1618 triton_poi_fused_minimum_neg_2[grid(256)](buf1630, buf1638, buf1634, buf1640, buf1644, buf1648, buf1656, buf1660, buf1664, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1641 = torch.ops.aten.max_pool3d_with_indices.default(buf1640, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1640 buf1642 = buf1641[0] del buf1641 buf1645 = torch.ops.aten.max_pool3d_with_indices.default(buf1644, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1644 buf1646 = buf1645[0] del buf1645 buf1649 = torch.ops.aten.max_pool3d_with_indices.default(buf1648, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1648 buf1650 = buf1649[0] del buf1649 buf1652 = buf1642 del buf1642 triton_poi_fused_minimum_neg_3[grid(256)](buf1652, buf1650, buf1646, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1653 = torch.ops.aten.max_pool3d_with_indices.default(buf1652, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1654 = buf1653[0] del buf1653 buf1657 = torch.ops.aten.max_pool3d_with_indices.default(buf1656, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1658 = buf1657[0] del buf1657 buf1661 = torch.ops.aten.max_pool3d_with_indices.default(buf1660, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1662 = buf1661[0] del buf1661 buf1665 = torch.ops.aten.max_pool3d_with_indices.default(buf1664, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1666 = buf1665[0] del buf1665 buf1668 = buf1664 del buf1664 buf1672 = buf1660 del buf1660 buf1676 = buf1656 del buf1656 buf1684 = buf1652 del buf1652 buf1688 = buf1650 del buf1650 buf1692 = buf1646 del buf1646 triton_poi_fused_minimum_neg_2[grid(256)](buf1658, buf1666, buf1662, buf1668, buf1672, buf1676, buf1684, buf1688, buf1692, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1669 = torch.ops.aten.max_pool3d_with_indices.default(buf1668, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1668 buf1670 = buf1669[0] del buf1669 buf1673 = torch.ops.aten.max_pool3d_with_indices.default(buf1672, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1672 buf1674 = buf1673[0] del buf1673 buf1677 = torch.ops.aten.max_pool3d_with_indices.default(buf1676, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1676 buf1678 = buf1677[0] del buf1677 buf1680 = buf1670 del buf1670 triton_poi_fused_minimum_neg_3[grid(256)](buf1680, buf1678, buf1674, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1681 = torch.ops.aten.max_pool3d_with_indices.default(buf1680, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1682 = buf1681[0] del buf1681 buf1685 = torch.ops.aten.max_pool3d_with_indices.default(buf1684, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1686 = buf1685[0] del buf1685 buf1689 = torch.ops.aten.max_pool3d_with_indices.default(buf1688, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1690 = buf1689[0] del buf1689 buf1693 = torch.ops.aten.max_pool3d_with_indices.default(buf1692, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1694 = buf1693[0] del buf1693 buf1696 = buf1692 del buf1692 buf1700 = buf1688 del buf1688 buf1704 = buf1684 del buf1684 buf1712 = buf1680 del buf1680 buf1716 = buf1678 del buf1678 buf1720 = buf1674 del buf1674 triton_poi_fused_minimum_neg_2[grid(256)](buf1686, buf1694, buf1690, buf1696, buf1700, buf1704, buf1712, buf1716, buf1720, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1697 = torch.ops.aten.max_pool3d_with_indices.default(buf1696, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1696 buf1698 = buf1697[0] del buf1697 buf1701 = torch.ops.aten.max_pool3d_with_indices.default(buf1700, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1700 buf1702 = buf1701[0] del buf1701 buf1705 = torch.ops.aten.max_pool3d_with_indices.default(buf1704, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1704 buf1706 = buf1705[0] del buf1705 buf1708 = buf1698 del buf1698 triton_poi_fused_minimum_neg_3[grid(256)](buf1708, buf1706, buf1702, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1709 = torch.ops.aten.max_pool3d_with_indices.default(buf1708, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1710 = buf1709[0] del buf1709 buf1713 = torch.ops.aten.max_pool3d_with_indices.default(buf1712, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1714 = buf1713[0] del buf1713 buf1717 = torch.ops.aten.max_pool3d_with_indices.default(buf1716, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1718 = buf1717[0] del buf1717 buf1721 = torch.ops.aten.max_pool3d_with_indices.default(buf1720, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1722 = buf1721[0] del buf1721 buf1724 = buf1720 del buf1720 buf1728 = buf1716 del buf1716 buf1732 = buf1712 del buf1712 buf1740 = buf1708 del buf1708 buf1744 = buf1706 del buf1706 buf1748 = buf1702 del buf1702 triton_poi_fused_minimum_neg_2[grid(256)](buf1714, buf1722, buf1718, buf1724, buf1728, buf1732, buf1740, buf1744, buf1748, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1725 = torch.ops.aten.max_pool3d_with_indices.default(buf1724, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1724 buf1726 = buf1725[0] del buf1725 buf1729 = torch.ops.aten.max_pool3d_with_indices.default(buf1728, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1728 buf1730 = buf1729[0] del buf1729 buf1733 = torch.ops.aten.max_pool3d_with_indices.default(buf1732, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1732 buf1734 = buf1733[0] del buf1733 buf1736 = buf1726 del buf1726 triton_poi_fused_minimum_neg_3[grid(256)](buf1736, buf1734, buf1730, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1737 = torch.ops.aten.max_pool3d_with_indices.default(buf1736, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1738 = buf1737[0] del buf1737 buf1741 = torch.ops.aten.max_pool3d_with_indices.default(buf1740, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1742 = buf1741[0] del buf1741 buf1745 = torch.ops.aten.max_pool3d_with_indices.default(buf1744, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1746 = buf1745[0] del buf1745 buf1749 = torch.ops.aten.max_pool3d_with_indices.default(buf1748, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1750 = buf1749[0] del buf1749 buf1752 = buf1748 del buf1748 buf1756 = buf1744 del buf1744 buf1760 = buf1740 del buf1740 buf1768 = buf1736 del buf1736 buf1772 = buf1734 del buf1734 buf1776 = buf1730 del buf1730 triton_poi_fused_minimum_neg_2[grid(256)](buf1742, buf1750, buf1746, buf1752, buf1756, buf1760, buf1768, buf1772, buf1776, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1753 = torch.ops.aten.max_pool3d_with_indices.default(buf1752, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1752 buf1754 = buf1753[0] del buf1753 buf1757 = torch.ops.aten.max_pool3d_with_indices.default(buf1756, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1756 buf1758 = buf1757[0] del buf1757 buf1761 = torch.ops.aten.max_pool3d_with_indices.default(buf1760, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1760 buf1762 = buf1761[0] del buf1761 buf1764 = buf1754 del buf1754 triton_poi_fused_minimum_neg_3[grid(256)](buf1764, buf1762, buf1758, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1765 = torch.ops.aten.max_pool3d_with_indices.default(buf1764, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1766 = buf1765[0] del buf1765 buf1769 = torch.ops.aten.max_pool3d_with_indices.default(buf1768, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1770 = buf1769[0] del buf1769 buf1773 = torch.ops.aten.max_pool3d_with_indices.default(buf1772, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1774 = buf1773[0] del buf1773 buf1777 = torch.ops.aten.max_pool3d_with_indices.default(buf1776, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1778 = buf1777[0] del buf1777 buf1780 = buf1776 del buf1776 buf1784 = buf1772 del buf1772 buf1788 = buf1768 del buf1768 buf1796 = buf1764 del buf1764 buf1800 = buf1762 del buf1762 buf1804 = buf1758 del buf1758 triton_poi_fused_minimum_neg_2[grid(256)](buf1770, buf1778, buf1774, buf1780, buf1784, buf1788, buf1796, buf1800, buf1804, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1781 = torch.ops.aten.max_pool3d_with_indices.default(buf1780, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1780 buf1782 = buf1781[0] del buf1781 buf1785 = torch.ops.aten.max_pool3d_with_indices.default(buf1784, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1784 buf1786 = buf1785[0] del buf1785 buf1789 = torch.ops.aten.max_pool3d_with_indices.default(buf1788, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1788 buf1790 = buf1789[0] del buf1789 buf1792 = buf1782 del buf1782 triton_poi_fused_minimum_neg_3[grid(256)](buf1792, buf1790, buf1786, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1793 = torch.ops.aten.max_pool3d_with_indices.default(buf1792, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1794 = buf1793[0] del buf1793 buf1797 = torch.ops.aten.max_pool3d_with_indices.default(buf1796, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1798 = buf1797[0] del buf1797 buf1801 = torch.ops.aten.max_pool3d_with_indices.default(buf1800, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1802 = buf1801[0] del buf1801 buf1805 = torch.ops.aten.max_pool3d_with_indices.default(buf1804, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1806 = buf1805[0] del buf1805 buf1808 = buf1804 del buf1804 buf1812 = buf1800 del buf1800 buf1816 = buf1796 del buf1796 buf1824 = buf1792 del buf1792 buf1828 = buf1790 del buf1790 buf1832 = buf1786 del buf1786 triton_poi_fused_minimum_neg_2[grid(256)](buf1798, buf1806, buf1802, buf1808, buf1812, buf1816, buf1824, buf1828, buf1832, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1809 = torch.ops.aten.max_pool3d_with_indices.default(buf1808, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1808 buf1810 = buf1809[0] del buf1809 buf1813 = torch.ops.aten.max_pool3d_with_indices.default(buf1812, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1812 buf1814 = buf1813[0] del buf1813 buf1817 = torch.ops.aten.max_pool3d_with_indices.default(buf1816, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1816 buf1818 = buf1817[0] del buf1817 buf1820 = buf1810 del buf1810 triton_poi_fused_minimum_neg_3[grid(256)](buf1820, buf1818, buf1814, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1821 = torch.ops.aten.max_pool3d_with_indices.default(buf1820, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1822 = buf1821[0] del buf1821 buf1825 = torch.ops.aten.max_pool3d_with_indices.default(buf1824, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1826 = buf1825[0] del buf1825 buf1829 = torch.ops.aten.max_pool3d_with_indices.default(buf1828, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1830 = buf1829[0] del buf1829 buf1833 = torch.ops.aten.max_pool3d_with_indices.default(buf1832, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1834 = buf1833[0] del buf1833 buf1836 = buf1832 del buf1832 buf1840 = buf1828 del buf1828 buf1844 = buf1824 del buf1824 buf1852 = buf1820 del buf1820 buf1856 = buf1818 del buf1818 buf1860 = buf1814 del buf1814 triton_poi_fused_minimum_neg_2[grid(256)](buf1826, buf1834, buf1830, buf1836, buf1840, buf1844, buf1852, buf1856, buf1860, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1837 = torch.ops.aten.max_pool3d_with_indices.default(buf1836, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1836 buf1838 = buf1837[0] del buf1837 buf1841 = torch.ops.aten.max_pool3d_with_indices.default(buf1840, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1840 buf1842 = buf1841[0] del buf1841 buf1845 = torch.ops.aten.max_pool3d_with_indices.default(buf1844, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1844 buf1846 = buf1845[0] del buf1845 buf1848 = buf1838 del buf1838 triton_poi_fused_minimum_neg_3[grid(256)](buf1848, buf1846, buf1842, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1849 = torch.ops.aten.max_pool3d_with_indices.default(buf1848, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1850 = buf1849[0] del buf1849 buf1853 = torch.ops.aten.max_pool3d_with_indices.default(buf1852, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1854 = buf1853[0] del buf1853 buf1857 = torch.ops.aten.max_pool3d_with_indices.default(buf1856, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1858 = buf1857[0] del buf1857 buf1861 = torch.ops.aten.max_pool3d_with_indices.default(buf1860, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1862 = buf1861[0] del buf1861 buf1864 = buf1860 del buf1860 buf1868 = buf1856 del buf1856 buf1872 = buf1852 del buf1852 buf1880 = buf1848 del buf1848 buf1884 = buf1846 del buf1846 buf1888 = buf1842 del buf1842 triton_poi_fused_minimum_neg_2[grid(256)](buf1854, buf1862, buf1858, buf1864, buf1868, buf1872, buf1880, buf1884, buf1888, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1865 = torch.ops.aten.max_pool3d_with_indices.default(buf1864, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1864 buf1866 = buf1865[0] del buf1865 buf1869 = torch.ops.aten.max_pool3d_with_indices.default(buf1868, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1868 buf1870 = buf1869[0] del buf1869 buf1873 = torch.ops.aten.max_pool3d_with_indices.default(buf1872, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1872 buf1874 = buf1873[0] del buf1873 buf1876 = buf1866 del buf1866 triton_poi_fused_minimum_neg_3[grid(256)](buf1876, buf1874, buf1870, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1877 = torch.ops.aten.max_pool3d_with_indices.default(buf1876, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1878 = buf1877[0] del buf1877 buf1881 = torch.ops.aten.max_pool3d_with_indices.default(buf1880, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1882 = buf1881[0] del buf1881 buf1885 = torch.ops.aten.max_pool3d_with_indices.default(buf1884, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1886 = buf1885[0] del buf1885 buf1889 = torch.ops.aten.max_pool3d_with_indices.default(buf1888, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1890 = buf1889[0] del buf1889 buf1892 = buf1888 del buf1888 buf1896 = buf1884 del buf1884 buf1900 = buf1880 del buf1880 buf1908 = buf1876 del buf1876 buf1912 = buf1874 del buf1874 buf1916 = buf1870 del buf1870 triton_poi_fused_minimum_neg_2[grid(256)](buf1882, buf1890, buf1886, buf1892, buf1896, buf1900, buf1908, buf1912, buf1916, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1893 = torch.ops.aten.max_pool3d_with_indices.default(buf1892, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1892 buf1894 = buf1893[0] del buf1893 buf1897 = torch.ops.aten.max_pool3d_with_indices.default(buf1896, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1896 buf1898 = buf1897[0] del buf1897 buf1901 = torch.ops.aten.max_pool3d_with_indices.default(buf1900, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1900 buf1902 = buf1901[0] del buf1901 buf1904 = buf1894 del buf1894 triton_poi_fused_minimum_neg_3[grid(256)](buf1904, buf1902, buf1898, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1905 = torch.ops.aten.max_pool3d_with_indices.default(buf1904, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1906 = buf1905[0] del buf1905 buf1909 = torch.ops.aten.max_pool3d_with_indices.default(buf1908, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1910 = buf1909[0] del buf1909 buf1913 = torch.ops.aten.max_pool3d_with_indices.default(buf1912, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1914 = buf1913[0] del buf1913 buf1917 = torch.ops.aten.max_pool3d_with_indices.default(buf1916, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1918 = buf1917[0] del buf1917 buf1920 = buf1916 del buf1916 buf1924 = buf1912 del buf1912 buf1928 = buf1908 del buf1908 buf1936 = buf1904 del buf1904 buf1940 = buf1902 del buf1902 buf1944 = buf1898 del buf1898 triton_poi_fused_minimum_neg_2[grid(256)](buf1910, buf1918, buf1914, buf1920, buf1924, buf1928, buf1936, buf1940, buf1944, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1921 = torch.ops.aten.max_pool3d_with_indices.default(buf1920, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1920 buf1922 = buf1921[0] del buf1921 buf1925 = torch.ops.aten.max_pool3d_with_indices.default(buf1924, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1924 buf1926 = buf1925[0] del buf1925 buf1929 = torch.ops.aten.max_pool3d_with_indices.default(buf1928, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1928 buf1930 = buf1929[0] del buf1929 buf1932 = buf1922 del buf1922 triton_poi_fused_minimum_neg_3[grid(256)](buf1932, buf1930, buf1926, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1933 = torch.ops.aten.max_pool3d_with_indices.default(buf1932, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1934 = buf1933[0] del buf1933 buf1937 = torch.ops.aten.max_pool3d_with_indices.default(buf1936, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1938 = buf1937[0] del buf1937 buf1941 = torch.ops.aten.max_pool3d_with_indices.default(buf1940, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1942 = buf1941[0] del buf1941 buf1945 = torch.ops.aten.max_pool3d_with_indices.default(buf1944, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1946 = buf1945[0] del buf1945 buf1948 = buf1944 del buf1944 buf1952 = buf1940 del buf1940 buf1956 = buf1936 del buf1936 buf1964 = buf1932 del buf1932 buf1968 = buf1930 del buf1930 buf1972 = buf1926 del buf1926 triton_poi_fused_minimum_neg_2[grid(256)](buf1938, buf1946, buf1942, buf1948, buf1952, buf1956, buf1964, buf1968, buf1972, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1949 = torch.ops.aten.max_pool3d_with_indices.default(buf1948, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1948 buf1950 = buf1949[0] del buf1949 buf1953 = torch.ops.aten.max_pool3d_with_indices.default(buf1952, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1952 buf1954 = buf1953[0] del buf1953 buf1957 = torch.ops.aten.max_pool3d_with_indices.default(buf1956, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1956 buf1958 = buf1957[0] del buf1957 buf1960 = buf1950 del buf1950 triton_poi_fused_minimum_neg_3[grid(256)](buf1960, buf1958, buf1954, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1961 = torch.ops.aten.max_pool3d_with_indices.default(buf1960, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1962 = buf1961[0] del buf1961 buf1965 = torch.ops.aten.max_pool3d_with_indices.default(buf1964, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1966 = buf1965[0] del buf1965 buf1969 = torch.ops.aten.max_pool3d_with_indices.default(buf1968, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1970 = buf1969[0] del buf1969 buf1973 = torch.ops.aten.max_pool3d_with_indices.default(buf1972, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf1974 = buf1973[0] del buf1973 buf1976 = buf1972 del buf1972 buf1980 = buf1968 del buf1968 buf1984 = buf1964 del buf1964 buf1992 = buf1960 del buf1960 buf1996 = buf1958 del buf1958 buf2000 = buf1954 del buf1954 triton_poi_fused_minimum_neg_2[grid(256)](buf1966, buf1974, buf1970, buf1976, buf1980, buf1984, buf1992, buf1996, buf2000, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1977 = torch.ops.aten.max_pool3d_with_indices.default(buf1976, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf1976 buf1978 = buf1977[0] del buf1977 buf1981 = torch.ops.aten.max_pool3d_with_indices.default(buf1980, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf1980 buf1982 = buf1981[0] del buf1981 buf1985 = torch.ops.aten.max_pool3d_with_indices.default(buf1984, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf1984 buf1986 = buf1985[0] del buf1985 buf1988 = buf1978 del buf1978 triton_poi_fused_minimum_neg_3[grid(256)](buf1988, buf1986, buf1982, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1989 = torch.ops.aten.max_pool3d_with_indices.default(buf1988, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf1990 = buf1989[0] del buf1989 buf1993 = torch.ops.aten.max_pool3d_with_indices.default(buf1992, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf1994 = buf1993[0] del buf1993 buf1997 = torch.ops.aten.max_pool3d_with_indices.default(buf1996, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf1998 = buf1997[0] del buf1997 buf2001 = torch.ops.aten.max_pool3d_with_indices.default(buf2000, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2002 = buf2001[0] del buf2001 buf2004 = buf2000 del buf2000 buf2008 = buf1996 del buf1996 buf2012 = buf1992 del buf1992 buf2020 = buf1988 del buf1988 buf2024 = buf1986 del buf1986 buf2028 = buf1982 del buf1982 triton_poi_fused_minimum_neg_2[grid(256)](buf1994, buf2002, buf1998, buf2004, buf2008, buf2012, buf2020, buf2024, buf2028, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2005 = torch.ops.aten.max_pool3d_with_indices.default(buf2004, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2004 buf2006 = buf2005[0] del buf2005 buf2009 = torch.ops.aten.max_pool3d_with_indices.default(buf2008, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2008 buf2010 = buf2009[0] del buf2009 buf2013 = torch.ops.aten.max_pool3d_with_indices.default(buf2012, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2012 buf2014 = buf2013[0] del buf2013 buf2016 = buf2006 del buf2006 triton_poi_fused_minimum_neg_3[grid(256)](buf2016, buf2014, buf2010, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2017 = torch.ops.aten.max_pool3d_with_indices.default(buf2016, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2018 = buf2017[0] del buf2017 buf2021 = torch.ops.aten.max_pool3d_with_indices.default(buf2020, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2022 = buf2021[0] del buf2021 buf2025 = torch.ops.aten.max_pool3d_with_indices.default(buf2024, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2026 = buf2025[0] del buf2025 buf2029 = torch.ops.aten.max_pool3d_with_indices.default(buf2028, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2030 = buf2029[0] del buf2029 buf2032 = buf2028 del buf2028 buf2036 = buf2024 del buf2024 buf2040 = buf2020 del buf2020 buf2048 = buf2016 del buf2016 buf2052 = buf2014 del buf2014 buf2056 = buf2010 del buf2010 triton_poi_fused_minimum_neg_2[grid(256)](buf2022, buf2030, buf2026, buf2032, buf2036, buf2040, buf2048, buf2052, buf2056, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2033 = torch.ops.aten.max_pool3d_with_indices.default(buf2032, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2032 buf2034 = buf2033[0] del buf2033 buf2037 = torch.ops.aten.max_pool3d_with_indices.default(buf2036, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2036 buf2038 = buf2037[0] del buf2037 buf2041 = torch.ops.aten.max_pool3d_with_indices.default(buf2040, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2040 buf2042 = buf2041[0] del buf2041 buf2044 = buf2034 del buf2034 triton_poi_fused_minimum_neg_3[grid(256)](buf2044, buf2042, buf2038, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2045 = torch.ops.aten.max_pool3d_with_indices.default(buf2044, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2046 = buf2045[0] del buf2045 buf2049 = torch.ops.aten.max_pool3d_with_indices.default(buf2048, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2050 = buf2049[0] del buf2049 buf2053 = torch.ops.aten.max_pool3d_with_indices.default(buf2052, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2054 = buf2053[0] del buf2053 buf2057 = torch.ops.aten.max_pool3d_with_indices.default(buf2056, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2058 = buf2057[0] del buf2057 buf2060 = buf2056 del buf2056 buf2064 = buf2052 del buf2052 buf2068 = buf2048 del buf2048 buf2076 = buf2044 del buf2044 buf2080 = buf2042 del buf2042 buf2084 = buf2038 del buf2038 triton_poi_fused_minimum_neg_2[grid(256)](buf2050, buf2058, buf2054, buf2060, buf2064, buf2068, buf2076, buf2080, buf2084, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2061 = torch.ops.aten.max_pool3d_with_indices.default(buf2060, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2060 buf2062 = buf2061[0] del buf2061 buf2065 = torch.ops.aten.max_pool3d_with_indices.default(buf2064, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2064 buf2066 = buf2065[0] del buf2065 buf2069 = torch.ops.aten.max_pool3d_with_indices.default(buf2068, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2068 buf2070 = buf2069[0] del buf2069 buf2072 = buf2062 del buf2062 triton_poi_fused_minimum_neg_3[grid(256)](buf2072, buf2070, buf2066, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2073 = torch.ops.aten.max_pool3d_with_indices.default(buf2072, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2074 = buf2073[0] del buf2073 buf2077 = torch.ops.aten.max_pool3d_with_indices.default(buf2076, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2078 = buf2077[0] del buf2077 buf2081 = torch.ops.aten.max_pool3d_with_indices.default(buf2080, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2082 = buf2081[0] del buf2081 buf2085 = torch.ops.aten.max_pool3d_with_indices.default(buf2084, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2086 = buf2085[0] del buf2085 buf2088 = buf2084 del buf2084 buf2092 = buf2080 del buf2080 buf2096 = buf2076 del buf2076 buf2104 = buf2072 del buf2072 buf2108 = buf2070 del buf2070 buf2112 = buf2066 del buf2066 triton_poi_fused_minimum_neg_2[grid(256)](buf2078, buf2086, buf2082, buf2088, buf2092, buf2096, buf2104, buf2108, buf2112, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2089 = torch.ops.aten.max_pool3d_with_indices.default(buf2088, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2088 buf2090 = buf2089[0] del buf2089 buf2093 = torch.ops.aten.max_pool3d_with_indices.default(buf2092, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2092 buf2094 = buf2093[0] del buf2093 buf2097 = torch.ops.aten.max_pool3d_with_indices.default(buf2096, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2096 buf2098 = buf2097[0] del buf2097 buf2100 = buf2090 del buf2090 triton_poi_fused_minimum_neg_3[grid(256)](buf2100, buf2098, buf2094, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2101 = torch.ops.aten.max_pool3d_with_indices.default(buf2100, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2102 = buf2101[0] del buf2101 buf2105 = torch.ops.aten.max_pool3d_with_indices.default(buf2104, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2106 = buf2105[0] del buf2105 buf2109 = torch.ops.aten.max_pool3d_with_indices.default(buf2108, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2110 = buf2109[0] del buf2109 buf2113 = torch.ops.aten.max_pool3d_with_indices.default(buf2112, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2114 = buf2113[0] del buf2113 buf2116 = buf2112 del buf2112 buf2120 = buf2108 del buf2108 buf2124 = buf2104 del buf2104 buf2132 = buf2100 del buf2100 buf2136 = buf2098 del buf2098 buf2140 = buf2094 del buf2094 triton_poi_fused_minimum_neg_2[grid(256)](buf2106, buf2114, buf2110, buf2116, buf2120, buf2124, buf2132, buf2136, buf2140, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2117 = torch.ops.aten.max_pool3d_with_indices.default(buf2116, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2116 buf2118 = buf2117[0] del buf2117 buf2121 = torch.ops.aten.max_pool3d_with_indices.default(buf2120, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2120 buf2122 = buf2121[0] del buf2121 buf2125 = torch.ops.aten.max_pool3d_with_indices.default(buf2124, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2124 buf2126 = buf2125[0] del buf2125 buf2128 = buf2118 del buf2118 triton_poi_fused_minimum_neg_3[grid(256)](buf2128, buf2126, buf2122, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2129 = torch.ops.aten.max_pool3d_with_indices.default(buf2128, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2130 = buf2129[0] del buf2129 buf2133 = torch.ops.aten.max_pool3d_with_indices.default(buf2132, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2134 = buf2133[0] del buf2133 buf2137 = torch.ops.aten.max_pool3d_with_indices.default(buf2136, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2138 = buf2137[0] del buf2137 buf2141 = torch.ops.aten.max_pool3d_with_indices.default(buf2140, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2142 = buf2141[0] del buf2141 buf2144 = buf2140 del buf2140 buf2148 = buf2136 del buf2136 buf2152 = buf2132 del buf2132 buf2160 = buf2128 del buf2128 buf2164 = buf2126 del buf2126 buf2168 = buf2122 del buf2122 triton_poi_fused_minimum_neg_2[grid(256)](buf2134, buf2142, buf2138, buf2144, buf2148, buf2152, buf2160, buf2164, buf2168, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2145 = torch.ops.aten.max_pool3d_with_indices.default(buf2144, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2144 buf2146 = buf2145[0] del buf2145 buf2149 = torch.ops.aten.max_pool3d_with_indices.default(buf2148, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2148 buf2150 = buf2149[0] del buf2149 buf2153 = torch.ops.aten.max_pool3d_with_indices.default(buf2152, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2152 buf2154 = buf2153[0] del buf2153 buf2156 = buf2146 del buf2146 triton_poi_fused_minimum_neg_3[grid(256)](buf2156, buf2154, buf2150, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2157 = torch.ops.aten.max_pool3d_with_indices.default(buf2156, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2158 = buf2157[0] del buf2157 buf2161 = torch.ops.aten.max_pool3d_with_indices.default(buf2160, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2162 = buf2161[0] del buf2161 buf2165 = torch.ops.aten.max_pool3d_with_indices.default(buf2164, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2166 = buf2165[0] del buf2165 buf2169 = torch.ops.aten.max_pool3d_with_indices.default(buf2168, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2170 = buf2169[0] del buf2169 buf2172 = buf2168 del buf2168 buf2176 = buf2164 del buf2164 buf2180 = buf2160 del buf2160 buf2188 = buf2156 del buf2156 buf2192 = buf2154 del buf2154 buf2196 = buf2150 del buf2150 triton_poi_fused_minimum_neg_2[grid(256)](buf2162, buf2170, buf2166, buf2172, buf2176, buf2180, buf2188, buf2192, buf2196, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2173 = torch.ops.aten.max_pool3d_with_indices.default(buf2172, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2172 buf2174 = buf2173[0] del buf2173 buf2177 = torch.ops.aten.max_pool3d_with_indices.default(buf2176, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2176 buf2178 = buf2177[0] del buf2177 buf2181 = torch.ops.aten.max_pool3d_with_indices.default(buf2180, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2180 buf2182 = buf2181[0] del buf2181 buf2184 = buf2174 del buf2174 triton_poi_fused_minimum_neg_3[grid(256)](buf2184, buf2182, buf2178, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2185 = torch.ops.aten.max_pool3d_with_indices.default(buf2184, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2186 = buf2185[0] del buf2185 buf2189 = torch.ops.aten.max_pool3d_with_indices.default(buf2188, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2190 = buf2189[0] del buf2189 buf2193 = torch.ops.aten.max_pool3d_with_indices.default(buf2192, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2194 = buf2193[0] del buf2193 buf2197 = torch.ops.aten.max_pool3d_with_indices.default(buf2196, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2198 = buf2197[0] del buf2197 buf2200 = buf2196 del buf2196 buf2204 = buf2192 del buf2192 buf2208 = buf2188 del buf2188 buf2216 = buf2184 del buf2184 buf2220 = buf2182 del buf2182 buf2224 = buf2178 del buf2178 triton_poi_fused_minimum_neg_2[grid(256)](buf2190, buf2198, buf2194, buf2200, buf2204, buf2208, buf2216, buf2220, buf2224, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2201 = torch.ops.aten.max_pool3d_with_indices.default(buf2200, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2200 buf2202 = buf2201[0] del buf2201 buf2205 = torch.ops.aten.max_pool3d_with_indices.default(buf2204, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2204 buf2206 = buf2205[0] del buf2205 buf2209 = torch.ops.aten.max_pool3d_with_indices.default(buf2208, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2208 buf2210 = buf2209[0] del buf2209 buf2212 = buf2202 del buf2202 triton_poi_fused_minimum_neg_3[grid(256)](buf2212, buf2210, buf2206, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2213 = torch.ops.aten.max_pool3d_with_indices.default(buf2212, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2214 = buf2213[0] del buf2213 buf2217 = torch.ops.aten.max_pool3d_with_indices.default(buf2216, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2218 = buf2217[0] del buf2217 buf2221 = torch.ops.aten.max_pool3d_with_indices.default(buf2220, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2222 = buf2221[0] del buf2221 buf2225 = torch.ops.aten.max_pool3d_with_indices.default(buf2224, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2226 = buf2225[0] del buf2225 buf2228 = buf2224 del buf2224 buf2232 = buf2220 del buf2220 buf2236 = buf2216 del buf2216 buf2244 = buf2212 del buf2212 buf2248 = buf2210 del buf2210 buf2252 = buf2206 del buf2206 triton_poi_fused_minimum_neg_2[grid(256)](buf2218, buf2226, buf2222, buf2228, buf2232, buf2236, buf2244, buf2248, buf2252, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2229 = torch.ops.aten.max_pool3d_with_indices.default(buf2228, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2228 buf2230 = buf2229[0] del buf2229 buf2233 = torch.ops.aten.max_pool3d_with_indices.default(buf2232, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2232 buf2234 = buf2233[0] del buf2233 buf2237 = torch.ops.aten.max_pool3d_with_indices.default(buf2236, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2236 buf2238 = buf2237[0] del buf2237 buf2240 = buf2230 del buf2230 triton_poi_fused_minimum_neg_3[grid(256)](buf2240, buf2238, buf2234, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2241 = torch.ops.aten.max_pool3d_with_indices.default(buf2240, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2242 = buf2241[0] del buf2241 buf2245 = torch.ops.aten.max_pool3d_with_indices.default(buf2244, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2246 = buf2245[0] del buf2245 buf2249 = torch.ops.aten.max_pool3d_with_indices.default(buf2248, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2250 = buf2249[0] del buf2249 buf2253 = torch.ops.aten.max_pool3d_with_indices.default(buf2252, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2254 = buf2253[0] del buf2253 buf2256 = buf2252 del buf2252 buf2260 = buf2248 del buf2248 buf2264 = buf2244 del buf2244 buf2272 = buf2240 del buf2240 buf2276 = buf2238 del buf2238 buf2280 = buf2234 del buf2234 triton_poi_fused_minimum_neg_2[grid(256)](buf2246, buf2254, buf2250, buf2256, buf2260, buf2264, buf2272, buf2276, buf2280, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2257 = torch.ops.aten.max_pool3d_with_indices.default(buf2256, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2256 buf2258 = buf2257[0] del buf2257 buf2261 = torch.ops.aten.max_pool3d_with_indices.default(buf2260, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2260 buf2262 = buf2261[0] del buf2261 buf2265 = torch.ops.aten.max_pool3d_with_indices.default(buf2264, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2264 buf2266 = buf2265[0] del buf2265 buf2268 = buf2258 del buf2258 triton_poi_fused_minimum_neg_3[grid(256)](buf2268, buf2266, buf2262, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2269 = torch.ops.aten.max_pool3d_with_indices.default(buf2268, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2270 = buf2269[0] del buf2269 buf2273 = torch.ops.aten.max_pool3d_with_indices.default(buf2272, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2274 = buf2273[0] del buf2273 buf2277 = torch.ops.aten.max_pool3d_with_indices.default(buf2276, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2278 = buf2277[0] del buf2277 buf2281 = torch.ops.aten.max_pool3d_with_indices.default(buf2280, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2282 = buf2281[0] del buf2281 buf2284 = buf2280 del buf2280 buf2288 = buf2276 del buf2276 buf2292 = buf2272 del buf2272 buf2300 = buf2268 del buf2268 buf2304 = buf2266 del buf2266 buf2308 = buf2262 del buf2262 triton_poi_fused_minimum_neg_2[grid(256)](buf2274, buf2282, buf2278, buf2284, buf2288, buf2292, buf2300, buf2304, buf2308, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2285 = torch.ops.aten.max_pool3d_with_indices.default(buf2284, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2284 buf2286 = buf2285[0] del buf2285 buf2289 = torch.ops.aten.max_pool3d_with_indices.default(buf2288, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2288 buf2290 = buf2289[0] del buf2289 buf2293 = torch.ops.aten.max_pool3d_with_indices.default(buf2292, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2292 buf2294 = buf2293[0] del buf2293 buf2296 = buf2286 del buf2286 triton_poi_fused_minimum_neg_3[grid(256)](buf2296, buf2294, buf2290, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2297 = torch.ops.aten.max_pool3d_with_indices.default(buf2296, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2298 = buf2297[0] del buf2297 buf2301 = torch.ops.aten.max_pool3d_with_indices.default(buf2300, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2302 = buf2301[0] del buf2301 buf2305 = torch.ops.aten.max_pool3d_with_indices.default(buf2304, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2306 = buf2305[0] del buf2305 buf2309 = torch.ops.aten.max_pool3d_with_indices.default(buf2308, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2310 = buf2309[0] del buf2309 buf2312 = buf2308 del buf2308 buf2316 = buf2304 del buf2304 buf2320 = buf2300 del buf2300 buf2328 = buf2296 del buf2296 buf2332 = buf2294 del buf2294 buf2336 = buf2290 del buf2290 triton_poi_fused_minimum_neg_2[grid(256)](buf2302, buf2310, buf2306, buf2312, buf2316, buf2320, buf2328, buf2332, buf2336, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2313 = torch.ops.aten.max_pool3d_with_indices.default(buf2312, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2312 buf2314 = buf2313[0] del buf2313 buf2317 = torch.ops.aten.max_pool3d_with_indices.default(buf2316, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2316 buf2318 = buf2317[0] del buf2317 buf2321 = torch.ops.aten.max_pool3d_with_indices.default(buf2320, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2320 buf2322 = buf2321[0] del buf2321 buf2324 = buf2314 del buf2314 triton_poi_fused_minimum_neg_3[grid(256)](buf2324, buf2322, buf2318, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2325 = torch.ops.aten.max_pool3d_with_indices.default(buf2324, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2326 = buf2325[0] del buf2325 buf2329 = torch.ops.aten.max_pool3d_with_indices.default(buf2328, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2330 = buf2329[0] del buf2329 buf2333 = torch.ops.aten.max_pool3d_with_indices.default(buf2332, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2334 = buf2333[0] del buf2333 buf2337 = torch.ops.aten.max_pool3d_with_indices.default(buf2336, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2338 = buf2337[0] del buf2337 buf2340 = buf2336 del buf2336 buf2344 = buf2332 del buf2332 buf2348 = buf2328 del buf2328 buf2356 = buf2324 del buf2324 buf2360 = buf2322 del buf2322 buf2364 = buf2318 del buf2318 triton_poi_fused_minimum_neg_2[grid(256)](buf2330, buf2338, buf2334, buf2340, buf2344, buf2348, buf2356, buf2360, buf2364, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2341 = torch.ops.aten.max_pool3d_with_indices.default(buf2340, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2340 buf2342 = buf2341[0] del buf2341 buf2345 = torch.ops.aten.max_pool3d_with_indices.default(buf2344, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2344 buf2346 = buf2345[0] del buf2345 buf2349 = torch.ops.aten.max_pool3d_with_indices.default(buf2348, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2348 buf2350 = buf2349[0] del buf2349 buf2352 = buf2342 del buf2342 triton_poi_fused_minimum_neg_3[grid(256)](buf2352, buf2350, buf2346, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2353 = torch.ops.aten.max_pool3d_with_indices.default(buf2352, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2354 = buf2353[0] del buf2353 buf2357 = torch.ops.aten.max_pool3d_with_indices.default(buf2356, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2358 = buf2357[0] del buf2357 buf2361 = torch.ops.aten.max_pool3d_with_indices.default(buf2360, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2362 = buf2361[0] del buf2361 buf2365 = torch.ops.aten.max_pool3d_with_indices.default(buf2364, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2366 = buf2365[0] del buf2365 buf2368 = buf2364 del buf2364 buf2372 = buf2360 del buf2360 buf2376 = buf2356 del buf2356 buf2384 = buf2352 del buf2352 buf2388 = buf2350 del buf2350 buf2392 = buf2346 del buf2346 triton_poi_fused_minimum_neg_2[grid(256)](buf2358, buf2366, buf2362, buf2368, buf2372, buf2376, buf2384, buf2388, buf2392, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2369 = torch.ops.aten.max_pool3d_with_indices.default(buf2368, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2368 buf2370 = buf2369[0] del buf2369 buf2373 = torch.ops.aten.max_pool3d_with_indices.default(buf2372, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2372 buf2374 = buf2373[0] del buf2373 buf2377 = torch.ops.aten.max_pool3d_with_indices.default(buf2376, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2376 buf2378 = buf2377[0] del buf2377 buf2380 = buf2370 del buf2370 triton_poi_fused_minimum_neg_3[grid(256)](buf2380, buf2378, buf2374, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2381 = torch.ops.aten.max_pool3d_with_indices.default(buf2380, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2382 = buf2381[0] del buf2381 buf2385 = torch.ops.aten.max_pool3d_with_indices.default(buf2384, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2386 = buf2385[0] del buf2385 buf2389 = torch.ops.aten.max_pool3d_with_indices.default(buf2388, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2390 = buf2389[0] del buf2389 buf2393 = torch.ops.aten.max_pool3d_with_indices.default(buf2392, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2394 = buf2393[0] del buf2393 buf2396 = buf2392 del buf2392 buf2400 = buf2388 del buf2388 buf2404 = buf2384 del buf2384 buf2412 = buf2380 del buf2380 buf2416 = buf2378 del buf2378 buf2420 = buf2374 del buf2374 triton_poi_fused_minimum_neg_2[grid(256)](buf2386, buf2394, buf2390, buf2396, buf2400, buf2404, buf2412, buf2416, buf2420, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2397 = torch.ops.aten.max_pool3d_with_indices.default(buf2396, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2396 buf2398 = buf2397[0] del buf2397 buf2401 = torch.ops.aten.max_pool3d_with_indices.default(buf2400, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2400 buf2402 = buf2401[0] del buf2401 buf2405 = torch.ops.aten.max_pool3d_with_indices.default(buf2404, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2404 buf2406 = buf2405[0] del buf2405 buf2408 = buf2398 del buf2398 triton_poi_fused_minimum_neg_3[grid(256)](buf2408, buf2406, buf2402, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2409 = torch.ops.aten.max_pool3d_with_indices.default(buf2408, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2410 = buf2409[0] del buf2409 buf2413 = torch.ops.aten.max_pool3d_with_indices.default(buf2412, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2414 = buf2413[0] del buf2413 buf2417 = torch.ops.aten.max_pool3d_with_indices.default(buf2416, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2418 = buf2417[0] del buf2417 buf2421 = torch.ops.aten.max_pool3d_with_indices.default(buf2420, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2422 = buf2421[0] del buf2421 buf2424 = buf2420 del buf2420 buf2428 = buf2416 del buf2416 buf2432 = buf2412 del buf2412 buf2440 = buf2408 del buf2408 buf2444 = buf2406 del buf2406 buf2448 = buf2402 del buf2402 triton_poi_fused_minimum_neg_2[grid(256)](buf2414, buf2422, buf2418, buf2424, buf2428, buf2432, buf2440, buf2444, buf2448, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2425 = torch.ops.aten.max_pool3d_with_indices.default(buf2424, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2424 buf2426 = buf2425[0] del buf2425 buf2429 = torch.ops.aten.max_pool3d_with_indices.default(buf2428, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2428 buf2430 = buf2429[0] del buf2429 buf2433 = torch.ops.aten.max_pool3d_with_indices.default(buf2432, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2432 buf2434 = buf2433[0] del buf2433 buf2436 = buf2426 del buf2426 triton_poi_fused_minimum_neg_3[grid(256)](buf2436, buf2434, buf2430, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2437 = torch.ops.aten.max_pool3d_with_indices.default(buf2436, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2438 = buf2437[0] del buf2437 buf2441 = torch.ops.aten.max_pool3d_with_indices.default(buf2440, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2442 = buf2441[0] del buf2441 buf2445 = torch.ops.aten.max_pool3d_with_indices.default(buf2444, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2446 = buf2445[0] del buf2445 buf2449 = torch.ops.aten.max_pool3d_with_indices.default(buf2448, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2450 = buf2449[0] del buf2449 buf2452 = buf2448 del buf2448 buf2456 = buf2444 del buf2444 buf2460 = buf2440 del buf2440 buf2468 = buf2436 del buf2436 buf2472 = buf2434 del buf2434 buf2476 = buf2430 del buf2430 triton_poi_fused_minimum_neg_2[grid(256)](buf2442, buf2450, buf2446, buf2452, buf2456, buf2460, buf2468, buf2472, buf2476, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2453 = torch.ops.aten.max_pool3d_with_indices.default(buf2452, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2452 buf2454 = buf2453[0] del buf2453 buf2457 = torch.ops.aten.max_pool3d_with_indices.default(buf2456, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2456 buf2458 = buf2457[0] del buf2457 buf2461 = torch.ops.aten.max_pool3d_with_indices.default(buf2460, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2460 buf2462 = buf2461[0] del buf2461 buf2464 = buf2454 del buf2454 triton_poi_fused_minimum_neg_3[grid(256)](buf2464, buf2462, buf2458, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2465 = torch.ops.aten.max_pool3d_with_indices.default(buf2464, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2466 = buf2465[0] del buf2465 buf2469 = torch.ops.aten.max_pool3d_with_indices.default(buf2468, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2470 = buf2469[0] del buf2469 buf2473 = torch.ops.aten.max_pool3d_with_indices.default(buf2472, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2474 = buf2473[0] del buf2473 buf2477 = torch.ops.aten.max_pool3d_with_indices.default(buf2476, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2478 = buf2477[0] del buf2477 buf2480 = buf2476 del buf2476 buf2484 = buf2472 del buf2472 buf2488 = buf2468 del buf2468 buf2496 = buf2464 del buf2464 buf2500 = buf2462 del buf2462 buf2504 = buf2458 del buf2458 triton_poi_fused_minimum_neg_2[grid(256)](buf2470, buf2478, buf2474, buf2480, buf2484, buf2488, buf2496, buf2500, buf2504, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2481 = torch.ops.aten.max_pool3d_with_indices.default(buf2480, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2480 buf2482 = buf2481[0] del buf2481 buf2485 = torch.ops.aten.max_pool3d_with_indices.default(buf2484, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2484 buf2486 = buf2485[0] del buf2485 buf2489 = torch.ops.aten.max_pool3d_with_indices.default(buf2488, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2488 buf2490 = buf2489[0] del buf2489 buf2492 = buf2482 del buf2482 triton_poi_fused_minimum_neg_3[grid(256)](buf2492, buf2490, buf2486, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2493 = torch.ops.aten.max_pool3d_with_indices.default(buf2492, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2494 = buf2493[0] del buf2493 buf2497 = torch.ops.aten.max_pool3d_with_indices.default(buf2496, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2498 = buf2497[0] del buf2497 buf2501 = torch.ops.aten.max_pool3d_with_indices.default(buf2500, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2502 = buf2501[0] del buf2501 buf2505 = torch.ops.aten.max_pool3d_with_indices.default(buf2504, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2506 = buf2505[0] del buf2505 buf2508 = buf2504 del buf2504 buf2512 = buf2500 del buf2500 buf2516 = buf2496 del buf2496 buf2524 = buf2492 del buf2492 buf2528 = buf2490 del buf2490 buf2532 = buf2486 del buf2486 triton_poi_fused_minimum_neg_2[grid(256)](buf2498, buf2506, buf2502, buf2508, buf2512, buf2516, buf2524, buf2528, buf2532, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2509 = torch.ops.aten.max_pool3d_with_indices.default(buf2508, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2508 buf2510 = buf2509[0] del buf2509 buf2513 = torch.ops.aten.max_pool3d_with_indices.default(buf2512, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2512 buf2514 = buf2513[0] del buf2513 buf2517 = torch.ops.aten.max_pool3d_with_indices.default(buf2516, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2516 buf2518 = buf2517[0] del buf2517 buf2520 = buf2510 del buf2510 triton_poi_fused_minimum_neg_3[grid(256)](buf2520, buf2518, buf2514, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2521 = torch.ops.aten.max_pool3d_with_indices.default(buf2520, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2522 = buf2521[0] del buf2521 buf2525 = torch.ops.aten.max_pool3d_with_indices.default(buf2524, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2526 = buf2525[0] del buf2525 buf2529 = torch.ops.aten.max_pool3d_with_indices.default(buf2528, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2530 = buf2529[0] del buf2529 buf2533 = torch.ops.aten.max_pool3d_with_indices.default(buf2532, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2534 = buf2533[0] del buf2533 buf2536 = buf2532 del buf2532 buf2540 = buf2528 del buf2528 buf2544 = buf2524 del buf2524 buf2552 = buf2520 del buf2520 buf2556 = buf2518 del buf2518 buf2560 = buf2514 del buf2514 triton_poi_fused_minimum_neg_2[grid(256)](buf2526, buf2534, buf2530, buf2536, buf2540, buf2544, buf2552, buf2556, buf2560, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2537 = torch.ops.aten.max_pool3d_with_indices.default(buf2536, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2536 buf2538 = buf2537[0] del buf2537 buf2541 = torch.ops.aten.max_pool3d_with_indices.default(buf2540, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2540 buf2542 = buf2541[0] del buf2541 buf2545 = torch.ops.aten.max_pool3d_with_indices.default(buf2544, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2544 buf2546 = buf2545[0] del buf2545 buf2548 = buf2538 del buf2538 triton_poi_fused_minimum_neg_3[grid(256)](buf2548, buf2546, buf2542, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2549 = torch.ops.aten.max_pool3d_with_indices.default(buf2548, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2550 = buf2549[0] del buf2549 buf2553 = torch.ops.aten.max_pool3d_with_indices.default(buf2552, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2554 = buf2553[0] del buf2553 buf2557 = torch.ops.aten.max_pool3d_with_indices.default(buf2556, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2558 = buf2557[0] del buf2557 buf2561 = torch.ops.aten.max_pool3d_with_indices.default(buf2560, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2562 = buf2561[0] del buf2561 buf2564 = buf2560 del buf2560 buf2568 = buf2556 del buf2556 buf2572 = buf2552 del buf2552 buf2580 = buf2548 del buf2548 buf2584 = buf2546 del buf2546 buf2588 = buf2542 del buf2542 triton_poi_fused_minimum_neg_2[grid(256)](buf2554, buf2562, buf2558, buf2564, buf2568, buf2572, buf2580, buf2584, buf2588, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2565 = torch.ops.aten.max_pool3d_with_indices.default(buf2564, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2564 buf2566 = buf2565[0] del buf2565 buf2569 = torch.ops.aten.max_pool3d_with_indices.default(buf2568, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2568 buf2570 = buf2569[0] del buf2569 buf2573 = torch.ops.aten.max_pool3d_with_indices.default(buf2572, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2572 buf2574 = buf2573[0] del buf2573 buf2576 = buf2566 del buf2566 triton_poi_fused_minimum_neg_3[grid(256)](buf2576, buf2574, buf2570, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2577 = torch.ops.aten.max_pool3d_with_indices.default(buf2576, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2578 = buf2577[0] del buf2577 buf2581 = torch.ops.aten.max_pool3d_with_indices.default(buf2580, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2582 = buf2581[0] del buf2581 buf2585 = torch.ops.aten.max_pool3d_with_indices.default(buf2584, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2586 = buf2585[0] del buf2585 buf2589 = torch.ops.aten.max_pool3d_with_indices.default(buf2588, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2590 = buf2589[0] del buf2589 buf2592 = buf2588 del buf2588 buf2596 = buf2584 del buf2584 buf2600 = buf2580 del buf2580 buf2608 = buf2576 del buf2576 buf2612 = buf2574 del buf2574 buf2616 = buf2570 del buf2570 triton_poi_fused_minimum_neg_2[grid(256)](buf2582, buf2590, buf2586, buf2592, buf2596, buf2600, buf2608, buf2612, buf2616, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2593 = torch.ops.aten.max_pool3d_with_indices.default(buf2592, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2592 buf2594 = buf2593[0] del buf2593 buf2597 = torch.ops.aten.max_pool3d_with_indices.default(buf2596, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2596 buf2598 = buf2597[0] del buf2597 buf2601 = torch.ops.aten.max_pool3d_with_indices.default(buf2600, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2600 buf2602 = buf2601[0] del buf2601 buf2604 = buf2594 del buf2594 triton_poi_fused_minimum_neg_3[grid(256)](buf2604, buf2602, buf2598, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2605 = torch.ops.aten.max_pool3d_with_indices.default(buf2604, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2606 = buf2605[0] del buf2605 buf2609 = torch.ops.aten.max_pool3d_with_indices.default(buf2608, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2610 = buf2609[0] del buf2609 buf2613 = torch.ops.aten.max_pool3d_with_indices.default(buf2612, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2614 = buf2613[0] del buf2613 buf2617 = torch.ops.aten.max_pool3d_with_indices.default(buf2616, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2618 = buf2617[0] del buf2617 buf2620 = buf2616 del buf2616 buf2624 = buf2612 del buf2612 buf2628 = buf2608 del buf2608 buf2636 = buf2604 del buf2604 buf2640 = buf2602 del buf2602 buf2644 = buf2598 del buf2598 triton_poi_fused_minimum_neg_2[grid(256)](buf2610, buf2618, buf2614, buf2620, buf2624, buf2628, buf2636, buf2640, buf2644, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2621 = torch.ops.aten.max_pool3d_with_indices.default(buf2620, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2620 buf2622 = buf2621[0] del buf2621 buf2625 = torch.ops.aten.max_pool3d_with_indices.default(buf2624, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2624 buf2626 = buf2625[0] del buf2625 buf2629 = torch.ops.aten.max_pool3d_with_indices.default(buf2628, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2628 buf2630 = buf2629[0] del buf2629 buf2632 = buf2622 del buf2622 triton_poi_fused_minimum_neg_3[grid(256)](buf2632, buf2630, buf2626, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2633 = torch.ops.aten.max_pool3d_with_indices.default(buf2632, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2634 = buf2633[0] del buf2633 buf2637 = torch.ops.aten.max_pool3d_with_indices.default(buf2636, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2638 = buf2637[0] del buf2637 buf2641 = torch.ops.aten.max_pool3d_with_indices.default(buf2640, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2642 = buf2641[0] del buf2641 buf2645 = torch.ops.aten.max_pool3d_with_indices.default(buf2644, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2646 = buf2645[0] del buf2645 buf2648 = buf2644 del buf2644 buf2652 = buf2640 del buf2640 buf2656 = buf2636 del buf2636 buf2664 = buf2632 del buf2632 buf2668 = buf2630 del buf2630 buf2672 = buf2626 del buf2626 triton_poi_fused_minimum_neg_2[grid(256)](buf2638, buf2646, buf2642, buf2648, buf2652, buf2656, buf2664, buf2668, buf2672, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2649 = torch.ops.aten.max_pool3d_with_indices.default(buf2648, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2648 buf2650 = buf2649[0] del buf2649 buf2653 = torch.ops.aten.max_pool3d_with_indices.default(buf2652, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2652 buf2654 = buf2653[0] del buf2653 buf2657 = torch.ops.aten.max_pool3d_with_indices.default(buf2656, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2656 buf2658 = buf2657[0] del buf2657 buf2660 = buf2650 del buf2650 triton_poi_fused_minimum_neg_3[grid(256)](buf2660, buf2658, buf2654, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2661 = torch.ops.aten.max_pool3d_with_indices.default(buf2660, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2662 = buf2661[0] del buf2661 buf2665 = torch.ops.aten.max_pool3d_with_indices.default(buf2664, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2666 = buf2665[0] del buf2665 buf2669 = torch.ops.aten.max_pool3d_with_indices.default(buf2668, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2670 = buf2669[0] del buf2669 buf2673 = torch.ops.aten.max_pool3d_with_indices.default(buf2672, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2674 = buf2673[0] del buf2673 buf2676 = buf2672 del buf2672 buf2680 = buf2668 del buf2668 buf2684 = buf2664 del buf2664 buf2692 = buf2660 del buf2660 buf2696 = buf2658 del buf2658 buf2700 = buf2654 del buf2654 triton_poi_fused_minimum_neg_2[grid(256)](buf2666, buf2674, buf2670, buf2676, buf2680, buf2684, buf2692, buf2696, buf2700, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2677 = torch.ops.aten.max_pool3d_with_indices.default(buf2676, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2676 buf2678 = buf2677[0] del buf2677 buf2681 = torch.ops.aten.max_pool3d_with_indices.default(buf2680, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2680 buf2682 = buf2681[0] del buf2681 buf2685 = torch.ops.aten.max_pool3d_with_indices.default(buf2684, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2684 buf2686 = buf2685[0] del buf2685 buf2688 = buf2678 del buf2678 triton_poi_fused_minimum_neg_3[grid(256)](buf2688, buf2686, buf2682, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2689 = torch.ops.aten.max_pool3d_with_indices.default(buf2688, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2690 = buf2689[0] del buf2689 buf2693 = torch.ops.aten.max_pool3d_with_indices.default(buf2692, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2694 = buf2693[0] del buf2693 buf2697 = torch.ops.aten.max_pool3d_with_indices.default(buf2696, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2698 = buf2697[0] del buf2697 buf2701 = torch.ops.aten.max_pool3d_with_indices.default(buf2700, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2702 = buf2701[0] del buf2701 buf2704 = buf2700 del buf2700 buf2708 = buf2696 del buf2696 buf2712 = buf2692 del buf2692 buf2720 = buf2688 del buf2688 buf2724 = buf2686 del buf2686 buf2728 = buf2682 del buf2682 triton_poi_fused_minimum_neg_2[grid(256)](buf2694, buf2702, buf2698, buf2704, buf2708, buf2712, buf2720, buf2724, buf2728, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2705 = torch.ops.aten.max_pool3d_with_indices.default(buf2704, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2704 buf2706 = buf2705[0] del buf2705 buf2709 = torch.ops.aten.max_pool3d_with_indices.default(buf2708, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2708 buf2710 = buf2709[0] del buf2709 buf2713 = torch.ops.aten.max_pool3d_with_indices.default(buf2712, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2712 buf2714 = buf2713[0] del buf2713 buf2716 = buf2706 del buf2706 triton_poi_fused_minimum_neg_3[grid(256)](buf2716, buf2714, buf2710, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2717 = torch.ops.aten.max_pool3d_with_indices.default(buf2716, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2718 = buf2717[0] del buf2717 buf2721 = torch.ops.aten.max_pool3d_with_indices.default(buf2720, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2722 = buf2721[0] del buf2721 buf2725 = torch.ops.aten.max_pool3d_with_indices.default(buf2724, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2726 = buf2725[0] del buf2725 buf2729 = torch.ops.aten.max_pool3d_with_indices.default(buf2728, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2730 = buf2729[0] del buf2729 buf2732 = buf2728 del buf2728 buf2736 = buf2724 del buf2724 buf2740 = buf2720 del buf2720 buf2748 = buf2716 del buf2716 buf2752 = buf2714 del buf2714 buf2756 = buf2710 del buf2710 triton_poi_fused_minimum_neg_2[grid(256)](buf2722, buf2730, buf2726, buf2732, buf2736, buf2740, buf2748, buf2752, buf2756, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2733 = torch.ops.aten.max_pool3d_with_indices.default(buf2732, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2732 buf2734 = buf2733[0] del buf2733 buf2737 = torch.ops.aten.max_pool3d_with_indices.default(buf2736, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2736 buf2738 = buf2737[0] del buf2737 buf2741 = torch.ops.aten.max_pool3d_with_indices.default(buf2740, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2740 buf2742 = buf2741[0] del buf2741 buf2744 = buf2734 del buf2734 triton_poi_fused_minimum_neg_3[grid(256)](buf2744, buf2742, buf2738, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2745 = torch.ops.aten.max_pool3d_with_indices.default(buf2744, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2746 = buf2745[0] del buf2745 buf2749 = torch.ops.aten.max_pool3d_with_indices.default(buf2748, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2750 = buf2749[0] del buf2749 buf2753 = torch.ops.aten.max_pool3d_with_indices.default(buf2752, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2754 = buf2753[0] del buf2753 buf2757 = torch.ops.aten.max_pool3d_with_indices.default(buf2756, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2758 = buf2757[0] del buf2757 buf2760 = buf2756 del buf2756 buf2764 = buf2752 del buf2752 buf2768 = buf2748 del buf2748 buf2776 = buf2744 del buf2744 buf2780 = buf2742 del buf2742 buf2784 = buf2738 del buf2738 triton_poi_fused_minimum_neg_2[grid(256)](buf2750, buf2758, buf2754, buf2760, buf2764, buf2768, buf2776, buf2780, buf2784, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2761 = torch.ops.aten.max_pool3d_with_indices.default(buf2760, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2760 buf2762 = buf2761[0] del buf2761 buf2765 = torch.ops.aten.max_pool3d_with_indices.default(buf2764, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2764 buf2766 = buf2765[0] del buf2765 buf2769 = torch.ops.aten.max_pool3d_with_indices.default(buf2768, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2768 buf2770 = buf2769[0] del buf2769 buf2772 = buf2762 del buf2762 triton_poi_fused_minimum_neg_3[grid(256)](buf2772, buf2770, buf2766, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2773 = torch.ops.aten.max_pool3d_with_indices.default(buf2772, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) buf2774 = buf2773[0] del buf2773 buf2777 = torch.ops.aten.max_pool3d_with_indices.default(buf2776, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2778 = buf2777[0] del buf2777 buf2781 = torch.ops.aten.max_pool3d_with_indices.default(buf2780, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2782 = buf2781[0] del buf2781 buf2785 = torch.ops.aten.max_pool3d_with_indices.default(buf2784, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2786 = buf2785[0] del buf2785 buf2788 = buf2784 del buf2784 buf2792 = buf2780 del buf2780 buf2796 = buf2776 del buf2776 buf2804 = buf2772 del buf2772 buf2808 = buf2770 del buf2770 buf2812 = buf2766 del buf2766 triton_poi_fused_minimum_neg_2[grid(256)](buf2778, buf2786, buf2782, buf2788, buf2792, buf2796, buf2804, buf2808, buf2812, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2789 = torch.ops.aten.max_pool3d_with_indices.default(buf2788, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2788 buf2790 = buf2789[0] del buf2789 buf2793 = torch.ops.aten.max_pool3d_with_indices.default(buf2792, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2792 buf2794 = buf2793[0] del buf2793 buf2797 = torch.ops.aten.max_pool3d_with_indices.default(buf2796, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2796 buf2798 = buf2797[0] del buf2797 buf2800 = buf2790 del buf2790 triton_poi_fused_minimum_neg_3[grid(256)](buf2800, buf2798, buf2794, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2794 del buf2798 buf2801 = torch.ops.aten.max_pool3d_with_indices.default(buf2800, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) del buf2800 buf2802 = buf2801[0] del buf2801 buf2805 = torch.ops.aten.max_pool3d_with_indices.default(buf2804, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) buf2806 = buf2805[0] del buf2805 buf2809 = torch.ops.aten.max_pool3d_with_indices.default(buf2808, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) buf2810 = buf2809[0] del buf2809 buf2813 = torch.ops.aten.max_pool3d_with_indices.default(buf2812, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) buf2814 = buf2813[0] del buf2813 buf2816 = buf2812 del buf2812 buf2820 = buf2808 del buf2808 buf2824 = buf2804 del buf2804 triton_poi_fused_minimum_neg_4[grid(256)](buf2806, buf2814, buf2810, buf2816, buf2820, buf2824, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2817 = torch.ops.aten.max_pool3d_with_indices.default(buf2816, [ 3, 1, 1], [1, 1, 1], [1, 0, 0]) del buf2816 buf2818 = buf2817[0] del buf2817 buf2821 = torch.ops.aten.max_pool3d_with_indices.default(buf2820, [ 1, 3, 1], [1, 1, 1], [0, 1, 0]) del buf2820 buf2822 = buf2821[0] del buf2821 buf2825 = torch.ops.aten.max_pool3d_with_indices.default(buf2824, [ 1, 1, 3], [1, 1, 1], [0, 0, 1]) del buf2824 buf2826 = buf2825[0] del buf2825 buf2828 = buf2818 del buf2818 triton_poi_fused_minimum_neg_3[grid(256)](buf2828, buf2826, buf2822, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2822 del buf2826 buf2829 = torch.ops.aten.max_pool3d_with_indices.default(buf2828, [ 3, 3, 3], [1, 1, 1], [1, 1, 1]) del buf2828 buf2830 = buf2829[0] del buf2829 buf2832 = buf1430 del buf1430 buf2833 = buf1462 del buf1462 buf2834 = buf1490 del buf1490 buf2835 = buf1518 del buf1518 buf2836 = buf1546 del buf1546 buf2837 = buf1574 del buf1574 buf2838 = buf1602 del buf1602 buf2839 = buf1630 del buf1630 buf2840 = buf1658 del buf1658 buf2841 = buf1686 del buf1686 buf2842 = buf1714 del buf1714 buf2843 = buf1742 del buf1742 buf2844 = buf1770 del buf1770 buf2845 = buf1798 del buf1798 buf2846 = buf1826 del buf1826 buf2847 = buf1854 del buf1854 buf2848 = buf1882 del buf1882 buf2849 = buf1910 del buf1910 buf2850 = buf1938 del buf1938 buf2851 = buf1966 del buf1966 buf2852 = buf1994 del buf1994 buf2853 = buf2022 del buf2022 buf2854 = buf2050 del buf2050 buf2855 = buf2078 del buf2078 buf2856 = buf2106 del buf2106 buf2857 = buf2134 del buf2134 buf2858 = buf2162 del buf2162 buf2859 = buf2190 del buf2190 buf2860 = buf2218 del buf2218 buf2861 = buf2246 del buf2246 buf2862 = buf2274 del buf2274 buf2863 = buf2302 del buf2302 buf2864 = buf2330 del buf2330 buf2865 = buf2358 del buf2358 buf2866 = buf2386 del buf2386 buf2867 = buf2414 del buf2414 buf2868 = buf2442 del buf2442 buf2869 = buf2470 del buf2470 buf2870 = buf2498 del buf2498 buf2871 = buf2526 del buf2526 buf2872 = buf2554 del buf2554 buf2873 = buf2582 del buf2582 buf2874 = buf2610 del buf2610 buf2875 = buf2638 del buf2638 buf2876 = buf2666 del buf2666 buf2877 = buf2694 del buf2694 buf2878 = buf2722 del buf2722 buf2879 = buf2750 del buf2750 buf2880 = buf2778 del buf2778 buf2881 = buf2806 del buf2806 triton_poi_fused_add_minimum_mul_neg_relu_sub_5[grid(256)](buf2832, buf2833, buf2834, buf2835, buf2836, buf2837, buf2838, buf2839, buf2840, buf2841, buf2842, buf2843, buf2844, buf2845, buf2846, buf2847, buf2848, buf2849, buf2850, buf2851, buf2852, buf2853, buf2854, buf2855, buf2856, buf2857, buf2858, buf2859, buf2860, buf2861, buf2862, buf2863, buf2864, buf2865, buf2866, buf2867, buf2868, buf2869, buf2870, buf2871, buf2872, buf2873, buf2874, buf2875, buf2876, buf2877, buf2878, buf2879, buf2880, buf2881, arg1_1, buf1434, buf1442, buf1438, buf1458, buf1470, buf1466, buf1486, buf1498, buf1494, buf1514, buf1526, buf1522, buf1542, buf1554, buf1550, buf1570, buf1582, buf1578, buf1598, buf1610, buf1606, buf1626, buf1638, buf1634, buf1654, buf1666, buf1662, buf1682, buf1694, buf1690, buf1710, buf1722, buf1718, buf1738, buf1750, buf1746, buf1766, buf1778, buf1774, buf1794, buf1806, buf1802, buf1822, buf1834, buf1830, buf1850, buf1862, buf1858, buf1878, buf1890, buf1886, buf1906, buf1918, buf1914, buf1934, buf1946, buf1942, buf1962, buf1974, buf1970, buf1990, buf2002, buf1998, buf2018, buf2030, buf2026, buf2046, buf2058, buf2054, buf2074, buf2086, buf2082, buf2102, buf2114, buf2110, buf2130, buf2142, buf2138, buf2158, buf2170, buf2166, buf2186, buf2198, buf2194, buf2214, buf2226, buf2222, buf2242, buf2254, buf2250, buf2270, buf2282, buf2278, buf2298, buf2310, buf2306, buf2326, buf2338, buf2334, buf2354, buf2366, buf2362, buf2382, buf2394, buf2390, buf2410, buf2422, buf2418, buf2438, buf2450, buf2446, buf2466, buf2478, buf2474, buf2494, buf2506, buf2502, buf2522, buf2534, buf2530, buf2550, buf2562, buf2558, buf2578, buf2590, buf2586, buf2606, buf2618, buf2614, buf2634, buf2646, buf2642, buf2662, buf2674, buf2670, buf2690, buf2702, buf2698, buf2718, buf2730, buf2726, buf2746, buf2758, buf2754, buf2774, buf2786, buf2782, buf2802, buf2814, buf2810, buf2830, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 del buf1434 del buf1438 del buf1442 del buf1458 del buf1466 del buf1470 del buf1486 del buf1494 del buf1498 del buf1514 del buf1522 del buf1526 del buf1542 del buf1550 del buf1554 del buf1570 del buf1578 del buf1582 del buf1598 del buf1606 del buf1610 del buf1626 del buf1634 del buf1638 del buf1654 del buf1662 del buf1666 del buf1682 del buf1690 del buf1694 del buf1710 del buf1718 del buf1722 del buf1738 del buf1746 del buf1750 del buf1766 del buf1774 del buf1778 del buf1794 del buf1802 del buf1806 del buf1822 del buf1830 del buf1834 del buf1850 del buf1858 del buf1862 del buf1878 del buf1886 del buf1890 del buf1906 del buf1914 del buf1918 del buf1934 del buf1942 del buf1946 del buf1962 del buf1970 del buf1974 del buf1990 del buf1998 del buf2002 del buf2018 del buf2026 del buf2030 del buf2046 del buf2054 del buf2058 del buf2074 del buf2082 del buf2086 del buf2102 del buf2110 del buf2114 del buf2130 del buf2138 del buf2142 del buf2158 del buf2166 del buf2170 del buf2186 del buf2194 del buf2198 del buf2214 del buf2222 del buf2226 del buf2242 del buf2250 del buf2254 del buf2270 del buf2278 del buf2282 del buf2298 del buf2306 del buf2310 del buf2326 del buf2334 del buf2338 del buf2354 del buf2362 del buf2366 del buf2382 del buf2390 del buf2394 del buf2410 del buf2418 del buf2422 del buf2438 del buf2446 del buf2450 del buf2466 del buf2474 del buf2478 del buf2494 del buf2502 del buf2506 del buf2522 del buf2530 del buf2534 del buf2550 del buf2558 del buf2562 del buf2578 del buf2586 del buf2590 del buf2606 del buf2614 del buf2618 del buf2634 del buf2642 del buf2646 del buf2662 del buf2670 del buf2674 del buf2690 del buf2698 del buf2702 del buf2718 del buf2726 del buf2730 del buf2746 del buf2754 del buf2758 del buf2774 del buf2782 del buf2786 del buf2802 del buf2810 del buf2814 del buf2830 del buf2832 del buf2833 del buf2834 del buf2835 del buf2836 del buf2837 del buf2838 del buf2839 del buf2840 del buf2841 del buf2842 del buf2843 del buf2844 del buf2845 del buf2846 del buf2847 del buf2848 del buf2849 del buf2850 del buf2851 del buf2852 del buf2853 del buf2854 del buf2855 del buf2856 del buf2857 del buf2858 del buf2859 del buf2860 del buf2861 del buf2862 del buf2863 del buf2864 del buf2865 del buf2866 del buf2867 del buf2868 del buf2869 del buf2870 del buf2871 del buf2872 del buf2873 del buf2874 del buf2875 del buf2876 del buf2877 del buf2878 del buf2879 del buf2880 buf2882 = buf14 del buf14 buf2883 = buf2882 del buf2882 buf2884 = buf2883 del buf2883 buf2885 = buf102 del buf102 buf2886 = buf130 del buf130 buf2887 = buf158 del buf158 buf2888 = buf186 del buf186 buf2889 = buf214 del buf214 buf2890 = buf242 del buf242 buf2891 = buf270 del buf270 buf2892 = buf2891 del buf2891 buf2893 = buf2892 del buf2892 buf2894 = buf2893 del buf2893 buf2895 = buf2894 del buf2894 buf2896 = buf2895 del buf2895 buf2897 = buf2896 del buf2896 buf2898 = buf2897 del buf2897 buf2899 = buf2898 del buf2898 buf2900 = buf2899 del buf2899 buf2901 = buf2900 del buf2900 buf2902 = buf2901 del buf2901 buf2903 = buf2902 del buf2902 buf2904 = buf2903 del buf2903 buf2905 = buf2904 del buf2904 buf2906 = buf2905 del buf2905 buf2907 = buf2906 del buf2906 buf2908 = buf2907 del buf2907 buf2909 = buf2908 del buf2908 buf2910 = buf2909 del buf2909 buf2911 = buf2910 del buf2910 buf2912 = buf2911 del buf2911 buf2913 = buf2912 del buf2912 buf2914 = buf2913 del buf2913 buf2915 = buf2914 del buf2914 buf2916 = buf2915 del buf2915 buf2917 = buf1002 del buf1002 buf2918 = buf1026 del buf1026 buf2919 = buf1054 del buf1054 buf2920 = buf1082 del buf1082 buf2921 = buf1110 del buf1110 buf2922 = buf1138 del buf1138 buf2923 = buf1166 del buf1166 buf2924 = buf1194 del buf1194 buf2925 = buf1222 del buf1222 buf2926 = buf1250 del buf1250 buf2927 = buf1278 del buf1278 buf2928 = buf1306 del buf1306 buf2929 = buf1334 del buf1334 buf2930 = buf1362 del buf1362 buf2931 = buf1390 del buf1390 triton_poi_fused_add_minimum_mul_neg_relu_sub_6[grid(256)](buf2884, buf2885, buf2886, buf2887, buf2888, buf2889, buf2890, buf2916, buf2917, buf2918, buf2919, buf2920, buf2921, buf2922, buf2923, buf2924, buf2925, buf2926, buf2927, buf2928, buf2929, buf2930, buf2931, arg0_1, buf18, buf26, buf22, buf42, buf46, buf54, buf50, buf70, buf74, buf82, buf78, buf98, buf110, buf106, buf126, buf138, buf134, buf154, buf166, buf162, buf182, buf194, buf190, buf210, buf222, buf218, buf238, buf250, buf246, buf266, buf278, buf274, buf294, buf298, buf306, buf302, buf322, buf326, buf334, buf330, buf350, buf354, buf362, buf358, buf378, buf382, buf390, buf386, buf406, buf410, buf418, buf414, buf434, buf438, buf446, buf442, buf462, buf466, buf474, buf470, buf490, buf494, buf502, buf498, buf518, buf522, buf530, buf526, buf546, buf550, buf558, buf554, buf574, buf578, buf586, buf582, buf602, buf606, buf614, buf610, buf630, buf634, buf642, buf638, buf658, buf662, buf670, buf666, buf686, buf690, buf698, buf694, buf714, buf718, buf726, buf722, buf742, buf746, buf754, buf750, buf770, buf774, buf782, buf778, buf798, buf802, buf810, buf806, buf826, buf830, buf838, buf834, buf854, buf858, buf866, buf862, buf882, buf886, buf894, buf890, buf910, buf914, buf922, buf918, buf938, buf942, buf950, buf946, buf966, buf970, buf978, buf974, buf994, buf998, buf1006, buf1022, buf1034, buf1030, buf1050, buf1062, buf1058, buf1078, buf1090, buf1086, buf1106, buf1118, buf1114, buf1134, buf1146, buf1142, buf1162, buf1174, buf1170, buf1190, buf1202, buf1198, buf1218, buf1230, buf1226, buf1246, buf1258, buf1254, buf1274, buf1286, buf1282, buf1302, buf1314, buf1310, buf1330, buf1342, buf1338, buf1358, buf1370, buf1366, buf1386, buf1398, buf1394, buf1414, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del buf1006 del buf1022 del buf1030 del buf1034 del buf1050 del buf1058 del buf106 del buf1062 del buf1078 del buf1086 del buf1090 del buf110 del buf1106 del buf1114 del buf1118 del buf1134 del buf1142 del buf1146 del buf1162 del buf1170 del buf1174 del buf1190 del buf1198 del buf1202 del buf1218 del buf1226 del buf1230 del buf1246 del buf1254 del buf1258 del buf126 del buf1274 del buf1282 del buf1286 del buf1302 del buf1310 del buf1314 del buf1330 del buf1338 del buf134 del buf1342 del buf1358 del buf1366 del buf1370 del buf138 del buf1386 del buf1394 del buf1398 del buf1414 del buf154 del buf162 del buf166 del buf18 del buf182 del buf190 del buf194 del buf210 del buf218 del buf22 del buf222 del buf238 del buf246 del buf250 del buf26 del buf266 del buf274 del buf278 del buf2884 del buf2885 del buf2886 del buf2887 del buf2888 del buf2889 del buf2890 del buf2916 del buf2917 del buf2918 del buf2919 del buf2920 del buf2921 del buf2922 del buf2923 del buf2924 del buf2925 del buf2926 del buf2927 del buf2928 del buf2929 del buf2930 del buf294 del buf298 del buf302 del buf306 del buf322 del buf326 del buf330 del buf334 del buf350 del buf354 del buf358 del buf362 del buf378 del buf382 del buf386 del buf390 del buf406 del buf410 del buf414 del buf418 del buf42 del buf434 del buf438 del buf442 del buf446 del buf46 del buf462 del buf466 del buf470 del buf474 del buf490 del buf494 del buf498 del buf50 del buf502 del buf518 del buf522 del buf526 del buf530 del buf54 del buf546 del buf550 del buf554 del buf558 del buf574 del buf578 del buf582 del buf586 del buf602 del buf606 del buf610 del buf614 del buf630 del buf634 del buf638 del buf642 del buf658 del buf662 del buf666 del buf670 del buf686 del buf690 del buf694 del buf698 del buf70 del buf714 del buf718 del buf722 del buf726 del buf74 del buf742 del buf746 del buf750 del buf754 del buf770 del buf774 del buf778 del buf78 del buf782 del buf798 del buf802 del buf806 del buf810 del buf82 del buf826 del buf830 del buf834 del buf838 del buf854 del buf858 del buf862 del buf866 del buf882 del buf886 del buf890 del buf894 del buf910 del buf914 del buf918 del buf922 del buf938 del buf942 del buf946 del buf950 del buf966 del buf970 del buf974 del buf978 del buf98 del buf994 del buf998 return buf2881, buf2931 def sum_tensor(inp, axes, keepdim=False): axes = np.unique(axes).astype(int) if keepdim: for ax in axes: inp = inp.sum(int(ax), keepdim=True) else: for ax in sorted(axes, reverse=True): inp = inp.sum(int(ax)) return inp def get_tp_fp_fn_tn(net_output, gt, axes=None, mask=None, square=False): """ net_output must be (b, c, x, y(, z))) gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z)) if mask is provided it must have shape (b, 1, x, y(, z))) :param net_output: :param gt: :param axes: can be (, ) = no summation :param mask: mask must be 1 for valid pixels and 0 for invalid pixels :param square: if True then fp, tp and fn will be squared before summation :return: """ if axes is None: axes = tuple(range(2, len(net_output.size()))) shp_x = net_output.shape shp_y = gt.shape with torch.no_grad(): if len(shp_x) != len(shp_y): gt = gt.view((shp_y[0], 1, *shp_y[1:])) if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]): y_onehot = gt else: gt = gt.long() y_onehot = torch.zeros(shp_x) if net_output.device.type == 'cuda': y_onehot = y_onehot y_onehot.scatter_(1, gt, 1) tp = net_output * y_onehot fp = net_output * (1 - y_onehot) fn = (1 - net_output) * y_onehot tn = (1 - net_output) * (1 - y_onehot) if mask is not None: tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1) fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1) fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1) tn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tn, dim=1)), dim=1) if square: tp = tp ** 2 fp = fp ** 2 fn = fn ** 2 tn = tn ** 2 if len(axes) > 0: tp = sum_tensor(tp, axes, keepdim=False) fp = sum_tensor(fp, axes, keepdim=False) fn = sum_tensor(fn, axes, keepdim=False) tn = sum_tensor(tn, axes, keepdim=False) return tp, fp, fn, tn def soft_erode(I): p1 = -F.max_pool3d(-I, (3, 1, 1), (1, 1, 1), (1, 0, 0)) p2 = -F.max_pool3d(-I, (1, 3, 1), (1, 1, 1), (0, 1, 0)) p3 = -F.max_pool3d(-I, (1, 1, 3), (1, 1, 1), (0, 0, 1)) return torch.min(torch.min(p1, p3), p2) def soft_dilate(I): return F.max_pool3d(I, (3, 3, 3), (1, 1, 1), (1, 1, 1)) def soft_open(I): return soft_dilate(soft_erode(I)) def soft_skel(img, k=50): img1 = soft_open(img) skel = F.relu(img - img1) for iter in range(k): img = soft_erode(img) img1 = soft_open(img) delta = F.relu(img - img1) skel = skel + F.relu(delta - skel * delta) if torch.cuda.is_available(): del img1 del delta return skel class SoftClDiceLossNew(nn.Module): def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True, smooth=1.0, k=2): """ """ super(SoftClDiceLossNew, self).__init__() self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth self.k = k def softCenterline(self, I): max = nn.MaxPool3d(3, stride=1, padding=1) relu = nn.ReLU() Ip = max(-max(-I)) cl = relu(I - Ip) for iter in range(self.k): I = -max(-I) Ip = max(-max(-I)) cl = cl + cl * relu(I - Ip) return cl def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
CamilaGL/nnUNet
SoftClDiceLoss
false
1,175
[ "Apache-2.0" ]
0
471ab73a6e4f67fc72d476183b5344be4cccf7ca
https://github.com/CamilaGL/nnUNet/tree/471ab73a6e4f67fc72d476183b5344be4cccf7ca
import torch import numpy as np from torch import nn import torch.jit import torch.nn.functional as F import torch.nn.functional def sum_tensor(inp, axes, keepdim=False): axes = np.unique(axes).astype(int) if keepdim: for ax in axes: inp = inp.sum(int(ax), keepdim=True) else: for ax in sorted(axes, reverse=True): inp = inp.sum(int(ax)) return inp def get_tp_fp_fn_tn(net_output, gt, axes=None, mask=None, square=False): """ net_output must be (b, c, x, y(, z))) gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z)) if mask is provided it must have shape (b, 1, x, y(, z))) :param net_output: :param gt: :param axes: can be (, ) = no summation :param mask: mask must be 1 for valid pixels and 0 for invalid pixels :param square: if True then fp, tp and fn will be squared before summation :return: """ if axes is None: axes = tuple(range(2, len(net_output.size()))) shp_x = net_output.shape shp_y = gt.shape with torch.no_grad(): if len(shp_x) != len(shp_y): gt = gt.view((shp_y[0], 1, *shp_y[1:])) if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]): y_onehot = gt else: gt = gt.long() y_onehot = torch.zeros(shp_x) if net_output.device.type == 'cuda': y_onehot = y_onehot y_onehot.scatter_(1, gt, 1) tp = net_output * y_onehot fp = net_output * (1 - y_onehot) fn = (1 - net_output) * y_onehot tn = (1 - net_output) * (1 - y_onehot) if mask is not None: tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1) fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1) fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1) tn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tn, dim=1)), dim=1) if square: tp = tp ** 2 fp = fp ** 2 fn = fn ** 2 tn = tn ** 2 if len(axes) > 0: tp = sum_tensor(tp, axes, keepdim=False) fp = sum_tensor(fp, axes, keepdim=False) fn = sum_tensor(fn, axes, keepdim=False) tn = sum_tensor(tn, axes, keepdim=False) return tp, fp, fn, tn def soft_erode(I): p1 = -F.max_pool3d(-I, (3, 1, 1), (1, 1, 1), (1, 0, 0)) p2 = -F.max_pool3d(-I, (1, 3, 1), (1, 1, 1), (0, 1, 0)) p3 = -F.max_pool3d(-I, (1, 1, 3), (1, 1, 1), (0, 0, 1)) return torch.min(torch.min(p1, p3), p2) def soft_dilate(I): return F.max_pool3d(I, (3, 3, 3), (1, 1, 1), (1, 1, 1)) def soft_open(I): return soft_dilate(soft_erode(I)) def soft_skel(img, k=50): img1 = soft_open(img) skel = F.relu(img - img1) for iter in range(k): img = soft_erode(img) img1 = soft_open(img) delta = F.relu(img - img1) skel = skel + F.relu(delta - skel * delta) if torch.cuda.is_available(): del img1 del delta return skel class Model(nn.Module): def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True, smooth=1.0, k=2): """ """ super().__init__() self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth self.k = k def softCenterline(self, I): max = nn.MaxPool3d(3, stride=1, padding=1) relu = nn.ReLU() Ip = max(-max(-I)) cl = relu(I - Ip) for iter in range(self.k): I = -max(-I) Ip = max(-max(-I)) cl = cl + cl * relu(I - Ip) return cl def forward(self, x, y, loss_mask=None): shp_x = x.shape if self.batch_dice: axes = [0] + list(range(2, len(shp_x))) else: axes = list(r # ... truncated (>4000 chars) for memory efficiency
ConvLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/gk/cgkf6erwdwyiy4xdm222c6rkwywjqetjz7vncozpnvl25mi55bq2.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 3136 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_out_ptr0 + (x2 + (3136*y3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + (3136*y3)), tmp4, xmask) tl.store(out_ptr0 + (y0 + (256*x2) + (802816*y1)), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (256, 1, 9, 9), (81, 81, 9, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 256, 56, 56), (802816, 3136, 56, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 256, 56, 56), (802816, 1, 14336, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_threshold_backward_0.run(buf1, primals_2, buf2, 1024, 3136, grid=grid(1024, 3136), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 1, 9, 9), (81, 81, 9, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ConvLayer(nn.Module): """A Convolutional Layer""" def __init__(self, in_channels=1, out_channels=256, kernel_size=9, stride=1 ): super(ConvLayer, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): return F.relu(self.conv(x)) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): xnumel = 3136 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_out_ptr0 + (x2 + 3136 * y3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + 3136 * y3), tmp4, xmask) tl.store(out_ptr0 + (y0 + 256 * x2 + 802816 * y1), tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (256, 1, 9, 9), (81, 81, 9, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 256, 56, 56), (802816, 3136, 56, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 256, 56, 56), (802816, 1, 14336, 256), torch.bool) get_raw_stream(0) triton_poi_fused_convolution_relu_threshold_backward_0[grid(1024, 3136) ](buf1, primals_2, buf2, 1024, 3136, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3, buf2 class ConvLayerNew(nn.Module): """A Convolutional Layer""" def __init__(self, in_channels=1, out_channels=256, kernel_size=9, stride=1 ): super(ConvLayerNew, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
VIVelev/capsnets
ConvLayer
false
1,176
[ "MIT" ]
0
dca4bfcd4007977a6bc3534a4676880326fcf94a
https://github.com/VIVelev/capsnets/tree/dca4bfcd4007977a6bc3534a4676880326fcf94a
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """A Convolutional Layer""" def __init__(self, in_channels=1, out_channels=256, kernel_size=9, stride=1 ): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): return F.relu(self.conv(x)) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return []
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/se/csevsploqhlaafqt4umuu5feml3ses7qj2jkxsyoy7kfy5rlinsl.py # Topologically Sorted Source Nodes: [scores_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # scores_2 => amax, clone, exp, sub, sum_1 # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%view_11,), kwargs = {memory_format: torch.contiguous_format}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp6 = tmp0 * tmp5 tmp7 = tmp6 * tmp3 tmp8 = triton_helpers.maximum(tmp4, tmp7) tmp10 = tmp0 * tmp9 tmp11 = tmp10 * tmp3 tmp12 = triton_helpers.maximum(tmp8, tmp11) tmp14 = tmp0 * tmp13 tmp15 = tmp14 * tmp3 tmp16 = triton_helpers.maximum(tmp12, tmp15) tmp17 = tmp4 - tmp16 tmp18 = tl_math.exp(tmp17) tmp19 = tmp7 - tmp16 tmp20 = tl_math.exp(tmp19) tmp21 = tmp18 + tmp20 tmp22 = tmp11 - tmp16 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp25 = tmp15 - tmp16 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tl.store(out_ptr0 + (x3), tmp16, xmask) tl.store(out_ptr1 + (x3), tmp27, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dv/cdvddpa3xpcvcmerzvthlyccsihjoyjqxp73clitp4k7k44dwkj6.py # Topologically Sorted Source Nodes: [scores_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # scores_2 => amax, clone, div_1, exp, sub, sum_1 # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%view_11,), kwargs = {memory_format: torch.contiguous_format}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = (xindex // 4) x0 = xindex % 4 x1 = (xindex // 4) % 4 x3 = (xindex // 64) x2 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1 + (4*x0) + (16*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7k/c7kkxqo5r65gqykuvge3exgf3trgxmm4raf7gypitw4ynuylbeao.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten.clone] # Source node to ATen node mapping: # attention => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xt/cxtkkmujo4ytg6ycpz5lk5livtstr63pg5nsf5ijewjbtrfrqx6k.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] # Source node to ATen node mapping: # out => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_17,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/q4/cq4lrbjfvbivmpg2zkxhkatw7yc2rqarfj625cpqjlxqgfutfyet.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.add] # Source node to ATen node mapping: # out => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %primals_11), kwargs = {}) triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_4 del primals_5 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_6 del primals_7 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf2) del primals_8 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32) # Topologically Sorted Source Nodes: [scores_2], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [scores_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf0, buf1, buf3, buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 1, 1), (16, 4, 1, 1, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [attention], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf2, primals_9, buf6, 16, 4, grid=grid(16, 4), stream=stream0) del primals_9 buf7 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [attention], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), out=buf7) buf8 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf7, buf8, 16, 4, grid=grid(16, 4), stream=stream0) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.add] triton_poi_fused_add_4.run(buf10, primals_11, 64, grid=grid(64), stream=stream0) del primals_11 return (buf10, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf0, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf1, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf5, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), primals_10, reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.functional as F class MultiHeadAttention(nn.Module): """Multi-headed Attention for input Query, Key, Value Multi-headed Attention is a module for attention mechanisms which runs through attention in several times in parallel, then the multiple outputs are concatenated and linearly transformed Args: embed_size (int): Max embedding size num_heads (int): Number of heads in multi-headed attention; Number of splits in the embedding size dropout (float, optional): Percentage of Dropout to be applied in range 0 <= dropout <=1 batch_dim (int, optional): The dimension in which batch dimensions is """ def __init__(self, embed_size: 'int', num_heads: 'int', dropout: 'float'=0.2, batch_dim: 'int'=0): super(MultiHeadAttention, self).__init__() self.embed_size = embed_size self.num_heads = num_heads self.dropout = dropout self.batch_dim = batch_dim self.dropout_layer = nn.Dropout(dropout) self.head_size = self.embed_size // self.num_heads assert self.head_size * self.num_heads == self.embed_size, 'Heads cannot split Embedding size equally' self.Q = nn.Linear(self.embed_size, self.embed_size) self.K = nn.Linear(self.embed_size, self.embed_size) self.V = nn.Linear(self.embed_size, self.embed_size) self.linear = nn.Linear(self.embed_size, self.embed_size) def forward(self, q, k, v, mask=None): q_batch_size, q_seq_len, _q_embed_size = q.size() k_batch_size, k_seq_len, _k_embed_size = k.size() v_batch_size, v_seq_len, _v_embed_size = v.size() q = self.Q(q).reshape(q_batch_size, q_seq_len, self.num_heads, self .head_size) k = self.K(k).reshape(k_batch_size, k_seq_len, self.num_heads, self .head_size) v = self.V(v).reshape(v_batch_size, v_seq_len, self.num_heads, self .head_size) attention = self.attention(q, k, v, mask=mask) concatenated = attention.reshape(v_batch_size, -1, self.embed_size) out = self.linear(concatenated) return out def attention(self, q, k, v, mask=None): scores = torch.einsum('bqhe,bkhe->bhqk', [q, k]) if mask is not None: scores = scores.masked_fill(mask == 0, -1000000000.0) scores /= math.sqrt(self.embed_size) scores = F.softmax(scores, dim=-1) scores = self.dropout_layer(scores) attention = torch.einsum('bhql,blhd->bqhd', [scores, v]) return attention def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'embed_size': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr1 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp6 = tmp0 * tmp5 tmp7 = tmp6 * tmp3 tmp8 = triton_helpers.maximum(tmp4, tmp7) tmp10 = tmp0 * tmp9 tmp11 = tmp10 * tmp3 tmp12 = triton_helpers.maximum(tmp8, tmp11) tmp14 = tmp0 * tmp13 tmp15 = tmp14 * tmp3 tmp16 = triton_helpers.maximum(tmp12, tmp15) tmp17 = tmp4 - tmp16 tmp18 = tl_math.exp(tmp17) tmp19 = tmp7 - tmp16 tmp20 = tl_math.exp(tmp19) tmp21 = tmp18 + tmp20 tmp22 = tmp11 - tmp16 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp25 = tmp15 - tmp16 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tl.store(out_ptr0 + x3, tmp16, xmask) tl.store(out_ptr1 + x3, tmp27, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex // 4 x0 = xindex % 4 x1 = xindex // 4 % 4 x3 = xindex // 64 x2 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1 + 4 * x0 + 16 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), tmp9, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_4 del primals_5 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_6 del primals_7 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf2) del primals_8 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 64), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf0, buf1, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf0, buf1, buf3, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 1, 1), (16, 4, 1, 1, 1), 0) del buf4 triton_poi_fused_clone_2[grid(16, 4)](buf2, primals_9, buf6, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_9 buf7 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), out=buf7) buf8 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0) del buf3 triton_poi_fused_clone_3[grid(16, 4)](buf7, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0) del buf7 extern_kernels.mm(reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0) del buf9 triton_poi_fused_add_4[grid(64)](buf10, primals_11, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 return buf10, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf0, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), buf1, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), buf5, reinterpret_tensor(buf8, (16, 4), (4, 1), 0 ), primals_10, reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0) class MultiHeadAttentionNew(nn.Module): """Multi-headed Attention for input Query, Key, Value Multi-headed Attention is a module for attention mechanisms which runs through attention in several times in parallel, then the multiple outputs are concatenated and linearly transformed Args: embed_size (int): Max embedding size num_heads (int): Number of heads in multi-headed attention; Number of splits in the embedding size dropout (float, optional): Percentage of Dropout to be applied in range 0 <= dropout <=1 batch_dim (int, optional): The dimension in which batch dimensions is """ def __init__(self, embed_size: 'int', num_heads: 'int', dropout: 'float'=0.2, batch_dim: 'int'=0): super(MultiHeadAttentionNew, self).__init__() self.embed_size = embed_size self.num_heads = num_heads self.dropout = dropout self.batch_dim = batch_dim self.dropout_layer = nn.Dropout(dropout) self.head_size = self.embed_size // self.num_heads assert self.head_size * self.num_heads == self.embed_size, 'Heads cannot split Embedding size equally' self.Q = nn.Linear(self.embed_size, self.embed_size) self.K = nn.Linear(self.embed_size, self.embed_size) self.V = nn.Linear(self.embed_size, self.embed_size) self.linear = nn.Linear(self.embed_size, self.embed_size) def attention(self, q, k, v, mask=None): scores = torch.einsum('bqhe,bkhe->bhqk', [q, k]) if mask is not None: scores = scores.masked_fill(mask == 0, -1000000000.0) scores /= math.sqrt(self.embed_size) scores = F.softmax(scores, dim=-1) scores = self.dropout_layer(scores) attention = torch.einsum('bhql,blhd->bqhd', [scores, v]) return attention def forward(self, input_0, input_1, input_2): primals_4 = self.Q.weight primals_5 = self.Q.bias primals_6 = self.K.weight primals_7 = self.K.bias primals_8 = self.V.weight primals_9 = self.V.bias primals_10 = self.linear.weight primals_11 = self.linear.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
UdbhavPrasad072300/Kaggle-Competition-Templates
MultiHeadAttention
false
1,177
[ "MIT" ]
0
f3c93ff60ae33af9b6c6d79d30c5099eb250396c
https://github.com/UdbhavPrasad072300/Kaggle-Competition-Templates/tree/f3c93ff60ae33af9b6c6d79d30c5099eb250396c
import math import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """Multi-headed Attention for input Query, Key, Value Multi-headed Attention is a module for attention mechanisms which runs through attention in several times in parallel, then the multiple outputs are concatenated and linearly transformed Args: embed_size (int): Max embedding size num_heads (int): Number of heads in multi-headed attention; Number of splits in the embedding size dropout (float, optional): Percentage of Dropout to be applied in range 0 <= dropout <=1 batch_dim (int, optional): The dimension in which batch dimensions is """ def __init__(self, embed_size: 'int', num_heads: 'int', dropout: 'float'=0.2, batch_dim: 'int'=0): super().__init__() self.embed_size = embed_size self.num_heads = num_heads self.dropout = dropout self.batch_dim = batch_dim self.dropout_layer = nn.Dropout(dropout) self.head_size = self.embed_size // self.num_heads assert self.head_size * self.num_heads == self.embed_size, 'Heads cannot split Embedding size equally' self.Q = nn.Linear(self.embed_size, self.embed_size) self.K = nn.Linear(self.embed_size, self.embed_size) self.V = nn.Linear(self.embed_size, self.embed_size) self.linear = nn.Linear(self.embed_size, self.embed_size) def forward(self, q, k, v, mask=None): q_batch_size, q_seq_len, _q_embed_size = q.size() k_batch_size, k_seq_len, _k_embed_size = k.size() v_batch_size, v_seq_len, _v_embed_size = v.size() q = self.Q(q).reshape(q_batch_size, q_seq_len, self.num_heads, self .head_size) k = self.K(k).reshape(k_batch_size, k_seq_len, self.num_heads, self .head_size) v = self.V(v).reshape(v_batch_size, v_seq_len, self.num_heads, self .head_size) attention = self.attention(q, k, v, mask=mask) concatenated = attention.reshape(v_batch_size, -1, self.embed_size) out = self.linear(concatenated) return out def attention(self, q, k, v, mask=None): scores = torch.einsum('bqhe,bkhe->bhqk', [q, k]) if mask is not None: scores = scores.masked_fill(mask == 0, -1000000000.0) scores /= math.sqrt(self.embed_size) scores = F.softmax(scores, dim=-1) scores = self.dropout_layer(scores) attention = torch.einsum('bhql,blhd->bqhd', [scores, v]) return attention def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [4, 4]
WeighedL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/wa/cwattm4dorgdscqelaayil4zrzchrilandgf44svxdwhiritbmq3.py # Topologically Sorted Source Nodes: [loss, mul, mean], Original ATen: [aten.sub, aten.abs, aten.mul, aten.mean] # Source node to ATen node mapping: # loss => abs_1, sub # mean => mean # mul => mul # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 4), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {}) triton_per_fused_abs_mean_mul_sub_0 = async_compile.triton('triton_per_fused_abs_mean_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 4.0 tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 256.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [loss, mul, mean], Original ATen: [aten.sub, aten.abs, aten.mul, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_mul_sub_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch.nn import L1Loss class WeighedL1Loss(L1Loss): def __init__(self, weights): super().__init__(reduction='none') self.weights = weights def forward(self, input: 'Tensor', target: 'Tensor') ->Tensor: loss = super().forward(input, target) return (loss * self.weights).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'weights': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import L1Loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 4.0 tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 256.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_mean_mul_sub_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class WeighedL1LossNew(L1Loss): def __init__(self, weights): super().__init__(reduction='none') self.weights = weights def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
UT-ADL/lidar-as-camera
WeighedL1Loss
false
1,178
[ "Apache-2.0" ]
0
daccb2ae21b4899ecfd8611b7a27f91681617383
https://github.com/UT-ADL/lidar-as-camera/tree/daccb2ae21b4899ecfd8611b7a27f91681617383
import torch from torch import Tensor from torch.nn import L1Loss class Model(L1Loss): def __init__(self, weights): super().__init__(reduction='none') self.weights = weights def forward(self, input: 'Tensor', target: 'Tensor') ->Tensor: loss = super().forward(input, target) return (loss * self.weights).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
MaskL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/6q/c6qceyfxvxieybhxdenyuyjjzaujhzaa7uy3yv5ky5eslmfzfunh.py # Topologically Sorted Source Nodes: [sub, abs_1, mul, sum_1, sum_2, add, loss], Original ATen: [aten.sub, aten.abs, aten.mul, aten.sum, aten.add, aten.div] # Source node to ATen node mapping: # abs_1 => abs_1 # add => add # loss => div # mul => mul # sub => sub # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, %arg2_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add), kwargs = {}) triton_per_fused_abs_add_div_mul_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_div_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp4 = tl.load(in_ptr2 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp4, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 1e-06 tmp13 = tmp11 + tmp12 tmp14 = tmp8 / tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, mul, sum_1, sum_2, add, loss], Original ATen: [aten.sub, aten.abs, aten.mul, aten.sum, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_mul_sub_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class MaskL1Loss(nn.Module): def __init__(self, eps=1e-06): super(MaskL1Loss, self).__init__() self.eps = eps def forward(self, pred: 'torch.Tensor', gt, mask): loss = (torch.abs(pred - gt) * mask).sum() / (mask.sum() + self.eps) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp4 = tl.load(in_ptr2 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp4, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 1e-06 tmp13 = tmp11 + tmp12 tmp14 = tmp8 / tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_div_mul_sub_sum_0[grid(1)](buf2, arg0_1, arg1_1, arg2_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class MaskL1LossNew(nn.Module): def __init__(self, eps=1e-06): super(MaskL1LossNew, self).__init__() self.eps = eps def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Vivianyzw/Dual.DBNet.pytorch
MaskL1Loss
false
1,179
[ "Apache-2.0", "MIT" ]
0
19d823ed7c05076c087a3f7ad1127c71c1c0d692
https://github.com/Vivianyzw/Dual.DBNet.pytorch/tree/19d823ed7c05076c087a3f7ad1127c71c1c0d692
import torch from torch import nn class Model(nn.Module): def __init__(self, eps=1e-06): super().__init__() self.eps = eps def forward(self, pred: 'torch.Tensor', gt, mask): loss = (torch.abs(pred - gt) * mask).sum() / (mask.sum() + self.eps) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
HardSigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/wc/cwcfnwuommyu7iwqk7p3drqzze6t2tbhapxpjj7cjtdj7vrmgtpp.py # Topologically Sorted Source Nodes: [mul, x, neg, result, neg_1, result_1], Original ATen: [aten.mul, aten.add, aten.neg, aten.threshold] # Source node to ATen node mapping: # mul => mul # neg => neg # neg_1 => neg_1 # result => full_default, le, where # result_1 => full_default_1, le_1, where_1 # x => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.5), kwargs = {}) # %neg : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%add,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%neg, -1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%le, %full_default, %neg), kwargs = {}) # %neg_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%where,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%neg_1, 0), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%le_1, %full_default_1, %neg_1), kwargs = {}) triton_poi_fused_add_mul_neg_threshold_0 = async_compile.triton('triton_poi_fused_add_mul_neg_threshold_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_neg_threshold_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_neg_threshold_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.2 tmp2 = tmp0 * tmp1 tmp3 = 0.5 tmp4 = tmp2 + tmp3 tmp5 = -tmp4 tmp6 = -1.0 tmp7 = tmp5 <= tmp6 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = -tmp8 tmp10 = 0.0 tmp11 = tmp9 <= tmp10 tmp12 = tl.where(tmp11, tmp10, tmp9) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, x, neg, result, neg_1, result_1], Original ATen: [aten.mul, aten.add, aten.neg, aten.threshold] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_neg_threshold_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class HardSigmoid(nn.Module): def __init__(self, slope=0.2, offset=0.5): super().__init__() self.slope = slope self.offset = offset def forward(self, x): x = self.slope * x + self.offset x = F.threshold(-x, -1, -1) x = F.threshold(-x, 0, 0) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_neg_threshold_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.2 tmp2 = tmp0 * tmp1 tmp3 = 0.5 tmp4 = tmp2 + tmp3 tmp5 = -tmp4 tmp6 = -1.0 tmp7 = tmp5 <= tmp6 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = -tmp8 tmp10 = 0.0 tmp11 = tmp9 <= tmp10 tmp12 = tl.where(tmp11, tmp10, tmp9) tl.store(out_ptr0 + x0, tmp12, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_neg_threshold_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class HardSigmoidNew(nn.Module): def __init__(self, slope=0.2, offset=0.5): super().__init__() self.slope = slope self.offset = offset def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Vivianyzw/Dual.DBNet.pytorch
HardSigmoid
false
1,180
[ "Apache-2.0", "MIT" ]
0
19d823ed7c05076c087a3f7ad1127c71c1c0d692
https://github.com/Vivianyzw/Dual.DBNet.pytorch/tree/19d823ed7c05076c087a3f7ad1127c71c1c0d692
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, slope=0.2, offset=0.5): super().__init__() self.slope = slope self.offset = offset def forward(self, x): x = self.slope * x + self.offset x = F.threshold(-x, -1, -1) x = F.threshold(-x, 0, 0) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zi/czi6taqk3yywywfl3iwbejutxysbxi6hrg6s2rrrevzoemnmagnw.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_6, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6h/c6hgrncbhy7kjladlqflhqnw52mciqxt6qj53hxyw2giskevmcnl.py # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.view] # Source node to ATen node mapping: # linear_1 => view_7 # Graph fragment: # %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 4]), kwargs = {}) triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*((x1 % 4) // 4)) + (64*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.view] triton_poi_fused_view_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.autograd import * class FullyConnectedLayer(nn.Module): def __init__(self, in_size, out_size, dropout_r=0.0, use_relu=True): super(FullyConnectedLayer, self).__init__() self.dropout_r = dropout_r self.use_relu = use_relu self.linear = nn.Linear(in_size, out_size) if use_relu: self.relu = nn.ReLU(inplace=True) if dropout_r > 0: self.dropout = nn.Dropout(dropout_r) def forward(self, x): x = self.linear(x) if self.use_relu: x = self.relu(x) if self.dropout_r > 0: x = self.dropout(x) return x class MLP(nn.Module): def __init__(self, in_size, mid_size, out_size, dropout_r=0.0, use_relu =True): super(MLP, self).__init__() self.fc = FullyConnectedLayer(in_size, mid_size, dropout_r= dropout_r, use_relu=use_relu) self.linear = nn.Linear(mid_size, out_size) def forward(self, x): return self.linear(self.fc(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_size': 4, 'mid_size': 4, 'out_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch.autograd import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * (x1 % 4 // 4) + 64 * ((4 * (x1 // 4 % 4) + x1 % 4) // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused_view_1[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0) del buf1 extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf2, primals_4, buf4 class FullyConnectedLayer(nn.Module): def __init__(self, in_size, out_size, dropout_r=0.0, use_relu=True): super(FullyConnectedLayer, self).__init__() self.dropout_r = dropout_r self.use_relu = use_relu self.linear = nn.Linear(in_size, out_size) if use_relu: self.relu = nn.ReLU(inplace=True) if dropout_r > 0: self.dropout = nn.Dropout(dropout_r) def forward(self, x): x = self.linear(x) if self.use_relu: x = self.relu(x) if self.dropout_r > 0: x = self.dropout(x) return x class MLPNew(nn.Module): def __init__(self, in_size, mid_size, out_size, dropout_r=0.0, use_relu =True): super(MLPNew, self).__init__() self.fc = FullyConnectedLayer(in_size, mid_size, dropout_r= dropout_r, use_relu=use_relu) self.linear = nn.Linear(mid_size, out_size) def forward(self, input_0): primals_1 = self.fc.linear.weight primals_2 = self.fc.linear.bias primals_4 = self.linear.weight primals_5 = self.linear.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
VISLANG-Lab/MGCL
MLP
false
1,181
[ "MIT" ]
0
22da06ffa7410d9632bfda8eefb1b79e4f660de0
https://github.com/VISLANG-Lab/MGCL/tree/22da06ffa7410d9632bfda8eefb1b79e4f660de0
import torch import torch.nn as nn from torch.autograd import * class FullyConnectedLayer(nn.Module): def __init__(self, in_size, out_size, dropout_r=0.0, use_relu=True): super().__init__() self.dropout_r = dropout_r self.use_relu = use_relu self.linear = nn.Linear(in_size, out_size) if use_relu: self.relu = nn.ReLU(inplace=True) if dropout_r > 0: self.dropout = nn.Dropout(dropout_r) def forward(self, x): x = self.linear(x) if self.use_relu: x = self.relu(x) if self.dropout_r > 0: x = self.dropout(x) return x class Model(nn.Module): def __init__(self, in_size, mid_size, out_size, dropout_r=0.0, use_relu =True): super().__init__() self.fc = FullyConnectedLayer(in_size, mid_size, dropout_r= dropout_r, use_relu=use_relu) self.linear = nn.Linear(mid_size, out_size) def forward(self, x): return self.linear(self.fc(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/rv/crvzm2ku4tkenvfche2zhvobpilj6rk4dod4yym57qafqee4dbjv.py # Topologically Sorted Source Nodes: [mul, mul_1, intersection, mul_4, mul_2, sum_2, mul_3, sum_3, add, union, truediv, loss], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # add => add # intersection => sum_1 # loss => sub # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # sum_2 => sum_2 # sum_3 => sum_3 # truediv => div # union => add_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg2_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg2_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg2_1), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_3,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_4, %add_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp3 = tl.load(in_ptr2 + (r0), None) tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp0 * tmp3 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp12 = tmp1 * tmp3 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.sum(tmp13, 1)[:, None] tmp16 = 2.0 tmp17 = tmp7 * tmp16 tmp18 = tmp11 + tmp15 tmp19 = 1e-06 tmp20 = tmp18 + tmp19 tmp21 = tmp17 / tmp20 tmp22 = 1.0 tmp23 = tmp22 - tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, mul_1, intersection, mul_4, mul_2, sum_2, mul_3, sum_3, add, union, truediv, loss], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0.run(buf3, arg0_1, arg1_1, arg2_1, 1, 16, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class DiceLoss(nn.Module): """ Loss function from https://arxiv.org/abs/1707.03237, where iou computation is introduced heatmap manner to measure the diversity bwtween tow heatmaps. """ def __init__(self, eps=1e-06): super(DiceLoss, self).__init__() self.eps = eps def forward(self, pred: 'torch.Tensor', gt, mask, weights=None): """ pred: one or two heatmaps of shape (N, 1, H, W), the losses of tow heatmaps are added together. gt: (N, 1, H, W) mask: (N, H, W) """ return self._compute(pred, gt, mask, weights) def _compute(self, pred, gt, mask, weights): if pred.dim() == 4: pred = pred[:, 0, :, :] gt = gt[:, 0, :, :] assert pred.shape == gt.shape assert pred.shape == mask.shape if weights is not None: assert weights.shape == mask.shape mask = weights * mask intersection = (pred * gt * mask).sum() union = (pred * mask).sum() + (gt * mask).sum() + self.eps loss = 1 - 2.0 * intersection / union assert loss <= 1 return loss def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp3 = tl.load(in_ptr2 + r0, None) tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp0 * tmp3 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp12 = tmp1 * tmp3 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.sum(tmp13, 1)[:, None] tmp16 = 2.0 tmp17 = tmp7 * tmp16 tmp18 = tmp11 + tmp15 tmp19 = 1e-06 tmp20 = tmp18 + tmp19 tmp21 = tmp17 / tmp20 tmp22 = 1.0 tmp23 = tmp22 - tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0[grid(1)](buf3, arg0_1, arg1_1, arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf3, class DiceLossNew(nn.Module): """ Loss function from https://arxiv.org/abs/1707.03237, where iou computation is introduced heatmap manner to measure the diversity bwtween tow heatmaps. """ def __init__(self, eps=1e-06): super(DiceLossNew, self).__init__() self.eps = eps def _compute(self, pred, gt, mask, weights): if pred.dim() == 4: pred = pred[:, 0, :, :] gt = gt[:, 0, :, :] assert pred.shape == gt.shape assert pred.shape == mask.shape if weights is not None: assert weights.shape == mask.shape mask = weights * mask intersection = (pred * gt * mask).sum() union = (pred * mask).sum() + (gt * mask).sum() + self.eps loss = 1 - 2.0 * intersection / union assert loss <= 1 return loss def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Vivianyzw/Dual.DBNet.pytorch
DiceLoss
false
1,182
[ "Apache-2.0", "MIT" ]
0
19d823ed7c05076c087a3f7ad1127c71c1c0d692
https://github.com/Vivianyzw/Dual.DBNet.pytorch/tree/19d823ed7c05076c087a3f7ad1127c71c1c0d692
import torch from torch import nn class Model(nn.Module): """ Loss function from https://arxiv.org/abs/1707.03237, where iou computation is introduced heatmap manner to measure the diversity bwtween tow heatmaps. """ def __init__(self, eps=1e-06): super().__init__() self.eps = eps def forward(self, pred: 'torch.Tensor', gt, mask, weights=None): """ pred: one or two heatmaps of shape (N, 1, H, W), the losses of tow heatmaps are added together. gt: (N, 1, H, W) mask: (N, H, W) """ return self._compute(pred, gt, mask, weights) def _compute(self, pred, gt, mask, weights): if pred.dim() == 4: pred = pred[:, 0, :, :] gt = gt[:, 0, :, :] assert pred.shape == gt.shape assert pred.shape == mask.shape if weights is not None: assert weights.shape == mask.shape mask = weights * mask intersection = (pred * gt * mask).sum() union = (pred * mask).sum() + (gt * mask).sum() + self.eps loss = 1 - 2.0 * intersection / union assert loss <= 1 return loss def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return []
AFMLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/oj/coji63cmjptmfiahnhfxrcymtijnwomdesxsksu5cd5o6hnjtmkc.py # Topologically Sorted Source Nodes: [p, q, inner_product], Original ATen: [aten.cat, aten.mul] # Source node to ATen node mapping: # inner_product => mul # p => cat # q => cat_1 # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select, %select, %select, %select_1, %select_1, %select_2], 1), kwargs = {}) # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select_1, %select_2, %select_3, %select_2, %select_3, %select_3], 1), kwargs = {}) # %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%cat, %cat_1), kwargs = {}) triton_poi_fused_cat_mul_0 = async_compile.triton('triton_poi_fused_cat_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 24 x0 = xindex % 4 x2 = (xindex // 96) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (x0 + (4*((-4) + x1)) + (16*x2)), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x0 + (4*((-8) + x1)) + (16*x2)), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (64 + x0 + (4*((-12) + x1)) + (16*x2)), tmp19 & xmask, other=0.0) tmp21 = tmp0 >= tmp17 tmp22 = tl.full([1], 20, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr0 + (64 + x0 + (4*((-16) + x1)) + (16*x2)), tmp24 & xmask, other=0.0) tmp26 = tmp0 >= tmp22 tmp27 = tl.full([1], 24, tl.int64) tmp28 = tmp0 < tmp27 tmp29 = tl.load(in_ptr0 + (128 + x0 + (4*((-20) + x1)) + (16*x2)), tmp26 & xmask, other=0.0) tmp30 = tl.where(tmp24, tmp25, tmp29) tmp31 = tl.where(tmp19, tmp20, tmp30) tmp32 = tl.where(tmp14, tmp15, tmp31) tmp33 = tl.where(tmp9, tmp10, tmp32) tmp34 = tl.where(tmp4, tmp5, tmp33) tmp35 = tl.load(in_ptr0 + (64 + x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp36 = tl.load(in_ptr0 + (128 + x0 + (4*((-4) + x1)) + (16*x2)), tmp9 & xmask, other=0.0) tmp37 = tl.load(in_ptr0 + (192 + x0 + (4*((-8) + x1)) + (16*x2)), tmp14 & xmask, other=0.0) tmp38 = tl.load(in_ptr0 + (128 + x0 + (4*((-12) + x1)) + (16*x2)), tmp19 & xmask, other=0.0) tmp39 = tl.load(in_ptr0 + (192 + x0 + (4*((-16) + x1)) + (16*x2)), tmp24 & xmask, other=0.0) tmp40 = tl.load(in_ptr0 + (192 + x0 + (4*((-20) + x1)) + (16*x2)), tmp26 & xmask, other=0.0) tmp41 = tl.where(tmp24, tmp39, tmp40) tmp42 = tl.where(tmp19, tmp38, tmp41) tmp43 = tl.where(tmp14, tmp37, tmp42) tmp44 = tl.where(tmp9, tmp36, tmp43) tmp45 = tl.where(tmp4, tmp35, tmp44) tmp46 = tmp34 * tmp45 tl.store(in_out_ptr0 + (x3), tmp46, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/j2/cj26ownu73m72kwjlseu3qfwtrz4f3ru464aa4zuhodtujlnjupm.py # Topologically Sorted Source Nodes: [add, attention_temp], Original ATen: [aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add => add # attention_temp => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/p4/cp4mdcdve4y73ad5mzhckzksofhes3a2n2zye5hynnmbc62ct27d.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 32], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_2(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 24 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (24*x0)), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (24*x0)), tmp11, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ui/cui4pbynpryqmgmjhsdzeompa6sltxsmy5ggopxiaqdlvyafsjpl.py # Topologically Sorted Source Nodes: [mul_1, attention_output], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # attention_output => sum_2 # mul_1 => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %mul), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) triton_per_fused_mul_sum_3 = async_compile.triton('triton_per_fused_mul_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 32], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 24 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r2 = rindex x1 = (xindex // 4) x0 = xindex % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (24*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (x0 + (4*r2) + (96*x1)), rmask & xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [p, q, inner_product], Original ATen: [aten.cat, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_cat_mul_0.run(buf2, primals_1, 384, grid=grid(384), stream=stream0) del primals_1 buf3 = empty_strided_cuda((96, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (96, 4), (4, 1), 0), primals_2, out=buf3) del primals_2 buf4 = reinterpret_tensor(buf3, (4, 24, 4), (96, 4, 1), 0); del buf3 # reuse buf11 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [add, attention_temp], Original ATen: [aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_relu_threshold_backward_1.run(buf4, primals_3, buf11, 384, grid=grid(384), stream=stream0) del primals_3 buf5 = empty_strided_cuda((96, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (96, 4), (4, 1), 0), primals_4, out=buf5) buf8 = empty_strided_cuda((4, 24, 1), (24, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_per_fused__softmax_2.run(buf5, buf8, 4, 24, grid=grid(4), stream=stream0) del buf5 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1, attention_output], Original ATen: [aten.mul, aten.sum] triton_per_fused_mul_sum_3.run(buf8, buf2, buf9, 16, 24, grid=grid(16), stream=stream0) buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [afm_out], Original ATen: [aten.mm] extern_kernels.mm(buf9, primals_5, out=buf10) return (buf10, buf8, buf2, buf8, reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (1, 4), (1, 1), 0), reinterpret_tensor(buf4, (4, 96), (1, 4), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import itertools import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class AFMLayer(nn.Module): """Attentonal Factorization Machine models pairwise (order-2) feature interactions without linear term and bias. Input shape - A list of 3D tensor with shape: ``(batch_size,1,embedding_size)``. Output shape - 2D tensor with shape: ``(batch_size, 1)``. Arguments - **in_features** : Positive integer, dimensionality of input features. - **attention_factor** : Positive integer, dimensionality of the attention network output space. - **l2_reg_w** : float between 0 and 1. L2 regularizer strength applied to attention network. - **dropout_rate** : float between in [0,1). Fraction of the attention net output units to dropout. - **seed** : A Python integer to use as random seed. References - [Attentional Factorization Machines : Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) """ def __init__(self, in_features, attention_factor=4, l2_reg_w=0, dropout_rate=0, seed=1024, device='cpu'): super(AFMLayer, self).__init__() self.attention_factor = attention_factor self.l2_reg_w = l2_reg_w self.dropout_rate = dropout_rate self.seed = seed embedding_size = in_features self.attention_W = nn.Parameter(torch.Tensor(embedding_size, self. attention_factor)) self.attention_b = nn.Parameter(torch.Tensor(self.attention_factor)) self.projection_h = nn.Parameter(torch.Tensor(self.attention_factor, 1) ) self.projection_p = nn.Parameter(torch.Tensor(embedding_size, 1)) for tensor in [self.attention_W, self.projection_h, self.projection_p]: nn.init.xavier_normal_(tensor) for tensor in [self.attention_b]: nn.init.zeros_(tensor) self.dropout = nn.Dropout(dropout_rate) self def forward(self, inputs): embeds_vec_list = inputs row = [] col = [] for r, c in itertools.combinations(embeds_vec_list, 2): row.append(r) col.append(c) p = torch.cat(row, dim=1) q = torch.cat(col, dim=1) inner_product = p * q bi_interaction = inner_product attention_temp = F.relu(torch.tensordot(bi_interaction, self. attention_W, dims=([-1], [0])) + self.attention_b) self.normalized_att_score = F.softmax(torch.tensordot( attention_temp, self.projection_h, dims=([-1], [0])), dim=1) attention_output = torch.sum(self.normalized_att_score * bi_interaction, dim=1) attention_output = self.dropout(attention_output) afm_out = torch.tensordot(attention_output, self.projection_p, dims =([-1], [0])) return afm_out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from sklearn.metrics import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 24 x0 = xindex % 4 x2 = xindex // 96 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x0 + 4 * (-8 + x1) + 16 * x2), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (64 + x0 + 4 * (-12 + x1) + 16 * x2), tmp19 & xmask, other=0.0) tmp21 = tmp0 >= tmp17 tmp22 = tl.full([1], 20, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr0 + (64 + x0 + 4 * (-16 + x1) + 16 * x2), tmp24 & xmask, other=0.0) tmp26 = tmp0 >= tmp22 tl.full([1], 24, tl.int64) tmp29 = tl.load(in_ptr0 + (128 + x0 + 4 * (-20 + x1) + 16 * x2), tmp26 & xmask, other=0.0) tmp30 = tl.where(tmp24, tmp25, tmp29) tmp31 = tl.where(tmp19, tmp20, tmp30) tmp32 = tl.where(tmp14, tmp15, tmp31) tmp33 = tl.where(tmp9, tmp10, tmp32) tmp34 = tl.where(tmp4, tmp5, tmp33) tmp35 = tl.load(in_ptr0 + (64 + x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp36 = tl.load(in_ptr0 + (128 + x0 + 4 * (-4 + x1) + 16 * x2), tmp9 & xmask, other=0.0) tmp37 = tl.load(in_ptr0 + (192 + x0 + 4 * (-8 + x1) + 16 * x2), tmp14 & xmask, other=0.0) tmp38 = tl.load(in_ptr0 + (128 + x0 + 4 * (-12 + x1) + 16 * x2), tmp19 & xmask, other=0.0) tmp39 = tl.load(in_ptr0 + (192 + x0 + 4 * (-16 + x1) + 16 * x2), tmp24 & xmask, other=0.0) tmp40 = tl.load(in_ptr0 + (192 + x0 + 4 * (-20 + x1) + 16 * x2), tmp26 & xmask, other=0.0) tmp41 = tl.where(tmp24, tmp39, tmp40) tmp42 = tl.where(tmp19, tmp38, tmp41) tmp43 = tl.where(tmp14, tmp37, tmp42) tmp44 = tl.where(tmp9, tmp36, tmp43) tmp45 = tl.where(tmp4, tmp35, tmp44) tmp46 = tmp34 * tmp45 tl.store(in_out_ptr0 + x3, tmp46, xmask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_per_fused__softmax_2(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 24 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 24 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 24 * x0), tmp11, rmask & xmask) @triton.jit def triton_per_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 rnumel = 24 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r2 = rindex x1 = xindex // 4 x0 = xindex % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 24 * x1), rmask & xmask, eviction_policy ='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (x0 + 4 * r2 + 96 * x1), rmask & xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_cat_mul_0[grid(384)](buf2, primals_1, 384, XBLOCK= 128, num_warps=4, num_stages=1) del primals_1 buf3 = empty_strided_cuda((96, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (96, 4), (4, 1), 0), primals_2, out=buf3) del primals_2 buf4 = reinterpret_tensor(buf3, (4, 24, 4), (96, 4, 1), 0) del buf3 buf11 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_1[grid(384)](buf4, primals_3, buf11, 384, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf5 = empty_strided_cuda((96, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (96, 4), (4, 1), 0), primals_4, out=buf5) buf8 = empty_strided_cuda((4, 24, 1), (24, 1, 1), torch.float32) triton_per_fused__softmax_2[grid(4)](buf5, buf8, 4, 24, XBLOCK=1, num_warps=2, num_stages=1) del buf5 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_per_fused_mul_sum_3[grid(16)](buf8, buf2, buf9, 16, 24, XBLOCK=1, num_warps=2, num_stages=1) buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf9, primals_5, out=buf10) return buf10, buf8, buf2, buf8, reinterpret_tensor(buf9, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_5, (1, 4), (1, 1), 0 ), reinterpret_tensor(buf4, (4, 96), (1, 4), 0), reinterpret_tensor( primals_4, (1, 4), (1, 1), 0), buf11 class AFMLayerNew(nn.Module): """Attentonal Factorization Machine models pairwise (order-2) feature interactions without linear term and bias. Input shape - A list of 3D tensor with shape: ``(batch_size,1,embedding_size)``. Output shape - 2D tensor with shape: ``(batch_size, 1)``. Arguments - **in_features** : Positive integer, dimensionality of input features. - **attention_factor** : Positive integer, dimensionality of the attention network output space. - **l2_reg_w** : float between 0 and 1. L2 regularizer strength applied to attention network. - **dropout_rate** : float between in [0,1). Fraction of the attention net output units to dropout. - **seed** : A Python integer to use as random seed. References - [Attentional Factorization Machines : Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) """ def __init__(self, in_features, attention_factor=4, l2_reg_w=0, dropout_rate=0, seed=1024, device='cpu'): super(AFMLayerNew, self).__init__() self.attention_factor = attention_factor self.l2_reg_w = l2_reg_w self.dropout_rate = dropout_rate self.seed = seed embedding_size = in_features self.attention_W = nn.Parameter(torch.Tensor(embedding_size, self. attention_factor)) self.attention_b = nn.Parameter(torch.Tensor(self.attention_factor)) self.projection_h = nn.Parameter(torch.Tensor(self.attention_factor, 1) ) self.projection_p = nn.Parameter(torch.Tensor(embedding_size, 1)) for tensor in [self.attention_W, self.projection_h, self.projection_p]: nn.init.xavier_normal_(tensor) for tensor in [self.attention_b]: nn.init.zeros_(tensor) self.dropout = nn.Dropout(dropout_rate) self def forward(self, input_0): primals_2 = self.attention_W primals_3 = self.attention_b primals_4 = self.projection_h primals_5 = self.projection_p primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Sunmyunghan/Final_Project
AFMLayer
false
1,183
[ "MIT" ]
0
28cde293dc6d07521b2e1c5613b20444aea91d21
https://github.com/Sunmyunghan/Final_Project/tree/28cde293dc6d07521b2e1c5613b20444aea91d21
import itertools import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class Model(nn.Module): """Attentonal Factorization Machine models pairwise (order-2) feature interactions without linear term and bias. Input shape - A list of 3D tensor with shape: ``(batch_size,1,embedding_size)``. Output shape - 2D tensor with shape: ``(batch_size, 1)``. Arguments - **in_features** : Positive integer, dimensionality of input features. - **attention_factor** : Positive integer, dimensionality of the attention network output space. - **l2_reg_w** : float between 0 and 1. L2 regularizer strength applied to attention network. - **dropout_rate** : float between in [0,1). Fraction of the attention net output units to dropout. - **seed** : A Python integer to use as random seed. References - [Attentional Factorization Machines : Learning the Weight of Feature Interactions via Attention Networks](https://arxiv.org/pdf/1708.04617.pdf) """ def __init__(self, in_features, attention_factor=4, l2_reg_w=0, dropout_rate=0, seed=1024, device='cpu'): super().__init__() self.attention_factor = attention_factor self.l2_reg_w = l2_reg_w self.dropout_rate = dropout_rate self.seed = seed embedding_size = in_features self.attention_W = nn.Parameter(torch.Tensor(embedding_size, self. attention_factor)) self.attention_b = nn.Parameter(torch.Tensor(self.attention_factor)) self.projection_h = nn.Parameter(torch.Tensor(self.attention_factor, 1) ) self.projection_p = nn.Parameter(torch.Tensor(embedding_size, 1)) for tensor in [self.attention_W, self.projection_h, self.projection_p]: nn.init.xavier_normal_(tensor) for tensor in [self.attention_b]: nn.init.zeros_(tensor) self.dropout = nn.Dropout(dropout_rate) self def forward(self, inputs): embeds_vec_list = inputs row = [] col = [] for r, c in itertools.combinations(embeds_vec_list, 2): row.append(r) col.append(c) p = torch.cat(row, dim=1) q = torch.cat(col, dim=1) inner_product = p * q bi_interaction = inner_product attention_temp = F.relu(torch.tensordot(bi_interaction, self. attention_W, dims=([-1], [0])) + self.attention_b) self.normalized_att_score = F.softmax(torch.tensordot( attention_temp, self.projection_h, dims=([-1], [0])), dim=1) attention_output = torch.sum(self.normalized_att_score * bi_interaction, dim=1) attention_output = self.dropout(attention_output) afm_out = torch.tensordot(attention_output, self.projection_p, dims =([-1], [0])) return afm_out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Discriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/z5/cz5bgdo2gmhnnmtf6w7lrjkvliacxo7nomq7mbmjquxqyxqgt5bj.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/rm/crm4achd57rtzs377vwsvkyz5fhhtqzcbaqyzscjlfp5duwmbj2e.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1, ), (1, )) assert_size_stride(primals_6, (2, 1), (1, 1)) assert_size_stride(primals_7, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1, 4, 2), (32, 8, 8, 8, 2, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 1, 1, 4, 2), (32, 8, 8, 8, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf8, 128, grid=grid(128), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 4, 1), (16, 4, 4, 4, 1, 1), 0); del buf2 # reuse buf7 = empty_strided_cuda((4, 4, 1, 1, 4, 1), (16, 4, 4, 4, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf7, 64, grid=grid(64), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 1), (1, 0), 0), reinterpret_tensor(primals_6, (1, 2), (1, 1), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 1, 1, 4, 2), (32, 8, 8, 8, 2, 1), 0); del buf4 # reuse buf6 = empty_strided_cuda((4, 4, 1, 1, 4, 2), (32, 8, 8, 8, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf5, primals_7, buf6, 128, grid=grid(128), stream=stream0) del primals_7 return (reinterpret_tensor(buf5, (4, 32), (32, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 2), (2, 1), 0), reinterpret_tensor(buf3, (64, 1), (1, 1), 0), buf6, primals_6, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((2, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class Discriminator(nn.Module): def __init__(self, outputs_size, K=2): super(Discriminator, self).__init__() self.fc1 = nn.Linear(outputs_size, outputs_size // K, bias=True) outputs_size = outputs_size // K self.fc2 = nn.Linear(outputs_size, outputs_size // K, bias=True) outputs_size = outputs_size // K self.fc3 = nn.Linear(outputs_size, 2, bias=True) def forward(self, x): x = x[:, :, None, None] out = F.relu(self.fc1(x)) out = F.relu(self.fc2(out)) out = F.relu(self.fc3(out)) out = out.view(out.size(0), -1) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'outputs_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from sklearn.metrics import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1,), (1,)) assert_size_stride(primals_6, (2, 1), (1, 1)) assert_size_stride(primals_7, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1, 4, 2), (32, 8, 8, 8, 2, 1), 0) del buf0 buf8 = empty_strided_cuda((4, 4, 1, 1, 4, 2), (32, 8, 8, 8, 2, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(128)](buf1, primals_3, buf8, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 4, 1), (16, 4, 4, 4, 1, 1), 0) del buf2 buf7 = empty_strided_cuda((4, 4, 1, 1, 4, 1), (16, 4, 4, 4, 1, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(64)](buf3, primals_5, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 1), (1, 0), 0), reinterpret_tensor(primals_6, (1, 2), (1, 1), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 1, 1, 4, 2), (32, 8, 8, 8, 2, 1), 0) del buf4 buf6 = empty_strided_cuda((4, 4, 1, 1, 4, 2), (32, 8, 8, 8, 2, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(128)](buf5, primals_7, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 return reinterpret_tensor(buf5, (4, 32), (32, 1), 0), reinterpret_tensor( primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 2), ( 2, 1), 0), reinterpret_tensor(buf3, (64, 1), (1, 1), 0 ), buf6, primals_6, buf7, primals_4, buf8 class DiscriminatorNew(nn.Module): def __init__(self, outputs_size, K=2): super(DiscriminatorNew, self).__init__() self.fc1 = nn.Linear(outputs_size, outputs_size // K, bias=True) outputs_size = outputs_size // K self.fc2 = nn.Linear(outputs_size, outputs_size // K, bias=True) outputs_size = outputs_size // K self.fc3 = nn.Linear(outputs_size, 2, bias=True) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Ulian7/DeepCTR
Discriminator
false
1,184
[ "Apache-2.0" ]
0
d8f519a722a4d6a4f1fe18e04af54cfd1369c9a5
https://github.com/Ulian7/DeepCTR/tree/d8f519a722a4d6a4f1fe18e04af54cfd1369c9a5
import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class Model(nn.Module): def __init__(self, outputs_size, K=2): super().__init__() self.fc1 = nn.Linear(outputs_size, outputs_size // K, bias=True) outputs_size = outputs_size // K self.fc2 = nn.Linear(outputs_size, outputs_size // K, bias=True) outputs_size = outputs_size // K self.fc3 = nn.Linear(outputs_size, 2, bias=True) def forward(self, x): x = x[:, :, None, None] out = F.relu(self.fc1(x)) out = F.relu(self.fc2(out)) out = F.relu(self.fc3(out)) out = out.view(out.size(0), -1) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
APL
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/kg/ckgosn72xsu5vxglrxam5q6utx6ugdbmjmklsfq42vhqoezat4d3.py # Topologically Sorted Source Nodes: [output, neg, t, clamp_1, mul, output_1, t_1, clamp_2, mul_1, output_2, t_2, clamp_3, mul_2, output_3, t_3, clamp_4, mul_3, output_4], Original ATen: [aten.clamp, aten.neg, aten.add, aten.mul] # Source node to ATen node mapping: # clamp_1 => clamp_min_1 # clamp_2 => clamp_min_2 # clamp_3 => clamp_min_3 # clamp_4 => clamp_min_4 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # neg => neg # output => clamp_min # output_1 => add_1 # output_2 => add_3 # output_3 => add_5 # output_4 => add_7 # t => add # t_1 => add_2 # t_2 => add_4 # t_3 => add_6 # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 0), kwargs = {}) # %neg : [num_users=4] = call_function[target=torch.ops.aten.neg.default](args = (%primals_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %select), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %clamp_min_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min, %mul), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %select_2), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_2, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %clamp_min_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %select_4), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_4, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %clamp_min_3), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %mul_2), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %select_6), kwargs = {}) # %clamp_min_4 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_6, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_7, %clamp_min_4), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %mul_3), kwargs = {}) triton_poi_fused_add_clamp_mul_neg_0 = async_compile.triton('triton_poi_fused_add_clamp_mul_neg_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_mul_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_mul_neg_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + (4 + x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr2 + (8 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (12 + x0), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = -tmp0 tmp6 = tmp4 + tmp5 tmp7 = triton_helpers.maximum(tmp6, tmp1) tmp8 = tmp3 * tmp7 tmp9 = tmp2 + tmp8 tmp12 = tmp4 + tmp11 tmp13 = triton_helpers.maximum(tmp12, tmp1) tmp14 = tmp10 * tmp13 tmp15 = tmp9 + tmp14 tmp18 = tmp4 + tmp17 tmp19 = triton_helpers.maximum(tmp18, tmp1) tmp20 = tmp16 * tmp19 tmp21 = tmp15 + tmp20 tmp24 = tmp4 + tmp23 tmp25 = triton_helpers.maximum(tmp24, tmp1) tmp26 = tmp22 * tmp25 tmp27 = tmp21 + tmp26 tl.store(out_ptr0 + (x2), tmp27, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output, neg, t, clamp_1, mul, output_1, t_1, clamp_2, mul_1, output_2, t_2, clamp_3, mul_2, output_3, t_3, clamp_4, mul_3, output_4], Original ATen: [aten.clamp, aten.neg, aten.add, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_mul_neg_0.run(primals_1, primals_3, primals_2, buf0, 256, grid=grid(256), stream=stream0) return (buf0, primals_1, primals_2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn.parameter import Parameter class APL(nn.Module): """ Implementation of APL (ADAPTIVE PIECEWISE LINEAR UNITS) unit: .. math:: APL(x_i) = max(0,x) + \\sum_{s=1}^{S}{a_i^s * max(0, -x + b_i^s)} with trainable parameters a and b, parameter S should be set in advance. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: - S: hyperparameter, number of hinges to be set in advance - a: trainable parameter, control the slopes of the linear segments - b: trainable parameter, determine the locations of the hinges References: - See APL paper: https://arxiv.org/pdf/1412.6830.pdf Examples: >>> a1 = apl(256, S = 1) >>> x = torch.randn(256) >>> x = a1(x) """ def __init__(self, in_features, S, a=None, b=None): """ Initialization. INPUT: - in_features: shape of the input - S (int): number of hinges - a - value for initialization of parameter, which controls the slopes of the linear segments - b - value for initialization of parameter, which determines the locations of the hinges a, b are initialized randomly by default """ super(APL, self).__init__() self.in_features = in_features self.S = S if a is None: self.a = Parameter(torch.randn((S, in_features), dtype=torch. float, requires_grad=True)) else: self.a = a if b is None: self.b = Parameter(torch.randn((S, in_features), dtype=torch. float, requires_grad=True)) else: self.b = b def forward(self, x): """ Forward pass of the function """ output = x.clamp(min=0) for s in range(self.S): t = -x + self.b[s] output += self.a[s] * t.clamp(min=0) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'S': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_mul_neg_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + (4 + x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr2 + (8 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (12 + x0), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = -tmp0 tmp6 = tmp4 + tmp5 tmp7 = triton_helpers.maximum(tmp6, tmp1) tmp8 = tmp3 * tmp7 tmp9 = tmp2 + tmp8 tmp12 = tmp4 + tmp11 tmp13 = triton_helpers.maximum(tmp12, tmp1) tmp14 = tmp10 * tmp13 tmp15 = tmp9 + tmp14 tmp18 = tmp4 + tmp17 tmp19 = triton_helpers.maximum(tmp18, tmp1) tmp20 = tmp16 * tmp19 tmp21 = tmp15 + tmp20 tmp24 = tmp4 + tmp23 tmp25 = triton_helpers.maximum(tmp24, tmp1) tmp26 = tmp22 * tmp25 tmp27 = tmp21 + tmp26 tl.store(out_ptr0 + x2, tmp27, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_clamp_mul_neg_0[grid(256)](primals_1, primals_3, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf0, primals_1, primals_2, primals_3 class APLNew(nn.Module): """ Implementation of APL (ADAPTIVE PIECEWISE LINEAR UNITS) unit: .. math:: APL(x_i) = max(0,x) + \\sum_{s=1}^{S}{a_i^s * max(0, -x + b_i^s)} with trainable parameters a and b, parameter S should be set in advance. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: - S: hyperparameter, number of hinges to be set in advance - a: trainable parameter, control the slopes of the linear segments - b: trainable parameter, determine the locations of the hinges References: - See APL paper: https://arxiv.org/pdf/1412.6830.pdf Examples: >>> a1 = apl(256, S = 1) >>> x = torch.randn(256) >>> x = a1(x) """ def __init__(self, in_features, S, a=None, b=None): """ Initialization. INPUT: - in_features: shape of the input - S (int): number of hinges - a - value for initialization of parameter, which controls the slopes of the linear segments - b - value for initialization of parameter, which determines the locations of the hinges a, b are initialized randomly by default """ super(APLNew, self).__init__() self.in_features = in_features self.S = S if a is None: self.a = Parameter(torch.randn((S, in_features), dtype=torch. float, requires_grad=True)) else: self.a = a if b is None: self.b = Parameter(torch.randn((S, in_features), dtype=torch. float, requires_grad=True)) else: self.b = b def forward(self, input_0): primals_2 = self.a primals_3 = self.b primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Venkateshwar2506/Echo
APL
false
1,185
[ "MIT" ]
0
5d236b25ee4900754f48e0a865e1bf1ae9183875
https://github.com/Venkateshwar2506/Echo/tree/5d236b25ee4900754f48e0a865e1bf1ae9183875
import torch from torch import nn from torch.nn.parameter import Parameter class Model(nn.Module): """ Implementation of APL (ADAPTIVE PIECEWISE LINEAR UNITS) unit: .. math:: APL(x_i) = max(0,x) + \\sum_{s=1}^{S}{a_i^s * max(0, -x + b_i^s)} with trainable parameters a and b, parameter S should be set in advance. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: - S: hyperparameter, number of hinges to be set in advance - a: trainable parameter, control the slopes of the linear segments - b: trainable parameter, determine the locations of the hinges References: - See APL paper: https://arxiv.org/pdf/1412.6830.pdf Examples: >>> a1 = apl(256, S = 1) >>> x = torch.randn(256) >>> x = a1(x) """ def __init__(self, in_features, S, a=None, b=None): """ Initialization. INPUT: - in_features: shape of the input - S (int): number of hinges - a - value for initialization of parameter, which controls the slopes of the linear segments - b - value for initialization of parameter, which determines the locations of the hinges a, b are initialized randomly by default """ super().__init__() self.in_features = in_features self.S = S if a is None: self.a = Parameter(torch.randn((S, in_features), dtype=torch. float, requires_grad=True)) else: self.a = a if b is None: self.b = Parameter(torch.randn((S, in_features), dtype=torch. float, requires_grad=True)) else: self.b = b def forward(self, x): """ Forward pass of the function """ output = x.clamp(min=0) for s in range(self.S): t = -x + self.b[s] output += self.a[s] * t.clamp(min=0) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ClipLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/up/cuphmudfbm5xmuymbvibhn5q6e5y55prj6knqkmj43mx7ovcvcgz.py # Topologically Sorted Source Nodes: [labels], Original ATen: [aten.arange] # Source node to ATen node mapping: # labels => iota # Graph fragment: # %iota : [num_users=9] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_0 = async_compile.triton('triton_poi_fused_arange_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/fe/cfeaysvgrb354rjrmwuwoqxvkiirbz7k33fi7kmoxrhyavv746t7.py # Topologically Sorted Source Nodes: [mul, mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg2_1), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp3 = tl.load(in_ptr2 + (x0), xmask) tmp2 = tmp0 * tmp1 tmp4 = tmp0 * tmp3 tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gd/cgdq755g3clp3t5icrbudwx4ir4xygtoz6ug4jo2euegtyg5mdnp.py # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # cross_entropy => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mm, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mm, %amax), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ao/caokdwufonglm4yxauurmohi3zlbq5arj7el5e3pvrhppoklt3gs.py # Topologically Sorted Source Nodes: [cross_entropy, cross_entropy_1, add, total_loss], Original ATen: [aten.nll_loss_forward, aten.add, aten.div] # Source node to ATen node mapping: # add => add # cross_entropy => convert_element_type, div, full_default_1, ne_1, ne_2, neg, sum_2, sum_3, where_1 # cross_entropy_1 => convert_element_type_1, div_1, full_default_3, ne_4, ne_5, neg_1, sum_5, sum_6, where_3 # total_loss => div_2 # Graph fragment: # %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%iota, -100), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_1, %neg, %full_default_1), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_1,), kwargs = {}) # %ne_2 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%iota, -100), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_2,), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_2, torch.float32), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %convert_element_type), kwargs = {}) # %ne_4 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%iota, -100), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze_1,), kwargs = {}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_4, %neg_1, %full_default_3), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_3,), kwargs = {}) # %ne_5 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%iota, -100), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_5,), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_5, torch.float32), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_6, %convert_element_type_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %div_1), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 2), kwargs = {}) triton_per_fused_add_div_nll_loss_forward_3 = async_compile.triton('triton_per_fused_add_div_nll_loss_forward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_nll_loss_forward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_nll_loss_forward_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp6 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp0 = r0 tmp1 = tl.full([1, 1], -100, tl.int64) tmp2 = tmp0 != tmp1 tmp3 = tl.full([1, 1], 0, tl.int64) tmp4 = tl.where(tmp2, tmp0, tmp3) tmp5 = tl.load(in_ptr0 + (tmp4 + (4*r0)), None, eviction_policy='evict_last') tmp7 = tl_math.exp(tmp6) tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tl_math.log(tmp16) tmp18 = tmp5 - tmp17 tmp19 = -tmp18 tmp20 = 0.0 tmp21 = tl.where(tmp2, tmp19, tmp20) tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp24 = tl.sum(tmp22, 1)[:, None] tmp25 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last') tmp27 = tl_math.exp(tmp26) tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tl_math.log(tmp36) tmp38 = tmp25 - tmp37 tmp39 = -tmp38 tmp40 = tl.where(tmp2, tmp39, tmp20) tmp41 = tl.broadcast_to(tmp40, [XBLOCK, RBLOCK]) tmp43 = tl.sum(tmp41, 1)[:, None] tmp44 = tmp2.to(tl.int64) tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK]) tmp47 = tl.sum(tmp45, 1)[:, None] tmp48 = tmp47.to(tl.float32) tmp49 = tmp24 / tmp48 tmp50 = tmp43 / tmp48 tmp51 = tmp49 + tmp50 tmp52 = 0.5 tmp53 = tmp51 * tmp52 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp53, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [labels], Original ATen: [aten.arange] stream0 = get_raw_stream(0) triton_poi_fused_arange_0.run(buf0, 4, grid=grid(4), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(arg1_1, arg0_1, arg2_1, buf1, buf6, 16, grid=grid(16), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, logits_per_image], Original ATen: [aten.mul, aten.mm] extern_kernels.mm(buf1, reinterpret_tensor(arg2_1, (4, 4), (1, 4), 0), out=buf2) del arg2_1 buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf2, buf3, 16, grid=grid(16), stream=stream0) buf7 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [mul_1, logits_per_text], Original ATen: [aten.mul, aten.mm] extern_kernels.mm(buf6, reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), out=buf7) del arg0_1 buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [cross_entropy_1], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf7, buf8, 16, grid=grid(16), stream=stream0) del buf7 buf4 = empty_strided_cuda((), (), torch.float32) buf11 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [cross_entropy, cross_entropy_1, add, total_loss], Original ATen: [aten.nll_loss_forward, aten.add, aten.div] triton_per_fused_add_div_nll_loss_forward_3.run(buf11, buf3, buf8, 1, 4, grid=grid(1), stream=stream0) del buf3 del buf8 return (buf11, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn import torch.distributed as dist import torch.distributed.nn def gather_features(image_features, text_features, aug1_embed=None, aug2_embed=None, local_loss=False, gather_with_grad=False, rank=0, world_size=1, horovod=False): if horovod: assert hvd is not None, 'Please install horovod' if gather_with_grad: all_image_features = hvd.allgather(image_features) all_text_features = hvd.allgather(text_features) if aug1_embed is not None and aug2_embed is not None: all_aug1_embed = hvd.allgather(aug1_embed) all_aug2_embed = hvd.allgather(aug2_embed) else: all_aug1_embed, all_aug2_embed = None, None else: with torch.no_grad(): all_image_features = hvd.allgather(image_features) all_text_features = hvd.allgather(text_features) if aug1_embed is not None and aug2_embed is not None: all_aug1_embed = hvd.allgather(aug1_embed) all_aug2_embed = hvd.allgather(aug2_embed) else: all_aug1_embed, all_aug2_embed = None, None if not local_loss: gathered_image_features = list(all_image_features.chunk( world_size, dim=0)) gathered_text_features = list(all_text_features.chunk( world_size, dim=0)) gathered_image_features[rank] = image_features gathered_text_features[rank] = text_features all_image_features = torch.cat(gathered_image_features, dim=0) all_text_features = torch.cat(gathered_text_features, dim=0) if aug1_embed is not None and aug2_embed is not None: gathered_aug1_embed = list(all_aug1_embed.chunk( world_size, dim=0)) gathered_aug2_embed = list(all_aug2_embed.chunk( world_size, dim=0)) gathered_aug1_embed[rank] = aug1_embed gathered_aug2_embed[rank] = aug2_embed all_aug1_embed = torch.cat(gathered_aug1_embed, dim=0) all_aug2_embed = torch.cat(gathered_aug2_embed, dim=0) else: all_aug1_embed, all_aug2_embed = None, None elif gather_with_grad: all_image_features = torch.cat(torch.distributed.nn.all_gather( image_features), dim=0) all_text_features = torch.cat(torch.distributed.nn.all_gather( text_features), dim=0) if aug1_embed is not None and aug2_embed is not None: all_aug1_embed = torch.cat(torch.distributed.nn.all_gather( aug1_embed), dim=0) all_aug2_embed = torch.cat(torch.distributed.nn.all_gather( aug2_embed), dim=0) else: all_aug1_embed, all_aug2_embed = None, None else: gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)] gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)] dist.all_gather(gathered_image_features, image_features) dist.all_gather(gathered_text_features, text_features) if aug1_embed is not None and aug2_embed is not None: gathered_aug1_embed = [torch.zeros_like(aug1_embed) for _ in range(world_size)] gathered_aug2_embed = [torch.zeros_like(aug2_embed) for _ in range(world_size)] dist.all_gather(gathered_aug1_embed, aug1_embed) dist.all_gather(gathered_aug2_embed, aug2_embed) all_aug1_embed = torch.cat(gathered_aug1_embed, dim=0) all_aug2_embed = torch.cat(gathered_aug2_embed, dim=0) if not local_loss: all_aug1_embed[rank] = aug1_embed all_aug2_embed[rank] = aug2_embed else: all_aug1_embed, all_aug2_embed = None, None if not local_loss: gathered_image_features[rank] = image_features gathered_text_features[rank] = text_features all_image_features = torch.cat(gathered_image_features, dim=0) all_text_features = torch.cat(gathered_text_features, dim=0) return (all_image_features, all_text_features, all_aug1_embed, all_aug2_embed) class ClipLoss(nn.Module): def __init__(self, local_loss=False, gather_with_grad=False, rank=0, world_size=1, horovod=False): super().__init__() self.local_loss = local_loss self.gather_with_grad = gather_with_grad self.rank = rank self.world_size = world_size self.horovod = horovod self.prev_num_logits = 0 self.labels = {} def forward(self, image_features, text_features, logit_scale): device = image_features.device if self.world_size > 1: all_image_features, all_text_features, _, _ = gather_features( image_features, text_features, None, None, self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.horovod ) if self.local_loss: logits_per_image = (logit_scale * image_features @ all_text_features.T) logits_per_text = (logit_scale * text_features @ all_image_features.T) else: logits_per_image = (logit_scale * all_image_features @ all_text_features.T) logits_per_text = logits_per_image.T else: logits_per_image = logit_scale * image_features @ text_features.T logits_per_text = logit_scale * text_features @ image_features.T num_logits = logits_per_image.shape[0] if self.prev_num_logits != num_logits or device not in self.labels: labels = torch.arange(num_logits, device=device, dtype=torch.long) if self.world_size > 1 and self.local_loss: labels = labels + num_logits * self.rank self.labels[device] = labels else: labels = self.labels[device] total_loss = (F.cross_entropy(logits_per_image, labels) + F. cross_entropy(logits_per_text, labels)) / 2 return total_loss def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.distributed as dist import torch.distributed.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_arange_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp3 = tl.load(in_ptr2 + x0, xmask) tmp2 = tmp0 * tmp1 tmp4 = tmp0 * tmp3 tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_per_fused_add_div_nll_loss_forward_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp6 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp0 = r0 tmp1 = tl.full([1, 1], -100, tl.int64) tmp2 = tmp0 != tmp1 tmp3 = tl.full([1, 1], 0, tl.int64) tmp4 = tl.where(tmp2, tmp0, tmp3) tmp5 = tl.load(in_ptr0 + (tmp4 + 4 * r0), None, eviction_policy= 'evict_last') tmp7 = tl_math.exp(tmp6) tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tl_math.log(tmp16) tmp18 = tmp5 - tmp17 tmp19 = -tmp18 tmp20 = 0.0 tmp21 = tl.where(tmp2, tmp19, tmp20) tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp24 = tl.sum(tmp22, 1)[:, None] tmp25 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy= 'evict_last') tmp27 = tl_math.exp(tmp26) tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tl_math.log(tmp36) tmp38 = tmp25 - tmp37 tmp39 = -tmp38 tmp40 = tl.where(tmp2, tmp39, tmp20) tmp41 = tl.broadcast_to(tmp40, [XBLOCK, RBLOCK]) tmp43 = tl.sum(tmp41, 1)[:, None] tmp44 = tmp2.to(tl.int64) tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK]) tmp47 = tl.sum(tmp45, 1)[:, None] tmp48 = tmp47.to(tl.float32) tmp49 = tmp24 / tmp48 tmp50 = tmp43 / tmp48 tmp51 = tmp49 + tmp50 tmp52 = 0.5 tmp53 = tmp51 * tmp52 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp53, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.int64) get_raw_stream(0) triton_poi_fused_arange_0[grid(4)](buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_mul_1[grid(16)](arg1_1, arg0_1, arg2_1, buf1, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(arg2_1, (4, 4), (1, 4), 0), out=buf2) del arg2_1 buf3 = buf1 del buf1 triton_poi_fused__log_softmax_2[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = buf2 del buf2 extern_kernels.mm(buf6, reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), out=buf7) del arg0_1 buf8 = buf6 del buf6 triton_poi_fused__log_softmax_2[grid(16)](buf7, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf7 buf4 = empty_strided_cuda((), (), torch.float32) buf11 = buf4 del buf4 triton_per_fused_add_div_nll_loss_forward_3[grid(1)](buf11, buf3, buf8, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf3 del buf8 return buf11, buf0 def gather_features(image_features, text_features, aug1_embed=None, aug2_embed=None, local_loss=False, gather_with_grad=False, rank=0, world_size=1, horovod=False): if horovod: assert hvd is not None, 'Please install horovod' if gather_with_grad: all_image_features = hvd.allgather(image_features) all_text_features = hvd.allgather(text_features) if aug1_embed is not None and aug2_embed is not None: all_aug1_embed = hvd.allgather(aug1_embed) all_aug2_embed = hvd.allgather(aug2_embed) else: all_aug1_embed, all_aug2_embed = None, None else: with torch.no_grad(): all_image_features = hvd.allgather(image_features) all_text_features = hvd.allgather(text_features) if aug1_embed is not None and aug2_embed is not None: all_aug1_embed = hvd.allgather(aug1_embed) all_aug2_embed = hvd.allgather(aug2_embed) else: all_aug1_embed, all_aug2_embed = None, None if not local_loss: gathered_image_features = list(all_image_features.chunk( world_size, dim=0)) gathered_text_features = list(all_text_features.chunk( world_size, dim=0)) gathered_image_features[rank] = image_features gathered_text_features[rank] = text_features all_image_features = torch.cat(gathered_image_features, dim=0) all_text_features = torch.cat(gathered_text_features, dim=0) if aug1_embed is not None and aug2_embed is not None: gathered_aug1_embed = list(all_aug1_embed.chunk( world_size, dim=0)) gathered_aug2_embed = list(all_aug2_embed.chunk( world_size, dim=0)) gathered_aug1_embed[rank] = aug1_embed gathered_aug2_embed[rank] = aug2_embed all_aug1_embed = torch.cat(gathered_aug1_embed, dim=0) all_aug2_embed = torch.cat(gathered_aug2_embed, dim=0) else: all_aug1_embed, all_aug2_embed = None, None elif gather_with_grad: all_image_features = torch.cat(torch.distributed.nn.all_gather( image_features), dim=0) all_text_features = torch.cat(torch.distributed.nn.all_gather( text_features), dim=0) if aug1_embed is not None and aug2_embed is not None: all_aug1_embed = torch.cat(torch.distributed.nn.all_gather( aug1_embed), dim=0) all_aug2_embed = torch.cat(torch.distributed.nn.all_gather( aug2_embed), dim=0) else: all_aug1_embed, all_aug2_embed = None, None else: gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)] gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)] dist.all_gather(gathered_image_features, image_features) dist.all_gather(gathered_text_features, text_features) if aug1_embed is not None and aug2_embed is not None: gathered_aug1_embed = [torch.zeros_like(aug1_embed) for _ in range(world_size)] gathered_aug2_embed = [torch.zeros_like(aug2_embed) for _ in range(world_size)] dist.all_gather(gathered_aug1_embed, aug1_embed) dist.all_gather(gathered_aug2_embed, aug2_embed) all_aug1_embed = torch.cat(gathered_aug1_embed, dim=0) all_aug2_embed = torch.cat(gathered_aug2_embed, dim=0) if not local_loss: all_aug1_embed[rank] = aug1_embed all_aug2_embed[rank] = aug2_embed else: all_aug1_embed, all_aug2_embed = None, None if not local_loss: gathered_image_features[rank] = image_features gathered_text_features[rank] = text_features all_image_features = torch.cat(gathered_image_features, dim=0) all_text_features = torch.cat(gathered_text_features, dim=0) return (all_image_features, all_text_features, all_aug1_embed, all_aug2_embed) class ClipLossNew(nn.Module): def __init__(self, local_loss=False, gather_with_grad=False, rank=0, world_size=1, horovod=False): super().__init__() self.local_loss = local_loss self.gather_with_grad = gather_with_grad self.rank = rank self.world_size = world_size self.horovod = horovod self.prev_num_logits = 0 self.labels = {} def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Vaishaal/open_clip
ClipLoss
false
1,186
[ "MIT" ]
0
8877c4036dacde022da90769c64006d9f2c82e84
https://github.com/Vaishaal/open_clip/tree/8877c4036dacde022da90769c64006d9f2c82e84
import torch import torch.nn.functional as F from torch import nn import torch.distributed as dist import torch.distributed.nn def gather_features(image_features, text_features, aug1_embed=None, aug2_embed=None, local_loss=False, gather_with_grad=False, rank=0, world_size=1, horovod=False): if horovod: assert hvd is not None, 'Please install horovod' if gather_with_grad: all_image_features = hvd.allgather(image_features) all_text_features = hvd.allgather(text_features) if aug1_embed is not None and aug2_embed is not None: all_aug1_embed = hvd.allgather(aug1_embed) all_aug2_embed = hvd.allgather(aug2_embed) else: all_aug1_embed, all_aug2_embed = None, None else: with torch.no_grad(): all_image_features = hvd.allgather(image_features) all_text_features = hvd.allgather(text_features) if aug1_embed is not None and aug2_embed is not None: all_aug1_embed = hvd.allgather(aug1_embed) all_aug2_embed = hvd.allgather(aug2_embed) else: all_aug1_embed, all_aug2_embed = None, None if not local_loss: gathered_image_features = list(all_image_features.chunk( world_size, dim=0)) gathered_text_features = list(all_text_features.chunk( world_size, dim=0)) gathered_image_features[rank] = image_features gathered_text_features[rank] = text_features all_image_features = torch.cat(gathered_image_features, dim=0) all_text_features = torch.cat(gathered_text_features, dim=0) if aug1_embed is not None and aug2_embed is not None: gathered_aug1_embed = list(all_aug1_embed.chunk( world_size, dim=0)) gathered_aug2_embed = list(all_aug2_embed.chunk( world_size, dim=0)) gathered_aug1_embed[rank] = aug1_embed gathered_aug2_embed[rank] = aug2_embed all_aug1_embed = torch.cat(gathered_aug1_embed, dim=0) all_aug2_embed = torch.cat(gathered_aug2_embed, dim=0) else: all_aug1_embed, all_aug2_embed = None, None elif gather_with_grad: all_image_features = torch.cat(torch.distributed.nn.all_gather( image_features), dim=0) all_text_features = torch.cat(torch.distributed.nn.all_gather( text_features), dim=0) if aug1_embed is not None and aug2_embed is not None: all_aug1_embed = torch.cat(torch.distributed.nn.all_gather( aug1_embed), dim=0) all_aug2_embed = torch.cat(torch.distributed.nn.all_gather( aug2_embed), dim=0) else: all_aug1_embed, all_aug2_embed = None, None else: gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)] gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)] dist.all_gather(gathered_image_features, image_features) dist.all_gather(gathered_text_features, text_features) if aug1_embed is not None and aug2_embed is not None: gathered_aug1_embed = [torch.zeros_like(aug1_embed) for _ in range(world_size)] gathered_aug2_embed = [torch.zeros_like(aug2_embed) for _ in range(world_size)] dist.all_gather(gathered_aug1_embed, aug1_embed) dist.all_gather(gathered_aug2_embed, aug2_embed) all_aug1_embed = torch.cat(gathered_aug1_embed, dim=0) all_aug2_embed = torch.cat(gathered_aug2_embed, dim=0) if not local_loss: all_aug1_embed[rank] = aug1_embed # ... truncated (>4000 chars) for memory efficiency
Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/lp/clp5td7lbqtje3pt7v6xbcp766swgazqemomz2nzsxtdtmjesxht.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/el/celk5adxq2zxhymud4napv6zuj52qpmoxz7wanhqayimjnku6r23.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => cat # Graph fragment: # %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %convolution_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 32 x0 = xindex % 4096 x2 = (xindex // 131072) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 16, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (65536*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 32, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-16) + x1)) + (65536*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + ((-16) + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + (x3), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xq/cxqtpoguh5q4lo7aqfwpnku6psmnd6vobmblp2f7t5p2vhk4zkez.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_2 => cat_1 # Graph fragment: # %cat_1 : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%cat, %convolution_2], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 786432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 48 x0 = xindex % 4096 x2 = (xindex // 196608) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (131072*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 48, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-32) + x1)) + (65536*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + ((-32) + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + (x3), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/sj/csjg2l7n7qdes27kdgvihemqiptcame7dsxapgvl7acr5yl7mnct.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_3 => cat_2 # Graph fragment: # %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%cat_1, %convolution_3], 1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 64 x0 = xindex % 4096 x2 = (xindex // 262144) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 48, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (196608*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 64, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-48) + x1)) + (65536*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + ((-48) + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + (x3), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (16, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (16, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_9, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf3 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf1, buf2, primals_5, buf3, 524288, grid=grid(524288), stream=stream0) del buf2 del primals_5 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf5 = empty_strided_cuda((4, 48, 64, 64), (196608, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf3, buf4, primals_7, buf5, 786432, grid=grid(786432), stream=stream0) del buf4 del primals_7 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf5, buf6, primals_9, buf7, 1048576, grid=grid(1048576), stream=stream0) del buf6 del primals_9 return (buf7, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 48, 3, 3), (432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() self.Conv1 = nn.Conv2d(1, 16, 3, 1, 1) self.Relu = nn.ReLU(inplace=True) self.layers = nn.ModuleDict({'DenseConv1': nn.Conv2d(16, 16, 3, 1, 1), 'DenseConv2': nn.Conv2d(32, 16, 3, 1, 1), 'DenseConv3': nn. Conv2d(48, 16, 3, 1, 1)}) def forward(self, x): x = self.Relu(self.Conv1(x)) for i in range(len(self.layers)): out = self.layers['DenseConv' + str(i + 1)](x) x = torch.cat([x, out], 1) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 32 x0 = xindex % 4096 x2 = xindex // 131072 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 16, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 65536 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 32, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-16 + x1) + 65536 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (-16 + x1), tmp6, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + x3, tmp14, None) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 48 x0 = xindex % 4096 x2 = xindex // 196608 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 131072 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 48, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-32 + x1) + 65536 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (-32 + x1), tmp6, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + x3, tmp14, None) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 64 x0 = xindex % 4096 x2 = xindex // 262144 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 48, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 196608 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 64, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-48 + x1) + 65536 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (-48 + x1), tmp6, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + x3, tmp14, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (16, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (16, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_9, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(262144)](buf1, primals_2, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf3 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) triton_poi_fused_cat_1[grid(524288)](buf1, buf2, primals_5, buf3, 524288, XBLOCK=512, num_warps=8, num_stages=1) del buf2 del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf5 = empty_strided_cuda((4, 48, 64, 64), (196608, 4096, 64, 1), torch.float32) triton_poi_fused_cat_2[grid(786432)](buf3, buf4, primals_7, buf5, 786432, XBLOCK=1024, num_warps=4, num_stages=1) del buf4 del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused_cat_3[grid(1048576)](buf5, buf6, primals_9, buf7, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf6 del primals_9 return (buf7, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5) class EncoderNew(nn.Module): def __init__(self): super(EncoderNew, self).__init__() self.Conv1 = nn.Conv2d(1, 16, 3, 1, 1) self.Relu = nn.ReLU(inplace=True) self.layers = nn.ModuleDict({'DenseConv1': nn.Conv2d(16, 16, 3, 1, 1), 'DenseConv2': nn.Conv2d(32, 16, 3, 1, 1), 'DenseConv3': nn. Conv2d(48, 16, 3, 1, 1)}) def forward(self, input_0): primals_1 = self.Conv1.weight primals_2 = self.Conv1.bias primals_4 = self.layers.DenseConv1.weight primals_5 = self.layers.DenseConv1.bias primals_6 = self.layers.DenseConv2.weight primals_7 = self.layers.DenseConv2.bias primals_8 = self.layers.DenseConv3.weight primals_9 = self.layers.DenseConv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
VarunBabbar/Image_Compressor
Encoder
false
1,187
[ "MIT" ]
0
254d8d411f7cd16f3ce242275532c9fca537269c
https://github.com/VarunBabbar/Image_Compressor/tree/254d8d411f7cd16f3ce242275532c9fca537269c
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.Conv1 = nn.Conv2d(1, 16, 3, 1, 1) self.Relu = nn.ReLU(inplace=True) self.layers = nn.ModuleDict({'DenseConv1': nn.Conv2d(16, 16, 3, 1, 1), 'DenseConv2': nn.Conv2d(32, 16, 3, 1, 1), 'DenseConv3': nn. Conv2d(48, 16, 3, 1, 1)}) def forward(self, x): x = self.Relu(self.Conv1(x)) for i in range(len(self.layers)): out = self.layers['DenseConv' + str(i + 1)](x) x = torch.cat([x, out], 1) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return []
architecture
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/lp/clp5td7lbqtje3pt7v6xbcp766swgazqemomz2nzsxtdtmjesxht.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/el/celk5adxq2zxhymud4napv6zuj52qpmoxz7wanhqayimjnku6r23.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => cat # Graph fragment: # %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %convolution_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 32 x0 = xindex % 4096 x2 = (xindex // 131072) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 16, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (65536*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 32, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-16) + x1)) + (65536*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + ((-16) + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + (x3), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xq/cxqtpoguh5q4lo7aqfwpnku6psmnd6vobmblp2f7t5p2vhk4zkez.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_2 => cat_1 # Graph fragment: # %cat_1 : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%cat, %convolution_2], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 786432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 48 x0 = xindex % 4096 x2 = (xindex // 196608) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (131072*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 48, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-32) + x1)) + (65536*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + ((-32) + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + (x3), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/sj/csjg2l7n7qdes27kdgvihemqiptcame7dsxapgvl7acr5yl7mnct.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_3 => cat_2 # Graph fragment: # %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%cat_1, %convolution_3], 1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 64 x0 = xindex % 4096 x2 = (xindex // 262144) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 48, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (196608*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 64, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-48) + x1)) + (65536*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + ((-48) + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + (x3), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/yz/cyzylkdlkpucjaq3h4cacl42tq4z6bgxuiyx4ieis4qfq4hjhblf.py # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_1 => convolution_4 # input_2 => relu_1 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gy/cgybnbhivv6t3vqzcx7fdsc65yls2agg5sbpwn7byk6wweoeh5vd.py # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.convolution] # Source node to ATen node mapping: # input_5 => convolution_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (16, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (16, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (16, ), (1, )) assert_size_stride(primals_14, (1, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_15, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf3 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf1, buf2, primals_5, buf3, 524288, grid=grid(524288), stream=stream0) del buf2 del primals_5 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf5 = empty_strided_cuda((4, 48, 64, 64), (196608, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf3, buf4, primals_7, buf5, 786432, grid=grid(786432), stream=stream0) del buf4 del primals_7 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf5, buf6, primals_9, buf7, 1048576, grid=grid(1048576), stream=stream0) del buf6 del primals_9 # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf9, primals_11, 524288, grid=grid(524288), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [input_3, input_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf11, primals_13, 262144, grid=grid(262144), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.convolution] triton_poi_fused_convolution_5.run(buf13, primals_15, 16384, grid=grid(16384), stream=stream0) del primals_15 return (buf13, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf3, buf5, buf7, buf9, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 48, 3, 3), (432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((16, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.layers = nn.Sequential() self.layers.add_module('Conv3', nn.Conv2d(64, 32, 3, 1, 1)) self.layers.add_module('Act3', nn.ReLU(inplace=True)) self.layers.add_module('Conv4', nn.Conv2d(32, 16, 3, 1, 1)) self.layers.add_module('Act4', nn.ReLU(inplace=True)) self.layers.add_module('Conv5', nn.Conv2d(16, 1, 3, 1, 1)) def forward(self, x): return self.layers(x) class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() self.Conv1 = nn.Conv2d(1, 16, 3, 1, 1) self.Relu = nn.ReLU(inplace=True) self.layers = nn.ModuleDict({'DenseConv1': nn.Conv2d(16, 16, 3, 1, 1), 'DenseConv2': nn.Conv2d(32, 16, 3, 1, 1), 'DenseConv3': nn. Conv2d(48, 16, 3, 1, 1)}) def forward(self, x): x = self.Relu(self.Conv1(x)) for i in range(len(self.layers)): out = self.layers['DenseConv' + str(i + 1)](x) x = torch.cat([x, out], 1) return x class architecture(nn.Module): def __init__(self): super(architecture, self).__init__() self.encoder = Encoder() self.decoder = Decoder() def forward(self, x): return self.decoder(self.encoder(x)) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 32 x0 = xindex % 4096 x2 = xindex // 131072 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 16, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 65536 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 32, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-16 + x1) + 65536 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (-16 + x1), tmp6, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + x3, tmp14, None) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 48 x0 = xindex % 4096 x2 = xindex // 196608 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 131072 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 48, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-32 + x1) + 65536 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (-32 + x1), tmp6, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + x3, tmp14, None) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 64 x0 = xindex % 4096 x2 = xindex // 262144 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 48, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 196608 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 64, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-48 + x1) + 65536 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (-48 + x1), tmp6, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + x3, tmp14, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (16, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (16, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_13, (16,), (1,)) assert_size_stride(primals_14, (1, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_15, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(262144)](buf1, primals_2, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf3 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) triton_poi_fused_cat_1[grid(524288)](buf1, buf2, primals_5, buf3, 524288, XBLOCK=512, num_warps=8, num_stages=1) del buf2 del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf5 = empty_strided_cuda((4, 48, 64, 64), (196608, 4096, 64, 1), torch.float32) triton_poi_fused_cat_2[grid(786432)](buf3, buf4, primals_7, buf5, 786432, XBLOCK=1024, num_warps=4, num_stages=1) del buf4 del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused_cat_3[grid(1048576)](buf5, buf6, primals_9, buf7, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf6 del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_4[grid(524288)](buf9, primals_11, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_0[grid(262144)](buf11, primals_13, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_5[grid(16384)](buf13, primals_15, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 return (buf13, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf3, buf5, buf7, buf9, buf11 ) class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.layers = nn.Sequential() self.layers.add_module('Conv3', nn.Conv2d(64, 32, 3, 1, 1)) self.layers.add_module('Act3', nn.ReLU(inplace=True)) self.layers.add_module('Conv4', nn.Conv2d(32, 16, 3, 1, 1)) self.layers.add_module('Act4', nn.ReLU(inplace=True)) self.layers.add_module('Conv5', nn.Conv2d(16, 1, 3, 1, 1)) def forward(self, x): return self.layers(x) class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() self.Conv1 = nn.Conv2d(1, 16, 3, 1, 1) self.Relu = nn.ReLU(inplace=True) self.layers = nn.ModuleDict({'DenseConv1': nn.Conv2d(16, 16, 3, 1, 1), 'DenseConv2': nn.Conv2d(32, 16, 3, 1, 1), 'DenseConv3': nn. Conv2d(48, 16, 3, 1, 1)}) def forward(self, x): x = self.Relu(self.Conv1(x)) for i in range(len(self.layers)): out = self.layers['DenseConv' + str(i + 1)](x) x = torch.cat([x, out], 1) return x class architectureNew(nn.Module): def __init__(self): super(architectureNew, self).__init__() self.encoder = Encoder() self.decoder = Decoder() def forward(self, input_0): primals_1 = self.encoder.Conv1.weight primals_2 = self.encoder.Conv1.bias primals_4 = self.encoder.layers.DenseConv1.weight primals_5 = self.encoder.layers.DenseConv1.bias primals_6 = self.encoder.layers.DenseConv2.weight primals_7 = self.encoder.layers.DenseConv2.bias primals_8 = self.encoder.layers.DenseConv3.weight primals_9 = self.encoder.layers.DenseConv3.bias primals_10 = self.decoder.layers.Conv3.weight primals_11 = self.decoder.layers.Conv3.bias primals_12 = self.decoder.layers.Conv4.weight primals_13 = self.decoder.layers.Conv4.bias primals_14 = self.decoder.layers.Conv5.weight primals_15 = self.decoder.layers.Conv5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
VarunBabbar/Image_Compressor
architecture
false
1,188
[ "MIT" ]
0
254d8d411f7cd16f3ce242275532c9fca537269c
https://github.com/VarunBabbar/Image_Compressor/tree/254d8d411f7cd16f3ce242275532c9fca537269c
import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self): super().__init__() self.layers = nn.Sequential() self.layers.add_module('Conv3', nn.Conv2d(64, 32, 3, 1, 1)) self.layers.add_module('Act3', nn.ReLU(inplace=True)) self.layers.add_module('Conv4', nn.Conv2d(32, 16, 3, 1, 1)) self.layers.add_module('Act4', nn.ReLU(inplace=True)) self.layers.add_module('Conv5', nn.Conv2d(16, 1, 3, 1, 1)) def forward(self, x): return self.layers(x) class Encoder(nn.Module): def __init__(self): super().__init__() self.Conv1 = nn.Conv2d(1, 16, 3, 1, 1) self.Relu = nn.ReLU(inplace=True) self.layers = nn.ModuleDict({'DenseConv1': nn.Conv2d(16, 16, 3, 1, 1), 'DenseConv2': nn.Conv2d(32, 16, 3, 1, 1), 'DenseConv3': nn. Conv2d(48, 16, 3, 1, 1)}) def forward(self, x): x = self.Relu(self.Conv1(x)) for i in range(len(self.layers)): out = self.layers['DenseConv' + str(i + 1)](x) x = torch.cat([x, out], 1) return x class Model(nn.Module): def __init__(self): super().__init__() self.encoder = Encoder() self.decoder = Decoder() def forward(self, x): return self.decoder(self.encoder(x)) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return []
SReLU
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ve/cvekibnibp2jzomh3kuv73u2liqkd3ap4mdsxspqzvopkso2ubyb.py # Topologically Sorted Source Nodes: [ge, float_1, add, mul, add_1, mul_1, lt, float_2, gt, float_3, mul_2, mul_3, add_2, le, float_4, add_3, mul_4, add_4, mul_5, add_5], Original ATen: [aten.ge, aten._to_copy, aten.add, aten.mul, aten.lt, aten.gt, aten.le] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # add_4 => add_4 # add_5 => add_5 # float_1 => convert_element_type # float_2 => convert_element_type_1 # float_3 => convert_element_type_2 # float_4 => convert_element_type_3 # ge => ge # gt => gt # le => le # lt => lt # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # Graph fragment: # %ge : [num_users=2] = call_function[target=torch.ops.aten.ge.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ge, torch.float32), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %add), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, %add_1), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%primals_2, %primals_4), kwargs = {}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %convert_element_type_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_3), kwargs = {}) # %le : [num_users=2] = call_function[target=torch.ops.aten.le.Tensor](args = (%primals_2, %primals_4), kwargs = {}) # %convert_element_type_3 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%le, torch.float32), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_4), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, %add_3), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %mul_4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_3, %add_4), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_5), kwargs = {}) triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0 = async_compile.triton('triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*i1', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 >= tmp1 tmp4 = tmp0 <= tmp3 tmp5 = tmp2.to(tl.float32) tmp7 = tmp0 + tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp1 + tmp8 tmp10 = tmp5 * tmp9 tmp11 = tmp0 < tmp1 tmp12 = tmp11.to(tl.float32) tmp13 = tmp0 > tmp3 tmp14 = tmp13.to(tl.float32) tmp15 = tmp12 * tmp14 tmp16 = tmp15 * tmp0 tmp17 = tmp10 + tmp16 tmp18 = tmp4.to(tl.float32) tmp20 = tmp0 + tmp3 tmp21 = tmp19 * tmp20 tmp22 = tmp3 + tmp21 tmp23 = tmp18 * tmp22 tmp24 = tmp17 + tmp23 tl.store(out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr1 + (x2), tmp4, xmask) tl.store(out_ptr2 + (x2), tmp24, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [ge, float_1, add, mul, add_1, mul_1, lt, float_2, gt, float_3, mul_2, mul_3, add_2, le, float_4, add_3, mul_4, add_4, mul_5, add_5], Original ATen: [aten.ge, aten._to_copy, aten.add, aten.mul, aten.lt, aten.gt, aten.le] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0.run(primals_2, primals_1, primals_4, primals_3, primals_5, buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_1, primals_2, primals_3, primals_4, primals_5, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn.parameter import Parameter class SReLU(nn.Module): """ SReLU (S-shaped Rectified Linear Activation Unit): a combination of three linear functions, which perform mapping R → R with the following formulation: .. math:: h(x_i) = \\left\\{\\begin{matrix} t_i^r + a_i^r(x_i - t_i^r), x_i \\geq t_i^r \\\\ x_i, t_i^r > x_i > t_i^l\\\\ t_i^l + a_i^l(x_i - t_i^l), x_i \\leq t_i^l \\\\ \\end{matrix}\\right. with 4 trainable parameters. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: .. math:: \\{t_i^r, a_i^r, t_i^l, a_i^l\\} 4 trainable parameters, which model an individual SReLU activation unit. The subscript i indicates that we allow SReLU to vary in different channels. Parameters can be initialized manually or randomly. References: - See SReLU paper: https://arxiv.org/pdf/1512.07030.pdf Examples: >>> srelu_activation = srelu((2,2)) >>> t = torch.randn((2,2), dtype=torch.float, requires_grad = True) >>> output = srelu_activation(t) """ def __init__(self, in_features, parameters=None): """ Initialization. INPUT: - in_features: shape of the input - parameters: (tr, tl, ar, al) parameters for manual initialization, default value is None. If None is passed, parameters are initialized randomly. """ super(SReLU, self).__init__() self.in_features = in_features if parameters is None: self.tr = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.tl = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.ar = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.al = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) else: self.tr, self.tl, self.ar, self.al = parameters def forward(self, x): """ Forward pass of the function """ return (x >= self.tr).float() * (self.tr + self.ar * (x + self.tr)) + ( x < self.tr).float() * (x > self.tl).float() * x + (x <= self.tl ).float() * (self.tl + self.al * (x + self.tl)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 >= tmp1 tmp4 = tmp0 <= tmp3 tmp5 = tmp2.to(tl.float32) tmp7 = tmp0 + tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp1 + tmp8 tmp10 = tmp5 * tmp9 tmp11 = tmp0 < tmp1 tmp12 = tmp11.to(tl.float32) tmp13 = tmp0 > tmp3 tmp14 = tmp13.to(tl.float32) tmp15 = tmp12 * tmp14 tmp16 = tmp15 * tmp0 tmp17 = tmp10 + tmp16 tmp18 = tmp4.to(tl.float32) tmp20 = tmp0 + tmp3 tmp21 = tmp19 * tmp20 tmp22 = tmp3 + tmp21 tmp23 = tmp18 * tmp22 tmp24 = tmp17 + tmp23 tl.store(out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr1 + x2, tmp4, xmask) tl.store(out_ptr2 + x2, tmp24, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0[grid(256)](primals_2, primals_1, primals_4, primals_3, primals_5, buf0, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) return (buf2, primals_1, primals_2, primals_3, primals_4, primals_5, buf0, buf1) class SReLUNew(nn.Module): """ SReLU (S-shaped Rectified Linear Activation Unit): a combination of three linear functions, which perform mapping R → R with the following formulation: .. math:: h(x_i) = \\left\\{\\begin{matrix} t_i^r + a_i^r(x_i - t_i^r), x_i \\geq t_i^r \\\\ x_i, t_i^r > x_i > t_i^l\\\\ t_i^l + a_i^l(x_i - t_i^l), x_i \\leq t_i^l \\\\ \\end{matrix}\\right. with 4 trainable parameters. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: .. math:: \\{t_i^r, a_i^r, t_i^l, a_i^l\\} 4 trainable parameters, which model an individual SReLU activation unit. The subscript i indicates that we allow SReLU to vary in different channels. Parameters can be initialized manually or randomly. References: - See SReLU paper: https://arxiv.org/pdf/1512.07030.pdf Examples: >>> srelu_activation = srelu((2,2)) >>> t = torch.randn((2,2), dtype=torch.float, requires_grad = True) >>> output = srelu_activation(t) """ def __init__(self, in_features, parameters=None): """ Initialization. INPUT: - in_features: shape of the input - parameters: (tr, tl, ar, al) parameters for manual initialization, default value is None. If None is passed, parameters are initialized randomly. """ super(SReLUNew, self).__init__() self.in_features = in_features if parameters is None: self.tr = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.tl = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.ar = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.al = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) else: self.tr, self.tl, self.ar, self.al = parameters def forward(self, input_0): primals_1 = self.tr primals_3 = self.tl primals_4 = self.ar primals_5 = self.al primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Venkateshwar2506/Echo
SReLU
false
1,189
[ "MIT" ]
0
5d236b25ee4900754f48e0a865e1bf1ae9183875
https://github.com/Venkateshwar2506/Echo/tree/5d236b25ee4900754f48e0a865e1bf1ae9183875
import torch from torch import nn from torch.nn.parameter import Parameter class Model(nn.Module): """ SReLU (S-shaped Rectified Linear Activation Unit): a combination of three linear functions, which perform mapping R → R with the following formulation: .. math:: h(x_i) = \\left\\{\\begin{matrix} t_i^r + a_i^r(x_i - t_i^r), x_i \\geq t_i^r \\\\ x_i, t_i^r > x_i > t_i^l\\\\ t_i^l + a_i^l(x_i - t_i^l), x_i \\leq t_i^l \\\\ \\end{matrix}\\right. with 4 trainable parameters. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: .. math:: \\{t_i^r, a_i^r, t_i^l, a_i^l\\} 4 trainable parameters, which model an individual SReLU activation unit. The subscript i indicates that we allow SReLU to vary in different channels. Parameters can be initialized manually or randomly. References: - See SReLU paper: https://arxiv.org/pdf/1512.07030.pdf Examples: >>> srelu_activation = srelu((2,2)) >>> t = torch.randn((2,2), dtype=torch.float, requires_grad = True) >>> output = srelu_activation(t) """ def __init__(self, in_features, parameters=None): """ Initialization. INPUT: - in_features: shape of the input - parameters: (tr, tl, ar, al) parameters for manual initialization, default value is None. If None is passed, parameters are initialized randomly. """ super().__init__() self.in_features = in_features if parameters is None: self.tr = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.tl = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.ar = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.al = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) else: self.tr, self.tl, self.ar, self.al = parameters def forward(self, x): """ Forward pass of the function """ return (x >= self.tr).float() * (self.tr + self.ar * (x + self.tr)) + ( x < self.tr).float() * (x > self.tl).float() * x + (x <= self.tl ).float() * (self.tl + self.al * (x + self.tl)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ResnetBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ar/carphsywpk5bgy7r2tzdgvw3mvatf5msx5wznvmeu6brbiqy5y5e.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu] # Source node to ATen node mapping: # out_1 => _low_memory_max_pool2d_with_offsets, getitem_1 # out_2 => relu # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x4 = (xindex // 2) x3 = xindex tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (2*x0) tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x4)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp12 = 2*x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x4)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + (2*x0) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x4)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2*x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x4)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x4)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x4)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + (2*x1) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x4)), tmp43 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x4)), tmp46 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x4)), tmp49 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tmp77 = tl.full([1], 0, tl.int32) tmp78 = triton_helpers.maximum(tmp77, tmp51) tl.store(out_ptr0 + (x3), tmp76, xmask) tl.store(in_out_ptr0 + (x3), tmp78, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wu/cwuhjqrxupg6y2xkpm7lucxrqveop2y2vttpjm35nj72mklqdbod.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jq/cjq7l4v5omlfav6zrzt3gv7wppwv3n4lqupgabiefuwarylj456k.py # Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.add, aten.relu] # Source node to ATen node mapping: # out_4 => add # out_5 => relu_2 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %relu), kwargs = {}) # %relu_2 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_relu_2 = async_compile.triton('triton_poi_fused_add_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/f5/cf5hufnimi2lmysvvc6zuqucotowluvb3zukslqhkjvxlz5ra3u7.py # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.add] # Source node to ATen node mapping: # out_7 => add_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_4, %relu_2), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int8) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_relu_0.run(buf3, buf0, buf2, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 2, 2), (16, 4, 2, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf5, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 2, 2), (16, 4, 2, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.add, aten.relu] triton_poi_fused_add_relu_2.run(buf7, buf3, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 2, 2), (16, 4, 2, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf9, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 2, 2), (16, 4, 2, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf11, buf7, 64, grid=grid(64), stream=stream0) return (buf11, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf0, buf2, buf3, buf5, buf7, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResnetBlock(nn.Module): def __init__(self, in_channels, out_channels, use_bn=False): super(ResnetBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.use_bn = use_bn self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv4 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv5 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) if self.use_bn: self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.bn3 = nn.BatchNorm2d(out_channels) self.bn4 = nn.BatchNorm2d(out_channels) self.bn5 = nn.BatchNorm2d(out_channels) def forward(self, x): out = self.conv1(x) if self.use_bn: out = self.bn1(x) out = self.pool1(out) identity = out out = self.relu(out) if self.use_bn: out = self.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) + identity else: out = self.relu(self.conv2(out)) out = self.conv3(out) + identity identity = out out = self.relu(out) if self.use_bn: out = self.relu(self.bn4(self.conv4(out))) out = self.bn5(self.conv5(out)) + identity else: out = self.relu(self.conv4(out)) out = self.conv5(out) + identity return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x4 = xindex // 2 x3 = xindex tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + 2 * x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x4), tmp10 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp12 = 2 * x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x4), tmp16 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + 2 * x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x4), tmp23 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2 * x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x4), tmp30 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x4), tmp33 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x4), tmp36 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + 2 * x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x4), tmp43 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x4), tmp46 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x4), tmp49 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tmp77 = tl.full([1], 0, tl.int32) tmp78 = triton_helpers.maximum(tmp77, tmp51) tl.store(out_ptr0 + x3, tmp76, xmask) tl.store(in_out_ptr0 + x3, tmp78, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int8) buf3 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_relu_0[grid(64)](buf3, buf0, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 2, 2), (16, 4, 2, 1)) buf5 = buf4 del buf4 triton_poi_fused_relu_1[grid(64)](buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = extern_kernels.convolution(buf5, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 2, 2), (16, 4, 2, 1)) buf7 = buf6 del buf6 triton_poi_fused_add_relu_2[grid(64)](buf7, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 2, 2), (16, 4, 2, 1)) buf9 = buf8 del buf8 triton_poi_fused_relu_1[grid(64)](buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 2, 2), (16, 4, 2, 1)) buf11 = buf10 del buf10 triton_poi_fused_add_3[grid(64)](buf11, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) return (buf11, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf0, buf2, buf3, buf5, buf7, buf9) class ResnetBlockNew(nn.Module): def __init__(self, in_channels, out_channels, use_bn=False): super(ResnetBlockNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.use_bn = use_bn self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv4 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv5 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) if self.use_bn: self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.bn3 = nn.BatchNorm2d(out_channels) self.bn4 = nn.BatchNorm2d(out_channels) self.bn5 = nn.BatchNorm2d(out_channels) def forward(self, input_0): primals_1 = self.conv1.weight primals_3 = self.conv2.weight primals_4 = self.conv3.weight primals_5 = self.conv4.weight primals_6 = self.conv5.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
VashishtMadhavan/pytorch-maml-rl
ResnetBlock
false
1,190
[ "MIT" ]
0
d8821b8374d973869bb6a1393f1b2c369c9a664b
https://github.com/VashishtMadhavan/pytorch-maml-rl/tree/d8821b8374d973869bb6a1393f1b2c369c9a664b
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_channels, out_channels, use_bn=False): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.use_bn = use_bn self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv4 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.conv5 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) if self.use_bn: self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.bn3 = nn.BatchNorm2d(out_channels) self.bn4 = nn.BatchNorm2d(out_channels) self.bn5 = nn.BatchNorm2d(out_channels) def forward(self, x): out = self.conv1(x) if self.use_bn: out = self.bn1(x) out = self.pool1(out) identity = out out = self.relu(out) if self.use_bn: out = self.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) + identity else: out = self.relu(self.conv2(out)) out = self.conv3(out) + identity identity = out out = self.relu(out) if self.use_bn: out = self.relu(self.bn4(self.conv4(out))) out = self.bn5(self.conv5(out)) + identity else: out = self.relu(self.conv4(out)) out = self.conv5(out) + identity return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ODEfunc
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ew/cewlcpr2jhkktbpmzbbjxdsiykdntmypm237lc34qynaxm2ln5ee.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # out => add, add_1, mul_1, rsqrt, var_mean # out_1 => relu # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) triton_per_fused_native_group_norm_relu_0 = async_compile.triton('triton_per_fused_native_group_norm_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_relu_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp0 - tmp10 tmp23 = tmp22 * tmp21 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tmp28 = tl.full([1, 1], 0, tl.int32) tmp29 = triton_helpers.maximum(tmp28, tmp27) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr1 + (r1 + (16*x2) + (80*x3)), tmp29, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/yl/cyltj4xe7bwa5jmotmsxfdzwedvvrytkhaf3f2qw62sd4zn5rnro.py # Topologically Sorted Source Nodes: [ttx, ttx_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # ttx => cat # ttx_1 => cat_1 # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_4, %relu], 1), kwargs = {}) # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_4, %relu_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (80*x1)), tmp0, xmask) tl.store(out_ptr1 + (x0 + (80*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mr/cmr56lkwxw77qikvfa54yx4b56plsu5zod4pwpjjr4x2wgpvy3h6.py # Topologically Sorted Source Nodes: [out_2, out_3, out_4], Original ATen: [aten.convolution, aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # out_2 => convolution # out_3 => add_2, add_3, mul_4, rsqrt_1, var_mean_1 # out_4 => relu_1 # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_5, %primals_6, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_11), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %unsqueeze_8), kwargs = {}) # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_3,), kwargs = {}) triton_per_fused_convolution_native_group_norm_relu_2 = async_compile.triton('triton_per_fused_convolution_native_group_norm_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_native_group_norm_relu_2', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_convolution_native_group_norm_relu_2(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tmp24 = tmp2 - tmp12 tmp25 = tmp24 * tmp23 tmp27 = tmp25 * tmp26 tmp29 = tmp27 + tmp28 tmp30 = tl.full([1, 1], 0, tl.int32) tmp31 = triton_helpers.maximum(tmp30, tmp29) tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp23, xmask) tl.store(out_ptr1 + (r2 + (16*x0) + (80*x1)), tmp31, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/lj/cljbnzt4e5mf4f235sbsd7nao5p35wmgsn35efjytvld4hyxvgz4.py # Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.native_group_norm] # Source node to ATen node mapping: # out_5 => convolution_1 # out_6 => add_4, add_5, mul_7, rsqrt_2, var_mean_2 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_9, %primals_10, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {}) # %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %unsqueeze_17), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %unsqueeze_14), kwargs = {}) triton_per_fused_convolution_native_group_norm_3 = async_compile.triton('triton_per_fused_convolution_native_group_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_native_group_norm_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_convolution_native_group_norm_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = tmp2 - tmp12 tmp20 = 16.0 tmp21 = tmp18 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tmp25 = tmp19 * tmp24 tmp27 = tmp25 * tmp26 tmp29 = tmp27 + tmp28 tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.store(out_ptr2 + (r2 + (16*x3)), tmp29, xmask) tl.store(out_ptr3 + (x3), tmp24, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_5, (4, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf1 # reuse buf6 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf5 = reinterpret_tensor(buf6, (4, 4, 4, 4), (80, 16, 4, 1), 16) # alias # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.native_group_norm, aten.relu] stream0 = get_raw_stream(0) triton_per_fused_native_group_norm_relu_0.run(buf3, primals_3, primals_1, primals_2, buf0, buf5, 16, 16, grid=grid(16), stream=stream0) buf4 = reinterpret_tensor(buf6, (4, 1, 4, 4), (80, 16, 4, 1), 0) # alias buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0) # alias # Topologically Sorted Source Nodes: [ttx, ttx_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_4, buf4, buf13, 64, grid=grid(64), stream=stream0) del primals_4 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1)) buf8 = buf7; del buf7 # reuse buf9 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf12 = reinterpret_tensor(buf10, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf10 # reuse buf14 = reinterpret_tensor(buf15, (4, 4, 4, 4), (80, 16, 4, 1), 16) # alias # Topologically Sorted Source Nodes: [out_2, out_3, out_4], Original ATen: [aten.convolution, aten.native_group_norm, aten.relu] triton_per_fused_convolution_native_group_norm_relu_2.run(buf8, buf12, primals_6, primals_7, primals_8, buf9, buf14, 16, 16, grid=grid(16), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 4, 4, 4), (64, 16, 4, 1)) buf17 = buf16; del buf16 # reuse buf18 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf22 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.native_group_norm] triton_per_fused_convolution_native_group_norm_3.run(buf17, primals_10, primals_11, primals_12, buf18, buf21, buf22, 16, 16, grid=grid(16), stream=stream0) del primals_10 del primals_12 return (buf21, primals_1, primals_2, primals_3, primals_5, primals_7, primals_8, primals_9, primals_11, buf0, buf3, buf6, buf8, buf9, buf12, buf15, buf17, reinterpret_tensor(buf18, (4, 4), (4, 1), 0), reinterpret_tensor(buf22, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def norm(dim): return nn.GroupNorm(min(32, dim), dim) class ConcatConv2d(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False): super(ConcatConv2d, self).__init__() module = nn.ConvTranspose2d if transpose else nn.Conv2d self._layer = module(dim_in + 1, dim_out, kernel_size=ksize, stride =stride, padding=padding, dilation=dilation, groups=groups, bias=bias) def forward(self, t, x): tt = torch.ones_like(x[:, :1, :, :]) * t ttx = torch.cat([tt, x], 1) return self._layer(ttx) class ODEfunc(nn.Module): def __init__(self, dim): super(ODEfunc, self).__init__() self.norm1 = norm(dim) self.relu = nn.ReLU(inplace=True) self.conv1 = ConcatConv2d(dim, dim, 3, 1, 1) self.norm2 = norm(dim) self.conv2 = ConcatConv2d(dim, dim, 3, 1, 1) self.norm3 = norm(dim) self.nfe = 0 def forward(self, t, x): self.nfe += 1 out = self.norm1(x) out = self.relu(out) out = self.conv1(t, out) out = self.norm2(out) out = self.relu(out) out = self.conv2(t, out) out = self.norm3(out) return out def get_inputs(): return [torch.rand([4, 1, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_native_group_norm_relu_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp0 - tmp10 tmp23 = tmp22 * tmp21 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tmp28 = tl.full([1, 1], 0, tl.int32) tmp29 = triton_helpers.maximum(tmp28, tmp27) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 16 * x2 + 80 * x3), tmp29, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 80 * x1), tmp0, xmask) tl.store(out_ptr1 + (x0 + 80 * x1), tmp0, xmask) @triton.jit def triton_per_fused_convolution_native_group_norm_relu_2(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tmp24 = tmp2 - tmp12 tmp25 = tmp24 * tmp23 tmp27 = tmp25 * tmp26 tmp29 = tmp27 + tmp28 tmp30 = tl.full([1, 1], 0, tl.int32) tmp31 = triton_helpers.maximum(tmp30, tmp29) tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp23, xmask) tl.store(out_ptr1 + (r2 + 16 * x0 + 80 * x1), tmp31, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_per_fused_convolution_native_group_norm_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = tmp2 - tmp12 tmp20 = 16.0 tmp21 = tmp18 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tmp25 = tmp19 * tmp24 tmp27 = tmp25 * tmp26 tmp29 = tmp27 + tmp28 tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.store(out_ptr2 + (r2 + 16 * x3), tmp29, xmask) tl.store(out_ptr3 + x3, tmp24, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_5, (4, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf1 buf6 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf5 = reinterpret_tensor(buf6, (4, 4, 4, 4), (80, 16, 4, 1), 16) get_raw_stream(0) triton_per_fused_native_group_norm_relu_0[grid(16)](buf3, primals_3, primals_1, primals_2, buf0, buf5, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) buf4 = reinterpret_tensor(buf6, (4, 1, 4, 4), (80, 16, 4, 1), 0) buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0) triton_poi_fused_cat_1[grid(64)](primals_4, buf4, buf13, 64, XBLOCK =64, num_warps=1, num_stages=1) del primals_4 buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1)) buf8 = buf7 del buf7 buf9 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf12 = reinterpret_tensor(buf10, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf10 buf14 = reinterpret_tensor(buf15, (4, 4, 4, 4), (80, 16, 4, 1), 16) triton_per_fused_convolution_native_group_norm_relu_2[grid(16)](buf8, buf12, primals_6, primals_7, primals_8, buf9, buf14, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_6 buf16 = extern_kernels.convolution(buf15, primals_9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 4, 4, 4), (64, 16, 4, 1)) buf17 = buf16 del buf16 buf18 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf22 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) triton_per_fused_convolution_native_group_norm_3[grid(16)](buf17, primals_10, primals_11, primals_12, buf18, buf21, buf22, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del primals_10 del primals_12 return (buf21, primals_1, primals_2, primals_3, primals_5, primals_7, primals_8, primals_9, primals_11, buf0, buf3, buf6, buf8, buf9, buf12, buf15, buf17, reinterpret_tensor(buf18, (4, 4), (4, 1), 0), reinterpret_tensor(buf22, (4, 4), (4, 1), 0)) def norm(dim): return nn.GroupNorm(min(32, dim), dim) class ConcatConv2d(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False): super(ConcatConv2d, self).__init__() module = nn.ConvTranspose2d if transpose else nn.Conv2d self._layer = module(dim_in + 1, dim_out, kernel_size=ksize, stride =stride, padding=padding, dilation=dilation, groups=groups, bias=bias) def forward(self, t, x): tt = torch.ones_like(x[:, :1, :, :]) * t ttx = torch.cat([tt, x], 1) return self._layer(ttx) class ODEfuncNew(nn.Module): def __init__(self, dim): super(ODEfuncNew, self).__init__() self.norm1 = norm(dim) self.relu = nn.ReLU(inplace=True) self.conv1 = ConcatConv2d(dim, dim, 3, 1, 1) self.norm2 = norm(dim) self.conv2 = ConcatConv2d(dim, dim, 3, 1, 1) self.norm3 = norm(dim) self.nfe = 0 def forward(self, input_0, input_1): primals_1 = self.norm1.weight primals_2 = self.norm1.bias primals_5 = self.conv1._layer.weight primals_6 = self.conv1._layer.bias primals_7 = self.norm2.weight primals_8 = self.norm2.bias primals_9 = self.conv2._layer.weight primals_10 = self.conv2._layer.bias primals_11 = self.norm3.weight primals_12 = self.norm3.bias primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
TylerChoi1224/torchdiffeq
ODEfunc
false
1,191
[ "MIT" ]
0
72f74d9651a58ab11cdadd60682f1b61e625ef53
https://github.com/TylerChoi1224/torchdiffeq/tree/72f74d9651a58ab11cdadd60682f1b61e625ef53
import torch import torch.nn as nn def norm(dim): return nn.GroupNorm(min(32, dim), dim) class ConcatConv2d(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False): super().__init__() module = nn.ConvTranspose2d if transpose else nn.Conv2d self._layer = module(dim_in + 1, dim_out, kernel_size=ksize, stride =stride, padding=padding, dilation=dilation, groups=groups, bias=bias) def forward(self, t, x): tt = torch.ones_like(x[:, :1, :, :]) * t ttx = torch.cat([tt, x], 1) return self._layer(ttx) class Model(nn.Module): def __init__(self, dim): super().__init__() self.norm1 = norm(dim) self.relu = nn.ReLU(inplace=True) self.conv1 = ConcatConv2d(dim, dim, 3, 1, 1) self.norm2 = norm(dim) self.conv2 = ConcatConv2d(dim, dim, 3, 1, 1) self.norm3 = norm(dim) self.nfe = 0 def forward(self, t, x): self.nfe += 1 out = self.norm1(x) out = self.relu(out) out = self.conv1(t, out) out = self.norm2(out) out = self.relu(out) out = self.conv2(t, out) out = self.norm3(out) return out def get_inputs(): return [torch.rand([4, 1, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Decoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/sj/csj6uus7z5hpvi77pvgp63jx4bne5i65mpzpsuvveo3mzfov6ycm.py # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_1 => convolution # input_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qn/cqnqaq7kh6sypugb6bqfg74kezlshfvip2ipwvaogffif2deremo.py # Topologically Sorted Source Nodes: [input_3, input_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_3 => convolution_1 # input_4 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/5p/c5p5qppzecxcvl2fokkcfo32s4cs6s4z3s2aeii7lx2jg75iaktc.py # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.convolution] # Source node to ATen node mapping: # input_5 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_4, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (1, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 524288, grid=grid(524288), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [input_3, input_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 262144, grid=grid(262144), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_7, 16384, grid=grid(16384), stream=stream0) del primals_7 return (buf5, primals_1, primals_3, primals_4, primals_6, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.layers = nn.Sequential() self.layers.add_module('Conv3', nn.Conv2d(64, 32, 3, 1, 1)) self.layers.add_module('Act3', nn.ReLU(inplace=True)) self.layers.add_module('Conv4', nn.Conv2d(32, 16, 3, 1, 1)) self.layers.add_module('Act4', nn.ReLU(inplace=True)) self.layers.add_module('Conv5', nn.Conv2d(16, 1, 3, 1, 1)) def forward(self, x): return self.layers(x) def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_4, (16, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (1, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(524288)](buf1, primals_2, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(262144)](buf3, primals_5, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(16384)](buf5, primals_7, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 return buf5, primals_1, primals_3, primals_4, primals_6, buf1, buf3 class DecoderNew(nn.Module): def __init__(self): super(DecoderNew, self).__init__() self.layers = nn.Sequential() self.layers.add_module('Conv3', nn.Conv2d(64, 32, 3, 1, 1)) self.layers.add_module('Act3', nn.ReLU(inplace=True)) self.layers.add_module('Conv4', nn.Conv2d(32, 16, 3, 1, 1)) self.layers.add_module('Act4', nn.ReLU(inplace=True)) self.layers.add_module('Conv5', nn.Conv2d(16, 1, 3, 1, 1)) def forward(self, input_0): primals_1 = self.layers.Conv3.weight primals_2 = self.layers.Conv3.bias primals_4 = self.layers.Conv4.weight primals_5 = self.layers.Conv4.bias primals_6 = self.layers.Conv5.weight primals_7 = self.layers.Conv5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
VarunBabbar/Image_Compressor
Decoder
false
1,192
[ "MIT" ]
0
254d8d411f7cd16f3ce242275532c9fca537269c
https://github.com/VarunBabbar/Image_Compressor/tree/254d8d411f7cd16f3ce242275532c9fca537269c
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.layers = nn.Sequential() self.layers.add_module('Conv3', nn.Conv2d(64, 32, 3, 1, 1)) self.layers.add_module('Act3', nn.ReLU(inplace=True)) self.layers.add_module('Conv4', nn.Conv2d(32, 16, 3, 1, 1)) self.layers.add_module('Act4', nn.ReLU(inplace=True)) self.layers.add_module('Conv5', nn.Conv2d(16, 1, 3, 1, 1)) def forward(self, x): return self.layers(x) def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return []
SEBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.mean] # Source node to ATen node mapping: # attn => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ad/cadccuyhl7stcp3nyqfgohiwbiv5ckfzxsye27ithwsill6dvmh4.py # Topologically Sorted Source Nodes: [attn_1, attn_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # attn_1 => convolution # attn_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/4y/c4yo7julccljbsmoos6bmocbalgc5mg5loxwifzjugvih4yntd2h.py # Topologically Sorted Source Nodes: [attn_3, mul, x, neg, result, neg_1, result_1], Original ATen: [aten.convolution, aten.mul, aten.add, aten.neg, aten.threshold] # Source node to ATen node mapping: # attn_3 => convolution_1 # mul => mul # neg => neg # neg_1 => neg_1 # result => full_default, le, where # result_1 => le_1 # x => add # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.5), kwargs = {}) # %neg : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%add,), kwargs = {}) # %le : [num_users=2] = call_function[target=torch.ops.aten.le.Scalar](args = (%neg, -1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%le, %full_default, %neg), kwargs = {}) # %neg_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%where,), kwargs = {}) # %le_1 : [num_users=2] = call_function[target=torch.ops.aten.le.Scalar](args = (%neg_1, 0), kwargs = {}) triton_poi_fused_add_convolution_mul_neg_threshold_2 = async_compile.triton('triton_poi_fused_add_convolution_mul_neg_threshold_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_neg_threshold_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_neg_threshold_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.2 tmp4 = tmp2 * tmp3 tmp5 = 0.5 tmp6 = tmp4 + tmp5 tmp7 = -tmp6 tmp8 = -1.0 tmp9 = tmp7 <= tmp8 tmp10 = tl.where(tmp9, tmp8, tmp7) tmp11 = -tmp10 tmp12 = 0.0 tmp13 = tmp11 <= tmp12 tl.store(out_ptr0 + (x2), tmp9, xmask) tl.store(out_ptr1 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wl/cwll37wdmbam3jlbpjfmh3gdmu7emnjjcxx4gsktivq2xh2ulr2s.py # Topologically Sorted Source Nodes: [attn_3, mul, x, neg, result, neg_1, result_1, mul_1], Original ATen: [aten.convolution, aten.mul, aten.add, aten.neg, aten.threshold] # Source node to ATen node mapping: # attn_3 => convolution_1 # mul => mul # mul_1 => mul_1 # neg => neg # neg_1 => neg_1 # result => full_default, where # result_1 => full_default_1, where_1 # x => add # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.5), kwargs = {}) # %neg : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%add,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%le, %full_default, %neg), kwargs = {}) # %neg_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%where,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%le_1, %full_default_1, %neg_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %where_1), kwargs = {}) triton_poi_fused_add_convolution_mul_neg_threshold_3 = async_compile.triton('triton_poi_fused_add_convolution_mul_neg_threshold_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*i1', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_neg_threshold_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_neg_threshold_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 16) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp3 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp5 = tmp3 + tmp4 tmp6 = 0.2 tmp7 = tmp5 * tmp6 tmp8 = 0.5 tmp9 = tmp7 + tmp8 tmp10 = -tmp9 tmp11 = -1.0 tmp12 = tl.where(tmp2, tmp11, tmp10) tmp13 = -tmp12 tmp14 = 0.0 tmp15 = tl.where(tmp1, tmp14, tmp13) tmp16 = tmp0 * tmp15 tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [attn_1, attn_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 4, grid=grid(4), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [attn_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [attn_3, mul, x, neg, result, neg_1, result_1], Original ATen: [aten.convolution, aten.mul, aten.add, aten.neg, aten.threshold] triton_poi_fused_add_convolution_mul_neg_threshold_2.run(buf4, primals_5, buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_3, mul, x, neg, result, neg_1, result_1, mul_1], Original ATen: [aten.convolution, aten.mul, aten.add, aten.neg, aten.threshold] triton_poi_fused_add_convolution_mul_neg_threshold_3.run(primals_1, buf6, buf5, buf4, primals_5, buf7, 256, grid=grid(256), stream=stream0) del buf4 del primals_5 return (buf7, primals_1, primals_2, primals_4, buf1, buf3, buf5, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class HardSigmoid(nn.Module): def __init__(self, slope=0.2, offset=0.5): super().__init__() self.slope = slope self.offset = offset def forward(self, x): x = self.slope * x + self.offset x = F.threshold(-x, -1, -1) x = F.threshold(-x, 0, 0) return x class SEBlock(nn.Module): def __init__(self, in_channels, out_channels, ratio=4): super().__init__() num_mid_filter = out_channels // ratio self.pool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels= num_mid_filter, kernel_size=1, bias=True) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(in_channels=num_mid_filter, kernel_size=1, out_channels=out_channels, bias=True) self.relu2 = HardSigmoid() def forward(self, x): attn = self.pool(x) attn = self.conv1(attn) attn = self.relu1(attn) attn = self.conv2(attn) attn = self.relu2(attn) return x * attn def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_add_convolution_mul_neg_threshold_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.2 tmp4 = tmp2 * tmp3 tmp5 = 0.5 tmp6 = tmp4 + tmp5 tmp7 = -tmp6 tmp8 = -1.0 tmp9 = tmp7 <= tmp8 tmp10 = tl.where(tmp9, tmp8, tmp7) tmp11 = -tmp10 tmp12 = 0.0 tmp13 = tmp11 <= tmp12 tl.store(out_ptr0 + x2, tmp9, xmask) tl.store(out_ptr1 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_add_convolution_mul_neg_threshold_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp3 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp5 = tmp3 + tmp4 tmp6 = 0.2 tmp7 = tmp5 * tmp6 tmp8 = 0.5 tmp9 = tmp7 + tmp8 tmp10 = -tmp9 tmp11 = -1.0 tmp12 = tl.where(tmp2, tmp11, tmp10) tmp13 = -tmp12 tmp14 = 0.0 tmp15 = tl.where(tmp1, tmp14, tmp13) tmp16 = tmp0 * tmp15 tl.store(out_ptr0 + x3, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(4)](buf3, primals_3, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) triton_poi_fused_add_convolution_mul_neg_threshold_2[grid(16)](buf4, primals_5, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_mul_neg_threshold_3[grid(256)]( primals_1, buf6, buf5, buf4, primals_5, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf4 del primals_5 return buf7, primals_1, primals_2, primals_4, buf1, buf3, buf5, buf6 class HardSigmoid(nn.Module): def __init__(self, slope=0.2, offset=0.5): super().__init__() self.slope = slope self.offset = offset def forward(self, x): x = self.slope * x + self.offset x = F.threshold(-x, -1, -1) x = F.threshold(-x, 0, 0) return x class SEBlockNew(nn.Module): def __init__(self, in_channels, out_channels, ratio=4): super().__init__() num_mid_filter = out_channels // ratio self.pool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels= num_mid_filter, kernel_size=1, bias=True) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(in_channels=num_mid_filter, kernel_size=1, out_channels=out_channels, bias=True) self.relu2 = HardSigmoid() def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Vivianyzw/Dual.DBNet.pytorch
SEBlock
false
1,193
[ "Apache-2.0", "MIT" ]
0
19d823ed7c05076c087a3f7ad1127c71c1c0d692
https://github.com/Vivianyzw/Dual.DBNet.pytorch/tree/19d823ed7c05076c087a3f7ad1127c71c1c0d692
import torch from torch import nn import torch.nn.functional as F class HardSigmoid(nn.Module): def __init__(self, slope=0.2, offset=0.5): super().__init__() self.slope = slope self.offset = offset def forward(self, x): x = self.slope * x + self.offset x = F.threshold(-x, -1, -1) x = F.threshold(-x, 0, 0) return x class Model(nn.Module): def __init__(self, in_channels, out_channels, ratio=4): super().__init__() num_mid_filter = out_channels // ratio self.pool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels= num_mid_filter, kernel_size=1, bias=True) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(in_channels=num_mid_filter, kernel_size=1, out_channels=out_channels, bias=True) self.relu2 = HardSigmoid() def forward(self, x): attn = self.pool(x) attn = self.conv1(attn) attn = self.relu1(attn) attn = self.conv2(attn) attn = self.relu2(attn) return x * attn def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
CELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # cross_entropy => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/4s/c4sinl6spiqxhpvyucixluedc7ia6rt4kmscnsrfq6ef6uymhfpa.py # Topologically Sorted Source Nodes: [cross_entropy, mul], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div] # Source node to ATen node mapping: # cross_entropy => div, exp, log, mul, neg, sub_1, sum_1, sum_2 # mul => mul_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 1.0), kwargs = {}) triton_per_fused__log_softmax_div_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_mul_neg_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r3), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tmp22 = 1.0 tmp23 = tmp21 * tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [cross_entropy, mul], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div] triton_per_fused__log_softmax_div_mul_neg_sum_1.run(buf2, buf0, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CELoss(nn.Module): """ Cross Entorpy Loss Wrapper Args: loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, loss_weight=1.0): super().__init__() self.loss_weight = loss_weight self.criterion = nn.CrossEntropyLoss() def forward(self, output, target): """Forward function.""" return self.loss_weight * self.criterion(output, target) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + r3, None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tmp22 = 1.0 tmp23 = tmp21 * tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused__log_softmax_div_mul_neg_sum_1[grid(1)](buf2, buf0, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf2, class CELossNew(nn.Module): """ Cross Entorpy Loss Wrapper Args: loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, loss_weight=1.0): super().__init__() self.loss_weight = loss_weight self.criterion = nn.CrossEntropyLoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
WangXin93/mmpose
CELoss
false
1,194
[ "Apache-2.0" ]
0
28b6e9ac2f6ed195ab27fb04da2213fc885a5994
https://github.com/WangXin93/mmpose/tree/28b6e9ac2f6ed195ab27fb04da2213fc885a5994
import torch import torch.nn as nn class Model(nn.Module): """ Cross Entorpy Loss Wrapper Args: loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, loss_weight=1.0): super().__init__() self.loss_weight = loss_weight self.criterion = nn.CrossEntropyLoss() def forward(self, output, target): """Forward function.""" return self.loss_weight * self.criterion(output, target) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
AttentionPool2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ov/covbryzjnff2kb26c5gkcqbvct6kdwzanlx3iu6ee24itsit76o3.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%permute, [0], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3y/c3yxwtlf7q4oo5ov7royd257tecdxmuzqqag2za7buohahsb7mfs.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.add] # Source node to ATen node mapping: # x_1 => cat # x_2 => add # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %permute],), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%cat, %unsqueeze), kwargs = {}) triton_poi_fused_add_cat_1 = async_compile.triton('triton_poi_fused_add_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp15 = tl.load(in_ptr2 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 16.0 tmp7 = tmp5 / tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 17, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr1 + ((16*x3) + ((-1) + x2)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tmp16 = tmp14 + tmp15 tl.store(out_ptr0 + (x4), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uc/cucgrga44gtlwzw6ehoy4jrwzm5fghn3ljf7iugmdjhe6m7mjcas.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_6, %primals_7, %primals_8],), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((-4) + x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((-8) + x0), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x0), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gq/cgqswernq7km7s5e6iqvidwhg6nuo5b5zp6m5py3pnbrdzepe236.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul, aten.transpose] # Source node to ATen node mapping: # multi_head_attention_forward => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%view_10, 1.0), kwargs = {}) # %permute_17 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%view_13, [0, 2, 1]), kwargs = {}) triton_poi_fused_mul_transpose_3 = async_compile.triton('triton_poi_fused_mul_transpose_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 32], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_transpose_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_transpose_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 17 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 tmp0 = tl.load(in_ptr0 + (y3 + (16*x2)), xmask & ymask, eviction_policy='evict_last') tmp1 = y0 tmp2 = tl.full([1, 1], 0, tl.int64) tmp3 = tmp1 >= tmp2 tmp4 = tl.full([1, 1], 4, tl.int64) tmp5 = tmp1 < tmp4 tmp6 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp7 = tmp1 >= tmp4 tmp8 = tl.full([1, 1], 8, tl.int64) tmp9 = tmp1 < tmp8 tmp10 = tmp7 & tmp9 tmp11 = tl.load(in_ptr2 + (tl.broadcast_to((-4) + y0, [XBLOCK, YBLOCK])), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp12 = tmp1 >= tmp8 tmp13 = tl.full([1, 1], 12, tl.int64) tmp14 = tmp1 < tmp13 tmp15 = tl.load(in_ptr3 + (tl.broadcast_to((-8) + y0, [XBLOCK, YBLOCK])), tmp12 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp10, tmp11, tmp15) tmp17 = tl.where(tmp5, tmp6, tmp16) tmp18 = tmp0 + tmp17 tmp19 = 1.0 tmp20 = tmp18 * tmp19 tl.store(out_ptr0 + (x2 + (17*y3)), tmp20, xmask & ymask) tl.store(out_ptr1 + (y3 + (16*x2)), tmp20, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qz/cqzbvlh3tf752q5rj44eh5o54zbmctvajzgosqadhjdb5lbyqjy2.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul, aten.transpose] # Source node to ATen node mapping: # multi_head_attention_forward => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_7, 1.0), kwargs = {}) # %permute_18 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%view_14, [0, 2, 1]), kwargs = {}) triton_poi_fused_mul_transpose_4 = async_compile.triton('triton_poi_fused_mul_transpose_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 32], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_transpose_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_transpose_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 17 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 tmp0 = tl.load(in_ptr0 + (y3 + (16*x2)), xmask & ymask, eviction_policy='evict_last') tmp1 = 4 + y0 tmp2 = tl.full([1, 1], 0, tl.int64) tmp3 = tmp1 >= tmp2 tmp4 = tl.full([1, 1], 4, tl.int64) tmp5 = tmp1 < tmp4 tmp6 = tl.load(in_ptr1 + (tl.broadcast_to(4 + y0, [XBLOCK, YBLOCK])), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp7 = tmp1 >= tmp4 tmp8 = tl.full([1, 1], 8, tl.int64) tmp9 = tmp1 < tmp8 tmp10 = tmp7 & tmp9 tmp11 = tl.load(in_ptr2 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp12 = tmp1 >= tmp8 tmp13 = tl.full([1, 1], 12, tl.int64) tmp14 = tmp1 < tmp13 tmp15 = tl.load(in_ptr3 + (tl.broadcast_to((-4) + y0, [XBLOCK, YBLOCK])), tmp12 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp10, tmp11, tmp15) tmp17 = tl.where(tmp5, tmp6, tmp16) tmp18 = tmp0 + tmp17 tmp19 = 1.0 tmp20 = tmp18 * tmp19 tl.store(out_ptr0 + (x2 + (17*y3)), tmp20, xmask & ymask) tl.store(out_ptr1 + (y3 + (16*x2)), tmp20, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/q4/cq45jdoeuvgpxv4zofa7tafzriebamhh2wkhnkrmvo3v75s7gbkj.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._safe_softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, any_1, div, eq, exp, full_default, logical_not, logical_not_1, sub, sum_1, where # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_15, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_15, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_15, -inf), kwargs = {}) # %logical_not : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq,), kwargs = {}) # %any_1 : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not, -1, True), kwargs = {}) # %logical_not_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_1,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 17, 17], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_1, %full_default, %div), kwargs = {}) triton_per_fused__safe_softmax_5 = async_compile.triton('triton_per_fused__safe_softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 32], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__safe_softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__safe_softmax_5(in_ptr0, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 272 rnumel = 17 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex x2 = xindex % 68 x3 = (xindex // 68) tmp0 = tl.load(in_ptr0 + (r1 + (17*x0)), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = float("-inf") tmp12 = tmp0 == tmp11 tmp13 = tmp12 == 0 tmp14 = tmp13.to(tl.int64) tmp15 = (tmp14 != 0) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.where(rmask & xmask, tmp16, 0) tmp19 = triton_helpers.any(tmp18, 1)[:, None] tmp20 = tmp19 == 0 tmp21 = tmp6 / tmp10 tmp22 = 0.0 tmp23 = tl.where(tmp20, tmp22, tmp21) tl.store(out_ptr3 + (r1 + (17*x2) + (1184*x3)), tmp23, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hp/chpbwsfm77p7craq5ckxpabfykbcahcp5xaoqi5y3wp6bfgatgpn.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] # Source node to ATen node mapping: # multi_head_attention_forward => bmm_1 # Graph fragment: # %bmm_1 : [num_users=1] = call_function[target=torch.ops.aten.bmm.default](args = (%view_16, %view_17), kwargs = {}) triton_poi_fused_bmm_6 = async_compile.triton('triton_poi_fused_bmm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bmm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_bmm_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4624 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 289 x1 = (xindex // 289) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (289*(x1 % 4)) + (1184*(x1 // 4))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qb/cqb3dcbu2gzzir2rbde24vaunu7kucgqq3ftpydndkry6kdjyyqy.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_7 = async_compile.triton('triton_poi_fused_clone_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 17 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (17*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (17, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(primals_1, buf0, 16, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((17, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.add] triton_poi_fused_add_cat_1.run(buf0, primals_1, primals_2, buf1, 272, grid=grid(272), stream=stream0) del buf0 del primals_1 del primals_2 buf2 = empty_strided_cuda((68, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (68, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf2) buf3 = empty_strided_cuda((68, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (68, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((12, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(primals_6, primals_7, primals_8, buf4, 12, grid=grid(12), stream=stream0) buf5 = empty_strided_cuda((68, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(buf4, (4, ), (1, ), 8), reinterpret_tensor(buf1, (68, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del buf4 buf6 = empty_strided_cuda((4, 4, 17, 1), (68, 17, 1, 1), torch.float32) buf17 = empty_strided_cuda((16, 1, 17), (1, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul, aten.transpose] triton_poi_fused_mul_transpose_3.run(buf2, primals_6, primals_7, primals_8, buf6, buf17, 16, 17, grid=grid(16, 17), stream=stream0) buf7 = reinterpret_tensor(buf2, (4, 4, 1, 17), (68, 17, 17, 1), 0); del buf2 # reuse buf18 = empty_strided_cuda((16, 17, 1), (1, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul, aten.transpose] triton_poi_fused_mul_transpose_4.run(buf3, primals_6, primals_7, primals_8, buf7, buf18, 16, 17, grid=grid(16, 17), stream=stream0) del buf3 del primals_6 del primals_7 del primals_8 buf8 = empty_strided_cuda((16, 17, 17), (289, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf6, (16, 17, 1), (17, 1, 0), 0), reinterpret_tensor(buf7, (16, 1, 17), (17, 0, 1), 0), out=buf8) buf12 = empty_strided_cuda((4, 4, 17, 17), (1184, 289, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._safe_softmax] triton_per_fused__safe_softmax_5.run(buf8, buf12, 272, 17, grid=grid(272), stream=stream0) buf13 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] triton_poi_fused_bmm_6.run(buf12, buf13, 4624, grid=grid(4624), stream=stream0) buf14 = reinterpret_tensor(buf7, (16, 17, 1), (17, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf13, reinterpret_tensor(buf5, (16, 17, 1), (1, 16, 0), 0), out=buf14) del buf13 buf15 = reinterpret_tensor(buf6, (17, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_7.run(buf14, buf15, 17, 16, grid=grid(17, 16), stream=stream0) buf16 = reinterpret_tensor(buf14, (68, 4), (4, 1), 0); del buf14 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf15, (68, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf16) del primals_10 return (reinterpret_tensor(buf16, (4, 4), (4, 1), 0), reinterpret_tensor(buf1, (68, 4), (4, 1), 0), buf12, reinterpret_tensor(buf15, (68, 4), (4, 1), 0), primals_9, reinterpret_tensor(buf5, (16, 1, 17), (1, 1, 16), 0), buf17, buf18, primals_5, primals_4, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((17, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn import torch.distributed.nn class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: 'int', embed_dim: 'int', num_heads: 'int', output_dim: 'int'=None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute( 2, 0, 1) x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) x = x + self.positional_embedding[:, None, :] x, _ = F.multi_head_attention_forward(query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj. weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn= False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False) return x[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'spacial_dim': 4, 'embed_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.distributed.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_add_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp15 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy= 'evict_last') tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x3, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 16.0 tmp7 = tmp5 / tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 17, tl.int64) tmp13 = tl.load(in_ptr1 + (16 * x3 + (-1 + x2)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tmp16 = tmp14 + tmp15 tl.store(out_ptr0 + x4, tmp16, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (-4 + x0), tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (-8 + x0), tmp11 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x0, tmp16, xmask) @triton.jit def triton_poi_fused_mul_transpose_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 16 xnumel = 17 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 tmp0 = tl.load(in_ptr0 + (y3 + 16 * x2), xmask & ymask, eviction_policy ='evict_last') tmp1 = y0 tl.full([1, 1], 0, tl.int64) tmp4 = tl.full([1, 1], 4, tl.int64) tmp5 = tmp1 < tmp4 tmp6 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp7 = tmp1 >= tmp4 tmp8 = tl.full([1, 1], 8, tl.int64) tmp9 = tmp1 < tmp8 tmp10 = tmp7 & tmp9 tmp11 = tl.load(in_ptr2 + tl.broadcast_to(-4 + y0, [XBLOCK, YBLOCK]), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp12 = tmp1 >= tmp8 tl.full([1, 1], 12, tl.int64) tmp15 = tl.load(in_ptr3 + tl.broadcast_to(-8 + y0, [XBLOCK, YBLOCK]), tmp12 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp10, tmp11, tmp15) tmp17 = tl.where(tmp5, tmp6, tmp16) tmp18 = tmp0 + tmp17 tmp19 = 1.0 tmp20 = tmp18 * tmp19 tl.store(out_ptr0 + (x2 + 17 * y3), tmp20, xmask & ymask) tl.store(out_ptr1 + (y3 + 16 * x2), tmp20, xmask & ymask) @triton.jit def triton_poi_fused_mul_transpose_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 16 xnumel = 17 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 tmp0 = tl.load(in_ptr0 + (y3 + 16 * x2), xmask & ymask, eviction_policy ='evict_last') tmp1 = 4 + y0 tl.full([1, 1], 0, tl.int64) tmp4 = tl.full([1, 1], 4, tl.int64) tmp5 = tmp1 < tmp4 tmp6 = tl.load(in_ptr1 + tl.broadcast_to(4 + y0, [XBLOCK, YBLOCK]), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp7 = tmp1 >= tmp4 tmp8 = tl.full([1, 1], 8, tl.int64) tmp9 = tmp1 < tmp8 tmp10 = tmp7 & tmp9 tmp11 = tl.load(in_ptr2 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp12 = tmp1 >= tmp8 tl.full([1, 1], 12, tl.int64) tmp15 = tl.load(in_ptr3 + tl.broadcast_to(-4 + y0, [XBLOCK, YBLOCK]), tmp12 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp10, tmp11, tmp15) tmp17 = tl.where(tmp5, tmp6, tmp16) tmp18 = tmp0 + tmp17 tmp19 = 1.0 tmp20 = tmp18 * tmp19 tl.store(out_ptr0 + (x2 + 17 * y3), tmp20, xmask & ymask) tl.store(out_ptr1 + (y3 + 16 * x2), tmp20, xmask & ymask) @triton.jit def triton_per_fused__safe_softmax_5(in_ptr0, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 272 rnumel = 17 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex x2 = xindex % 68 x3 = xindex // 68 tmp0 = tl.load(in_ptr0 + (r1 + 17 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = float('-inf') tmp12 = tmp0 == tmp11 tmp13 = tmp12 == 0 tmp14 = tmp13.to(tl.int64) tmp15 = tmp14 != 0 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.where(rmask & xmask, tmp16, 0) tmp19 = triton_helpers.any(tmp18, 1)[:, None] tmp20 = tmp19 == 0 tmp21 = tmp6 / tmp10 tmp22 = 0.0 tmp23 = tl.where(tmp20, tmp22, tmp21) tl.store(out_ptr3 + (r1 + 17 * x2 + 1184 * x3), tmp23, rmask & xmask) @triton.jit def triton_poi_fused_bmm_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4624 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 289 x1 = xindex // 289 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 289 * (x1 % 4) + 1184 * (x1 // 4)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 17 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 17 * x1), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (17, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_mean_0[grid(16)](primals_1, buf0, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf1 = empty_strided_cuda((17, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_cat_1[grid(272)](buf0, primals_1, primals_2, buf1, 272, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_1 del primals_2 buf2 = empty_strided_cuda((68, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (68, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf2) buf3 = empty_strided_cuda((68, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (68, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((12,), (1,), torch.float32) triton_poi_fused_cat_2[grid(12)](primals_6, primals_7, primals_8, buf4, 12, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((68, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(buf4, (4,), (1,), 8), reinterpret_tensor(buf1, (68, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta =1, out=buf5) del buf4 buf6 = empty_strided_cuda((4, 4, 17, 1), (68, 17, 1, 1), torch.float32) buf17 = empty_strided_cuda((16, 1, 17), (1, 1, 16), torch.float32) triton_poi_fused_mul_transpose_3[grid(16, 17)](buf2, primals_6, primals_7, primals_8, buf6, buf17, 16, 17, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf2, (4, 4, 1, 17), (68, 17, 17, 1), 0) del buf2 buf18 = empty_strided_cuda((16, 17, 1), (1, 16, 1), torch.float32) triton_poi_fused_mul_transpose_4[grid(16, 17)](buf3, primals_6, primals_7, primals_8, buf7, buf18, 16, 17, XBLOCK=32, YBLOCK=16, num_warps=4, num_stages=1) del buf3 del primals_6 del primals_7 del primals_8 buf8 = empty_strided_cuda((16, 17, 17), (289, 17, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf6, (16, 17, 1), (17, 1, 0), 0), reinterpret_tensor(buf7, (16, 1, 17), (17, 0, 1), 0), out=buf8) buf12 = empty_strided_cuda((4, 4, 17, 17), (1184, 289, 17, 1), torch.float32) triton_per_fused__safe_softmax_5[grid(272)](buf8, buf12, 272, 17, XBLOCK=32, num_warps=8, num_stages=1) buf13 = buf8 del buf8 triton_poi_fused_bmm_6[grid(4624)](buf12, buf13, 4624, XBLOCK=256, num_warps=4, num_stages=1) buf14 = reinterpret_tensor(buf7, (16, 17, 1), (17, 1, 1), 0) del buf7 extern_kernels.bmm(buf13, reinterpret_tensor(buf5, (16, 17, 1), (1, 16, 0), 0), out=buf14) del buf13 buf15 = reinterpret_tensor(buf6, (17, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_clone_7[grid(17, 16)](buf14, buf15, 17, 16, XBLOCK =16, YBLOCK=32, num_warps=4, num_stages=1) buf16 = reinterpret_tensor(buf14, (68, 4), (4, 1), 0) del buf14 extern_kernels.addmm(primals_10, reinterpret_tensor(buf15, (68, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf16) del primals_10 return reinterpret_tensor(buf16, (4, 4), (4, 1), 0), reinterpret_tensor( buf1, (68, 4), (4, 1), 0), buf12, reinterpret_tensor(buf15, (68, 4), (4, 1), 0), primals_9, reinterpret_tensor(buf5, (16, 1, 17), (1, 1, 16), 0), buf17, buf18, primals_5, primals_4, primals_3 class AttentionPool2dNew(nn.Module): def __init__(self, spacial_dim: 'int', embed_dim: 'int', num_heads: 'int', output_dim: 'int'=None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, input_0): primals_2 = self.positional_embedding primals_3 = self.k_proj.weight primals_6 = self.k_proj.bias primals_4 = self.q_proj.weight primals_7 = self.q_proj.bias primals_5 = self.v_proj.weight primals_8 = self.v_proj.bias primals_9 = self.c_proj.weight primals_10 = self.c_proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
Vaishaal/open_clip
AttentionPool2d
false
1,195
[ "MIT" ]
0
8877c4036dacde022da90769c64006d9f2c82e84
https://github.com/Vaishaal/open_clip/tree/8877c4036dacde022da90769c64006d9f2c82e84
import torch import torch.nn.functional as F from torch import nn import torch.distributed.nn class Model(nn.Module): def __init__(self, spacial_dim: 'int', embed_dim: 'int', num_heads: 'int', output_dim: 'int'=None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute( 2, 0, 1) x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) x = x + self.positional_embedding[:, None, :] x, _ = F.multi_head_attention_forward(query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj. weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn= False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False) return x[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
TemperatureScaleTrainer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/at/catwgbiwmbg7xppf43cvbcn5d6non7ron2vvi5h77ptca3ltb2j6.py # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 / tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) return (buf0, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class TemperatureScaleTrainer(nn.Module): def __init__(self): super(TemperatureScaleTrainer, self).__init__() self._temperature = nn.Parameter(torch.ones(1), requires_grad=True) if torch.cuda.is_available(): self._temperature self def forward(self, logits: 'torch.Tensor'): expanded_temperature = self._temperature.unsqueeze(1).expand(logits .size(0), logits.size(1)) if torch.cuda.is_available(): expanded_temperature = expanded_temperature logits return logits / expanded_temperature def get_parameters(self): return self._temperature def get_temperature(self): return self._temperature.item() def set_temperature(self, t: 'float'): self._temperature = nn.Parameter(torch.tensor([t]), requires_grad=True) if torch.cuda.is_available(): self._temperature def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 / tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf0, primals_1, primals_2 class TemperatureScaleTrainerNew(nn.Module): def __init__(self): super(TemperatureScaleTrainerNew, self).__init__() self._temperature = nn.Parameter(torch.ones(1), requires_grad=True) if torch.cuda.is_available(): self._temperature self def get_parameters(self): return self._temperature def get_temperature(self): return self._temperature.item() def set_temperature(self, t: 'float'): self._temperature = nn.Parameter(torch.tensor([t]), requires_grad=True) if torch.cuda.is_available(): self._temperature def forward(self, input_0): primals_1 = self._temperature primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
Kageshimasu/temperature-scaling-optimizer
TemperatureScaleTrainer
false
1,196
[ "MIT" ]
0
3af562e6c3fefef97aec0431d08b8e8275d275c7
https://github.com/Kageshimasu/temperature-scaling-optimizer/tree/3af562e6c3fefef97aec0431d08b8e8275d275c7
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self._temperature = nn.Parameter(torch.ones(1), requires_grad=True) if torch.cuda.is_available(): self._temperature self def forward(self, logits: 'torch.Tensor'): expanded_temperature = self._temperature.unsqueeze(1).expand(logits .size(0), logits.size(1)) if torch.cuda.is_available(): expanded_temperature = expanded_temperature logits return logits / expanded_temperature def get_parameters(self): return self._temperature def get_temperature(self): return self._temperature.item() def set_temperature(self, t: 'float'): self._temperature = nn.Parameter(torch.tensor([t]), requires_grad=True) if torch.cuda.is_available(): self._temperature def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ELUPlus
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/y4/cy4n3trndgzbyxuh7lxf5gowezusvtxrwhp6q3fl6sve7pr6sqky.py # Topologically Sorted Source Nodes: [elu, add], Original ATen: [aten.elu, aten.add] # Source node to ATen node mapping: # add => add # elu => expm1, gt, mul, mul_1, mul_2, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, 1.0), kwargs = {}) triton_poi_fused_add_elu_0 = async_compile.triton('triton_poi_fused_add_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp8 = tmp7 + tmp3 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [elu, add], Original ATen: [aten.elu, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_elu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn class ELUPlus(nn.Module): def __init__(self): super().__init__() self.elu = nn.ELU() def forward(self, x): return self.elu(x) + 1.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp8 = tmp7 + tmp3 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_elu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ELUPlusNew(nn.Module): def __init__(self): super().__init__() self.elu = nn.ELU() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
UzTak/nflows
ELUPlus
false
1,197
[ "MIT" ]
0
7211b129bfd60fabed199a1d2a3272b2aac8bbda
https://github.com/UzTak/nflows/tree/7211b129bfd60fabed199a1d2a3272b2aac8bbda
import torch from torch import nn import torch.nn class Model(nn.Module): def __init__(self): super().__init__() self.elu = nn.ELU() def forward(self, x): return self.elu(x) + 1.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
InteractingLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/vb/cvbie2qzppig2lfiaox6fsifr4m3szei3bwub2h4jhezugadmtam.py # Topologically Sorted Source Nodes: [querys_1], Original ATen: [aten.stack] # Source node to ATen node mapping: # querys_1 => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1],), kwargs = {}) triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 32) x0 = xindex % 8 x1 = (xindex // 8) % 4 x3 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + (8 + x0 + (16*x1) + (64*((-4) + x2))), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/d7/cd7xa5d4yg5y7exr6s4sr25rd6okj4v7452l7cyhxnqr3mcd4qhj.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_15, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_15, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/kx/ckxzcazhsdasvh5sdcvshdrxriufwxfrn25tt7nuks5deb2u6ei5.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/rg/crg347qwcf7vy2xko33empdwam2lpkatpcrrqyfrcymucxldnijc.py # Topologically Sorted Source Nodes: [result_4], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # result_4 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp11 = tl.load(in_out_ptr0 + (x2), xmask) tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((8*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 16, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + (128 + (8*x1) + ((-8) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp12 = tmp10 + tmp11 tmp13 = tl.full([1], 0, tl.int32) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp15 = 0.0 tmp16 = tmp14 <= tmp15 tl.store(in_out_ptr0 + (x2), tmp14, xmask) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 16), (16, 1)) assert_size_stride(primals_3, (4, 16), (16, 1)) assert_size_stride(primals_4, (4, 16), (16, 1)) assert_size_stride(primals_5, (4, 16), (16, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [querys], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [keys], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [values], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = empty_strided_cuda((8, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [querys_1], Original ATen: [aten.stack] stream0 = get_raw_stream(0) triton_poi_fused_stack_0.run(buf0, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf0, (8, 4, 8), (32, 8, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [keys_1], Original ATen: [aten.stack] triton_poi_fused_stack_0.run(buf1, buf4, 256, grid=grid(256), stream=stream0) buf5 = empty_strided_cuda((8, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [inner_product], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(buf4, (8, 8, 4), (32, 1, 8), 0), out=buf5) buf6 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 128, grid=grid(128), stream=stream0) buf7 = reinterpret_tensor(buf5, (2, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 128, grid=grid(128), stream=stream0) del buf6 buf8 = reinterpret_tensor(buf1, (8, 4, 8), (32, 8, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [values_1], Original ATen: [aten.stack] triton_poi_fused_stack_0.run(buf2, buf8, 256, grid=grid(256), stream=stream0) buf9 = reinterpret_tensor(buf2, (8, 4, 8), (32, 8, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [result], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (8, 4, 4), (16, 4, 1), 0), buf8, out=buf9) buf10 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_5, out=buf10) del primals_5 buf11 = reinterpret_tensor(buf10, (4, 4, 16), (64, 16, 1), 0); del buf10 # reuse buf12 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [result_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf11, buf9, buf12, 256, grid=grid(256), stream=stream0) del buf9 return (buf11, buf7, buf7, buf12, reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), reinterpret_tensor(buf8, (8, 8, 4), (32, 1, 8), 0), reinterpret_tensor(buf3, (8, 8, 4), (32, 1, 8), 0), buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class InteractingLayer(nn.Module): """A Layer used in AutoInt that model the correlations between different feature fields by multi-head self-attention mechanism. Input shape - A 3D tensor with shape: ``(batch_size,field_size,embedding_size)``. Output shape - 3D tensor with shape:``(batch_size,field_size,att_embedding_size * head_num)``. Arguments - **in_features** : Positive integer, dimensionality of input features. - **att_embedding_size**: int.The embedding size in multi-head self-attention network. - **head_num**: int.The head number in multi-head self-attention network. - **use_res**: bool.Whether or not use standard residual connections before output. - **seed**: A Python integer to use as random seed. References - [Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.](https://arxiv.org/abs/1810.11921) """ def __init__(self, in_features, att_embedding_size=8, head_num=2, use_res=True, seed=1024, device='cpu'): super(InteractingLayer, self).__init__() if head_num <= 0: raise ValueError('head_num must be a int > 0') self.att_embedding_size = att_embedding_size self.head_num = head_num self.use_res = use_res self.seed = seed embedding_size = in_features self.W_Query = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) self.W_key = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) self.W_Value = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) if self.use_res: self.W_Res = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) for tensor in self.parameters(): nn.init.normal_(tensor, mean=0.0, std=0.05) self def forward(self, inputs): if len(inputs.shape) != 3: raise ValueError( 'Unexpected inputs dimensions %d, expect to be 3 dimensions' % len(inputs.shape)) querys = torch.tensordot(inputs, self.W_Query, dims=([-1], [0])) keys = torch.tensordot(inputs, self.W_key, dims=([-1], [0])) values = torch.tensordot(inputs, self.W_Value, dims=([-1], [0])) querys = torch.stack(torch.split(querys, self.att_embedding_size, dim=2)) keys = torch.stack(torch.split(keys, self.att_embedding_size, dim=2)) values = torch.stack(torch.split(values, self.att_embedding_size, dim=2)) inner_product = torch.einsum('bnik,bnjk->bnij', querys, keys) self.normalized_att_scores = F.softmax(inner_product, dim=-1) result = torch.matmul(self.normalized_att_scores, values) result = torch.cat(torch.split(result, 1), dim=-1) result = torch.squeeze(result, dim=0) if self.use_res: result += torch.tensordot(inputs, self.W_Res, dims=([-1], [0])) result = F.relu(result) return result def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from sklearn.metrics import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 32 x0 = xindex % 8 x1 = xindex // 8 % 4 x3 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (8 + x0 + 16 * x1 + 64 * (-4 + x2)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp11 = tl.load(in_out_ptr0 + x2, xmask) tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (8 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 16, tl.int64) tmp9 = tl.load(in_ptr0 + (128 + 8 * x1 + (-8 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp12 = tmp10 + tmp11 tmp13 = tl.full([1], 0, tl.int32) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp15 = 0.0 tmp16 = tmp14 <= tmp15 tl.store(in_out_ptr0 + x2, tmp14, xmask) tl.store(out_ptr0 + x2, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 16), (16, 1)) assert_size_stride(primals_3, (4, 16), (16, 1)) assert_size_stride(primals_4, (4, 16), (16, 1)) assert_size_stride(primals_5, (4, 16), (16, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = empty_strided_cuda((8, 4, 8), (32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_stack_0[grid(256)](buf0, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf0, (8, 4, 8), (32, 8, 1), 0) del buf0 triton_poi_fused_stack_0[grid(256)](buf1, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((8, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(buf4, (8, 8, 4), (32, 1, 8), 0), out=buf5) buf6 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(128)](buf5, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (2, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_2[grid(128)](buf6, buf7, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf6 buf8 = reinterpret_tensor(buf1, (8, 4, 8), (32, 8, 1), 0) del buf1 triton_poi_fused_stack_0[grid(256)](buf2, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf2, (8, 4, 8), (32, 8, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (8, 4, 4), (16, 4, 1), 0), buf8, out=buf9) buf10 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_5, out=buf10) del primals_5 buf11 = reinterpret_tensor(buf10, (4, 4, 16), (64, 16, 1), 0) del buf10 buf12 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(256)](buf11, buf9, buf12, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf9 return buf11, buf7, buf7, buf12, reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), reinterpret_tensor(buf8, (8, 8, 4), (32, 1, 8), 0 ), reinterpret_tensor(buf3, (8, 8, 4), (32, 1, 8), 0), buf4 class InteractingLayerNew(nn.Module): """A Layer used in AutoInt that model the correlations between different feature fields by multi-head self-attention mechanism. Input shape - A 3D tensor with shape: ``(batch_size,field_size,embedding_size)``. Output shape - 3D tensor with shape:``(batch_size,field_size,att_embedding_size * head_num)``. Arguments - **in_features** : Positive integer, dimensionality of input features. - **att_embedding_size**: int.The embedding size in multi-head self-attention network. - **head_num**: int.The head number in multi-head self-attention network. - **use_res**: bool.Whether or not use standard residual connections before output. - **seed**: A Python integer to use as random seed. References - [Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.](https://arxiv.org/abs/1810.11921) """ def __init__(self, in_features, att_embedding_size=8, head_num=2, use_res=True, seed=1024, device='cpu'): super(InteractingLayerNew, self).__init__() if head_num <= 0: raise ValueError('head_num must be a int > 0') self.att_embedding_size = att_embedding_size self.head_num = head_num self.use_res = use_res self.seed = seed embedding_size = in_features self.W_Query = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) self.W_key = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) self.W_Value = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) if self.use_res: self.W_Res = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) for tensor in self.parameters(): nn.init.normal_(tensor, mean=0.0, std=0.05) self def forward(self, input_0): primals_2 = self.W_Query primals_3 = self.W_key primals_4 = self.W_Value primals_5 = self.W_Res primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Ulian7/DeepCTR
InteractingLayer
false
1,198
[ "Apache-2.0" ]
0
d8f519a722a4d6a4f1fe18e04af54cfd1369c9a5
https://github.com/Ulian7/DeepCTR/tree/d8f519a722a4d6a4f1fe18e04af54cfd1369c9a5
import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class Model(nn.Module): """A Layer used in AutoInt that model the correlations between different feature fields by multi-head self-attention mechanism. Input shape - A 3D tensor with shape: ``(batch_size,field_size,embedding_size)``. Output shape - 3D tensor with shape:``(batch_size,field_size,att_embedding_size * head_num)``. Arguments - **in_features** : Positive integer, dimensionality of input features. - **att_embedding_size**: int.The embedding size in multi-head self-attention network. - **head_num**: int.The head number in multi-head self-attention network. - **use_res**: bool.Whether or not use standard residual connections before output. - **seed**: A Python integer to use as random seed. References - [Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.](https://arxiv.org/abs/1810.11921) """ def __init__(self, in_features, att_embedding_size=8, head_num=2, use_res=True, seed=1024, device='cpu'): super().__init__() if head_num <= 0: raise ValueError('head_num must be a int > 0') self.att_embedding_size = att_embedding_size self.head_num = head_num self.use_res = use_res self.seed = seed embedding_size = in_features self.W_Query = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) self.W_key = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) self.W_Value = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) if self.use_res: self.W_Res = nn.Parameter(torch.Tensor(embedding_size, self. att_embedding_size * self.head_num)) for tensor in self.parameters(): nn.init.normal_(tensor, mean=0.0, std=0.05) self def forward(self, inputs): if len(inputs.shape) != 3: raise ValueError( 'Unexpected inputs dimensions %d, expect to be 3 dimensions' % len(inputs.shape)) querys = torch.tensordot(inputs, self.W_Query, dims=([-1], [0])) keys = torch.tensordot(inputs, self.W_key, dims=([-1], [0])) values = torch.tensordot(inputs, self.W_Value, dims=([-1], [0])) querys = torch.stack(torch.split(querys, self.att_embedding_size, dim=2)) keys = torch.stack(torch.split(keys, self.att_embedding_size, dim=2)) values = torch.stack(torch.split(values, self.att_embedding_size, dim=2)) inner_product = torch.einsum('bnik,bnjk->bnij', querys, keys) self.normalized_att_scores = F.softmax(inner_product, dim=-1) result = torch.matmul(self.normalized_att_scores, values) result = torch.cat(torch.split(result, 1), dim=-1) result = torch.squeeze(result, dim=0) if self.use_res: result += torch.tensordot(inputs, self.W_Res, dims=([-1], [0])) result = F.relu(result) return result def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
CombinedTargetMSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3f/c3fha6hwigp5qdkirvgzpdtvtztnza4ys4zevam5i2owamrhkdzx.py # Topologically Sorted Source Nodes: [heatmap_pred_1, heatmap_gt_1, mse_loss, mul_2, loss, mul_3, mul_4, mse_loss_1, mul_5, loss_1, mul_6, mul_7, mse_loss_2, mul_8, loss_2, truediv, mul_9], Original ATen: [aten.mul, aten.mse_loss, aten.add, aten.div] # Source node to ATen node mapping: # heatmap_gt_1 => mul_1 # heatmap_pred_1 => mul # loss => add # loss_1 => add_1 # loss_2 => add_2 # mse_loss => mean, pow_1, sub # mse_loss_1 => mean_1, pow_2, sub_1 # mse_loss_2 => mean_2, pow_3, sub_2 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # mul_8 => mul_8 # mul_9 => mul_9 # truediv => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %select), kwargs = {}) # %mul_1 : [num_users=5] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, %select_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, 0.0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %squeeze_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %squeeze_3), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %mul_4), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 0.5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_5), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %squeeze_4), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %squeeze_5), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_6, %mul_7), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 0.5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_8), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 1), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 1.0), kwargs = {}) triton_per_fused_add_div_mse_loss_mul_0 = async_compile.triton('triton_per_fused_add_div_mse_loss_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tmp5 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp11 = tmp4 * tmp10 tmp13 = tmp4 * tmp12 tmp14 = tmp11 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tmp20 = tmp4 * tmp19 tmp22 = tmp4 * tmp21 tmp23 = tmp20 - tmp22 tmp24 = tmp23 * tmp23 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.sum(tmp25, 1)[:, None] tmp28 = 4.0 tmp29 = tmp9 / tmp28 tmp30 = 0.5 tmp31 = tmp29 * tmp30 tmp32 = 0.0 tmp33 = tmp31 + tmp32 tmp34 = tmp18 / tmp28 tmp35 = tmp34 * tmp30 tmp36 = tmp33 + tmp35 tmp37 = tmp27 / tmp28 tmp38 = tmp37 * tmp30 tmp39 = tmp36 + tmp38 tmp40 = 1.0 tmp41 = tmp39 * tmp40 tmp42 = tmp41 * tmp40 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp42, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [heatmap_pred_1, heatmap_gt_1, mse_loss, mul_2, loss, mul_3, mul_4, mse_loss_1, mul_5, loss_1, mul_6, mul_7, mse_loss_2, mul_8, loss_2, truediv, mul_9], Original ATen: [aten.mul, aten.mse_loss, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_mse_loss_mul_0.run(buf3, arg0_1, arg2_1, arg1_1, 1, 4, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CombinedTargetMSELoss(nn.Module): """MSE loss for combined target. CombinedTarget: The combination of classification target (response map) and regression target (offset map). Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Args: use_target_weight (bool): Option to use weighted MSE loss. Different joint types may have different target weights. loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, use_target_weight, loss_weight=1.0): super().__init__() self.criterion = nn.MSELoss(reduction='mean') self.use_target_weight = use_target_weight self.loss_weight = loss_weight def forward(self, output, target, target_weight): batch_size = output.size(0) num_channels = output.size(1) heatmaps_pred = output.reshape((batch_size, num_channels, -1)).split( 1, 1) heatmaps_gt = target.reshape((batch_size, num_channels, -1)).split(1, 1 ) loss = 0.0 num_joints = num_channels // 3 for idx in range(num_joints): heatmap_pred = heatmaps_pred[idx * 3].squeeze() heatmap_gt = heatmaps_gt[idx * 3].squeeze() offset_x_pred = heatmaps_pred[idx * 3 + 1].squeeze() offset_x_gt = heatmaps_gt[idx * 3 + 1].squeeze() offset_y_pred = heatmaps_pred[idx * 3 + 2].squeeze() offset_y_gt = heatmaps_gt[idx * 3 + 2].squeeze() if self.use_target_weight: heatmap_pred = heatmap_pred * target_weight[:, idx] heatmap_gt = heatmap_gt * target_weight[:, idx] loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt) loss += 0.5 * self.criterion(heatmap_gt * offset_x_pred, heatmap_gt * offset_x_gt) loss += 0.5 * self.criterion(heatmap_gt * offset_y_pred, heatmap_gt * offset_y_gt) return loss / num_joints * self.loss_weight def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'use_target_weight': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tmp5 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp11 = tmp4 * tmp10 tmp13 = tmp4 * tmp12 tmp14 = tmp11 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tmp20 = tmp4 * tmp19 tmp22 = tmp4 * tmp21 tmp23 = tmp20 - tmp22 tmp24 = tmp23 * tmp23 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.sum(tmp25, 1)[:, None] tmp28 = 4.0 tmp29 = tmp9 / tmp28 tmp30 = 0.5 tmp31 = tmp29 * tmp30 tmp32 = 0.0 tmp33 = tmp31 + tmp32 tmp34 = tmp18 / tmp28 tmp35 = tmp34 * tmp30 tmp36 = tmp33 + tmp35 tmp37 = tmp27 / tmp28 tmp38 = tmp37 * tmp30 tmp39 = tmp36 + tmp38 tmp40 = 1.0 tmp41 = tmp39 * tmp40 tmp42 = tmp41 * tmp40 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp42, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mse_loss_mul_0[grid(1)](buf3, arg0_1, arg2_1, arg1_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf3, class CombinedTargetMSELossNew(nn.Module): """MSE loss for combined target. CombinedTarget: The combination of classification target (response map) and regression target (offset map). Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Args: use_target_weight (bool): Option to use weighted MSE loss. Different joint types may have different target weights. loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, use_target_weight, loss_weight=1.0): super().__init__() self.criterion = nn.MSELoss(reduction='mean') self.use_target_weight = use_target_weight self.loss_weight = loss_weight def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
WangXin93/mmpose
CombinedTargetMSELoss
false
1,199
[ "Apache-2.0" ]
0
28b6e9ac2f6ed195ab27fb04da2213fc885a5994
https://github.com/WangXin93/mmpose/tree/28b6e9ac2f6ed195ab27fb04da2213fc885a5994
import torch import torch.nn as nn class Model(nn.Module): """MSE loss for combined target. CombinedTarget: The combination of classification target (response map) and regression target (offset map). Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Args: use_target_weight (bool): Option to use weighted MSE loss. Different joint types may have different target weights. loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, use_target_weight, loss_weight=1.0): super().__init__() self.criterion = nn.MSELoss(reduction='mean') self.use_target_weight = use_target_weight self.loss_weight = loss_weight def forward(self, output, target, target_weight): batch_size = output.size(0) num_channels = output.size(1) heatmaps_pred = output.reshape((batch_size, num_channels, -1)).split( 1, 1) heatmaps_gt = target.reshape((batch_size, num_channels, -1)).split(1, 1 ) loss = 0.0 num_joints = num_channels // 3 for idx in range(num_joints): heatmap_pred = heatmaps_pred[idx * 3].squeeze() heatmap_gt = heatmaps_gt[idx * 3].squeeze() offset_x_pred = heatmaps_pred[idx * 3 + 1].squeeze() offset_x_gt = heatmaps_gt[idx * 3 + 1].squeeze() offset_y_pred = heatmaps_pred[idx * 3 + 2].squeeze() offset_y_gt = heatmaps_gt[idx * 3 + 2].squeeze() if self.use_target_weight: heatmap_pred = heatmap_pred * target_weight[:, idx] heatmap_gt = heatmap_gt * target_weight[:, idx] loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt) loss += 0.5 * self.criterion(heatmap_gt * offset_x_pred, heatmap_gt * offset_x_gt) loss += 0.5 * self.criterion(heatmap_gt * offset_y_pred, heatmap_gt * offset_y_gt) return loss / num_joints * self.loss_weight def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4]
AUGRUCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/su/csuyns6mfp66oncomzo5eikxszcgvnk2yq5hnh5qodgq2yxjppwg.py # Topologically Sorted Source Nodes: [add, reset_gate, add_1, update_gate, mul, add_2, new_state, update_gate_1, sub, mul_2, mul_3, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # hy => add_3 # mul => mul # mul_2 => mul_2 # mul_3 => mul_3 # new_state => tanh # reset_gate => sigmoid # sub => sub # update_gate => sigmoid_1 # update_gate_1 => mul_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_3), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_1, %getitem_4), kwargs = {}) # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %getitem_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, %mul), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_2,), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %sigmoid_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_5), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %tanh), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4 + x0 + (12*x1)), xmask) tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (4 + x0 + (12*x1)), xmask) tmp6 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask) tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x0 + (12*x1)), xmask) tmp12 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask) tmp13 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (8 + x0 + (12*x1)), xmask) tmp19 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr4 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = tl.sigmoid(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp11 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp20 = tmp19 * tmp5 tmp21 = 1.0 tmp22 = tmp21 - tmp20 tmp24 = tmp22 * tmp23 tmp25 = tmp20 * tmp18 tmp26 = tmp24 + tmp25 tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp11, xmask) tl.store(out_ptr2 + (x2), tmp18, xmask) tl.store(out_ptr3 + (x2), tmp26, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (12, 4), (4, 1)) assert_size_stride(primals_2, (12, ), (1, )) assert_size_stride(primals_3, (64, 4), (4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (64, 4), (4, 1)) assert_size_stride(primals_6, (16, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [gh], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, primals_5, reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, reset_gate, add_1, update_gate, mul, add_2, new_state, update_gate_1, sub, mul_2, mul_3, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0.run(buf0, primals_2, buf1, primals_6, primals_5, buf3, buf2, buf4, buf5, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 return (buf5, primals_3, primals_5, primals_6, reinterpret_tensor(buf1, (64, 4), (12, 1), 8), buf2, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class AUGRUCell(nn.Module): """ Effect of GRU with attentional update gate (AUGRU) Reference: - Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1809.03672, 2018. """ def __init__(self, input_size, hidden_size, bias=True): super(AUGRUCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size) ) self.register_parameter('weight_ih', self.weight_ih) self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size, hidden_size)) self.register_parameter('weight_hh', self.weight_hh) if bias: self.bias_ih = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_ih', self.bias_ih) self.bias_hh = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_ih', self.bias_hh) for tensor in [self.bias_ih, self.bias_hh]: nn.init.zeros_(tensor) else: self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) def forward(self, inputs, hx, att_score): gi = F.linear(inputs, self.weight_ih, self.bias_ih) gh = F.linear(hx, self.weight_hh, self.bias_hh) i_r, i_z, i_n = gi.chunk(3, 1) h_r, h_z, h_n = gh.chunk(3, 1) reset_gate = torch.sigmoid(i_r + h_r) update_gate = torch.sigmoid(i_z + h_z) new_state = torch.tanh(i_n + reset_gate * h_n) att_score = att_score.view(-1, 1) update_gate = att_score * update_gate hy = (1.0 - update_gate) * hx + update_gate * new_state return hy def get_inputs(): return [torch.rand([64, 4]), torch.rand([64, 4]), torch.rand([16, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from sklearn.metrics import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4 + x0 + 12 * x1), xmask) tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (4 + x0 + 12 * x1), xmask) tmp6 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask) tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x0 + 12 * x1), xmask) tmp12 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask) tmp13 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (8 + x0 + 12 * x1), xmask) tmp19 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr4 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = tl.sigmoid(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp11 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp20 = tmp19 * tmp5 tmp21 = 1.0 tmp22 = tmp21 - tmp20 tmp24 = tmp22 * tmp23 tmp25 = tmp20 * tmp18 tmp26 = tmp24 + tmp25 tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp11, xmask) tl.store(out_ptr2 + x2, tmp18, xmask) tl.store(out_ptr3 + x2, tmp26, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (12, 4), (4, 1)) assert_size_stride(primals_2, (12,), (1,)) assert_size_stride(primals_3, (64, 4), (4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (64, 4), (4, 1)) assert_size_stride(primals_6, (16, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 12), (12, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 12), (12, 1), torch.float32) extern_kernels.addmm(primals_2, primals_5, reinterpret_tensor( primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0[grid(256)](buf0, primals_2, buf1, primals_6, primals_5, buf3, buf2, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 return buf5, primals_3, primals_5, primals_6, reinterpret_tensor(buf1, (64, 4), (12, 1), 8), buf2, buf3, buf4 class AUGRUCellNew(nn.Module): """ Effect of GRU with attentional update gate (AUGRU) Reference: - Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1809.03672, 2018. """ def __init__(self, input_size, hidden_size, bias=True): super(AUGRUCellNew, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size) ) self.register_parameter('weight_ih', self.weight_ih) self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size, hidden_size)) self.register_parameter('weight_hh', self.weight_hh) if bias: self.bias_ih = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_ih', self.bias_ih) self.bias_hh = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_ih', self.bias_hh) for tensor in [self.bias_ih, self.bias_hh]: nn.init.zeros_(tensor) else: self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) def forward(self, input_0, input_1, input_2): primals_1 = self.weight_ih primals_4 = self.weight_hh primals_2 = self.bias_ih primals_3 = input_0 primals_5 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
Sunmyunghan/Final_Project
AUGRUCell
false
1,200
[ "MIT" ]
0
28cde293dc6d07521b2e1c5613b20444aea91d21
https://github.com/Sunmyunghan/Final_Project/tree/28cde293dc6d07521b2e1c5613b20444aea91d21
import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class Model(nn.Module): """ Effect of GRU with attentional update gate (AUGRU) Reference: - Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1809.03672, 2018. """ def __init__(self, input_size, hidden_size, bias=True): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size) ) self.register_parameter('weight_ih', self.weight_ih) self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size, hidden_size)) self.register_parameter('weight_hh', self.weight_hh) if bias: self.bias_ih = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_ih', self.bias_ih) self.bias_hh = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_ih', self.bias_hh) for tensor in [self.bias_ih, self.bias_hh]: nn.init.zeros_(tensor) else: self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) def forward(self, inputs, hx, att_score): gi = F.linear(inputs, self.weight_ih, self.bias_ih) gh = F.linear(hx, self.weight_hh, self.bias_hh) i_r, i_z, i_n = gi.chunk(3, 1) h_r, h_z, h_n = gh.chunk(3, 1) reset_gate = torch.sigmoid(i_r + h_r) update_gate = torch.sigmoid(i_z + h_z) new_state = torch.tanh(i_n + reset_gate * h_n) att_score = att_score.view(-1, 1) update_gate = att_score * update_gate hy = (1.0 - update_gate) * hx + update_gate * new_state return hy def get_inputs(): return [torch.rand([64, 4]), torch.rand([64, 4]), torch.rand([16, 4])] def get_init_inputs(): return [4, 4]
BiInteractionPooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/bi/cbi2qodo47qltjis43e7m5he7aydnzfct5wg53dvjlfjgi3wz5zt.py # Topologically Sorted Source Nodes: [sum_1, square_of_sum, mul, sum_of_square, sub, cross_term], Original ATen: [aten.sum, aten.pow, aten.mul, aten.sub] # Source node to ATen node mapping: # cross_term => mul_1 # mul => mul # square_of_sum => pow_1 # sub => sub # sum_1 => sum_1 # sum_of_square => sum_2 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [1], True), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg0_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_1, %sum_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 0.5), kwargs = {}) triton_poi_fused_mul_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_mul_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_pow_sub_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp0 * tmp0 tmp9 = tmp1 * tmp1 tmp10 = tmp8 + tmp9 tmp11 = tmp3 * tmp3 tmp12 = tmp10 + tmp11 tmp13 = tmp5 * tmp5 tmp14 = tmp12 + tmp13 tmp15 = tmp7 - tmp14 tmp16 = 0.5 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_1, square_of_sum, mul, sum_of_square, sub, cross_term], Original ATen: [aten.sum, aten.pow, aten.mul, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_mul_pow_sub_sum_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from sklearn.metrics import * class BiInteractionPooling(nn.Module): """Bi-Interaction Layer used in Neural FM,compress the pairwise element-wise product of features into one single vector. Input shape - A 3D tensor with shape:``(batch_size,field_size,embedding_size)``. Output shape - 3D tensor with shape: ``(batch_size,1,embedding_size)``. References - [He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017: 355-364.](http://arxiv.org/abs/1708.05027) """ def __init__(self): super(BiInteractionPooling, self).__init__() def forward(self, inputs): concated_embeds_value = inputs square_of_sum = torch.pow(torch.sum(concated_embeds_value, dim=1, keepdim=True), 2) sum_of_square = torch.sum(concated_embeds_value * concated_embeds_value, dim=1, keepdim=True) cross_term = 0.5 * (square_of_sum - sum_of_square) return cross_term def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from sklearn.metrics import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_pow_sub_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp0 * tmp0 tmp9 = tmp1 * tmp1 tmp10 = tmp8 + tmp9 tmp11 = tmp3 * tmp3 tmp12 = tmp10 + tmp11 tmp13 = tmp5 * tmp5 tmp14 = tmp12 + tmp13 tmp15 = tmp7 - tmp14 tmp16 = 0.5 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + x2, tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_pow_sub_sum_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class BiInteractionPoolingNew(nn.Module): """Bi-Interaction Layer used in Neural FM,compress the pairwise element-wise product of features into one single vector. Input shape - A 3D tensor with shape:``(batch_size,field_size,embedding_size)``. Output shape - 3D tensor with shape: ``(batch_size,1,embedding_size)``. References - [He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017: 355-364.](http://arxiv.org/abs/1708.05027) """ def __init__(self): super(BiInteractionPoolingNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Sunmyunghan/Final_Project
BiInteractionPooling
false
1,201
[ "MIT" ]
0
28cde293dc6d07521b2e1c5613b20444aea91d21
https://github.com/Sunmyunghan/Final_Project/tree/28cde293dc6d07521b2e1c5613b20444aea91d21
import torch import torch.nn as nn from sklearn.metrics import * class Model(nn.Module): """Bi-Interaction Layer used in Neural FM,compress the pairwise element-wise product of features into one single vector. Input shape - A 3D tensor with shape:``(batch_size,field_size,embedding_size)``. Output shape - 3D tensor with shape: ``(batch_size,1,embedding_size)``. References - [He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017: 355-364.](http://arxiv.org/abs/1708.05027) """ def __init__(self): super().__init__() def forward(self, inputs): concated_embeds_value = inputs square_of_sum = torch.pow(torch.sum(concated_embeds_value, dim=1, keepdim=True), 2) sum_of_square = torch.sum(concated_embeds_value * concated_embeds_value, dim=1, keepdim=True) cross_term = 0.5 * (square_of_sum - sum_of_square) return cross_term def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
AGRUCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/by/cbypqeb7lfdlbth5j2ww7h2bluyiqc2nrbnc76btfynxntusq5wb.py # Topologically Sorted Source Nodes: [add, reset_gate, mul, add_1, new_state, sub, mul_1, mul_2, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub, aten.tanh_backward] # Source node to ATen node mapping: # add => add # add_1 => add_1 # hy => add_2 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # new_state => tanh # reset_gate => sigmoid # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_3), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %getitem_5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, %mul), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %view), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_6), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %tanh), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %tanh), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_4), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (12*x1)), xmask) tmp6 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + (x2), xmask) tmp11 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask) tmp12 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (8 + x0 + (12*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp7 = 1.0 tmp8 = tmp7 - tmp6 tmp10 = tmp8 * tmp9 tmp13 = tmp11 + tmp12 tmp15 = tmp5 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = libdevice.tanh(tmp16) tmp18 = tmp6 * tmp17 tmp19 = tmp10 + tmp18 tmp20 = tmp17 * tmp17 tmp21 = tmp7 - tmp20 tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp19, xmask) tl.store(out_ptr2 + (x2), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (12, 4), (4, 1)) assert_size_stride(primals_2, (12, ), (1, )) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [gh], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, reset_gate, mul, add_1, new_state, sub, mul_1, mul_2, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub, aten.tanh_backward] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0.run(buf0, primals_2, buf1, primals_7, primals_6, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0) del buf0 del primals_2 return (buf3, primals_3, primals_6, primals_7, reinterpret_tensor(buf1, (16, 4), (12, 1), 8), buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class AGRUCell(nn.Module): """ Attention based GRU (AGRU) Reference: - Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1809.03672, 2018. """ def __init__(self, input_size, hidden_size, bias=True): super(AGRUCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size) ) self.register_parameter('weight_ih', self.weight_ih) self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size, hidden_size)) self.register_parameter('weight_hh', self.weight_hh) if bias: self.bias_ih = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_ih', self.bias_ih) self.bias_hh = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_hh', self.bias_hh) for tensor in [self.bias_ih, self.bias_hh]: nn.init.zeros_(tensor) else: self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) def forward(self, inputs, hx, att_score): gi = F.linear(inputs, self.weight_ih, self.bias_ih) gh = F.linear(hx, self.weight_hh, self.bias_hh) i_r, _, i_n = gi.chunk(3, 1) h_r, _, h_n = gh.chunk(3, 1) reset_gate = torch.sigmoid(i_r + h_r) new_state = torch.tanh(i_n + reset_gate * h_n) att_score = att_score.view(-1, 1) hy = (1.0 - att_score) * hx + att_score * new_state return hy def get_inputs(): return [torch.rand([16, 4]), torch.rand([16, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from sklearn.metrics import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + 12 * x1), xmask) tmp6 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + x2, xmask) tmp11 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask) tmp12 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (8 + x0 + 12 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp7 = 1.0 tmp8 = tmp7 - tmp6 tmp10 = tmp8 * tmp9 tmp13 = tmp11 + tmp12 tmp15 = tmp5 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = libdevice.tanh(tmp16) tmp18 = tmp6 * tmp17 tmp19 = tmp10 + tmp18 tmp20 = tmp17 * tmp17 tmp21 = tmp7 - tmp20 tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp19, xmask) tl.store(out_ptr2 + x2, tmp21, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (12, 4), (4, 1)) assert_size_stride(primals_2, (12,), (1,)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 12), (12, 1), torch.float32) extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor( primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0[grid(64)]( buf0, primals_2, buf1, primals_7, primals_6, buf2, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del primals_2 return buf3, primals_3, primals_6, primals_7, reinterpret_tensor(buf1, (16, 4), (12, 1), 8), buf2, buf4 class AGRUCellNew(nn.Module): """ Attention based GRU (AGRU) Reference: - Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1809.03672, 2018. """ def __init__(self, input_size, hidden_size, bias=True): super(AGRUCellNew, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size) ) self.register_parameter('weight_ih', self.weight_ih) self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size, hidden_size)) self.register_parameter('weight_hh', self.weight_hh) if bias: self.bias_ih = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_ih', self.bias_ih) self.bias_hh = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_hh', self.bias_hh) for tensor in [self.bias_ih, self.bias_hh]: nn.init.zeros_(tensor) else: self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) def forward(self, input_0, input_1, input_2): primals_1 = self.weight_ih primals_4 = self.weight_hh primals_2 = self.bias_ih primals_5 = self.bias_hh primals_3 = input_0 primals_6 = input_1 primals_7 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Sunmyunghan/Final_Project
AGRUCell
false
1,202
[ "MIT" ]
0
28cde293dc6d07521b2e1c5613b20444aea91d21
https://github.com/Sunmyunghan/Final_Project/tree/28cde293dc6d07521b2e1c5613b20444aea91d21
import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class Model(nn.Module): """ Attention based GRU (AGRU) Reference: - Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1809.03672, 2018. """ def __init__(self, input_size, hidden_size, bias=True): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size) ) self.register_parameter('weight_ih', self.weight_ih) self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size, hidden_size)) self.register_parameter('weight_hh', self.weight_hh) if bias: self.bias_ih = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_ih', self.bias_ih) self.bias_hh = nn.Parameter(torch.Tensor(3 * hidden_size)) self.register_parameter('bias_hh', self.bias_hh) for tensor in [self.bias_ih, self.bias_hh]: nn.init.zeros_(tensor) else: self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) def forward(self, inputs, hx, att_score): gi = F.linear(inputs, self.weight_ih, self.bias_ih) gh = F.linear(hx, self.weight_hh, self.bias_hh) i_r, _, i_n = gi.chunk(3, 1) h_r, _, h_n = gh.chunk(3, 1) reset_gate = torch.sigmoid(i_r + h_r) new_state = torch.tanh(i_n + reset_gate * h_n) att_score = att_score.view(-1, 1) hy = (1.0 - att_score) * hx + att_score * new_state return hy def get_inputs(): return [torch.rand([16, 4]), torch.rand([16, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
cha_loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/b3/cb3k2n2etvob7szydtuektkv7vvmqqhpd7b5usq3fmxyrvk5c5qr.py # Topologically Sorted Source Nodes: [sub, abs_1, pow_1, diff, out, loss], Original ATen: [aten.sub, aten.abs, aten.pow, aten.add, aten.sqrt, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # diff => add # loss => mean # out => sqrt # pow_1 => pow_1 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1e-06), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sqrt,), kwargs = {}) triton_per_fused_abs_add_mean_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_abs_add_mean_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_mean_pow_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_mean_pow_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tmp3 * tmp3 tmp5 = 1e-06 tmp6 = tmp4 + tmp5 tmp7 = libdevice.sqrt(tmp6) tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, pow_1, diff, out, loss], Original ATen: [aten.sub, aten.abs, aten.pow, aten.add, aten.sqrt, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_add_mean_pow_sqrt_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.optim import torch.cuda class cha_loss(nn.Module): def __init__(self, eps=0.001): super(cha_loss, self).__init__() self.eps = eps return def forward(self, inp, target): diff = torch.abs(inp - target) ** 2 + self.eps ** 2 out = torch.sqrt(diff) loss = torch.mean(out) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.optim import torch.cuda assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_mean_pow_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tmp3 * tmp3 tmp5 = 1e-06 tmp6 = tmp4 + tmp5 tmp7 = libdevice.sqrt(tmp6) tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_mean_pow_sqrt_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class cha_lossNew(nn.Module): def __init__(self, eps=0.001): super(cha_lossNew, self).__init__() self.eps = eps return def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Weepingchestnut/OVSR
cha_loss
false
1,203
[ "Apache-2.0" ]
0
11554a3b1072d50a8c88cf59b4b986df1fda73f9
https://github.com/Weepingchestnut/OVSR/tree/11554a3b1072d50a8c88cf59b4b986df1fda73f9
import torch import torch.nn as nn import torch.optim import torch.cuda class Model(nn.Module): def __init__(self, eps=0.001): super().__init__() self.eps = eps return def forward(self, inp, target): diff = torch.abs(inp - target) ** 2 + self.eps ** 2 out = torch.sqrt(diff) loss = torch.mean(out) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
AvgReducePool1d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/jn/cjnv5uptstyk4xaisuiw5kf5lbz3m33meejxhbfbsta5ozps7ijn.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [2]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class AvgReducePool1d(nn.Module): """A subclass of :torch_nn:`Module`. Avg Pool layer for 1D inputs. The same as :torch_nn:`AvgPool1d` except that the pooling dimension is entirely reduced (i.e., `pool_size=input_length`). """ def forward(self, input: 'torch.Tensor') ->torch.Tensor: return torch.mean(input, dim=2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class AvgReducePool1dNew(nn.Module): """A subclass of :torch_nn:`Module`. Avg Pool layer for 1D inputs. The same as :torch_nn:`AvgPool1d` except that the pooling dimension is entirely reduced (i.e., `pool_size=input_length`). """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
WangXinglin/BIT_framework
AvgReducePool1d
false
1,204
[ "MIT" ]
0
1484874fcd00d052c7536789dec95050b480b25d
https://github.com/WangXinglin/BIT_framework/tree/1484874fcd00d052c7536789dec95050b480b25d
import torch from torch import nn class Model(nn.Module): """A subclass of :torch_nn:`Module`. Avg Pool layer for 1D inputs. The same as :torch_nn:`AvgPool1d` except that the pooling dimension is entirely reduced (i.e., `pool_size=input_length`). """ def forward(self, input: 'torch.Tensor') ->torch.Tensor: return torch.mean(input, dim=2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
T5LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zc/czcy4atdkmj5kmy4jxz74ygrnoedga35xsqkibq72stpidzlybko.py # Topologically Sorted Source Nodes: [pow_1, mean, add, sqrt, x, mul], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mean => mean # mul => mul # pow_1 => pow_1 # sqrt => sqrt # x => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 1e-05), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) triton_poi_fused_add_div_mean_mul_pow_sqrt_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tl.store(out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, mean, add, sqrt, x, mul], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_mul_pow_sqrt_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_2 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class T5LayerNorm(nn.Module): """ Custom LayerNorm for T5 with no mean subtraction and no bias. """ def __init__(self, input_size: 'int', eps: 'float'=1e-05): super().__init__() self.w = nn.Parameter(torch.ones(input_size)) self.eps = eps def forward(self, x: 'torch.Tensor'): x = x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) return self.w * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tl.store(out_ptr0 + x2, tmp19, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_mul_pow_sqrt_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf0, primals_1 class T5LayerNormNew(nn.Module): """ Custom LayerNorm for T5 with no mean subtraction and no bias. """ def __init__(self, input_size: 'int', eps: 'float'=1e-05): super().__init__() self.w = nn.Parameter(torch.ones(input_size)) self.eps = eps def forward(self, input_0): primals_2 = self.w primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
WangXinglin/BIT_framework
T5LayerNorm
false
1,205
[ "MIT" ]
0
1484874fcd00d052c7536789dec95050b480b25d
https://github.com/WangXinglin/BIT_framework/tree/1484874fcd00d052c7536789dec95050b480b25d
import torch from torch import nn class Model(nn.Module): """ Custom LayerNorm for T5 with no mean subtraction and no bias. """ def __init__(self, input_size: 'int', eps: 'float'=1e-05): super().__init__() self.w = nn.Parameter(torch.ones(input_size)) self.eps = eps def forward(self, x: 'torch.Tensor'): x = x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) return self.w * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
GraphConvolution
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/q5/cq5wusjiorttrifgkbgmb575ri5bohmulexkpd7lpcdrnw7myr2f.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # output_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%bmm,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(primals_3, reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), out=buf1) del buf0 buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf2, buf3, 64, grid=grid(64), stream=stream0) return (buf2, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf3, reinterpret_tensor(primals_3, (4, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional as F from torch.nn.modules.module import Module import torch.nn.modules.loss import torch.utils.data class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, dropout=0.0, act=F.relu): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.linear = torch.nn.Linear(in_features, out_features, bias=False) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.linear.weight) def forward(self, input, adj): input = F.dropout(input, self.dropout, self.training) support = self.linear(input) output = torch.bmm(adj, support) output = self.act(output) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module import torch.nn.functional as F from torch.nn.modules.module import Module import torch.nn.modules.loss import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_3, reinterpret_tensor(buf0, (4, 4, 4), ( 16, 4, 1), 0), out=buf1) del buf0 buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf2, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf3, reinterpret_tensor(primals_3, (4, 4, 4), (16, 1, 4), 0) class GraphConvolutionNew(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, dropout=0.0, act=F.relu): super(GraphConvolutionNew, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.linear = torch.nn.Linear(in_features, out_features, bias=False) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.linear.weight) def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' def forward(self, input_0, input_1): primals_2 = self.linear.weight primals_1 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
WanyuGroup/CVPR2022-OrphicX
GraphConvolution
false
1,206
[ "MIT" ]
0
98d8d8259439c45661573e575cf956331df16abc
https://github.com/WanyuGroup/CVPR2022-OrphicX/tree/98d8d8259439c45661573e575cf956331df16abc
from torch.nn import Module import torch import torch.nn.functional as F from torch.nn.modules.module import Module import torch.nn.modules.loss import torch.utils.data class Model(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, dropout=0.0, act=F.relu): super().__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.linear = torch.nn.Linear(in_features, out_features, bias=False) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.linear.weight) def forward(self, input, adj): input = F.dropout(input, self.dropout, self.training) support = self.linear(input) output = torch.bmm(adj, support) output = self.act(output) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4]
Normalize
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/74/c74cgsnsrc4jmxl2qqe5j2mmuphscf6e56iqf2iy24pro6mj73sp.py # Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div] # Source node to ATen node mapping: # normalize => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x3), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class Normalize(nn.Module): """Performs :math:`L_p` normalization of inputs over specified dimension. Does: .. math:: v = \\frac{v}{\\max(\\lVert v \\rVert_p, \\epsilon)} for each subtensor v over dimension dim of input. Each subtensor is flattened into a vector, i.e. :math:`\\lVert v \\rVert_p` is not a matrix norm. With default arguments normalizes over the second dimension with Euclidean norm. Args: p (float): the exponent value in the norm formulation. Default: 2 dim (int): the dimension to reduce. Default: 1 """ def __init__(self, p=2, dim=1): super(Normalize, self).__init__() self.p = p self.dim = dim def forward(self, x): return F.normalize(x, self.p, self.dim, eps=1e-08) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x3, tmp15, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class NormalizeNew(nn.Module): """Performs :math:`L_p` normalization of inputs over specified dimension. Does: .. math:: v = \\frac{v}{\\max(\\lVert v \\rVert_p, \\epsilon)} for each subtensor v over dimension dim of input. Each subtensor is flattened into a vector, i.e. :math:`\\lVert v \\rVert_p` is not a matrix norm. With default arguments normalizes over the second dimension with Euclidean norm. Args: p (float): the exponent value in the norm formulation. Default: 2 dim (int): the dimension to reduce. Default: 1 """ def __init__(self, p=2, dim=1): super(NormalizeNew, self).__init__() self.p = p self.dim = dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
WillyChen123/CDFNet
Normalize
false
1,207
[ "MIT" ]
0
12d6b288aa2a8301683395a75bd44a7be44b7f2a
https://github.com/WillyChen123/CDFNet/tree/12d6b288aa2a8301683395a75bd44a7be44b7f2a
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): """Performs :math:`L_p` normalization of inputs over specified dimension. Does: .. math:: v = \\frac{v}{\\max(\\lVert v \\rVert_p, \\epsilon)} for each subtensor v over dimension dim of input. Each subtensor is flattened into a vector, i.e. :math:`\\lVert v \\rVert_p` is not a matrix norm. With default arguments normalizes over the second dimension with Euclidean norm. Args: p (float): the exponent value in the norm formulation. Default: 2 dim (int): the dimension to reduce. Default: 1 """ def __init__(self, p=2, dim=1): super().__init__() self.p = p self.dim = dim def forward(self, x): return F.normalize(x, self.p, self.dim, eps=1e-08) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
InnerProductDecoder
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/hn/chnsjoso43zxwc4rs5k2ujcpccyhrverh5okecwh4vbrmpmq4kaa.py # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # adj => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%bmm,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(arg0_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, 64, grid=grid(64), stream=stream0) return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.nn.modules.loss import torch.utils.data class InnerProductDecoder(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoder, self).__init__() self.dropout = dropout self.act = act def forward(self, z): z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.bmm(z, torch.transpose(z, 1, 2))) return adj def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.modules.loss import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg0_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(64)](buf1, 64, XBLOCK=64, num_warps =1, num_stages=1) return buf1, class InnerProductDecoderNew(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoderNew, self).__init__() self.dropout = dropout self.act = act def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
WanyuGroup/CVPR2022-OrphicX
InnerProductDecoder
false
1,208
[ "MIT" ]
0
98d8d8259439c45661573e575cf956331df16abc
https://github.com/WanyuGroup/CVPR2022-OrphicX/tree/98d8d8259439c45661573e575cf956331df16abc
import torch import torch.nn.functional as F import torch.nn as nn import torch.nn.modules.loss import torch.utils.data class Model(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super().__init__() self.dropout = dropout self.act = act def forward(self, z): z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.bmm(z, torch.transpose(z, 1, 2))) return adj def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [0.5]
InnerProductDecoderMLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/by/cbyavqfpm6cctsjn76scubidnajec26whr355vus7lq6jaaa5rcx.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # z => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6n/c6ny6zeq6oiux67xx5maj7x7dofqjbxxtczkhwvlqya6ihwdcyou.py # Topologically Sorted Source Nodes: [z_1], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # z_1 => sigmoid # Graph fragment: # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2k/c2kxppdwrjhrnsxdvspyvbppardk6v3troxohx47zqnk2haa3fjg.py # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # adj => sigmoid_1 # Graph fragment: # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%bmm,), kwargs = {}) triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 64, grid=grid(64), stream=stream0) del primals_2 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [z_1], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf3, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(buf3, (4, 4, 4), (16, 1, 4), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_2.run(buf5, 64, grid=grid(64), stream=stream0) return (buf5, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(buf1, (16, 4), (4, 1), 0), buf3, buf5, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.nn.modules.loss import torch.utils.data class InnerProductDecoderMLP(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, input_dim, hidden_dim1, hidden_dim2, dropout, act= torch.sigmoid): super(InnerProductDecoderMLP, self).__init__() self.fc = nn.Linear(input_dim, hidden_dim1) self.fc2 = nn.Linear(hidden_dim1, hidden_dim2) self.dropout = dropout self.act = act self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.fc.weight) torch.nn.init.zeros_(self.fc.bias) torch.nn.init.xavier_uniform_(self.fc2.weight) torch.nn.init.zeros_(self.fc2.bias) def forward(self, z): z = F.relu(self.fc(z)) z = torch.sigmoid(self.fc2(z)) z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.bmm(z, torch.transpose(z, 1, 2))) return adj def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'hidden_dim1': 4, 'hidden_dim2': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.modules.loss import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(64)](buf1, primals_2, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0) del buf2 triton_poi_fused_sigmoid_1[grid(64)](buf3, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(buf3, (4, 4, 4), (16, 1, 4), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_sigmoid_2[grid(64)](buf5, 64, XBLOCK=64, num_warps =1, num_stages=1) return buf5, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (16, 4), (4, 1), 0 ), buf3, buf5, primals_4, buf6 class InnerProductDecoderMLPNew(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, input_dim, hidden_dim1, hidden_dim2, dropout, act= torch.sigmoid): super(InnerProductDecoderMLPNew, self).__init__() self.fc = nn.Linear(input_dim, hidden_dim1) self.fc2 = nn.Linear(hidden_dim1, hidden_dim2) self.dropout = dropout self.act = act self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.fc.weight) torch.nn.init.zeros_(self.fc.bias) torch.nn.init.xavier_uniform_(self.fc2.weight) torch.nn.init.zeros_(self.fc2.bias) def forward(self, input_0): primals_1 = self.fc.weight primals_2 = self.fc.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
WanyuGroup/CVPR2022-OrphicX
InnerProductDecoderMLP
false
1,209
[ "MIT" ]
0
98d8d8259439c45661573e575cf956331df16abc
https://github.com/WanyuGroup/CVPR2022-OrphicX/tree/98d8d8259439c45661573e575cf956331df16abc
import torch import torch.nn.functional as F import torch.nn as nn import torch.nn.modules.loss import torch.utils.data class Model(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, input_dim, hidden_dim1, hidden_dim2, dropout, act= torch.sigmoid): super().__init__() self.fc = nn.Linear(input_dim, hidden_dim1) self.fc2 = nn.Linear(hidden_dim1, hidden_dim2) self.dropout = dropout self.act = act self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.fc.weight) torch.nn.init.zeros_(self.fc.bias) torch.nn.init.xavier_uniform_(self.fc2.weight) torch.nn.init.zeros_(self.fc2.bias) def forward(self, z): z = F.relu(self.fc(z)) z = torch.sigmoid(self.fc2(z)) z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.bmm(z, torch.transpose(z, 1, 2))) return adj def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'hidden_dim1': 4, 'hidden_dim2': 4, 'dropout': 0.5}]
Accuracy
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/jd/cjdnaobowqernajenb4axacuvfjpuu3bnchwmpvbem4jevqy6y4v.py # Topologically Sorted Source Nodes: [predictions], Original ATen: [aten.argmax] # Source node to ATen node mapping: # predictions => argmax # Graph fragment: # %argmax : [num_users=1] = call_function[target=torch.ops.aten.argmax.default](args = (%arg0_1, -1), kwargs = {}) triton_poi_fused_argmax_0 = async_compile.triton('triton_poi_fused_argmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_argmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 > tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 > tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 > tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tmp45 = tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + (x0), tmp46, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vd/cvdkoxf2wkd5oryi23fngtr24eavrkiw46qraujejvcpyvdhsfen.py # Topologically Sorted Source Nodes: [eq, valid_mask, correct, sum_1, float_2, sum_2, float_3, truediv], Original ATen: [aten.eq, aten.ne, aten.mul, aten.sum, aten._to_copy, aten.div] # Source node to ATen node mapping: # correct => mul # eq => eq # float_2 => convert_element_type # float_3 => convert_element_type_1 # sum_1 => sum_1 # sum_2 => sum_2 # truediv => div # valid_mask => ne # Graph fragment: # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%argmax, %arg1_1), kwargs = {}) # %ne : [num_users=2] = call_function[target=torch.ops.aten.ne.Scalar](args = (%arg1_1, -100), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%eq, %ne), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_1, torch.float32), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne,), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_2, torch.float32), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convert_element_type, %convert_element_type_1), kwargs = {}) triton_per_fused__to_copy_div_eq_mul_ne_sum_1 = async_compile.triton('triton_per_fused__to_copy_div_eq_mul_ne_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_div_eq_mul_ne_sum_1', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_div_eq_mul_ne_sum_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex % 64 r2 = rindex tmp0 = tl.load(in_ptr0 + (r0), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (r2), None) tmp1 = tmp0.to(tl.float32) tmp3 = tmp1 == tmp2 tmp4 = -100.0 tmp5 = tmp2 != tmp4 tmp6 = tmp3 & tmp5 tmp7 = tmp6.to(tl.int64) tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = tmp5.to(tl.int64) tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = tmp10.to(tl.float32) tmp16 = tmp14.to(tl.float32) tmp17 = tmp15 / tmp16 tl.store(out_ptr2 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [predictions], Original ATen: [aten.argmax] stream0 = get_raw_stream(0) triton_poi_fused_argmax_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 buf3 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [eq, valid_mask, correct, sum_1, float_2, sum_2, float_3, truediv], Original ATen: [aten.eq, aten.ne, aten.mul, aten.sum, aten._to_copy, aten.div] triton_per_fused__to_copy_div_eq_mul_ne_sum_1.run(buf0, arg1_1, buf3, 1, 256, grid=grid(1), stream=stream0) del arg1_1 del buf0 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from sklearn.metrics import * import torch.nn as nn def accuracy(logits, labels, ignore_index: 'int'=-100): with torch.no_grad(): valid_mask = labels != ignore_index predictions = logits.float().argmax(-1) correct = (predictions == labels) * valid_mask return correct.sum().float() / valid_mask.sum().float() class Accuracy(nn.Module): def __init__(self, ignore_index: 'int'=-100): super().__init__() self.ignore_index = ignore_index def forward(self, inputs, target): return accuracy(inputs, target, self.ignore_index) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from sklearn.metrics import * import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_argmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 > tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 > tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 > tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + x0, tmp46, xmask) @triton.jit def triton_per_fused__to_copy_div_eq_mul_ne_sum_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex % 64 r2 = rindex tmp0 = tl.load(in_ptr0 + r0, None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + r2, None) tmp1 = tmp0.to(tl.float32) tmp3 = tmp1 == tmp2 tmp4 = -100.0 tmp5 = tmp2 != tmp4 tmp6 = tmp3 & tmp5 tmp7 = tmp6.to(tl.int64) tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = tmp5.to(tl.int64) tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = tmp10.to(tl.float32) tmp16 = tmp14.to(tl.float32) tmp17 = tmp15 / tmp16 tl.store(out_ptr2 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) get_raw_stream(0) triton_poi_fused_argmax_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 buf3 = empty_strided_cuda((), (), torch.float32) triton_per_fused__to_copy_div_eq_mul_ne_sum_1[grid(1)](buf0, arg1_1, buf3, 1, 256, num_warps=2, num_stages=1) del arg1_1 del buf0 return buf3, def accuracy(logits, labels, ignore_index: 'int'=-100): with torch.no_grad(): valid_mask = labels != ignore_index predictions = logits.float().argmax(-1) correct = (predictions == labels) * valid_mask return correct.sum().float() / valid_mask.sum().float() class AccuracyNew(nn.Module): def __init__(self, ignore_index: 'int'=-100): super().__init__() self.ignore_index = ignore_index def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Vasyka/DeepGQuad
Accuracy
false
1,210
[ "Apache-2.0" ]
0
772a461732fc4044a1dee84d2688bf16960e272c
https://github.com/Vasyka/DeepGQuad/tree/772a461732fc4044a1dee84d2688bf16960e272c
import torch from sklearn.metrics import * import torch.nn as nn def accuracy(logits, labels, ignore_index: 'int'=-100): with torch.no_grad(): valid_mask = labels != ignore_index predictions = logits.float().argmax(-1) correct = (predictions == labels) * valid_mask return correct.sum().float() / valid_mask.sum().float() class Model(nn.Module): def __init__(self, ignore_index: 'int'=-100): super().__init__() self.ignore_index = ignore_index def forward(self, inputs, target): return accuracy(inputs, target, self.ignore_index) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
InteractingLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ak/caklf2pyfxcrlk24jikpqfulearftlggift3k32sdo56rqpygtef.py # Topologically Sorted Source Nodes: [querys_1], Original ATen: [aten.stack] # Source node to ATen node mapping: # querys_1 => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1],), kwargs = {}) triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 8) x0 = xindex % 2 x1 = (xindex // 2) % 4 x3 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + (2 + x0 + (4*x1) + (16*((-4) + x2))), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/d7/cd7xa5d4yg5y7exr6s4sr25rd6okj4v7452l7cyhxnqr3mcd4qhj.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_15, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_15, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/kx/ckxzcazhsdasvh5sdcvshdrxriufwxfrn25tt7nuks5deb2u6ei5.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ee/ceebt7dp2dnq4qecrxhaoiakzivwsb6pug54s5t7st6c2qpbsii7.py # Topologically Sorted Source Nodes: [result_4], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # result_4 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp11 = tl.load(in_out_ptr0 + (x2), xmask) tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((2*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 4, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + (32 + (2*x1) + ((-2) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp12 = tmp10 + tmp11 tmp13 = tl.full([1], 0, tl.int32) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp15 = 0.0 tmp16 = tmp14 <= tmp15 tl.store(in_out_ptr0 + (x2), tmp14, xmask) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [querys], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [keys], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [values], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = empty_strided_cuda((8, 4, 2), (8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [querys_1], Original ATen: [aten.stack] stream0 = get_raw_stream(0) triton_poi_fused_stack_0.run(buf0, buf3, 64, grid=grid(64), stream=stream0) buf4 = reinterpret_tensor(buf0, (8, 4, 2), (8, 2, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [keys_1], Original ATen: [aten.stack] triton_poi_fused_stack_0.run(buf1, buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((8, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [inner_product], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(buf4, (8, 2, 4), (8, 1, 2), 0), out=buf5) buf6 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 128, grid=grid(128), stream=stream0) buf7 = reinterpret_tensor(buf5, (2, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 128, grid=grid(128), stream=stream0) del buf6 buf8 = reinterpret_tensor(buf1, (8, 4, 2), (8, 2, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [values_1], Original ATen: [aten.stack] triton_poi_fused_stack_0.run(buf2, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf2, (8, 4, 2), (8, 2, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [result], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (8, 4, 4), (16, 4, 1), 0), buf8, out=buf9) buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tensordot_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_5, out=buf10) del primals_5 buf11 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0); del buf10 # reuse buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [result_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf11, buf9, buf12, 64, grid=grid(64), stream=stream0) del buf9 return (buf11, buf7, buf7, buf12, reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), reinterpret_tensor(buf8, (8, 2, 4), (8, 1, 2), 0), reinterpret_tensor(buf3, (8, 2, 4), (8, 1, 2), 0), buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class InteractingLayer(nn.Module): """A Layer used in AutoInt that model the correlations between different feature fields by multi-head self-attention mechanism. Input shape - A 3D tensor with shape: ``(batch_size,field_size,embedding_size)``. Output shape - 3D tensor with shape:``(batch_size,field_size,embedding_size)``. Arguments - **in_features** : Positive integer, dimensionality of input features. - **head_num**: int.The head number in multi-head self-attention network. - **use_res**: bool.Whether or not use standard residual connections before output. - **seed**: A Python integer to use as random seed. References - [Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.](https://arxiv.org/abs/1810.11921) """ def __init__(self, embedding_size, head_num=2, use_res=True, scaling= False, seed=1024, device='cpu'): super(InteractingLayer, self).__init__() if head_num <= 0: raise ValueError('head_num must be a int > 0') if embedding_size % head_num != 0: raise ValueError( 'embedding_size is not an integer multiple of head_num!') self.att_embedding_size = embedding_size // head_num self.head_num = head_num self.use_res = use_res self.scaling = scaling self.seed = seed self.W_Query = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) self.W_key = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) self.W_Value = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) if self.use_res: self.W_Res = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) for tensor in self.parameters(): nn.init.normal_(tensor, mean=0.0, std=0.05) self def forward(self, inputs): if len(inputs.shape) != 3: raise ValueError( 'Unexpected inputs dimensions %d, expect to be 3 dimensions' % len(inputs.shape)) querys = torch.tensordot(inputs, self.W_Query, dims=([-1], [0])) keys = torch.tensordot(inputs, self.W_key, dims=([-1], [0])) values = torch.tensordot(inputs, self.W_Value, dims=([-1], [0])) querys = torch.stack(torch.split(querys, self.att_embedding_size, dim=2)) keys = torch.stack(torch.split(keys, self.att_embedding_size, dim=2)) values = torch.stack(torch.split(values, self.att_embedding_size, dim=2)) inner_product = torch.einsum('bnik,bnjk->bnij', querys, keys) if self.scaling: inner_product /= self.att_embedding_size ** 0.5 self.normalized_att_scores = F.softmax(inner_product, dim=-1) result = torch.matmul(self.normalized_att_scores, values) result = torch.cat(torch.split(result, 1), dim=-1) result = torch.squeeze(result, dim=0) if self.use_res: result += torch.tensordot(inputs, self.W_Res, dims=([-1], [0])) result = F.relu(result) return result def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'embedding_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from sklearn.metrics import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 8 x0 = xindex % 2 x1 = xindex // 2 % 4 x3 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (2 + x0 + 4 * x1 + 16 * (-4 + x2)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp11 = tl.load(in_out_ptr0 + x2, xmask) tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (2 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 4, tl.int64) tmp9 = tl.load(in_ptr0 + (32 + 2 * x1 + (-2 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp12 = tmp10 + tmp11 tmp13 = tl.full([1], 0, tl.int32) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp15 = 0.0 tmp16 = tmp14 <= tmp15 tl.store(in_out_ptr0 + x2, tmp14, xmask) tl.store(out_ptr0 + x2, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = empty_strided_cuda((8, 4, 2), (8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_stack_0[grid(64)](buf0, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf0, (8, 4, 2), (8, 2, 1), 0) del buf0 triton_poi_fused_stack_0[grid(64)](buf1, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((8, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(buf4, (8, 2, 4), (8, 1, 2), 0), out=buf5) buf6 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(128)](buf5, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (2, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_2[grid(128)](buf6, buf7, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf6 buf8 = reinterpret_tensor(buf1, (8, 4, 2), (8, 2, 1), 0) del buf1 triton_poi_fused_stack_0[grid(64)](buf2, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf2, (8, 4, 2), (8, 2, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (8, 4, 4), (16, 4, 1), 0), buf8, out=buf9) buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_5, out=buf10) del primals_5 buf11 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0) del buf10 buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(64)](buf11, buf9, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf9 return buf11, buf7, buf7, buf12, reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), reinterpret_tensor(buf8, (8, 2, 4), (8, 1, 2), 0 ), reinterpret_tensor(buf3, (8, 2, 4), (8, 1, 2), 0), buf4 class InteractingLayerNew(nn.Module): """A Layer used in AutoInt that model the correlations between different feature fields by multi-head self-attention mechanism. Input shape - A 3D tensor with shape: ``(batch_size,field_size,embedding_size)``. Output shape - 3D tensor with shape:``(batch_size,field_size,embedding_size)``. Arguments - **in_features** : Positive integer, dimensionality of input features. - **head_num**: int.The head number in multi-head self-attention network. - **use_res**: bool.Whether or not use standard residual connections before output. - **seed**: A Python integer to use as random seed. References - [Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.](https://arxiv.org/abs/1810.11921) """ def __init__(self, embedding_size, head_num=2, use_res=True, scaling= False, seed=1024, device='cpu'): super(InteractingLayerNew, self).__init__() if head_num <= 0: raise ValueError('head_num must be a int > 0') if embedding_size % head_num != 0: raise ValueError( 'embedding_size is not an integer multiple of head_num!') self.att_embedding_size = embedding_size // head_num self.head_num = head_num self.use_res = use_res self.scaling = scaling self.seed = seed self.W_Query = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) self.W_key = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) self.W_Value = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) if self.use_res: self.W_Res = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) for tensor in self.parameters(): nn.init.normal_(tensor, mean=0.0, std=0.05) self def forward(self, input_0): primals_2 = self.W_Query primals_3 = self.W_key primals_4 = self.W_Value primals_5 = self.W_Res primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Sunmyunghan/Final_Project
InteractingLayer
false
1,211
[ "MIT" ]
0
28cde293dc6d07521b2e1c5613b20444aea91d21
https://github.com/Sunmyunghan/Final_Project/tree/28cde293dc6d07521b2e1c5613b20444aea91d21
import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import * class Model(nn.Module): """A Layer used in AutoInt that model the correlations between different feature fields by multi-head self-attention mechanism. Input shape - A 3D tensor with shape: ``(batch_size,field_size,embedding_size)``. Output shape - 3D tensor with shape:``(batch_size,field_size,embedding_size)``. Arguments - **in_features** : Positive integer, dimensionality of input features. - **head_num**: int.The head number in multi-head self-attention network. - **use_res**: bool.Whether or not use standard residual connections before output. - **seed**: A Python integer to use as random seed. References - [Song W, Shi C, Xiao Z, et al. AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks[J]. arXiv preprint arXiv:1810.11921, 2018.](https://arxiv.org/abs/1810.11921) """ def __init__(self, embedding_size, head_num=2, use_res=True, scaling= False, seed=1024, device='cpu'): super().__init__() if head_num <= 0: raise ValueError('head_num must be a int > 0') if embedding_size % head_num != 0: raise ValueError( 'embedding_size is not an integer multiple of head_num!') self.att_embedding_size = embedding_size // head_num self.head_num = head_num self.use_res = use_res self.scaling = scaling self.seed = seed self.W_Query = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) self.W_key = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) self.W_Value = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) if self.use_res: self.W_Res = nn.Parameter(torch.Tensor(embedding_size, embedding_size)) for tensor in self.parameters(): nn.init.normal_(tensor, mean=0.0, std=0.05) self def forward(self, inputs): if len(inputs.shape) != 3: raise ValueError( 'Unexpected inputs dimensions %d, expect to be 3 dimensions' % len(inputs.shape)) querys = torch.tensordot(inputs, self.W_Query, dims=([-1], [0])) keys = torch.tensordot(inputs, self.W_key, dims=([-1], [0])) values = torch.tensordot(inputs, self.W_Value, dims=([-1], [0])) querys = torch.stack(torch.split(querys, self.att_embedding_size, dim=2)) keys = torch.stack(torch.split(keys, self.att_embedding_size, dim=2)) values = torch.stack(torch.split(values, self.att_embedding_size, dim=2)) inner_product = torch.einsum('bnik,bnjk->bnij', querys, keys) if self.scaling: inner_product /= self.att_embedding_size ** 0.5 self.normalized_att_scores = F.softmax(inner_product, dim=-1) result = torch.matmul(self.normalized_att_scores, values) result = torch.cat(torch.split(result, 1), dim=-1) result = torch.squeeze(result, dim=0) if self.use_res: result += torch.tensordot(inputs, self.W_Res, dims=([-1], [0])) result = F.relu(result) return result def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
SoftDiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/wq/cwq5uygy7kcq5ujfxxfxcjhwrohlqk4d23fuusip7buftbecgoz2.py # Topologically Sorted Source Nodes: [mul, numerator, mul_1, mul_2, add, denominator, truediv], Original ATen: [aten.mul, aten.sum, aten.add, aten.div] # Source node to ATen node mapping: # add => add # denominator => sum_2 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # numerator => sum_1 # truediv => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg0_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg1_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_per_fused_add_div_mul_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tmp0 * tmp0 tmp7 = tmp1 * tmp1 tmp8 = tmp6 + tmp7 tmp9 = tl.broadcast_to(tmp8, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tmp5 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, numerator, mul_1, mul_2, add, denominator, truediv], Original ATen: [aten.mul, aten.sum, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_sum_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn.modules.loss import _Loss class SoftDiceLoss(_Loss): def __init__(self, size_average=None, reduce=None, reduction='mean'): super(SoftDiceLoss, self).__init__(size_average, reduce, reduction) def forward(self, y_pred, y_gt): numerator = torch.sum(y_pred * y_gt) denominator = torch.sum(y_pred * y_pred + y_gt * y_gt) return numerator / denominator def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn.modules.loss import _Loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tmp0 * tmp0 tmp7 = tmp1 * tmp1 tmp8 = tmp6 + tmp7 tmp9 = tl.broadcast_to(tmp8, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tmp5 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_sum_0[grid(1)](buf2, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class SoftDiceLossNew(_Loss): def __init__(self, size_average=None, reduce=None, reduction='mean'): super(SoftDiceLossNew, self).__init__(size_average, reduce, reduction) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Will3577/Medical-Transformer
SoftDiceLoss
false
1,212
[ "MIT" ]
0
e72bfe68fcd55268f57bc7c27b4cbce8029d1b81
https://github.com/Will3577/Medical-Transformer/tree/e72bfe68fcd55268f57bc7c27b4cbce8029d1b81
import torch from torch.nn.modules.loss import _Loss class Model(_Loss): def __init__(self, size_average=None, reduce=None, reduction='mean'): super().__init__(size_average, reduce, reduction) def forward(self, y_pred, y_gt): numerator = torch.sum(y_pred * y_gt) denominator = torch.sum(y_pred * y_pred + y_gt * y_gt) return numerator / denominator def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
VGAE
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/q5/cq5wusjiorttrifgkbgmb575ri5bohmulexkpd7lpcdrnw7myr2f.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # output_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%bmm,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(primals_3, reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), out=buf1) buf2 = buf1; del buf1 # reuse buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf2, buf8, 64, grid=grid(64), stream=stream0) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.bmm] extern_kernels.bmm(primals_3, reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0), out=buf4) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [support_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.bmm] extern_kernels.bmm(primals_3, reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), out=buf6) buf7 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.bmm] extern_kernels.bmm(buf4, reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), out=buf7) return (buf7, buf4, buf6, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_3, (4, 4, 4), (16, 1, 4), 0), primals_5, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch.nn.functional as F from torch.nn.modules.module import Module import torch.nn as nn import torch.nn.modules.loss import torch.utils.data class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, dropout=0.0, act=F.relu): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.linear = torch.nn.Linear(in_features, out_features, bias=False) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.linear.weight) def forward(self, input, adj): input = F.dropout(input, self.dropout, self.training) support = self.linear(input) output = torch.bmm(adj, support) output = self.act(output) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class InnerProductDecoder(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoder, self).__init__() self.dropout = dropout self.act = act def forward(self, z): z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.bmm(z, torch.transpose(z, 1, 2))) return adj class VGAE(nn.Module): def __init__(self, input_feat_dim, hidden_dim1, output_dim, dropout): super(VGAE, self).__init__() self.gc1 = GraphConvolution(input_feat_dim, hidden_dim1, dropout, act=F.relu) self.gc2 = GraphConvolution(hidden_dim1, output_dim, dropout, act= lambda x: x) self.gc3 = GraphConvolution(hidden_dim1, output_dim, dropout, act= lambda x: x) self.dc = InnerProductDecoder(dropout, act=lambda x: x) def encode(self, x, adj): hidden1 = self.gc1(x, adj) return self.gc2(hidden1, adj), self.gc3(hidden1, adj) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def forward(self, x, adj): mu, logvar = self.encode(x, adj) z = self.reparameterize(mu, logvar) return self.dc(z), mu, logvar def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_feat_dim': 4, 'hidden_dim1': 4, 'output_dim': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module import torch.nn.functional as F from torch.nn.modules.module import Module import torch.nn as nn import torch.nn.modules.loss import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_3, reinterpret_tensor(buf0, (4, 4, 4), ( 16, 4, 1), 0), out=buf1) buf2 = buf1 del buf1 buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(64)](buf2, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_3, reinterpret_tensor(buf3, (4, 4, 4), ( 16, 4, 1), 0), out=buf4) buf5 = buf3 del buf3 extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_3, reinterpret_tensor(buf5, (4, 4, 4), ( 16, 4, 1), 0), out=buf6) buf7 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0) del buf5 extern_kernels.bmm(buf4, reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), out=buf7) return buf7, buf4, buf6, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor( buf4, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_3, (4, 4, 4), (16, 1, 4), 0), primals_5, primals_4, buf8 class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, dropout=0.0, act=F.relu): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.linear = torch.nn.Linear(in_features, out_features, bias=False) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.linear.weight) def forward(self, input, adj): input = F.dropout(input, self.dropout, self.training) support = self.linear(input) output = torch.bmm(adj, support) output = self.act(output) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class InnerProductDecoder(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoder, self).__init__() self.dropout = dropout self.act = act def forward(self, z): z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.bmm(z, torch.transpose(z, 1, 2))) return adj class VGAENew(nn.Module): def __init__(self, input_feat_dim, hidden_dim1, output_dim, dropout): super(VGAENew, self).__init__() self.gc1 = GraphConvolution(input_feat_dim, hidden_dim1, dropout, act=F.relu) self.gc2 = GraphConvolution(hidden_dim1, output_dim, dropout, act= lambda x: x) self.gc3 = GraphConvolution(hidden_dim1, output_dim, dropout, act= lambda x: x) self.dc = InnerProductDecoder(dropout, act=lambda x: x) def encode(self, x, adj): hidden1 = self.gc1(x, adj) return self.gc2(hidden1, adj), self.gc3(hidden1, adj) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def forward(self, input_0, input_1): primals_2 = self.gc1.linear.weight primals_4 = self.gc2.linear.weight primals_5 = self.gc3.linear.weight primals_1 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1], output[2]
WanyuGroup/CVPR2022-OrphicX
VGAE
false
1,213
[ "MIT" ]
0
98d8d8259439c45661573e575cf956331df16abc
https://github.com/WanyuGroup/CVPR2022-OrphicX/tree/98d8d8259439c45661573e575cf956331df16abc
from torch.nn import Module import torch import torch.nn.functional as F from torch.nn.modules.module import Module import torch.nn as nn import torch.nn.modules.loss import torch.utils.data class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, dropout=0.0, act=F.relu): super().__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.act = act self.linear = torch.nn.Linear(in_features, out_features, bias=False) self.reset_parameters() def reset_parameters(self): torch.nn.init.xavier_uniform_(self.linear.weight) def forward(self, input, adj): input = F.dropout(input, self.dropout, self.training) support = self.linear(input) output = torch.bmm(adj, support) output = self.act(output) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class InnerProductDecoder(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super().__init__() self.dropout = dropout self.act = act def forward(self, z): z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.bmm(z, torch.transpose(z, 1, 2))) return adj class Model(nn.Module): def __init__(self, input_feat_dim, hidden_dim1, output_dim, dropout): super().__init__() self.gc1 = GraphConvolution(input_feat_dim, hidden_dim1, dropout, act=F.relu) self.gc2 = GraphConvolution(hidden_dim1, output_dim, dropout, act= lambda x: x) self.gc3 = GraphConvolution(hidden_dim1, output_dim, dropout, act= lambda x: x) self.dc = InnerProductDecoder(dropout, act=lambda x: x) def encode(self, x, adj): hidden1 = self.gc1(x, adj) return self.gc2(hidden1, adj), self.gc3(hidden1, adj) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def forward(self, x, adj): mu, logvar = self.encode(x, adj) z = self.reparameterize(mu, logvar) return self.dc(z), mu, logvar def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_feat_dim': 4, 'hidden_dim1': 4, 'output_dim': 4, 'dropout': 0.5}]
SeparableConv1d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/4r/c4rfdh73mumvv5zisbd6bltsx5zw6wf6wdu6mpspnsxohocpvo6k.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # out => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%unsqueeze, [0, 1]), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x0 + (4*x1)), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 5), (20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_2, buf0, 20, grid=grid(20), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None) assert_size_stride(buf1, (1, 4, 4), (16, 4, 1)) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 4), (16, 4, 1)) return (reinterpret_tensor(buf2, (4, 4), (4, 1), 0), primals_1, primals_3, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SeparableConv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding='same', bias=False): super(SeparableConv1d, self).__init__() if stride > 1: padding = 0 self.depthwise = nn.Conv1d(in_channels, in_channels, kernel_size= kernel_size, groups=in_channels, bias=bias, padding=padding, stride=stride) self.pointwise = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=bias) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x0 + 4 * x1), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 5), (20, 5, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(20)](primals_2, buf0, 20, XBLOCK=32, num_warps=1, num_stages=1) del primals_2 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=4, bias=None) assert_size_stride(buf1, (1, 4, 4), (16, 4, 1)) buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 4), (16, 4, 1)) return reinterpret_tensor(buf2, (4, 4), (4, 1), 0 ), primals_1, primals_3, buf0, buf1 class SeparableConv1dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding='same', bias=False): super(SeparableConv1dNew, self).__init__() if stride > 1: padding = 0 self.depthwise = nn.Conv1d(in_channels, in_channels, kernel_size= kernel_size, groups=in_channels, bias=bias, padding=padding, stride=stride) self.pointwise = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=bias) def forward(self, input_0): primals_1 = self.depthwise.weight primals_3 = self.pointwise.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
WhiteTeaDragon/hw-asr
SeparableConv1d
false
1,214
[ "MIT" ]
0
78a767ab00a743b8d28d1fdad795f066fc0795da
https://github.com/WhiteTeaDragon/hw-asr/tree/78a767ab00a743b8d28d1fdad795f066fc0795da
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding='same', bias=False): super().__init__() if stride > 1: padding = 0 self.depthwise = nn.Conv1d(in_channels, in_channels, kernel_size= kernel_size, groups=in_channels, bias=bias, padding=padding, stride=stride) self.pointwise = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=bias) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
GetMask
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/vu/cvun6axbfiubqnkc625m5gpbykpzyfuvupvvh473te24qlxsmxk4.py # Topologically Sorted Source Nodes: [ne, mask], Original ATen: [aten.ne, aten._to_copy] # Source node to ATen node mapping: # mask => convert_element_type # ne => ne # Graph fragment: # %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%arg0_1, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.float32), kwargs = {}) triton_poi_fused__to_copy_ne_0 = async_compile.triton('triton_poi_fused__to_copy_ne_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_ne_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_ne_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 != tmp1 tmp3 = tmp2.to(tl.float32) tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [ne, mask], Original ATen: [aten.ne, aten._to_copy] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_ne_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.multiprocessing import torch.utils.data class GetMask(torch.nn.Module): """ inputs: x: any size outputs:mask: same size as input x """ def __init__(self, pad_idx=0): super(GetMask, self).__init__() self.pad_idx = pad_idx def forward(self, x): mask = torch.ne(x, self.pad_idx).float() return mask def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.multiprocessing import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_ne_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 != tmp1 tmp3 = tmp2.to(tl.float32) tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__to_copy_ne_0[grid(256)](arg0_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 return buf0, class GetMaskNew(torch.nn.Module): """ inputs: x: any size outputs:mask: same size as input x """ def __init__(self, pad_idx=0): super(GetMaskNew, self).__init__() self.pad_idx = pad_idx def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
WuDiDaBinGe/TAKG
GetMask
false
1,215
[ "MIT" ]
0
83e608e677a4ee74722d18cb5ef430f4f6c6ad31
https://github.com/WuDiDaBinGe/TAKG/tree/83e608e677a4ee74722d18cb5ef430f4f6c6ad31
import torch import torch.multiprocessing import torch.utils.data class Model(torch.nn.Module): """ inputs: x: any size outputs:mask: same size as input x """ def __init__(self, pad_idx=0): super().__init__() self.pad_idx = pad_idx def forward(self, x): mask = torch.ne(x, self.pad_idx).float() return mask def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SmoothCrossEntropyLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/nr/cnrkptzsuv7qm3ss6i6xgoxkou23z76h2vmwqkwz2zkgpdbxhedc.py # Topologically Sorted Source Nodes: [lsm], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # lsm => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xz/cxzrhhdsigxzd7l33hed2jl7lxvtwhqe4lxz7hmqo775cqjakfzl.py # Topologically Sorted Source Nodes: [targets, lsm, mul, sum_1, loss, loss_1], Original ATen: [aten.scatter, aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean] # Source node to ATen node mapping: # loss => neg # loss_1 => mean # lsm => exp, log, sub_1, sum_1 # mul => mul # sum_1 => sum_2 # targets => scatter_upon_const_tensor # Graph fragment: # %scatter_upon_const_tensor : [num_users=1] = call_function[target=torch._inductor.fx_passes.post_grad.scatter_upon_const_tensor](args = (), kwargs = {shape: [4, 4], background_val: 0.0, dtype: torch.float32, dim: 1, selector: %unsqueeze, val: 1.0}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%scatter_upon_const_tensor, %sub_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {}) triton_per_fused__log_softmax_mean_mul_neg_scatter_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_scatter_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_scatter_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_mean_mul_neg_scatter_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 4 r2 = rindex tmp0 = tl.load(in_ptr0 + (r0), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (4*r2), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + (4*r2)), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (2 + (4*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (3 + (4*r2)), None, eviction_policy='evict_last') tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp7 = tl_math.exp(tmp6) tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tl_math.log(tmp16) tmp18 = tmp6 - tmp17 tmp19 = tmp5 * tmp18 tmp20 = tl.full([1, 1], 1, tl.int64) tmp21 = tmp0 == tmp20 tmp22 = tl.where(tmp21, tmp3, tmp4) tmp23 = tmp8 - tmp17 tmp24 = tmp22 * tmp23 tmp25 = tmp19 + tmp24 tmp26 = tl.full([1, 1], 2, tl.int64) tmp27 = tmp0 == tmp26 tmp28 = tl.where(tmp27, tmp3, tmp4) tmp29 = tmp11 - tmp17 tmp30 = tmp28 * tmp29 tmp31 = tmp25 + tmp30 tmp32 = tl.full([1, 1], 3, tl.int64) tmp33 = tmp0 == tmp32 tmp34 = tl.where(tmp33, tmp3, tmp4) tmp35 = tmp14 - tmp17 tmp36 = tmp34 * tmp35 tmp37 = tmp31 + tmp36 tmp38 = -tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = 64.0 tmp43 = tmp41 / tmp42 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp43, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [lsm], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [targets, lsm, mul, sum_1, loss, loss_1], Original ATen: [aten.scatter, aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean] triton_per_fused__log_softmax_mean_mul_neg_scatter_sum_1.run(buf3, arg1_1, buf0, 1, 64, grid=grid(1), stream=stream0) del arg1_1 del buf0 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch.nn.modules.loss import _WeightedLoss import torch.utils.tensorboard class SmoothCrossEntropyLoss(_WeightedLoss): def __init__(self, weight=None, reduction='mean', smoothing=0.0): super().__init__(weight=weight, reduction=reduction) self.smoothing = smoothing self.weight = weight self.reduction = reduction @staticmethod def _smooth_one_hot(targets: 'torch.Tensor', n_classes: 'int', smoothing=0.0): assert 0 <= smoothing < 1 with torch.no_grad(): targets = torch.empty(size=(targets.size(0), n_classes), device =targets.device).fill_(smoothing / (n_classes - 1)).scatter_( 1, targets.data.unsqueeze(1), 1.0 - smoothing) return targets def forward(self, inputs, targets): targets = SmoothCrossEntropyLoss._smooth_one_hot(targets, inputs. size(-1), self.smoothing) lsm = F.log_softmax(inputs, -1) if self.weight is not None: lsm = lsm * self.weight.unsqueeze(0) loss = -(targets * lsm).sum(-1) if self.reduction == 'sum': loss = loss.sum() elif self.reduction == 'mean': loss = loss.mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn.modules.loss import _WeightedLoss import torch.utils.tensorboard assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_mean_mul_neg_scatter_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 4 r2 = rindex tmp0 = tl.load(in_ptr0 + r0, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + 4 * r2, None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + 4 * r2), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (2 + 4 * r2), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (3 + 4 * r2), None, eviction_policy='evict_last') tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp7 = tl_math.exp(tmp6) tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tl_math.log(tmp16) tmp18 = tmp6 - tmp17 tmp19 = tmp5 * tmp18 tmp20 = tl.full([1, 1], 1, tl.int64) tmp21 = tmp0 == tmp20 tmp22 = tl.where(tmp21, tmp3, tmp4) tmp23 = tmp8 - tmp17 tmp24 = tmp22 * tmp23 tmp25 = tmp19 + tmp24 tmp26 = tl.full([1, 1], 2, tl.int64) tmp27 = tmp0 == tmp26 tmp28 = tl.where(tmp27, tmp3, tmp4) tmp29 = tmp11 - tmp17 tmp30 = tmp28 * tmp29 tmp31 = tmp25 + tmp30 tmp32 = tl.full([1, 1], 3, tl.int64) tmp33 = tmp0 == tmp32 tmp34 = tl.where(tmp33, tmp3, tmp4) tmp35 = tmp14 - tmp17 tmp36 = tmp34 * tmp35 tmp37 = tmp31 + tmp36 tmp38 = -tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = 64.0 tmp43 = tmp41 / tmp42 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp43, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused__log_softmax_mean_mul_neg_scatter_sum_1[grid(1)](buf3, arg1_1, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg1_1 del buf0 return buf3, class SmoothCrossEntropyLossNew(_WeightedLoss): def __init__(self, weight=None, reduction='mean', smoothing=0.0): super().__init__(weight=weight, reduction=reduction) self.smoothing = smoothing self.weight = weight self.reduction = reduction @staticmethod def _smooth_one_hot(targets: 'torch.Tensor', n_classes: 'int', smoothing=0.0): assert 0 <= smoothing < 1 with torch.no_grad(): targets = torch.empty(size=(targets.size(0), n_classes), device =targets.device).fill_(smoothing / (n_classes - 1)).scatter_( 1, targets.data.unsqueeze(1), 1.0 - smoothing) return targets def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Dieg0Alejandr0/3D-Generative-SBDD
SmoothCrossEntropyLoss
false
1,216
[ "MIT" ]
0
51ffd36a6cf5048eeff6e68186a4608048feea4c
https://github.com/Dieg0Alejandr0/3D-Generative-SBDD/tree/51ffd36a6cf5048eeff6e68186a4608048feea4c
import torch import torch.nn.functional as F from torch.nn.modules.loss import _WeightedLoss import torch.utils.tensorboard class Model(_WeightedLoss): def __init__(self, weight=None, reduction='mean', smoothing=0.0): super().__init__(weight=weight, reduction=reduction) self.smoothing = smoothing self.weight = weight self.reduction = reduction @staticmethod def _smooth_one_hot(targets: 'torch.Tensor', n_classes: 'int', smoothing=0.0): assert 0 <= smoothing < 1 with torch.no_grad(): targets = torch.empty(size=(targets.size(0), n_classes), device =targets.device).fill_(smoothing / (n_classes - 1)).scatter_( 1, targets.data.unsqueeze(1), 1.0 - smoothing) return targets def forward(self, inputs, targets): targets = SmoothCrossEntropyLoss._smooth_one_hot(targets, inputs. size(-1), self.smoothing) lsm = F.log_softmax(inputs, -1) if self.weight is not None: lsm = lsm * self.weight.unsqueeze(0) loss = -(targets * lsm).sum(-1) if self.reduction == 'sum': loss = loss.sum() elif self.reduction == 'mean': loss = loss.mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return []
StandardNLL
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xp/cxp3n4erp2bfm2zjjzavoa542wl2zmildh36kbphrkxvtlr74pw5.py # Topologically Sorted Source Nodes: [log_P_2, sum_1, sum_2, sum_log_P, neg], Original ATen: [aten.mul, aten.sum, aten.div, aten.neg] # Source node to ATen node mapping: # log_P_2 => mul # neg => neg # sum_1 => sum_1 # sum_2 => sum_2 # sum_log_P => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %arg0_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [1]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div,), kwargs = {}) triton_poi_fused_div_mul_neg_sum_0 = async_compile.triton('triton_poi_fused_div_mul_neg_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_neg_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_neg_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr2 + (16 + x0 + (64*x1)), xmask) tmp13 = tl.load(in_ptr2 + (32 + x0 + (64*x1)), xmask) tmp16 = tl.load(in_ptr2 + (48 + x0 + (64*x1)), xmask) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (tmp4 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tmp6.to(tl.float32) tmp9 = tmp7 * tmp8 tmp11 = tmp7 * tmp10 tmp12 = tmp9 + tmp11 tmp14 = tmp7 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp7 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp8 + tmp10 tmp20 = tmp19 + tmp13 tmp21 = tmp20 + tmp16 tmp22 = tmp18 / tmp21 tmp23 = -tmp22 tl.store(out_ptr0 + (x2), tmp23, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_P_2, sum_1, sum_2, sum_log_P, neg], Original ATen: [aten.mul, aten.sum, aten.div, aten.neg] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_neg_sum_0.run(arg2_1, arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.int64) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.multiprocessing import torch.utils.data class StandardNLL(torch.nn.modules.loss._Loss): """ Shape: log_prob: batch x time x class y_true: batch x time mask: batch x time output: batch """ def forward(self, log_prob, y_true, mask): mask = mask.float() log_P = torch.gather(log_prob.view(-1, log_prob.size(2)), 1, y_true .contiguous().view(-1, 1)) log_P = log_P.view(y_true.size(0), y_true.size(1)) log_P = log_P * mask sum_log_P = torch.sum(log_P, dim=1) / torch.sum(mask, dim=1) return -sum_log_P def get_inputs(): return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4], dtype=torch.int64), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.multiprocessing import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_mul_neg_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr2 + (16 + x0 + 64 * x1), xmask) tmp13 = tl.load(in_ptr2 + (32 + x0 + 64 * x1), xmask) tmp16 = tl.load(in_ptr2 + (48 + x0 + 64 * x1), xmask) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp7 = tmp6.to(tl.float32) tmp9 = tmp7 * tmp8 tmp11 = tmp7 * tmp10 tmp12 = tmp9 + tmp11 tmp14 = tmp7 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp7 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp8 + tmp10 tmp20 = tmp19 + tmp13 tmp21 = tmp20 + tmp16 tmp22 = tmp18 / tmp21 tmp23 = -tmp22 tl.store(out_ptr0 + x2, tmp23, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_neg_sum_0[grid(64)](arg2_1, arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, class StandardNLLNew(torch.nn.modules.loss._Loss): """ Shape: log_prob: batch x time x class y_true: batch x time mask: batch x time output: batch """ def forward(self, input_0, input_1, input_2): arg1_1 = input_0 arg2_1 = input_1 arg0_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
WuDiDaBinGe/TAKG
StandardNLL
false
1,217
[ "MIT" ]
0
83e608e677a4ee74722d18cb5ef430f4f6c6ad31
https://github.com/WuDiDaBinGe/TAKG/tree/83e608e677a4ee74722d18cb5ef430f4f6c6ad31
import torch import torch.multiprocessing import torch.utils.data class Model(torch.nn.modules.loss._Loss): """ Shape: log_prob: batch x time x class y_true: batch x time mask: batch x time output: batch """ def forward(self, log_prob, y_true, mask): mask = mask.float() log_P = torch.gather(log_prob.view(-1, log_prob.size(2)), 1, y_true .contiguous().view(-1, 1)) log_P = log_P.view(y_true.size(0), y_true.size(1)) log_P = log_P * mask sum_log_P = torch.sum(log_P, dim=1) / torch.sum(mask, dim=1) return -sum_log_P def get_inputs(): return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4], dtype=torch.int64), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MLP_model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/iw/ciwzqbjwnj7d5oa6p5yefl4n5gdocf3qor6rcesklcxblhq2hpwa.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %add_tensor_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_5, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_5,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uz/cuzbnz5k52xhjpdoaucm3u5qsyj2prasqn3xsty665xnmdng4lmj.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_3 => relu_1 # Graph fragment: # %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_5), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/65/c65tc5xm2a3caq7ssexgjgocmcydeqgh76csqhvewry2b7btv4fj.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_5 => relu_2 # Graph fragment: # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2q/c2qz2ws53yjsy6jju72g7tnxehfjxae2rfg45uiafec7haukf7jm.py # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_7 => relu_3 # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2y/c2y7nraxg57efqjgaab4g2ywiolmgkkaxdzjcqfjeb2guhagama5.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_9 => relu_4 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_11), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/kg/ckggh7vcwkx75oqfl3ddc3alsf6amoizuvccqqz7hr4wtjlek5uo.py # Topologically Sorted Source Nodes: [out_11], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_11 => relu_5 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_13), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4096, 4), (4, 1)) assert_size_stride(primals_3, (4096, ), (1, )) assert_size_stride(primals_4, (2048, 4096), (4096, 1)) assert_size_stride(primals_5, (2048, ), (1, )) assert_size_stride(primals_6, (512, 2048), (2048, 1)) assert_size_stride(primals_7, (512, ), (1, )) assert_size_stride(primals_8, (128, 512), (512, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (64, 128), (128, 1)) assert_size_stride(primals_11, (64, ), (1, )) assert_size_stride(primals_12, (32, 64), (64, 1)) assert_size_stride(primals_13, (32, ), (1, )) assert_size_stride(primals_14, (4, 32), (32, 1)) assert_size_stride(primals_15, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4096), (4096, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4096), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 16384, grid=grid(16384), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (4096, 2048), (1, 4096), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 8192, grid=grid(8192), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (2048, 512), (1, 2048), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf5, primals_7, 2048, grid=grid(2048), stream=stream0) del primals_7 buf6 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_8, (512, 128), (1, 512), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.relu] triton_poi_fused_relu_3.run(buf7, primals_9, 512, grid=grid(512), stream=stream0) del primals_9 buf8 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf7, reinterpret_tensor(primals_10, (128, 64), (1, 128), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_11, 256, grid=grid(256), stream=stream0) del primals_11 buf10 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf9, reinterpret_tensor(primals_12, (64, 32), (1, 64), 0), out=buf10) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [out_11], Original ATen: [aten.relu] triton_poi_fused_relu_5.run(buf11, primals_13, 128, grid=grid(128), stream=stream0) del primals_13 buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_12], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, buf11, reinterpret_tensor(primals_14, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf12) del primals_15 return (buf12, primals_1, buf1, buf3, buf5, buf7, buf9, buf11, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4096, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2048, 4096), (4096, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((512, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((32, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MLP_model(nn.Module): """Feedfoward neural network with 6 hidden layer""" def __init__(self, in_size, out_size): super().__init__() self.linear1 = nn.Linear(in_size, 4096) self.linear2 = nn.Linear(4096, 2048) self.linear3 = nn.Linear(2048, 512) self.linear4 = nn.Linear(512, 128) self.linear5 = nn.Linear(128, 64) self.linear6 = nn.Linear(64, 32) self.linear7 = nn.Linear(32, out_size) def forward(self, xb): xb = xb.view(xb.size(0), -1) out = self.linear1(xb) out = F.relu(out) out = self.linear2(out) out = F.relu(out) out = self.linear3(out) out = F.relu(out) out = self.linear4(out) out = F.relu(out) out = self.linear5(out) out = F.relu(out) out = self.linear6(out) out = F.relu(out) out = self.linear7(out) return out def training_step(self, batch, criterion): images, labels = batch out = self(images) loss = criterion(out, labels) return loss def validation_step(self, batch): images, labels = batch out = self(images) loss = F.cross_entropy(out, labels) acc = self.accuracy(out, labels) return {'val_loss': loss, 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def epoch_end(self, epoch, result): None def accuracy(self, outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_size': 4, 'out_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4096, 4), (4, 1)) assert_size_stride(primals_3, (4096,), (1,)) assert_size_stride(primals_4, (2048, 4096), (4096, 1)) assert_size_stride(primals_5, (2048,), (1,)) assert_size_stride(primals_6, (512, 2048), (2048, 1)) assert_size_stride(primals_7, (512,), (1,)) assert_size_stride(primals_8, (128, 512), (512, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (64, 128), (128, 1)) assert_size_stride(primals_11, (64,), (1,)) assert_size_stride(primals_12, (32, 64), (64, 1)) assert_size_stride(primals_13, (32,), (1,)) assert_size_stride(primals_14, (4, 32), (32, 1)) assert_size_stride(primals_15, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4096), (4096, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4096 ), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(16384)](buf1, primals_3, 16384, XBLOCK =128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (4096, 2048), (1, 4096), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(8192)](buf3, primals_5, 8192, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 512), (512, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (2048, 512), (1, 2048), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_2[grid(2048)](buf5, primals_7, 2048, XBLOCK= 256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_8, (512, 128), ( 1, 512), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_relu_3[grid(512)](buf7, primals_9, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(buf7, reinterpret_tensor(primals_10, (128, 64), ( 1, 128), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(256)](buf9, primals_11, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_11 buf10 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_12, (64, 32), (1, 64), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_5[grid(128)](buf11, primals_13, 128, XBLOCK= 128, num_warps=4, num_stages=1) del primals_13 buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_15, buf11, reinterpret_tensor( primals_14, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf12) del primals_15 return (buf12, primals_1, buf1, buf3, buf5, buf7, buf9, buf11, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4) class MLP_modelNew(nn.Module): """Feedfoward neural network with 6 hidden layer""" def __init__(self, in_size, out_size): super().__init__() self.linear1 = nn.Linear(in_size, 4096) self.linear2 = nn.Linear(4096, 2048) self.linear3 = nn.Linear(2048, 512) self.linear4 = nn.Linear(512, 128) self.linear5 = nn.Linear(128, 64) self.linear6 = nn.Linear(64, 32) self.linear7 = nn.Linear(32, out_size) def training_step(self, batch, criterion): images, labels = batch out = self(images) loss = criterion(out, labels) return loss def validation_step(self, batch): images, labels = batch out = self(images) loss = F.cross_entropy(out, labels) acc = self.accuracy(out, labels) return {'val_loss': loss, 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def epoch_end(self, epoch, result): None def accuracy(self, outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) def forward(self, input_0): primals_2 = self.linear1.weight primals_3 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_7 = self.linear3.bias primals_8 = self.linear4.weight primals_9 = self.linear4.bias primals_10 = self.linear5.weight primals_11 = self.linear5.bias primals_12 = self.linear6.weight primals_13 = self.linear6.bias primals_14 = self.linear7.weight primals_15 = self.linear7.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
WeihengXia0123/Machine_Learning_Service
MLP_model
false
1,218
[ "MIT" ]
0
516d64ff780317ee96e18584001b77165ce6531c
https://github.com/WeihengXia0123/Machine_Learning_Service/tree/516d64ff780317ee96e18584001b77165ce6531c
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """Feedfoward neural network with 6 hidden layer""" def __init__(self, in_size, out_size): super().__init__() self.linear1 = nn.Linear(in_size, 4096) self.linear2 = nn.Linear(4096, 2048) self.linear3 = nn.Linear(2048, 512) self.linear4 = nn.Linear(512, 128) self.linear5 = nn.Linear(128, 64) self.linear6 = nn.Linear(64, 32) self.linear7 = nn.Linear(32, out_size) def forward(self, xb): xb = xb.view(xb.size(0), -1) out = self.linear1(xb) out = F.relu(out) out = self.linear2(out) out = F.relu(out) out = self.linear3(out) out = F.relu(out) out = self.linear4(out) out = F.relu(out) out = self.linear5(out) out = F.relu(out) out = self.linear6(out) out = F.relu(out) out = self.linear7(out) return out def training_step(self, batch, criterion): images, labels = batch out = self(images) loss = criterion(out, labels) return loss def validation_step(self, batch): images, labels = batch out = self(images) loss = F.cross_entropy(out, labels) acc = self.accuracy(out, labels) return {'val_loss': loss, 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def epoch_end(self, epoch, result): None def accuracy(self, outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
MaskedSoftmax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3o/c3oi5zh3uy76k3c2wvknoi2wkyr3vgwuzzpbn2244rlne2yo26ji.py # Topologically Sorted Source Nodes: [max_1, sub], Original ATen: [aten.max, aten.sub] # Source node to ATen node mapping: # max_1 => max_1 # sub => sub # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%arg0_1, 4, True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %getitem), kwargs = {}) triton_poi_fused_max_sub_0 = async_compile.triton('triton_poi_fused_max_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ee/ceew63slkavsjpseewpffuujifc2gmu2m6n5u4732xnkvycwlswh.py # Topologically Sorted Source Nodes: [dist], Original ATen: [aten._softmax] # Source node to ATen node mapping: # dist => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub, [4], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jo/cjooyf2taupk6b3rhpvd4u5im6tyfn25cyirn5yix7vtprzujjxg.py # Topologically Sorted Source Nodes: [dist], Original ATen: [aten._softmax] # Source node to ATen node mapping: # dist => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [4], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [max_1, sub], Original ATen: [aten.max, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_max_sub_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [dist], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [dist], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf1, buf2, 1024, grid=grid(1024), stream=stream0) del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.multiprocessing from torch import nn import torch.utils.data class MaskedSoftmax(nn.Module): def __init__(self, dim): super(MaskedSoftmax, self).__init__() self.dim = dim def forward(self, logit, mask=None): if mask is None: max_value = torch.max(logit, dim=self.dim, keepdim=True)[0] dist = F.softmax(logit - max_value, dim=self.dim) else: dist_ = F.softmax(logit - torch.max(logit, dim=self.dim, keepdim=True)[0], dim=self.dim) * mask normalization_factor = dist_.sum(self.dim, keepdim=True) dist = dist_ / normalization_factor return dist def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.multiprocessing from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_sub_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(1024)](buf0, buf1, 1024, XBLOCK= 256, num_warps=4, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused__softmax_2[grid(1024)](buf1, buf2, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del buf1 return buf2, class MaskedSoftmaxNew(nn.Module): def __init__(self, dim): super(MaskedSoftmaxNew, self).__init__() self.dim = dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
WuDiDaBinGe/TAKG
MaskedSoftmax
false
1,219
[ "MIT" ]
0
83e608e677a4ee74722d18cb5ef430f4f6c6ad31
https://github.com/WuDiDaBinGe/TAKG/tree/83e608e677a4ee74722d18cb5ef430f4f6c6ad31
import torch from torch.nn import functional as F import torch.multiprocessing from torch import nn import torch.utils.data class Model(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, logit, mask=None): if mask is None: max_value = torch.max(logit, dim=self.dim, keepdim=True)[0] dist = F.softmax(logit - max_value, dim=self.dim) else: dist_ = F.softmax(logit - torch.max(logit, dim=self.dim, keepdim=True)[0], dim=self.dim) * mask normalization_factor = dist_.sum(self.dim, keepdim=True) dist = dist_ / normalization_factor return dist def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [4]
ShiftedSoftplus
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ff/cfflcrfbkqug6wu6spd6cdudrcnssg32k3762qutew77yjljfd4b.py # Topologically Sorted Source Nodes: [softplus, sub], Original ATen: [aten.softplus, aten.sub] # Source node to ATen node mapping: # softplus => exp, gt, log1p, where # sub => sub # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, 0.6931471824645996), kwargs = {}) triton_poi_fused_softplus_sub_0 = async_compile.triton('triton_poi_fused_softplus_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_softplus_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 0.6931471824645996 tmp7 = tmp5 - tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softplus, sub], Original ATen: [aten.softplus, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_softplus_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.tensorboard class ShiftedSoftplus(nn.Module): def __init__(self): super().__init__() self.shift = torch.log(torch.tensor(2.0)).item() def forward(self, x): return F.softplus(x) - self.shift def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.utils.tensorboard assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_softplus_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 0.6931471824645996 tmp7 = tmp5 - tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_softplus_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class ShiftedSoftplusNew(nn.Module): def __init__(self): super().__init__() self.shift = torch.log(torch.tensor(2.0)).item() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Dieg0Alejandr0/3D-Generative-SBDD
ShiftedSoftplus
false
1,220
[ "MIT" ]
0
51ffd36a6cf5048eeff6e68186a4608048feea4c
https://github.com/Dieg0Alejandr0/3D-Generative-SBDD/tree/51ffd36a6cf5048eeff6e68186a4608048feea4c
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.tensorboard class Model(nn.Module): def __init__(self): super().__init__() self.shift = torch.log(torch.tensor(2.0)).item() def forward(self, x): return F.softplus(x) - self.shift def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
InnerProductLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/dx/cdxuxa4usulotytq2uhe2lpzvskzdaihvkxtup7hxtpolwz634sr.py # Topologically Sorted Source Nodes: [p], Original ATen: [aten.cat] # Source node to ATen node mapping: # p => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select, %select_1, %select_2, %select_3, %select_4, %select_5], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 24 x0 = xindex % 4 x2 = (xindex // 96) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (x0 + (4*((-4) + x1)) + (16*x2)), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x0 + (4*((-8) + x1)) + (16*x2)), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (64 + x0 + (4*((-12) + x1)) + (16*x2)), tmp19 & xmask, other=0.0) tmp21 = tmp0 >= tmp17 tmp22 = tl.full([1], 20, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr0 + (64 + x0 + (4*((-16) + x1)) + (16*x2)), tmp24 & xmask, other=0.0) tmp26 = tmp0 >= tmp22 tmp27 = tl.full([1], 24, tl.int64) tmp28 = tmp0 < tmp27 tmp29 = tl.load(in_ptr0 + (128 + x0 + (4*((-20) + x1)) + (16*x2)), tmp26 & xmask, other=0.0) tmp30 = tl.where(tmp24, tmp25, tmp29) tmp31 = tl.where(tmp19, tmp20, tmp30) tmp32 = tl.where(tmp14, tmp15, tmp31) tmp33 = tl.where(tmp9, tmp10, tmp32) tmp34 = tl.where(tmp4, tmp5, tmp33) tl.store(out_ptr0 + (x3), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3d/c3d5ce25tfocluzh3yh76j6qjeohfmdemkusyhh2wn2xdyzoda7p.py # Topologically Sorted Source Nodes: [q], Original ATen: [aten.cat] # Source node to ATen node mapping: # q => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select_6, %select_7, %select_8, %select_9, %select_10, %select_11], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 24 x0 = xindex % 4 x2 = (xindex // 96) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (64 + x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (128 + x0 + (4*((-4) + x1)) + (16*x2)), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (192 + x0 + (4*((-8) + x1)) + (16*x2)), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (128 + x0 + (4*((-12) + x1)) + (16*x2)), tmp19 & xmask, other=0.0) tmp21 = tmp0 >= tmp17 tmp22 = tl.full([1], 20, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr0 + (192 + x0 + (4*((-16) + x1)) + (16*x2)), tmp24 & xmask, other=0.0) tmp26 = tmp0 >= tmp22 tmp27 = tl.full([1], 24, tl.int64) tmp28 = tmp0 < tmp27 tmp29 = tl.load(in_ptr0 + (192 + x0 + (4*((-20) + x1)) + (16*x2)), tmp26 & xmask, other=0.0) tmp30 = tl.where(tmp24, tmp25, tmp29) tmp31 = tl.where(tmp19, tmp20, tmp30) tmp32 = tl.where(tmp14, tmp15, tmp31) tmp33 = tl.where(tmp9, tmp10, tmp32) tmp34 = tl.where(tmp4, tmp5, tmp33) tl.store(out_ptr0 + (x3), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wm/cwmiv6irrhvdznioij35ss6z35p7cnponuwhiju4tyoert736dwz.py # Topologically Sorted Source Nodes: [inner_product, inner_product_1], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # inner_product => mul # inner_product_1 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%cat, %cat_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2], True), kwargs = {}) triton_poi_fused_mul_sum_2 = async_compile.triton('triton_poi_fused_mul_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 96 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x0), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [p], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 384, grid=grid(384), stream=stream0) buf1 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(arg0_1, buf1, 384, grid=grid(384), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((4, 24, 1), (24, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [inner_product, inner_product_1], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_2.run(buf0, buf1, buf2, 96, grid=grid(96), stream=stream0) del buf0 del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from sklearn.metrics import * class InnerProductLayer(nn.Module): """InnerProduct Layer used in PNN that compute the element-wise product or inner product between feature vectors. Input shape - a list of 3D tensor with shape: ``(batch_size,1,embedding_size)``. Output shape - 3D tensor with shape: ``(batch_size, N*(N-1)/2 ,1)`` if use reduce_sum. or 3D tensor with shape: ``(batch_size, N*(N-1)/2, embedding_size )`` if not use reduce_sum. Arguments - **reduce_sum**: bool. Whether return inner product or element-wise product References - [Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]// Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016: 1149-1154.] (https://arxiv.org/pdf/1611.00144.pdf)""" def __init__(self, reduce_sum=True, device='cpu'): super(InnerProductLayer, self).__init__() self.reduce_sum = reduce_sum self def forward(self, inputs): embed_list = inputs row = [] col = [] num_inputs = len(embed_list) for i in range(num_inputs - 1): for j in range(i + 1, num_inputs): row.append(i) col.append(j) p = torch.cat([embed_list[idx] for idx in row], dim=1) q = torch.cat([embed_list[idx] for idx in col], dim=1) inner_product = p * q if self.reduce_sum: inner_product = torch.sum(inner_product, dim=2, keepdim=True) return inner_product def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from sklearn.metrics import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 24 x0 = xindex % 4 x2 = xindex // 96 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x0 + 4 * (-8 + x1) + 16 * x2), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (64 + x0 + 4 * (-12 + x1) + 16 * x2), tmp19 & xmask, other=0.0) tmp21 = tmp0 >= tmp17 tmp22 = tl.full([1], 20, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr0 + (64 + x0 + 4 * (-16 + x1) + 16 * x2), tmp24 & xmask, other=0.0) tmp26 = tmp0 >= tmp22 tl.full([1], 24, tl.int64) tmp29 = tl.load(in_ptr0 + (128 + x0 + 4 * (-20 + x1) + 16 * x2), tmp26 & xmask, other=0.0) tmp30 = tl.where(tmp24, tmp25, tmp29) tmp31 = tl.where(tmp19, tmp20, tmp30) tmp32 = tl.where(tmp14, tmp15, tmp31) tmp33 = tl.where(tmp9, tmp10, tmp32) tmp34 = tl.where(tmp4, tmp5, tmp33) tl.store(out_ptr0 + x3, tmp34, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 24 x0 = xindex % 4 x2 = xindex // 96 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (64 + x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (128 + x0 + 4 * (-4 + x1) + 16 * x2), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (192 + x0 + 4 * (-8 + x1) + 16 * x2), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (128 + x0 + 4 * (-12 + x1) + 16 * x2), tmp19 & xmask, other=0.0) tmp21 = tmp0 >= tmp17 tmp22 = tl.full([1], 20, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr0 + (192 + x0 + 4 * (-16 + x1) + 16 * x2), tmp24 & xmask, other=0.0) tmp26 = tmp0 >= tmp22 tl.full([1], 24, tl.int64) tmp29 = tl.load(in_ptr0 + (192 + x0 + 4 * (-20 + x1) + 16 * x2), tmp26 & xmask, other=0.0) tmp30 = tl.where(tmp24, tmp25, tmp29) tmp31 = tl.where(tmp19, tmp20, tmp30) tmp32 = tl.where(tmp14, tmp15, tmp31) tmp33 = tl.where(tmp9, tmp10, tmp32) tmp34 = tl.where(tmp4, tmp5, tmp33) tl.store(out_ptr0 + x3, tmp34, xmask) @triton.jit def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 96 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x0, tmp14, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(384)](arg0_1, buf0, 384, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.float32) triton_poi_fused_cat_1[grid(384)](arg0_1, buf1, 384, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((4, 24, 1), (24, 1, 1), torch.float32) triton_poi_fused_mul_sum_2[grid(96)](buf0, buf1, buf2, 96, XBLOCK= 128, num_warps=4, num_stages=1) del buf0 del buf1 return buf2, class InnerProductLayerNew(nn.Module): """InnerProduct Layer used in PNN that compute the element-wise product or inner product between feature vectors. Input shape - a list of 3D tensor with shape: ``(batch_size,1,embedding_size)``. Output shape - 3D tensor with shape: ``(batch_size, N*(N-1)/2 ,1)`` if use reduce_sum. or 3D tensor with shape: ``(batch_size, N*(N-1)/2, embedding_size )`` if not use reduce_sum. Arguments - **reduce_sum**: bool. Whether return inner product or element-wise product References - [Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]// Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016: 1149-1154.] (https://arxiv.org/pdf/1611.00144.pdf)""" def __init__(self, reduce_sum=True, device='cpu'): super(InnerProductLayerNew, self).__init__() self.reduce_sum = reduce_sum self def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Sunmyunghan/Final_Project
InnerProductLayer
false
1,221
[ "MIT" ]
0
28cde293dc6d07521b2e1c5613b20444aea91d21
https://github.com/Sunmyunghan/Final_Project/tree/28cde293dc6d07521b2e1c5613b20444aea91d21
import torch import torch.nn as nn from sklearn.metrics import * class Model(nn.Module): """InnerProduct Layer used in PNN that compute the element-wise product or inner product between feature vectors. Input shape - a list of 3D tensor with shape: ``(batch_size,1,embedding_size)``. Output shape - 3D tensor with shape: ``(batch_size, N*(N-1)/2 ,1)`` if use reduce_sum. or 3D tensor with shape: ``(batch_size, N*(N-1)/2, embedding_size )`` if not use reduce_sum. Arguments - **reduce_sum**: bool. Whether return inner product or element-wise product References - [Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]// Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016: 1149-1154.] (https://arxiv.org/pdf/1611.00144.pdf)""" def __init__(self, reduce_sum=True, device='cpu'): super().__init__() self.reduce_sum = reduce_sum self def forward(self, inputs): embed_list = inputs row = [] col = [] num_inputs = len(embed_list) for i in range(num_inputs - 1): for j in range(i + 1, num_inputs): row.append(i) col.append(j) p = torch.cat([embed_list[idx] for idx in row], dim=1) q = torch.cat([embed_list[idx] for idx in col], dim=1) inner_product = p * q if self.reduce_sum: inner_product = torch.sum(inner_product, dim=2, keepdim=True) return inner_product def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
TransferNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/6z/c6zp6ex7l6je4eaeyrwdsgxas67mkc5y6ehm56jynqsnopblmcu3.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65712 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 74 x1 = (xindex // 74) % 74 x2 = (xindex // 5476) x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-5) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-5) + x1))))) + (4096*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cc/cccekbpoouz4zzgzos2c56sobuvklb5pmasacbllwb3jzohxpuy7.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # x_1 => convolution # x_2 => add, rsqrt, var_mean # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_red_fused__native_batch_norm_legit_convolution_1 = async_compile.triton('triton_red_fused__native_batch_norm_legit_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[128, 8192], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_convolution_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 128 rnumel = 4356 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 32 tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + (4356*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = triton_helpers.welford_reduce( tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0 ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + (4356*x3)), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford( tmp4_mean, tmp4_m2, tmp4_weight, 1 ) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tl.store(out_ptr0 + (x3), tmp4, xmask) tmp7 = 4356.0 tmp8 = tmp5 / tmp7 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/in/ciny2bql3sygecchlvr6rxw73jnhl7dgi3s5w2g2fefaoug53zzz.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.repeat] # Source node to ATen node mapping: # x_2 => repeat # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_4, [4]), kwargs = {}) triton_poi_fused_repeat_2 = async_compile.triton('triton_poi_fused_repeat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 32), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/n2/cn255v2yj5fbdnwsnxypmsjna6khzwy4jw6j2ry4orupe5aqy6iw.py # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_3 => relu # x_4 => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_6, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_6]), kwargs = {}) triton_poi_fused_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 574592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 67 x1 = (xindex // 67) % 67 x2 = (xindex // 4489) x3 = xindex tmp0 = tl.load(in_ptr0 + (4355 + ((-1)*(tl_math.abs((-65) + (tl_math.abs((-1) + x0))))) + ((-66)*(tl_math.abs((-65) + (tl_math.abs((-1) + x1))))) + (4356*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xz/cxzh6nqsjelve5ob25xfne5gachxdayce26fuvsylva6jrnjcgu5.py # Topologically Sorted Source Nodes: [x_5, x_6], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # x_5 => convolution_1 # x_6 => add_2, rsqrt_1, var_mean_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) triton_red_fused__native_batch_norm_legit_convolution_4 = async_compile.triton('triton_red_fused__native_batch_norm_legit_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[256, 2048], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_convolution_4', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_4(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 256 rnumel = 1089 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 64 tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + (1089*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = triton_helpers.welford_reduce( tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0 ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + (1089*x3)), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford( tmp4_mean, tmp4_m2, tmp4_weight, 1 ) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tl.store(out_ptr0 + (x3), tmp4, xmask) tmp7 = 1089.0 tmp8 = tmp5 / tmp7 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bo/cbop6byfkkzzjktajzua3ovnpvhy32nxb7dbv364jfeaxunlv7bo.py # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.repeat] # Source node to ATen node mapping: # x_6 => repeat_2 # Graph fragment: # %repeat_2 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_8, [4]), kwargs = {}) triton_poi_fused_repeat_5 = async_compile.triton('triton_poi_fused_repeat_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 64), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/pu/cpuzqhw3biucgjwhzz5zpno5fys7fmjfedq7qg5cdqio5ht2p77j.py # Topologically Sorted Source Nodes: [x_7, x_8], Original ATen: [aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_7 => relu_1 # x_8 => _unsafe_index_4, _unsafe_index_5 # Graph fragment: # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_11, None]), kwargs = {}) # %_unsafe_index_5 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_4, [None, None, None, %sub_11]), kwargs = {}) triton_poi_fused_reflection_pad2d_relu_6 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_relu_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = (xindex // 34) % 34 x2 = (xindex // 1156) x3 = xindex tmp0 = tl.load(in_ptr0 + (1088 + ((-1)*(tl_math.abs((-32) + (tl_math.abs((-1) + x0))))) + ((-33)*(tl_math.abs((-32) + (tl_math.abs((-1) + x1))))) + (1089*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/nr/cnrulaca7axjpejfelvoukj4275yefkepol6ssk73jegol2a7v4j.py # Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # x_10 => add_4, rsqrt_2, var_mean_2 # x_9 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_5, %primals_10, %primals_11, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {}) # %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_7 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_7', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_7(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 512 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (r2 + (256*x3)), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 256, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + (256*x3)), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp20, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cx/ccx6gci2ib4oohea5xn4ov5ur2nz2zods6mnyw3romkzf5s25lx3.py # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.repeat] # Source node to ATen node mapping: # x_10 => repeat_4 # Graph fragment: # %repeat_4 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_12, [4]), kwargs = {}) triton_poi_fused_repeat_8 = async_compile.triton('triton_poi_fused_repeat_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 128), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cb/ccbukoi7vclz6u6p3devgjverddcql7canz2j67ieotvy3arkary.py # Topologically Sorted Source Nodes: [x_11, x_12], Original ATen: [aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_11 => relu_2 # x_12 => _unsafe_index_6, _unsafe_index_7 # Graph fragment: # %relu_2 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %_unsafe_index_6 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_2, [None, None, %sub_16, None]), kwargs = {}) # %_unsafe_index_7 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_6, [None, None, None, %sub_16]), kwargs = {}) triton_poi_fused_reflection_pad2d_relu_9 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_relu_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = (xindex // 18) % 18 x2 = (xindex // 324) x3 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x2)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hs/chsmvdjd5wcez3hx37l5f5urhkvxeg2zxbjltpjflrpl22zdydh7.py # Topologically Sorted Source Nodes: [x_13, x_14, x_15], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.relu] # Source node to ATen node mapping: # x_13 => convolution_3 # x_14 => add_6, repeat_6, repeat_7, rsqrt_3, var_mean_3 # x_15 => relu_3 # Graph fragment: # %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_7, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %repeat_6 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_16, [4]), kwargs = {}) # %repeat_7 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_17, [4]), kwargs = {}) # %var_mean_3 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_6, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {}) # %rsqrt_3 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_6,), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, rnumel): xnumel = 512 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x0 % 128), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 % 128), None, eviction_policy='evict_last') tmp2 = tl.load(in_out_ptr0 + (r3 + (256*x0)), None) tmp3 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = tl.broadcast_to(tmp5, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tl.full([1], 256, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp5 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tmp18 = 256.0 tmp19 = tmp17 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp4 - tmp12 tmp24 = tmp23 * tmp22 tmp25 = tmp24 * tmp0 tmp26 = tmp25 + tmp1 tmp27 = tl.full([1], 0, tl.int32) tmp28 = triton_helpers.maximum(tmp27, tmp26) tl.store(out_ptr0 + (x0), tmp0, None) tl.store(out_ptr1 + (x0), tmp1, None) tl.store(in_out_ptr0 + (r3 + (256*x0)), tmp4, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp22, None) tl.store(out_ptr3 + (r3 + (256*x0)), tmp28, None) tl.store(out_ptr2 + (x0), tmp12, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/tt/cttvoi63nbrkzaawfkfj7kof5gg7rdu7erfcx3zznexrlxhhqpbx.py # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x_16 => _unsafe_index_8, _unsafe_index_9 # Graph fragment: # %_unsafe_index_8 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_3, [None, None, %sub_16, None]), kwargs = {}) # %_unsafe_index_9 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_8, [None, None, None, %sub_16]), kwargs = {}) triton_poi_fused_reflection_pad2d_11 = async_compile.triton('triton_poi_fused_reflection_pad2d_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_11(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = (xindex // 18) % 18 x2 = (xindex // 324) x3 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x2)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/oo/coonli7toumwjdnagyhu5xmu3wzpfj6wzlk3negwockmloxtypls.py # Topologically Sorted Source Nodes: [x_19, x_20, x_21], Original ATen: [aten.relu, aten.add, aten.reflection_pad2d] # Source node to ATen node mapping: # x_19 => relu_4 # x_20 => add_10 # x_21 => _unsafe_index_10, _unsafe_index_11 # Graph fragment: # %relu_4 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_3, %relu_4), kwargs = {}) # %_unsafe_index_10 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%add_10, [None, None, %sub_16, None]), kwargs = {}) # %_unsafe_index_11 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_10, [None, None, None, %sub_16]), kwargs = {}) triton_poi_fused_add_reflection_pad2d_relu_12 = async_compile.triton('triton_poi_fused_add_reflection_pad2d_relu_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_reflection_pad2d_relu_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_reflection_pad2d_relu_12(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = (xindex // 18) % 18 x2 = (xindex // 324) x3 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x2)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x2)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr5 + (x2), None, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp5 = tmp3 * tmp4 tmp7 = tmp5 * tmp6 tmp9 = tmp7 + tmp8 tmp10 = tl.full([1], 0, tl.int32) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tmp0 + tmp11 tl.store(out_ptr0 + (x3), tmp12, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/rb/crbic5nlnsjyr3okgxosok7y7jbjadlfwpgd2t62anmhmxmicdwt.py # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten.arange] # Source node to ATen node mapping: # x_58 => iota_28 # Graph fragment: # %iota_28 : [num_users=3] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_13 = async_compile.triton('triton_poi_fused_arange_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_13(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/lh/clhmroknisxpfulbzxd35lthz4fgwlqlou2jn6t3wegzuda2pndf.py # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_58 => add_31, add_32, convert_element_type, convert_element_type_1, mul_26, mul_27 # Graph fragment: # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_28, 1), kwargs = {}) # %add_31 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_31, torch.float32), kwargs = {}) # %add_32 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_32, 0.5), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_27, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_14 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_14(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xz/cxzxvmd5v3ctwfqe6annx2nolajigrq4yekqbvwku5szxmckjb5v.py # Topologically Sorted Source Nodes: [x_55, x_56, x_57, x_58, x_59], Original ATen: [aten.relu, aten.add, aten.reflection_pad2d, aten._unsafe_index] # Source node to ATen node mapping: # x_55 => relu_12 # x_56 => add_30 # x_57 => _unsafe_index_26, _unsafe_index_27 # x_58 => _unsafe_index_28 # x_59 => _unsafe_index_29 # Graph fragment: # %relu_12 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_25,), kwargs = {}) # %add_30 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_11, %relu_12), kwargs = {}) # %_unsafe_index_26 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%add_30, [None, None, %sub_66, None]), kwargs = {}) # %_unsafe_index_27 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_26, [None, None, None, %sub_66]), kwargs = {}) # %_unsafe_index_28 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_27, [None, None, %unsqueeze_52, %convert_element_type_1]), kwargs = {}) # %_unsafe_index_29 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_28, [None, None, %sub_70, None]), kwargs = {}) triton_poi_fused__unsafe_index_add_reflection_pad2d_relu_15 = async_compile.triton('triton_poi_fused__unsafe_index_add_reflection_pad2d_relu_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_reflection_pad2d_relu_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_reflection_pad2d_relu_15(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 557056 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 32) % 34 x0 = xindex % 32 x2 = (xindex // 1088) x4 = xindex tmp0 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr5 + (x2), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr6 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (255 + ((-1)*(tl_math.abs((-15) + tmp8))) + ((-16)*(tl_math.abs((-15) + tmp4))) + (256*x2)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (255 + ((-1)*(tl_math.abs((-15) + tmp8))) + ((-16)*(tl_math.abs((-15) + tmp4))) + (256*x2)), None, eviction_policy='evict_last') tmp12 = tmp10 - tmp11 tmp14 = tmp12 * tmp13 tmp16 = tmp14 * tmp15 tmp18 = tmp16 + tmp17 tmp19 = tl.full([1], 0, tl.int32) tmp20 = triton_helpers.maximum(tmp19, tmp18) tmp21 = tmp9 + tmp20 tl.store(out_ptr0 + (x4), tmp21, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/os/cosc266h7wvveiabyxuy4nbeqm5psm2jxkrmtwz6pznjwe3cke65.py # Topologically Sorted Source Nodes: [x_59], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x_59 => _unsafe_index_30 # Graph fragment: # %_unsafe_index_30 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_29, [None, None, None, %sub_70]), kwargs = {}) triton_poi_fused_reflection_pad2d_16 = async_compile.triton('triton_poi_fused_reflection_pad2d_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_16(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 591872 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 34 x1 = (xindex // 34) x2 = xindex tmp0 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + (32*x1)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/oe/coevdbvv37usd27ae26ara6xiwj7sa7dv2r7eewjinl3gdmwonuu.py # Topologically Sorted Source Nodes: [x_60, x_61], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # x_60 => convolution_13 # x_61 => add_35, rsqrt_13, var_mean_13 # Graph fragment: # %convolution_13 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_30, %primals_54, %primals_55, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_13 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_26, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_35 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_26, 1e-05), kwargs = {}) # %rsqrt_13 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_35,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_17 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 1024], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_17', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_17(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 256 XBLOCK: tl.constexpr = 1 rnumel = 1024 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (r2 + (1024*x3)), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 1024, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 1024.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + (1024*x3)), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp20, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ou/couo6xzmjwqbsh4aninhzxrfm7t6zlt3vyqlw6f6d3t6xh3frbfg.py # Topologically Sorted Source Nodes: [x_64], Original ATen: [aten.arange] # Source node to ATen node mapping: # x_64 => iota_34 # Graph fragment: # %iota_34 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_18 = async_compile.triton('triton_poi_fused_arange_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_18(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ud/cudpb3kdyvqb7qiovaslx7kchi6orczekfulhrfx5wv6frsnspck.py # Topologically Sorted Source Nodes: [x_64], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_64 => add_37, add_38, convert_element_type_4, convert_element_type_5, mul_32, mul_33 # Graph fragment: # %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_34, 1), kwargs = {}) # %add_37 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_32, 0), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_37, torch.float32), kwargs = {}) # %add_38 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {}) # %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_38, 0.5), kwargs = {}) # %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_33, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_19 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_19(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vo/cvor2isivy3yg7msgpkv5xnnhsipwsewsjhiw6m7eptwgflsriik.py # Topologically Sorted Source Nodes: [x_62, x_63, x_64, x_65], Original ATen: [aten.relu, aten.reflection_pad2d, aten._unsafe_index] # Source node to ATen node mapping: # x_62 => relu_13 # x_63 => _unsafe_index_31, _unsafe_index_32 # x_64 => _unsafe_index_33 # x_65 => _unsafe_index_34, _unsafe_index_35 # Graph fragment: # %relu_13 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_27,), kwargs = {}) # %_unsafe_index_31 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_13, [None, None, %sub_75, None]), kwargs = {}) # %_unsafe_index_32 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_31, [None, None, None, %sub_75]), kwargs = {}) # %_unsafe_index_33 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_32, [None, None, %unsqueeze_57, %convert_element_type_5]), kwargs = {}) # %_unsafe_index_34 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_33, [None, None, %sub_79, None]), kwargs = {}) # %_unsafe_index_35 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_34, [None, None, None, %sub_79]), kwargs = {}) triton_poi_fused__unsafe_index_reflection_pad2d_relu_20 = async_compile.triton('triton_poi_fused__unsafe_index_reflection_pad2d_relu_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_reflection_pad2d_relu_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_reflection_pad2d_relu_20(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 66) % 66 x0 = xindex % 66 x2 = (xindex // 4356) x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (1023 + ((-1)*(tl_math.abs((-31) + tmp8))) + ((-32)*(tl_math.abs((-31) + tmp4))) + (1024*x2)), xmask, eviction_policy='evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 * tmp14 tmp17 = tmp15 + tmp16 tmp18 = tl.full([1], 0, tl.int32) tmp19 = triton_helpers.maximum(tmp18, tmp17) tl.store(out_ptr0 + (x5), tmp19, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uv/cuvh6ka5moywn3lyxkqjfsct23hu3t4t2l7akqp5s66jv334mgec.py # Topologically Sorted Source Nodes: [x_66, x_67], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # x_66 => convolution_14 # x_67 => add_41, rsqrt_14, var_mean_14 # Graph fragment: # %convolution_14 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_35, %primals_58, %primals_59, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_14 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_28, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_41 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_28, 1e-05), kwargs = {}) # %rsqrt_14 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_41,), kwargs = {}) triton_red_fused__native_batch_norm_legit_convolution_21 = async_compile.triton('triton_red_fused__native_batch_norm_legit_convolution_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[128, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_convolution_21', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_21(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 128 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 32 tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = triton_helpers.welford_reduce( tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0 ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + (4096*x3)), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford( tmp4_mean, tmp4_m2, tmp4_weight, 1 ) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tl.store(out_ptr0 + (x3), tmp4, xmask) tmp7 = 4096.0 tmp8 = tmp5 / tmp7 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uu/cuuhbrvjuevz367ve2ajclcc6uy5k2vtz5hjdsrcf7qo736pfhc3.py # Topologically Sorted Source Nodes: [x_68, x_69], Original ATen: [aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # x_68 => relu_14 # x_69 => _unsafe_index_36, _unsafe_index_37 # Graph fragment: # %relu_14 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_29,), kwargs = {}) # %_unsafe_index_36 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_14, [None, None, %sub_84, None]), kwargs = {}) # %_unsafe_index_37 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_36, [None, None, None, %sub_84]), kwargs = {}) triton_poi_fused_reflection_pad2d_relu_22 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_relu_22(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 663552 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 72 x1 = (xindex // 72) % 72 x2 = (xindex // 5184) x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-4) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-4) + x1))))) + (4096*x2)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/k6/ck6kvb4rgbhsot5d63arefzdafqmmalawdaegylknrecpeoxc6hh.py # Topologically Sorted Source Nodes: [x_70, x_71, x_72], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.sigmoid] # Source node to ATen node mapping: # x_70 => convolution_15 # x_71 => add_43, repeat_30, rsqrt_15, var_mean_15 # x_72 => sigmoid # Graph fragment: # %convolution_15 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_37, %primals_62, %primals_63, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %repeat_30 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_64, [4]), kwargs = {}) # %var_mean_15 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_30, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_43 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_30, 1e-05), kwargs = {}) # %rsqrt_15 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_43,), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_31,), kwargs = {}) triton_red_fused__native_batch_norm_legit_convolution_repeat_sigmoid_23 = async_compile.triton('triton_red_fused__native_batch_norm_legit_convolution_repeat_sigmoid_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[16, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_convolution_repeat_sigmoid_23', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_repeat_sigmoid_23(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 12 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 3), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x0), tmp0, xmask) x1 = xindex % 3 tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp5_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp5_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp5_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp1 = tl.load(in_out_ptr0 + (r3 + (4096*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp5_mean_next, tmp5_m2_next, tmp5_weight_next = triton_helpers.welford_reduce( tmp4, tmp5_mean, tmp5_m2, tmp5_weight, roffset == 0 ) tmp5_mean = tl.where(rmask & xmask, tmp5_mean_next, tmp5_mean) tmp5_m2 = tl.where(rmask & xmask, tmp5_m2_next, tmp5_m2) tmp5_weight = tl.where(rmask & xmask, tmp5_weight_next, tmp5_weight) tl.store(in_out_ptr0 + (r3 + (4096*x0)), tmp3, rmask & xmask) tmp5_tmp, tmp6_tmp, tmp7_tmp = triton_helpers.welford( tmp5_mean, tmp5_m2, tmp5_weight, 1 ) tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tmp7 = tmp7_tmp[:, None] tl.store(out_ptr1 + (x0), tmp5, xmask) tmp17 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp8 = tl.load(in_out_ptr0 + (r3 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp9 = tmp8 - tmp5 tmp10 = 4096.0 tmp11 = tmp6 / tmp10 tmp12 = 1e-05 tmp13 = tmp11 + tmp12 tmp14 = libdevice.rsqrt(tmp13) tmp15 = tmp9 * tmp14 tmp16 = tmp15 * tmp0 tmp18 = tmp16 + tmp17 tmp19 = tl.sigmoid(tmp18) tl.store(out_ptr3 + (r3 + (4096*x0)), tmp19, rmask & xmask) tmp20 = 4096.0 tmp21 = tmp6 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tl.store(out_ptr4 + (x0), tmp24, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65 = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (32, 3, 9, 9), (243, 81, 9, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (32, ), (1, )) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, ), (1, )) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (128, ), (1, )) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128, ), (1, )) assert_size_stride(primals_16, (128, ), (1, )) assert_size_stride(primals_17, (128, ), (1, )) assert_size_stride(primals_18, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_19, (128, ), (1, )) assert_size_stride(primals_20, (128, ), (1, )) assert_size_stride(primals_21, (128, ), (1, )) assert_size_stride(primals_22, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (128, ), (1, )) assert_size_stride(primals_24, (128, ), (1, )) assert_size_stride(primals_25, (128, ), (1, )) assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_27, (128, ), (1, )) assert_size_stride(primals_28, (128, ), (1, )) assert_size_stride(primals_29, (128, ), (1, )) assert_size_stride(primals_30, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_31, (128, ), (1, )) assert_size_stride(primals_32, (128, ), (1, )) assert_size_stride(primals_33, (128, ), (1, )) assert_size_stride(primals_34, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_35, (128, ), (1, )) assert_size_stride(primals_36, (128, ), (1, )) assert_size_stride(primals_37, (128, ), (1, )) assert_size_stride(primals_38, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_39, (128, ), (1, )) assert_size_stride(primals_40, (128, ), (1, )) assert_size_stride(primals_41, (128, ), (1, )) assert_size_stride(primals_42, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_43, (128, ), (1, )) assert_size_stride(primals_44, (128, ), (1, )) assert_size_stride(primals_45, (128, ), (1, )) assert_size_stride(primals_46, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_47, (128, ), (1, )) assert_size_stride(primals_48, (128, ), (1, )) assert_size_stride(primals_49, (128, ), (1, )) assert_size_stride(primals_50, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_51, (128, ), (1, )) assert_size_stride(primals_52, (128, ), (1, )) assert_size_stride(primals_53, (128, ), (1, )) assert_size_stride(primals_54, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_55, (64, ), (1, )) assert_size_stride(primals_56, (64, ), (1, )) assert_size_stride(primals_57, (64, ), (1, )) assert_size_stride(primals_58, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_59, (32, ), (1, )) assert_size_stride(primals_60, (32, ), (1, )) assert_size_stride(primals_61, (32, ), (1, )) assert_size_stride(primals_62, (3, 32, 9, 9), (2592, 81, 9, 1)) assert_size_stride(primals_63, (3, ), (1, )) assert_size_stride(primals_64, (3, ), (1, )) assert_size_stride(primals_65, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 74, 74), (16428, 5476, 74, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 65712, grid=grid(65712), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 32, 66, 66), (139392, 4356, 66, 1)) buf2 = buf1; del buf1 # reuse buf5 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.float32) buf6 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) buf8 = reinterpret_tensor(buf6, (1, 128, 1, 1), (128, 1, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_red_fused__native_batch_norm_legit_convolution_1.run(buf2, buf8, primals_3, buf5, 128, 4356, grid=grid(128), stream=stream0) del primals_3 buf3 = empty_strided_cuda((128, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_4, buf3, 128, grid=grid(128), stream=stream0) del primals_4 buf4 = empty_strided_cuda((128, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_5, buf4, 128, grid=grid(128), stream=stream0) del primals_5 buf9 = empty_strided_cuda((4, 32, 67, 67), (143648, 4489, 67, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_3.run(buf2, buf5, buf8, buf3, buf4, buf9, 574592, grid=grid(574592), stream=stream0) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 33, 33), (69696, 1089, 33, 1)) buf11 = buf10; del buf10 # reuse buf14 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch.float32) buf15 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf17 = reinterpret_tensor(buf15, (1, 256, 1, 1), (256, 1, 1, 1), 0); del buf15 # reuse # Topologically Sorted Source Nodes: [x_5, x_6], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_red_fused__native_batch_norm_legit_convolution_4.run(buf11, buf17, primals_7, buf14, 256, 1089, grid=grid(256), stream=stream0) del primals_7 buf12 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.repeat] triton_poi_fused_repeat_5.run(primals_8, buf12, 256, grid=grid(256), stream=stream0) del primals_8 buf13 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.repeat] triton_poi_fused_repeat_5.run(primals_9, buf13, 256, grid=grid(256), stream=stream0) del primals_9 buf18 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_7, x_8], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_6.run(buf11, buf14, buf17, buf12, buf13, buf18, 295936, grid=grid(295936), stream=stream0) # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf18, primals_10, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1)) buf20 = buf19; del buf19 # reuse buf23 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf24 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf26 = reinterpret_tensor(buf24, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf24 # reuse # Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_7.run(buf20, buf26, primals_11, buf23, 512, 256, grid=grid(512), stream=stream0) del primals_11 buf21 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_12, buf21, 512, grid=grid(512), stream=stream0) del primals_12 buf22 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_13, buf22, 512, grid=grid(512), stream=stream0) del primals_13 buf27 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_11, x_12], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_9.run(buf20, buf23, buf26, buf21, buf22, buf27, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 128, 16, 16), (32768, 256, 16, 1)) buf30 = empty_strided_cuda((512, ), (1, ), torch.float32) buf31 = empty_strided_cuda((512, ), (1, ), torch.float32) buf29 = buf28; del buf28 # reuse buf32 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf33 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf35 = reinterpret_tensor(buf33, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf33 # reuse buf36 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_13, x_14, x_15], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.relu] triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10.run(buf29, buf35, primals_16, primals_17, primals_15, buf30, buf31, buf32, buf36, 512, 256, grid=grid(512), stream=stream0) del primals_15 del primals_16 del primals_17 buf37 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_11.run(buf36, buf37, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [x_17], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 128, 16, 16), (32768, 256, 16, 1)) buf39 = buf38; del buf38 # reuse buf42 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf43 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf45 = reinterpret_tensor(buf43, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf43 # reuse # Topologically Sorted Source Nodes: [x_17, x_18], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_7.run(buf39, buf45, primals_19, buf42, 512, 256, grid=grid(512), stream=stream0) del primals_19 buf40 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_20, buf40, 512, grid=grid(512), stream=stream0) del primals_20 buf41 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_21, buf41, 512, grid=grid(512), stream=stream0) del primals_21 buf46 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_19, x_20, x_21], Original ATen: [aten.relu, aten.add, aten.reflection_pad2d] triton_poi_fused_add_reflection_pad2d_relu_12.run(buf36, buf39, buf42, buf45, buf40, buf41, buf46, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.convolution] buf47 = extern_kernels.convolution(buf46, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf47, (4, 128, 16, 16), (32768, 256, 16, 1)) buf49 = empty_strided_cuda((512, ), (1, ), torch.float32) buf50 = empty_strided_cuda((512, ), (1, ), torch.float32) buf48 = buf47; del buf47 # reuse buf51 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf52 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf54 = reinterpret_tensor(buf52, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf52 # reuse buf55 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [x_22, x_23, x_24], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.relu] triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10.run(buf48, buf54, primals_24, primals_25, primals_23, buf49, buf50, buf51, buf55, 512, 256, grid=grid(512), stream=stream0) del primals_23 del primals_24 del primals_25 buf56 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_11.run(buf55, buf56, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [x_26], Original ATen: [aten.convolution] buf57 = extern_kernels.convolution(buf56, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf57, (4, 128, 16, 16), (32768, 256, 16, 1)) buf58 = buf57; del buf57 # reuse buf61 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf62 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf64 = reinterpret_tensor(buf62, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf62 # reuse # Topologically Sorted Source Nodes: [x_26, x_27], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_7.run(buf58, buf64, primals_27, buf61, 512, 256, grid=grid(512), stream=stream0) del primals_27 buf59 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_27], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_28, buf59, 512, grid=grid(512), stream=stream0) del primals_28 buf60 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_27], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_29, buf60, 512, grid=grid(512), stream=stream0) del primals_29 buf65 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_28, x_29, x_30], Original ATen: [aten.relu, aten.add, aten.reflection_pad2d] triton_poi_fused_add_reflection_pad2d_relu_12.run(buf55, buf58, buf61, buf64, buf59, buf60, buf65, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [x_31], Original ATen: [aten.convolution] buf66 = extern_kernels.convolution(buf65, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf66, (4, 128, 16, 16), (32768, 256, 16, 1)) buf68 = empty_strided_cuda((512, ), (1, ), torch.float32) buf69 = empty_strided_cuda((512, ), (1, ), torch.float32) buf67 = buf66; del buf66 # reuse buf70 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf71 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf73 = reinterpret_tensor(buf71, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf71 # reuse buf74 = buf55; del buf55 # reuse # Topologically Sorted Source Nodes: [x_31, x_32, x_33], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.relu] triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10.run(buf67, buf73, primals_32, primals_33, primals_31, buf68, buf69, buf70, buf74, 512, 256, grid=grid(512), stream=stream0) del primals_31 del primals_32 del primals_33 buf75 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_11.run(buf74, buf75, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [x_35], Original ATen: [aten.convolution] buf76 = extern_kernels.convolution(buf75, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf76, (4, 128, 16, 16), (32768, 256, 16, 1)) buf77 = buf76; del buf76 # reuse buf80 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf81 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf83 = reinterpret_tensor(buf81, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf81 # reuse # Topologically Sorted Source Nodes: [x_35, x_36], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_7.run(buf77, buf83, primals_35, buf80, 512, 256, grid=grid(512), stream=stream0) del primals_35 buf78 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_36], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_36, buf78, 512, grid=grid(512), stream=stream0) del primals_36 buf79 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_36], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_37, buf79, 512, grid=grid(512), stream=stream0) del primals_37 buf84 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_37, x_38, x_39], Original ATen: [aten.relu, aten.add, aten.reflection_pad2d] triton_poi_fused_add_reflection_pad2d_relu_12.run(buf74, buf77, buf80, buf83, buf78, buf79, buf84, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [x_40], Original ATen: [aten.convolution] buf85 = extern_kernels.convolution(buf84, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf85, (4, 128, 16, 16), (32768, 256, 16, 1)) buf87 = empty_strided_cuda((512, ), (1, ), torch.float32) buf88 = empty_strided_cuda((512, ), (1, ), torch.float32) buf86 = buf85; del buf85 # reuse buf89 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf90 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf92 = reinterpret_tensor(buf90, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf90 # reuse buf93 = buf74; del buf74 # reuse # Topologically Sorted Source Nodes: [x_40, x_41, x_42], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.relu] triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10.run(buf86, buf92, primals_40, primals_41, primals_39, buf87, buf88, buf89, buf93, 512, 256, grid=grid(512), stream=stream0) del primals_39 del primals_40 del primals_41 buf94 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_43], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_11.run(buf93, buf94, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [x_44], Original ATen: [aten.convolution] buf95 = extern_kernels.convolution(buf94, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf95, (4, 128, 16, 16), (32768, 256, 16, 1)) buf96 = buf95; del buf95 # reuse buf99 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf100 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf102 = reinterpret_tensor(buf100, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf100 # reuse # Topologically Sorted Source Nodes: [x_44, x_45], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_7.run(buf96, buf102, primals_43, buf99, 512, 256, grid=grid(512), stream=stream0) del primals_43 buf97 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_45], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_44, buf97, 512, grid=grid(512), stream=stream0) del primals_44 buf98 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_45], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_45, buf98, 512, grid=grid(512), stream=stream0) del primals_45 buf103 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_46, x_47, x_48], Original ATen: [aten.relu, aten.add, aten.reflection_pad2d] triton_poi_fused_add_reflection_pad2d_relu_12.run(buf93, buf96, buf99, buf102, buf97, buf98, buf103, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [x_49], Original ATen: [aten.convolution] buf104 = extern_kernels.convolution(buf103, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf104, (4, 128, 16, 16), (32768, 256, 16, 1)) buf106 = empty_strided_cuda((512, ), (1, ), torch.float32) buf107 = empty_strided_cuda((512, ), (1, ), torch.float32) buf105 = buf104; del buf104 # reuse buf108 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf109 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf111 = reinterpret_tensor(buf109, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf109 # reuse buf112 = buf93; del buf93 # reuse # Topologically Sorted Source Nodes: [x_49, x_50, x_51], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.relu] triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10.run(buf105, buf111, primals_48, primals_49, primals_47, buf106, buf107, buf108, buf112, 512, 256, grid=grid(512), stream=stream0) del primals_47 del primals_48 del primals_49 buf113 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [x_52], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_11.run(buf112, buf113, 165888, grid=grid(165888), stream=stream0) # Topologically Sorted Source Nodes: [x_53], Original ATen: [aten.convolution] buf114 = extern_kernels.convolution(buf113, primals_50, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf114, (4, 128, 16, 16), (32768, 256, 16, 1)) buf115 = buf114; del buf114 # reuse buf118 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32) buf119 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf121 = reinterpret_tensor(buf119, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf119 # reuse # Topologically Sorted Source Nodes: [x_53, x_54], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_7.run(buf115, buf121, primals_51, buf118, 512, 256, grid=grid(512), stream=stream0) del primals_51 buf116 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_54], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_52, buf116, 512, grid=grid(512), stream=stream0) del primals_52 buf117 = empty_strided_cuda((512, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_54], Original ATen: [aten.repeat] triton_poi_fused_repeat_8.run(primals_53, buf117, 512, grid=grid(512), stream=stream0) del primals_53 buf122 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten.arange] triton_poi_fused_arange_13.run(buf122, 32, grid=grid(32), stream=stream0) buf123 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_58], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_14.run(buf123, 32, grid=grid(32), stream=stream0) buf124 = empty_strided_cuda((4, 128, 34, 32), (139264, 1088, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [x_55, x_56, x_57, x_58, x_59], Original ATen: [aten.relu, aten.add, aten.reflection_pad2d, aten._unsafe_index] triton_poi_fused__unsafe_index_add_reflection_pad2d_relu_15.run(buf123, buf112, buf115, buf118, buf121, buf116, buf117, buf124, 557056, grid=grid(557056), stream=stream0) del buf112 buf125 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [x_59], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_16.run(buf124, buf125, 591872, grid=grid(591872), stream=stream0) del buf124 # Topologically Sorted Source Nodes: [x_60], Original ATen: [aten.convolution] buf126 = extern_kernels.convolution(buf125, primals_54, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf126, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf127 = buf126; del buf126 # reuse buf130 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch.float32) buf131 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf133 = reinterpret_tensor(buf131, (1, 256, 1, 1), (256, 1, 1, 1), 0); del buf131 # reuse # Topologically Sorted Source Nodes: [x_60, x_61], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_17.run(buf127, buf133, primals_55, buf130, 256, 1024, grid=grid(256), stream=stream0) del primals_55 buf128 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_61], Original ATen: [aten.repeat] triton_poi_fused_repeat_5.run(primals_56, buf128, 256, grid=grid(256), stream=stream0) del primals_56 buf129 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_61], Original ATen: [aten.repeat] triton_poi_fused_repeat_5.run(primals_57, buf129, 256, grid=grid(256), stream=stream0) del primals_57 buf134 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_64], Original ATen: [aten.arange] triton_poi_fused_arange_18.run(buf134, 64, grid=grid(64), stream=stream0) buf135 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_64], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_19.run(buf135, 64, grid=grid(64), stream=stream0) buf136 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [x_62, x_63, x_64, x_65], Original ATen: [aten.relu, aten.reflection_pad2d, aten._unsafe_index] triton_poi_fused__unsafe_index_reflection_pad2d_relu_20.run(buf135, buf127, buf130, buf133, buf128, buf129, buf136, 1115136, grid=grid(1115136), stream=stream0) # Topologically Sorted Source Nodes: [x_66], Original ATen: [aten.convolution] buf137 = extern_kernels.convolution(buf136, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf137, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf138 = buf137; del buf137 # reuse buf141 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.float32) buf142 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) buf144 = reinterpret_tensor(buf142, (1, 128, 1, 1), (128, 1, 1, 1), 0); del buf142 # reuse # Topologically Sorted Source Nodes: [x_66, x_67], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_red_fused__native_batch_norm_legit_convolution_21.run(buf138, buf144, primals_59, buf141, 128, 4096, grid=grid(128), stream=stream0) del primals_59 buf139 = empty_strided_cuda((128, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_67], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_60, buf139, 128, grid=grid(128), stream=stream0) del primals_60 buf140 = empty_strided_cuda((128, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_67], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_61, buf140, 128, grid=grid(128), stream=stream0) del primals_61 buf145 = empty_strided_cuda((4, 32, 72, 72), (165888, 5184, 72, 1), torch.float32) # Topologically Sorted Source Nodes: [x_68, x_69], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_22.run(buf138, buf141, buf144, buf139, buf140, buf145, 663552, grid=grid(663552), stream=stream0) # Topologically Sorted Source Nodes: [x_70], Original ATen: [aten.convolution] buf146 = extern_kernels.convolution(buf145, primals_62, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf146, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf148 = empty_strided_cuda((12, ), (1, ), torch.float32) buf147 = buf146; del buf146 # reuse buf149 = empty_strided_cuda((1, 12, 1, 1), (12, 1, 12, 12), torch.float32) buf153 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32) buf152 = empty_strided_cuda((1, 12, 1, 1), (12, 1, 12, 12), torch.float32) # Topologically Sorted Source Nodes: [x_70, x_71, x_72], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.sigmoid] triton_red_fused__native_batch_norm_legit_convolution_repeat_sigmoid_23.run(buf147, primals_64, primals_63, primals_65, buf148, buf149, buf153, buf152, 12, 4096, grid=grid(12), stream=stream0) del primals_63 del primals_64 del primals_65 return (buf153, primals_2, primals_6, primals_10, primals_14, primals_18, primals_22, primals_26, primals_30, primals_34, primals_38, primals_42, primals_46, primals_50, primals_54, primals_58, primals_62, buf0, buf2, buf3, buf4, buf5, buf8, buf9, buf11, buf12, buf13, buf14, buf17, buf18, buf20, buf21, buf22, buf23, buf26, buf27, buf29, buf30, buf31, buf32, buf35, buf37, buf39, buf40, buf41, buf42, buf45, buf46, buf48, buf49, buf50, buf51, buf54, buf56, buf58, buf59, buf60, buf61, buf64, buf65, buf67, buf68, buf69, buf70, buf73, buf75, buf77, buf78, buf79, buf80, buf83, buf84, buf86, buf87, buf88, buf89, buf92, buf94, buf96, buf97, buf98, buf99, buf102, buf103, buf105, buf106, buf107, buf108, buf111, buf113, buf115, buf116, buf117, buf118, buf121, buf122, buf123, buf125, buf127, buf128, buf129, buf130, buf133, buf134, buf135, buf136, buf138, buf139, buf140, buf141, buf144, buf145, buf147, buf148, reinterpret_tensor(buf152, (12, ), (1, ), 0), buf153, reinterpret_tensor(buf149, (1, 12, 1, 1), (12, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 3, 9, 9), (243, 81, 9, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_42 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_43 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_44 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_45 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_46 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_47 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_48 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_49 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_50 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_51 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_52 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_53 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_54 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_55 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_56 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_57 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_58 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_59 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_60 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_61 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_62 = rand_strided((3, 32, 9, 9), (2592, 81, 9, 1), device='cuda:0', dtype=torch.float32) primals_63 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_64 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_65 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GenericLayer(nn.Module): def __init__(self, layer, out_channels, padding=(0, 0, 0, 0), activation=None): super(GenericLayer, self).__init__() self._act = activation self._layer = layer self._norm = nn.InstanceNorm2d(out_channels, affine=True) self._pad = nn.ReflectionPad2d(padding) def forward(self, x): x = self._pad(x) x = self._layer(x) x = self._norm(x) if self._act is not None: x = self._act(x) return x class ResidualBlock(nn.Module): def __init__(self, channels, kernel_size, stride, padding=(0, 0, 0, 0)): super(ResidualBlock, self).__init__() self._conv_1 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) self._conv_2 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) def forward(self, x): x = self._conv_1(x) x = x + self._conv_2(x) return x class UpsampleConvLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, scale_factor): super(UpsampleConvLayer, self).__init__() self._scale_factor = scale_factor self._reflection_pad = nn.ReflectionPad2d(kernel_size // 2) self._conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): x = nn.functional.interpolate(x, mode='nearest', scale_factor=self. _scale_factor) x = self._reflection_pad(x) x = self._conv(x) return x class TransferNet(nn.Module): def __init__(self): super(TransferNet, self).__init__() self._conv_1 = GenericLayer(nn.Conv2d(3, 32, 9, 1), 32, (5, 5, 5, 5 ), nn.ReLU()) self._conv_2 = GenericLayer(nn.Conv2d(32, 64, 3, 2), 64, (1, 0, 1, 0), nn.ReLU()) self._conv_3 = GenericLayer(nn.Conv2d(64, 128, 3, 2), 128, (1, 0, 1, 0), nn.ReLU()) self._res_1 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_2 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_3 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_4 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_5 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._conv_4 = GenericLayer(UpsampleConvLayer(128, 64, 3, 1, 2), 64, (0, 0, 0, 0), nn.ReLU()) self._conv_5 = GenericLayer(UpsampleConvLayer(64, 32, 3, 1, 2), 32, (0, 0, 0, 0), nn.ReLU()) self._conv_6 = GenericLayer(nn.Conv2d(32, 3, 9, 1), 3, (4, 4, 4, 4), nn.Sigmoid()) def forward(self, x): x = self._conv_1(x) x = self._conv_2(x) x = self._conv_3(x) x = self._res_1(x) x = self._res_2(x) x = self._res_3(x) x = self._res_4(x) x = self._res_5(x) x = self._conv_4(x) x = self._conv_5(x) x = self._conv_6(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 65712 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 74 x1 = xindex // 74 % 74 x2 = xindex // 5476 x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-5 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-5 + x1)) + 4096 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 4356 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 32 tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + 4356 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = (triton_helpers. welford_reduce(tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0) ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + 4356 * x3), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford(tmp4_mean, tmp4_m2, tmp4_weight, 1) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6_tmp[:, None] tl.store(out_ptr0 + x3, tmp4, xmask) tmp7 = 4356.0 tmp8 = tmp5 / tmp7 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp11, xmask) @triton.jit def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 32, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 574592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 67 x1 = xindex // 67 % 67 x2 = xindex // 4489 x3 = xindex tmp0 = tl.load(in_ptr0 + (4355 + -1 * tl_math.abs(-65 + tl_math.abs(-1 + x0)) + -66 * tl_math.abs(-65 + tl_math.abs(-1 + x1)) + 4356 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_4(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 256 rnumel = 1089 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 64 tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + 1089 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = (triton_helpers. welford_reduce(tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0) ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + 1089 * x3), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford(tmp4_mean, tmp4_m2, tmp4_weight, 1) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6_tmp[:, None] tl.store(out_ptr0 + x3, tmp4, xmask) tmp7 = 1089.0 tmp8 = tmp5 / tmp7 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp11, xmask) @triton.jit def triton_poi_fused_repeat_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 64, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_relu_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 34 x1 = xindex // 34 % 34 x2 = xindex // 1156 x3 = xindex tmp0 = tl.load(in_ptr0 + (1088 + -1 * tl_math.abs(-32 + tl_math.abs(-1 + x0)) + -33 * tl_math.abs(-32 + tl_math.abs(-1 + x1)) + 1089 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_7(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (r2 + 256 * x3), None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 256, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + 256 * x3), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp20, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_repeat_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 128, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_relu_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = xindex // 18 % 18 x2 = xindex // 324 x3 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x2), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 128 tmp0 = tl.load(in_ptr0 + x0 % 128, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0 % 128, None, eviction_policy='evict_last') tmp2 = tl.load(in_out_ptr0 + (r3 + 256 * x0), None) tmp3 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = tl.broadcast_to(tmp5, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tl.full([1], 256, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp5 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tmp18 = 256.0 tmp19 = tmp17 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp4 - tmp12 tmp24 = tmp23 * tmp22 tmp25 = tmp24 * tmp0 tmp26 = tmp25 + tmp1 tmp27 = tl.full([1], 0, tl.int32) tmp28 = triton_helpers.maximum(tmp27, tmp26) tl.store(out_ptr0 + x0, tmp0, None) tl.store(out_ptr1 + x0, tmp1, None) tl.store(in_out_ptr0 + (r3 + 256 * x0), tmp4, None) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp22, None) tl.store(out_ptr3 + (r3 + 256 * x0), tmp28, None) tl.store(out_ptr2 + x0, tmp12, None) @triton.jit def triton_poi_fused_reflection_pad2d_11(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = xindex // 18 % 18 x2 = xindex // 324 x3 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x2), None, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, None) @triton.jit def triton_poi_fused_add_reflection_pad2d_relu_12(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = xindex // 18 % 18 x2 = xindex // 324 x3 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x2), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x2), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr5 + x2, None, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp5 = tmp3 * tmp4 tmp7 = tmp5 * tmp6 tmp9 = tmp7 + tmp8 tmp10 = tl.full([1], 0, tl.int32) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tmp0 + tmp11 tl.store(out_ptr0 + x3, tmp12, None) @triton.jit def triton_poi_fused_arange_13(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_14(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_reflection_pad2d_relu_15(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 32 % 34 x0 = xindex % 32 x2 = xindex // 1088 x4 = xindex tmp0 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x1))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr5 + x2, None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr6 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (255 + -1 * tl_math.abs(-15 + tmp8) + -16 * tl_math.abs(-15 + tmp4) + 256 * x2), None, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr2 + (255 + -1 * tl_math.abs(-15 + tmp8) + -16 * tl_math.abs(-15 + tmp4) + 256 * x2), None, eviction_policy='evict_last' ) tmp12 = tmp10 - tmp11 tmp14 = tmp12 * tmp13 tmp16 = tmp14 * tmp15 tmp18 = tmp16 + tmp17 tmp19 = tl.full([1], 0, tl.int32) tmp20 = triton_helpers.maximum(tmp19, tmp18) tmp21 = tmp9 + tmp20 tl.store(out_ptr0 + x4, tmp21, None) @triton.jit def triton_poi_fused_reflection_pad2d_16(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 34 x1 = xindex // 34 x2 = xindex tmp0 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + 32 * x1), None, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, None) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_17(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (r2 + 1024 * x3), None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 1024, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 1024.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tl.store(in_out_ptr0 + (r2 + 1024 * x3), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp20, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_arange_18(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_19(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_reflection_pad2d_relu_20(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 66 % 66 x0 = xindex % 66 x2 = xindex // 4356 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x1))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (1023 + -1 * tl_math.abs(-31 + tmp8) + -32 * tl_math.abs(-31 + tmp4) + 1024 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tmp9 - tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 * tmp14 tmp17 = tmp15 + tmp16 tmp18 = tl.full([1], 0, tl.int32) tmp19 = triton_helpers.maximum(tmp18, tmp17) tl.store(out_ptr0 + x5, tmp19, xmask) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_21(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 32 tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = (triton_helpers. welford_reduce(tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0) ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + 4096 * x3), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford(tmp4_mean, tmp4_m2, tmp4_weight, 1) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6_tmp[:, None] tl.store(out_ptr0 + x3, tmp4, xmask) tmp7 = 4096.0 tmp8 = tmp5 / tmp7 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp11, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_relu_22(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 72 x1 = xindex // 72 % 72 x2 = xindex // 5184 x3 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-4 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-4 + x1)) + 4096 * x2), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_repeat_sigmoid_23( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 12 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 3, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x0, tmp0, xmask) x1 = xindex % 3 tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp5_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp5_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp5_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp1 = tl.load(in_out_ptr0 + (r3 + 4096 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp5_mean_next, tmp5_m2_next, tmp5_weight_next = (triton_helpers. welford_reduce(tmp4, tmp5_mean, tmp5_m2, tmp5_weight, roffset == 0) ) tmp5_mean = tl.where(rmask & xmask, tmp5_mean_next, tmp5_mean) tmp5_m2 = tl.where(rmask & xmask, tmp5_m2_next, tmp5_m2) tmp5_weight = tl.where(rmask & xmask, tmp5_weight_next, tmp5_weight) tl.store(in_out_ptr0 + (r3 + 4096 * x0), tmp3, rmask & xmask) tmp5_tmp, tmp6_tmp, tmp7_tmp = triton_helpers.welford(tmp5_mean, tmp5_m2, tmp5_weight, 1) tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tmp7_tmp[:, None] tl.store(out_ptr1 + x0, tmp5, xmask) tmp17 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp8 = tl.load(in_out_ptr0 + (r3 + 4096 * x0), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp9 = tmp8 - tmp5 tmp10 = 4096.0 tmp11 = tmp6 / tmp10 tmp12 = 1e-05 tmp13 = tmp11 + tmp12 tmp14 = libdevice.rsqrt(tmp13) tmp15 = tmp9 * tmp14 tmp16 = tmp15 * tmp0 tmp18 = tmp16 + tmp17 tmp19 = tl.sigmoid(tmp18) tl.store(out_ptr3 + (r3 + 4096 * x0), tmp19, rmask & xmask) tmp20 = 4096.0 tmp21 = tmp6 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tl.store(out_ptr4 + x0, tmp24, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65) = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (32, 3, 9, 9), (243, 81, 9, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (32,), (1,)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64,), (1,)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (128,), (1,)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128,), (1,)) assert_size_stride(primals_16, (128,), (1,)) assert_size_stride(primals_17, (128,), (1,)) assert_size_stride(primals_18, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_19, (128,), (1,)) assert_size_stride(primals_20, (128,), (1,)) assert_size_stride(primals_21, (128,), (1,)) assert_size_stride(primals_22, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (128,), (1,)) assert_size_stride(primals_24, (128,), (1,)) assert_size_stride(primals_25, (128,), (1,)) assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_27, (128,), (1,)) assert_size_stride(primals_28, (128,), (1,)) assert_size_stride(primals_29, (128,), (1,)) assert_size_stride(primals_30, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_31, (128,), (1,)) assert_size_stride(primals_32, (128,), (1,)) assert_size_stride(primals_33, (128,), (1,)) assert_size_stride(primals_34, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_35, (128,), (1,)) assert_size_stride(primals_36, (128,), (1,)) assert_size_stride(primals_37, (128,), (1,)) assert_size_stride(primals_38, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_39, (128,), (1,)) assert_size_stride(primals_40, (128,), (1,)) assert_size_stride(primals_41, (128,), (1,)) assert_size_stride(primals_42, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_43, (128,), (1,)) assert_size_stride(primals_44, (128,), (1,)) assert_size_stride(primals_45, (128,), (1,)) assert_size_stride(primals_46, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_47, (128,), (1,)) assert_size_stride(primals_48, (128,), (1,)) assert_size_stride(primals_49, (128,), (1,)) assert_size_stride(primals_50, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_51, (128,), (1,)) assert_size_stride(primals_52, (128,), (1,)) assert_size_stride(primals_53, (128,), (1,)) assert_size_stride(primals_54, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_55, (64,), (1,)) assert_size_stride(primals_56, (64,), (1,)) assert_size_stride(primals_57, (64,), (1,)) assert_size_stride(primals_58, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_59, (32,), (1,)) assert_size_stride(primals_60, (32,), (1,)) assert_size_stride(primals_61, (32,), (1,)) assert_size_stride(primals_62, (3, 32, 9, 9), (2592, 81, 9, 1)) assert_size_stride(primals_63, (3,), (1,)) assert_size_stride(primals_64, (3,), (1,)) assert_size_stride(primals_65, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 74, 74), (16428, 5476, 74, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(65712)](primals_1, buf0, 65712, XBLOCK=512, num_warps=8, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 32, 66, 66), (139392, 4356, 66, 1)) buf2 = buf1 del buf1 buf5 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.float32 ) buf6 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch .float32) buf8 = reinterpret_tensor(buf6, (1, 128, 1, 1), (128, 1, 1, 1), 0) del buf6 triton_red_fused__native_batch_norm_legit_convolution_1[grid(128)](buf2 , buf8, primals_3, buf5, 128, 4356, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) del primals_3 buf3 = empty_strided_cuda((128,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(128)](primals_4, buf3, 128, XBLOCK= 128, num_warps=4, num_stages=1) del primals_4 buf4 = empty_strided_cuda((128,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(128)](primals_5, buf4, 128, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 buf9 = empty_strided_cuda((4, 32, 67, 67), (143648, 4489, 67, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_3[grid(574592)](buf2, buf5, buf8, buf3, buf4, buf9, 574592, XBLOCK=1024, num_warps=4, num_stages=1) buf10 = extern_kernels.convolution(buf9, primals_6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 33, 33), (69696, 1089, 33, 1)) buf11 = buf10 del buf10 buf14 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch. float32) buf15 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf17 = reinterpret_tensor(buf15, (1, 256, 1, 1), (256, 1, 1, 1), 0) del buf15 triton_red_fused__native_batch_norm_legit_convolution_4[grid(256)]( buf11, buf17, primals_7, buf14, 256, 1089, XBLOCK=1, RBLOCK= 2048, num_warps=16, num_stages=1) del primals_7 buf12 = empty_strided_cuda((256,), (1,), torch.float32) triton_poi_fused_repeat_5[grid(256)](primals_8, buf12, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_8 buf13 = empty_strided_cuda((256,), (1,), torch.float32) triton_poi_fused_repeat_5[grid(256)](primals_9, buf13, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf18 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_6[grid(295936)](buf11, buf14, buf17, buf12, buf13, buf18, 295936, XBLOCK=1024, num_warps=4, num_stages=1) buf19 = extern_kernels.convolution(buf18, primals_10, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1)) buf20 = buf19 del buf19 buf23 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf24 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf26 = reinterpret_tensor(buf24, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf24 triton_per_fused__native_batch_norm_legit_convolution_7[grid(512)]( buf20, buf26, primals_11, buf23, 512, 256, num_warps=2, num_stages=1) del primals_11 buf21 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_12, buf21, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_12 buf22 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_13, buf22, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_13 buf27 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_9[grid(165888)](buf20, buf23, buf26, buf21, buf22, buf27, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf28 = extern_kernels.convolution(buf27, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 128, 16, 16), (32768, 256, 16, 1)) buf30 = empty_strided_cuda((512,), (1,), torch.float32) buf31 = empty_strided_cuda((512,), (1,), torch.float32) buf29 = buf28 del buf28 buf32 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf33 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf35 = reinterpret_tensor(buf33, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf33 buf36 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10[ grid(512)](buf29, buf35, primals_16, primals_17, primals_15, buf30, buf31, buf32, buf36, 512, 256, num_warps=2, num_stages=1) del primals_15 del primals_16 del primals_17 buf37 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_11[grid(165888)](buf36, buf37, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf38 = extern_kernels.convolution(buf37, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 128, 16, 16), (32768, 256, 16, 1)) buf39 = buf38 del buf38 buf42 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf43 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf45 = reinterpret_tensor(buf43, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf43 triton_per_fused__native_batch_norm_legit_convolution_7[grid(512)]( buf39, buf45, primals_19, buf42, 512, 256, num_warps=2, num_stages=1) del primals_19 buf40 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_20, buf40, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_20 buf41 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_21, buf41, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_21 buf46 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_add_reflection_pad2d_relu_12[grid(165888)](buf36, buf39, buf42, buf45, buf40, buf41, buf46, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf47 = extern_kernels.convolution(buf46, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf47, (4, 128, 16, 16), (32768, 256, 16, 1)) buf49 = empty_strided_cuda((512,), (1,), torch.float32) buf50 = empty_strided_cuda((512,), (1,), torch.float32) buf48 = buf47 del buf47 buf51 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf52 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf54 = reinterpret_tensor(buf52, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf52 buf55 = buf36 del buf36 triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10[ grid(512)](buf48, buf54, primals_24, primals_25, primals_23, buf49, buf50, buf51, buf55, 512, 256, num_warps=2, num_stages=1) del primals_23 del primals_24 del primals_25 buf56 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_11[grid(165888)](buf55, buf56, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf57 = extern_kernels.convolution(buf56, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf57, (4, 128, 16, 16), (32768, 256, 16, 1)) buf58 = buf57 del buf57 buf61 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf62 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf64 = reinterpret_tensor(buf62, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf62 triton_per_fused__native_batch_norm_legit_convolution_7[grid(512)]( buf58, buf64, primals_27, buf61, 512, 256, num_warps=2, num_stages=1) del primals_27 buf59 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_28, buf59, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_28 buf60 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_29, buf60, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_29 buf65 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_add_reflection_pad2d_relu_12[grid(165888)](buf55, buf58, buf61, buf64, buf59, buf60, buf65, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf66 = extern_kernels.convolution(buf65, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf66, (4, 128, 16, 16), (32768, 256, 16, 1)) buf68 = empty_strided_cuda((512,), (1,), torch.float32) buf69 = empty_strided_cuda((512,), (1,), torch.float32) buf67 = buf66 del buf66 buf70 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf71 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf73 = reinterpret_tensor(buf71, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf71 buf74 = buf55 del buf55 triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10[ grid(512)](buf67, buf73, primals_32, primals_33, primals_31, buf68, buf69, buf70, buf74, 512, 256, num_warps=2, num_stages=1) del primals_31 del primals_32 del primals_33 buf75 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_11[grid(165888)](buf74, buf75, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf76 = extern_kernels.convolution(buf75, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf76, (4, 128, 16, 16), (32768, 256, 16, 1)) buf77 = buf76 del buf76 buf80 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf81 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf83 = reinterpret_tensor(buf81, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf81 triton_per_fused__native_batch_norm_legit_convolution_7[grid(512)]( buf77, buf83, primals_35, buf80, 512, 256, num_warps=2, num_stages=1) del primals_35 buf78 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_36, buf78, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_36 buf79 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_37, buf79, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_37 buf84 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_add_reflection_pad2d_relu_12[grid(165888)](buf74, buf77, buf80, buf83, buf78, buf79, buf84, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf85 = extern_kernels.convolution(buf84, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf85, (4, 128, 16, 16), (32768, 256, 16, 1)) buf87 = empty_strided_cuda((512,), (1,), torch.float32) buf88 = empty_strided_cuda((512,), (1,), torch.float32) buf86 = buf85 del buf85 buf89 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf90 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf92 = reinterpret_tensor(buf90, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf90 buf93 = buf74 del buf74 triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10[ grid(512)](buf86, buf92, primals_40, primals_41, primals_39, buf87, buf88, buf89, buf93, 512, 256, num_warps=2, num_stages=1) del primals_39 del primals_40 del primals_41 buf94 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_11[grid(165888)](buf93, buf94, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf95 = extern_kernels.convolution(buf94, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf95, (4, 128, 16, 16), (32768, 256, 16, 1)) buf96 = buf95 del buf95 buf99 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf100 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf102 = reinterpret_tensor(buf100, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf100 triton_per_fused__native_batch_norm_legit_convolution_7[grid(512)]( buf96, buf102, primals_43, buf99, 512, 256, num_warps=2, num_stages=1) del primals_43 buf97 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_44, buf97, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_44 buf98 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_45, buf98, 512, XBLOCK =256, num_warps=4, num_stages=1) del primals_45 buf103 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_add_reflection_pad2d_relu_12[grid(165888)](buf93, buf96, buf99, buf102, buf97, buf98, buf103, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf104 = extern_kernels.convolution(buf103, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf104, (4, 128, 16, 16), (32768, 256, 16, 1)) buf106 = empty_strided_cuda((512,), (1,), torch.float32) buf107 = empty_strided_cuda((512,), (1,), torch.float32) buf105 = buf104 del buf104 buf108 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf109 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf111 = reinterpret_tensor(buf109, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf109 buf112 = buf93 del buf93 triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_10[ grid(512)](buf105, buf111, primals_48, primals_49, primals_47, buf106, buf107, buf108, buf112, 512, 256, num_warps=2, num_stages=1 ) del primals_47 del primals_48 del primals_49 buf113 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32) triton_poi_fused_reflection_pad2d_11[grid(165888)](buf112, buf113, 165888, XBLOCK=512, num_warps=8, num_stages=1) buf114 = extern_kernels.convolution(buf113, primals_50, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf114, (4, 128, 16, 16), (32768, 256, 16, 1)) buf115 = buf114 del buf114 buf118 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch. float32) buf119 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32) buf121 = reinterpret_tensor(buf119, (1, 512, 1, 1), (512, 1, 1, 1), 0) del buf119 triton_per_fused__native_batch_norm_legit_convolution_7[grid(512)]( buf115, buf121, primals_51, buf118, 512, 256, num_warps=2, num_stages=1) del primals_51 buf116 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_52, buf116, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_52 buf117 = empty_strided_cuda((512,), (1,), torch.float32) triton_poi_fused_repeat_8[grid(512)](primals_53, buf117, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_53 buf122 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused_arange_13[grid(32)](buf122, 32, XBLOCK=32, num_warps=1, num_stages=1) buf123 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_14[grid(32)](buf123, 32, XBLOCK=32, num_warps=1, num_stages=1) buf124 = empty_strided_cuda((4, 128, 34, 32), (139264, 1088, 32, 1), torch.float32) triton_poi_fused__unsafe_index_add_reflection_pad2d_relu_15[grid( 557056)](buf123, buf112, buf115, buf118, buf121, buf116, buf117, buf124, 557056, XBLOCK=1024, num_warps=4, num_stages=1) del buf112 buf125 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) triton_poi_fused_reflection_pad2d_16[grid(591872)](buf124, buf125, 591872, XBLOCK=512, num_warps=8, num_stages=1) del buf124 buf126 = extern_kernels.convolution(buf125, primals_54, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf126, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf127 = buf126 del buf126 buf130 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch. float32) buf131 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf133 = reinterpret_tensor(buf131, (1, 256, 1, 1), (256, 1, 1, 1), 0) del buf131 triton_per_fused__native_batch_norm_legit_convolution_17[grid(256)]( buf127, buf133, primals_55, buf130, 256, 1024, num_warps=8, num_stages=1) del primals_55 buf128 = empty_strided_cuda((256,), (1,), torch.float32) triton_poi_fused_repeat_5[grid(256)](primals_56, buf128, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_56 buf129 = empty_strided_cuda((256,), (1,), torch.float32) triton_poi_fused_repeat_5[grid(256)](primals_57, buf129, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_57 buf134 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_arange_18[grid(64)](buf134, 64, XBLOCK=64, num_warps=1, num_stages=1) buf135 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_19[grid(64)](buf135, 64, XBLOCK=64, num_warps=1, num_stages=1) buf136 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) triton_poi_fused__unsafe_index_reflection_pad2d_relu_20[grid(1115136)]( buf135, buf127, buf130, buf133, buf128, buf129, buf136, 1115136, XBLOCK=512, num_warps=8, num_stages=1) buf137 = extern_kernels.convolution(buf136, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf137, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf138 = buf137 del buf137 buf141 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch. float32) buf142 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32) buf144 = reinterpret_tensor(buf142, (1, 128, 1, 1), (128, 1, 1, 1), 0) del buf142 triton_red_fused__native_batch_norm_legit_convolution_21[grid(128)]( buf138, buf144, primals_59, buf141, 128, 4096, XBLOCK=1, RBLOCK =2048, num_warps=16, num_stages=1) del primals_59 buf139 = empty_strided_cuda((128,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(128)](primals_60, buf139, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_60 buf140 = empty_strided_cuda((128,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(128)](primals_61, buf140, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_61 buf145 = empty_strided_cuda((4, 32, 72, 72), (165888, 5184, 72, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_22[grid(663552)](buf138, buf141, buf144, buf139, buf140, buf145, 663552, XBLOCK=512, num_warps=8, num_stages=1) buf146 = extern_kernels.convolution(buf145, primals_62, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf146, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf148 = empty_strided_cuda((12,), (1,), torch.float32) buf147 = buf146 del buf146 buf149 = empty_strided_cuda((1, 12, 1, 1), (12, 1, 12, 12), torch. float32) buf153 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32) buf152 = empty_strided_cuda((1, 12, 1, 1), (12, 1, 12, 12), torch. float32) triton_red_fused__native_batch_norm_legit_convolution_repeat_sigmoid_23[ grid(12)](buf147, primals_64, primals_63, primals_65, buf148, buf149, buf153, buf152, 12, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) del primals_63 del primals_64 del primals_65 return (buf153, primals_2, primals_6, primals_10, primals_14, primals_18, primals_22, primals_26, primals_30, primals_34, primals_38, primals_42, primals_46, primals_50, primals_54, primals_58, primals_62, buf0, buf2, buf3, buf4, buf5, buf8, buf9, buf11, buf12, buf13, buf14, buf17, buf18, buf20, buf21, buf22, buf23, buf26, buf27, buf29, buf30, buf31, buf32, buf35, buf37, buf39, buf40, buf41, buf42, buf45, buf46, buf48, buf49, buf50, buf51, buf54, buf56, buf58, buf59, buf60, buf61, buf64, buf65, buf67, buf68, buf69, buf70, buf73, buf75, buf77, buf78, buf79, buf80, buf83, buf84, buf86, buf87, buf88, buf89, buf92, buf94, buf96, buf97, buf98, buf99, buf102, buf103, buf105, buf106, buf107, buf108, buf111, buf113, buf115, buf116, buf117, buf118, buf121, buf122, buf123, buf125, buf127, buf128, buf129, buf130, buf133, buf134, buf135, buf136, buf138, buf139, buf140, buf141, buf144, buf145, buf147, buf148, reinterpret_tensor(buf152, (12,), (1,), 0), buf153, reinterpret_tensor(buf149, (1, 12, 1, 1), (12, 1, 1, 1), 0)) class GenericLayer(nn.Module): def __init__(self, layer, out_channels, padding=(0, 0, 0, 0), activation=None): super(GenericLayer, self).__init__() self._act = activation self._layer = layer self._norm = nn.InstanceNorm2d(out_channels, affine=True) self._pad = nn.ReflectionPad2d(padding) def forward(self, x): x = self._pad(x) x = self._layer(x) x = self._norm(x) if self._act is not None: x = self._act(x) return x class ResidualBlock(nn.Module): def __init__(self, channels, kernel_size, stride, padding=(0, 0, 0, 0)): super(ResidualBlock, self).__init__() self._conv_1 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) self._conv_2 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) def forward(self, x): x = self._conv_1(x) x = x + self._conv_2(x) return x class UpsampleConvLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, scale_factor): super(UpsampleConvLayer, self).__init__() self._scale_factor = scale_factor self._reflection_pad = nn.ReflectionPad2d(kernel_size // 2) self._conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): x = nn.functional.interpolate(x, mode='nearest', scale_factor=self. _scale_factor) x = self._reflection_pad(x) x = self._conv(x) return x class TransferNetNew(nn.Module): def __init__(self): super(TransferNetNew, self).__init__() self._conv_1 = GenericLayer(nn.Conv2d(3, 32, 9, 1), 32, (5, 5, 5, 5 ), nn.ReLU()) self._conv_2 = GenericLayer(nn.Conv2d(32, 64, 3, 2), 64, (1, 0, 1, 0), nn.ReLU()) self._conv_3 = GenericLayer(nn.Conv2d(64, 128, 3, 2), 128, (1, 0, 1, 0), nn.ReLU()) self._res_1 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_2 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_3 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_4 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_5 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._conv_4 = GenericLayer(UpsampleConvLayer(128, 64, 3, 1, 2), 64, (0, 0, 0, 0), nn.ReLU()) self._conv_5 = GenericLayer(UpsampleConvLayer(64, 32, 3, 1, 2), 32, (0, 0, 0, 0), nn.ReLU()) self._conv_6 = GenericLayer(nn.Conv2d(32, 3, 9, 1), 3, (4, 4, 4, 4), nn.Sigmoid()) def forward(self, input_0): primals_2 = self._conv_1._layer.weight primals_3 = self._conv_1._layer.bias primals_4 = self._conv_1._norm.weight primals_5 = self._conv_1._norm.bias primals_6 = self._conv_2._layer.weight primals_7 = self._conv_2._layer.bias primals_8 = self._conv_2._norm.weight primals_9 = self._conv_2._norm.bias primals_10 = self._conv_3._layer.weight primals_11 = self._conv_3._layer.bias primals_12 = self._conv_3._norm.weight primals_13 = self._conv_3._norm.bias primals_14 = self._res_1._conv_1._layer.weight primals_15 = self._res_1._conv_1._layer.bias primals_16 = self._res_1._conv_1._norm.weight primals_17 = self._res_1._conv_1._norm.bias primals_18 = self._res_1._conv_2._layer.weight primals_19 = self._res_1._conv_2._layer.bias primals_20 = self._res_1._conv_2._norm.weight primals_21 = self._res_1._conv_2._norm.bias primals_22 = self._res_2._conv_1._layer.weight primals_23 = self._res_2._conv_1._layer.bias primals_24 = self._res_2._conv_1._norm.weight primals_25 = self._res_2._conv_1._norm.bias primals_26 = self._res_2._conv_2._layer.weight primals_27 = self._res_2._conv_2._layer.bias primals_28 = self._res_2._conv_2._norm.weight primals_29 = self._res_2._conv_2._norm.bias primals_30 = self._res_3._conv_1._layer.weight primals_31 = self._res_3._conv_1._layer.bias primals_32 = self._res_3._conv_1._norm.weight primals_33 = self._res_3._conv_1._norm.bias primals_34 = self._res_3._conv_2._layer.weight primals_35 = self._res_3._conv_2._layer.bias primals_36 = self._res_3._conv_2._norm.weight primals_37 = self._res_3._conv_2._norm.bias primals_38 = self._res_4._conv_1._layer.weight primals_39 = self._res_4._conv_1._layer.bias primals_40 = self._res_4._conv_1._norm.weight primals_41 = self._res_4._conv_1._norm.bias primals_42 = self._res_4._conv_2._layer.weight primals_43 = self._res_4._conv_2._layer.bias primals_44 = self._res_4._conv_2._norm.weight primals_45 = self._res_4._conv_2._norm.bias primals_46 = self._res_5._conv_1._layer.weight primals_47 = self._res_5._conv_1._layer.bias primals_48 = self._res_5._conv_1._norm.weight primals_49 = self._res_5._conv_1._norm.bias primals_50 = self._res_5._conv_2._layer.weight primals_51 = self._res_5._conv_2._layer.bias primals_52 = self._res_5._conv_2._norm.weight primals_53 = self._res_5._conv_2._norm.bias primals_54 = self._conv_4._layer._conv.weight primals_55 = self._conv_4._layer._conv.bias primals_56 = self._conv_4._norm.weight primals_57 = self._conv_4._norm.bias primals_58 = self._conv_5._layer._conv.weight primals_59 = self._conv_5._layer._conv.bias primals_60 = self._conv_5._norm.weight primals_61 = self._conv_5._norm.bias primals_62 = self._conv_6._layer.weight primals_63 = self._conv_6._layer.bias primals_64 = self._conv_6._norm.weight primals_65 = self._conv_6._norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65]) return output[0]
ThomasRanvier/cnn_style_transfer
TransferNet
false
1,222
[ "MIT" ]
0
90b6c76c20263c22f4e45184d572284726ecbd7b
https://github.com/ThomasRanvier/cnn_style_transfer/tree/90b6c76c20263c22f4e45184d572284726ecbd7b
import torch import torch.nn as nn class GenericLayer(nn.Module): def __init__(self, layer, out_channels, padding=(0, 0, 0, 0), activation=None): super().__init__() self._act = activation self._layer = layer self._norm = nn.InstanceNorm2d(out_channels, affine=True) self._pad = nn.ReflectionPad2d(padding) def forward(self, x): x = self._pad(x) x = self._layer(x) x = self._norm(x) if self._act is not None: x = self._act(x) return x class ResidualBlock(nn.Module): def __init__(self, channels, kernel_size, stride, padding=(0, 0, 0, 0)): super().__init__() self._conv_1 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) self._conv_2 = GenericLayer(nn.Conv2d(128, 128, 3, 1), 128, (1, 1, 1, 1), nn.ReLU()) def forward(self, x): x = self._conv_1(x) x = x + self._conv_2(x) return x class UpsampleConvLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, scale_factor): super().__init__() self._scale_factor = scale_factor self._reflection_pad = nn.ReflectionPad2d(kernel_size // 2) self._conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): x = nn.functional.interpolate(x, mode='nearest', scale_factor=self. _scale_factor) x = self._reflection_pad(x) x = self._conv(x) return x class Model(nn.Module): def __init__(self): super().__init__() self._conv_1 = GenericLayer(nn.Conv2d(3, 32, 9, 1), 32, (5, 5, 5, 5 ), nn.ReLU()) self._conv_2 = GenericLayer(nn.Conv2d(32, 64, 3, 2), 64, (1, 0, 1, 0), nn.ReLU()) self._conv_3 = GenericLayer(nn.Conv2d(64, 128, 3, 2), 128, (1, 0, 1, 0), nn.ReLU()) self._res_1 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_2 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_3 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_4 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._res_5 = ResidualBlock(128, 3, 1, (1, 1, 1, 1)) self._conv_4 = GenericLayer(UpsampleConvLayer(128, 64, 3, 1, 2), 64, (0, 0, 0, 0), nn.ReLU()) self._conv_5 = GenericLayer(UpsampleConvLayer(64, 32, 3, 1, 2), 32, (0, 0, 0, 0), nn.ReLU()) self._conv_6 = GenericLayer(nn.Conv2d(32, 3, 9, 1), 3, (4, 4, 4, 4), nn.Sigmoid()) def forward(self, x): x = self._conv_1(x) x = self._conv_2(x) x = self._conv_3(x) x = self._res_1(x) x = self._res_2(x) x = self._res_3(x) x = self._res_4(x) x = self._res_5(x) x = self._conv_4(x) x = self._conv_5(x) x = self._conv_6(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
MSE_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xg/cxgsfonssev53pom6rhmghpoovsnhacnw2p7ufznc2l3tkmjlft4.py # Topologically Sorted Source Nodes: [sub, pow_1, mse_loss, sum_2, mse_loss_1], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div] # Source node to ATen node mapping: # mse_loss => sum_1 # mse_loss_1 => div # pow_1 => pow_1 # sub => sub # sum_2 => sum_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sum_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 1), kwargs = {}) triton_per_fused_div_pow_sub_sum_0 = async_compile.triton('triton_per_fused_div_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 1.0 tmp8 = tmp6 * tmp7 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, pow_1, mse_loss, sum_2, mse_loss_1], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_pow_sub_sum_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MSE_Loss(nn.Module): def __init__(self, sum_dim=None, sqrt=False, dimension_warn=0): super().__init__() self.sum_dim = sum_dim self.sqrt = sqrt self.dimension_warn = dimension_warn def forward(self, x, y): assert x.shape == y.shape if self.sum_dim: mse_loss = torch.sum((x - y) ** 2, dim=self.sum_dim) else: mse_loss = torch.sum((x - y) ** 2) if self.sqrt: mse_loss = torch.sqrt(mse_loss) mse_loss = torch.sum(mse_loss) / mse_loss.nelement() if len(mse_loss.shape) > self.dimension_warn: raise ValueError( 'The shape of mse loss should be a scalar, but you can skip thiserror by change the dimension_warn explicitly.' ) return mse_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 1.0 tmp8 = tmp6 * tmp7 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_pow_sub_sum_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class MSE_LossNew(nn.Module): def __init__(self, sum_dim=None, sqrt=False, dimension_warn=0): super().__init__() self.sum_dim = sum_dim self.sqrt = sqrt self.dimension_warn = dimension_warn def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
WorksApplications/omni_torch
MSE_Loss
false
1,223
[ "Apache-2.0" ]
0
10b689d794c8f485e38c765303ef018da17bc641
https://github.com/WorksApplications/omni_torch/tree/10b689d794c8f485e38c765303ef018da17bc641
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, sum_dim=None, sqrt=False, dimension_warn=0): super().__init__() self.sum_dim = sum_dim self.sqrt = sqrt self.dimension_warn = dimension_warn def forward(self, x, y): assert x.shape == y.shape if self.sum_dim: mse_loss = torch.sum((x - y) ** 2, dim=self.sum_dim) else: mse_loss = torch.sum((x - y) ** 2) if self.sqrt: mse_loss = torch.sqrt(mse_loss) mse_loss = torch.sum(mse_loss) / mse_loss.nelement() if len(mse_loss.shape) > self.dimension_warn: raise ValueError( 'The shape of mse loss should be a scalar, but you can skip thiserror by change the dimension_warn explicitly.' ) return mse_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
KL_Divergence
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/36/c36tvqtkgwhzybfsqd7qdh2wdiwvqkxzwfm3jxeqrcebr6bro6qj.py # Topologically Sorted Source Nodes: [norm_1], Original ATen: [aten.linalg_vector_norm] # Source node to ATen node mapping: # norm_1 => abs_2, sum_2 # Graph fragment: # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%view_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_2, [-1]), kwargs = {}) triton_per_fused_linalg_vector_norm_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl_math.abs(tmp0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hh/chh2l34diwmmt3zcli5z4lnk5ecukhm76s53o6ngb6zwtkqn5huy.py # Topologically Sorted Source Nodes: [y_1, log, x_1, log_1, sub, mul, loss], Original ATen: [aten.div, aten.log, aten.sub, aten.mul, aten.sum] # Source node to ATen node mapping: # log => log # log_1 => log_1 # loss => sum_3 # mul => mul # sub => sub # x_1 => div # y_1 => div_1 # Graph fragment: # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %unsqueeze_1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, %unsqueeze), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%log, %log_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %sub), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, None), kwargs = {}) triton_per_fused_div_log_mul_sub_sum_1 = async_compile.triton('triton_per_fused_div_log_mul_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_log_mul_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_log_mul_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r2), None) tmp1 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (r2), None) tmp5 = tl.load(in_ptr3 + (r1), None, eviction_policy='evict_last') tmp2 = tmp0 / tmp1 tmp3 = tl_math.log(tmp2) tmp6 = tmp4 / tmp5 tmp7 = tl_math.log(tmp6) tmp8 = tmp3 - tmp7 tmp9 = tmp2 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm_1], Original ATen: [aten.linalg_vector_norm] stream0 = get_raw_stream(0) triton_per_fused_linalg_vector_norm_0.run(arg1_1, buf0, 16, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm], Original ATen: [aten.linalg_vector_norm] triton_per_fused_linalg_vector_norm_0.run(arg0_1, buf1, 16, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [y_1, log, x_1, log_1, sub, mul, loss], Original ATen: [aten.div, aten.log, aten.sub, aten.mul, aten.sum] triton_per_fused_div_log_mul_sub_sum_1.run(arg1_1, buf0, arg0_1, buf1, buf2, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del buf0 del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class KL_Divergence(nn.Module): def __init__(self, sum_dim=None, sqrt=False, dimension_warn=0): super().__init__() self.sum_dim = sum_dim self.sqrt = sqrt self.dimension_warn = dimension_warn def forward(self, x, y): x = x.view(x.size(0), x.size(1), -1) x = x / x.norm(1, dim=-1).unsqueeze(-1) y = y.view(y.size(0), y.size(1), -1) y = y / y.norm(1, dim=-1).unsqueeze(-1) loss = torch.sum(y * (y.log() - x.log()), dim=self.sum_dim) return loss.squeeze() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl_math.abs(tmp0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_per_fused_div_log_mul_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + r2, None) tmp1 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + r2, None) tmp5 = tl.load(in_ptr3 + r1, None, eviction_policy='evict_last') tmp2 = tmp0 / tmp1 tmp3 = tl_math.log(tmp2) tmp6 = tmp4 / tmp5 tmp7 = tl_math.log(tmp6) tmp8 = tmp3 - tmp7 tmp9 = tmp2 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused_linalg_vector_norm_0[grid(16)](arg1_1, buf0, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_per_fused_linalg_vector_norm_0[grid(16)](arg0_1, buf1, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) buf2 = empty_strided_cuda((), (), torch.float32) triton_per_fused_div_log_mul_sub_sum_1[grid(1)](arg1_1, buf0, arg0_1, buf1, buf2, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del buf0 del buf1 return buf2, class KL_DivergenceNew(nn.Module): def __init__(self, sum_dim=None, sqrt=False, dimension_warn=0): super().__init__() self.sum_dim = sum_dim self.sqrt = sqrt self.dimension_warn = dimension_warn def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
WorksApplications/omni_torch
KL_Divergence
false
1,224
[ "Apache-2.0" ]
0
10b689d794c8f485e38c765303ef018da17bc641
https://github.com/WorksApplications/omni_torch/tree/10b689d794c8f485e38c765303ef018da17bc641
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, sum_dim=None, sqrt=False, dimension_warn=0): super().__init__() self.sum_dim = sum_dim self.sqrt = sqrt self.dimension_warn = dimension_warn def forward(self, x, y): x = x.view(x.size(0), x.size(1), -1) x = x / x.norm(1, dim=-1).unsqueeze(-1) y = y.view(y.size(0), y.size(1), -1) y = y / y.norm(1, dim=-1).unsqueeze(-1) loss = torch.sum(y * (y.log() - x.log()), dim=self.sum_dim) return loss.squeeze() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FC_Layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ck/cckzkicqhrcfrkfdju5exjvt5jnqvtxaazswol3wnjnjike2p45t.py # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # input_2 => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, primals_3, 4, grid=grid(4), stream=stream0) del primals_3 return (buf1, primals_1, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def standardize(param, assert_length): if type(param) is not list and type(param) is not tuple: param = [param] * assert_length assert len(param ) == assert_length, 'expect %s input params, got %s input parameter' % ( assert_length, len(param)) return param def fc_layer(input, layer_size, bias=True, name=None, activation=nn.Sigmoid (), batch_norm=None, dropout=0): layer_size = [input] + [layer_size] if type(layer_size) is not list else [ input] + layer_size assert_length = len(layer_size) - 1 bias = standardize(bias, assert_length) activation = standardize(activation, assert_length) batch_norm = standardize(batch_norm, assert_length) dropout = standardize(dropout, assert_length) if name is None: name = '' modules = nn.Sequential() for i in range(len(layer_size) - 1): modules.add_module(name + '_fc_' + str(i), nn.Linear(layer_size[i], layer_size[i + 1], bias[i])) if batch_norm[i]: modules.add_module(name + 'bn_' + str(i), batch_norm[i]( layer_size[i + 1])) if activation[i]: modules.add_module(name + 'act_' + str(i), activation[i]) if dropout[i] > 0: modules.add_module(name + 'drop_' + str(i), nn.Dropout2d( dropout[i])) return modules class FC_Layer(nn.Module): def __init__(self, input, layer_size, bias=True, name=None, activation= nn.Sigmoid(), batch_norm=None, dropout=0): super().__init__() self.fc_layer = fc_layer(input, layer_size, bias=bias, name=name, activation=activation, batch_norm=batch_norm, dropout=dropout) def forward(self, x, batch_dim=0): if len(x.shape): x = x.view(x.size(batch_dim), -1) return self.fc_layer.forward(x) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input': 4, 'layer_size': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(4)](buf1, primals_3, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 return buf1, primals_1, buf1 def standardize(param, assert_length): if type(param) is not list and type(param) is not tuple: param = [param] * assert_length assert len(param ) == assert_length, 'expect %s input params, got %s input parameter' % ( assert_length, len(param)) return param def fc_layer(input, layer_size, bias=True, name=None, activation=nn.Sigmoid (), batch_norm=None, dropout=0): layer_size = [input] + [layer_size] if type(layer_size) is not list else [ input] + layer_size assert_length = len(layer_size) - 1 bias = standardize(bias, assert_length) activation = standardize(activation, assert_length) batch_norm = standardize(batch_norm, assert_length) dropout = standardize(dropout, assert_length) if name is None: name = '' modules = nn.Sequential() for i in range(len(layer_size) - 1): modules.add_module(name + '_fc_' + str(i), nn.Linear(layer_size[i], layer_size[i + 1], bias[i])) if batch_norm[i]: modules.add_module(name + 'bn_' + str(i), batch_norm[i]( layer_size[i + 1])) if activation[i]: modules.add_module(name + 'act_' + str(i), activation[i]) if dropout[i] > 0: modules.add_module(name + 'drop_' + str(i), nn.Dropout2d( dropout[i])) return modules class FC_LayerNew(nn.Module): def __init__(self, input, layer_size, bias=True, name=None, activation= nn.Sigmoid(), batch_norm=None, dropout=0): super().__init__() self.fc_layer = fc_layer(input, layer_size, bias=bias, name=name, activation=activation, batch_norm=batch_norm, dropout=dropout) def forward(self, input_0): primals_2 = self.fc_layer._fc_0.weight primals_3 = self.fc_layer._fc_0.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
WorksApplications/omni_torch
FC_Layer
false
1,225
[ "Apache-2.0" ]
0
10b689d794c8f485e38c765303ef018da17bc641
https://github.com/WorksApplications/omni_torch/tree/10b689d794c8f485e38c765303ef018da17bc641
import torch import torch.nn as nn def standardize(param, assert_length): if type(param) is not list and type(param) is not tuple: param = [param] * assert_length assert len(param ) == assert_length, 'expect %s input params, got %s input parameter' % ( assert_length, len(param)) return param def fc_layer(input, layer_size, bias=True, name=None, activation=nn.Sigmoid (), batch_norm=None, dropout=0): layer_size = [input] + [layer_size] if type(layer_size) is not list else [ input] + layer_size assert_length = len(layer_size) - 1 bias = standardize(bias, assert_length) activation = standardize(activation, assert_length) batch_norm = standardize(batch_norm, assert_length) dropout = standardize(dropout, assert_length) if name is None: name = '' modules = nn.Sequential() for i in range(len(layer_size) - 1): modules.add_module(name + '_fc_' + str(i), nn.Linear(layer_size[i], layer_size[i + 1], bias[i])) if batch_norm[i]: modules.add_module(name + 'bn_' + str(i), batch_norm[i]( layer_size[i + 1])) if activation[i]: modules.add_module(name + 'act_' + str(i), activation[i]) if dropout[i] > 0: modules.add_module(name + 'drop_' + str(i), nn.Dropout2d( dropout[i])) return modules class Model(nn.Module): def __init__(self, input, layer_size, bias=True, name=None, activation= nn.Sigmoid(), batch_norm=None, dropout=0): super().__init__() self.fc_layer = fc_layer(input, layer_size, bias=bias, name=name, activation=activation, batch_norm=batch_norm, dropout=dropout) def forward(self, x, batch_dim=0): if len(x.shape): x = x.view(x.size(batch_dim), -1) return self.fc_layer.forward(x) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 1]
JS_Divergence
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/sb/csbrhoo2n4y5iym2xea6cnh5zhokxttxk4s4a5zwcxw52tq3eveo.py # Topologically Sorted Source Nodes: [kl_div, kl_div_1, add], Original ATen: [aten.xlogy, aten.mul, aten.sub, aten.mean, aten.add] # Source node to ATen node mapping: # add => add # kl_div => eq, full_default, full_default_1, isnan, log, mean, mul, mul_1, sub, where, where_1 # kl_div_1 => eq_1, full_default_2, full_default_3, isnan_1, log_1, mean_1, mul_2, mul_3, sub_1, where_2, where_3 # Graph fragment: # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%arg0_1,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg0_1, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %log), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) # %isnan_1 : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%arg1_1,), kwargs = {}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 0), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log_1), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %full_default_2, %mul_3), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan_1, %full_default_3, %where_2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_3, %mul_2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mean_1), kwargs = {}) triton_per_fused_add_mean_mul_sub_xlogy_0 = async_compile.triton('triton_per_fused_add_mean_mul_sub_xlogy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_sub_xlogy_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_sub_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr1 + (r0), None) tmp1 = libdevice.isnan(tmp0).to(tl.int1) tmp2 = 0.0 tmp3 = tmp0 == tmp2 tmp4 = tl_math.log(tmp0) tmp5 = tmp0 * tmp4 tmp6 = tl.where(tmp3, tmp2, tmp5) tmp7 = float("nan") tmp8 = tl.where(tmp1, tmp7, tmp6) tmp10 = tmp0 * tmp9 tmp11 = tmp8 - tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = libdevice.isnan(tmp9).to(tl.int1) tmp16 = tmp9 == tmp2 tmp17 = tl_math.log(tmp9) tmp18 = tmp9 * tmp17 tmp19 = tl.where(tmp16, tmp2, tmp18) tmp20 = tl.where(tmp15, tmp7, tmp19) tmp21 = tmp9 * tmp0 tmp22 = tmp20 - tmp21 tmp23 = tl.broadcast_to(tmp22, [RBLOCK]) tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0)) tmp26 = 256.0 tmp27 = tmp14 / tmp26 tmp28 = tmp25 / tmp26 tmp29 = tmp27 + tmp28 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp29, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [kl_div, kl_div_1, add], Original ATen: [aten.xlogy, aten.mul, aten.sub, aten.mean, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mul_sub_xlogy_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class JS_Divergence(nn.Module): def __init__(self): super().__init__() self.engine = nn.KLDivLoss() def forward(self, x, y): return self.engine(x, y) + self.engine(y, x) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mul_sub_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr1 + r0, None) tmp1 = libdevice.isnan(tmp0).to(tl.int1) tmp2 = 0.0 tmp3 = tmp0 == tmp2 tmp4 = tl_math.log(tmp0) tmp5 = tmp0 * tmp4 tmp6 = tl.where(tmp3, tmp2, tmp5) tmp7 = float('nan') tmp8 = tl.where(tmp1, tmp7, tmp6) tmp10 = tmp0 * tmp9 tmp11 = tmp8 - tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = libdevice.isnan(tmp9).to(tl.int1) tmp16 = tmp9 == tmp2 tmp17 = tl_math.log(tmp9) tmp18 = tmp9 * tmp17 tmp19 = tl.where(tmp16, tmp2, tmp18) tmp20 = tl.where(tmp15, tmp7, tmp19) tmp21 = tmp9 * tmp0 tmp22 = tmp20 - tmp21 tmp23 = tl.broadcast_to(tmp22, [RBLOCK]) tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0)) tmp26 = 256.0 tmp27 = tmp14 / tmp26 tmp28 = tmp25 / tmp26 tmp29 = tmp27 + tmp28 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp29, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mean_mul_sub_xlogy_0[grid(1)](buf2, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class JS_DivergenceNew(nn.Module): def __init__(self): super().__init__() self.engine = nn.KLDivLoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
WorksApplications/omni_torch
JS_Divergence
false
1,226
[ "Apache-2.0" ]
0
10b689d794c8f485e38c765303ef018da17bc641
https://github.com/WorksApplications/omni_torch/tree/10b689d794c8f485e38c765303ef018da17bc641
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.engine = nn.KLDivLoss() def forward(self, x, y): return self.engine(x, y) + self.engine(y, x) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ContextGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [context_input], Original ATen: [aten.cat] # Source node to ATen node mapping: # context_input => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/yi/cyi6r7vs4j3l42jso4lbypleykq4kzejvirygvgggapmeah5esms.py # Topologically Sorted Source Nodes: [context_gate, mul, sub, mul_1, context_fusion, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add, aten.tanh] # Source node to ATen node mapping: # context_fusion => add # context_gate => sigmoid # mul => mul # mul_1 => mul_1 # sub => sub # tanh => tanh # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tmp9 = libdevice.tanh(tmp8) tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [context_input], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [context_gate, mul, sub, mul_1, context_fusion, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add, aten.tanh] triton_poi_fused_add_mul_rsub_sigmoid_tanh_1.run(buf1, primals_1, primals_2, buf2, 16, grid=grid(16), stream=stream0) return (buf2, primals_1, primals_2, buf0, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.multiprocessing from torch import nn import torch.utils.data class ContextGate(nn.Module): def __init__(self, vector_dim, topic_dim): super().__init__() assert vector_dim == topic_dim self.fusion_linear = nn.Linear(vector_dim + topic_dim, vector_dim) self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() def forward(self, source_vector, other_vector): context_input = torch.cat((source_vector, other_vector), dim=1) context_gate = self.sigmoid(self.fusion_linear(context_input)) context_fusion = context_gate * source_vector + (1.0 - context_gate ) * other_vector return self.tanh(context_fusion) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'vector_dim': 4, 'topic_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.multiprocessing from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tmp9 = libdevice.tanh(tmp8) tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_1[grid(16)](buf1, primals_1, primals_2, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf2, primals_1, primals_2, buf0, buf1, buf2 class ContextGateNew(nn.Module): def __init__(self, vector_dim, topic_dim): super().__init__() assert vector_dim == topic_dim self.fusion_linear = nn.Linear(vector_dim + topic_dim, vector_dim) self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() def forward(self, input_0, input_1): primals_3 = self.fusion_linear.weight primals_4 = self.fusion_linear.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
WuDiDaBinGe/TAKG
ContextGate
false
1,227
[ "MIT" ]
0
83e608e677a4ee74722d18cb5ef430f4f6c6ad31
https://github.com/WuDiDaBinGe/TAKG/tree/83e608e677a4ee74722d18cb5ef430f4f6c6ad31
import torch import torch.multiprocessing from torch import nn import torch.utils.data class Model(nn.Module): def __init__(self, vector_dim, topic_dim): super().__init__() assert vector_dim == topic_dim self.fusion_linear = nn.Linear(vector_dim + topic_dim, vector_dim) self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() def forward(self, source_vector, other_vector): context_input = torch.cat((source_vector, other_vector), dim=1) context_gate = self.sigmoid(self.fusion_linear(context_input)) context_fusion = context_gate * source_vector + (1.0 - context_gate ) * other_vector return self.tanh(context_fusion) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
ClassicMixtureDensityModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/pf/cpf6ns5fy7h5k6xkbfznbtvldnujjbndm4h6qzyudnvbwyxdbyht.py # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] # Source node to ATen node mapping: # alpha => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 144 x2 = (xindex // 576) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (576*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (144 + x0 + (576*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (288 + x0 + (576*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (432 + x0 + (576*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xv/cxvwzv7zvqvjztvnbdecf4kizdhqkixtkyjgymln4ihenkaudb4p.py # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] # Source node to ATen node mapping: # alpha => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 144 x2 = (xindex // 576) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (576*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (144 + x0 + (576*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (288 + x0 + (576*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (432 + x0 + (576*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (36, 4), (4, 1)) assert_size_stride(primals_2, (36, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 36), (36, 1), torch.float32) # Topologically Sorted Source Nodes: [p], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 36), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 36), (576, 144, 36, 1), torch.float32) # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 2304, grid=grid(2304), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 36), (576, 144, 36, 1), torch.float32) # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 2304, grid=grid(2304), stream=stream0) del buf1 buf3 = empty_strided_cuda((4, 0, 4, 36), (0, 144, 36, 1), torch.float32) return (buf2, reinterpret_tensor(buf0, (0, 4, 4), (0, 0, 0), 576), reinterpret_tensor(buf3, (0, 4, 4), (0, 0, 0), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((36, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((36, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class ClassicMixtureDensityModule(nn.Module): def __init__(self, dim_input, dim_output, num_components): super(ClassicMixtureDensityModule, self).__init__() self.dim_input = dim_input self.dim_output = dim_output self.M = num_components self.layer_mapping = nn.Linear(dim_input, (2 * dim_output + 1) * num_components) self.layer_alpha = nn.Softmax(dim=1) def forward(self, x): p = self.layer_mapping(x) alpha = self.layer_alpha(p[:, :self.M]) mu = p[:, self.M:(self.dim_output + 1) * self.M] sigma = torch.exp(p[:, (self.dim_output + 1) * self.M:]) mu = mu.view(-1, self.M, self.dim_output) sigma = sigma.view(-1, self.M, self.dim_output) return alpha, mu, sigma def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_input': 4, 'dim_output': 4, 'num_components': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 144 x2 = xindex // 576 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 576 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (144 + x0 + 576 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (288 + x0 + 576 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (432 + x0 + 576 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 144 x2 = xindex // 576 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 576 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (144 + x0 + 576 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (288 + x0 + 576 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (432 + x0 + 576 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (36, 4), (4, 1)) assert_size_stride(primals_2, (36,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 36), (36, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 36), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 36), (576, 144, 36, 1), torch. float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(2304)](buf0, buf1, 2304, XBLOCK= 128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 36), (576, 144, 36, 1), torch. float32) triton_poi_fused__softmax_1[grid(2304)](buf1, buf2, 2304, XBLOCK= 128, num_warps=4, num_stages=1) del buf1 buf3 = empty_strided_cuda((4, 0, 4, 36), (0, 144, 36, 1), torch.float32 ) return buf2, reinterpret_tensor(buf0, (0, 4, 4), (0, 0, 0), 576 ), reinterpret_tensor(buf3, (0, 4, 4), (0, 0, 0), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf3 class ClassicMixtureDensityModuleNew(nn.Module): def __init__(self, dim_input, dim_output, num_components): super(ClassicMixtureDensityModuleNew, self).__init__() self.dim_input = dim_input self.dim_output = dim_output self.M = num_components self.layer_mapping = nn.Linear(dim_input, (2 * dim_output + 1) * num_components) self.layer_alpha = nn.Softmax(dim=1) def forward(self, input_0): primals_1 = self.layer_mapping.weight primals_2 = self.layer_mapping.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1], output[2]
Woodenonez/MultimodalMotionPred_SamplingWTACGF_Pytorch
ClassicMixtureDensityModule
false
1,228
[ "MIT" ]
0
2be4f8aaaebb9ec80b29d4ff86146010a0192573
https://github.com/Woodenonez/MultimodalMotionPred_SamplingWTACGF_Pytorch/tree/2be4f8aaaebb9ec80b29d4ff86146010a0192573
import torch from torch import nn class Model(nn.Module): def __init__(self, dim_input, dim_output, num_components): super().__init__() self.dim_input = dim_input self.dim_output = dim_output self.M = num_components self.layer_mapping = nn.Linear(dim_input, (2 * dim_output + 1) * num_components) self.layer_alpha = nn.Softmax(dim=1) def forward(self, x): p = self.layer_mapping(x) alpha = self.layer_alpha(p[:, :self.M]) mu = p[:, self.M:(self.dim_output + 1) * self.M] sigma = torch.exp(p[:, (self.dim_output + 1) * self.M:]) mu = mu.view(-1, self.M, self.dim_output) sigma = sigma.view(-1, self.M, self.dim_output) return alpha, mu, sigma def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
EncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ue/cueewzxuy4vxtpvu3vvsk7dj77iejxhffcljrvuqynhlke7j7x72.py # Topologically Sorted Source Nodes: [truediv, attn], Original ATen: [aten.div, aten.clone] # Source node to ATen node mapping: # attn => clone # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_3, 2.0), kwargs = {}) # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_div_0 = async_compile.triton('triton_poi_fused_clone_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ri/cricgdtr5c24l63g746gjtdd45qor3pkzmi7qmyygyd24ejrijb7.py # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] # Source node to ATen node mapping: # attn => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/tt/cttmvktt3m2x2nl56afa7l3abaxt7wlehowakdzngkhgs35f3n7u.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6b/c6busvilz5nn36jjet3bmw7cqddirh4sgalamjr3fsrp3sbsacfi.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] # Source node to ATen node mapping: # output => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jy/cjygxb2zqcocru7bqmlieffqzoyzqxczpp5w5pv3hrnjzzu6tq65.py # Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool1d => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%unsqueeze, [-1, -2], True), kwargs = {}) triton_poi_fused_mean_5 = async_compile.triton('triton_poi_fused_mean_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp7 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), xmask) tmp8 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr0 + (36 + x0 + (64*x1)), xmask) tmp12 = tl.load(in_ptr0 + (52 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr0 + (8 + x0 + (64*x1)), xmask) tmp16 = tl.load(in_ptr0 + (24 + x0 + (64*x1)), xmask) tmp18 = tl.load(in_ptr0 + (40 + x0 + (64*x1)), xmask) tmp20 = tl.load(in_ptr0 + (56 + x0 + (64*x1)), xmask) tmp23 = tl.load(in_ptr0 + (12 + x0 + (64*x1)), xmask) tmp24 = tl.load(in_ptr0 + (28 + x0 + (64*x1)), xmask) tmp26 = tl.load(in_ptr0 + (44 + x0 + (64*x1)), xmask) tmp28 = tl.load(in_ptr0 + (60 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp21 = tmp19 + tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 + tmp24 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = tmp22 + tmp29 tmp31 = 4.0 tmp32 = tmp30 / tmp31 tl.store(out_ptr0 + (x2), tmp32, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/x3/cx357lgsa552jxzo7u6zzmeilbrh23o64hz7xr6jyzewgxsocd7h.py # Topologically Sorted Source Nodes: [v_4], Original ATen: [aten._softmax] # Source node to ATen node mapping: # v_4 => amax_1, exp_1, sub_1 # Graph fragment: # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_16, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_16, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mu/cmuwbmg3ea5rpxshdtybg3pou76wgwsthvalkm6sfme6zednfanp.py # Topologically Sorted Source Nodes: [v_4], Original ATen: [aten._softmax] # Source node to ATen node mapping: # v_4 => div_2, sum_3 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_3), kwargs = {}) triton_poi_fused__softmax_7 = async_compile.triton('triton_poi_fused__softmax_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/a2/ca2efstpjdcv4e2tpybutvkyj7iakalaszbd2jsdzr4g2kbpjaka.py # Topologically Sorted Source Nodes: [f, q_2], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # f => mul # q_2 => sum_4 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_14, %expand_4), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {}) triton_poi_fused_mul_sum_8 = async_compile.triton('triton_poi_fused_mul_sum_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + (64*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x3 + (64*x2)), xmask) tmp4 = tl.load(in_ptr1 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (32 + x3 + (64*x2)), xmask) tmp8 = tl.load(in_ptr1 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x3 + (64*x2)), xmask) tmp12 = tl.load(in_ptr1 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x4), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cd/ccdmi4jlrnqerq7lq32jasuhlfdtt4lbo4wdtgtm25hvaqmsmmzd.py # Topologically Sorted Source Nodes: [q_5, q_6], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # q_5 => add # q_6 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %primals_1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_9 = async_compile.triton('triton_poi_fused_add_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/l2/cl2chp3c7xhcfuz6tuqw7ows2xquvgtlltaljzy5xnnjpkxrnzbj.py # Topologically Sorted Source Nodes: [q_5, q_6], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # q_5 => add # q_6 => add_1, add_2, mul_1, mul_2, rsqrt, sub_2 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_8), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_9), kwargs = {}) triton_poi_fused_add_native_layer_norm_10 = async_compile.triton('triton_poi_fused_add_native_layer_norm_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-06 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/x4/cx4dy7nub5axbgswcjd7xtsxm4hlex3zmjlfcyucivazkjm63wl6.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_21,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_11 = async_compile.triton('triton_poi_fused_relu_threshold_backward_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_11(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ly/clych72evfl43h75debtcdhychoab7iw7f2ch2b5ebe3jjglsndg.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add_3 # Graph fragment: # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_23, %add_2), kwargs = {}) triton_poi_fused_add_12 = async_compile.triton('triton_poi_fused_add_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_12(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/fr/cfrfshww2eair72sp7fsylxei2yqzgvvsvzcbwwxee7smq7nuolb.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_3 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-06), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_13 = async_compile.triton('triton_poi_fused_native_layer_norm_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dr/cdrly2m2ajw4z7nsxvc4tnu6ks6b7s65jkv7p2qo565cfa7ogsb3.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_3 => add_4, add_5, mul_3, mul_4, rsqrt_1, sub_3, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-06), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_14), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_15), kwargs = {}) triton_poi_fused_native_layer_norm_14 = async_compile.triton('triton_poi_fused_native_layer_norm_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_14(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv, attn], Original ATen: [aten.div, aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_div_0.run(buf0, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, buf4, 64, 4, grid=grid(64, 4), stream=stream0) buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf2, buf8, 256, grid=grid(256), stream=stream0) buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean] triton_poi_fused_mean_5.run(buf9, buf10, 16, grid=grid(16), stream=stream0) buf11 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [v_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_6 buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [v_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf11, buf12, 64, grid=grid(64), stream=stream0) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [v_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_7.run(buf12, buf13, 64, grid=grid(64), stream=stream0) buf14 = reinterpret_tensor(buf12, (4, 1, 4, 4), (16, 1, 4, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [f, q_2], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_8.run(buf9, buf13, buf14, 64, grid=grid(64), stream=stream0) buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0); del buf13 # reuse # Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf15) buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [q_5, q_6], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_9.run(buf15, primals_1, buf16, buf17, 16, grid=grid(16), stream=stream0) buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [q_5, q_6], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_10.run(buf15, primals_1, buf16, buf17, primals_8, primals_9, buf18, 64, grid=grid(64), stream=stream0) del primals_9 buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf19) buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0); del buf19 # reuse buf26 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_11.run(buf20, primals_11, buf26, 64, grid=grid(64), stream=stream0) del primals_11 buf21 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf20, (16, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf21) buf22 = reinterpret_tensor(buf21, (4, 4, 4), (16, 4, 1), 0); del buf21 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] triton_poi_fused_add_12.run(buf22, primals_13, buf18, 64, grid=grid(64), stream=stream0) del primals_13 buf23 = buf17; del buf17 # reuse buf24 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_13.run(buf22, buf23, buf24, 16, grid=grid(16), stream=stream0) buf25 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_14.run(buf22, buf23, buf24, primals_14, primals_15, buf25, 64, grid=grid(64), stream=stream0) del buf23 del buf24 del primals_15 return (buf25, buf7, primals_1, primals_8, primals_14, buf7, buf9, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), buf11, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf15, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(buf20, (16, 4), (4, 1), 0), buf22, primals_12, buf26, primals_10, primals_7, primals_5, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SPA(nn.Module): """ Selective parallel attention """ def __init__(self, n_head: 'int'=8, d_v: 'int'=64): super().__init__() self.gap = nn.AdaptiveAvgPool1d(1) self.sk = nn.Linear(d_v, n_head * d_v) self.softmax = nn.Softmax(dim=1) def forward(self, x): bs, n_head, _lq, d_v = x.size() u = x.sum(dim=1) s = self.gap(u.transpose(1, 2)).view(bs, d_v) v = self.sk(s) v = v.view(bs, n_head, d_v) v = self.softmax(v) v = v.unsqueeze(2) f = x * v.expand_as(x) return f class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature: 'float', attn_dropout: 'float'=0.1): super().__init__() self.temperature = temperature self.attn_dropout = attn_dropout self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn def __repr__(self): tmpstr = self.__class__.__name__ + '(' tmpstr += 'temperature=' + str(self.temperature) tmpstr += ', attn_dropout=' + str(self.attn_dropout) tmpstr += ')' return tmpstr class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head: 'int'=8, d_model: 'int'=512, d_k: 'int'=64, d_v: 'int'=64, dropout: 'float'=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) if n_head > 1: self.spa = SPA(n_head=n_head, d_v=d_v) self.fc = nn.Linear(d_v, d_model, bias=False) else: self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) q, attn = self.attention(q, k, v, mask=mask) if n_head > 1: q = self.spa(q) q = q.sum(dim=1, keepdim=True) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x class EncoderLayer(nn.Module): """ Compose with two layers """ def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super(EncoderLayer, self).__init__() self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout= dropout) def forward(self, enc_input, slf_attn_mask=None): enc_output, enc_slf_attn = self.slf_attn(enc_input, enc_input, enc_input, mask=slf_attn_mask) enc_output = self.pos_ffn(enc_output) return enc_output, enc_slf_attn def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'd_inner': 4, 'n_head': 4, 'd_k': 4, 'd_v': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_mean_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp7 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask) tmp8 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask) tmp12 = tl.load(in_ptr0 + (52 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr0 + (8 + x0 + 64 * x1), xmask) tmp16 = tl.load(in_ptr0 + (24 + x0 + 64 * x1), xmask) tmp18 = tl.load(in_ptr0 + (40 + x0 + 64 * x1), xmask) tmp20 = tl.load(in_ptr0 + (56 + x0 + 64 * x1), xmask) tmp23 = tl.load(in_ptr0 + (12 + x0 + 64 * x1), xmask) tmp24 = tl.load(in_ptr0 + (28 + x0 + 64 * x1), xmask) tmp26 = tl.load(in_ptr0 + (44 + x0 + 64 * x1), xmask) tmp28 = tl.load(in_ptr0 + (60 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp21 = tmp19 + tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 + tmp24 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = tmp22 + tmp29 tmp31 = 4.0 tmp32 = tmp30 / tmp31 tl.store(out_ptr0 + x2, tmp32, xmask) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_mul_sum_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 64 * x2), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x3 + 64 * x2), xmask) tmp4 = tl.load(in_ptr1 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (32 + x3 + 64 * x2), xmask) tmp8 = tl.load(in_ptr1 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x3 + 64 * x2), xmask) tmp12 = tl.load(in_ptr1 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x4, tmp14, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-06 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_11(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_12(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_14(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_div_0[grid(256)](buf0, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_clone_1[grid(64, 4)](buf1, buf4, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) buf8 = buf6 del buf6 triton_poi_fused_clone_4[grid(256)](buf2, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused_mean_5[grid(16)](buf9, buf10, 16, XBLOCK=16, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf10, (4, 4), ( 4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_6 buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_6[grid(64)](buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_7[grid(64)](buf12, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf14 = reinterpret_tensor(buf12, (4, 1, 4, 4), (16, 1, 4, 1), 0) del buf12 triton_poi_fused_mul_sum_8[grid(64)](buf9, buf13, buf14, 64, XBLOCK =64, num_warps=1, num_stages=1) buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0) del buf13 extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf15) buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_9[grid(16)](buf15, primals_1, buf16, buf17, 16, XBLOCK=16, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_10[grid(64)](buf15, primals_1, buf16, buf17, primals_8, primals_9, buf18, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf19) buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0) del buf19 buf26 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_11[grid(64)](buf20, primals_11, buf26, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 buf21 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf20, (16, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf21) buf22 = reinterpret_tensor(buf21, (4, 4, 4), (16, 4, 1), 0) del buf21 triton_poi_fused_add_12[grid(64)](buf22, primals_13, buf18, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_13 buf23 = buf17 del buf17 buf24 = buf16 del buf16 triton_poi_fused_native_layer_norm_13[grid(16)](buf22, buf23, buf24, 16, XBLOCK=16, num_warps=1, num_stages=1) buf25 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_14[grid(64)](buf22, buf23, buf24, primals_14, primals_15, buf25, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf23 del buf24 del primals_15 return (buf25, buf7, primals_1, primals_8, primals_14, buf7, buf9, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), buf11, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf15, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor( buf20, (16, 4), (4, 1), 0), buf22, primals_12, buf26, primals_10, primals_7, primals_5, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0)) class SPA(nn.Module): """ Selective parallel attention """ def __init__(self, n_head: 'int'=8, d_v: 'int'=64): super().__init__() self.gap = nn.AdaptiveAvgPool1d(1) self.sk = nn.Linear(d_v, n_head * d_v) self.softmax = nn.Softmax(dim=1) def forward(self, x): bs, n_head, _lq, d_v = x.size() u = x.sum(dim=1) s = self.gap(u.transpose(1, 2)).view(bs, d_v) v = self.sk(s) v = v.view(bs, n_head, d_v) v = self.softmax(v) v = v.unsqueeze(2) f = x * v.expand_as(x) return f class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature: 'float', attn_dropout: 'float'=0.1): super().__init__() self.temperature = temperature self.attn_dropout = attn_dropout self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn def __repr__(self): tmpstr = self.__class__.__name__ + '(' tmpstr += 'temperature=' + str(self.temperature) tmpstr += ', attn_dropout=' + str(self.attn_dropout) tmpstr += ')' return tmpstr class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head: 'int'=8, d_model: 'int'=512, d_k: 'int'=64, d_v: 'int'=64, dropout: 'float'=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) if n_head > 1: self.spa = SPA(n_head=n_head, d_v=d_v) self.fc = nn.Linear(d_v, d_model, bias=False) else: self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) q, attn = self.attention(q, k, v, mask=mask) if n_head > 1: q = self.spa(q) q = q.sum(dim=1, keepdim=True) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x class EncoderLayerNew(nn.Module): """ Compose with two layers """ def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super(EncoderLayerNew, self).__init__() self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout= dropout) def forward(self, input_0): primals_2 = self.slf_attn.w_qs.weight primals_3 = self.slf_attn.w_ks.weight primals_4 = self.slf_attn.w_vs.weight primals_5 = self.slf_attn.spa.sk.weight primals_6 = self.slf_attn.spa.sk.bias primals_7 = self.slf_attn.fc.weight primals_8 = self.slf_attn.layer_norm.weight primals_9 = self.slf_attn.layer_norm.bias primals_10 = self.pos_ffn.w_1.weight primals_11 = self.pos_ffn.w_1.bias primals_12 = self.pos_ffn.w_2.weight primals_13 = self.pos_ffn.w_2.bias primals_14 = self.pos_ffn.layer_norm.weight primals_15 = self.pos_ffn.layer_norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0], output[1]
WOMMOW/AIT
EncoderLayer
false
1,229
[ "MIT" ]
0
305fe7962bf9c5c24b6854e3ff0b7e2e669bf5a5
https://github.com/WOMMOW/AIT/tree/305fe7962bf9c5c24b6854e3ff0b7e2e669bf5a5
import torch import torch.nn as nn import torch.nn.functional as F class SPA(nn.Module): """ Selective parallel attention """ def __init__(self, n_head: 'int'=8, d_v: 'int'=64): super().__init__() self.gap = nn.AdaptiveAvgPool1d(1) self.sk = nn.Linear(d_v, n_head * d_v) self.softmax = nn.Softmax(dim=1) def forward(self, x): bs, n_head, _lq, d_v = x.size() u = x.sum(dim=1) s = self.gap(u.transpose(1, 2)).view(bs, d_v) v = self.sk(s) v = v.view(bs, n_head, d_v) v = self.softmax(v) v = v.unsqueeze(2) f = x * v.expand_as(x) return f class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature: 'float', attn_dropout: 'float'=0.1): super().__init__() self.temperature = temperature self.attn_dropout = attn_dropout self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn def __repr__(self): tmpstr = self.__class__.__name__ + '(' tmpstr += 'temperature=' + str(self.temperature) tmpstr += ', attn_dropout=' + str(self.attn_dropout) tmpstr += ')' return tmpstr class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head: 'int'=8, d_model: 'int'=512, d_k: 'int'=64, d_v: 'int'=64, dropout: 'float'=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) if n_head > 1: self.spa = SPA(n_head=n_head, d_v=d_v) self.fc = nn.Linear(d_v, d_model, bias=False) else: self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) q, attn = self.attention(q, k, v, mask=mask) if n_head > 1: q = self.spa(q) q = q.sum(dim=1, keepdim=True) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x class Model(nn.Module): """ Compose with two layers """ def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super().__init__() self.slf_attn = MultiHeadAttention(n_he # ... truncated (>4000 chars) for memory efficiency
Mean
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/k7/ck7f3e36x4bp7ysaeucdkbkabvflugky7lt72frthtbqzwdsmcfq.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [4]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Mean(nn.Module): def __init__(self, dim, keep_dim=False): super(Mean, self).__init__() self.dim = dim self.keep_dim = keep_dim def forward(self, input): return input.mean(self.dim, self.keep_dim) def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class MeanNew(nn.Module): def __init__(self, dim, keep_dim=False): super(MeanNew, self).__init__() self.dim = dim self.keep_dim = keep_dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
WillyChen123/CDFNet
Mean
false
1,230
[ "MIT" ]
0
12d6b288aa2a8301683395a75bd44a7be44b7f2a
https://github.com/WillyChen123/CDFNet/tree/12d6b288aa2a8301683395a75bd44a7be44b7f2a
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, dim, keep_dim=False): super().__init__() self.dim = dim self.keep_dim = keep_dim def forward(self, input): return input.mean(self.dim, self.keep_dim) def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [4]
CLeakyReLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/n5/cn53c6d36bm2o6wr33epyebwkqx7owzyf77kp5pts3jxdcj6obrf.py # Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # leaky_relu => gt, mul, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.01 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [leaky_relu_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_0.run(arg1_1, buf1, 256, grid=grid(256), stream=stream0) del arg1_1 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class CLeakyReLU(nn.LeakyReLU): def forward(self, xr, xi): return F.leaky_relu(xr, self.negative_slope, self.inplace ), F.leaky_relu(xi, self.negative_slope, self.inplace) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.01 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_leaky_relu_0[grid(256)](arg1_1, buf1, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg1_1 return buf0, buf1 class CLeakyReLUNew(nn.LeakyReLU): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0], output[1]
X-CCS/TensorFlowTTS
CLeakyReLU
false
1,231
[ "Apache-2.0" ]
0
157fab4cbcf11a68ff62f6ec364af43447247c76
https://github.com/X-CCS/TensorFlowTTS/tree/157fab4cbcf11a68ff62f6ec364af43447247c76
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.LeakyReLU): def forward(self, xr, xi): return F.leaky_relu(xr, self.negative_slope, self.inplace ), F.leaky_relu(xi, self.negative_slope, self.inplace) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
KL_Triplet_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/2k/c2krb47vwrdba4ls4nroyivzpywor6nfyjzvpahzquvj3x5efyft.py # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.xlogy, aten.mul, aten.sub, aten.mean] # Source node to ATen node mapping: # loss => eq, full_default, full_default_1, isnan, log, mean, mul, mul_1, sub, where, where_1 # Graph fragment: # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%view_1,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_1, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%view_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %log), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %view), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) triton_per_fused_mean_mul_sub_xlogy_0 = async_compile.triton('triton_per_fused_mean_mul_sub_xlogy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_sub_xlogy_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_mul_sub_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr1 + (r0), None) tmp1 = libdevice.isnan(tmp0).to(tl.int1) tmp2 = 0.0 tmp3 = tmp0 == tmp2 tmp4 = tl_math.log(tmp0) tmp5 = tmp0 * tmp4 tmp6 = tl.where(tmp3, tmp2, tmp5) tmp7 = float("nan") tmp8 = tl.where(tmp1, tmp7, tmp6) tmp10 = tmp0 * tmp9 tmp11 = tmp8 - tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.xlogy, aten.mul, aten.sub, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_mul_sub_xlogy_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class KL_Triplet_Loss(nn.Module): def __init__(self, symmetric=True): """ :param symmetric: if symmetric, we will use JS Divergence, if not KL Divergence will be used. """ super().__init__() self.symmetric = symmetric self.engine = nn.KLDivLoss() def forward(self, x, y): if len(x.shape) == 4 and len(y.shape) == 4: x = x.view(x.size(0) * x.size(1), -1) y = y.view(y.size(0) * y.size(1), -1) elif len(x.shape) == 2 and len(y.shape) == 2: pass else: raise TypeError('We need a tensor of either rank 2 or rank 4.') if self.symmetric: loss = self.engine(x, y) else: loss = self.engine(x, y) + self.engine(y, x) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_mul_sub_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr1 + r0, None) tmp1 = libdevice.isnan(tmp0).to(tl.int1) tmp2 = 0.0 tmp3 = tmp0 == tmp2 tmp4 = tl_math.log(tmp0) tmp5 = tmp0 * tmp4 tmp6 = tl.where(tmp3, tmp2, tmp5) tmp7 = float('nan') tmp8 = tl.where(tmp1, tmp7, tmp6) tmp10 = tmp0 * tmp9 tmp11 = tmp8 - tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_mul_sub_xlogy_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class KL_Triplet_LossNew(nn.Module): def __init__(self, symmetric=True): """ :param symmetric: if symmetric, we will use JS Divergence, if not KL Divergence will be used. """ super().__init__() self.symmetric = symmetric self.engine = nn.KLDivLoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
WorksApplications/omni_torch
KL_Triplet_Loss
false
1,232
[ "Apache-2.0" ]
0
10b689d794c8f485e38c765303ef018da17bc641
https://github.com/WorksApplications/omni_torch/tree/10b689d794c8f485e38c765303ef018da17bc641
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, symmetric=True): """ :param symmetric: if symmetric, we will use JS Divergence, if not KL Divergence will be used. """ super().__init__() self.symmetric = symmetric self.engine = nn.KLDivLoss() def forward(self, x, y): if len(x.shape) == 4 and len(y.shape) == 4: x = x.view(x.size(0) * x.size(1), -1) y = y.view(y.size(0) * y.size(1), -1) elif len(x.shape) == 2 and len(y.shape) == 2: pass else: raise TypeError('We need a tensor of either rank 2 or rank 4.') if self.symmetric: loss = self.engine(x, y) else: loss = self.engine(x, y) + self.engine(y, x) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
DecoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ue/cueewzxuy4vxtpvu3vvsk7dj77iejxhffcljrvuqynhlke7j7x72.py # Topologically Sorted Source Nodes: [truediv, attn], Original ATen: [aten.div, aten.clone] # Source node to ATen node mapping: # attn => clone # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_3, 2.0), kwargs = {}) # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_div_0 = async_compile.triton('triton_poi_fused_clone_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ri/cricgdtr5c24l63g746gjtdd45qor3pkzmi7qmyygyd24ejrijb7.py # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] # Source node to ATen node mapping: # attn => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/tt/cttmvktt3m2x2nl56afa7l3abaxt7wlehowakdzngkhgs35f3n7u.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6b/c6busvilz5nn36jjet3bmw7cqddirh4sgalamjr3fsrp3sbsacfi.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] # Source node to ATen node mapping: # output => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jy/cjygxb2zqcocru7bqmlieffqzoyzqxczpp5w5pv3hrnjzzu6tq65.py # Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool1d => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%unsqueeze, [-1, -2], True), kwargs = {}) triton_poi_fused_mean_5 = async_compile.triton('triton_poi_fused_mean_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp7 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), xmask) tmp8 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr0 + (36 + x0 + (64*x1)), xmask) tmp12 = tl.load(in_ptr0 + (52 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr0 + (8 + x0 + (64*x1)), xmask) tmp16 = tl.load(in_ptr0 + (24 + x0 + (64*x1)), xmask) tmp18 = tl.load(in_ptr0 + (40 + x0 + (64*x1)), xmask) tmp20 = tl.load(in_ptr0 + (56 + x0 + (64*x1)), xmask) tmp23 = tl.load(in_ptr0 + (12 + x0 + (64*x1)), xmask) tmp24 = tl.load(in_ptr0 + (28 + x0 + (64*x1)), xmask) tmp26 = tl.load(in_ptr0 + (44 + x0 + (64*x1)), xmask) tmp28 = tl.load(in_ptr0 + (60 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp21 = tmp19 + tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 + tmp24 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = tmp22 + tmp29 tmp31 = 4.0 tmp32 = tmp30 / tmp31 tl.store(out_ptr0 + (x2), tmp32, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/x3/cx357lgsa552jxzo7u6zzmeilbrh23o64hz7xr6jyzewgxsocd7h.py # Topologically Sorted Source Nodes: [v_4], Original ATen: [aten._softmax] # Source node to ATen node mapping: # v_4 => amax_1, exp_1, sub_1 # Graph fragment: # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_16, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_16, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mu/cmuwbmg3ea5rpxshdtybg3pou76wgwsthvalkm6sfme6zednfanp.py # Topologically Sorted Source Nodes: [v_4], Original ATen: [aten._softmax] # Source node to ATen node mapping: # v_4 => div_2, sum_3 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_3), kwargs = {}) triton_poi_fused__softmax_7 = async_compile.triton('triton_poi_fused__softmax_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/a2/ca2efstpjdcv4e2tpybutvkyj7iakalaszbd2jsdzr4g2kbpjaka.py # Topologically Sorted Source Nodes: [f, q_2], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # f => mul # q_2 => sum_4 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_14, %expand_4), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {}) triton_poi_fused_mul_sum_8 = async_compile.triton('triton_poi_fused_mul_sum_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + (64*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x3 + (64*x2)), xmask) tmp4 = tl.load(in_ptr1 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (32 + x3 + (64*x2)), xmask) tmp8 = tl.load(in_ptr1 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x3 + (64*x2)), xmask) tmp12 = tl.load(in_ptr1 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x4), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cd/ccdmi4jlrnqerq7lq32jasuhlfdtt4lbo4wdtgtm25hvaqmsmmzd.py # Topologically Sorted Source Nodes: [q_5, q_6], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # q_5 => add # q_6 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %primals_1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_9 = async_compile.triton('triton_poi_fused_add_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/l2/cl2chp3c7xhcfuz6tuqw7ows2xquvgtlltaljzy5xnnjpkxrnzbj.py # Topologically Sorted Source Nodes: [q_5, q_6], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # q_5 => add # q_6 => add_1, add_2, mul_1, mul_2, rsqrt, sub_2 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_8), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_9), kwargs = {}) triton_poi_fused_add_native_layer_norm_10 = async_compile.triton('triton_poi_fused_add_native_layer_norm_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-06 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/lk/clkhemk6ohccddvynxghfpav5gis3lty2djzmbxeav7np4a6f65z.py # Topologically Sorted Source Nodes: [q_12], Original ATen: [aten.add] # Source node to ATen node mapping: # q_12 => add_3 # Graph fragment: # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_39, %add_2), kwargs = {}) triton_poi_fused_add_11 = async_compile.triton('triton_poi_fused_add_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ny/cnyrovglbw3nyhttef3ipiiitcatr5iwqeg7y3cebawjg26ucer5.py # Topologically Sorted Source Nodes: [q_13], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # q_13 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-06), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_12 = async_compile.triton('triton_poi_fused_native_layer_norm_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/oo/cooyneqtg4bnijp62rdzv4cyndryh7kceyhls22gkckqxzmgx4ye.py # Topologically Sorted Source Nodes: [q_13], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # q_13 => add_4, add_5, mul_4, mul_5, rsqrt_1, sub_5, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-06), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %rsqrt_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %primals_17), kwargs = {}) # %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %primals_18), kwargs = {}) triton_poi_fused_native_layer_norm_13 = async_compile.triton('triton_poi_fused_native_layer_norm_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_13(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/aw/cawklfxsta65lswerzf7yv2ha7ywva5wez4kjiiwjwvkzrwph3qz.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_41,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_14 = async_compile.triton('triton_poi_fused_relu_threshold_backward_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_14(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/75/c75zatca54ivfmbwvxvmzhmwqww2cguxqahm6wtfcv6nfwu4biij.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add_6 # Graph fragment: # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_43, %add_5), kwargs = {}) triton_poi_fused_add_15 = async_compile.triton('triton_poi_fused_add_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_15(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_11, (16, 4), (4, 1)) assert_size_stride(primals_12, (16, 4), (4, 1)) assert_size_stride(primals_13, (16, 4), (4, 1)) assert_size_stride(primals_14, (16, 4), (4, 1)) assert_size_stride(primals_15, (16, ), (1, )) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4, ), (1, )) assert_size_stride(primals_18, (4, ), (1, )) assert_size_stride(primals_19, (4, 4), (4, 1)) assert_size_stride(primals_20, (4, ), (1, )) assert_size_stride(primals_21, (4, 4), (4, 1)) assert_size_stride(primals_22, (4, ), (1, )) assert_size_stride(primals_23, (4, ), (1, )) assert_size_stride(primals_24, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv, attn], Original ATen: [aten.div, aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_div_0.run(buf0, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, buf4, 64, 4, grid=grid(64, 4), stream=stream0) buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf2, buf8, 256, grid=grid(256), stream=stream0) buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean] triton_poi_fused_mean_5.run(buf9, buf10, 16, grid=grid(16), stream=stream0) buf11 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [v_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_6 buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [v_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf11, buf12, 64, grid=grid(64), stream=stream0) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [v_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_7.run(buf12, buf13, 64, grid=grid(64), stream=stream0) buf14 = reinterpret_tensor(buf12, (4, 1, 4, 4), (16, 1, 4, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [f, q_2], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_8.run(buf9, buf13, buf14, 64, grid=grid(64), stream=stream0) buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0); del buf13 # reuse # Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf15) buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [q_5, q_6], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_9.run(buf15, primals_1, buf16, buf17, 16, grid=grid(16), stream=stream0) buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [q_5, q_6], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_10.run(buf15, primals_1, buf16, buf17, primals_8, primals_9, buf18, 64, grid=grid(64), stream=stream0) del primals_9 buf19 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_5], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 16), (1, 4), 0), out=buf19) buf20 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_6], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 16), (1, 4), 0), out=buf20) del primals_12 buf21 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_7], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 16), (1, 4), 0), out=buf21) del primals_13 buf22 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv_1, attn_2], Original ATen: [aten.div, aten.clone] triton_poi_fused_clone_div_0.run(buf19, buf22, 256, grid=grid(256), stream=stream0) buf23 = reinterpret_tensor(buf19, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf19 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf20, buf23, 64, 4, grid=grid(64, 4), stream=stream0) buf24 = reinterpret_tensor(buf20, (16, 4, 4), (16, 4, 1), 0); del buf20 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf22, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (16, 4, 4), (16, 4, 1), 0), out=buf24) buf25 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf24, buf25, 256, grid=grid(256), stream=stream0) buf26 = reinterpret_tensor(buf24, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf24 # reuse # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf25, buf26, 256, grid=grid(256), stream=stream0) buf27 = buf25; del buf25 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf21, buf27, 256, grid=grid(256), stream=stream0) buf28 = reinterpret_tensor(buf21, (16, 4, 4), (16, 4, 1), 0); del buf21 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf26, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf27, (16, 4, 4), (16, 4, 1), 0), out=buf28) buf29 = reinterpret_tensor(buf17, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf17 # reuse # Topologically Sorted Source Nodes: [adaptive_avg_pool1d_1], Original ATen: [aten.mean] triton_poi_fused_mean_5.run(buf28, buf29, 16, grid=grid(16), stream=stream0) buf30 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [v_8], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, reinterpret_tensor(buf29, (4, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf30) del primals_15 buf31 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [v_10], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf30, buf31, 64, grid=grid(64), stream=stream0) buf32 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [v_10], Original ATen: [aten._softmax] triton_poi_fused__softmax_7.run(buf31, buf32, 64, grid=grid(64), stream=stream0) buf33 = reinterpret_tensor(buf31, (4, 1, 4, 4), (16, 1, 4, 1), 0); del buf31 # reuse # Topologically Sorted Source Nodes: [f_1, q_9], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_8.run(buf28, buf32, buf33, 64, grid=grid(64), stream=stream0) buf34 = reinterpret_tensor(buf32, (16, 4), (4, 1), 0); del buf32 # reuse # Topologically Sorted Source Nodes: [linear_9], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf33, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf34) buf35 = reinterpret_tensor(buf34, (4, 4, 4), (16, 4, 1), 0); del buf34 # reuse # Topologically Sorted Source Nodes: [q_12], Original ATen: [aten.add] triton_poi_fused_add_11.run(buf35, buf18, 64, grid=grid(64), stream=stream0) buf36 = buf16; del buf16 # reuse buf37 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [q_13], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_12.run(buf35, buf36, buf37, 16, grid=grid(16), stream=stream0) buf38 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [q_13], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_13.run(buf35, buf36, buf37, primals_17, primals_18, buf38, 64, grid=grid(64), stream=stream0) del primals_18 buf39 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf38, (16, 4), (4, 1), 0), reinterpret_tensor(primals_19, (4, 4), (1, 4), 0), out=buf39) buf40 = reinterpret_tensor(buf39, (4, 4, 4), (16, 4, 1), 0); del buf39 # reuse buf46 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_14.run(buf40, primals_20, buf46, 64, grid=grid(64), stream=stream0) del primals_20 buf41 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf40, (16, 4), (4, 1), 0), reinterpret_tensor(primals_21, (4, 4), (1, 4), 0), out=buf41) buf42 = reinterpret_tensor(buf41, (4, 4, 4), (16, 4, 1), 0); del buf41 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] triton_poi_fused_add_15.run(buf42, primals_22, buf38, 64, grid=grid(64), stream=stream0) del primals_22 buf43 = buf37; del buf37 # reuse buf44 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_12.run(buf42, buf43, buf44, 16, grid=grid(16), stream=stream0) buf45 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_13.run(buf42, buf43, buf44, primals_23, primals_24, buf45, 64, grid=grid(64), stream=stream0) del buf43 del buf44 del primals_24 return (buf45, buf7, buf26, primals_1, primals_8, primals_17, primals_23, buf7, buf9, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), buf11, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf15, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (16, 4), (4, 1), 0), buf26, buf28, reinterpret_tensor(buf29, (4, 4), (4, 1), 0), buf30, reinterpret_tensor(buf33, (16, 4), (4, 1), 0), buf35, reinterpret_tensor(buf38, (16, 4), (4, 1), 0), reinterpret_tensor(buf40, (16, 4), (4, 1), 0), buf42, primals_21, buf46, primals_19, primals_16, primals_14, reinterpret_tensor(buf27, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf22, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf23, (16, 4, 4), (16, 1, 4), 0), primals_11, primals_7, primals_5, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SPA(nn.Module): """ Selective parallel attention """ def __init__(self, n_head: 'int'=8, d_v: 'int'=64): super().__init__() self.gap = nn.AdaptiveAvgPool1d(1) self.sk = nn.Linear(d_v, n_head * d_v) self.softmax = nn.Softmax(dim=1) def forward(self, x): bs, n_head, _lq, d_v = x.size() u = x.sum(dim=1) s = self.gap(u.transpose(1, 2)).view(bs, d_v) v = self.sk(s) v = v.view(bs, n_head, d_v) v = self.softmax(v) v = v.unsqueeze(2) f = x * v.expand_as(x) return f class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature: 'float', attn_dropout: 'float'=0.1): super().__init__() self.temperature = temperature self.attn_dropout = attn_dropout self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn def __repr__(self): tmpstr = self.__class__.__name__ + '(' tmpstr += 'temperature=' + str(self.temperature) tmpstr += ', attn_dropout=' + str(self.attn_dropout) tmpstr += ')' return tmpstr class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head: 'int'=8, d_model: 'int'=512, d_k: 'int'=64, d_v: 'int'=64, dropout: 'float'=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) if n_head > 1: self.spa = SPA(n_head=n_head, d_v=d_v) self.fc = nn.Linear(d_v, d_model, bias=False) else: self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) q, attn = self.attention(q, k, v, mask=mask) if n_head > 1: q = self.spa(q) q = q.sum(dim=1, keepdim=True) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x class DecoderLayer(nn.Module): """ Compose with three layers """ def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super(DecoderLayer, self).__init__() self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.enc_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout= dropout) def forward(self, dec_input, enc_output, slf_attn_mask=None, dec_enc_attn_mask=None): dec_output, dec_slf_attn = self.slf_attn(dec_input, dec_input, dec_input, mask=slf_attn_mask) dec_output, dec_enc_attn = self.enc_attn(dec_output, enc_output, enc_output, mask=dec_enc_attn_mask) dec_output = self.pos_ffn(dec_output) return dec_output, dec_slf_attn, dec_enc_attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'd_inner': 4, 'n_head': 4, 'd_k': 4, 'd_v': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_mean_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp7 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask) tmp8 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask) tmp12 = tl.load(in_ptr0 + (52 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr0 + (8 + x0 + 64 * x1), xmask) tmp16 = tl.load(in_ptr0 + (24 + x0 + 64 * x1), xmask) tmp18 = tl.load(in_ptr0 + (40 + x0 + 64 * x1), xmask) tmp20 = tl.load(in_ptr0 + (56 + x0 + 64 * x1), xmask) tmp23 = tl.load(in_ptr0 + (12 + x0 + 64 * x1), xmask) tmp24 = tl.load(in_ptr0 + (28 + x0 + 64 * x1), xmask) tmp26 = tl.load(in_ptr0 + (44 + x0 + 64 * x1), xmask) tmp28 = tl.load(in_ptr0 + (60 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp21 = tmp19 + tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 + tmp24 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = tmp22 + tmp29 tmp31 = 4.0 tmp32 = tmp30 / tmp31 tl.store(out_ptr0 + x2, tmp32, xmask) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_mul_sum_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 64 * x2), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x3 + 64 * x2), xmask) tmp4 = tl.load(in_ptr1 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (32 + x3 + 64 * x2), xmask) tmp8 = tl.load(in_ptr1 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x3 + 64 * x2), xmask) tmp12 = tl.load(in_ptr1 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x4, tmp14, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-06 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_add_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_native_layer_norm_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_13(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_14(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_15(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, 4), (4, 1)) assert_size_stride(primals_6, (16,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_11, (16, 4), (4, 1)) assert_size_stride(primals_12, (16, 4), (4, 1)) assert_size_stride(primals_13, (16, 4), (4, 1)) assert_size_stride(primals_14, (16, 4), (4, 1)) assert_size_stride(primals_15, (16,), (1,)) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4,), (1,)) assert_size_stride(primals_18, (4,), (1,)) assert_size_stride(primals_19, (4, 4), (4, 1)) assert_size_stride(primals_20, (4,), (1,)) assert_size_stride(primals_21, (4, 4), (4, 1)) assert_size_stride(primals_22, (4,), (1,)) assert_size_stride(primals_23, (4,), (1,)) assert_size_stride(primals_24, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_div_0[grid(256)](buf0, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_clone_1[grid(64, 4)](buf1, buf4, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) buf8 = buf6 del buf6 triton_poi_fused_clone_4[grid(256)](buf2, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused_mean_5[grid(16)](buf9, buf10, 16, XBLOCK=16, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf10, (4, 4), ( 4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_6 buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_6[grid(64)](buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_7[grid(64)](buf12, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf14 = reinterpret_tensor(buf12, (4, 1, 4, 4), (16, 1, 4, 1), 0) del buf12 triton_poi_fused_mul_sum_8[grid(64)](buf9, buf13, buf14, 64, XBLOCK =64, num_warps=1, num_stages=1) buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0) del buf13 extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf15) buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_9[grid(16)](buf15, primals_1, buf16, buf17, 16, XBLOCK=16, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_10[grid(64)](buf15, primals_1, buf16, buf17, primals_8, primals_9, buf18, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 buf19 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 16), (1, 4), 0), out=buf19) buf20 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_12, (4, 16), (1, 4), 0), out=buf20) del primals_12 buf21 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_13, (4, 16), (1, 4), 0), out=buf21) del primals_13 buf22 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_div_0[grid(256)](buf19, buf22, 256, XBLOCK= 128, num_warps=4, num_stages=1) buf23 = reinterpret_tensor(buf19, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf19 triton_poi_fused_clone_1[grid(64, 4)](buf20, buf23, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf24 = reinterpret_tensor(buf20, (16, 4, 4), (16, 4, 1), 0) del buf20 extern_kernels.bmm(reinterpret_tensor(buf22, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (16, 4, 4), (16, 4, 1), 0), out=buf24 ) buf25 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf24, buf25, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf26 = reinterpret_tensor(buf24, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf24 triton_poi_fused__softmax_3[grid(256)](buf25, buf26, 256, XBLOCK= 128, num_warps=4, num_stages=1) buf27 = buf25 del buf25 triton_poi_fused_clone_4[grid(256)](buf21, buf27, 256, XBLOCK=256, num_warps=4, num_stages=1) buf28 = reinterpret_tensor(buf21, (16, 4, 4), (16, 4, 1), 0) del buf21 extern_kernels.bmm(reinterpret_tensor(buf26, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf27, (16, 4, 4), (16, 4, 1), 0), out=buf28 ) buf29 = reinterpret_tensor(buf17, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf17 triton_poi_fused_mean_5[grid(16)](buf28, buf29, 16, XBLOCK=16, num_warps=1, num_stages=1) buf30 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.addmm(primals_15, reinterpret_tensor(buf29, (4, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf30) del primals_15 buf31 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_6[grid(64)](buf30, buf31, 64, XBLOCK=64, num_warps=1, num_stages=1) buf32 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_7[grid(64)](buf31, buf32, 64, XBLOCK=64, num_warps=1, num_stages=1) buf33 = reinterpret_tensor(buf31, (4, 1, 4, 4), (16, 1, 4, 1), 0) del buf31 triton_poi_fused_mul_sum_8[grid(64)](buf28, buf32, buf33, 64, XBLOCK=64, num_warps=1, num_stages=1) buf34 = reinterpret_tensor(buf32, (16, 4), (4, 1), 0) del buf32 extern_kernels.mm(reinterpret_tensor(buf33, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf34) buf35 = reinterpret_tensor(buf34, (4, 4, 4), (16, 4, 1), 0) del buf34 triton_poi_fused_add_11[grid(64)](buf35, buf18, 64, XBLOCK=64, num_warps=1, num_stages=1) buf36 = buf16 del buf16 buf37 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_native_layer_norm_12[grid(16)](buf35, buf36, buf37, 16, XBLOCK=16, num_warps=1, num_stages=1) buf38 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_13[grid(64)](buf35, buf36, buf37, primals_17, primals_18, buf38, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_18 buf39 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf38, (16, 4), (4, 1), 0), reinterpret_tensor(primals_19, (4, 4), (1, 4), 0), out=buf39) buf40 = reinterpret_tensor(buf39, (4, 4, 4), (16, 4, 1), 0) del buf39 buf46 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_14[grid(64)](buf40, primals_20, buf46, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_20 buf41 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf40, (16, 4), (4, 1), 0), reinterpret_tensor(primals_21, (4, 4), (1, 4), 0), out=buf41) buf42 = reinterpret_tensor(buf41, (4, 4, 4), (16, 4, 1), 0) del buf41 triton_poi_fused_add_15[grid(64)](buf42, primals_22, buf38, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_22 buf43 = buf37 del buf37 buf44 = buf36 del buf36 triton_poi_fused_native_layer_norm_12[grid(16)](buf42, buf43, buf44, 16, XBLOCK=16, num_warps=1, num_stages=1) buf45 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_13[grid(64)](buf42, buf43, buf44, primals_23, primals_24, buf45, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf43 del buf44 del primals_24 return (buf45, buf7, buf26, primals_1, primals_8, primals_17, primals_23, buf7, buf9, reinterpret_tensor(buf10, (4, 4), (4, 1), 0 ), buf11, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf15, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor( primals_10, (16, 4), (4, 1), 0), buf26, buf28, reinterpret_tensor( buf29, (4, 4), (4, 1), 0), buf30, reinterpret_tensor(buf33, (16, 4), (4, 1), 0), buf35, reinterpret_tensor(buf38, (16, 4), (4, 1), 0), reinterpret_tensor(buf40, (16, 4), (4, 1), 0), buf42, primals_21, buf46, primals_19, primals_16, primals_14, reinterpret_tensor(buf27, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf22, (16, 4, 4), ( 16, 1, 4), 0), reinterpret_tensor(buf23, (16, 4, 4), (16, 1, 4), 0), primals_11, primals_7, primals_5, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0)) class SPA(nn.Module): """ Selective parallel attention """ def __init__(self, n_head: 'int'=8, d_v: 'int'=64): super().__init__() self.gap = nn.AdaptiveAvgPool1d(1) self.sk = nn.Linear(d_v, n_head * d_v) self.softmax = nn.Softmax(dim=1) def forward(self, x): bs, n_head, _lq, d_v = x.size() u = x.sum(dim=1) s = self.gap(u.transpose(1, 2)).view(bs, d_v) v = self.sk(s) v = v.view(bs, n_head, d_v) v = self.softmax(v) v = v.unsqueeze(2) f = x * v.expand_as(x) return f class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature: 'float', attn_dropout: 'float'=0.1): super().__init__() self.temperature = temperature self.attn_dropout = attn_dropout self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn def __repr__(self): tmpstr = self.__class__.__name__ + '(' tmpstr += 'temperature=' + str(self.temperature) tmpstr += ', attn_dropout=' + str(self.attn_dropout) tmpstr += ')' return tmpstr class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head: 'int'=8, d_model: 'int'=512, d_k: 'int'=64, d_v: 'int'=64, dropout: 'float'=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) if n_head > 1: self.spa = SPA(n_head=n_head, d_v=d_v) self.fc = nn.Linear(d_v, d_model, bias=False) else: self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) q, attn = self.attention(q, k, v, mask=mask) if n_head > 1: q = self.spa(q) q = q.sum(dim=1, keepdim=True) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x class DecoderLayerNew(nn.Module): """ Compose with three layers """ def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super(DecoderLayerNew, self).__init__() self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.enc_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout= dropout) def forward(self, input_0, input_1): primals_2 = self.slf_attn.w_qs.weight primals_3 = self.slf_attn.w_ks.weight primals_4 = self.slf_attn.w_vs.weight primals_5 = self.slf_attn.spa.sk.weight primals_6 = self.slf_attn.spa.sk.bias primals_7 = self.slf_attn.fc.weight primals_8 = self.slf_attn.layer_norm.weight primals_9 = self.slf_attn.layer_norm.bias primals_11 = self.enc_attn.w_qs.weight primals_12 = self.enc_attn.w_ks.weight primals_13 = self.enc_attn.w_vs.weight primals_14 = self.enc_attn.spa.sk.weight primals_15 = self.enc_attn.spa.sk.bias primals_16 = self.enc_attn.fc.weight primals_17 = self.enc_attn.layer_norm.weight primals_18 = self.enc_attn.layer_norm.bias primals_19 = self.pos_ffn.w_1.weight primals_20 = self.pos_ffn.w_1.bias primals_21 = self.pos_ffn.w_2.weight primals_22 = self.pos_ffn.w_2.bias primals_23 = self.pos_ffn.layer_norm.weight primals_24 = self.pos_ffn.layer_norm.bias primals_1 = input_0 primals_10 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24]) return output[0], output[1], output[2]
WOMMOW/AIT
DecoderLayer
false
1,233
[ "MIT" ]
0
305fe7962bf9c5c24b6854e3ff0b7e2e669bf5a5
https://github.com/WOMMOW/AIT/tree/305fe7962bf9c5c24b6854e3ff0b7e2e669bf5a5
import torch import torch.nn as nn import torch.nn.functional as F class SPA(nn.Module): """ Selective parallel attention """ def __init__(self, n_head: 'int'=8, d_v: 'int'=64): super().__init__() self.gap = nn.AdaptiveAvgPool1d(1) self.sk = nn.Linear(d_v, n_head * d_v) self.softmax = nn.Softmax(dim=1) def forward(self, x): bs, n_head, _lq, d_v = x.size() u = x.sum(dim=1) s = self.gap(u.transpose(1, 2)).view(bs, d_v) v = self.sk(s) v = v.view(bs, n_head, d_v) v = self.softmax(v) v = v.unsqueeze(2) f = x * v.expand_as(x) return f class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature: 'float', attn_dropout: 'float'=0.1): super().__init__() self.temperature = temperature self.attn_dropout = attn_dropout self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn def __repr__(self): tmpstr = self.__class__.__name__ + '(' tmpstr += 'temperature=' + str(self.temperature) tmpstr += ', attn_dropout=' + str(self.attn_dropout) tmpstr += ')' return tmpstr class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head: 'int'=8, d_model: 'int'=512, d_k: 'int'=64, d_v: 'int'=64, dropout: 'float'=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) if n_head > 1: self.spa = SPA(n_head=n_head, d_v=d_v) self.fc = nn.Linear(d_v, d_model, bias=False) else: self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) q, attn = self.attention(q, k, v, mask=mask) if n_head > 1: q = self.spa(q) q = q.sum(dim=1, keepdim=True) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x class Model(nn.Module): """ Compose with three layers """ def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super().__init__() self.slf_attn = MultiHeadAttention(n_ # ... truncated (>4000 chars) for memory efficiency
DocumentTopicDecoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py # Topologically Sorted Source Nodes: [topic_dist_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # topic_dist_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wk/cwk2wao7opapqbjj7klnqrd6tgist3ts3nc5veryzhzstwpx7d4l.py # Topologically Sorted Source Nodes: [topic_dist_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # topic_dist_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (12, 4), (4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (12, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [ret], Original ATen: [aten.mm] extern_kernels.mm(primals_1, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [ret], Original ATen: [aten.mm] extern_kernels.mm(primals_2, reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), out=buf1) del primals_4 # Topologically Sorted Source Nodes: [ret], Original ATen: [aten._thnn_fused_gru_cell] buf2 = torch.ops.aten._thnn_fused_gru_cell.default(buf0, buf1, primals_2, primals_5, primals_6) del buf0 del buf1 del primals_5 del primals_6 buf3 = buf2[0] buf4 = buf2[1] del buf2 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [topic_dist], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [topic_dist_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [topic_dist_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf6, buf7, 16, grid=grid(16), stream=stream0) del buf6 return (buf3, buf7, primals_1, primals_2, buf3, buf4, buf7, primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.multiprocessing from torch import nn import torch.utils.data class DocumentTopicDecoder(nn.Module): def __init__(self, dim_h, num_topics): super(DocumentTopicDecoder, self).__init__() self.decoder = nn.GRUCell(input_size=dim_h, hidden_size=dim_h) self.out_linear = nn.Linear(dim_h, num_topics) self.softmax = nn.Softmax(dim=1) def forward(self, input, hidden): """ Args: - input (bsz, dim_h) - hidden (bsz, dim_h) - avail_topic_mask (bsz, num_topics) Return: - hidden_out (bsz, dim_h) : hidden state of this step - topic_dist (bsz, num_topics) : probablity distribution of next sentence on topics """ hidden_out = self.decoder(input, hidden) topic_dist = self.out_linear(hidden_out) topic_dist = self.softmax(topic_dist) return hidden_out, topic_dist def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'dim_h': 4, 'num_topics': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.multiprocessing from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (12, 4), (4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (12,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 12), (12, 1), torch.float32) extern_kernels.mm(primals_2, reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), out=buf1) del primals_4 buf2 = torch.ops.aten._thnn_fused_gru_cell.default(buf0, buf1, primals_2, primals_5, primals_6) del buf0 del buf1 del primals_5 del primals_6 buf3 = buf2[0] buf4 = buf2[1] del buf2 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = buf5 del buf5 triton_poi_fused__softmax_1[grid(16)](buf6, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf6 return buf3, buf7, primals_1, primals_2, buf3, buf4, buf7, primals_7 class DocumentTopicDecoderNew(nn.Module): def __init__(self, dim_h, num_topics): super(DocumentTopicDecoderNew, self).__init__() self.decoder = nn.GRUCell(input_size=dim_h, hidden_size=dim_h) self.out_linear = nn.Linear(dim_h, num_topics) self.softmax = nn.Softmax(dim=1) def forward(self, input_0, input_1): primals_3 = self.decoder.weight_ih primals_4 = self.decoder.weight_hh primals_5 = self.decoder.bias_ih primals_6 = self.decoder.bias_hh primals_1 = self.out_linear.weight primals_8 = self.out_linear.bias primals_2 = input_0 primals_7 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1]
WuDiDaBinGe/TAKG
DocumentTopicDecoder
false
1,234
[ "MIT" ]
0
83e608e677a4ee74722d18cb5ef430f4f6c6ad31
https://github.com/WuDiDaBinGe/TAKG/tree/83e608e677a4ee74722d18cb5ef430f4f6c6ad31
import torch import torch.multiprocessing from torch import nn import torch.utils.data class Model(nn.Module): def __init__(self, dim_h, num_topics): super().__init__() self.decoder = nn.GRUCell(input_size=dim_h, hidden_size=dim_h) self.out_linear = nn.Linear(dim_h, num_topics) self.softmax = nn.Softmax(dim=1) def forward(self, input, hidden): """ Args: - input (bsz, dim_h) - hidden (bsz, dim_h) - avail_topic_mask (bsz, num_topics) Return: - hidden_out (bsz, dim_h) : hidden state of this step - topic_dist (bsz, num_topics) : probablity distribution of next sentence on topics """ hidden_out = self.decoder(input, hidden) topic_dist = self.out_linear(hidden_out) topic_dist = self.softmax(topic_dist) return hidden_out, topic_dist def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
LinearMultiplicationComposition
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/p3/cp3qleddjiuuytozrtebx5pzf2ycpwtw4mkq2jsx7qqswymv2bm6.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %view_3), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.parallel import torch.utils.data import torch.distributions class CompositionFunction(torch.nn.Module): def __init__(self, representation_size: 'int'): super().__init__() def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError class LinearMultiplicationComposition(CompositionFunction): def __init__(self, representation_size: 'int'): super().__init__(representation_size) self.linear_1 = torch.nn.Linear(representation_size, representation_size) self.linear_2 = torch.nn.Linear(representation_size, representation_size) def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: return self.linear_1(x) * self.linear_2(y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'representation_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.parallel import torch.utils.data import torch.distributions assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](buf0, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf1 class CompositionFunction(torch.nn.Module): def __init__(self, representation_size: 'int'): super().__init__() def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError class LinearMultiplicationCompositionNew(CompositionFunction): def __init__(self, representation_size: 'int'): super().__init__(representation_size) self.linear_1 = torch.nn.Linear(representation_size, representation_size) self.linear_2 = torch.nn.Linear(representation_size, representation_size) def forward(self, input_0, input_1): primals_1 = self.linear_1.weight primals_2 = self.linear_1.bias primals_4 = self.linear_2.weight primals_5 = self.linear_2.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
XeniaOhmer/SystematicRepresentations
LinearMultiplicationComposition
false
1,235
[ "MIT" ]
0
825208d1be659dc820e61f577cdb53afc47302f4
https://github.com/XeniaOhmer/SystematicRepresentations/tree/825208d1be659dc820e61f577cdb53afc47302f4
import torch import torch.nn.parallel import torch.utils.data import torch.distributions class CompositionFunction(torch.nn.Module): def __init__(self, representation_size: 'int'): super().__init__() def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError class Model(CompositionFunction): def __init__(self, representation_size: 'int'): super().__init__(representation_size) self.linear_1 = torch.nn.Linear(representation_size, representation_size) self.linear_2 = torch.nn.Linear(representation_size, representation_size) def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: return self.linear_1(x) * self.linear_2(y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LinearComposition
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 return (buf1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.parallel import torch.utils.data import torch.distributions class CompositionFunction(torch.nn.Module): def __init__(self, representation_size: 'int'): super().__init__() def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError class LinearComposition(CompositionFunction): def __init__(self, representation_size: 'int'): super().__init__(representation_size) self.linear = torch.nn.Linear(representation_size * 2, representation_size) def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: return self.linear(torch.cat((x, y), dim=1)) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'representation_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.parallel import torch.utils.data import torch.distributions assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 return buf1, buf0 class CompositionFunction(torch.nn.Module): def __init__(self, representation_size: 'int'): super().__init__() def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError class LinearCompositionNew(CompositionFunction): def __init__(self, representation_size: 'int'): super().__init__(representation_size) self.linear = torch.nn.Linear(representation_size * 2, representation_size) def forward(self, input_0, input_1): primals_3 = self.linear.weight primals_4 = self.linear.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
XeniaOhmer/SystematicRepresentations
LinearComposition
false
1,236
[ "MIT" ]
0
825208d1be659dc820e61f577cdb53afc47302f4
https://github.com/XeniaOhmer/SystematicRepresentations/tree/825208d1be659dc820e61f577cdb53afc47302f4
import torch import torch.nn.parallel import torch.utils.data import torch.distributions class CompositionFunction(torch.nn.Module): def __init__(self, representation_size: 'int'): super().__init__() def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError class Model(CompositionFunction): def __init__(self, representation_size: 'int'): super().__init__(representation_size) self.linear = torch.nn.Linear(representation_size * 2, representation_size) def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: return self.linear(torch.cat((x, y), dim=1)) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4]
LinearAdditionComposition
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/hk/chkw3kgvyjknvy3tuin72elihifeho7w4nt6ifpydj2ebu2nju26.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf2, primals_2, buf1, primals_5, 256, grid=grid(256), stream=stream0) del buf1 del primals_2 del primals_5 return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.parallel import torch.utils.data import torch.distributions class CompositionFunction(torch.nn.Module): def __init__(self, representation_size: 'int'): super().__init__() def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError class LinearAdditionComposition(CompositionFunction): def __init__(self, representation_size: 'int'): super().__init__(representation_size) self.linear_1 = torch.nn.Linear(representation_size, representation_size) self.linear_2 = torch.nn.Linear(representation_size, representation_size) def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: return self.linear_1(x) + self.linear_2(y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'representation_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.parallel import torch.utils.data import torch.distributions assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf2, primals_2, buf1, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_2 del primals_5 return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0) class CompositionFunction(torch.nn.Module): def __init__(self, representation_size: 'int'): super().__init__() def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError class LinearAdditionCompositionNew(CompositionFunction): def __init__(self, representation_size: 'int'): super().__init__(representation_size) self.linear_1 = torch.nn.Linear(representation_size, representation_size) self.linear_2 = torch.nn.Linear(representation_size, representation_size) def forward(self, input_0, input_1): primals_1 = self.linear_1.weight primals_2 = self.linear_1.bias primals_4 = self.linear_2.weight primals_5 = self.linear_2.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
XeniaOhmer/SystematicRepresentations
LinearAdditionComposition
false
1,237
[ "MIT" ]
0
825208d1be659dc820e61f577cdb53afc47302f4
https://github.com/XeniaOhmer/SystematicRepresentations/tree/825208d1be659dc820e61f577cdb53afc47302f4
import torch import torch.nn.parallel import torch.utils.data import torch.distributions class CompositionFunction(torch.nn.Module): def __init__(self, representation_size: 'int'): super().__init__() def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError class Model(CompositionFunction): def __init__(self, representation_size: 'int'): super().__init__(representation_size) self.linear_1 = torch.nn.Linear(representation_size, representation_size) self.linear_2 = torch.nn.Linear(representation_size, representation_size) def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: return self.linear_1(x) + self.linear_2(y) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
SingleGate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [context_input], Original ATen: [aten.cat] # Source node to ATen node mapping: # context_input => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7l/c7lohrkrpc6lubqaxmbz5s7ens3afnmzezzbwcsy4ow5su3gdhpb.py # Topologically Sorted Source Nodes: [context_gate, mul, sub, mul_1, context_fusion], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add] # Source node to ATen node mapping: # context_fusion => add # context_gate => sigmoid # mul => mul # mul_1 => mul_1 # sub => sub # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x2), xmask) tmp6 = tl.load(in_ptr2 + (x2), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (1, 8), (8, 1)) assert_size_stride(primals_4, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [context_input], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_3 del primals_4 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [context_gate, mul, sub, mul_1, context_fusion], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add] triton_poi_fused_add_mul_rsub_sigmoid_1.run(buf2, primals_1, primals_2, buf3, 16, grid=grid(16), stream=stream0) return (buf3, primals_1, primals_2, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.multiprocessing from torch import nn import torch.utils.data class SingleGate(nn.Module): def __init__(self, vector_dim, topic_dim): super().__init__() assert vector_dim == topic_dim self.fusion_linear = nn.Linear(vector_dim + topic_dim, 1) self.sigmoid = nn.Sigmoid() def forward(self, source_vector, other_vector): context_input = torch.cat((source_vector, other_vector), dim=1) context_gate = self.sigmoid(self.fusion_linear(context_input)) context_fusion = context_gate * source_vector + (1.0 - context_gate ) * other_vector return context_fusion def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'vector_dim': 4, 'topic_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.multiprocessing from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + x2, xmask) tmp6 = tl.load(in_ptr2 + x2, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp1 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (1, 8), (8, 1)) assert_size_stride(primals_4, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_3 del primals_4 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_1[grid(16)](buf2, primals_1, primals_2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf3, primals_1, primals_2, buf0, buf2 class SingleGateNew(nn.Module): def __init__(self, vector_dim, topic_dim): super().__init__() assert vector_dim == topic_dim self.fusion_linear = nn.Linear(vector_dim + topic_dim, 1) self.sigmoid = nn.Sigmoid() def forward(self, input_0, input_1): primals_3 = self.fusion_linear.weight primals_4 = self.fusion_linear.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
WuDiDaBinGe/TAKG
SingleGate
false
1,238
[ "MIT" ]
0
83e608e677a4ee74722d18cb5ef430f4f6c6ad31
https://github.com/WuDiDaBinGe/TAKG/tree/83e608e677a4ee74722d18cb5ef430f4f6c6ad31
import torch import torch.multiprocessing from torch import nn import torch.utils.data class Model(nn.Module): def __init__(self, vector_dim, topic_dim): super().__init__() assert vector_dim == topic_dim self.fusion_linear = nn.Linear(vector_dim + topic_dim, 1) self.sigmoid = nn.Sigmoid() def forward(self, source_vector, other_vector): context_input = torch.cat((source_vector, other_vector), dim=1) context_gate = self.sigmoid(self.fusion_linear(context_input)) context_fusion = context_gate * source_vector + (1.0 - context_gate ) * other_vector return context_fusion def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
AvgReadout
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/2c/c2caasuan6xkydnq2bvliamlyid6cl5fcz5kcz2mnyns45wtxqbs.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [0]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AvgReadout(nn.Module): """ Considering the efficiency of the method, we simply employ average pooling, computing the average of the set of embedding matrices .. math:: \\begin{equation} \\mathbf{H}=\\mathcal{Q}\\left(\\left\\{\\mathbf{H}^{(r)} \\mid r \\in \\mathcal{R}\\right\\}\\right)=\\frac{1}{|\\mathcal{R}|} \\sum_{r \\in \\mathcal{R}} \\mathbf{H}^{(r)} \\end{equation} """ def __init__(self): super(AvgReadout, self).__init__() def forward(self, seq): return torch.mean(seq, 0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class AvgReadoutNew(nn.Module): """ Considering the efficiency of the method, we simply employ average pooling, computing the average of the set of embedding matrices .. math:: \\begin{equation} \\mathbf{H}=\\mathcal{Q}\\left(\\left\\{\\mathbf{H}^{(r)} \\mid r \\in \\mathcal{R}\\right\\}\\right)=\\frac{1}{|\\mathcal{R}|} \\sum_{r \\in \\mathcal{R}} \\mathbf{H}^{(r)} \\end{equation} """ def __init__(self): super(AvgReadoutNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Xinstein3033/OpenHGNN
AvgReadout
false
1,239
[ "Apache-2.0" ]
0
a9ca499834523419ecdaaa09e4b42f640486f262
https://github.com/Xinstein3033/OpenHGNN/tree/a9ca499834523419ecdaaa09e4b42f640486f262
import torch import torch.nn as nn class Model(nn.Module): """ Considering the efficiency of the method, we simply employ average pooling, computing the average of the set of embedding matrices .. math:: \\begin{equation} \\mathbf{H}=\\mathcal{Q}\\left(\\left\\{\\mathbf{H}^{(r)} \\mid r \\in \\mathcal{R}\\right\\}\\right)=\\frac{1}{|\\mathcal{R}|} \\sum_{r \\in \\mathcal{R}} \\mathbf{H}^{(r)} \\end{equation} """ def __init__(self): super().__init__() def forward(self, seq): return torch.mean(seq, 0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
F_fully_connected
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/pd/cpdu37l3bj63bjibgjk2ueagf7o3e26iukuvw6axiaa2bjb2e6op.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (8, 8), (8, 1)) assert_size_stride(primals_5, (8, ), (1, )) assert_size_stride(primals_6, (8, 8), (8, 1)) assert_size_stride(primals_7, (8, ), (1, )) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0); del buf0 # reuse buf9 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 512, grid=grid(512), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 8), (1, 8), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 8), (128, 32, 8, 1), 0); del buf2 # reuse buf8 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf8, 512, grid=grid(512), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(primals_6, (8, 8), (1, 8), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 8), (128, 32, 8, 1), 0); del buf4 # reuse buf7 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf5, primals_7, buf7, 512, grid=grid(512), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 8), (8, 1), 0), reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf6) del primals_9 return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(buf5, (64, 8), (8, 1), 0), primals_8, buf7, primals_6, buf8, primals_4, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class F_fully_connected(nn.Module): """Fully connected tranformation, not reversible, but used below.""" def __init__(self, size_in, size, internal_size=None, dropout=0.0): super(F_fully_connected, self).__init__() if not internal_size: internal_size = 2 * size self.d1 = nn.Dropout(p=dropout) self.d2 = nn.Dropout(p=dropout) self.d2b = nn.Dropout(p=dropout) self.fc1 = nn.Linear(size_in, internal_size) self.fc2 = nn.Linear(internal_size, internal_size) self.fc2b = nn.Linear(internal_size, internal_size) self.fc3 = nn.Linear(internal_size, size) self.nl1 = nn.ReLU() self.nl2 = nn.ReLU() self.nl2b = nn.ReLU() def forward(self, x): out = self.nl1(self.d1(self.fc1(x))) out = self.nl2(self.d2(self.fc2(out))) out = self.nl2b(self.d2b(self.fc2b(out))) out = self.fc3(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'size_in': 4, 'size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (8, 8), (8, 1)) assert_size_stride(primals_5, (8,), (1,)) assert_size_stride(primals_6, (8, 8), (8, 1)) assert_size_stride(primals_7, (8,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0) del buf0 buf9 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(512)](buf1, primals_2, buf9, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 8), (1, 8), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 8), (128, 32, 8, 1), 0) del buf2 buf8 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(512)](buf3, primals_5, buf8, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(primals_6, (8, 8), (1, 8), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 8), (128, 32, 8, 1), 0) del buf4 buf7 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(512)](buf5, primals_7, buf7, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 8), ( 8, 1), 0), reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf6) del primals_9 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor( buf3, (64, 8), (8, 1), 0), reinterpret_tensor(buf5, (64, 8), (8, 1), 0 ), primals_8, buf7, primals_6, buf8, primals_4, buf9 class F_fully_connectedNew(nn.Module): """Fully connected tranformation, not reversible, but used below.""" def __init__(self, size_in, size, internal_size=None, dropout=0.0): super(F_fully_connectedNew, self).__init__() if not internal_size: internal_size = 2 * size self.d1 = nn.Dropout(p=dropout) self.d2 = nn.Dropout(p=dropout) self.d2b = nn.Dropout(p=dropout) self.fc1 = nn.Linear(size_in, internal_size) self.fc2 = nn.Linear(internal_size, internal_size) self.fc2b = nn.Linear(internal_size, internal_size) self.fc3 = nn.Linear(internal_size, size) self.nl1 = nn.ReLU() self.nl2 = nn.ReLU() self.nl2b = nn.ReLU() def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc2b.weight primals_7 = self.fc2b.bias primals_8 = self.fc3.weight primals_9 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
Xenovortex/INN_Embedding_Classification
F_fully_connected
false
1,240
[ "MIT" ]
0
df31ec3dcf70780cae5140a69ffafdd64f218e5f
https://github.com/Xenovortex/INN_Embedding_Classification/tree/df31ec3dcf70780cae5140a69ffafdd64f218e5f
import torch import torch.nn as nn class Model(nn.Module): """Fully connected tranformation, not reversible, but used below.""" def __init__(self, size_in, size, internal_size=None, dropout=0.0): super().__init__() if not internal_size: internal_size = 2 * size self.d1 = nn.Dropout(p=dropout) self.d2 = nn.Dropout(p=dropout) self.d2b = nn.Dropout(p=dropout) self.fc1 = nn.Linear(size_in, internal_size) self.fc2 = nn.Linear(internal_size, internal_size) self.fc2b = nn.Linear(internal_size, internal_size) self.fc3 = nn.Linear(internal_size, size) self.nl1 = nn.ReLU() self.nl2 = nn.ReLU() self.nl2b = nn.ReLU() def forward(self, x): out = self.nl1(self.d1(self.fc1(x))) out = self.nl2(self.d2(self.fc2(out))) out = self.nl2b(self.d2b(self.fc2b(out))) out = self.fc3(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]