entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
pytorch_code
stringlengths
200
4.05k
ConvBlockFixup
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ny/cnyftzt44marcm3rjc5ttmk3yz7tgjftwetyjwwa4mdifhwaiq5l.py # Topologically Sorted Source Nodes: [add, out], Original ATen: [aten.add, aten.constant_pad_nd] # Source node to ATen node mapping: # add => add # out => constant_pad_nd # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%add, [0, 0, 0, 1]), kwargs = {}) triton_poi_fused_add_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_add_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_constant_pad_nd_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 5 x2 = (xindex // 20) x3 = xindex % 20 x4 = xindex tmp4 = tl.load(in_ptr1 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x3 + (16*x2)), tmp2 & xmask, other=0.0) tmp6 = tmp3 + tmp5 tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype) tmp8 = tl.where(tmp2, tmp6, tmp7) tl.store(out_ptr0 + (x4), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2g/c2geersai56ajl5mszxuccvf32ingsf7uewltdfucegi7nprodd2.py # Topologically Sorted Source Nodes: [add_1, out_1, add_2, out_2], Original ATen: [aten.add, aten.relu, aten.constant_pad_nd] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # out_1 => relu # out_2 => constant_pad_nd_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %primals_5), kwargs = {}) # %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%add_2, [0, 0, 0, 1]), kwargs = {}) triton_poi_fused_add_constant_pad_nd_relu_1 = async_compile.triton('triton_poi_fused_add_constant_pad_nd_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_constant_pad_nd_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_constant_pad_nd_relu_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 5 x2 = (xindex // 20) x3 = xindex % 20 x4 = xindex tmp4 = tl.load(in_ptr1 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp9 = tl.load(in_ptr2 + (0)) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x3 + (16*x2)), tmp2 & xmask, other=0.0) tmp6 = tmp3 + tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp11 = tmp8 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp2, tmp11, tmp12) tl.store(out_ptr0 + (x4), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ru/cruzz4bw56op4a2umcojvqo7x3yllo524t6ildzprzx27ua6kcm5.py # Topologically Sorted Source Nodes: [mul, out_3, out_4, out_5], Original ATen: [aten.mul, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # mul => mul # out_3 => add_3 # out_4 => add_4 # out_5 => relu_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, %primals_7), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_8), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %primals_1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_4,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_add_mul_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_add_mul_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_relu_threshold_backward_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr3 + (x0), xmask) tmp3 = tmp0 * tmp2 tmp6 = tmp3 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = 0.0 tmp12 = tmp10 <= tmp11 tl.store(out_ptr0 + (x0), tmp10, xmask) tl.store(out_ptr1 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cu/ccuuixkigxbxyhnijuiyewzzytgjirr5emo3575tqzbab4hum44n.py # Topologically Sorted Source Nodes: [add_1, out_1], Original ATen: [aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add_1 => add_1 # out_1 => relu # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (1, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, out], Original ATen: [aten.add, aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_add_constant_pad_nd_0.run(primals_1, primals_2, buf0, 320, grid=grid(320), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add_1, out_1, add_2, out_2], Original ATen: [aten.add, aten.relu, aten.constant_pad_nd] triton_poi_fused_add_constant_pad_nd_relu_1.run(buf1, primals_4, primals_5, buf2, 320, grid=grid(320), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_6, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [mul, out_3, out_4, out_5], Original ATen: [aten.mul, aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_mul_relu_threshold_backward_2.run(buf3, primals_7, primals_8, primals_1, buf4, buf5, 256, grid=grid(256), stream=stream0) del primals_1 del primals_8 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [add_1, out_1], Original ATen: [aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_relu_threshold_backward_3.run(buf1, primals_4, buf6, 256, grid=grid(256), stream=stream0) del buf1 del primals_4 return (buf4, primals_3, primals_6, primals_7, buf0, buf2, buf3, buf5, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class ConvBlockFixup(nn.Module): def __init__(self, filter_width, input_filters, nb_filters, dilation): super(ConvBlockFixup, self).__init__() self.filter_width = filter_width self.input_filters = input_filters self.nb_filters = nb_filters self.dilation = dilation self.bias1a = nn.Parameter(torch.zeros(1)) self.conv1 = nn.Conv2d(self.input_filters, self.nb_filters, (self. filter_width, 1), dilation=(self.dilation, 1), bias=False, padding='same') self.bias1b = nn.Parameter(torch.zeros(1)) self.relu = nn.ReLU(inplace=True) self.bias2a = nn.Parameter(torch.zeros(1)) self.conv2 = nn.Conv2d(self.nb_filters, self.nb_filters, (self. filter_width, 1), dilation=(self.dilation, 1), bias=False, padding='same') self.scale = nn.Parameter(torch.ones(1)) self.bias2b = nn.Parameter(torch.zeros(1)) def forward(self, x): identity = x out = self.conv1(x + self.bias1a) out = self.relu(out + self.bias1b) out = self.conv2(out + self.bias2a) out = out * self.scale + self.bias2b out += identity out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'filter_width': 4, 'input_filters': 4, 'nb_filters': 4, 'dilation': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_constant_pad_nd_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 5 x2 = xindex // 20 x3 = xindex % 20 x4 = xindex tmp4 = tl.load(in_ptr1 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x3 + 16 * x2), tmp2 & xmask, other=0.0) tmp6 = tmp3 + tmp5 tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype) tmp8 = tl.where(tmp2, tmp6, tmp7) tl.store(out_ptr0 + x4, tmp8, xmask) @triton.jit def triton_poi_fused_add_constant_pad_nd_relu_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 5 x2 = xindex // 20 x3 = xindex % 20 x4 = xindex tmp4 = tl.load(in_ptr1 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp9 = tl.load(in_ptr2 + 0) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x3 + 16 * x2), tmp2 & xmask, other=0.0) tmp6 = tmp3 + tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp11 = tmp8 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp2, tmp11, tmp12) tl.store(out_ptr0 + x4, tmp13, xmask) @triton.jit def triton_poi_fused_add_mul_relu_threshold_backward_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr3 + x0, xmask) tmp3 = tmp0 * tmp2 tmp6 = tmp3 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = 0.0 tmp12 = tmp10 <= tmp11 tl.store(out_ptr0 + x0, tmp10, xmask) tl.store(out_ptr1 + x0, tmp12, xmask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (1,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_constant_pad_nd_0[grid(320)](primals_1, primals_2, buf0, 320, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_add_constant_pad_nd_relu_1[grid(320)](buf1, primals_4, primals_5, buf2, 320, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf3 = extern_kernels.convolution(buf2, primals_6, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_mul_relu_threshold_backward_2[grid(256)](buf3, primals_7, primals_8, primals_1, buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_8 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_3[grid(256)](buf1, primals_4, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del primals_4 return buf4, primals_3, primals_6, primals_7, buf0, buf2, buf3, buf5, buf6 class ConvBlockFixupNew(nn.Module): def __init__(self, filter_width, input_filters, nb_filters, dilation): super(ConvBlockFixupNew, self).__init__() self.filter_width = filter_width self.input_filters = input_filters self.nb_filters = nb_filters self.dilation = dilation self.bias1a = nn.Parameter(torch.zeros(1)) self.conv1 = nn.Conv2d(self.input_filters, self.nb_filters, (self. filter_width, 1), dilation=(self.dilation, 1), bias=False, padding='same') self.bias1b = nn.Parameter(torch.zeros(1)) self.relu = nn.ReLU(inplace=True) self.bias2a = nn.Parameter(torch.zeros(1)) self.conv2 = nn.Conv2d(self.nb_filters, self.nb_filters, (self. filter_width, 1), dilation=(self.dilation, 1), bias=False, padding='same') self.scale = nn.Parameter(torch.ones(1)) self.bias2b = nn.Parameter(torch.zeros(1)) def forward(self, input_0): primals_2 = self.bias1a primals_4 = self.bias1b primals_5 = self.bias2a primals_7 = self.scale primals_8 = self.bias2b primals_3 = self.conv1.weight primals_6 = self.conv2.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
OmarNajdi/dl-for-har
ConvBlockFixup
false
934
[ "MIT" ]
0
5e1b7c29caf2b41fcba106cd901c45d8f2d18429
https://github.com/OmarNajdi/dl-for-har/tree/5e1b7c29caf2b41fcba106cd901c45d8f2d18429
import torch from torch import nn class Model(nn.Module): def __init__(self, filter_width, input_filters, nb_filters, dilation): super().__init__() self.filter_width = filter_width self.input_filters = input_filters self.nb_filters = nb_filters self.dilation = dilation self.bias1a = nn.Parameter(torch.zeros(1)) self.conv1 = nn.Conv2d(self.input_filters, self.nb_filters, (self. filter_width, 1), dilation=(self.dilation, 1), bias=False, padding='same') self.bias1b = nn.Parameter(torch.zeros(1)) self.relu = nn.ReLU(inplace=True) self.bias2a = nn.Parameter(torch.zeros(1)) self.conv2 = nn.Conv2d(self.nb_filters, self.nb_filters, (self. filter_width, 1), dilation=(self.dilation, 1), bias=False, padding='same') self.scale = nn.Parameter(torch.ones(1)) self.bias2b = nn.Parameter(torch.zeros(1)) def forward(self, x): identity = x out = self.conv1(x + self.bias1a) out = self.relu(out + self.bias1b) out = self.conv2(out + self.bias2a) out = out * self.scale + self.bias2b out += identity out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'filter_width': 4, 'input_filters': 4, 'nb_filters': 4, 'dilation': 1}]
MarginRankingLoss_learning_loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xj/cxjese7rxw7beqnmjkvtny3jlalffvsxa64emiazjfju5jgu7yhf.py # Topologically Sorted Source Nodes: [sub, final_target, margin_ranking_loss], Original ATen: [aten.sub, aten.sign, aten.neg, aten.mul, aten.add, aten.clamp_min, aten.mean] # Source node to ATen node mapping: # final_target => sign # margin_ranking_loss => add, clamp_min, mean, mul, neg, sub_1 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_3, %slice_4), kwargs = {}) # %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%sub,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sign,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_1, %slice_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sub_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%mul, 0.5), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%clamp_min,), kwargs = {}) triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0 = async_compile.triton('triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 2], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 2 RBLOCK: tl.constexpr = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp7 = tl.load(in_ptr0 + (2 + r0), None) tmp22 = tl.load(in_ptr2 + (r0), None) tmp23 = tl.load(in_ptr2 + (2 + r0), None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (tmp4), None, eviction_policy='evict_last') tmp8 = tmp7 + tmp1 tmp9 = tmp7 < 0 tmp10 = tl.where(tmp9, tmp8, tmp7) tl.device_assert((0 <= tmp10) & (tmp10 < 4), "index out of bounds: 0 <= tmp10 < 4") tmp12 = tl.load(in_ptr1 + (tmp10), None, eviction_policy='evict_last') tmp13 = tmp6 - tmp12 tmp14 = tl.full([1, 1], 0, tl.int32) tmp15 = tmp14 < tmp13 tmp16 = tmp15.to(tl.int8) tmp17 = tmp13 < tmp14 tmp18 = tmp17.to(tl.int8) tmp19 = tmp16 - tmp18 tmp20 = tmp19.to(tmp13.dtype) tmp21 = -tmp20 tmp24 = tmp22 - tmp23 tmp25 = tmp21 * tmp24 tmp26 = 0.5 tmp27 = tmp25 + tmp26 tmp28 = 0.0 tmp29 = triton_helpers.maximum(tmp27, tmp28) tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK]) tmp32 = tl.sum(tmp30, 1)[:, None] tmp33 = 2.0 tmp34 = tmp32 / tmp33 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp34, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 1), (1, 1)) assert_size_stride(arg1_1, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [random], Original ATen: [aten.randperm] buf0 = torch.ops.aten.randperm.default(4, device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [sub, final_target, margin_ranking_loss], Original ATen: [aten.sub, aten.sign, aten.neg, aten.mul, aten.add, aten.clamp_min, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0.run(buf3, buf1, arg1_1, arg0_1, 1, 2, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del buf1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MarginRankingLoss_learning_loss(nn.Module): """ Ranking loss as described in LPM paper inputs/targets are randomly permutated final target is a list of -1 and 1's -1 means the item in the i list is higher 1 means the item in the j list is higher This creates a pairwise ranking loss """ def __init__(self, margin=0.5): super(MarginRankingLoss_learning_loss, self).__init__() self.margin = margin def forward(self, inputs, targets): random = torch.randperm(inputs.size(0)) mid = int(inputs.size(0) // 2) pred_lossi = inputs[:mid] pred_lossj = inputs[mid:] target_loss = targets.reshape(inputs.size(0), 1) target_loss = target_loss[random] target_lossi = target_loss[:mid] target_lossj = target_loss[mid:] final_target = torch.sign(target_lossi - target_lossj) return F.margin_ranking_loss(pred_lossi, pred_lossj, final_target, margin=self.margin, reduction='mean') def get_inputs(): return [torch.rand([4, 1]), torch.rand([4, 1])] def get_init_inputs(): return [[], {}]
import torch from torch import device import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 2 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp7 = tl.load(in_ptr0 + (2 + r0), None) tmp22 = tl.load(in_ptr2 + r0, None) tmp23 = tl.load(in_ptr2 + (2 + r0), None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + tmp4, None, eviction_policy='evict_last') tmp8 = tmp7 + tmp1 tmp9 = tmp7 < 0 tmp10 = tl.where(tmp9, tmp8, tmp7) tl.device_assert((0 <= tmp10) & (tmp10 < 4), 'index out of bounds: 0 <= tmp10 < 4') tmp12 = tl.load(in_ptr1 + tmp10, None, eviction_policy='evict_last') tmp13 = tmp6 - tmp12 tmp14 = tl.full([1, 1], 0, tl.int32) tmp15 = tmp14 < tmp13 tmp16 = tmp15.to(tl.int8) tmp17 = tmp13 < tmp14 tmp18 = tmp17.to(tl.int8) tmp19 = tmp16 - tmp18 tmp20 = tmp19.to(tmp13.dtype) tmp21 = -tmp20 tmp24 = tmp22 - tmp23 tmp25 = tmp21 * tmp24 tmp26 = 0.5 tmp27 = tmp25 + tmp26 tmp28 = 0.0 tmp29 = triton_helpers.maximum(tmp27, tmp28) tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK]) tmp32 = tl.sum(tmp30, 1)[:, None] tmp33 = 2.0 tmp34 = tmp32 / tmp33 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp34, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 1), (1, 1)) assert_size_stride(arg1_1, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.randperm.default(4, device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 get_raw_stream(0) triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0[grid(1)](buf3, buf1, arg1_1, arg0_1, 1, 2, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del buf1 return buf3, class MarginRankingLoss_learning_lossNew(nn.Module): """ Ranking loss as described in LPM paper inputs/targets are randomly permutated final target is a list of -1 and 1's -1 means the item in the i list is higher 1 means the item in the j list is higher This creates a pairwise ranking loss """ def __init__(self, margin=0.5): super(MarginRankingLoss_learning_lossNew, self).__init__() self.margin = margin def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Pepijnnn/MasterThesis
MarginRankingLoss_learning_loss
false
936
[ "MIT" ]
0
7ec831f5e55f5f181e0196fa78284e2846ce2e26
https://github.com/Pepijnnn/MasterThesis/tree/7ec831f5e55f5f181e0196fa78284e2846ce2e26
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Ranking loss as described in LPM paper inputs/targets are randomly permutated final target is a list of -1 and 1's -1 means the item in the i list is higher 1 means the item in the j list is higher This creates a pairwise ranking loss """ def __init__(self, margin=0.5): super().__init__() self.margin = margin def forward(self, inputs, targets): random = torch.randperm(inputs.size(0)) mid = int(inputs.size(0) // 2) pred_lossi = inputs[:mid] pred_lossj = inputs[mid:] target_loss = targets.reshape(inputs.size(0), 1) target_loss = target_loss[random] target_lossi = target_loss[:mid] target_lossj = target_loss[mid:] final_target = torch.sign(target_lossi - target_lossj) return F.margin_ranking_loss(pred_lossi, pred_lossj, final_target, margin=self.margin, reduction='mean') def get_inputs(): return [torch.rand([4, 1]), torch.rand([4, 1])] def get_init_inputs(): return []
LRN
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/gv/cgvon7iygyhjm2kmwtta5t2r3z2byfrr4qwpcmym3h4h6yzxvtvp.py # Topologically Sorted Source Nodes: [div, div_1, mul, add, div_2, x], Original ATen: [aten.pow, aten.avg_pool2d, aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # add => add # div => pow_1 # div_1 => avg_pool2d # div_2 => pow_2 # mul => mul # x => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_1, [1, 1], [1, 1]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, 0.0001), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 2.0), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.75), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {}) triton_poi_fused_add_avg_pool2d_div_mul_pow_0 = async_compile.triton('triton_poi_fused_add_avg_pool2d_div_mul_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_div_mul_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = 0.0001 tmp5 = tmp3 * tmp4 tmp6 = 2.0 tmp7 = tmp5 + tmp6 tmp8 = 0.75 tmp9 = libdevice.pow(tmp7, tmp8) tmp10 = tmp0 / tmp9 tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [div, div_1, mul, add, div_2, x], Original ATen: [aten.pow, aten.avg_pool2d, aten.mul, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_avg_pool2d_div_mul_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LRN(nn.Module): def __init__(self, local_size=1, alpha=0.0001, beta=0.75, ACROSS_CHANNELS=False): super(LRN, self).__init__() self.ACROSS_CHANNELS = ACROSS_CHANNELS if self.ACROSS_CHANNELS: self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1), stride=1, padding=(int((local_size - 1.0) / 2), 0, 0)) else: self.average = nn.AvgPool2d(kernel_size=local_size, stride=1, padding=int((local_size - 1.0) / 2)) self.alpha = alpha self.beta = beta def forward(self, x): if self.ACROSS_CHANNELS: div = x.pow(2).unsqueeze(1) div = self.average(div).squeeze(1) div = div.mul(self.alpha).add(2.0).pow(self.beta) else: div = x.pow(2) div = self.average(div) div = div.mul(self.alpha).add(2.0).pow(self.beta) x = x.div(div) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_avg_pool2d_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = 0.0001 tmp5 = tmp3 * tmp4 tmp6 = 2.0 tmp7 = tmp5 + tmp6 tmp8 = 0.75 tmp9 = libdevice.pow(tmp7, tmp8) tmp10 = tmp0 / tmp9 tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_avg_pool2d_div_mul_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class LRNNew(nn.Module): def __init__(self, local_size=1, alpha=0.0001, beta=0.75, ACROSS_CHANNELS=False): super(LRNNew, self).__init__() self.ACROSS_CHANNELS = ACROSS_CHANNELS if self.ACROSS_CHANNELS: self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1), stride=1, padding=(int((local_size - 1.0) / 2), 0, 0)) else: self.average = nn.AvgPool2d(kernel_size=local_size, stride=1, padding=int((local_size - 1.0) / 2)) self.alpha = alpha self.beta = beta def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
PengJingchao/DFNet
LRN
false
937
[ "MIT" ]
0
49e83501f81515aebca211351e315896da7afc54
https://github.com/PengJingchao/DFNet/tree/49e83501f81515aebca211351e315896da7afc54
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, local_size=1, alpha=0.0001, beta=0.75, ACROSS_CHANNELS=False): super().__init__() self.ACROSS_CHANNELS = ACROSS_CHANNELS if self.ACROSS_CHANNELS: self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1), stride=1, padding=(int((local_size - 1.0) / 2), 0, 0)) else: self.average = nn.AvgPool2d(kernel_size=local_size, stride=1, padding=int((local_size - 1.0) / 2)) self.alpha = alpha self.beta = beta def forward(self, x): if self.ACROSS_CHANNELS: div = x.pow(2).unsqueeze(1) div = self.average(div).squeeze(1) div = div.mul(self.alpha).add(2.0).pow(self.beta) else: div = x.pow(2) div = self.average(div) div = div.mul(self.alpha).add(2.0).pow(self.beta) x = x.div(div) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ListNetLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qz/cqza6p5fjiie2hfiu5dfjqqugrnzziwuwxzlhzy2aa7khopxjbym.py # Topologically Sorted Source Nodes: [true_smax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # true_smax => amax_1, exp_1, sub_1 # Graph fragment: # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2k/c2k5uwppf5apzvlxiajoyekazsvq7wr55ts2llwoli6wc4intabk.py # Topologically Sorted Source Nodes: [true_smax, preds_smax, preds_smax_1, preds_log, mul], Original ATen: [aten._softmax, aten.add, aten.log, aten.mul] # Source node to ATen node mapping: # mul => mul # preds_log => log # preds_smax => div, sum_1 # preds_smax_1 => add # true_smax => div_1, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 0.0005), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %log), kwargs = {}) triton_poi_fused__softmax_add_log_mul_1 = async_compile.triton('triton_poi_fused__softmax_add_log_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_log_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_log_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (x3), xmask) tmp10 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp12 = tmp10 + tmp11 tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tmp9 / tmp16 tmp18 = 0.0005 tmp19 = tmp17 + tmp18 tmp20 = tl_math.log(tmp19) tmp21 = tmp8 * tmp20 tl.store(out_ptr0 + (x3), tmp21, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vo/cvojznxu67wmmp7b5valrucu3v3bhdekrp6efpbb7nhgo2ivqa5y.py # Topologically Sorted Source Nodes: [sum_1, neg, mean], Original ATen: [aten.sum, aten.neg, aten.mean] # Source node to ATen node mapping: # mean => mean # neg => neg # sum_1 => sum_3 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_3,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {}) triton_per_fused_mean_neg_sum_2 = async_compile.triton('triton_per_fused_mean_neg_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_neg_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_neg_sum_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp3 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp5 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = -tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.sum(tmp8, 1)[:, None] tmp11 = 64.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [true_smax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [preds_smax], Original ATen: [aten._softmax] triton_poi_fused__softmax_0.run(arg0_1, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [true_smax, preds_smax, preds_smax_1, preds_log, mul], Original ATen: [aten._softmax, aten.add, aten.log, aten.mul] triton_poi_fused__softmax_add_log_mul_1.run(buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [sum_1, neg, mean], Original ATen: [aten.sum, aten.neg, aten.mean] triton_per_fused_mean_neg_sum_2.run(buf4, buf2, 1, 64, grid=grid(1), stream=stream0) del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ListNetLoss(nn.Module): def __init__(self): super(ListNetLoss, self).__init__() return def forward(self, y_pred, y_true, eps=0.0005, padded_value_indicator=-1): """ ListNet loss introduced in "Learning to Rank: From Pairwise Approach to Listwise Approach". :param y_pred: predictions from the model, shape [batch_size, slate_length] :param y_true: ground truth labels, shape [batch_size, slate_length] :param eps: epsilon value, used for numerical stability :param padded_value_indicator: an indicator of the y_true index containing a padded item, e.g. -1 :return: loss value, a torch.Tensor """ y_pred = y_pred.clone() y_true = y_true.clone() preds_smax = F.softmax(y_pred, dim=1) true_smax = F.softmax(y_true, dim=1) preds_smax = preds_smax + eps preds_log = torch.log(preds_smax) return torch.mean(-torch.sum(true_smax * preds_log, dim=1)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_add_log_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + x3, xmask) tmp10 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp12 = tmp10 + tmp11 tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tmp9 / tmp16 tmp18 = 0.0005 tmp19 = tmp17 + tmp18 tmp20 = tl_math.log(tmp19) tmp21 = tmp8 * tmp20 tl.store(out_ptr0 + x3, tmp21, xmask) @triton.jit def triton_per_fused_mean_neg_sum_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp3 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp5 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = -tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.sum(tmp8, 1)[:, None] tmp11 = 64.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_0[grid(256)](arg0_1, buf1, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_add_log_mul_1[grid(256)](buf0, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused_mean_neg_sum_2[grid(1)](buf4, buf2, 1, 64, XBLOCK= 1, num_warps=2, num_stages=1) del buf2 return buf4, class ListNetLossNew(nn.Module): def __init__(self): super(ListNetLossNew, self).__init__() return def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Pepijnnn/MasterThesis
ListNetLoss
false
938
[ "MIT" ]
0
7ec831f5e55f5f181e0196fa78284e2846ce2e26
https://github.com/Pepijnnn/MasterThesis/tree/7ec831f5e55f5f181e0196fa78284e2846ce2e26
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() return def forward(self, y_pred, y_true, eps=0.0005, padded_value_indicator=-1): """ ListNet loss introduced in "Learning to Rank: From Pairwise Approach to Listwise Approach". :param y_pred: predictions from the model, shape [batch_size, slate_length] :param y_true: ground truth labels, shape [batch_size, slate_length] :param eps: epsilon value, used for numerical stability :param padded_value_indicator: an indicator of the y_true index containing a padded item, e.g. -1 :return: loss value, a torch.Tensor """ y_pred = y_pred.clone() y_true = y_true.clone() preds_smax = F.softmax(y_pred, dim=1) true_smax = F.softmax(y_true, dim=1) preds_smax = preds_smax + eps preds_log = torch.log(preds_smax) return torch.mean(-torch.sum(true_smax * preds_log, dim=1)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
AsymmetricLossOptimized
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ry/cry5kqibd2j5v7zh6b5qbaeadqz6hqmokj5ujzqm6gt55y7roh7a.py # Topologically Sorted Source Nodes: [sigmoid, clamp, log, mul, sub, sub_1, add_, clamp_, clamp_1, log_1, mul_1, add__1, mul_2, sub_2, mul_3, sub_3, mul_4, mul_5, add, pow_1, imul, sum_1, neg], Original ATen: [aten.sigmoid, aten.clamp, aten.log, aten.mul, aten.rsub, aten.add, aten.sub, aten.pow, aten.sum, aten.neg] # Source node to ATen node mapping: # add => add_2 # add_ => add # add__1 => add_1 # clamp => clamp_min # clamp_ => clamp_max # clamp_1 => clamp_min_1 # imul => mul_6 # log => log # log_1 => log_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # neg => neg # pow_1 => pow_1 # sigmoid => sigmoid # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sub_3 => sub_3 # sum_1 => sum_1 # Graph fragment: # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg1_1,), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sigmoid, 1e-08), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%clamp_min,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %log), kwargs = {}) # %sub : [num_users=4] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_1, 0.05), kwargs = {}) # %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add, 1), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%clamp_max, 1e-08), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%clamp_min_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %log_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg0_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_2), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %sub), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %mul_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 4), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {}) # %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%sub_3, %add_2), kwargs = {}) # %mul_6 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %pow_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sub_sum_0 = async_compile.triton('triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {8: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 9), equal_to_1=(8,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp4 * tmp0 tmp6 = tmp1 - tmp4 tmp7 = 0.05 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.minimum(tmp8, tmp1) tmp10 = tmp9 * tmp2 tmp11 = tmp1 - tmp5 tmp12 = tmp11 - tmp10 tmp13 = tmp0 * tmp1 tmp14 = 4.0 tmp15 = tmp2 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = libdevice.pow(tmp12, tmp16) tmp18 = 1e-08 tmp19 = triton_helpers.maximum(tmp4, tmp18) tmp20 = tl_math.log(tmp19) tmp21 = tmp0 * tmp20 tmp22 = triton_helpers.maximum(tmp9, tmp18) tmp23 = tl_math.log(tmp22) tmp24 = tmp2 * tmp23 tmp25 = tmp21 + tmp24 tmp26 = tmp25 * tmp17 tmp27 = tl.broadcast_to(tmp26, [RBLOCK]) tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0)) tmp30 = -tmp29 tl.store(out_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp2, None) tl.store(out_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp5, None) tl.store(out_ptr2 + (tl.broadcast_to(r0, [RBLOCK])), tmp10, None) tl.store(out_ptr3 + (tl.broadcast_to(r0, [RBLOCK])), tmp17, None) tl.store(out_ptr4 + (tl.broadcast_to(r0, [RBLOCK])), tmp26, None) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp30, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((), (), torch.float32) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [sigmoid, clamp, log, mul, sub, sub_1, add_, clamp_, clamp_1, log_1, mul_1, add__1, mul_2, sub_2, mul_3, sub_3, mul_4, mul_5, add, pow_1, imul, sum_1, neg], Original ATen: [aten.sigmoid, aten.clamp, aten.log, aten.mul, aten.rsub, aten.add, aten.sub, aten.pow, aten.sum, aten.neg] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sub_sum_0.run(buf6, arg0_1, arg1_1, buf0, buf1, buf2, buf3, buf4, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf6, buf3, buf4, buf2, buf1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AsymmetricLossOptimized(nn.Module): """ Notice - optimized version, minimizes memory allocation and gpu uploading, favors inplace operations""" def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-08, disable_torch_grad_focal_loss=False): super(AsymmetricLossOptimized, self).__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps (self.targets) = (self.anti_targets) = (self.xs_pos) = (self.xs_neg ) = (self.asymmetric_w) = (self.loss) = None def forward(self, x, y): """" Parameters ---------- x: input logits y: targets (multi-label binarized vector) """ self.targets = y self.anti_targets = 1 - y self.xs_pos = torch.sigmoid(x) self.xs_neg = 1.0 - self.xs_pos if self.clip is not None and self.clip > 0: self.xs_neg.add_(self.clip).clamp_(max=1) self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps)) self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min= self.eps))) if self.gamma_neg > 0 or self.gamma_pos > 0: self.xs_pos = self.xs_pos * self.targets self.xs_neg = self.xs_neg * self.anti_targets self.asymmetric_w = torch.pow(1 - self.xs_pos - self.xs_neg, self.gamma_pos * self.targets + self.gamma_neg * self. anti_targets) self.loss *= self.asymmetric_w return -self.loss.sum() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sub_sum_0( in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp4 * tmp0 tmp6 = tmp1 - tmp4 tmp7 = 0.05 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.minimum(tmp8, tmp1) tmp10 = tmp9 * tmp2 tmp11 = tmp1 - tmp5 tmp12 = tmp11 - tmp10 tmp13 = tmp0 * tmp1 tmp14 = 4.0 tmp15 = tmp2 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = libdevice.pow(tmp12, tmp16) tmp18 = 1e-08 tmp19 = triton_helpers.maximum(tmp4, tmp18) tmp20 = tl_math.log(tmp19) tmp21 = tmp0 * tmp20 tmp22 = triton_helpers.maximum(tmp9, tmp18) tmp23 = tl_math.log(tmp22) tmp24 = tmp2 * tmp23 tmp25 = tmp21 + tmp24 tmp26 = tmp25 * tmp17 tmp27 = tl.broadcast_to(tmp26, [RBLOCK]) tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0)) tmp30 = -tmp29 tl.store(out_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp2, None) tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp5, None) tl.store(out_ptr2 + tl.broadcast_to(r0, [RBLOCK]), tmp10, None) tl.store(out_ptr3 + tl.broadcast_to(r0, [RBLOCK]), tmp17, None) tl.store(out_ptr4 + tl.broadcast_to(r0, [RBLOCK]), tmp26, None) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp30, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((), (), torch.float32) buf6 = buf5 del buf5 get_raw_stream(0) triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sub_sum_0[grid (1)](buf6, arg0_1, arg1_1, buf0, buf1, buf2, buf3, buf4, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf6, buf3, buf4, buf2, buf1, buf0 class AsymmetricLossOptimizedNew(nn.Module): """ Notice - optimized version, minimizes memory allocation and gpu uploading, favors inplace operations""" def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-08, disable_torch_grad_focal_loss=False): super(AsymmetricLossOptimizedNew, self).__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps (self.targets) = (self.anti_targets) = (self.xs_pos) = (self.xs_neg ) = (self.asymmetric_w) = (self.loss) = None def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Pepijnnn/MasterThesis
AsymmetricLossOptimized
false
939
[ "MIT" ]
0
7ec831f5e55f5f181e0196fa78284e2846ce2e26
https://github.com/Pepijnnn/MasterThesis/tree/7ec831f5e55f5f181e0196fa78284e2846ce2e26
import torch import torch.nn as nn class Model(nn.Module): """ Notice - optimized version, minimizes memory allocation and gpu uploading, favors inplace operations""" def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-08, disable_torch_grad_focal_loss=False): super().__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps (self.targets) = (self.anti_targets) = (self.xs_pos) = (self.xs_neg ) = (self.asymmetric_w) = (self.loss) = None def forward(self, x, y): """" Parameters ---------- x: input logits y: targets (multi-label binarized vector) """ self.targets = y self.anti_targets = 1 - y self.xs_pos = torch.sigmoid(x) self.xs_neg = 1.0 - self.xs_pos if self.clip is not None and self.clip > 0: self.xs_neg.add_(self.clip).clamp_(max=1) self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps)) self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min= self.eps))) if self.gamma_neg > 0 or self.gamma_pos > 0: self.xs_pos = self.xs_pos * self.targets self.xs_neg = self.xs_neg * self.anti_targets self.asymmetric_w = torch.pow(1 - self.xs_pos - self.xs_neg, self.gamma_pos * self.targets + self.gamma_neg * self. anti_targets) self.loss *= self.asymmetric_w return -self.loss.sum() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
HorizontalMaxPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ma/cmamwx5pzfl7ui4xihdrse7u4abzdvpalywvuwdsmh362iq42kjh.py # Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # max_pool2d => getitem # Graph fragment: # %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class HorizontalMaxPool2d(nn.Module): def __init__(self): super(HorizontalMaxPool2d, self).__init__() def forward(self, x): inp_size = x.size() return nn.functional.max_pool2d(input=x, kernel_size=(1, inp_size[3])) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class HorizontalMaxPool2dNew(nn.Module): def __init__(self): super(HorizontalMaxPool2dNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Qidian213/NAIC2019
HorizontalMaxPool2d
false
940
[ "MIT" ]
0
23e05a8a096168ccfa4d1743467fdf78ffcaabba
https://github.com/Qidian213/NAIC2019/tree/23e05a8a096168ccfa4d1743467fdf78ffcaabba
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x): inp_size = x.size() return nn.functional.max_pool2d(input=x, kernel_size=(1, inp_size[3])) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
BinaryLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ha/chaw4j4cijilv4rurwmzvs3nnol6fmwmio6yneprgmynztfqb3kg.py # Topologically Sorted Source Nodes: [pos_loss, sum_1, neg_loss, sum_2, add, loss], Original ATen: [aten.neg, aten.sum, aten.add, aten.div] # Source node to ATen node mapping: # add => add # loss => div # neg_loss => neg_1 # pos_loss => neg # sum_1 => sum_3 # sum_2 => sum_4 # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%select,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%neg,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%select_1,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%neg_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, %sum_4), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 8), kwargs = {}) triton_per_fused_add_div_neg_sum_1 = async_compile.triton('triton_per_fused_add_div_neg_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp17 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp19 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp22 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp25 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp2 = tl_math.exp(tmp1) tmp3 = tl_math.exp(tmp0) tmp4 = tmp2 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp13 = -tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp18 = tl_math.exp(tmp17) tmp20 = tl_math.exp(tmp19) tmp21 = tmp18 + tmp20 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tl_math.log(tmp27) tmp29 = tmp17 - tmp28 tmp30 = -tmp29 tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.sum(tmp31, 1)[:, None] tmp34 = tmp16 + tmp33 tmp35 = 0.125 tmp36 = tmp34 * tmp35 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp36, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax_1], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_0.run(arg1_1, buf2, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [pos_loss, sum_1, neg_loss, sum_2, add, loss], Original ATen: [aten.neg, aten.sum, aten.add, aten.div] triton_per_fused_add_div_neg_sum_1.run(buf4, buf0, buf2, 1, 64, grid=grid(1), stream=stream0) del buf0 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class BinaryLoss(nn.Module): def __init__(self): super(BinaryLoss, self).__init__() def forward(self, pos_score, neg_score): pos_loss = -F.log_softmax(pos_score, dim=1)[:, 1] neg_loss = -F.log_softmax(neg_score, dim=1)[:, 0] loss = (pos_loss.sum() + neg_loss.sum()) / (pos_loss.size(0) + neg_loss.size(0)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused_add_div_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp17 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp19 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp22 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp25 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp2 = tl_math.exp(tmp1) tmp3 = tl_math.exp(tmp0) tmp4 = tmp2 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp13 = -tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp18 = tl_math.exp(tmp17) tmp20 = tl_math.exp(tmp19) tmp21 = tmp18 + tmp20 tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tl_math.log(tmp27) tmp29 = tmp17 - tmp28 tmp30 = -tmp29 tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.sum(tmp31, 1)[:, None] tmp34 = tmp16 + tmp33 tmp35 = 0.125 tmp36 = tmp34 * tmp35 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp36, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf4 = buf1 del buf1 triton_per_fused_add_div_neg_sum_1[grid(1)](buf4, buf0, buf2, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf2 return buf4, class BinaryLossNew(nn.Module): def __init__(self): super(BinaryLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
PengJingchao/DFNet
BinaryLoss
false
941
[ "MIT" ]
0
49e83501f81515aebca211351e315896da7afc54
https://github.com/PengJingchao/DFNet/tree/49e83501f81515aebca211351e315896da7afc54
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() def forward(self, pos_score, neg_score): pos_loss = -F.log_softmax(pos_score, dim=1)[:, 1] neg_loss = -F.log_softmax(neg_score, dim=1)[:, 0] loss = (pos_loss.sum() + neg_loss.sum()) / (pos_loss.size(0) + neg_loss.size(0)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
HSigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/gl/cgljna3wfarubemgd6d2p3bgazvfhdxtrcu7luu5yza3rrfkty2s.py # Topologically Sorted Source Nodes: [add, relu6, truediv], Original ATen: [aten.add, aten.hardtanh, aten.div] # Source node to ATen node mapping: # add => add # relu6 => clamp_max, clamp_min # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {}) triton_poi_fused_add_div_hardtanh_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, relu6, truediv], Original ATen: [aten.add, aten.hardtanh, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.functional import torch.optim import torch.nn.parallel import torch.utils.data.distributed class HSigmoid(nn.Module): """ Applies the Hard-Sigmoid function element-wise. `"Searching for MobileNetV3" <https://arxiv.org/pdf/1905.02244.pdf>`_ Examples: >>> m = Mish() >>> x = torch.randn(2) >>> output = m(x) """ @staticmethod def forward(x: 'torch.Tensor') ->torch.Tensor: return F.relu6(x + 3, inplace=True) / 6.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch import torch.nn as nn import torch.nn.functional import torch.optim import torch.nn.parallel import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class HSigmoidNew(nn.Module): """ Applies the Hard-Sigmoid function element-wise. `"Searching for MobileNetV3" <https://arxiv.org/pdf/1905.02244.pdf>`_ Examples: >>> m = Mish() >>> x = torch.randn(2) >>> output = m(x) """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
PhelaPoscam/SRGAN-PyTorch
HSigmoid
false
942
[ "Apache-2.0" ]
0
c1c68707dbddd1130b2ea71023df748080bcbd52
https://github.com/PhelaPoscam/SRGAN-PyTorch/tree/c1c68707dbddd1130b2ea71023df748080bcbd52
import torch import torch.utils.data import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.functional import torch.optim import torch.nn.parallel import torch.utils.data.distributed class Model(nn.Module): """ Applies the Hard-Sigmoid function element-wise. `"Searching for MobileNetV3" <https://arxiv.org/pdf/1905.02244.pdf>`_ Examples: >>> m = Mish() >>> x = torch.randn(2) >>> output = m(x) """ @staticmethod def forward(x: 'torch.Tensor') ->torch.Tensor: return F.relu6(x + 3, inplace=True) / 6.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Module_CharbonnierLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ar/car7cj6c4qyubctqoezgxg4se3a2b7mtff6zfvpuv3hqcitn26ue.py # Topologically Sorted Source Nodes: [sub, pow_1, add, sqrt, mean], Original ATen: [aten.sub, aten.pow, aten.add, aten.sqrt, aten.mean] # Source node to ATen node mapping: # add => add # mean => mean # pow_1 => pow_1 # sqrt => sqrt # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1e-06), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sqrt,), kwargs = {}) triton_per_fused_add_mean_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_pow_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_pow_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, pow_1, add, sqrt, mean], Original ATen: [aten.sub, aten.pow, aten.add, aten.sqrt, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_mean_pow_sqrt_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Module_CharbonnierLoss(nn.Module): def __init__(self, epsilon=0.001): super(Module_CharbonnierLoss, self).__init__() self.epsilon = epsilon def forward(self, output, gt): return torch.mean(torch.sqrt((output - gt) ** 2 + self.epsilon ** 2)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_pow_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mean_pow_sqrt_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class Module_CharbonnierLossNew(nn.Module): def __init__(self, epsilon=0.001): super(Module_CharbonnierLossNew, self).__init__() self.epsilon = epsilon def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Pumpkin123709/LBEC
Module_CharbonnierLoss
false
944
[ "MIT" ]
0
18661faa35769f731847e0226ff601754e134668
https://github.com/Pumpkin123709/LBEC/tree/18661faa35769f731847e0226ff601754e134668
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, epsilon=0.001): super().__init__() self.epsilon = epsilon def forward(self, output, gt): return torch.mean(torch.sqrt((output - gt) ** 2 + self.epsilon ** 2)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/in/cin6bebkpfuweyzzgtljy26zh2yhrs7rpusw2jnlmszgn4jg27lx.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone, aten.transpose] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %permute_8 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%clone, [0, 2, 1]), kwargs = {}) triton_poi_fused_clone_transpose_0 = async_compile.triton('triton_poi_fused_clone_transpose_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_transpose_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_transpose_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x1 + (4*y0)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) tl.store(out_ptr1 + (y2 + (4*x1) + (16*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wd/cwdechbtujfh3khensgj7m65ycmclcmrggkwsxpoa3is2n47bah4.py # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # combined => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %view_1], 2), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/oj/coje6ro7aly3k4hwvxmkcoxi6nwxzpg23gh2inoddo4imx7svkus.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # output_1 => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_4 = async_compile.triton('triton_poi_fused_tanh_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_4(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [query_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) buf9 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone, aten.transpose] stream0 = get_raw_stream(0) triton_poi_fused_clone_transpose_0.run(primals_2, buf1, buf9, 16, 4, grid=grid(16, 4), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous, attention_scores], Original ATen: [aten.clone, aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), buf1, out=buf2) buf3 = reinterpret_tensor(buf1, (16, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = reinterpret_tensor(buf2, (16, 4), (4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [mix], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf5) buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf5, buf0, buf6, 128, grid=grid(128), stream=stream0) del buf0 buf7 = reinterpret_tensor(buf5, (16, 4), (4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_4.run(buf8, 64, grid=grid(64), stream=stream0) return (buf8, reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), buf4, reinterpret_tensor(buf6, (16, 8), (8, 1), 0), buf8, primals_4, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Attention(nn.Module): """ Applies attention mechanism on the `context` using the `query`. **Thank you** to IBM for their initial implementation of :class:`Attention`. Here is their `License <https://github.com/IBM/pytorch-seq2seq/blob/master/LICENSE>`__. Args: dimensions (int): Dimensionality of the query and context. attention_type (str, optional): How to compute the attention score: * dot: :math:`score(H_j,q) = H_j^T q` * general: :math:`score(H_j, q) = H_j^T W_a q` Example: >>> attention = Attention(256) >>> query = torch.randn(5, 1, 256) >>> context = torch.randn(5, 5, 256) >>> output, weights = attention(query, context) >>> output.size() torch.Size([5, 1, 256]) >>> weights.size() torch.Size([5, 1, 5]) """ def __init__(self, dimensions, attention_type='general'): super(Attention, self).__init__() if attention_type not in ['dot', 'general']: raise ValueError('Invalid attention type selected.') self.attention_type = attention_type if self.attention_type == 'general': self.linear_in = nn.Linear(dimensions, dimensions, bias=False) self.linear_out = nn.Linear(dimensions * 2, dimensions, bias=False) self.softmax = nn.Softmax(dim=-1) self.tanh = nn.Tanh() def forward(self, query, context): """ Args: query (:class:`torch.FloatTensor` [batch size, output length, dimensions]): Sequence of queries to query the context. context (:class:`torch.FloatTensor` [batch size, query length, dimensions]): Data overwhich to apply the attention mechanism. Returns: :class:`tuple` with `output` and `weights`: * **output** (:class:`torch.LongTensor` [batch size, output length, dimensions]): Tensor containing the attended features. * **weights** (:class:`torch.FloatTensor` [batch size, output length, query length]): Tensor containing attention weights. """ batch_size, output_len, dimensions = query.size() query_len = context.size(1) if self.attention_type == 'general': query = query.view(batch_size * output_len, dimensions) query = self.linear_in(query) query = query.view(batch_size, output_len, dimensions) attention_scores = torch.bmm(query, context.transpose(1, 2). contiguous()) attention_scores = attention_scores.view(batch_size * output_len, query_len) attention_weights = self.softmax(attention_scores) attention_weights = attention_weights.view(batch_size, output_len, query_len) mix = torch.bmm(attention_weights, context) combined = torch.cat((mix, query), dim=2) combined = combined.view(batch_size * output_len, 2 * dimensions) output = self.linear_out(combined).view(batch_size, output_len, dimensions) output = self.tanh(output) return output, attention_weights def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dimensions': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_transpose_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x1 + 4 * y0), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) tl.store(out_ptr1 + (y2 + 4 * x1 + 16 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_4(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) buf9 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_clone_transpose_0[grid(16, 4)](primals_2, buf1, buf9, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), buf1, out=buf2) buf3 = reinterpret_tensor(buf1, (16, 4), (4, 1), 0) del buf1 triton_poi_fused__softmax_1[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf2, (16, 4), (4, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0) del buf3 extern_kernels.bmm(reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf5) buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_3[grid(128)](buf5, buf0, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf0 buf7 = reinterpret_tensor(buf5, (16, 4), (4, 1), 0) del buf5 extern_kernels.mm(reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0) del buf7 triton_poi_fused_tanh_4[grid(64)](buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf8, reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0 ), buf4, reinterpret_tensor(buf6, (16, 8), (8, 1), 0 ), buf8, primals_4, buf9 class AttentionNew(nn.Module): """ Applies attention mechanism on the `context` using the `query`. **Thank you** to IBM for their initial implementation of :class:`Attention`. Here is their `License <https://github.com/IBM/pytorch-seq2seq/blob/master/LICENSE>`__. Args: dimensions (int): Dimensionality of the query and context. attention_type (str, optional): How to compute the attention score: * dot: :math:`score(H_j,q) = H_j^T q` * general: :math:`score(H_j, q) = H_j^T W_a q` Example: >>> attention = Attention(256) >>> query = torch.randn(5, 1, 256) >>> context = torch.randn(5, 5, 256) >>> output, weights = attention(query, context) >>> output.size() torch.Size([5, 1, 256]) >>> weights.size() torch.Size([5, 1, 5]) """ def __init__(self, dimensions, attention_type='general'): super(AttentionNew, self).__init__() if attention_type not in ['dot', 'general']: raise ValueError('Invalid attention type selected.') self.attention_type = attention_type if self.attention_type == 'general': self.linear_in = nn.Linear(dimensions, dimensions, bias=False) self.linear_out = nn.Linear(dimensions * 2, dimensions, bias=False) self.softmax = nn.Softmax(dim=-1) self.tanh = nn.Tanh() def forward(self, input_0, input_1): primals_3 = self.linear_in.weight primals_4 = self.linear_out.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1]
PattynR/PyTorch-NLP
Attention
false
945
[ "BSD-3-Clause" ]
0
8995774abf3734db6da174425843d883face5218
https://github.com/PattynR/PyTorch-NLP/tree/8995774abf3734db6da174425843d883face5218
import torch import torch.nn as nn class Model(nn.Module): """ Applies attention mechanism on the `context` using the `query`. **Thank you** to IBM for their initial implementation of :class:`Attention`. Here is their `License <https://github.com/IBM/pytorch-seq2seq/blob/master/LICENSE>`__. Args: dimensions (int): Dimensionality of the query and context. attention_type (str, optional): How to compute the attention score: * dot: :math:`score(H_j,q) = H_j^T q` * general: :math:`score(H_j, q) = H_j^T W_a q` Example: >>> attention = Attention(256) >>> query = torch.randn(5, 1, 256) >>> context = torch.randn(5, 5, 256) >>> output, weights = attention(query, context) >>> output.size() torch.Size([5, 1, 256]) >>> weights.size() torch.Size([5, 1, 5]) """ def __init__(self, dimensions, attention_type='general'): super().__init__() if attention_type not in ['dot', 'general']: raise ValueError('Invalid attention type selected.') self.attention_type = attention_type if self.attention_type == 'general': self.linear_in = nn.Linear(dimensions, dimensions, bias=False) self.linear_out = nn.Linear(dimensions * 2, dimensions, bias=False) self.softmax = nn.Softmax(dim=-1) self.tanh = nn.Tanh() def forward(self, query, context): """ Args: query (:class:`torch.FloatTensor` [batch size, output length, dimensions]): Sequence of queries to query the context. context (:class:`torch.FloatTensor` [batch size, query length, dimensions]): Data overwhich to apply the attention mechanism. Returns: :class:`tuple` with `output` and `weights`: * **output** (:class:`torch.LongTensor` [batch size, output length, dimensions]): Tensor containing the attended features. * **weights** (:class:`torch.FloatTensor` [batch size, output length, query length]): Tensor containing attention weights. """ batch_size, output_len, dimensions = query.size() query_len = context.size(1) if self.attention_type == 'general': query = query.view(batch_size * output_len, dimensions) query = self.linear_in(query) query = query.view(batch_size, output_len, dimensions) attention_scores = torch.bmm(query, context.transpose(1, 2). contiguous()) attention_scores = attention_scores.view(batch_size * output_len, query_len) attention_weights = self.softmax(attention_scores) attention_weights = attention_weights.view(batch_size, output_len, query_len) mix = torch.bmm(attention_weights, context) combined = torch.cat((mix, query), dim=2) combined = combined.view(batch_size * output_len, 2 * dimensions) output = self.linear_out(combined).view(batch_size, output_len, dimensions) output = self.tanh(output) return output, attention_weights def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
Reg_layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Reg_layer(nn.Module): """ modified by Zylo117 """ def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=True) self.header = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.relu(x) x = self.header(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(256)](buf3, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1 class Reg_layerNew(nn.Module): """ modified by Zylo117 """ def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=True) self.header = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True) self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_4 = self.header.weight primals_5 = self.header.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Peiiii/detro
Reg_layer
false
946
[ "MIT" ]
0
26d74468d7554dc20b2a2daf7ec5009302c820f2
https://github.com/Peiiii/detro/tree/26d74468d7554dc20b2a2daf7ec5009302c820f2
import torch from torch import nn class Model(nn.Module): """ modified by Zylo117 """ def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=True) self.header = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.relu(x) x = self.header(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Classifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/7k/c7kjkeggii63yvgjzjnf3liqwpad37zmjmymxfbjh5lqrygqgzxj.py # Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten.add] # Source node to ATen node mapping: # bilinear => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %primals_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear] buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) del primals_1 buf1 = buf0 del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf2, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 return (buf2, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Classifier(nn.Module): def __init__(self, num_inputs1, num_inputs2): super().__init__() self.network = nn.Bilinear(num_inputs1, num_inputs2, 1) def forward(self, x1, x2): return self.network(x1, x2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_inputs1': 4, 'num_inputs2': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor( primals_4, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor( primals_3, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) del primals_1 buf1 = buf0 del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 get_raw_stream(0) triton_poi_fused_add_0[grid(64)](buf2, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 return buf2, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class ClassifierNew(nn.Module): def __init__(self, num_inputs1, num_inputs2): super().__init__() self.network = nn.Bilinear(num_inputs1, num_inputs2, 1) def forward(self, input_0, input_1): primals_1 = self.network.weight primals_2 = self.network.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Project-Agni/Detection
Classifier
false
947
[ "MIT" ]
0
6b2c8ec25f8bd2bd15995d67f2808352cec9e2af
https://github.com/Project-Agni/Detection/tree/6b2c8ec25f8bd2bd15995d67f2808352cec9e2af
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, num_inputs1, num_inputs2): super().__init__() self.network = nn.Bilinear(num_inputs1, num_inputs2, 1) def forward(self, x1, x2): return self.network(x1, x2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
DQNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/jv/cjvfpvazszqsn7k2c7ac25njk43pn5fjlaxzgkwwsgomov2lqu5x.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 24 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (24, 4), (4, 1)) assert_size_stride(primals_2, (24, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (24, 24), (24, 1)) assert_size_stride(primals_5, (24, ), (1, )) assert_size_stride(primals_6, (4, 24), (24, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (24, 4), (4, 1)) assert_size_stride(primals_9, (24, ), (1, )) assert_size_stride(primals_10, (24, 24), (24, 1)) assert_size_stride(primals_11, (24, ), (1, )) assert_size_stride(primals_12, (4, 24), (24, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 24), (24, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 24), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 24), (384, 96, 24, 1), 0); del buf0 # reuse buf13 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf13, 1536, grid=grid(1536), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 24), (24, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(primals_4, (24, 24), (1, 24), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 24), (384, 96, 24, 1), 0); del buf2 # reuse buf12 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf12, 1536, grid=grid(1536), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 24), (24, 1), 0), reinterpret_tensor(primals_6, (24, 4), (1, 24), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 24), (24, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_8, (4, 24), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 24), (384, 96, 24, 1), 0); del buf5 # reuse buf11 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf6, primals_9, buf11, 1536, grid=grid(1536), stream=stream0) del primals_9 buf7 = empty_strided_cuda((64, 24), (24, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (64, 24), (24, 1), 0), reinterpret_tensor(primals_10, (24, 24), (1, 24), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 24), (384, 96, 24, 1), 0); del buf7 # reuse buf10 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf8, primals_11, buf10, 1536, grid=grid(1536), stream=stream0) del primals_11 buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf8, (64, 24), (24, 1), 0), reinterpret_tensor(primals_12, (24, 4), (1, 24), 0), alpha=1, beta=1, out=buf9) del primals_13 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(buf3, (64, 24), (24, 1), 0), buf4, reinterpret_tensor(buf6, (64, 24), (24, 1), 0), reinterpret_tensor(buf8, (64, 24), (24, 1), 0), primals_12, buf10, primals_10, buf11, primals_8, primals_6, buf12, primals_4, buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((24, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((24, 24), (24, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 24), (24, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((24, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((24, 24), (24, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 24), (24, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class Prediction(nn.Module): """Defines the prediction module as an ANN""" def __init__(self, state_size: 'int', action_size: 'int', fc1: 'int'=24, fc2: 'int'=24): super(Prediction, self).__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(state_size, fc1) self.fc2 = nn.Linear(fc1, fc2) self.fc3 = nn.Linear(fc2, action_size) def forward(self, state): """Prediction unit forward pass. Input state, s_t. Output, action, a_t""" x = self.fc1(state) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x class Environment(nn.Module): """Defines the Environment module as an ANN""" def __init__(self, state_size: 'int', action_size: 'int', fc1: 'int'=24, fc2: 'int'=24): super(Environment, self).__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(action_size, fc1) self.fc2 = nn.Linear(fc1, fc2) self.fc3 = nn.Linear(fc2, state_size) def forward(self, action): """Environment unit forward pass. Input action, a_t. Output, s_t+1.""" x = self.fc1(action) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x class DQNetwork(nn.Module): """Main DQN network utilizing `Prediction` and `Environment` modules""" def __init__(self, state_size: 'int', action_size: 'int'): super(DQNetwork, self).__init__() self.state_size = state_size self.action_size = action_size self.prediction = Prediction(state_size, action_size) self.env = Environment(state_size, action_size) def forward(self, state): """Returns a_t and s_t+1""" action = self.prediction(state) predicted_next_state = self.env(action) return action, predicted_next_state def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn.functional as F import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 24 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (24, 4), (4, 1)) assert_size_stride(primals_2, (24,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (24, 24), (24, 1)) assert_size_stride(primals_5, (24,), (1,)) assert_size_stride(primals_6, (4, 24), (24, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (24, 4), (4, 1)) assert_size_stride(primals_9, (24,), (1,)) assert_size_stride(primals_10, (24, 24), (24, 1)) assert_size_stride(primals_11, (24,), (1,)) assert_size_stride(primals_12, (4, 24), (24, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 24), (24, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 24), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 24), (384, 96, 24, 1), 0) del buf0 buf13 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1536)](buf1, primals_2, buf13, 1536, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 24), (24, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(primals_4, (24, 24), (1, 24), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 24), (384, 96, 24, 1), 0) del buf2 buf12 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(1536)](buf3, primals_5, buf12, 1536, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 24), (24, 1), 0), reinterpret_tensor(primals_6, (24, 4), (1, 24), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 24), (24, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_8, (4, 24), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 24), (384, 96, 24, 1), 0) del buf5 buf11 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(1536)](buf6, primals_9, buf11, 1536, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf7 = empty_strided_cuda((64, 24), (24, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (64, 24), (24, 1), 0), reinterpret_tensor(primals_10, (24, 24), (1, 24), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 24), (384, 96, 24, 1), 0) del buf7 buf10 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(1536)](buf8, primals_11, buf10, 1536, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf8, (64, 24), (24, 1), 0), reinterpret_tensor(primals_12, (24, 4), (1, 24), 0 ), alpha=1, beta=1, out=buf9) del primals_13 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor( buf3, (64, 24), (24, 1), 0), buf4, reinterpret_tensor(buf6, (64, 24 ), (24, 1), 0), reinterpret_tensor(buf8, (64, 24), (24, 1), 0), primals_12, buf10, primals_10, buf11, primals_8, primals_6, buf12, primals_4, buf13) class Prediction(nn.Module): """Defines the prediction module as an ANN""" def __init__(self, state_size: 'int', action_size: 'int', fc1: 'int'=24, fc2: 'int'=24): super(Prediction, self).__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(state_size, fc1) self.fc2 = nn.Linear(fc1, fc2) self.fc3 = nn.Linear(fc2, action_size) def forward(self, state): """Prediction unit forward pass. Input state, s_t. Output, action, a_t""" x = self.fc1(state) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x class Environment(nn.Module): """Defines the Environment module as an ANN""" def __init__(self, state_size: 'int', action_size: 'int', fc1: 'int'=24, fc2: 'int'=24): super(Environment, self).__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(action_size, fc1) self.fc2 = nn.Linear(fc1, fc2) self.fc3 = nn.Linear(fc2, state_size) def forward(self, action): """Environment unit forward pass. Input action, a_t. Output, s_t+1.""" x = self.fc1(action) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x class DQNetworkNew(nn.Module): """Main DQN network utilizing `Prediction` and `Environment` modules""" def __init__(self, state_size: 'int', action_size: 'int'): super(DQNetworkNew, self).__init__() self.state_size = state_size self.action_size = action_size self.prediction = Prediction(state_size, action_size) self.env = Environment(state_size, action_size) def forward(self, input_0): primals_1 = self.prediction.fc1.weight primals_2 = self.prediction.fc1.bias primals_4 = self.prediction.fc2.weight primals_5 = self.prediction.fc2.bias primals_6 = self.prediction.fc3.weight primals_7 = self.prediction.fc3.bias primals_8 = self.env.fc1.weight primals_9 = self.env.fc1.bias primals_10 = self.env.fc2.weight primals_11 = self.env.fc2.bias primals_12 = self.env.fc3.weight primals_13 = self.env.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0], output[1]
QasimWani/EARL
DQNetwork
false
948
[ "MIT" ]
0
05c303335e67903380771c4954a5317bd46fc0e7
https://github.com/QasimWani/EARL/tree/05c303335e67903380771c4954a5317bd46fc0e7
import torch import torch.nn.functional as F import torch.nn as nn class Prediction(nn.Module): """Defines the prediction module as an ANN""" def __init__(self, state_size: 'int', action_size: 'int', fc1: 'int'=24, fc2: 'int'=24): super().__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(state_size, fc1) self.fc2 = nn.Linear(fc1, fc2) self.fc3 = nn.Linear(fc2, action_size) def forward(self, state): """Prediction unit forward pass. Input state, s_t. Output, action, a_t""" x = self.fc1(state) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x class Environment(nn.Module): """Defines the Environment module as an ANN""" def __init__(self, state_size: 'int', action_size: 'int', fc1: 'int'=24, fc2: 'int'=24): super().__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(action_size, fc1) self.fc2 = nn.Linear(fc1, fc2) self.fc3 = nn.Linear(fc2, state_size) def forward(self, action): """Environment unit forward pass. Input action, a_t. Output, s_t+1.""" x = self.fc1(action) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x class Model(nn.Module): """Main DQN network utilizing `Prediction` and `Environment` modules""" def __init__(self, state_size: 'int', action_size: 'int'): super().__init__() self.state_size = state_size self.action_size = action_size self.prediction = Prediction(state_size, action_size) self.env = Environment(state_size, action_size) def forward(self, state): """Returns a_t and s_t+1""" action = self.prediction(state) predicted_next_state = self.env(action) return action, predicted_next_state def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
hsigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/gl/cgljna3wfarubemgd6d2p3bgazvfhdxtrcu7luu5yza3rrfkty2s.py # Topologically Sorted Source Nodes: [add, relu6, out], Original ATen: [aten.add, aten.hardtanh, aten.div] # Source node to ATen node mapping: # add => add # out => div # relu6 => clamp_max, clamp_min # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6), kwargs = {}) triton_poi_fused_add_div_hardtanh_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, relu6, out], Original ATen: [aten.add, aten.hardtanh, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class hsigmoid(nn.Module): def forward(self, x): out = F.relu6(x + 3, inplace=True) / 6 return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class hsigmoidNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Qidian213/NAIC2019
hsigmoid
false
949
[ "MIT" ]
0
23e05a8a096168ccfa4d1743467fdf78ffcaabba
https://github.com/Qidian213/NAIC2019/tree/23e05a8a096168ccfa4d1743467fdf78ffcaabba
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def forward(self, x): out = F.relu6(x + 3, inplace=True) / 6 return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SeparableConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) return (buf2, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class SeparableConv2d(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False): super(SeparableConv2d, self).__init__() self.conv1 = torch.nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation, groups=in_channels) self.pointwise = torch.nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias) def forward(self, x): x = self.conv1(x) x = self.pointwise(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) return buf2, primals_1, primals_3, primals_4, buf1 class SeparableConv2dNew(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False): super(SeparableConv2dNew, self).__init__() self.conv1 = torch.nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation, groups=in_channels) self.pointwise = torch.nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.pointwise.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Pumpkin123709/LBEC
SeparableConv2d
false
950
[ "MIT" ]
0
18661faa35769f731847e0226ff601754e134668
https://github.com/Pumpkin123709/LBEC/tree/18661faa35769f731847e0226ff601754e134668
import torch class Model(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False): super().__init__() self.conv1 = torch.nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation, groups=in_channels) self.pointwise = torch.nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias) def forward(self, x): x = self.conv1(x) x = self.pointwise(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
InputProjectionA
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/e6/ce6fwb7cuhy3qppzvzwzq3dqytlyhklktwnjhzdza6cxmtqodq25.py # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # input_1 => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/q2/cq2e75eszxxaetpgtnr5ljr5vh3tqmcqidqhrvudh2tljkbnnnyk.py # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # input_1 => avg_pool2d # input_2 => avg_pool2d_1 # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2]), kwargs = {}) # %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d, [2, 2], [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xg/cxgmndo32qigjql7dqcxlvgfdglqloagidx7i4d2d5pogp36nr6z.py # Topologically Sorted Source Nodes: [input_1, input_2, input_3], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # input_1 => avg_pool2d # input_2 => avg_pool2d_1 # input_3 => avg_pool2d_2 # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2]), kwargs = {}) # %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d, [2, 2], [2, 2]), kwargs = {}) # %avg_pool2d_2 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_1, [2, 2], [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_2 = async_compile.triton('triton_poi_fused_avg_pool2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bx/cbx63wyeqi7olz44znwpy535ph7u6xevmlpktla6ppx4ukf6ccfn.py # Topologically Sorted Source Nodes: [input_1, input_2, input_3, input_4], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # input_1 => avg_pool2d # input_2 => avg_pool2d_1 # input_3 => avg_pool2d_2 # input_4 => avg_pool2d_3 # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2]), kwargs = {}) # %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d, [2, 2], [2, 2]), kwargs = {}) # %avg_pool2d_2 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_1, [2, 2], [2, 2]), kwargs = {}) # %avg_pool2d_3 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_2, [2, 2], [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_3 = async_compile.triton('triton_poi_fused_avg_pool2d_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (16*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (9 + (2*x0) + (16*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 64, 64), (16384, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 16384, grid=grid(16384), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_1.run(buf0, buf1, 4096, grid=grid(4096), stream=stream0) del buf0 buf2 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1, input_2, input_3], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_2.run(buf1, buf2, 1024, grid=grid(1024), stream=stream0) del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1, input_2, input_3, input_4], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_3.run(buf2, buf3, 256, grid=grid(256), stream=stream0) del buf2 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data class InputProjectionA(nn.Module): """ This class projects the input image to the same spatial dimensions as the feature map. For example, if the input image is 512 x512 x3 and spatial dimensions of feature map size are 56x56xF, then this class will generate an output of 56x56x3 """ def __init__(self, samplingTimes): """ :param samplingTimes: The rate at which you want to down-sample the image """ super().__init__() self.pool = nn.ModuleList() for i in range(0, samplingTimes): self.pool.append(nn.AvgPool2d(2, stride=2, padding=0)) def forward(self, input): """ :param input: Input RGB Image :return: down-sampled image (pyramid-based approach) """ for pool in self.pool: input = pool(input) return input def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {'samplingTimes': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_avg_pool2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 16 * x1), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (8 + 2 * x0 + 16 * x1), xmask, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (9 + 2 * x0 + 16 * x1), xmask, eviction_policy ='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 64, 64), (16384, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16384)](arg0_1, buf0, 16384, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch .float32) triton_poi_fused_avg_pool2d_1[grid(4096)](buf0, buf1, 4096, XBLOCK= 128, num_warps=4, num_stages=1) del buf0 buf2 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) triton_poi_fused_avg_pool2d_2[grid(1024)](buf1, buf2, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_avg_pool2d_3[grid(256)](buf2, buf3, 256, XBLOCK= 256, num_warps=4, num_stages=1) del buf2 return buf3, class InputProjectionANew(nn.Module): """ This class projects the input image to the same spatial dimensions as the feature map. For example, if the input image is 512 x512 x3 and spatial dimensions of feature map size are 56x56xF, then this class will generate an output of 56x56x3 """ def __init__(self, samplingTimes): """ :param samplingTimes: The rate at which you want to down-sample the image """ super().__init__() self.pool = nn.ModuleList() for i in range(0, samplingTimes): self.pool.append(nn.AvgPool2d(2, stride=2, padding=0)) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
PhillipHuang2017/ext_portrait_segmentation
InputProjectionA
false
951
[ "MIT" ]
0
6d0cec0a953dacbc94a01ea8b719feb687b7c029
https://github.com/PhillipHuang2017/ext_portrait_segmentation/tree/6d0cec0a953dacbc94a01ea8b719feb687b7c029
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data class Model(nn.Module): """ This class projects the input image to the same spatial dimensions as the feature map. For example, if the input image is 512 x512 x3 and spatial dimensions of feature map size are 56x56xF, then this class will generate an output of 56x56x3 """ def __init__(self, samplingTimes): """ :param samplingTimes: The rate at which you want to down-sample the image """ super().__init__() self.pool = nn.ModuleList() for i in range(0, samplingTimes): self.pool.append(nn.AvgPool2d(2, stride=2, padding=0)) def forward(self, input): """ :param input: Input RGB Image :return: down-sampled image (pyramid-based approach) """ for pool in self.pool: input = pool(input) return input def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [4]
SelfAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/sr/csrg6irduolxnaubd5v3tlh5eeuhw27sxkg3o56t4veh47sq6ce3.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 2 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ko/ckow7ci7f3mygm6ujdzdisip6tet25h4hj6uestesqalhkarwrrw.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/w5/cw5gytijzzkwnfpq2a2axdsj4pfxgxmwiuzizuyd4bw5uwnanzw7.py # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ry/cryr7ctvhiha3ewxbbo6dgnuga42vxmuwqebgb2reyd6dilprrd4.py # Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # out_2 => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_8, %view_3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask) tmp3 = tmp1 * tmp2 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (2, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 128, grid=grid(128), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 2, 4, 4), (32, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf3, primals_5, 128, grid=grid(128), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [energy], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (4, 16, 2), (32, 1, 16), 0), reinterpret_tensor(buf3, (4, 2, 16), (32, 16, 1), 0), out=buf4) buf7 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] triton_per_fused__softmax_1.run(buf4, buf7, 64, 16, grid=grid(64), stream=stream0) del buf4 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf9, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf7, (4, 16, 16), (256, 1, 16), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(primals_8, buf10, primals_1, buf11, 256, grid=grid(256), stream=stream0) return (buf11, buf7, primals_1, primals_2, primals_4, primals_6, primals_8, buf7, buf10, reinterpret_tensor(buf9, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf1, (4, 2, 16), (32, 16, 1), 0), reinterpret_tensor(buf3, (4, 16, 2), (32, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class SelfAttention(nn.Module): """ Self attention Layer""" def __init__(self, in_dim, activation): super(SelfAttention, self).__init__() self.chanel_in = in_dim self.activation = activation self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 2, kernel_size=1) self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 2, kernel_size=1) self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) def forward(self, x): """ inputs : x : input feature maps( B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ m_batchsize, C, width, height = x.size() proj_query = self.query_conv(x).view(m_batchsize, -1, width * height ).permute(0, 2, 1) proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) energy = torch.bmm(proj_query, proj_key) attention = self.softmax(energy) proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(m_batchsize, C, width, height) out = self.gamma * out * x return out, attention def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'activation': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 2 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask) tmp3 = tmp1 * tmp2 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (2,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(128)](buf1, primals_3, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 2, 4, 4), (32, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_0[grid(128)](buf3, primals_5, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (4, 16, 2), (32, 1, 16), 0), reinterpret_tensor(buf3, (4, 2, 16), (32, 16, 1), 0), out=buf4) buf7 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) triton_per_fused__softmax_1[grid(64)](buf4, buf7, 64, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf4 buf8 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_2[grid(256)](buf9, primals_7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf9, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf7, (4, 16, 16), (256, 1, 16), 0), out =buf10) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_3[grid(256)](primals_8, buf10, primals_1, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) return (buf11, buf7, primals_1, primals_2, primals_4, primals_6, primals_8, buf7, buf10, reinterpret_tensor(buf9, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf1, (4, 2, 16), (32, 16, 1), 0), reinterpret_tensor(buf3, (4, 16, 2), (32, 1, 16), 0)) class SelfAttentionNew(nn.Module): """ Self attention Layer""" def __init__(self, in_dim, activation): super(SelfAttentionNew, self).__init__() self.chanel_in = in_dim self.activation = activation self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 2, kernel_size=1) self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 2, kernel_size=1) self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) def forward(self, input_0): primals_8 = self.gamma primals_2 = self.query_conv.weight primals_3 = self.query_conv.bias primals_4 = self.key_conv.weight primals_5 = self.key_conv.bias primals_6 = self.value_conv.weight primals_7 = self.value_conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1]
PauPerezT/EmoSSpeech
SelfAttention
false
952
[ "Apache-2.0" ]
0
168a951a838d0bfb838e7d0e3f6895bff68164a4
https://github.com/PauPerezT/EmoSSpeech/tree/168a951a838d0bfb838e7d0e3f6895bff68164a4
import torch from torch import nn class Model(nn.Module): """ Self attention Layer""" def __init__(self, in_dim, activation): super().__init__() self.chanel_in = in_dim self.activation = activation self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 2, kernel_size=1) self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 2, kernel_size=1) self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) def forward(self, x): """ inputs : x : input feature maps( B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ m_batchsize, C, width, height = x.size() proj_query = self.query_conv(x).view(m_batchsize, -1, width * height ).permute(0, 2, 1) proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) energy = torch.bmm(proj_query, proj_key) attention = self.softmax(energy) proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(m_batchsize, C, width, height) out = self.gamma * out * x return out, attention def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Environment
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/jv/cjvfpvazszqsn7k2c7ac25njk43pn5fjlaxzgkwwsgomov2lqu5x.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 24 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (24, 4), (4, 1)) assert_size_stride(primals_2, (24, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (24, 24), (24, 1)) assert_size_stride(primals_5, (24, ), (1, )) assert_size_stride(primals_6, (4, 24), (24, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 24), (24, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 24), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 24), (384, 96, 24, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 1536, grid=grid(1536), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 24), (24, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(primals_4, (24, 24), (1, 24), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 24), (384, 96, 24, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 1536, grid=grid(1536), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 24), (24, 1), 0), reinterpret_tensor(primals_6, (24, 4), (1, 24), 0), alpha=1, beta=1, out=buf4) del primals_7 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(buf3, (64, 24), (24, 1), 0), primals_6, buf5, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((24, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((24, 24), (24, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 24), (24, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class Environment(nn.Module): """Defines the Environment module as an ANN""" def __init__(self, state_size: 'int', action_size: 'int', fc1: 'int'=24, fc2: 'int'=24): super(Environment, self).__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(action_size, fc1) self.fc2 = nn.Linear(fc1, fc2) self.fc3 = nn.Linear(fc2, state_size) def forward(self, action): """Environment unit forward pass. Input action, a_t. Output, s_t+1.""" x = self.fc1(action) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 24 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (24, 4), (4, 1)) assert_size_stride(primals_2, (24,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (24, 24), (24, 1)) assert_size_stride(primals_5, (24,), (1,)) assert_size_stride(primals_6, (4, 24), (24, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 24), (24, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 24), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 24), (384, 96, 24, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1536)](buf1, primals_2, buf6, 1536, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 24), (24, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(primals_4, (24, 24), (1, 24), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 24), (384, 96, 24, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(1536)](buf3, primals_5, buf5, 1536, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 24), (24, 1), 0), reinterpret_tensor(primals_6, (24, 4), (1, 24), 0), alpha=1, beta=1, out=buf4) del primals_7 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor( buf3, (64, 24), (24, 1), 0), primals_6, buf5, primals_4, buf6 class EnvironmentNew(nn.Module): """Defines the Environment module as an ANN""" def __init__(self, state_size: 'int', action_size: 'int', fc1: 'int'=24, fc2: 'int'=24): super(EnvironmentNew, self).__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(action_size, fc1) self.fc2 = nn.Linear(fc1, fc2) self.fc3 = nn.Linear(fc2, state_size) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
QasimWani/EARL
Environment
false
953
[ "MIT" ]
0
05c303335e67903380771c4954a5317bd46fc0e7
https://github.com/QasimWani/EARL/tree/05c303335e67903380771c4954a5317bd46fc0e7
import torch import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): """Defines the Environment module as an ANN""" def __init__(self, state_size: 'int', action_size: 'int', fc1: 'int'=24, fc2: 'int'=24): super().__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(action_size, fc1) self.fc2 = nn.Linear(fc1, fc2) self.fc3 = nn.Linear(fc2, state_size) def forward(self, action): """Environment unit forward pass. Input action, a_t. Output, s_t+1.""" x = self.fc1(action) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
attention2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] # Source node to ATen node mapping: # x => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wu/cwuhjqrxupg6y2xkpm7lucxrqveop2y2vttpjm35nj72mklqdbod.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_2 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cf/ccf6eqh4cdg7oqni4fhofy7qpwwcxmm2ax3u7y2hcrla7ibifzai.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 4), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qs/cqsyda2m63ct5ijcfgcipyyfn273chi5d3kmpjuf5asa7h4wdpdv.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, 16, 1, 1), (16, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 1, 1), (16, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf4, buf5, 16, grid=grid(16), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf5, buf6, 16, grid=grid(16), stream=stream0) del buf5 return (buf6, primals_2, primals_3, buf1, buf3, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class attention2d(nn.Module): def __init__(self, in_planes, ratios, K, temperature, init_weight=True): super(attention2d, self).__init__() assert temperature % 3 == 1 self.avgpool = nn.AdaptiveAvgPool2d(1) if in_planes != 3: hidden_planes = int(in_planes * ratios) else: hidden_planes = K self.fc1 = nn.Conv2d(in_planes, hidden_planes, 1, bias=False) self.fc2 = nn.Conv2d(hidden_planes, K, 1, bias=False) self.temperature = temperature if init_weight: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') if m.bias is not None: nn.init.constant_(m.bias, 0) if isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def updata_temperature(self): if self.temperature != 1: self.temperature -= 1 def forward(self, x): x = self.avgpool(x) x = self.fc1(x) x = F.relu(x) x = self.fc2(x).view(x.size(0), -1) return F.softmax(x / self.temperature, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_planes': 4, 'ratios': 4, 'K': 4, 'temperature': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, 16, 1, 1), (16, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_1 buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 1, 1), (16, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(64)](buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_2[grid(16)](buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0) del buf4 triton_poi_fused__softmax_3[grid(16)](buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf5 return buf6, primals_2, primals_3, buf1, buf3, buf6 class attention2dNew(nn.Module): def __init__(self, in_planes, ratios, K, temperature, init_weight=True): super(attention2dNew, self).__init__() assert temperature % 3 == 1 self.avgpool = nn.AdaptiveAvgPool2d(1) if in_planes != 3: hidden_planes = int(in_planes * ratios) else: hidden_planes = K self.fc1 = nn.Conv2d(in_planes, hidden_planes, 1, bias=False) self.fc2 = nn.Conv2d(hidden_planes, K, 1, bias=False) self.temperature = temperature if init_weight: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') if m.bias is not None: nn.init.constant_(m.bias, 0) if isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def updata_temperature(self): if self.temperature != 1: self.temperature -= 1 def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc2.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
PengJingchao/DFNet
attention2d
false
954
[ "MIT" ]
0
49e83501f81515aebca211351e315896da7afc54
https://github.com/PengJingchao/DFNet/tree/49e83501f81515aebca211351e315896da7afc54
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_planes, ratios, K, temperature, init_weight=True): super().__init__() assert temperature % 3 == 1 self.avgpool = nn.AdaptiveAvgPool2d(1) if in_planes != 3: hidden_planes = int(in_planes * ratios) else: hidden_planes = K self.fc1 = nn.Conv2d(in_planes, hidden_planes, 1, bias=False) self.fc2 = nn.Conv2d(hidden_planes, K, 1, bias=False) self.temperature = temperature if init_weight: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') if m.bias is not None: nn.init.constant_(m.bias, 0) if isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def updata_temperature(self): if self.temperature != 1: self.temperature -= 1 def forward(self, x): x = self.avgpool(x) x = self.fc1(x) x = F.relu(x) x = self.fc2(x).view(x.size(0), -1) return F.softmax(x / self.temperature, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 4]
ShearY
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/64/c64wcolc5y2n37sxtnpnhr2dzw4gq7giy4xyi4ub5z3kplhqckpr.py # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] # Source node to ATen node mapping: # fill_ => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %select_scatter_default_2 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %full_default, 3, 2), kwargs = {}) triton_poi_fused_fill_0 = async_compile.triton('triton_poi_fused_fill_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = (xindex // 12) x1 = (xindex // 3) % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + ((-1)*x2) tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + ((-1)*x1) tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float("nan") tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + (x4), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/rd/crdafhjrsyfl64e6v5l4z7fblhdi2w6wskuhi24d4cbgme3tccoz.py # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] # Source node to ATen node mapping: # rescaled_theta => div # tensor_1 => lift_fresh_copy_1 # Graph fragment: # %lift_fresh_copy_1 : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%_tensor_constant1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute, %lift_fresh_copy_1), kwargs = {}) triton_poi_fused_div_lift_fresh_1 = async_compile.triton('triton_poi_fused_div_lift_fresh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_lift_fresh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = x1 + (3*x0) tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp7) tmp9 = 1.0 tmp10 = tl.where(tmp4, tmp9, tmp8) tmp11 = tl.full([1], 4, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.full([1], 5, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.where(tmp14, tmp9, tmp7) tmp16 = -0.737263560295105 tmp17 = tl.where(tmp12, tmp16, tmp15) tmp18 = tl.where(tmp2, tmp10, tmp17) tmp19 = x0 tmp20 = tmp19 < tmp3 tmp21 = 2.0 tmp22 = tl.where(tmp20, tmp21, tmp21) tmp23 = tmp18 / tmp22 tl.store(out_ptr0 + (x2), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zf/czfnj57ejqlqojplqt6piz7sosofcvzqdxhskwatgn32njr7acz7.py # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] # Source node to ATen node mapping: # img => add_2, add_3, full_default_3, full_default_4, ge, ge_1, index, logical_and, logical_and_1, logical_and_2, lt_2, lt_3, mul_4, mul_5, mul_6, round_1, round_2, where_4 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_8, 2.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 1.5), kwargs = {}) # %round_1 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_2,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_1, 0), kwargs = {}) # %lt_2 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_1, 4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_9, 2.0), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 1.5), kwargs = {}) # %round_2 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_3,), kwargs = {}) # %ge_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_2, 0), kwargs = {}) # %lt_3 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_2, 4), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_1, %lt_3), kwargs = {}) # %logical_and_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%lt_2, %logical_and), kwargs = {}) # %logical_and_2 : [num_users=3] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %logical_and_1), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%view_5, %view_6, %where_3, %where_2]), kwargs = {}) # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_2, %full_default_4, %full_default_3), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %where_4), kwargs = {}) triton_poi_fused_grid_sampler_2d_2 = async_compile.triton('triton_poi_fused_grid_sampler_2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_grid_sampler_2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert(((0 <= tmp25) & (tmp25 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp25 < 4") tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert(((0 <= tmp31) & (tmp31 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp31 < 4") tmp33 = tl.load(in_ptr1 + (tmp31 + (4*tmp25) + (16*x3)), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + (x4), tmp37, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] stream0 = get_raw_stream(0) triton_poi_fused_fill_0.run(buf2, 48, grid=grid(48), stream=stream0) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] triton_poi_fused_div_lift_fresh_1.run(buf3, 6, grid=grid(6), stream=stream0) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta, output_grid], Original ATen: [aten.lift_fresh, aten.div, aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] triton_poi_fused_grid_sampler_2d_2.run(buf4, arg0_1, buf5, 256, grid=grid(256), stream=stream0) del arg0_1 del buf4 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torchvision import transforms as ttf class ShearY(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M - 180 def forward(self, img): return ttf.functional.affine(img, 0, [0, 0], 1, [0, self.angle]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'M': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = xindex // 12 x1 = xindex // 3 % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + -1 * x2 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + -1 * x1 tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float('nan') tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + x4, tmp34, xmask) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = x1 + 3 * x0 tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp7) tmp9 = 1.0 tmp10 = tl.where(tmp4, tmp9, tmp8) tmp11 = tl.full([1], 4, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.full([1], 5, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.where(tmp14, tmp9, tmp7) tmp16 = -0.737263560295105 tmp17 = tl.where(tmp12, tmp16, tmp15) tmp18 = tl.where(tmp2, tmp10, tmp17) tmp19 = x0 tmp20 = tmp19 < tmp3 tmp21 = 2.0 tmp22 = tl.where(tmp20, tmp21, tmp21) tmp23 = tmp18 / tmp22 tl.store(out_ptr0 + x2, tmp23, xmask) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert((0 <= tmp25) & (tmp25 < 4) | ~xmask, 'index out of bounds: 0 <= tmp25 < 4') tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert((0 <= tmp31) & (tmp31 < 4) | ~xmask, 'index out of bounds: 0 <= tmp31 < 4') tmp33 = tl.load(in_ptr1 + (tmp31 + 4 * tmp25 + 16 * x3), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + x4, tmp37, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_fill_0[grid(48)](buf2, 48, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) triton_poi_fused_div_lift_fresh_1[grid(6)](buf3, 6, XBLOCK=8, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_grid_sampler_2d_2[grid(256)](buf4, arg0_1, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del buf4 return buf5, class ShearYNew(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M - 180 def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Hayoung93/UDA
ShearY
false
955
[ "Apache-2.0" ]
0
a587b01c76141d64e7cead55b62e0f3ed75890bf
https://github.com/Hayoung93/UDA/tree/a587b01c76141d64e7cead55b62e0f3ed75890bf
import torch import torch.nn as nn from torchvision import transforms as ttf class Model(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M - 180 def forward(self, img): return ttf.functional.affine(img, 0, [0, 0], 1, [0, self.angle]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
fully_conv_layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zo/czobpmlyr5atbcpsuque6vcmk7nafmb3smtbzoqilz46drm7zbkm.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class fully_conv_layer(nn.Module): def __init__(self, c): super(fully_conv_layer, self).__init__() self.conv = nn.Conv2d(c, 1, 1) def forward(self, x): return self.conv(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'c': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf1, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 return buf1, primals_1, primals_3 class fully_conv_layerNew(nn.Module): def __init__(self, c): super(fully_conv_layerNew, self).__init__() self.conv = nn.Conv2d(c, 1, 1) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
QiweiMa-LL/STAGCN
fully_conv_layer
false
956
[ "MIT" ]
0
c6889c845ac7fcba4419b2727022a599981f2a54
https://github.com/QiweiMa-LL/STAGCN/tree/c6889c845ac7fcba4419b2727022a599981f2a54
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, c): super().__init__() self.conv = nn.Conv2d(c, 1, 1) def forward(self, x): return self.conv(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
HSwish
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/jj/cjjcpa4jfom3kmx4ufnxtda3bmq466cpemkegyhzep2ymmlsg35l.py # Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # mul => mul # relu6 => clamp_max, clamp_min # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %clamp_max), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6.0), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.functional import torch.optim import torch.nn.parallel import torch.utils.data.distributed class HSwish(nn.Module): """ Applies the Hard-Swish function element-wise. `"Searching for MobileNetV3" <https://arxiv.org/pdf/1905.02244.pdf>`_ Examples: >>> m = Mish() >>> x = torch.randn(2) >>> output = m(x) """ @staticmethod def forward(x: 'torch.Tensor') ->torch.Tensor: return x * F.relu6(x + 3, inplace=True) / 6.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch import torch.nn as nn import torch.nn.functional import torch.optim import torch.nn.parallel import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class HSwishNew(nn.Module): """ Applies the Hard-Swish function element-wise. `"Searching for MobileNetV3" <https://arxiv.org/pdf/1905.02244.pdf>`_ Examples: >>> m = Mish() >>> x = torch.randn(2) >>> output = m(x) """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
PhelaPoscam/SRGAN-PyTorch
HSwish
false
957
[ "Apache-2.0" ]
0
c1c68707dbddd1130b2ea71023df748080bcbd52
https://github.com/PhelaPoscam/SRGAN-PyTorch/tree/c1c68707dbddd1130b2ea71023df748080bcbd52
import torch import torch.utils.data import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.functional import torch.optim import torch.nn.parallel import torch.utils.data.distributed class Model(nn.Module): """ Applies the Hard-Swish function element-wise. `"Searching for MobileNetV3" <https://arxiv.org/pdf/1905.02244.pdf>`_ Examples: >>> m = Mish() >>> x = torch.randn(2) >>> output = m(x) """ @staticmethod def forward(x: 'torch.Tensor') ->torch.Tensor: return x * F.relu6(x + 3, inplace=True) / 6.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
TranslateX
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/64/c64wcolc5y2n37sxtnpnhr2dzw4gq7giy4xyi4ub5z3kplhqckpr.py # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] # Source node to ATen node mapping: # fill_ => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %select_scatter_default_2 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %full_default, 3, 2), kwargs = {}) triton_poi_fused_fill_0 = async_compile.triton('triton_poi_fused_fill_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = (xindex // 12) x1 = (xindex // 3) % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + ((-1)*x2) tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + ((-1)*x1) tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float("nan") tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + (x4), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ks/cksu4qufrzd37pfs4xbfk5etqfdciowiraecduqaxu3kwb4zlzgg.py # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] # Source node to ATen node mapping: # rescaled_theta => div # tensor_1 => lift_fresh_copy_1 # Graph fragment: # %lift_fresh_copy_1 : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%_tensor_constant1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute, %lift_fresh_copy_1), kwargs = {}) triton_poi_fused_div_lift_fresh_1 = async_compile.triton('triton_poi_fused_div_lift_fresh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_lift_fresh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = x1 + (3*x0) tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = 0.0 tmp8 = -1.2000000476837158 tmp9 = tl.where(tmp6, tmp7, tmp8) tmp10 = 1.0 tmp11 = tl.where(tmp4, tmp10, tmp9) tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.full([1], 5, tl.int64) tmp15 = tmp0 < tmp14 tmp16 = tl.where(tmp15, tmp10, tmp7) tmp17 = -0.0 tmp18 = tl.where(tmp13, tmp17, tmp16) tmp19 = tl.where(tmp2, tmp11, tmp18) tmp20 = x0 tmp21 = tmp20 < tmp3 tmp22 = 2.0 tmp23 = tl.where(tmp21, tmp22, tmp22) tmp24 = tmp19 / tmp23 tl.store(out_ptr0 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zf/czfnj57ejqlqojplqt6piz7sosofcvzqdxhskwatgn32njr7acz7.py # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] # Source node to ATen node mapping: # img => add_2, add_3, full_default_3, full_default_4, ge, ge_1, index, logical_and, logical_and_1, logical_and_2, lt_2, lt_3, mul_4, mul_5, mul_6, round_1, round_2, where_4 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_8, 2.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 1.5), kwargs = {}) # %round_1 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_2,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_1, 0), kwargs = {}) # %lt_2 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_1, 4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_9, 2.0), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 1.5), kwargs = {}) # %round_2 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_3,), kwargs = {}) # %ge_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_2, 0), kwargs = {}) # %lt_3 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_2, 4), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_1, %lt_3), kwargs = {}) # %logical_and_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%lt_2, %logical_and), kwargs = {}) # %logical_and_2 : [num_users=3] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %logical_and_1), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%view_5, %view_6, %where_3, %where_2]), kwargs = {}) # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_2, %full_default_4, %full_default_3), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %where_4), kwargs = {}) triton_poi_fused_grid_sampler_2d_2 = async_compile.triton('triton_poi_fused_grid_sampler_2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_grid_sampler_2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert(((0 <= tmp25) & (tmp25 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp25 < 4") tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert(((0 <= tmp31) & (tmp31 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp31 < 4") tmp33 = tl.load(in_ptr1 + (tmp31 + (4*tmp25) + (16*x3)), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + (x4), tmp37, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] stream0 = get_raw_stream(0) triton_poi_fused_fill_0.run(buf2, 48, grid=grid(48), stream=stream0) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] triton_poi_fused_div_lift_fresh_1.run(buf3, 6, grid=grid(6), stream=stream0) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta, output_grid], Original ATen: [aten.lift_fresh, aten.div, aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] triton_poi_fused_grid_sampler_2d_2.run(buf4, arg0_1, buf5, 256, grid=grid(256), stream=stream0) del arg0_1 del buf4 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torchvision import transforms as ttf class TranslateX(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): try: max_size = img.size()[0] except TypeError: max_size = img.size()[0] return ttf.functional.affine(img, 0, [(max_size - 1) / 10 * self.M, 0], 1, [0, 0]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'M': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = xindex // 12 x1 = xindex // 3 % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + -1 * x2 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + -1 * x1 tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float('nan') tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + x4, tmp34, xmask) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = x1 + 3 * x0 tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = 0.0 tmp8 = -1.2000000476837158 tmp9 = tl.where(tmp6, tmp7, tmp8) tmp10 = 1.0 tmp11 = tl.where(tmp4, tmp10, tmp9) tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.full([1], 5, tl.int64) tmp15 = tmp0 < tmp14 tmp16 = tl.where(tmp15, tmp10, tmp7) tmp17 = -0.0 tmp18 = tl.where(tmp13, tmp17, tmp16) tmp19 = tl.where(tmp2, tmp11, tmp18) tmp20 = x0 tmp21 = tmp20 < tmp3 tmp22 = 2.0 tmp23 = tl.where(tmp21, tmp22, tmp22) tmp24 = tmp19 / tmp23 tl.store(out_ptr0 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert((0 <= tmp25) & (tmp25 < 4) | ~xmask, 'index out of bounds: 0 <= tmp25 < 4') tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert((0 <= tmp31) & (tmp31 < 4) | ~xmask, 'index out of bounds: 0 <= tmp31 < 4') tmp33 = tl.load(in_ptr1 + (tmp31 + 4 * tmp25 + 16 * x3), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + x4, tmp37, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_fill_0[grid(48)](buf2, 48, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) triton_poi_fused_div_lift_fresh_1[grid(6)](buf3, 6, XBLOCK=8, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_grid_sampler_2d_2[grid(256)](buf4, arg0_1, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del buf4 return buf5, class TranslateXNew(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Hayoung93/UDA
TranslateX
false
958
[ "Apache-2.0" ]
0
a587b01c76141d64e7cead55b62e0f3ed75890bf
https://github.com/Hayoung93/UDA/tree/a587b01c76141d64e7cead55b62e0f3ed75890bf
import torch import torch.nn as nn from torchvision import transforms as ttf class Model(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): try: max_size = img.size()[0] except TypeError: max_size = img.size()[0] return ttf.functional.affine(img, 0, [(max_size - 1) / 10 * self.M, 0], 1, [0, 0]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Rotate
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/64/c64wcolc5y2n37sxtnpnhr2dzw4gq7giy4xyi4ub5z3kplhqckpr.py # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] # Source node to ATen node mapping: # fill_ => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %select_scatter_default_2 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %full_default, 3, 2), kwargs = {}) triton_poi_fused_fill_0 = async_compile.triton('triton_poi_fused_fill_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = (xindex // 12) x1 = (xindex // 3) % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + ((-1)*x2) tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + ((-1)*x1) tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float("nan") tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + (x4), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vl/cvlk4i6bpsuyhoe5owdgq5irolr3p5hp23dqwsg3bzba5cjk5ie5.py # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] # Source node to ATen node mapping: # rescaled_theta => div # tensor_1 => lift_fresh_copy_1 # Graph fragment: # %lift_fresh_copy_1 : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%_tensor_constant1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute, %lift_fresh_copy_1), kwargs = {}) triton_poi_fused_div_lift_fresh_1 = async_compile.triton('triton_poi_fused_div_lift_fresh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_lift_fresh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = x1 + (3*x0) tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = -0.5934188961982727 tmp8 = 0.0 tmp9 = tl.where(tmp6, tmp7, tmp8) tmp10 = -0.8048937916755676 tmp11 = tl.where(tmp4, tmp10, tmp9) tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.full([1], 5, tl.int64) tmp15 = tmp0 < tmp14 tmp16 = tl.where(tmp15, tmp10, tmp8) tmp17 = 0.5934188961982727 tmp18 = tl.where(tmp13, tmp17, tmp16) tmp19 = tl.where(tmp2, tmp11, tmp18) tmp20 = x0 tmp21 = tmp20 < tmp3 tmp22 = 2.0 tmp23 = tl.where(tmp21, tmp22, tmp22) tmp24 = tmp19 / tmp23 tl.store(out_ptr0 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zf/czfnj57ejqlqojplqt6piz7sosofcvzqdxhskwatgn32njr7acz7.py # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] # Source node to ATen node mapping: # img => add_2, add_3, full_default_3, full_default_4, ge, ge_1, index, logical_and, logical_and_1, logical_and_2, lt_2, lt_3, mul_4, mul_5, mul_6, round_1, round_2, where_4 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_8, 2.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 1.5), kwargs = {}) # %round_1 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_2,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_1, 0), kwargs = {}) # %lt_2 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_1, 4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_9, 2.0), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 1.5), kwargs = {}) # %round_2 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_3,), kwargs = {}) # %ge_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_2, 0), kwargs = {}) # %lt_3 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_2, 4), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_1, %lt_3), kwargs = {}) # %logical_and_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%lt_2, %logical_and), kwargs = {}) # %logical_and_2 : [num_users=3] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %logical_and_1), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%view_5, %view_6, %where_3, %where_2]), kwargs = {}) # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_2, %full_default_4, %full_default_3), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %where_4), kwargs = {}) triton_poi_fused_grid_sampler_2d_2 = async_compile.triton('triton_poi_fused_grid_sampler_2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_grid_sampler_2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert(((0 <= tmp25) & (tmp25 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp25 < 4") tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert(((0 <= tmp31) & (tmp31 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp31 < 4") tmp33 = tl.load(in_ptr1 + (tmp31 + (4*tmp25) + (16*x3)), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + (x4), tmp37, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] stream0 = get_raw_stream(0) triton_poi_fused_fill_0.run(buf2, 48, grid=grid(48), stream=stream0) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] triton_poi_fused_div_lift_fresh_1.run(buf3, 6, grid=grid(6), stream=stream0) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta, output_grid], Original ATen: [aten.lift_fresh, aten.div, aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] triton_poi_fused_grid_sampler_2d_2.run(buf4, arg0_1, buf5, 256, grid=grid(256), stream=stream0) del arg0_1 del buf4 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torchvision import transforms as ttf class Rotate(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M def forward(self, img): return ttf.functional.rotate(img, self.angle) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'M': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = xindex // 12 x1 = xindex // 3 % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + -1 * x2 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + -1 * x1 tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float('nan') tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + x4, tmp34, xmask) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = x1 + 3 * x0 tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = -0.5934188961982727 tmp8 = 0.0 tmp9 = tl.where(tmp6, tmp7, tmp8) tmp10 = -0.8048937916755676 tmp11 = tl.where(tmp4, tmp10, tmp9) tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.full([1], 5, tl.int64) tmp15 = tmp0 < tmp14 tmp16 = tl.where(tmp15, tmp10, tmp8) tmp17 = 0.5934188961982727 tmp18 = tl.where(tmp13, tmp17, tmp16) tmp19 = tl.where(tmp2, tmp11, tmp18) tmp20 = x0 tmp21 = tmp20 < tmp3 tmp22 = 2.0 tmp23 = tl.where(tmp21, tmp22, tmp22) tmp24 = tmp19 / tmp23 tl.store(out_ptr0 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert((0 <= tmp25) & (tmp25 < 4) | ~xmask, 'index out of bounds: 0 <= tmp25 < 4') tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert((0 <= tmp31) & (tmp31 < 4) | ~xmask, 'index out of bounds: 0 <= tmp31 < 4') tmp33 = tl.load(in_ptr1 + (tmp31 + 4 * tmp25 + 16 * x3), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + x4, tmp37, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_fill_0[grid(48)](buf2, 48, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) triton_poi_fused_div_lift_fresh_1[grid(6)](buf3, 6, XBLOCK=8, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_grid_sampler_2d_2[grid(256)](buf4, arg0_1, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del buf4 return buf5, class RotateNew(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Hayoung93/UDA
Rotate
false
959
[ "Apache-2.0" ]
0
a587b01c76141d64e7cead55b62e0f3ed75890bf
https://github.com/Hayoung93/UDA/tree/a587b01c76141d64e7cead55b62e0f3ed75890bf
import torch import torch.nn as nn from torchvision import transforms as ttf class Model(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M def forward(self, img): return ttf.functional.rotate(img, self.angle) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
hswish
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/jj/cjjcpa4jfom3kmx4ufnxtda3bmq466cpemkegyhzep2ymmlsg35l.py # Topologically Sorted Source Nodes: [add, relu6, mul, out], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # mul => mul # out => div # relu6 => clamp_max, clamp_min # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %clamp_max), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, relu6, mul, out], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class hswish(nn.Module): def forward(self, x): out = x * F.relu6(x + 3, inplace=True) / 6 return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class hswishNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Qidian213/NAIC2019
hswish
false
960
[ "MIT" ]
0
23e05a8a096168ccfa4d1743467fdf78ffcaabba
https://github.com/Qidian213/NAIC2019/tree/23e05a8a096168ccfa4d1743467fdf78ffcaabba
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def forward(self, x): out = x * F.relu6(x + 3, inplace=True) / 6 return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
TranslateY
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/64/c64wcolc5y2n37sxtnpnhr2dzw4gq7giy4xyi4ub5z3kplhqckpr.py # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] # Source node to ATen node mapping: # fill_ => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %select_scatter_default_2 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %full_default, 3, 2), kwargs = {}) triton_poi_fused_fill_0 = async_compile.triton('triton_poi_fused_fill_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = (xindex // 12) x1 = (xindex // 3) % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + ((-1)*x2) tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + ((-1)*x1) tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float("nan") tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + (x4), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vi/cviolvz62f25a3spnojjqdhykrfiogx53mbgi3scul2c6ivq7wxd.py # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] # Source node to ATen node mapping: # rescaled_theta => div # tensor_1 => lift_fresh_copy_1 # Graph fragment: # %lift_fresh_copy_1 : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%_tensor_constant1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute, %lift_fresh_copy_1), kwargs = {}) triton_poi_fused_div_lift_fresh_1 = async_compile.triton('triton_poi_fused_div_lift_fresh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_lift_fresh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = x1 + (3*x0) tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp7) tmp9 = 1.0 tmp10 = tl.where(tmp4, tmp9, tmp8) tmp11 = tl.full([1], 4, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.full([1], 5, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = -1.2000000476837158 tmp16 = tl.where(tmp14, tmp9, tmp15) tmp17 = -0.0 tmp18 = tl.where(tmp12, tmp17, tmp16) tmp19 = tl.where(tmp2, tmp10, tmp18) tmp20 = x0 tmp21 = tmp20 < tmp3 tmp22 = 2.0 tmp23 = tl.where(tmp21, tmp22, tmp22) tmp24 = tmp19 / tmp23 tl.store(out_ptr0 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zf/czfnj57ejqlqojplqt6piz7sosofcvzqdxhskwatgn32njr7acz7.py # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] # Source node to ATen node mapping: # img => add_2, add_3, full_default_3, full_default_4, ge, ge_1, index, logical_and, logical_and_1, logical_and_2, lt_2, lt_3, mul_4, mul_5, mul_6, round_1, round_2, where_4 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_8, 2.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 1.5), kwargs = {}) # %round_1 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_2,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_1, 0), kwargs = {}) # %lt_2 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_1, 4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_9, 2.0), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 1.5), kwargs = {}) # %round_2 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_3,), kwargs = {}) # %ge_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_2, 0), kwargs = {}) # %lt_3 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_2, 4), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_1, %lt_3), kwargs = {}) # %logical_and_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%lt_2, %logical_and), kwargs = {}) # %logical_and_2 : [num_users=3] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %logical_and_1), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%view_5, %view_6, %where_3, %where_2]), kwargs = {}) # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_2, %full_default_4, %full_default_3), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %where_4), kwargs = {}) triton_poi_fused_grid_sampler_2d_2 = async_compile.triton('triton_poi_fused_grid_sampler_2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_grid_sampler_2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert(((0 <= tmp25) & (tmp25 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp25 < 4") tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert(((0 <= tmp31) & (tmp31 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp31 < 4") tmp33 = tl.load(in_ptr1 + (tmp31 + (4*tmp25) + (16*x3)), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + (x4), tmp37, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] stream0 = get_raw_stream(0) triton_poi_fused_fill_0.run(buf2, 48, grid=grid(48), stream=stream0) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] triton_poi_fused_div_lift_fresh_1.run(buf3, 6, grid=grid(6), stream=stream0) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta, output_grid], Original ATen: [aten.lift_fresh, aten.div, aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] triton_poi_fused_grid_sampler_2d_2.run(buf4, arg0_1, buf5, 256, grid=grid(256), stream=stream0) del arg0_1 del buf4 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torchvision import transforms as ttf class TranslateY(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): try: max_size = img.size()[1] except TypeError: max_size = img.size()[1] return ttf.functional.affine(img, 0, [0, (max_size - 1) / 10 * self .M], 1, [0, 0]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'M': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = xindex // 12 x1 = xindex // 3 % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + -1 * x2 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + -1 * x1 tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float('nan') tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + x4, tmp34, xmask) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = x1 + 3 * x0 tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp7) tmp9 = 1.0 tmp10 = tl.where(tmp4, tmp9, tmp8) tmp11 = tl.full([1], 4, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.full([1], 5, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = -1.2000000476837158 tmp16 = tl.where(tmp14, tmp9, tmp15) tmp17 = -0.0 tmp18 = tl.where(tmp12, tmp17, tmp16) tmp19 = tl.where(tmp2, tmp10, tmp18) tmp20 = x0 tmp21 = tmp20 < tmp3 tmp22 = 2.0 tmp23 = tl.where(tmp21, tmp22, tmp22) tmp24 = tmp19 / tmp23 tl.store(out_ptr0 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert((0 <= tmp25) & (tmp25 < 4) | ~xmask, 'index out of bounds: 0 <= tmp25 < 4') tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert((0 <= tmp31) & (tmp31 < 4) | ~xmask, 'index out of bounds: 0 <= tmp31 < 4') tmp33 = tl.load(in_ptr1 + (tmp31 + 4 * tmp25 + 16 * x3), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + x4, tmp37, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_fill_0[grid(48)](buf2, 48, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) triton_poi_fused_div_lift_fresh_1[grid(6)](buf3, 6, XBLOCK=8, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_grid_sampler_2d_2[grid(256)](buf4, arg0_1, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del buf4 return buf5, class TranslateYNew(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Hayoung93/UDA
TranslateY
false
961
[ "Apache-2.0" ]
0
a587b01c76141d64e7cead55b62e0f3ed75890bf
https://github.com/Hayoung93/UDA/tree/a587b01c76141d64e7cead55b62e0f3ed75890bf
import torch import torch.nn as nn from torchvision import transforms as ttf class Model(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): try: max_size = img.size()[1] except TypeError: max_size = img.size()[1] return ttf.functional.affine(img, 0, [0, (max_size - 1) / 10 * self .M], 1, [0, 0]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ListMLELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/2k/c2kcraw2l6i5usoqj5lv2qye7u4cg26yoptt475f7j54itqpogy5.py # Topologically Sorted Source Nodes: [y_true_shuffled, sort], Original ATen: [aten.index, aten.sort] # Source node to ATen node mapping: # sort => sort # y_true_shuffled => index_1 # Graph fragment: # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [None, %randperm]), kwargs = {}) # %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%index_1, -1, True), kwargs = {}) triton_per_fused_index_sort_0 = async_compile.triton('triton_per_fused_index_sort_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*i16', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_sort_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_index_sort_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x1 = (xindex // 4) % 4 r3 = rindex x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (r3 + (4*x0) + (16*tmp4) + (64*x2)), xmask, other=0.0) tmp7 = r3 tmp8 = tmp7.to(tl.int16) tmp9 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp10 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11, tmp12, = triton_helpers.sort_with_index(tmp9, tmp10, None, 1, stable=False, descending=True) tl.store(out_ptr0 + (r3 + (4*x4)), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/km/ckmab3w6k6isdk4mh5vg7dy675iyetyejlqa5yss7klua3lx5sjc.py # Topologically Sorted Source Nodes: [y_true_shuffled, sort, y_pred_shuffled, preds_sorted_by_true, max_1, preds_sorted_by_true_minus_max, exp, flip, cumsum], Original ATen: [aten.index, aten.sort, aten.gather, aten.max, aten.sub, aten.exp, aten.flip, aten.cumsum] # Source node to ATen node mapping: # cumsum => cumsum # exp => exp # flip => rev # max_1 => max_1 # preds_sorted_by_true => gather # preds_sorted_by_true_minus_max => sub # sort => sort # y_pred_shuffled => index # y_true_shuffled => index_1 # Graph fragment: # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [None, %randperm]), kwargs = {}) # %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%index_1, -1, True), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [None, %randperm]), kwargs = {}) # %gather : [num_users=2] = call_function[target=torch.ops.aten.gather.default](args = (%index, 1, %getitem_1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%gather, 1, True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%gather, %getitem_2), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %rev : [num_users=1] = call_function[target=torch.ops.prims.rev.default](args = (%exp, [1]), kwargs = {}) # %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%rev, 1), kwargs = {}) triton_per_fused_cumsum_exp_flip_gather_index_max_sort_sub_1 = async_compile.triton('triton_per_fused_cumsum_exp_flip_gather_index_max_sort_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton.jit def _triton_helper_fn_add0(arg0_0, arg1_0): tmp0 = arg0_0 + arg1_0 return tmp0 @triton_heuristics.persistent_reduction( size_hints=[64, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*i16', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cumsum_exp_flip_gather_index_max_sort_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cumsum_exp_flip_gather_index_max_sort_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x3 = xindex r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp52 = tl.load(in_ptr0 + (48 + x0 + ((-16)*r2) + (64*x1)), xmask, other=0.0) tmp1 = tmp0.to(tl.int64) tmp2 = tl.full([XBLOCK, 1], 4, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert(((0 <= tmp5) & (tmp5 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp5 < 4") tmp7 = tl.load(in_ptr1 + (tmp5), xmask, eviction_policy='evict_last') tmp8 = tmp7 + tmp2 tmp9 = tmp7 < 0 tmp10 = tl.where(tmp9, tmp8, tmp7) tl.device_assert(((0 <= tmp10) & (tmp10 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp10 < 4") tmp12 = tl.load(in_ptr2 + (x0 + (16*tmp10) + (64*x1)), xmask) tmp14 = tmp13.to(tl.int64) tmp15 = tmp14 + tmp2 tmp16 = tmp14 < 0 tmp17 = tl.where(tmp16, tmp15, tmp14) tl.device_assert(((0 <= tmp17) & (tmp17 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp17 < 4") tmp19 = tl.load(in_ptr1 + (tmp17), xmask, eviction_policy='evict_last') tmp20 = tmp19 + tmp2 tmp21 = tmp19 < 0 tmp22 = tl.where(tmp21, tmp20, tmp19) tl.device_assert(((0 <= tmp22) & (tmp22 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp22 < 4") tmp24 = tl.load(in_ptr2 + (x0 + (16*tmp22) + (64*x1)), xmask) tmp25 = triton_helpers.maximum(tmp12, tmp24) tmp27 = tmp26.to(tl.int64) tmp28 = tmp27 + tmp2 tmp29 = tmp27 < 0 tmp30 = tl.where(tmp29, tmp28, tmp27) tl.device_assert(((0 <= tmp30) & (tmp30 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp30 < 4") tmp32 = tl.load(in_ptr1 + (tmp30), xmask, eviction_policy='evict_last') tmp33 = tmp32 + tmp2 tmp34 = tmp32 < 0 tmp35 = tl.where(tmp34, tmp33, tmp32) tl.device_assert(((0 <= tmp35) & (tmp35 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp35 < 4") tmp37 = tl.load(in_ptr2 + (x0 + (16*tmp35) + (64*x1)), xmask) tmp38 = triton_helpers.maximum(tmp25, tmp37) tmp40 = tmp39.to(tl.int64) tmp41 = tmp40 + tmp2 tmp42 = tmp40 < 0 tmp43 = tl.where(tmp42, tmp41, tmp40) tl.device_assert(((0 <= tmp43) & (tmp43 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp43 < 4") tmp45 = tl.load(in_ptr1 + (tmp43), xmask, eviction_policy='evict_last') tmp46 = tmp45 + tmp2 tmp47 = tmp45 < 0 tmp48 = tl.where(tmp47, tmp46, tmp45) tl.device_assert(((0 <= tmp48) & (tmp48 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp48 < 4") tmp50 = tl.load(in_ptr2 + (x0 + (16*tmp48) + (64*x1)), xmask) tmp51 = triton_helpers.maximum(tmp38, tmp50) tmp53 = tmp52.to(tl.int64) tmp54 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp55 = tmp53 + tmp54 tmp56 = tmp53 < 0 tmp57 = tl.where(tmp56, tmp55, tmp53) tl.device_assert(((0 <= tmp57) & (tmp57 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp57 < 4") tmp59 = tl.load(in_ptr1 + (tmp57), xmask, eviction_policy='evict_last') tmp60 = tmp59 + tmp54 tmp61 = tmp59 < 0 tmp62 = tl.where(tmp61, tmp60, tmp59) tl.device_assert(((0 <= tmp62) & (tmp62 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp62 < 4") tmp64 = tl.load(in_ptr2 + (x0 + (16*tmp62) + (64*x1)), xmask) tmp65 = tmp64 - tmp51 tmp66 = tl_math.exp(tmp65) tmp67 = tmp66.to(tl.float32) tmp68 = tl.broadcast_to(tmp67, [XBLOCK, RBLOCK]) tmp69, = tl.associative_scan((tmp68,), 1, _triton_helper_fn_add0) tl.store(out_ptr0 + (x3), tmp51, xmask) tl.store(out_ptr1 + (x0 + (16*r2) + (64*x1)), tmp69, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/pt/cptdzn34dy5g2gawu6q2nc7xqndn4wjrzh4mxmffekrctqd4zngu.py # Topologically Sorted Source Nodes: [y_true_shuffled, sort, y_pred_shuffled, preds_sorted_by_true, preds_sorted_by_true_minus_max, cumsums, add, log, observation_loss, sum_1, mean], Original ATen: [aten.index, aten.sort, aten.gather, aten.sub, aten.flip, aten.add, aten.log, aten.sum, aten.mean] # Source node to ATen node mapping: # add => add # cumsums => rev_1 # log => log # mean => mean # observation_loss => sub_1 # preds_sorted_by_true => gather # preds_sorted_by_true_minus_max => sub # sort => sort # sum_1 => sum_1 # y_pred_shuffled => index # y_true_shuffled => index_1 # Graph fragment: # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [None, %randperm]), kwargs = {}) # %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%index_1, -1, True), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [None, %randperm]), kwargs = {}) # %gather : [num_users=2] = call_function[target=torch.ops.aten.gather.default](args = (%index, 1, %getitem_1), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%gather, %getitem_2), kwargs = {}) # %rev_1 : [num_users=1] = call_function[target=torch.ops.prims.rev.default](args = (%cumsum, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%rev_1, 1e-05), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%log, %sub), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_1, [1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {}) triton_per_fused_add_flip_gather_index_log_mean_sort_sub_sum_2 = async_compile.triton('triton_per_fused_add_flip_gather_index_log_mean_sort_sub_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i16', 4: '*i64', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {6: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=(6,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_flip_gather_index_log_mean_sort_sub_sum_2', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_flip_gather_index_log_mean_sort_sub_sum_2(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) r2 = rindex tmp0 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp4 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp17 = tl.load(in_out_ptr0 + (r2), None) tmp20 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp23 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp38 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp41 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp56 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp59 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp1 = 1e-05 tmp2 = tmp0 + tmp1 tmp3 = tl_math.log(tmp2) tmp5 = tmp4.to(tl.int64) tmp6 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp7 = tmp5 + tmp6 tmp8 = tmp5 < 0 tmp9 = tl.where(tmp8, tmp7, tmp5) tl.device_assert((0 <= tmp9) & (tmp9 < 4), "index out of bounds: 0 <= tmp9 < 4") tmp11 = tl.load(in_ptr2 + (tmp9), None, eviction_policy='evict_last') tmp12 = tmp11 + tmp6 tmp13 = tmp11 < 0 tmp14 = tl.where(tmp13, tmp12, tmp11) tl.device_assert((0 <= tmp14) & (tmp14 < 4), "index out of bounds: 0 <= tmp14 < 4") tmp16 = tl.load(in_ptr3 + (r0 + (16*tmp14) + (64*r1)), None) tmp18 = tmp16 - tmp17 tmp19 = tmp3 - tmp18 tmp21 = tmp20 + tmp1 tmp22 = tl_math.log(tmp21) tmp24 = tmp23.to(tl.int64) tmp25 = tmp24 + tmp6 tmp26 = tmp24 < 0 tmp27 = tl.where(tmp26, tmp25, tmp24) tl.device_assert((0 <= tmp27) & (tmp27 < 4), "index out of bounds: 0 <= tmp27 < 4") tmp29 = tl.load(in_ptr2 + (tmp27), None, eviction_policy='evict_last') tmp30 = tmp29 + tmp6 tmp31 = tmp29 < 0 tmp32 = tl.where(tmp31, tmp30, tmp29) tl.device_assert((0 <= tmp32) & (tmp32 < 4), "index out of bounds: 0 <= tmp32 < 4") tmp34 = tl.load(in_ptr3 + (r0 + (16*tmp32) + (64*r1)), None) tmp35 = tmp34 - tmp17 tmp36 = tmp22 - tmp35 tmp37 = tmp19 + tmp36 tmp39 = tmp38 + tmp1 tmp40 = tl_math.log(tmp39) tmp42 = tmp41.to(tl.int64) tmp43 = tmp42 + tmp6 tmp44 = tmp42 < 0 tmp45 = tl.where(tmp44, tmp43, tmp42) tl.device_assert((0 <= tmp45) & (tmp45 < 4), "index out of bounds: 0 <= tmp45 < 4") tmp47 = tl.load(in_ptr2 + (tmp45), None, eviction_policy='evict_last') tmp48 = tmp47 + tmp6 tmp49 = tmp47 < 0 tmp50 = tl.where(tmp49, tmp48, tmp47) tl.device_assert((0 <= tmp50) & (tmp50 < 4), "index out of bounds: 0 <= tmp50 < 4") tmp52 = tl.load(in_ptr3 + (r0 + (16*tmp50) + (64*r1)), None) tmp53 = tmp52 - tmp17 tmp54 = tmp40 - tmp53 tmp55 = tmp37 + tmp54 tmp57 = tmp56 + tmp1 tmp58 = tl_math.log(tmp57) tmp60 = tmp59.to(tl.int64) tmp61 = tmp60 + tmp6 tmp62 = tmp60 < 0 tmp63 = tl.where(tmp62, tmp61, tmp60) tl.device_assert((0 <= tmp63) & (tmp63 < 4), "index out of bounds: 0 <= tmp63 < 4") tmp65 = tl.load(in_ptr2 + (tmp63), None, eviction_policy='evict_last') tmp66 = tmp65 + tmp6 tmp67 = tmp65 < 0 tmp68 = tl.where(tmp67, tmp66, tmp65) tl.device_assert((0 <= tmp68) & (tmp68 < 4), "index out of bounds: 0 <= tmp68 < 4") tmp70 = tl.load(in_ptr3 + (r0 + (16*tmp68) + (64*r1)), None) tmp71 = tmp70 - tmp17 tmp72 = tmp58 - tmp71 tmp73 = tmp55 + tmp72 tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK]) tmp76 = tl.sum(tmp74, 1)[:, None] tmp77 = 64.0 tmp78 = tmp76 / tmp77 tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp78, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [random_indices], Original ATen: [aten.randperm] buf0 = torch.ops.aten.randperm.default(4, device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int16) # Topologically Sorted Source Nodes: [y_true_shuffled, sort], Original ATen: [aten.index, aten.sort] stream0 = get_raw_stream(0) triton_per_fused_index_sort_0.run(buf1, arg1_1, buf3, 64, 4, grid=grid(64), stream=stream0) del arg1_1 buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y_true_shuffled, sort, y_pred_shuffled, preds_sorted_by_true, max_1, preds_sorted_by_true_minus_max, exp, flip, cumsum], Original ATen: [aten.index, aten.sort, aten.gather, aten.max, aten.sub, aten.exp, aten.flip, aten.cumsum] triton_per_fused_cumsum_exp_flip_gather_index_max_sort_sub_1.run(buf3, buf1, arg0_1, buf4, buf5, 64, 4, grid=grid(64), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0); del buf4 # reuse buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [y_true_shuffled, sort, y_pred_shuffled, preds_sorted_by_true, preds_sorted_by_true_minus_max, cumsums, add, log, observation_loss, sum_1, mean], Original ATen: [aten.index, aten.sort, aten.gather, aten.sub, aten.flip, aten.add, aten.log, aten.sum, aten.mean] triton_per_fused_add_flip_gather_index_log_mean_sort_sub_sum_2.run(buf6, buf8, buf5, buf3, buf1, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del buf1 del buf3 del buf5 del buf6 return (buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ListMLELoss(nn.Module): def __init__(self): super(ListMLELoss, self).__init__() return def forward(self, y_pred, y_true, eps=1e-05, padded_value_indicator=-1): """ ListMLE loss introduced in "Listwise Approach to Learning to Rank - Theory and Algorithm". :param y_pred: predictions from the model, shape [batch_size, slate_length] :param y_true: ground truth labels, shape [batch_size, slate_length] :param eps: epsilon value, used for numerical stability :param padded_value_indicator: an indicator of the y_true index containing a padded item, e.g. -1 :return: loss value, a torch.Tensor """ random_indices = torch.randperm(y_pred.shape[-1]) y_pred_shuffled = y_pred[:, random_indices] y_true_shuffled = y_true[:, random_indices] _y_true_sorted, indices = y_true_shuffled.sort(descending=True, dim=-1) preds_sorted_by_true = torch.gather(y_pred_shuffled, dim=1, index= indices) max_pred_values, _ = preds_sorted_by_true.max(dim=1, keepdim=True) preds_sorted_by_true_minus_max = preds_sorted_by_true - max_pred_values cumsums = torch.cumsum(preds_sorted_by_true_minus_max.exp().flip( dims=[1]), dim=1).flip(dims=[1]) observation_loss = torch.log(cumsums + eps ) - preds_sorted_by_true_minus_max return torch.mean(torch.sum(observation_loss, dim=1)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch import device import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_index_sort_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x1 = xindex // 4 % 4 r3 = rindex x0 = xindex % 4 x2 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (r3 + 4 * x0 + 16 * tmp4 + 64 * x2), xmask, other=0.0) tmp7 = r3 tmp8 = tmp7.to(tl.int16) tmp9 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp10 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) _tmp11, tmp12 = triton_helpers.sort_with_index(tmp9, tmp10, None, 1, stable=False, descending=True) tl.store(out_ptr0 + (r3 + 4 * x4), tmp12, xmask) @triton.jit def _triton_helper_fn_add0(arg0_0, arg1_0): tmp0 = arg0_0 + arg1_0 return tmp0 @triton.jit def triton_per_fused_cumsum_exp_flip_gather_index_max_sort_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr ): xnumel = 64 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x3 = xindex r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp26 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp39 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp52 = tl.load(in_ptr0 + (48 + x0 + -16 * r2 + 64 * x1), xmask, other=0.0) tmp1 = tmp0.to(tl.int64) tmp2 = tl.full([XBLOCK, 1], 4, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert((0 <= tmp5) & (tmp5 < 4) | ~xmask, 'index out of bounds: 0 <= tmp5 < 4') tmp7 = tl.load(in_ptr1 + tmp5, xmask, eviction_policy='evict_last') tmp8 = tmp7 + tmp2 tmp9 = tmp7 < 0 tmp10 = tl.where(tmp9, tmp8, tmp7) tl.device_assert((0 <= tmp10) & (tmp10 < 4) | ~xmask, 'index out of bounds: 0 <= tmp10 < 4') tmp12 = tl.load(in_ptr2 + (x0 + 16 * tmp10 + 64 * x1), xmask) tmp14 = tmp13.to(tl.int64) tmp15 = tmp14 + tmp2 tmp16 = tmp14 < 0 tmp17 = tl.where(tmp16, tmp15, tmp14) tl.device_assert((0 <= tmp17) & (tmp17 < 4) | ~xmask, 'index out of bounds: 0 <= tmp17 < 4') tmp19 = tl.load(in_ptr1 + tmp17, xmask, eviction_policy='evict_last') tmp20 = tmp19 + tmp2 tmp21 = tmp19 < 0 tmp22 = tl.where(tmp21, tmp20, tmp19) tl.device_assert((0 <= tmp22) & (tmp22 < 4) | ~xmask, 'index out of bounds: 0 <= tmp22 < 4') tmp24 = tl.load(in_ptr2 + (x0 + 16 * tmp22 + 64 * x1), xmask) tmp25 = triton_helpers.maximum(tmp12, tmp24) tmp27 = tmp26.to(tl.int64) tmp28 = tmp27 + tmp2 tmp29 = tmp27 < 0 tmp30 = tl.where(tmp29, tmp28, tmp27) tl.device_assert((0 <= tmp30) & (tmp30 < 4) | ~xmask, 'index out of bounds: 0 <= tmp30 < 4') tmp32 = tl.load(in_ptr1 + tmp30, xmask, eviction_policy='evict_last') tmp33 = tmp32 + tmp2 tmp34 = tmp32 < 0 tmp35 = tl.where(tmp34, tmp33, tmp32) tl.device_assert((0 <= tmp35) & (tmp35 < 4) | ~xmask, 'index out of bounds: 0 <= tmp35 < 4') tmp37 = tl.load(in_ptr2 + (x0 + 16 * tmp35 + 64 * x1), xmask) tmp38 = triton_helpers.maximum(tmp25, tmp37) tmp40 = tmp39.to(tl.int64) tmp41 = tmp40 + tmp2 tmp42 = tmp40 < 0 tmp43 = tl.where(tmp42, tmp41, tmp40) tl.device_assert((0 <= tmp43) & (tmp43 < 4) | ~xmask, 'index out of bounds: 0 <= tmp43 < 4') tmp45 = tl.load(in_ptr1 + tmp43, xmask, eviction_policy='evict_last') tmp46 = tmp45 + tmp2 tmp47 = tmp45 < 0 tmp48 = tl.where(tmp47, tmp46, tmp45) tl.device_assert((0 <= tmp48) & (tmp48 < 4) | ~xmask, 'index out of bounds: 0 <= tmp48 < 4') tmp50 = tl.load(in_ptr2 + (x0 + 16 * tmp48 + 64 * x1), xmask) tmp51 = triton_helpers.maximum(tmp38, tmp50) tmp53 = tmp52.to(tl.int64) tmp54 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp55 = tmp53 + tmp54 tmp56 = tmp53 < 0 tmp57 = tl.where(tmp56, tmp55, tmp53) tl.device_assert((0 <= tmp57) & (tmp57 < 4) | ~xmask, 'index out of bounds: 0 <= tmp57 < 4') tmp59 = tl.load(in_ptr1 + tmp57, xmask, eviction_policy='evict_last') tmp60 = tmp59 + tmp54 tmp61 = tmp59 < 0 tmp62 = tl.where(tmp61, tmp60, tmp59) tl.device_assert((0 <= tmp62) & (tmp62 < 4) | ~xmask, 'index out of bounds: 0 <= tmp62 < 4') tmp64 = tl.load(in_ptr2 + (x0 + 16 * tmp62 + 64 * x1), xmask) tmp65 = tmp64 - tmp51 tmp66 = tl_math.exp(tmp65) tmp67 = tmp66.to(tl.float32) tmp68 = tl.broadcast_to(tmp67, [XBLOCK, RBLOCK]) tmp69, = tl.associative_scan((tmp68,), 1, _triton_helper_fn_add0) tl.store(out_ptr0 + x3, tmp51, xmask) tl.store(out_ptr1 + (x0 + 16 * r2 + 64 * x1), tmp69, xmask) @triton.jit def triton_per_fused_add_flip_gather_index_log_mean_sort_sub_sum_2(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 r2 = rindex tmp0 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp4 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp17 = tl.load(in_out_ptr0 + r2, None) tmp20 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp23 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp38 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp41 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp56 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp59 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp1 = 1e-05 tmp2 = tmp0 + tmp1 tmp3 = tl_math.log(tmp2) tmp5 = tmp4.to(tl.int64) tmp6 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp7 = tmp5 + tmp6 tmp8 = tmp5 < 0 tmp9 = tl.where(tmp8, tmp7, tmp5) tl.device_assert((0 <= tmp9) & (tmp9 < 4), 'index out of bounds: 0 <= tmp9 < 4') tmp11 = tl.load(in_ptr2 + tmp9, None, eviction_policy='evict_last') tmp12 = tmp11 + tmp6 tmp13 = tmp11 < 0 tmp14 = tl.where(tmp13, tmp12, tmp11) tl.device_assert((0 <= tmp14) & (tmp14 < 4), 'index out of bounds: 0 <= tmp14 < 4') tmp16 = tl.load(in_ptr3 + (r0 + 16 * tmp14 + 64 * r1), None) tmp18 = tmp16 - tmp17 tmp19 = tmp3 - tmp18 tmp21 = tmp20 + tmp1 tmp22 = tl_math.log(tmp21) tmp24 = tmp23.to(tl.int64) tmp25 = tmp24 + tmp6 tmp26 = tmp24 < 0 tmp27 = tl.where(tmp26, tmp25, tmp24) tl.device_assert((0 <= tmp27) & (tmp27 < 4), 'index out of bounds: 0 <= tmp27 < 4') tmp29 = tl.load(in_ptr2 + tmp27, None, eviction_policy='evict_last') tmp30 = tmp29 + tmp6 tmp31 = tmp29 < 0 tmp32 = tl.where(tmp31, tmp30, tmp29) tl.device_assert((0 <= tmp32) & (tmp32 < 4), 'index out of bounds: 0 <= tmp32 < 4') tmp34 = tl.load(in_ptr3 + (r0 + 16 * tmp32 + 64 * r1), None) tmp35 = tmp34 - tmp17 tmp36 = tmp22 - tmp35 tmp37 = tmp19 + tmp36 tmp39 = tmp38 + tmp1 tmp40 = tl_math.log(tmp39) tmp42 = tmp41.to(tl.int64) tmp43 = tmp42 + tmp6 tmp44 = tmp42 < 0 tmp45 = tl.where(tmp44, tmp43, tmp42) tl.device_assert((0 <= tmp45) & (tmp45 < 4), 'index out of bounds: 0 <= tmp45 < 4') tmp47 = tl.load(in_ptr2 + tmp45, None, eviction_policy='evict_last') tmp48 = tmp47 + tmp6 tmp49 = tmp47 < 0 tmp50 = tl.where(tmp49, tmp48, tmp47) tl.device_assert((0 <= tmp50) & (tmp50 < 4), 'index out of bounds: 0 <= tmp50 < 4') tmp52 = tl.load(in_ptr3 + (r0 + 16 * tmp50 + 64 * r1), None) tmp53 = tmp52 - tmp17 tmp54 = tmp40 - tmp53 tmp55 = tmp37 + tmp54 tmp57 = tmp56 + tmp1 tmp58 = tl_math.log(tmp57) tmp60 = tmp59.to(tl.int64) tmp61 = tmp60 + tmp6 tmp62 = tmp60 < 0 tmp63 = tl.where(tmp62, tmp61, tmp60) tl.device_assert((0 <= tmp63) & (tmp63 < 4), 'index out of bounds: 0 <= tmp63 < 4') tmp65 = tl.load(in_ptr2 + tmp63, None, eviction_policy='evict_last') tmp66 = tmp65 + tmp6 tmp67 = tmp65 < 0 tmp68 = tl.where(tmp67, tmp66, tmp65) tl.device_assert((0 <= tmp68) & (tmp68 < 4), 'index out of bounds: 0 <= tmp68 < 4') tmp70 = tl.load(in_ptr3 + (r0 + 16 * tmp68 + 64 * r1), None) tmp71 = tmp70 - tmp17 tmp72 = tmp58 - tmp71 tmp73 = tmp55 + tmp72 tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK]) tmp76 = tl.sum(tmp74, 1)[:, None] tmp77 = 64.0 tmp78 = tmp76 / tmp77 tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp78, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.randperm.default(4, device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int16) get_raw_stream(0) triton_per_fused_index_sort_0[grid(64)](buf1, arg1_1, buf3, 64, 4, XBLOCK=8, num_warps=2, num_stages=1) del arg1_1 buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_per_fused_cumsum_exp_flip_gather_index_max_sort_sub_1[grid(64)]( buf3, buf1, arg0_1, buf4, buf5, 64, 4, XBLOCK=8, num_warps=2, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0) del buf4 buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7 del buf7 triton_per_fused_add_flip_gather_index_log_mean_sort_sub_sum_2[grid(1) ](buf6, buf8, buf5, buf3, buf1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf1 del buf3 del buf5 del buf6 return buf8, class ListMLELossNew(nn.Module): def __init__(self): super(ListMLELossNew, self).__init__() return def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Pepijnnn/MasterThesis
ListMLELoss
false
962
[ "MIT" ]
0
7ec831f5e55f5f181e0196fa78284e2846ce2e26
https://github.com/Pepijnnn/MasterThesis/tree/7ec831f5e55f5f181e0196fa78284e2846ce2e26
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() return def forward(self, y_pred, y_true, eps=1e-05, padded_value_indicator=-1): """ ListMLE loss introduced in "Listwise Approach to Learning to Rank - Theory and Algorithm". :param y_pred: predictions from the model, shape [batch_size, slate_length] :param y_true: ground truth labels, shape [batch_size, slate_length] :param eps: epsilon value, used for numerical stability :param padded_value_indicator: an indicator of the y_true index containing a padded item, e.g. -1 :return: loss value, a torch.Tensor """ random_indices = torch.randperm(y_pred.shape[-1]) y_pred_shuffled = y_pred[:, random_indices] y_true_shuffled = y_true[:, random_indices] _y_true_sorted, indices = y_true_shuffled.sort(descending=True, dim=-1) preds_sorted_by_true = torch.gather(y_pred_shuffled, dim=1, index= indices) max_pred_values, _ = preds_sorted_by_true.max(dim=1, keepdim=True) preds_sorted_by_true_minus_max = preds_sorted_by_true - max_pred_values cumsums = torch.cumsum(preds_sorted_by_true_minus_max.exp().flip( dims=[1]), dim=1).flip(dims=[1]) observation_loss = torch.log(cumsums + eps ) - preds_sorted_by_true_minus_max return torch.mean(torch.sum(observation_loss, dim=1)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/s7/cs7jv7spsytbq3ouvdhla2tcr7wzgoznysid6m7rapuqn7g7cc3h.py # Topologically Sorted Source Nodes: [intersection, sum_1, sum_2, sum_3], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # intersection => mul # sum_1 => sum_1 # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [1]), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_1, [1]), kwargs = {}) triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp13 = tl.where(xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tl.store(out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr1 + (x0), tmp10, xmask) tl.store(out_ptr2 + (x0), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vq/cvqiixp4wmb73ig2cla6idbqq7i6vd5n3qmdluadrv32f52pdgw3.py # Topologically Sorted Source Nodes: [add, mul_1, add_1, add_2, loss, sum_4, truediv_1, loss_1], Original ATen: [aten.add, aten.mul, aten.div, aten.sum, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # loss => div # loss_1 => sub # mul_1 => mul_1 # sum_4 => sum_4 # truediv_1 => div_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add_2), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%div,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_4, 4), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_1), kwargs = {}) triton_per_fused_add_div_mul_rsub_sum_1 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp5 = tl.load(in_ptr1 + (r0), None) tmp6 = tl.load(in_ptr2 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp1 tmp9 = tmp4 / tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp1 - tmp14 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp15, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) buf2 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [intersection, sum_1, sum_2, sum_3], Original ATen: [aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_mul_sum_0.run(arg1_1, arg0_1, buf0, buf1, buf2, 4, 64, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [add, mul_1, add_1, add_2, loss, sum_4, truediv_1, loss_1], Original ATen: [aten.add, aten.mul, aten.div, aten.sum, aten.rsub] triton_per_fused_add_div_mul_rsub_sum_1.run(buf4, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0) del buf0 del buf1 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DiceLoss(nn.Module): def __init__(self): super(DiceLoss, self).__init__() def forward(self, input, target): N = target.size(0) smooth = 1 input_flat = input.view(N, -1) target_flat = target.view(N, -1) intersection = input_flat * target_flat loss = 2 * (intersection.sum(1) + smooth) / (input_flat.sum(1) + target_flat.sum(1) + smooth) loss = 1 - loss.sum() / N return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp13 = tl.where(xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tl.store(out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr1 + x0, tmp10, xmask) tl.store(out_ptr2 + x0, tmp14, xmask) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp5 = tl.load(in_ptr1 + r0, None) tmp6 = tl.load(in_ptr2 + r0, None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp1 tmp9 = tmp4 / tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp1 - tmp14 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp15, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) buf1 = empty_strided_cuda((4,), (1,), torch.float32) buf2 = empty_strided_cuda((4,), (1,), torch.float32) get_raw_stream(0) triton_per_fused_mul_sum_0[grid(4)](arg1_1, arg0_1, buf0, buf1, buf2, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused_add_div_mul_rsub_sum_1[grid(1)](buf4, buf0, buf1, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf1 del buf2 return buf4, class DiceLossNew(nn.Module): def __init__(self): super(DiceLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Qsingle/MedicalImage
DiceLoss
false
963
[ "MIT" ]
0
a5020d7d2266669a4d6ffec224430e8b25cc1dfc
https://github.com/Qsingle/MedicalImage/tree/a5020d7d2266669a4d6ffec224430e8b25cc1dfc
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, input, target): N = target.size(0) smooth = 1 input_flat = input.view(N, -1) target_flat = target.view(N, -1) intersection = input_flat * target_flat loss = 2 * (intersection.sum(1) + smooth) / (input_flat.sum(1) + target_flat.sum(1) + smooth) loss = 1 - loss.sum() / N return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
DummyLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/tx/ctxchhellli4zhqwcsl42vuibttmcqoaf36rxpduozn6jvadgnyt.py # Topologically Sorted Source Nodes: [add, sub], Original ATen: [aten.add, aten.sub] # Source node to ATen node mapping: # add => add # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %primals_1), kwargs = {}) triton_poi_fused_add_sub_0 = async_compile.triton('triton_poi_fused_add_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tmp3 - tmp2 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, sub], Original ATen: [aten.add, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_sub_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class DummyLayer(torch.nn.Module): def __init__(self): super().__init__() self.dummy = torch.nn.Parameter(torch.ones(1, dtype=torch.float32)) def forward(self, x): return x + self.dummy - self.dummy def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tmp3 - tmp2 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_sub_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class DummyLayerNew(torch.nn.Module): def __init__(self): super().__init__() self.dummy = torch.nn.Parameter(torch.ones(1, dtype=torch.float32)) def forward(self, input_0): primals_1 = self.dummy primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
RICE-EIC/Early-Bird-GCN
DummyLayer
false
964
[ "Apache-2.0" ]
0
25a80b23f2ecfc46ffe00b1cf0e06052b32aad0f
https://github.com/RICE-EIC/Early-Bird-GCN/tree/25a80b23f2ecfc46ffe00b1cf0e06052b32aad0f
import torch class Model(torch.nn.Module): def __init__(self): super().__init__() self.dummy = torch.nn.Parameter(torch.ones(1, dtype=torch.float32)) def forward(self, x): return x + self.dummy - self.dummy def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qg/cqgejm4wp2tvoab2fpggn6ygzxekamtcj65undyfrstdf2jttwb4.py # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, dice, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # dice => div # intersection => sum_1 # mul => mul # mul_1 => mul_1 # sub => sub # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1.0), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1.0), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = 1.0 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp11 tmp17 = tmp16 + tmp14 tmp18 = tmp15 / tmp17 tmp19 = tmp14 - tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp19, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, dice, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DiceLoss(nn.Module): """ Criterion that computes Sørensen-Dice Coefficient loss. https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient """ def __init__(self): super().__init__() self.smooth = 1.0 def forward(self, input, target): input = input.view(-1) target = target.view(-1) intersection = (input * target).sum() dice = (2.0 * intersection + self.smooth) / (input.sum() + target. sum() + self.smooth) return 1 - dice def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = 1.0 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp11 tmp17 = tmp16 + tmp14 tmp18 = tmp15 / tmp17 tmp19 = tmp14 - tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp19, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0[grid(1)](buf3, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class DiceLossNew(nn.Module): """ Criterion that computes Sørensen-Dice Coefficient loss. https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient """ def __init__(self): super().__init__() self.smooth = 1.0 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Quentin18/road-segmentation
DiceLoss
false
965
[ "MIT" ]
0
9d212c80fa3f6926c431847337d2ca38ec96b614
https://github.com/Quentin18/road-segmentation/tree/9d212c80fa3f6926c431847337d2ca38ec96b614
import torch import torch.nn as nn class Model(nn.Module): """ Criterion that computes Sørensen-Dice Coefficient loss. https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient """ def __init__(self): super().__init__() self.smooth = 1.0 def forward(self, input, target): input = input.view(-1) target = target.view(-1) intersection = (input * target).sum() dice = (2.0 * intersection + self.smooth) / (input.sum() + target. sum() + self.smooth) return 1 - dice def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ShearX
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/64/c64wcolc5y2n37sxtnpnhr2dzw4gq7giy4xyi4ub5z3kplhqckpr.py # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] # Source node to ATen node mapping: # fill_ => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %select_scatter_default_2 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %full_default, 3, 2), kwargs = {}) triton_poi_fused_fill_0 = async_compile.triton('triton_poi_fused_fill_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = (xindex // 12) x1 = (xindex // 3) % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + ((-1)*x2) tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + ((-1)*x1) tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float("nan") tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + (x4), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6x/c6x27w4kh5rblyswcsrq6rtjtm6kthxuhgphvfnzntdp5j3sz3yt.py # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] # Source node to ATen node mapping: # rescaled_theta => div # tensor_1 => lift_fresh_copy_1 # Graph fragment: # %lift_fresh_copy_1 : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%_tensor_constant1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute, %lift_fresh_copy_1), kwargs = {}) triton_poi_fused_div_lift_fresh_1 = async_compile.triton('triton_poi_fused_div_lift_fresh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_lift_fresh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = x1 + (3*x0) tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = -0.737263560295105 tmp8 = 0.0 tmp9 = tl.where(tmp6, tmp7, tmp8) tmp10 = 1.0 tmp11 = tl.where(tmp4, tmp10, tmp9) tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.full([1], 5, tl.int64) tmp15 = tmp0 < tmp14 tmp16 = tl.where(tmp15, tmp10, tmp8) tmp17 = -0.0 tmp18 = tl.where(tmp13, tmp17, tmp16) tmp19 = tl.where(tmp2, tmp11, tmp18) tmp20 = x0 tmp21 = tmp20 < tmp3 tmp22 = 2.0 tmp23 = tl.where(tmp21, tmp22, tmp22) tmp24 = tmp19 / tmp23 tl.store(out_ptr0 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zf/czfnj57ejqlqojplqt6piz7sosofcvzqdxhskwatgn32njr7acz7.py # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] # Source node to ATen node mapping: # img => add_2, add_3, full_default_3, full_default_4, ge, ge_1, index, logical_and, logical_and_1, logical_and_2, lt_2, lt_3, mul_4, mul_5, mul_6, round_1, round_2, where_4 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_8, 2.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 1.5), kwargs = {}) # %round_1 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_2,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_1, 0), kwargs = {}) # %lt_2 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_1, 4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_9, 2.0), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 1.5), kwargs = {}) # %round_2 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_3,), kwargs = {}) # %ge_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_2, 0), kwargs = {}) # %lt_3 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_2, 4), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_1, %lt_3), kwargs = {}) # %logical_and_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%lt_2, %logical_and), kwargs = {}) # %logical_and_2 : [num_users=3] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %logical_and_1), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%view_5, %view_6, %where_3, %where_2]), kwargs = {}) # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_2, %full_default_4, %full_default_3), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %where_4), kwargs = {}) triton_poi_fused_grid_sampler_2d_2 = async_compile.triton('triton_poi_fused_grid_sampler_2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_grid_sampler_2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert(((0 <= tmp25) & (tmp25 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp25 < 4") tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert(((0 <= tmp31) & (tmp31 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp31 < 4") tmp33 = tl.load(in_ptr1 + (tmp31 + (4*tmp25) + (16*x3)), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + (x4), tmp37, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] stream0 = get_raw_stream(0) triton_poi_fused_fill_0.run(buf2, 48, grid=grid(48), stream=stream0) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] triton_poi_fused_div_lift_fresh_1.run(buf3, 6, grid=grid(6), stream=stream0) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta, output_grid], Original ATen: [aten.lift_fresh, aten.div, aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] triton_poi_fused_grid_sampler_2d_2.run(buf4, arg0_1, buf5, 256, grid=grid(256), stream=stream0) del arg0_1 del buf4 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torchvision import transforms as ttf class ShearX(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M - 180 def forward(self, img): return ttf.functional.affine(img, 0, [0, 0], 1, [self.angle, 0]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'M': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = xindex // 12 x1 = xindex // 3 % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + -1 * x2 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + -1 * x1 tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float('nan') tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + x4, tmp34, xmask) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = x1 + 3 * x0 tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = -0.737263560295105 tmp8 = 0.0 tmp9 = tl.where(tmp6, tmp7, tmp8) tmp10 = 1.0 tmp11 = tl.where(tmp4, tmp10, tmp9) tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.full([1], 5, tl.int64) tmp15 = tmp0 < tmp14 tmp16 = tl.where(tmp15, tmp10, tmp8) tmp17 = -0.0 tmp18 = tl.where(tmp13, tmp17, tmp16) tmp19 = tl.where(tmp2, tmp11, tmp18) tmp20 = x0 tmp21 = tmp20 < tmp3 tmp22 = 2.0 tmp23 = tl.where(tmp21, tmp22, tmp22) tmp24 = tmp19 / tmp23 tl.store(out_ptr0 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert((0 <= tmp25) & (tmp25 < 4) | ~xmask, 'index out of bounds: 0 <= tmp25 < 4') tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert((0 <= tmp31) & (tmp31 < 4) | ~xmask, 'index out of bounds: 0 <= tmp31 < 4') tmp33 = tl.load(in_ptr1 + (tmp31 + 4 * tmp25 + 16 * x3), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + x4, tmp37, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_fill_0[grid(48)](buf2, 48, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) triton_poi_fused_div_lift_fresh_1[grid(6)](buf3, 6, XBLOCK=8, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_grid_sampler_2d_2[grid(256)](buf4, arg0_1, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del buf4 return buf5, class ShearXNew(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M - 180 def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Hayoung93/UDA
ShearX
false
966
[ "Apache-2.0" ]
0
a587b01c76141d64e7cead55b62e0f3ed75890bf
https://github.com/Hayoung93/UDA/tree/a587b01c76141d64e7cead55b62e0f3ed75890bf
import torch import torch.nn as nn from torchvision import transforms as ttf class Model(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M - 180 def forward(self, img): return ttf.functional.affine(img, 0, [0, 0], 1, [self.angle, 0]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Convolution
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ud/cudtupp4xbsxvl5czwt3p2pj3cknjnhtp6x45zymsucnyg3xzdnf.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(arg1_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(arg0_1, buf1, 16, 16, grid=grid(16, 16), stream=stream0) del arg0_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 4, 4)) del buf0 del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as fn from torch.nn.parameter import Parameter import torch.nn def to_pair(data): """Converts a single or a tuple of data into a pair. If the data is a tuple with more than two elements, it selects the first two of them. In case of single data, it duplicates that data into a pair. Args: data (object or tuple): The input data. Returns: Tuple: A pair of data. """ if isinstance(data, tuple): return data[0:2] return data, data class Convolution(nn.Module): """Performs a 2D convolution over an input spike-wave composed of several input planes. Current version only supports stride of 1 with no padding. The input is a 4D tensor with the size :math:`(T, C_{{in}}, H_{{in}}, W_{{in}})` and the crresponsing output is of size :math:`(T, C_{{out}}, H_{{out}}, W_{{out}})`, where :math:`T` is the number of time steps, :math:`C` is the number of feature maps (channels), and :math:`H`, and :math:`W` are the hight and width of the input/output planes. * :attr:`in_channels` controls the number of input planes (channels/feature maps). * :attr:`out_channels` controls the number of feature maps in the current layer. * :attr:`kernel_size` controls the size of the convolution kernel. It can be a single integer or a tuple of two integers. * :attr:`weight_mean` controls the mean of the normal distribution used for initial random weights. * :attr:`weight_std` controls the standard deviation of the normal distribution used for initial random weights. .. note:: Since this version of convolution does not support padding, it is the user responsibility to add proper padding on the input before applying convolution. Args: in_channels (int): Number of channels in the input. out_channels (int): Number of channels produced by the convolution. kernel_size (int or tuple): Size of the convolving kernel. weight_mean (float, optional): Mean of the initial random weights. Default: 0.8 weight_std (float, optional): Standard deviation of the initial random weights. Default: 0.02 """ def __init__(self, in_channels, out_channels, kernel_size, weight_mean= 0.8, weight_std=0.02): super(Convolution, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = to_pair(kernel_size) self.stride = 1 self.bias = None self.dilation = 1 self.groups = 1 self.padding = 0 self.weight = Parameter(torch.Tensor(self.out_channels, self. in_channels, *self.kernel_size)) self.weight.requires_grad_(False) self.reset_weight(weight_mean, weight_std) def reset_weight(self, weight_mean=0.8, weight_std=0.02): """Resets weights to random values based on a normal distribution. Args: weight_mean (float, optional): Mean of the random weights. Default: 0.8 weight_std (float, optional): Standard deviation of the random weights. Default: 0.02 """ self.weight.normal_(weight_mean, weight_std) def load_weight(self, target): """Loads weights with the target tensor. Args: target (Tensor=): The target tensor. """ self.weight.copy_(target) def forward(self, input): return fn.conv2d(input, self.weight, self.bias, self.stride, self. padding, self.dilation, self.groups) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.nn.parameter import Parameter import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 16)](arg1_1, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_convolution_0[grid(16, 16)](arg0_1, buf1, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del arg0_1 buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 4, 4)) del buf0 del buf1 return buf2, def to_pair(data): """Converts a single or a tuple of data into a pair. If the data is a tuple with more than two elements, it selects the first two of them. In case of single data, it duplicates that data into a pair. Args: data (object or tuple): The input data. Returns: Tuple: A pair of data. """ if isinstance(data, tuple): return data[0:2] return data, data class ConvolutionNew(nn.Module): """Performs a 2D convolution over an input spike-wave composed of several input planes. Current version only supports stride of 1 with no padding. The input is a 4D tensor with the size :math:`(T, C_{{in}}, H_{{in}}, W_{{in}})` and the crresponsing output is of size :math:`(T, C_{{out}}, H_{{out}}, W_{{out}})`, where :math:`T` is the number of time steps, :math:`C` is the number of feature maps (channels), and :math:`H`, and :math:`W` are the hight and width of the input/output planes. * :attr:`in_channels` controls the number of input planes (channels/feature maps). * :attr:`out_channels` controls the number of feature maps in the current layer. * :attr:`kernel_size` controls the size of the convolution kernel. It can be a single integer or a tuple of two integers. * :attr:`weight_mean` controls the mean of the normal distribution used for initial random weights. * :attr:`weight_std` controls the standard deviation of the normal distribution used for initial random weights. .. note:: Since this version of convolution does not support padding, it is the user responsibility to add proper padding on the input before applying convolution. Args: in_channels (int): Number of channels in the input. out_channels (int): Number of channels produced by the convolution. kernel_size (int or tuple): Size of the convolving kernel. weight_mean (float, optional): Mean of the initial random weights. Default: 0.8 weight_std (float, optional): Standard deviation of the initial random weights. Default: 0.02 """ def __init__(self, in_channels, out_channels, kernel_size, weight_mean= 0.8, weight_std=0.02): super(ConvolutionNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = to_pair(kernel_size) self.stride = 1 self.bias = None self.dilation = 1 self.groups = 1 self.padding = 0 self.weight = Parameter(torch.Tensor(self.out_channels, self. in_channels, *self.kernel_size)) self.weight.requires_grad_(False) self.reset_weight(weight_mean, weight_std) def reset_weight(self, weight_mean=0.8, weight_std=0.02): """Resets weights to random values based on a normal distribution. Args: weight_mean (float, optional): Mean of the random weights. Default: 0.8 weight_std (float, optional): Standard deviation of the random weights. Default: 0.02 """ self.weight.normal_(weight_mean, weight_std) def load_weight(self, target): """Loads weights with the target tensor. Args: target (Tensor=): The target tensor. """ self.weight.copy_(target) def forward(self, input_0): arg0_1 = self.weight arg1_1 = input_0 output = call([arg0_1, arg1_1]) return output[0]
R1704/SpeechRecognitionSNN
Convolution
false
967
[ "MIT" ]
0
4b788d1bd20d8ce201da6da8b200b3ca722c7efa
https://github.com/R1704/SpeechRecognitionSNN/tree/4b788d1bd20d8ce201da6da8b200b3ca722c7efa
import torch import torch.nn as nn import torch.nn.functional as fn from torch.nn.parameter import Parameter import torch.nn def to_pair(data): """Converts a single or a tuple of data into a pair. If the data is a tuple with more than two elements, it selects the first two of them. In case of single data, it duplicates that data into a pair. Args: data (object or tuple): The input data. Returns: Tuple: A pair of data. """ if isinstance(data, tuple): return data[0:2] return data, data class Model(nn.Module): """Performs a 2D convolution over an input spike-wave composed of several input planes. Current version only supports stride of 1 with no padding. The input is a 4D tensor with the size :math:`(T, C_{{in}}, H_{{in}}, W_{{in}})` and the crresponsing output is of size :math:`(T, C_{{out}}, H_{{out}}, W_{{out}})`, where :math:`T` is the number of time steps, :math:`C` is the number of feature maps (channels), and :math:`H`, and :math:`W` are the hight and width of the input/output planes. * :attr:`in_channels` controls the number of input planes (channels/feature maps). * :attr:`out_channels` controls the number of feature maps in the current layer. * :attr:`kernel_size` controls the size of the convolution kernel. It can be a single integer or a tuple of two integers. * :attr:`weight_mean` controls the mean of the normal distribution used for initial random weights. * :attr:`weight_std` controls the standard deviation of the normal distribution used for initial random weights. .. note:: Since this version of convolution does not support padding, it is the user responsibility to add proper padding on the input before applying convolution. Args: in_channels (int): Number of channels in the input. out_channels (int): Number of channels produced by the convolution. kernel_size (int or tuple): Size of the convolving kernel. weight_mean (float, optional): Mean of the initial random weights. Default: 0.8 weight_std (float, optional): Standard deviation of the initial random weights. Default: 0.02 """ def __init__(self, in_channels, out_channels, kernel_size, weight_mean= 0.8, weight_std=0.02): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = to_pair(kernel_size) self.stride = 1 self.bias = None self.dilation = 1 self.groups = 1 self.padding = 0 self.weight = Parameter(torch.Tensor(self.out_channels, self. in_channels, *self.kernel_size)) self.weight.requires_grad_(False) self.reset_weight(weight_mean, weight_std) def reset_weight(self, weight_mean=0.8, weight_std=0.02): """Resets weights to random values based on a normal distribution. Args: weight_mean (float, optional): Mean of the random weights. Default: 0.8 weight_std (float, optional): Standard deviation of the random weights. Default: 0.02 """ self.weight.normal_(weight_mean, weight_std) def load_weight(self, target): """Loads weights with the target tensor. Args: target (Tensor=): The target tensor. """ self.weight.copy_(target) def forward(self, input): return fn.conv2d(input, self.weight, self.bias, self.stride, self. padding, self.dilation, self.groups) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
HighwayLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qz/cqza6p5fjiie2hfiu5dfjqqugrnzziwuwxzlhzy2aa7khopxjbym.py # Topologically Sorted Source Nodes: [gate_output], Original ATen: [aten._softmax] # Source node to ATen node mapping: # gate_output => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ln/clnagoyz3cauqnx3uxib3ikp6vd4zabtsvlhtc24rayt3qg4yaom.py # Topologically Sorted Source Nodes: [transform_output, gate_output, transformation_part, type_as, sub, carry_part, add], Original ATen: [aten.relu, aten._softmax, aten.mul, aten._to_copy, aten.sub, aten.add] # Source node to ATen node mapping: # add => add # carry_part => mul_1 # gate_output => div, sum_1 # sub => sub_1 # transform_output => relu # transformation_part => mul # type_as => full_default # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %div), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%full_default, %div), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1 = async_compile.triton('triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (x3), xmask) tmp15 = tl.load(in_ptr2 + (x3), xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp10 = tl.full([1], 0, tl.int32) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tmp11 * tmp8 tmp13 = 1.0 tmp14 = tmp13 - tmp8 tmp16 = tmp14 * tmp15 tmp17 = tmp12 + tmp16 tl.store(in_out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [gate_output], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [transform_output, gate_output, transformation_part, type_as, sub, carry_part, add], Original ATen: [aten.relu, aten._softmax, aten.mul, aten._to_copy, aten.sub, aten.add] triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1.run(buf4, buf2, buf0, primals_3, 256, grid=grid(256), stream=stream0) del buf2 return (buf4, primals_3, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators class HighwayLayer(nn.Module): def __init__(self, input_dim, transform_activation=F.relu, gate_activation=F.softmax, gate_bias=-2): super().__init__() self.highway_transform_activation = transform_activation self.highway_gate_activation = gate_activation self.highway_transform = nn.Linear(input_dim, input_dim) self.highway_gate = nn.Linear(input_dim, input_dim) self.highway_gate.bias.data.fill_(gate_bias) def forward(self, x): transform_output = self.highway_transform_activation(self. highway_transform(x)) gate_output = self.highway_gate_activation(self.highway_gate(x)) transformation_part = torch.mul(transform_output, gate_output) carry_part = torch.mul(torch.FloatTensor([1.0]).type_as(gate_output ) - gate_output, x) return torch.add(transformation_part, carry_part) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + x3, xmask) tmp15 = tl.load(in_ptr2 + x3, xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp10 = tl.full([1], 0, tl.int32) tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tmp11 * tmp8 tmp13 = 1.0 tmp14 = tmp13 - tmp8 tmp16 = tmp14 * tmp15 tmp17 = tmp12 + tmp16 tl.store(in_out_ptr0 + x3, tmp17, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = buf3 del buf3 triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1[grid(256)](buf4, buf2, buf0, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 return buf4, primals_3, buf0, buf1 class HighwayLayerNew(nn.Module): def __init__(self, input_dim, transform_activation=F.relu, gate_activation=F.softmax, gate_bias=-2): super().__init__() self.highway_transform_activation = transform_activation self.highway_gate_activation = gate_activation self.highway_transform = nn.Linear(input_dim, input_dim) self.highway_gate = nn.Linear(input_dim, input_dim) self.highway_gate.bias.data.fill_(gate_bias) def forward(self, input_0): primals_1 = self.highway_transform.weight primals_2 = self.highway_transform.bias primals_4 = self.highway_gate.weight primals_5 = self.highway_gate.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
ROCmSoftwarePlatform/translate
HighwayLayer
false
968
[ "BSD-3-Clause" ]
0
32a6380d914ebe1a6c38c4992aac9600ed3d9810
https://github.com/ROCmSoftwarePlatform/translate/tree/32a6380d914ebe1a6c38c4992aac9600ed3d9810
import torch import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators class Model(nn.Module): def __init__(self, input_dim, transform_activation=F.relu, gate_activation=F.softmax, gate_bias=-2): super().__init__() self.highway_transform_activation = transform_activation self.highway_gate_activation = gate_activation self.highway_transform = nn.Linear(input_dim, input_dim) self.highway_gate = nn.Linear(input_dim, input_dim) self.highway_gate.bias.data.fill_(gate_bias) def forward(self, x): transform_output = self.highway_transform_activation(self. highway_transform(x)) gate_output = self.highway_gate_activation(self.highway_gate(x)) transformation_part = torch.mul(transform_output, gate_output) carry_part = torch.mul(torch.FloatTensor([1.0]).type_as(gate_output ) - gate_output, x) return torch.add(transformation_part, carry_part) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6v/c6vkdknlihstoo2scjcyini5rby7e5pq6gqo7jjynq75otbegpoc.py # Topologically Sorted Source Nodes: [mul, x], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # x => sum_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_3), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) triton_poi_fused_mul_sum_3 = async_compile.triton('triton_poi_fused_mul_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp4 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask) tmp7 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp8 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask) tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp12 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0) del buf3 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, x], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_3.run(buf4, primals_3, buf5, 64, grid=grid(64), stream=stream0) return (buf5, buf4, primals_3, buf1, buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data import torch.utils.checkpoint class Attention(nn.Module): def __init__(self, in_size, hidden_size): super(Attention, self).__init__() self.hidden = nn.Linear(in_size, hidden_size) nn.init.orthogonal_(self.hidden.weight.data) self.out = nn.Linear(hidden_size, in_size) nn.init.orthogonal_(self.hidden.weight.data) self.softmax = nn.Softmax(dim=1) def forward(self, input): self.alpha = self.softmax(self.out(torch.tanh(self.hidden(input)))) x = torch.sum(self.alpha * input, 1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.utils.data import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp4 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp7 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp12 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mul_sum_3[grid(64)](buf4, primals_3, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf5, buf4, primals_3, buf1, buf4, primals_4 class AttentionNew(nn.Module): def __init__(self, in_size, hidden_size): super(AttentionNew, self).__init__() self.hidden = nn.Linear(in_size, hidden_size) nn.init.orthogonal_(self.hidden.weight.data) self.out = nn.Linear(hidden_size, in_size) nn.init.orthogonal_(self.hidden.weight.data) self.softmax = nn.Softmax(dim=1) def forward(self, input_0): primals_1 = self.hidden.weight primals_2 = self.hidden.bias primals_4 = self.out.weight primals_5 = self.out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
MarvinLvn/platalea
Attention
false
969
[ "Apache-2.0" ]
0
31def0813c90a3259f86f7d86cb576cd66dca3fe
https://github.com/MarvinLvn/platalea/tree/31def0813c90a3259f86f7d86cb576cd66dca3fe
import torch import torch.nn as nn import torch.utils.data import torch.utils.checkpoint class Model(nn.Module): def __init__(self, in_size, hidden_size): super().__init__() self.hidden = nn.Linear(in_size, hidden_size) nn.init.orthogonal_(self.hidden.weight.data) self.out = nn.Linear(hidden_size, in_size) nn.init.orthogonal_(self.hidden.weight.data) self.softmax = nn.Softmax(dim=1) def forward(self, input): self.alpha = self.softmax(self.out(torch.tanh(self.hidden(input)))) x = torch.sum(self.alpha * input, 1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Generator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] # Source node to ATen node mapping: # out => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7b/c7bf34fgn2dhohe7ejneqlees25vyq6sbe4c5lfvoehzliak2nz6.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.add] # Source node to ATen node mapping: # out => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Generator(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, size, vocab): super(Generator, self).__init__() self.size = size self.proj = nn.Linear(self.size, vocab) def forward(self, x): sliced_x = x[:, 0, :] out = self.proj(sliced_x) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'size': 4, 'vocab': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_add_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0) class GeneratorNew(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, size, vocab): super(GeneratorNew, self).__init__() self.size = size self.proj = nn.Linear(self.size, vocab) def forward(self, input_0): primals_2 = self.proj.weight primals_3 = self.proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
QuLog1/QuLog
Generator
false
970
[ "Apache-2.0" ]
0
121f3a8c6f5ee60cde771c36b9eef823a1b2597a
https://github.com/QuLog1/QuLog/tree/121f3a8c6f5ee60cde771c36b9eef823a1b2597a
import torch import torch.nn as nn class Model(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, size, vocab): super().__init__() self.size = size self.proj = nn.Linear(self.size, vocab) def forward(self, x): sliced_x = x[:, 0, :] out = self.proj(sliced_x) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
CosLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ul/cul46sk6agsata5pdplvfqwaj42gbpi26yrooch7az5rcg4qns4y.py # Topologically Sorted Source Nodes: [setitem_2], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_2 => copy_2, full_default_3 # Graph fragment: # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_2 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_24, %full_default_3), kwargs = {}) # %select_scatter_default_6 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_5, %copy_2, 0, 2), kwargs = {}) # %select_scatter_default_7 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_4, %select_scatter_default_6, 0, 2), kwargs = {}) triton_poi_fused_fill_lift_fresh_0 = async_compile.triton('triton_poi_fused_fill_lift_fresh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x1 = (xindex // 4) % 4 x3 = xindex tmp0 = x2 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 0, tl.int32) tmp6 = tmp5 == tmp5 tmp7 = tl.full([1], 1, tl.int32) tmp8 = tmp1 == tmp7 tmp9 = tmp3 == tmp7 tmp10 = tmp7 == tmp5 tmp11 = tmp3 == tmp5 tmp12 = -1.0 tmp13 = 1.0 tmp14 = tl.where(tmp11, tmp12, tmp13) tmp15 = tl.where(tmp10, tmp14, tmp13) tmp16 = tl.where(tmp6, tmp15, tmp13) tmp17 = tl.where(tmp9, tmp12, tmp16) tmp18 = tmp1 == tmp5 tmp19 = tl.where(tmp18, tmp14, tmp13) tmp20 = tl.where(tmp6, tmp19, tmp13) tmp21 = tl.where(tmp8, tmp17, tmp20) tmp22 = tl.where(tmp6, tmp21, tmp20) tmp23 = tl.where(tmp4, tmp12, tmp22) tmp24 = tmp0 == tmp7 tmp25 = tmp0 == tmp5 tmp26 = tl.where(tmp25, tmp14, tmp13) tmp27 = tl.where(tmp6, tmp26, tmp13) tmp28 = tl.where(tmp24, tmp17, tmp27) tmp29 = tl.where(tmp6, tmp28, tmp27) tmp30 = tl.where(tmp2, tmp23, tmp29) tl.store(out_ptr0 + (x3), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/o5/co5yomkkcs2rgxeof426z4h4rrmbchimvmduqu343izlb45nqrih.py # Topologically Sorted Source Nodes: [setitem_3], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_3 => copy_3, full_default_4 # Graph fragment: # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_3 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_35, %full_default_4), kwargs = {}) # %select_scatter_default_9 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_7, %copy_3, 0, 3), kwargs = {}) # %select_scatter_default_10 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_6, %select_scatter_default_9, 0, 3), kwargs = {}) triton_poi_fused_fill_lift_fresh_1 = async_compile.triton('triton_poi_fused_fill_lift_fresh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x1 = (xindex // 4) % 4 x3 = xindex % 16 x4 = xindex tmp7 = tl.load(in_ptr0 + (48 + x3), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (x4), xmask) tmp0 = x2 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 0, tl.int32) tmp6 = tmp5 == tmp5 tmp8 = tl.full([1], 1, tl.int32) tmp9 = tmp1 == tmp8 tmp10 = tmp3 == tmp8 tmp11 = tmp8 == tmp5 tmp12 = tmp3 == tmp5 tmp13 = -1.0 tmp14 = 1.0 tmp15 = tl.where(tmp12, tmp13, tmp14) tmp16 = tl.where(tmp11, tmp15, tmp14) tmp17 = tl.where(tmp6, tmp16, tmp14) tmp18 = tl.where(tmp10, tmp13, tmp17) tmp19 = tmp1 == tmp5 tmp20 = tl.where(tmp19, tmp15, tmp14) tmp21 = tl.where(tmp6, tmp20, tmp14) tmp22 = tl.where(tmp9, tmp18, tmp21) tmp23 = tl.where(tmp6, tmp22, tmp21) tmp24 = tl.where(tmp6, tmp7, tmp23) tmp25 = tl.where(tmp4, tmp13, tmp24) tmp27 = tmp0 == tmp8 tmp28 = tmp0 == tmp5 tmp29 = tl.where(tmp28, tmp15, tmp14) tmp30 = tl.where(tmp6, tmp29, tmp14) tmp31 = tl.where(tmp27, tmp18, tmp30) tmp32 = tl.where(tmp6, tmp31, tmp30) tmp33 = tl.where(tmp6, tmp26, tmp32) tmp34 = tl.where(tmp2, tmp25, tmp33) tl.store(out_ptr0 + (x4), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/un/cun6jfkm6oihpheyya22qcd7wgpe5wbpo63552kvgk4l3rprsvkw.py # Topologically Sorted Source Nodes: [setitem_4], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_4 => copy_4, full_default_5 # Graph fragment: # %full_default_5 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_4 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_46, %full_default_5), kwargs = {}) # %select_scatter_default_12 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_9, %copy_4, 0, 0), kwargs = {}) # %select_scatter_default_13 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_8, %select_scatter_default_12, 0, 0), kwargs = {}) triton_poi_fused_fill_lift_fresh_2 = async_compile.triton('triton_poi_fused_fill_lift_fresh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x1 = (xindex // 4) % 4 x3 = xindex % 16 x4 = xindex tmp7 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (x4), xmask) tmp27 = tl.load(in_ptr1 + (x4), xmask) tmp0 = x2 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 1, tl.int32) tmp6 = tmp5 == tmp1 tmp9 = tmp1 == tmp5 tmp10 = tmp3 == tmp5 tmp11 = tmp1 == tmp1 tmp12 = -1.0 tmp13 = 1.0 tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tl.where(tmp6, tmp14, tmp13) tmp16 = tl.where(tmp11, tmp15, tmp13) tmp17 = tl.where(tmp10, tmp12, tmp16) tmp18 = tl.where(tmp11, tmp14, tmp13) tmp19 = tl.where(tmp11, tmp18, tmp13) tmp20 = tl.where(tmp9, tmp17, tmp19) tmp21 = tl.where(tmp6, tmp18, tmp13) tmp22 = tl.where(tmp6, tmp20, tmp21) tmp23 = tl.where(tmp6, tmp8, tmp22) tmp24 = tl.where(tmp6, tmp7, tmp23) tmp25 = tl.where(tmp4, tmp12, tmp24) tmp28 = tmp0 == tmp5 tmp29 = tl.where(tmp2, tmp14, tmp13) tmp30 = tl.where(tmp11, tmp29, tmp13) tmp31 = tl.where(tmp28, tmp17, tmp30) tmp32 = tl.where(tmp6, tmp29, tmp13) tmp33 = tl.where(tmp6, tmp31, tmp32) tmp34 = tl.where(tmp6, tmp27, tmp33) tmp35 = tl.where(tmp6, tmp26, tmp34) tmp36 = tl.where(tmp2, tmp25, tmp35) tl.store(out_ptr0 + (x4), tmp36, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7y/c7ypywjg537wswju5w3bur534dxsyi6423wwgtvwd2c5f5sm6epb.py # Topologically Sorted Source Nodes: [setitem_5], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_5 => copy_5, full_default_6 # Graph fragment: # %full_default_6 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_5 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_57, %full_default_6), kwargs = {}) # %select_scatter_default_15 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_11, %copy_5, 0, 1), kwargs = {}) # %select_scatter_default_16 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_10, %select_scatter_default_15, 0, 1), kwargs = {}) triton_poi_fused_fill_lift_fresh_3 = async_compile.triton('triton_poi_fused_fill_lift_fresh_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x1 = (xindex // 4) % 4 x3 = xindex % 16 x4 = xindex tmp6 = tl.load(in_ptr0 + (16 + x3), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (16 + x3), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (16 + x3), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (x4), xmask) tmp27 = tl.load(in_ptr1 + (x4), xmask) tmp28 = tl.load(in_ptr2 + (x4), xmask) tmp0 = x2 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tmp1 == tmp1 tmp7 = tl.full([1], 0, tl.int32) tmp8 = tmp1 == tmp7 tmp11 = tmp7 == tmp7 tmp12 = tmp3 == tmp7 tmp13 = -1.0 tmp14 = 1.0 tmp15 = tl.where(tmp12, tmp13, tmp14) tmp16 = tl.where(tmp8, tmp15, tmp14) tmp17 = tl.where(tmp11, tmp16, tmp14) tmp18 = tl.where(tmp4, tmp13, tmp17) tmp19 = tl.where(tmp5, tmp18, tmp17) tmp20 = tl.where(tmp8, tmp16, tmp14) tmp21 = tl.where(tmp8, tmp19, tmp20) tmp22 = tl.where(tmp8, tmp10, tmp21) tmp23 = tl.where(tmp8, tmp9, tmp22) tmp24 = tl.where(tmp5, tmp6, tmp23) tmp25 = tl.where(tmp4, tmp13, tmp24) tmp29 = tmp0 == tmp7 tmp30 = tl.where(tmp29, tmp15, tmp14) tmp31 = tl.where(tmp11, tmp30, tmp14) tmp32 = tl.where(tmp2, tmp18, tmp31) tmp33 = tl.where(tmp8, tmp30, tmp14) tmp34 = tl.where(tmp8, tmp32, tmp33) tmp35 = tl.where(tmp8, tmp28, tmp34) tmp36 = tl.where(tmp8, tmp27, tmp35) tmp37 = tl.where(tmp5, tmp26, tmp36) tmp38 = tl.where(tmp2, tmp25, tmp37) tl.store(out_ptr0 + (x4), tmp38, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vo/cvoqdjgdsbesevfttlp2kzfiy42njlm6joc6vme4keek4dnkvbp5.py # Topologically Sorted Source Nodes: [mask, setitem, setitem_1], Original ATen: [aten.ones_like, aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # mask => full_default # setitem => copy, full_default_1 # setitem_1 => copy_1, full_default_2 # Graph fragment: # %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_2, %full_default_1), kwargs = {}) # %select_scatter_default : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_1, %copy, 0, 0), kwargs = {}) # %select_scatter_default_1 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int, %select_scatter_default, 0, 0), kwargs = {}) # %select_scatter_default_2 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default, %select_scatter_default_1, 0, 0), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_13, %full_default_2), kwargs = {}) # %select_scatter_default_3 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_3, %copy_1, 0, 1), kwargs = {}) # %select_scatter_default_4 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_2, %select_scatter_default_3, 0, 1), kwargs = {}) # %select_scatter_default_5 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_2, %select_scatter_default_4, 0, 0), kwargs = {}) # %select_scatter_default_8 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_5, %select_scatter_default_7, 0, 0), kwargs = {}) # %select_scatter_default_11 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_8, %select_scatter_default_10, 0, 0), kwargs = {}) # %select_scatter_default_14 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_11, %select_scatter_default_13, 0, 1), kwargs = {}) # %select_scatter_default_17 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_14, %select_scatter_default_16, 0, 1), kwargs = {}) triton_poi_fused_fill_lift_fresh_ones_like_4 = async_compile.triton('triton_poi_fused_fill_lift_fresh_ones_like_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_ones_like_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_ones_like_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x4 = xindex % 64 x2 = (xindex // 16) % 4 x1 = (xindex // 4) % 4 x5 = xindex tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last') tmp0 = x3 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.full([1], 0, tl.int32) tmp6 = tmp0 == tmp5 tmp9 = x2 tmp10 = tmp9 == tmp1 tmp11 = x1 tmp12 = tmp11 == tmp1 tmp13 = tmp5 == tmp5 tmp14 = tmp1 == tmp5 tmp15 = tmp11 == tmp5 tmp16 = -1.0 tmp17 = 1.0 tmp18 = tl.where(tmp15, tmp16, tmp17) tmp19 = tl.where(tmp14, tmp18, tmp17) tmp20 = tl.where(tmp13, tmp19, tmp17) tmp21 = tl.where(tmp12, tmp16, tmp20) tmp22 = tmp9 == tmp5 tmp23 = tl.where(tmp22, tmp18, tmp17) tmp24 = tl.where(tmp13, tmp23, tmp17) tmp25 = tl.where(tmp10, tmp21, tmp24) tmp26 = tl.where(tmp6, tmp23, tmp17) tmp27 = tl.where(tmp6, tmp25, tmp26) tmp28 = tl.where(tmp6, tmp8, tmp27) tmp29 = tl.where(tmp6, tmp7, tmp28) tmp30 = tl.where(tmp2, tmp4, tmp29) tmp31 = tl.where(tmp2, tmp3, tmp30) tl.store(out_ptr0 + (x5), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cl/ccl6wlbovhv6lo73iy7pmrbir4ddxwsby7f67ojxshoiu4rrbi22.py # Topologically Sorted Source Nodes: [setitem_8], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_8 => copy_8, full_default_9 # Graph fragment: # %full_default_9 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_8 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_90, %full_default_9), kwargs = {}) # %select_scatter_default_24 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_17, %copy_8, 0, 0), kwargs = {}) # %select_scatter_default_25 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_16, %select_scatter_default_24, 0, 0), kwargs = {}) triton_poi_fused_fill_lift_fresh_5 = async_compile.triton('triton_poi_fused_fill_lift_fresh_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x1 = (xindex // 4) % 4 x3 = xindex % 16 x4 = xindex tmp14 = tl.load(in_ptr0 + (96 + x3), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (112 + x3), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (64 + x3), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (128 + x3), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (64 + x4), xmask) tmp36 = tl.load(in_ptr0 + (128 + x4), xmask) tmp0 = x2 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 2, tl.int32) tmp6 = tl.full([1], 1, tl.int32) tmp7 = tmp5 == tmp6 tmp8 = tl.full([1], 3, tl.int32) tmp9 = tmp1 == tmp8 tmp10 = tmp3 == tmp8 tmp11 = tmp6 == tmp6 tmp12 = tmp8 == tmp5 tmp13 = tmp3 == tmp5 tmp15 = -1.0 tmp16 = tl.where(tmp13, tmp15, tmp14) tmp18 = tl.where(tmp12, tmp16, tmp17) tmp19 = tl.where(tmp11, tmp18, tmp17) tmp20 = tl.where(tmp10, tmp15, tmp19) tmp21 = tmp1 == tmp5 tmp23 = tl.where(tmp21, tmp16, tmp22) tmp24 = tl.where(tmp11, tmp23, tmp22) tmp25 = tl.where(tmp9, tmp20, tmp24) tmp27 = tl.where(tmp7, tmp23, tmp26) tmp28 = tl.where(tmp7, tmp25, tmp27) tmp29 = tl.where(tmp4, tmp15, tmp28) tmp30 = tmp0 == tmp8 tmp31 = tmp0 == tmp5 tmp33 = tl.where(tmp31, tmp16, tmp32) tmp34 = tl.where(tmp11, tmp33, tmp32) tmp35 = tl.where(tmp30, tmp20, tmp34) tmp37 = tl.where(tmp7, tmp33, tmp36) tmp38 = tl.where(tmp7, tmp35, tmp37) tmp39 = tl.where(tmp2, tmp29, tmp38) tl.store(out_ptr0 + (x4), tmp39, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/g6/cg6cd2lwpictv7xe7vbpr7ji3nbp4c73svhk6jzlqlqwyshni6ra.py # Topologically Sorted Source Nodes: [setitem_6, setitem_7], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_6 => copy_6, full_default_7 # setitem_7 => copy_7, full_default_8 # Graph fragment: # %full_default_7 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_6 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_68, %full_default_7), kwargs = {}) # %select_scatter_default_18 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_13, %copy_6, 0, 2), kwargs = {}) # %select_scatter_default_19 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_12, %select_scatter_default_18, 0, 2), kwargs = {}) # %select_scatter_default_20 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_17, %select_scatter_default_19, 0, 1), kwargs = {}) # %full_default_8 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_7 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_79, %full_default_8), kwargs = {}) # %select_scatter_default_21 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_15, %copy_7, 0, 3), kwargs = {}) # %select_scatter_default_22 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_14, %select_scatter_default_21, 0, 3), kwargs = {}) # %select_scatter_default_23 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_20, %select_scatter_default_22, 0, 1), kwargs = {}) # %select_scatter_default_26 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_23, %select_scatter_default_25, 0, 2), kwargs = {}) triton_poi_fused_fill_lift_fresh_6 = async_compile.triton('triton_poi_fused_fill_lift_fresh_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x4 = xindex % 64 x2 = (xindex // 16) % 4 x1 = (xindex // 4) % 4 x6 = xindex % 16 x7 = xindex tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (96 + x6), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (112 + x6), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (64 + x4), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (x7), xmask) tmp0 = x3 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp4 = tl.full([1], 1, tl.int32) tmp5 = tmp0 == tmp4 tmp6 = x2 tmp7 = tl.full([1], 3, tl.int32) tmp8 = tmp6 == tmp7 tmp9 = x1 tmp10 = tmp9 == tmp7 tmp11 = tmp4 == tmp4 tmp12 = tmp7 == tmp1 tmp13 = tmp9 == tmp1 tmp15 = -1.0 tmp16 = tl.where(tmp13, tmp15, tmp14) tmp18 = tl.where(tmp12, tmp16, tmp17) tmp19 = tl.where(tmp11, tmp18, tmp17) tmp20 = tl.where(tmp10, tmp15, tmp19) tmp21 = tmp6 == tmp1 tmp23 = tl.where(tmp21, tmp16, tmp22) tmp24 = tl.where(tmp11, tmp23, tmp22) tmp25 = tl.where(tmp8, tmp20, tmp24) tmp27 = tl.where(tmp5, tmp23, tmp26) tmp28 = tl.where(tmp5, tmp25, tmp27) tmp29 = tl.where(tmp2, tmp3, tmp28) tl.store(out_ptr0 + (x7), tmp29, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3c/c3coocxjam5lvcqaujgmyixhlezs7tkgkncieupaji7qgfpyhzfn.py # Topologically Sorted Source Nodes: [setitem_11], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_11 => copy_11, full_default_12 # Graph fragment: # %full_default_12 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_11 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_123, %full_default_12), kwargs = {}) # %select_scatter_default_33 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_23, %copy_11, 0, 3), kwargs = {}) # %select_scatter_default_34 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_22, %select_scatter_default_33, 0, 3), kwargs = {}) triton_poi_fused_fill_lift_fresh_7 = async_compile.triton('triton_poi_fused_fill_lift_fresh_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x1 = (xindex // 4) % 4 x3 = xindex % 16 x4 = xindex tmp12 = tl.load(in_ptr0 + (144 + x3), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (160 + x3), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (176 + x3), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (128 + x4), xmask) tmp0 = x2 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 2, tl.int32) tmp6 = tmp5 == tmp5 tmp7 = tmp1 == tmp5 tmp8 = tmp3 == tmp5 tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp5 == tmp9 tmp11 = tmp3 == tmp9 tmp13 = -1.0 tmp14 = tl.where(tmp11, tmp13, tmp12) tmp16 = tl.where(tmp10, tmp14, tmp15) tmp17 = tl.where(tmp6, tmp16, tmp15) tmp18 = tl.where(tmp8, tmp13, tmp17) tmp19 = tmp1 == tmp9 tmp21 = tl.where(tmp19, tmp14, tmp20) tmp22 = tl.where(tmp6, tmp21, tmp20) tmp23 = tl.where(tmp7, tmp18, tmp22) tmp24 = tl.where(tmp6, tmp23, tmp22) tmp25 = tl.where(tmp4, tmp13, tmp24) tmp26 = tmp0 == tmp5 tmp27 = tmp0 == tmp9 tmp29 = tl.where(tmp27, tmp14, tmp28) tmp30 = tl.where(tmp6, tmp29, tmp28) tmp31 = tl.where(tmp26, tmp18, tmp30) tmp32 = tl.where(tmp6, tmp31, tmp30) tmp33 = tl.where(tmp2, tmp25, tmp32) tl.store(out_ptr0 + (x4), tmp33, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/5k/c5kg5y7siwe6bnuycvfamfzclact7gqepiigsayadbaftktu22b3.py # Topologically Sorted Source Nodes: [setitem_9, setitem_10], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_10 => copy_10, full_default_11 # setitem_9 => copy_9, full_default_10 # Graph fragment: # %full_default_10 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_9 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_101, %full_default_10), kwargs = {}) # %select_scatter_default_27 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_19, %copy_9, 0, 1), kwargs = {}) # %select_scatter_default_28 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_18, %select_scatter_default_27, 0, 1), kwargs = {}) # %select_scatter_default_29 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_26, %select_scatter_default_28, 0, 2), kwargs = {}) # %full_default_11 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_10 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_112, %full_default_11), kwargs = {}) # %select_scatter_default_30 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_21, %copy_10, 0, 2), kwargs = {}) # %select_scatter_default_31 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_20, %select_scatter_default_30, 0, 2), kwargs = {}) # %select_scatter_default_32 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_29, %select_scatter_default_31, 0, 2), kwargs = {}) # %select_scatter_default_35 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_32, %select_scatter_default_34, 0, 2), kwargs = {}) triton_poi_fused_fill_lift_fresh_8 = async_compile.triton('triton_poi_fused_fill_lift_fresh_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x4 = xindex % 64 x2 = (xindex // 16) % 4 x1 = (xindex // 4) % 4 x6 = xindex % 16 x7 = xindex tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (144 + x6), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (160 + x6), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (128 + x4), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (x7), xmask) tmp0 = x3 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp4 = x2 tmp5 = tmp4 == tmp1 tmp6 = x1 tmp7 = tmp6 == tmp1 tmp8 = tmp1 == tmp1 tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp1 == tmp9 tmp11 = tmp6 == tmp9 tmp13 = -1.0 tmp14 = tl.where(tmp11, tmp13, tmp12) tmp16 = tl.where(tmp10, tmp14, tmp15) tmp17 = tl.where(tmp8, tmp16, tmp15) tmp18 = tl.where(tmp7, tmp13, tmp17) tmp19 = tmp4 == tmp9 tmp21 = tl.where(tmp19, tmp14, tmp20) tmp22 = tl.where(tmp8, tmp21, tmp20) tmp23 = tl.where(tmp5, tmp18, tmp22) tmp25 = tl.where(tmp2, tmp21, tmp24) tmp26 = tl.where(tmp2, tmp23, tmp25) tmp27 = tl.where(tmp2, tmp3, tmp26) tl.store(out_ptr0 + (x7), tmp27, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/d7/cd7q7w4xgz7bt2px4m3m7lgjhgjekwyzonegxewzaloezea3aedd.py # Topologically Sorted Source Nodes: [setitem_14], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_14 => copy_14, full_default_15 # Graph fragment: # %full_default_15 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_14 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_156, %full_default_15), kwargs = {}) # %select_scatter_default_42 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_29, %copy_14, 0, 2), kwargs = {}) # %select_scatter_default_43 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_28, %select_scatter_default_42, 0, 2), kwargs = {}) triton_poi_fused_fill_lift_fresh_9 = async_compile.triton('triton_poi_fused_fill_lift_fresh_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x1 = (xindex // 4) % 4 x3 = xindex % 16 x4 = xindex tmp13 = tl.load(in_ptr0 + (192 + x3), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (208 + x3), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (224 + x3), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (192 + x4), xmask) tmp0 = x2 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 3, tl.int32) tmp6 = tmp5 == tmp5 tmp7 = tl.full([1], 1, tl.int32) tmp8 = tmp1 == tmp7 tmp9 = tmp3 == tmp7 tmp10 = tl.full([1], 0, tl.int32) tmp11 = tmp7 == tmp10 tmp12 = tmp3 == tmp10 tmp14 = -1.0 tmp15 = tl.where(tmp12, tmp14, tmp13) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tl.where(tmp6, tmp17, tmp16) tmp19 = tl.where(tmp9, tmp14, tmp18) tmp20 = tmp1 == tmp10 tmp22 = tl.where(tmp20, tmp15, tmp21) tmp23 = tl.where(tmp6, tmp22, tmp21) tmp24 = tl.where(tmp8, tmp19, tmp23) tmp25 = tl.where(tmp6, tmp24, tmp23) tmp26 = tl.where(tmp4, tmp14, tmp25) tmp27 = tmp0 == tmp7 tmp28 = tmp0 == tmp10 tmp30 = tl.where(tmp28, tmp15, tmp29) tmp31 = tl.where(tmp6, tmp30, tmp29) tmp32 = tl.where(tmp27, tmp19, tmp31) tmp33 = tl.where(tmp6, tmp32, tmp31) tmp34 = tl.where(tmp2, tmp26, tmp33) tl.store(out_ptr0 + (x4), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cs/ccsfwyb4wxftjo6rtcp6az7e3vto53qvyyrihtpjd2tyyrglkdn2.py # Topologically Sorted Source Nodes: [setitem_12, setitem_13], Original ATen: [aten.lift_fresh, aten.fill] # Source node to ATen node mapping: # setitem_12 => copy_12, full_default_13 # setitem_13 => copy_13, full_default_14 # Graph fragment: # %full_default_13 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_12 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_134, %full_default_13), kwargs = {}) # %select_scatter_default_36 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_25, %copy_12, 0, 0), kwargs = {}) # %select_scatter_default_37 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_24, %select_scatter_default_36, 0, 0), kwargs = {}) # %select_scatter_default_38 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_35, %select_scatter_default_37, 0, 3), kwargs = {}) # %full_default_14 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_13 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_145, %full_default_14), kwargs = {}) # %select_scatter_default_39 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_27, %copy_13, 0, 1), kwargs = {}) # %select_scatter_default_40 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_26, %select_scatter_default_39, 0, 1), kwargs = {}) # %select_scatter_default_41 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_38, %select_scatter_default_40, 0, 3), kwargs = {}) # %select_scatter_default_44 : [num_users=4] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_41, %select_scatter_default_43, 0, 3), kwargs = {}) triton_poi_fused_fill_lift_fresh_10 = async_compile.triton('triton_poi_fused_fill_lift_fresh_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x4 = xindex % 64 x2 = (xindex // 16) % 4 x1 = (xindex // 4) % 4 x6 = xindex % 16 x7 = xindex tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (192 + x6), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (208 + x6), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (192 + x4), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x7), xmask) tmp0 = x3 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp4 = x2 tmp5 = tl.full([1], 1, tl.int32) tmp6 = tmp4 == tmp5 tmp7 = x1 tmp8 = tmp7 == tmp5 tmp9 = tmp1 == tmp1 tmp10 = tl.full([1], 0, tl.int32) tmp11 = tmp5 == tmp10 tmp12 = tmp7 == tmp10 tmp14 = -1.0 tmp15 = tl.where(tmp12, tmp14, tmp13) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tl.where(tmp9, tmp17, tmp16) tmp19 = tl.where(tmp8, tmp14, tmp18) tmp20 = tmp4 == tmp10 tmp22 = tl.where(tmp20, tmp15, tmp21) tmp23 = tl.where(tmp9, tmp22, tmp21) tmp24 = tl.where(tmp6, tmp19, tmp23) tmp26 = tl.where(tmp2, tmp22, tmp25) tmp27 = tl.where(tmp2, tmp24, tmp26) tmp28 = tl.where(tmp2, tmp3, tmp27) tl.store(out_ptr0 + (x7), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cg/ccgyn3k3m35wjvniirc3omuaar7huvsx544rjsssb3bubtibzkfu.py # Topologically Sorted Source Nodes: [setitem_15, nw, max_1, sum_1], Original ATen: [aten.lift_fresh, aten.fill, aten.mul, aten.max, aten.sum] # Source node to ATen node mapping: # max_1 => max_1 # nw => mul # setitem_15 => copy_15, full_default_16 # sum_1 => sum_1 # Graph fragment: # %full_default_16 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy_15 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_167, %full_default_16), kwargs = {}) # %select_scatter_default_45 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_31, %copy_15, 0, 3), kwargs = {}) # %select_scatter_default_46 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_int_30, %select_scatter_default_45, 0, 3), kwargs = {}) # %select_scatter_default_47 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_44, %select_scatter_default_46, 0, 3), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_scatter_default_47, %arg0_1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%mul, 1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) triton_poi_fused_fill_lift_fresh_max_mul_sum_11 = async_compile.triton('triton_poi_fused_fill_lift_fresh_max_mul_sum_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_lift_fresh_max_mul_sum_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_lift_fresh_max_mul_sum_11(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x1 = (xindex // 4) % 4 x3 = xindex % 16 x4 = xindex tmp7 = tl.load(in_ptr0 + (240 + x3), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (192 + x3), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (x3 + (64*x2)), xmask) tmp14 = tl.load(in_ptr1 + (x3 + (64*x2)), xmask) tmp18 = tl.load(in_ptr0 + (208 + x3), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (16 + x3 + (64*x2)), xmask) tmp22 = tl.load(in_ptr1 + (16 + x3 + (64*x2)), xmask) tmp27 = tl.load(in_ptr0 + (224 + x3), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (32 + x3 + (64*x2)), xmask) tmp31 = tl.load(in_ptr1 + (32 + x3 + (64*x2)), xmask) tmp36 = tl.load(in_ptr0 + (48 + x3 + (64*x2)), xmask) tmp38 = tl.load(in_ptr1 + (48 + x3 + (64*x2)), xmask) tmp0 = x2 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp3 == tmp1 tmp5 = x1 tmp6 = tmp5 == tmp1 tmp8 = -1.0 tmp9 = tl.where(tmp6, tmp8, tmp7) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp13 = tl.where(tmp2, tmp11, tmp12) tmp15 = tmp13 * tmp14 tmp16 = tl.full([1], 1, tl.int32) tmp17 = tmp16 == tmp1 tmp19 = tl.where(tmp17, tmp9, tmp18) tmp21 = tl.where(tmp2, tmp19, tmp20) tmp23 = tmp21 * tmp22 tmp24 = triton_helpers.maximum(tmp15, tmp23) tmp25 = tl.full([1], 2, tl.int32) tmp26 = tmp25 == tmp1 tmp28 = tl.where(tmp26, tmp9, tmp27) tmp30 = tl.where(tmp2, tmp28, tmp29) tmp32 = tmp30 * tmp31 tmp33 = triton_helpers.maximum(tmp24, tmp32) tmp34 = tmp1 == tmp1 tmp35 = tl.where(tmp34, tmp9, tmp7) tmp37 = tl.where(tmp2, tmp35, tmp36) tmp39 = tmp37 * tmp38 tmp40 = triton_helpers.maximum(tmp33, tmp39) tmp41 = tmp15 + tmp23 tmp42 = tmp41 + tmp32 tmp43 = tmp42 + tmp39 tl.store(out_ptr0 + (x4), tmp40, xmask) tl.store(out_ptr1 + (x4), tmp43, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/o6/co6tytd2ppuu4uaopq5duefn5z2l2da67l3t6goia5yvqiuj7gqi.py # Topologically Sorted Source Nodes: [max_2, sum_2, mul_1, tmp_all, loss], Original ATen: [aten.max, aten.sum, aten.mul, aten.add, aten.mean] # Source node to ATen node mapping: # loss => mean # max_2 => max_2 # mul_1 => mul_1 # sum_2 => sum_2 # tmp_all => add # Graph fragment: # %max_2 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%getitem, 1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_1, [1]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, 6e-07), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, %mul_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add,), kwargs = {}) triton_per_fused_add_max_mean_mul_sum_12 = async_compile.triton('triton_per_fused_add_max_mean_mul_sum_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_max_mean_mul_sum_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_max_mean_mul_sum_12(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 4 r1 = (rindex // 4) tmp0 = tl.load(in_ptr0 + (r0 + (16*r1)), None) tmp1 = tl.load(in_ptr0 + (4 + r0 + (16*r1)), None) tmp3 = tl.load(in_ptr0 + (8 + r0 + (16*r1)), None) tmp5 = tl.load(in_ptr0 + (12 + r0 + (16*r1)), None) tmp7 = tl.load(in_ptr1 + (r0 + (16*r1)), None) tmp8 = tl.load(in_ptr1 + (4 + r0 + (16*r1)), None) tmp10 = tl.load(in_ptr1 + (8 + r0 + (16*r1)), None) tmp12 = tl.load(in_ptr1 + (12 + r0 + (16*r1)), None) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp14 = 6e-07 tmp15 = tmp13 * tmp14 tmp16 = tmp6 + tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = tl.sum(tmp17, 1)[:, None] tmp20 = 16.0 tmp21 = tmp19 / tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp21, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [setitem_2], Original ATen: [aten.lift_fresh, aten.fill] stream0 = get_raw_stream(0) triton_poi_fused_fill_lift_fresh_0.run(buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [setitem_3], Original ATen: [aten.lift_fresh, aten.fill] triton_poi_fused_fill_lift_fresh_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [setitem_4], Original ATen: [aten.lift_fresh, aten.fill] triton_poi_fused_fill_lift_fresh_2.run(buf1, buf0, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [setitem_5], Original ATen: [aten.lift_fresh, aten.fill] triton_poi_fused_fill_lift_fresh_3.run(buf2, buf1, buf0, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mask, setitem, setitem_1], Original ATen: [aten.ones_like, aten.lift_fresh, aten.fill] triton_poi_fused_fill_lift_fresh_ones_like_4.run(buf3, buf2, buf1, buf0, buf4, 256, grid=grid(256), stream=stream0) del buf0 del buf1 buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [setitem_8], Original ATen: [aten.lift_fresh, aten.fill] triton_poi_fused_fill_lift_fresh_5.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [setitem_6, setitem_7], Original ATen: [aten.lift_fresh, aten.fill] triton_poi_fused_fill_lift_fresh_6.run(buf5, buf4, buf6, 256, grid=grid(256), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [setitem_11], Original ATen: [aten.lift_fresh, aten.fill] triton_poi_fused_fill_lift_fresh_7.run(buf6, buf7, 64, grid=grid(64), stream=stream0) buf8 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [setitem_9, setitem_10], Original ATen: [aten.lift_fresh, aten.fill] triton_poi_fused_fill_lift_fresh_8.run(buf7, buf6, buf8, 256, grid=grid(256), stream=stream0) buf9 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [setitem_14], Original ATen: [aten.lift_fresh, aten.fill] triton_poi_fused_fill_lift_fresh_9.run(buf8, buf9, 64, grid=grid(64), stream=stream0) buf10 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [setitem_12, setitem_13], Original ATen: [aten.lift_fresh, aten.fill] triton_poi_fused_fill_lift_fresh_10.run(buf9, buf8, buf10, 256, grid=grid(256), stream=stream0) del buf8 buf11 = buf9; del buf9 # reuse buf12 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [setitem_15, nw, max_1, sum_1], Original ATen: [aten.lift_fresh, aten.fill, aten.mul, aten.max, aten.sum] triton_poi_fused_fill_lift_fresh_max_mul_sum_11.run(buf10, arg0_1, buf11, buf12, 64, grid=grid(64), stream=stream0) del arg0_1 del buf10 buf13 = empty_strided_cuda((), (), torch.float32) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [max_2, sum_2, mul_1, tmp_all, loss], Original ATen: [aten.max, aten.sum, aten.mul, aten.add, aten.mean] triton_per_fused_add_max_mean_mul_sum_12.run(buf14, buf11, buf12, 1, 16, grid=grid(1), stream=stream0) del buf11 del buf12 return (buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data class CosLoss(nn.Module): def __init__(self, factor=6e-07, havesum=True, havemax=True): super(CosLoss, self).__init__() self.factor = factor self.havesum = havesum self.havemax = havemax def forward(self, w): mask = torch.ones_like(w) for i in range(mask.shape[0]): for j in range(mask.shape[1]): mask[i, j, j] = -1 nw = mask * w tmp, _ = torch.max(nw, dim=1) tmp, _ = torch.max(tmp, dim=1) if self.havesum and self.havemax: tmp_all = tmp + self.factor * torch.sum(torch.sum(nw, dim=1), dim=1 ) elif self.havesum: tmp_all = self.factor * torch.sum(torch.sum(nw, dim=1), dim=1) else: tmp_all = tmp loss = torch.mean(tmp_all) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_fill_lift_fresh_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x1 = xindex // 4 % 4 x3 = xindex tmp0 = x2 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 0, tl.int32) tmp6 = tmp5 == tmp5 tmp7 = tl.full([1], 1, tl.int32) tmp8 = tmp1 == tmp7 tmp9 = tmp3 == tmp7 tmp10 = tmp7 == tmp5 tmp11 = tmp3 == tmp5 tmp12 = -1.0 tmp13 = 1.0 tmp14 = tl.where(tmp11, tmp12, tmp13) tmp15 = tl.where(tmp10, tmp14, tmp13) tmp16 = tl.where(tmp6, tmp15, tmp13) tmp17 = tl.where(tmp9, tmp12, tmp16) tmp18 = tmp1 == tmp5 tmp19 = tl.where(tmp18, tmp14, tmp13) tmp20 = tl.where(tmp6, tmp19, tmp13) tmp21 = tl.where(tmp8, tmp17, tmp20) tmp22 = tl.where(tmp6, tmp21, tmp20) tmp23 = tl.where(tmp4, tmp12, tmp22) tmp24 = tmp0 == tmp7 tmp25 = tmp0 == tmp5 tmp26 = tl.where(tmp25, tmp14, tmp13) tmp27 = tl.where(tmp6, tmp26, tmp13) tmp28 = tl.where(tmp24, tmp17, tmp27) tmp29 = tl.where(tmp6, tmp28, tmp27) tmp30 = tl.where(tmp2, tmp23, tmp29) tl.store(out_ptr0 + x3, tmp30, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x1 = xindex // 4 % 4 x3 = xindex % 16 x4 = xindex tmp7 = tl.load(in_ptr0 + (48 + x3), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + x4, xmask) tmp0 = x2 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 0, tl.int32) tmp6 = tmp5 == tmp5 tmp8 = tl.full([1], 1, tl.int32) tmp9 = tmp1 == tmp8 tmp10 = tmp3 == tmp8 tmp11 = tmp8 == tmp5 tmp12 = tmp3 == tmp5 tmp13 = -1.0 tmp14 = 1.0 tmp15 = tl.where(tmp12, tmp13, tmp14) tmp16 = tl.where(tmp11, tmp15, tmp14) tmp17 = tl.where(tmp6, tmp16, tmp14) tmp18 = tl.where(tmp10, tmp13, tmp17) tmp19 = tmp1 == tmp5 tmp20 = tl.where(tmp19, tmp15, tmp14) tmp21 = tl.where(tmp6, tmp20, tmp14) tmp22 = tl.where(tmp9, tmp18, tmp21) tmp23 = tl.where(tmp6, tmp22, tmp21) tmp24 = tl.where(tmp6, tmp7, tmp23) tmp25 = tl.where(tmp4, tmp13, tmp24) tmp27 = tmp0 == tmp8 tmp28 = tmp0 == tmp5 tmp29 = tl.where(tmp28, tmp15, tmp14) tmp30 = tl.where(tmp6, tmp29, tmp14) tmp31 = tl.where(tmp27, tmp18, tmp30) tmp32 = tl.where(tmp6, tmp31, tmp30) tmp33 = tl.where(tmp6, tmp26, tmp32) tmp34 = tl.where(tmp2, tmp25, tmp33) tl.store(out_ptr0 + x4, tmp34, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x1 = xindex // 4 % 4 x3 = xindex % 16 x4 = xindex tmp7 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + x4, xmask) tmp27 = tl.load(in_ptr1 + x4, xmask) tmp0 = x2 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 1, tl.int32) tmp6 = tmp5 == tmp1 tmp9 = tmp1 == tmp5 tmp10 = tmp3 == tmp5 tmp11 = tmp1 == tmp1 tmp12 = -1.0 tmp13 = 1.0 tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tl.where(tmp6, tmp14, tmp13) tmp16 = tl.where(tmp11, tmp15, tmp13) tmp17 = tl.where(tmp10, tmp12, tmp16) tmp18 = tl.where(tmp11, tmp14, tmp13) tmp19 = tl.where(tmp11, tmp18, tmp13) tmp20 = tl.where(tmp9, tmp17, tmp19) tmp21 = tl.where(tmp6, tmp18, tmp13) tmp22 = tl.where(tmp6, tmp20, tmp21) tmp23 = tl.where(tmp6, tmp8, tmp22) tmp24 = tl.where(tmp6, tmp7, tmp23) tmp25 = tl.where(tmp4, tmp12, tmp24) tmp28 = tmp0 == tmp5 tmp29 = tl.where(tmp2, tmp14, tmp13) tmp30 = tl.where(tmp11, tmp29, tmp13) tmp31 = tl.where(tmp28, tmp17, tmp30) tmp32 = tl.where(tmp6, tmp29, tmp13) tmp33 = tl.where(tmp6, tmp31, tmp32) tmp34 = tl.where(tmp6, tmp27, tmp33) tmp35 = tl.where(tmp6, tmp26, tmp34) tmp36 = tl.where(tmp2, tmp25, tmp35) tl.store(out_ptr0 + x4, tmp36, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x1 = xindex // 4 % 4 x3 = xindex % 16 x4 = xindex tmp6 = tl.load(in_ptr0 + (16 + x3), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (16 + x3), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (16 + x3), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + x4, xmask) tmp27 = tl.load(in_ptr1 + x4, xmask) tmp28 = tl.load(in_ptr2 + x4, xmask) tmp0 = x2 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tmp1 == tmp1 tmp7 = tl.full([1], 0, tl.int32) tmp8 = tmp1 == tmp7 tmp11 = tmp7 == tmp7 tmp12 = tmp3 == tmp7 tmp13 = -1.0 tmp14 = 1.0 tmp15 = tl.where(tmp12, tmp13, tmp14) tmp16 = tl.where(tmp8, tmp15, tmp14) tmp17 = tl.where(tmp11, tmp16, tmp14) tmp18 = tl.where(tmp4, tmp13, tmp17) tmp19 = tl.where(tmp5, tmp18, tmp17) tmp20 = tl.where(tmp8, tmp16, tmp14) tmp21 = tl.where(tmp8, tmp19, tmp20) tmp22 = tl.where(tmp8, tmp10, tmp21) tmp23 = tl.where(tmp8, tmp9, tmp22) tmp24 = tl.where(tmp5, tmp6, tmp23) tmp25 = tl.where(tmp4, tmp13, tmp24) tmp29 = tmp0 == tmp7 tmp30 = tl.where(tmp29, tmp15, tmp14) tmp31 = tl.where(tmp11, tmp30, tmp14) tmp32 = tl.where(tmp2, tmp18, tmp31) tmp33 = tl.where(tmp8, tmp30, tmp14) tmp34 = tl.where(tmp8, tmp32, tmp33) tmp35 = tl.where(tmp8, tmp28, tmp34) tmp36 = tl.where(tmp8, tmp27, tmp35) tmp37 = tl.where(tmp5, tmp26, tmp36) tmp38 = tl.where(tmp2, tmp25, tmp37) tl.store(out_ptr0 + x4, tmp38, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_ones_like_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x4 = xindex % 64 x2 = xindex // 16 % 4 x1 = xindex // 4 % 4 x5 = xindex tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last') tmp0 = x3 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.full([1], 0, tl.int32) tmp6 = tmp0 == tmp5 tmp9 = x2 tmp10 = tmp9 == tmp1 tmp11 = x1 tmp12 = tmp11 == tmp1 tmp13 = tmp5 == tmp5 tmp14 = tmp1 == tmp5 tmp15 = tmp11 == tmp5 tmp16 = -1.0 tmp17 = 1.0 tmp18 = tl.where(tmp15, tmp16, tmp17) tmp19 = tl.where(tmp14, tmp18, tmp17) tmp20 = tl.where(tmp13, tmp19, tmp17) tmp21 = tl.where(tmp12, tmp16, tmp20) tmp22 = tmp9 == tmp5 tmp23 = tl.where(tmp22, tmp18, tmp17) tmp24 = tl.where(tmp13, tmp23, tmp17) tmp25 = tl.where(tmp10, tmp21, tmp24) tmp26 = tl.where(tmp6, tmp23, tmp17) tmp27 = tl.where(tmp6, tmp25, tmp26) tmp28 = tl.where(tmp6, tmp8, tmp27) tmp29 = tl.where(tmp6, tmp7, tmp28) tmp30 = tl.where(tmp2, tmp4, tmp29) tmp31 = tl.where(tmp2, tmp3, tmp30) tl.store(out_ptr0 + x5, tmp31, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x1 = xindex // 4 % 4 x3 = xindex % 16 x4 = xindex tmp14 = tl.load(in_ptr0 + (96 + x3), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (112 + x3), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (64 + x3), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (128 + x3), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (64 + x4), xmask) tmp36 = tl.load(in_ptr0 + (128 + x4), xmask) tmp0 = x2 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 2, tl.int32) tmp6 = tl.full([1], 1, tl.int32) tmp7 = tmp5 == tmp6 tmp8 = tl.full([1], 3, tl.int32) tmp9 = tmp1 == tmp8 tmp10 = tmp3 == tmp8 tmp11 = tmp6 == tmp6 tmp12 = tmp8 == tmp5 tmp13 = tmp3 == tmp5 tmp15 = -1.0 tmp16 = tl.where(tmp13, tmp15, tmp14) tmp18 = tl.where(tmp12, tmp16, tmp17) tmp19 = tl.where(tmp11, tmp18, tmp17) tmp20 = tl.where(tmp10, tmp15, tmp19) tmp21 = tmp1 == tmp5 tmp23 = tl.where(tmp21, tmp16, tmp22) tmp24 = tl.where(tmp11, tmp23, tmp22) tmp25 = tl.where(tmp9, tmp20, tmp24) tmp27 = tl.where(tmp7, tmp23, tmp26) tmp28 = tl.where(tmp7, tmp25, tmp27) tmp29 = tl.where(tmp4, tmp15, tmp28) tmp30 = tmp0 == tmp8 tmp31 = tmp0 == tmp5 tmp33 = tl.where(tmp31, tmp16, tmp32) tmp34 = tl.where(tmp11, tmp33, tmp32) tmp35 = tl.where(tmp30, tmp20, tmp34) tmp37 = tl.where(tmp7, tmp33, tmp36) tmp38 = tl.where(tmp7, tmp35, tmp37) tmp39 = tl.where(tmp2, tmp29, tmp38) tl.store(out_ptr0 + x4, tmp39, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x4 = xindex % 64 x2 = xindex // 16 % 4 x1 = xindex // 4 % 4 x6 = xindex % 16 x7 = xindex tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (96 + x6), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (112 + x6), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (64 + x4), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + x7, xmask) tmp0 = x3 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp4 = tl.full([1], 1, tl.int32) tmp5 = tmp0 == tmp4 tmp6 = x2 tmp7 = tl.full([1], 3, tl.int32) tmp8 = tmp6 == tmp7 tmp9 = x1 tmp10 = tmp9 == tmp7 tmp11 = tmp4 == tmp4 tmp12 = tmp7 == tmp1 tmp13 = tmp9 == tmp1 tmp15 = -1.0 tmp16 = tl.where(tmp13, tmp15, tmp14) tmp18 = tl.where(tmp12, tmp16, tmp17) tmp19 = tl.where(tmp11, tmp18, tmp17) tmp20 = tl.where(tmp10, tmp15, tmp19) tmp21 = tmp6 == tmp1 tmp23 = tl.where(tmp21, tmp16, tmp22) tmp24 = tl.where(tmp11, tmp23, tmp22) tmp25 = tl.where(tmp8, tmp20, tmp24) tmp27 = tl.where(tmp5, tmp23, tmp26) tmp28 = tl.where(tmp5, tmp25, tmp27) tmp29 = tl.where(tmp2, tmp3, tmp28) tl.store(out_ptr0 + x7, tmp29, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x1 = xindex // 4 % 4 x3 = xindex % 16 x4 = xindex tmp12 = tl.load(in_ptr0 + (144 + x3), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (160 + x3), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (176 + x3), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (128 + x4), xmask) tmp0 = x2 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 2, tl.int32) tmp6 = tmp5 == tmp5 tmp7 = tmp1 == tmp5 tmp8 = tmp3 == tmp5 tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp5 == tmp9 tmp11 = tmp3 == tmp9 tmp13 = -1.0 tmp14 = tl.where(tmp11, tmp13, tmp12) tmp16 = tl.where(tmp10, tmp14, tmp15) tmp17 = tl.where(tmp6, tmp16, tmp15) tmp18 = tl.where(tmp8, tmp13, tmp17) tmp19 = tmp1 == tmp9 tmp21 = tl.where(tmp19, tmp14, tmp20) tmp22 = tl.where(tmp6, tmp21, tmp20) tmp23 = tl.where(tmp7, tmp18, tmp22) tmp24 = tl.where(tmp6, tmp23, tmp22) tmp25 = tl.where(tmp4, tmp13, tmp24) tmp26 = tmp0 == tmp5 tmp27 = tmp0 == tmp9 tmp29 = tl.where(tmp27, tmp14, tmp28) tmp30 = tl.where(tmp6, tmp29, tmp28) tmp31 = tl.where(tmp26, tmp18, tmp30) tmp32 = tl.where(tmp6, tmp31, tmp30) tmp33 = tl.where(tmp2, tmp25, tmp32) tl.store(out_ptr0 + x4, tmp33, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x4 = xindex % 64 x2 = xindex // 16 % 4 x1 = xindex // 4 % 4 x6 = xindex % 16 x7 = xindex tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (144 + x6), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (160 + x6), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (128 + x4), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + x7, xmask) tmp0 = x3 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp4 = x2 tmp5 = tmp4 == tmp1 tmp6 = x1 tmp7 = tmp6 == tmp1 tmp8 = tmp1 == tmp1 tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp1 == tmp9 tmp11 = tmp6 == tmp9 tmp13 = -1.0 tmp14 = tl.where(tmp11, tmp13, tmp12) tmp16 = tl.where(tmp10, tmp14, tmp15) tmp17 = tl.where(tmp8, tmp16, tmp15) tmp18 = tl.where(tmp7, tmp13, tmp17) tmp19 = tmp4 == tmp9 tmp21 = tl.where(tmp19, tmp14, tmp20) tmp22 = tl.where(tmp8, tmp21, tmp20) tmp23 = tl.where(tmp5, tmp18, tmp22) tmp25 = tl.where(tmp2, tmp21, tmp24) tmp26 = tl.where(tmp2, tmp23, tmp25) tmp27 = tl.where(tmp2, tmp3, tmp26) tl.store(out_ptr0 + x7, tmp27, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x1 = xindex // 4 % 4 x3 = xindex % 16 x4 = xindex tmp13 = tl.load(in_ptr0 + (192 + x3), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (208 + x3), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (224 + x3), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (192 + x4), xmask) tmp0 = x2 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = x1 tmp4 = tmp3 == tmp1 tmp5 = tl.full([1], 3, tl.int32) tmp6 = tmp5 == tmp5 tmp7 = tl.full([1], 1, tl.int32) tmp8 = tmp1 == tmp7 tmp9 = tmp3 == tmp7 tmp10 = tl.full([1], 0, tl.int32) tmp11 = tmp7 == tmp10 tmp12 = tmp3 == tmp10 tmp14 = -1.0 tmp15 = tl.where(tmp12, tmp14, tmp13) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tl.where(tmp6, tmp17, tmp16) tmp19 = tl.where(tmp9, tmp14, tmp18) tmp20 = tmp1 == tmp10 tmp22 = tl.where(tmp20, tmp15, tmp21) tmp23 = tl.where(tmp6, tmp22, tmp21) tmp24 = tl.where(tmp8, tmp19, tmp23) tmp25 = tl.where(tmp6, tmp24, tmp23) tmp26 = tl.where(tmp4, tmp14, tmp25) tmp27 = tmp0 == tmp7 tmp28 = tmp0 == tmp10 tmp30 = tl.where(tmp28, tmp15, tmp29) tmp31 = tl.where(tmp6, tmp30, tmp29) tmp32 = tl.where(tmp27, tmp19, tmp31) tmp33 = tl.where(tmp6, tmp32, tmp31) tmp34 = tl.where(tmp2, tmp26, tmp33) tl.store(out_ptr0 + x4, tmp34, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x4 = xindex % 64 x2 = xindex // 16 % 4 x1 = xindex // 4 % 4 x6 = xindex % 16 x7 = xindex tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (192 + x6), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (208 + x6), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (192 + x4), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + x7, xmask) tmp0 = x3 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp4 = x2 tmp5 = tl.full([1], 1, tl.int32) tmp6 = tmp4 == tmp5 tmp7 = x1 tmp8 = tmp7 == tmp5 tmp9 = tmp1 == tmp1 tmp10 = tl.full([1], 0, tl.int32) tmp11 = tmp5 == tmp10 tmp12 = tmp7 == tmp10 tmp14 = -1.0 tmp15 = tl.where(tmp12, tmp14, tmp13) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tl.where(tmp9, tmp17, tmp16) tmp19 = tl.where(tmp8, tmp14, tmp18) tmp20 = tmp4 == tmp10 tmp22 = tl.where(tmp20, tmp15, tmp21) tmp23 = tl.where(tmp9, tmp22, tmp21) tmp24 = tl.where(tmp6, tmp19, tmp23) tmp26 = tl.where(tmp2, tmp22, tmp25) tmp27 = tl.where(tmp2, tmp24, tmp26) tmp28 = tl.where(tmp2, tmp3, tmp27) tl.store(out_ptr0 + x7, tmp28, xmask) @triton.jit def triton_poi_fused_fill_lift_fresh_max_mul_sum_11(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x1 = xindex // 4 % 4 x3 = xindex % 16 x4 = xindex tmp7 = tl.load(in_ptr0 + (240 + x3), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (192 + x3), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (x3 + 64 * x2), xmask) tmp14 = tl.load(in_ptr1 + (x3 + 64 * x2), xmask) tmp18 = tl.load(in_ptr0 + (208 + x3), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (16 + x3 + 64 * x2), xmask) tmp22 = tl.load(in_ptr1 + (16 + x3 + 64 * x2), xmask) tmp27 = tl.load(in_ptr0 + (224 + x3), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (32 + x3 + 64 * x2), xmask) tmp31 = tl.load(in_ptr1 + (32 + x3 + 64 * x2), xmask) tmp36 = tl.load(in_ptr0 + (48 + x3 + 64 * x2), xmask) tmp38 = tl.load(in_ptr1 + (48 + x3 + 64 * x2), xmask) tmp0 = x2 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp3 == tmp1 tmp5 = x1 tmp6 = tmp5 == tmp1 tmp8 = -1.0 tmp9 = tl.where(tmp6, tmp8, tmp7) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp13 = tl.where(tmp2, tmp11, tmp12) tmp15 = tmp13 * tmp14 tmp16 = tl.full([1], 1, tl.int32) tmp17 = tmp16 == tmp1 tmp19 = tl.where(tmp17, tmp9, tmp18) tmp21 = tl.where(tmp2, tmp19, tmp20) tmp23 = tmp21 * tmp22 tmp24 = triton_helpers.maximum(tmp15, tmp23) tmp25 = tl.full([1], 2, tl.int32) tmp26 = tmp25 == tmp1 tmp28 = tl.where(tmp26, tmp9, tmp27) tmp30 = tl.where(tmp2, tmp28, tmp29) tmp32 = tmp30 * tmp31 tmp33 = triton_helpers.maximum(tmp24, tmp32) tmp34 = tmp1 == tmp1 tmp35 = tl.where(tmp34, tmp9, tmp7) tmp37 = tl.where(tmp2, tmp35, tmp36) tmp39 = tmp37 * tmp38 tmp40 = triton_helpers.maximum(tmp33, tmp39) tmp41 = tmp15 + tmp23 tmp42 = tmp41 + tmp32 tmp43 = tmp42 + tmp39 tl.store(out_ptr0 + x4, tmp40, xmask) tl.store(out_ptr1 + x4, tmp43, xmask) @triton.jit def triton_per_fused_add_max_mean_mul_sum_12(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 4 r1 = rindex // 4 tmp0 = tl.load(in_ptr0 + (r0 + 16 * r1), None) tmp1 = tl.load(in_ptr0 + (4 + r0 + 16 * r1), None) tmp3 = tl.load(in_ptr0 + (8 + r0 + 16 * r1), None) tmp5 = tl.load(in_ptr0 + (12 + r0 + 16 * r1), None) tmp7 = tl.load(in_ptr1 + (r0 + 16 * r1), None) tmp8 = tl.load(in_ptr1 + (4 + r0 + 16 * r1), None) tmp10 = tl.load(in_ptr1 + (8 + r0 + 16 * r1), None) tmp12 = tl.load(in_ptr1 + (12 + r0 + 16 * r1), None) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp14 = 6e-07 tmp15 = tmp13 * tmp14 tmp16 = tmp6 + tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = tl.sum(tmp17, 1)[:, None] tmp20 = 16.0 tmp21 = tmp19 / tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp21, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_fill_lift_fresh_0[grid(64)](buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_fill_lift_fresh_1[grid(64)](buf0, buf1, 64, XBLOCK =64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_fill_lift_fresh_2[grid(64)](buf1, buf0, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_fill_lift_fresh_3[grid(64)](buf2, buf1, buf0, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_fill_lift_fresh_ones_like_4[grid(256)](buf3, buf2, buf1, buf0, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 buf5 = buf3 del buf3 triton_poi_fused_fill_lift_fresh_5[grid(64)](buf4, buf5, 64, XBLOCK =64, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_fill_lift_fresh_6[grid(256)](buf5, buf4, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = buf5 del buf5 triton_poi_fused_fill_lift_fresh_7[grid(64)](buf6, buf7, 64, XBLOCK =64, num_warps=1, num_stages=1) buf8 = buf4 del buf4 triton_poi_fused_fill_lift_fresh_8[grid(256)](buf7, buf6, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = buf7 del buf7 triton_poi_fused_fill_lift_fresh_9[grid(64)](buf8, buf9, 64, XBLOCK =64, num_warps=1, num_stages=1) buf10 = buf6 del buf6 triton_poi_fused_fill_lift_fresh_10[grid(256)](buf9, buf8, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf8 buf11 = buf9 del buf9 buf12 = buf2 del buf2 triton_poi_fused_fill_lift_fresh_max_mul_sum_11[grid(64)](buf10, arg0_1, buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del buf10 buf13 = empty_strided_cuda((), (), torch.float32) buf14 = buf13 del buf13 triton_per_fused_add_max_mean_mul_sum_12[grid(1)](buf14, buf11, buf12, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf11 del buf12 return buf14, class CosLossNew(nn.Module): def __init__(self, factor=6e-07, havesum=True, havemax=True): super(CosLossNew, self).__init__() self.factor = factor self.havesum = havesum self.havemax = havemax def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
PatrickGui/Face_Pytorch
CosLoss
false
971
[ "Apache-2.0" ]
0
ff5b820ca3978883f7cf95f0209fba3ee958c939
https://github.com/PatrickGui/Face_Pytorch/tree/ff5b820ca3978883f7cf95f0209fba3ee958c939
import torch from torch import nn import torch.utils.data class Model(nn.Module): def __init__(self, factor=6e-07, havesum=True, havemax=True): super().__init__() self.factor = factor self.havesum = havesum self.havemax = havemax def forward(self, w): mask = torch.ones_like(w) for i in range(mask.shape[0]): for j in range(mask.shape[1]): mask[i, j, j] = -1 nw = mask * w tmp, _ = torch.max(nw, dim=1) tmp, _ = torch.max(tmp, dim=1) if self.havesum and self.havemax: tmp_all = tmp + self.factor * torch.sum(torch.sum(nw, dim=1), dim=1 ) elif self.havesum: tmp_all = self.factor * torch.sum(torch.sum(nw, dim=1), dim=1) else: tmp_all = tmp loss = torch.mean(tmp_all) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CumulativeLinkLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/6n/c6ncaq4deouortxdbxjqvks6ti64tknrwk6gyzg4iubs5lsdoh6o.py # Topologically Sorted Source Nodes: [gather, likelihoods, log, neg_log_likelihood, loss], Original ATen: [aten.gather, aten.clamp, aten.log, aten.neg, aten.mean] # Source node to ATen node mapping: # gather => gather # likelihoods => clamp_max, clamp_min, convert_element_type # log => log # loss => mean # neg_log_likelihood => neg # Graph fragment: # %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%arg0_1, 1, %unsqueeze), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%gather, 1e-15), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 0.999999999999999), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_max, torch.int64), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%convert_element_type,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {}) triton_per_fused_clamp_gather_log_mean_neg_0 = async_compile.triton('triton_per_fused_clamp_gather_log_mean_neg_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_clamp_gather_log_mean_neg_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_clamp_gather_log_mean_neg_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last') tmp7 = tmp6.to(tl.float32) tmp8 = 1e-15 tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = 0.999999999999999 tmp11 = triton_helpers.minimum(tmp9, tmp10) tmp12 = tmp11.to(tl.int64) tmp13 = tmp12.to(tl.float32) tmp14 = tl_math.log(tmp13) tmp15 = -tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tmp19 = 4.0 tmp20 = tmp18 / tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp20, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [gather, likelihoods, log, neg_log_likelihood, loss], Original ATen: [aten.gather, aten.clamp, aten.log, aten.neg, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_clamp_gather_log_mean_neg_0.run(buf1, arg1_1, arg0_1, 1, 4, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn from typing import Optional import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed def _reduction(loss: 'torch.Tensor', reduction: 'str') ->torch.Tensor: """ Reduce loss Parameters ---------- loss : torch.Tensor, [batch_size, num_classes] Batch losses. reduction : str Method for reducing the loss. Options include 'elementwise_mean', 'none', and 'sum'. Returns ------- loss : torch.Tensor Reduced loss. """ if reduction == 'elementwise_mean': return loss.mean() elif reduction == 'none': return loss elif reduction == 'sum': return loss.sum() else: raise ValueError(f'{reduction} is not a valid reduction') def cumulative_link_loss(y_pred: 'torch.Tensor', y_true: 'torch.Tensor', reduction: 'str'='elementwise_mean', class_weights: 'Optional[np.ndarray]'=None) ->torch.Tensor: """ Calculates the negative log likelihood using the logistic cumulative link function. See "On the consistency of ordinal regression methods", Pedregosa et. al. for more details. While this paper is not the first to introduce this, it is the only one that I could find that was easily readable outside of paywalls. Parameters ---------- y_pred : torch.Tensor, [batch_size, num_classes] Predicted target class probabilities. float dtype. y_true : torch.Tensor, [batch_size, 1] True target classes. long dtype. reduction : str Method for reducing the loss. Options include 'elementwise_mean', 'none', and 'sum'. class_weights : np.ndarray, [num_classes] optional (default=None) An array of weights for each class. If included, then for each sample, look up the true class and multiply that sample's loss by the weight in this array. Returns ------- loss: torch.Tensor """ eps = 1e-15 likelihoods = torch.clamp(torch.gather(y_pred, 1, y_true.unsqueeze(1)), eps, 1 - eps) neg_log_likelihood = -torch.log(likelihoods) if class_weights is not None: class_weights = torch.as_tensor(class_weights, dtype= neg_log_likelihood.dtype, device=neg_log_likelihood.device) neg_log_likelihood *= class_weights[y_true] loss = _reduction(neg_log_likelihood, reduction) return loss class CumulativeLinkLoss(nn.Module): """ Module form of cumulative_link_loss() loss function Parameters ---------- reduction : str Method for reducing the loss. Options include 'elementwise_mean', 'none', and 'sum'. class_weights : np.ndarray, [num_classes] optional (default=None) An array of weights for each class. If included, then for each sample, look up the true class and multiply that sample's loss by the weight in this array. """ def __init__(self, reduction: 'str'='elementwise_mean', class_weights: 'Optional[torch.Tensor]'=None) ->None: super().__init__() self.class_weights = class_weights self.reduction = reduction def forward(self, y_pred: 'torch.Tensor', y_true: 'torch.Tensor' ) ->torch.Tensor: return cumulative_link_loss(y_pred, y_true, reduction=self. reduction, class_weights=self.class_weights) def get_inputs(): return [torch.ones([4, 4], dtype=torch.int64), torch.ones([4], dtype= torch.int64)] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np from torch import nn from typing import Optional import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_clamp_gather_log_mean_neg_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy= 'evict_last') tmp7 = tmp6.to(tl.float32) tmp8 = 1e-15 tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = 0.999999999999999 tmp11 = triton_helpers.minimum(tmp9, tmp10) tmp12 = tmp11.to(tl.int64) tmp13 = tmp12.to(tl.float32) tmp14 = tl_math.log(tmp13) tmp15 = -tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tmp19 = 4.0 tmp20 = tmp18 / tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_clamp_gather_log_mean_neg_0[grid(1)](buf1, arg1_1, arg0_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def _reduction(loss: 'torch.Tensor', reduction: 'str') ->torch.Tensor: """ Reduce loss Parameters ---------- loss : torch.Tensor, [batch_size, num_classes] Batch losses. reduction : str Method for reducing the loss. Options include 'elementwise_mean', 'none', and 'sum'. Returns ------- loss : torch.Tensor Reduced loss. """ if reduction == 'elementwise_mean': return loss.mean() elif reduction == 'none': return loss elif reduction == 'sum': return loss.sum() else: raise ValueError(f'{reduction} is not a valid reduction') def cumulative_link_loss(y_pred: 'torch.Tensor', y_true: 'torch.Tensor', reduction: 'str'='elementwise_mean', class_weights: 'Optional[np.ndarray]'=None) ->torch.Tensor: """ Calculates the negative log likelihood using the logistic cumulative link function. See "On the consistency of ordinal regression methods", Pedregosa et. al. for more details. While this paper is not the first to introduce this, it is the only one that I could find that was easily readable outside of paywalls. Parameters ---------- y_pred : torch.Tensor, [batch_size, num_classes] Predicted target class probabilities. float dtype. y_true : torch.Tensor, [batch_size, 1] True target classes. long dtype. reduction : str Method for reducing the loss. Options include 'elementwise_mean', 'none', and 'sum'. class_weights : np.ndarray, [num_classes] optional (default=None) An array of weights for each class. If included, then for each sample, look up the true class and multiply that sample's loss by the weight in this array. Returns ------- loss: torch.Tensor """ eps = 1e-15 likelihoods = torch.clamp(torch.gather(y_pred, 1, y_true.unsqueeze(1)), eps, 1 - eps) neg_log_likelihood = -torch.log(likelihoods) if class_weights is not None: class_weights = torch.as_tensor(class_weights, dtype= neg_log_likelihood.dtype, device=neg_log_likelihood.device) neg_log_likelihood *= class_weights[y_true] loss = _reduction(neg_log_likelihood, reduction) return loss class CumulativeLinkLossNew(nn.Module): """ Module form of cumulative_link_loss() loss function Parameters ---------- reduction : str Method for reducing the loss. Options include 'elementwise_mean', 'none', and 'sum'. class_weights : np.ndarray, [num_classes] optional (default=None) An array of weights for each class. If included, then for each sample, look up the true class and multiply that sample's loss by the weight in this array. """ def __init__(self, reduction: 'str'='elementwise_mean', class_weights: 'Optional[torch.Tensor]'=None) ->None: super().__init__() self.class_weights = class_weights self.reduction = reduction def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Ramstein/Retinopathy2
CumulativeLinkLoss
false
972
[ "MIT" ]
0
669e74206c466e6351d4e3df6087c6aa39b5c6c2
https://github.com/Ramstein/Retinopathy2/tree/669e74206c466e6351d4e3df6087c6aa39b5c6c2
import torch import numpy as np from torch import nn from typing import Optional import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed def _reduction(loss: 'torch.Tensor', reduction: 'str') ->torch.Tensor: """ Reduce loss Parameters ---------- loss : torch.Tensor, [batch_size, num_classes] Batch losses. reduction : str Method for reducing the loss. Options include 'elementwise_mean', 'none', and 'sum'. Returns ------- loss : torch.Tensor Reduced loss. """ if reduction == 'elementwise_mean': return loss.mean() elif reduction == 'none': return loss elif reduction == 'sum': return loss.sum() else: raise ValueError(f'{reduction} is not a valid reduction') def cumulative_link_loss(y_pred: 'torch.Tensor', y_true: 'torch.Tensor', reduction: 'str'='elementwise_mean', class_weights: 'Optional[np.ndarray]'=None) ->torch.Tensor: """ Calculates the negative log likelihood using the logistic cumulative link function. See "On the consistency of ordinal regression methods", Pedregosa et. al. for more details. While this paper is not the first to introduce this, it is the only one that I could find that was easily readable outside of paywalls. Parameters ---------- y_pred : torch.Tensor, [batch_size, num_classes] Predicted target class probabilities. float dtype. y_true : torch.Tensor, [batch_size, 1] True target classes. long dtype. reduction : str Method for reducing the loss. Options include 'elementwise_mean', 'none', and 'sum'. class_weights : np.ndarray, [num_classes] optional (default=None) An array of weights for each class. If included, then for each sample, look up the true class and multiply that sample's loss by the weight in this array. Returns ------- loss: torch.Tensor """ eps = 1e-15 likelihoods = torch.clamp(torch.gather(y_pred, 1, y_true.unsqueeze(1)), eps, 1 - eps) neg_log_likelihood = -torch.log(likelihoods) if class_weights is not None: class_weights = torch.as_tensor(class_weights, dtype= neg_log_likelihood.dtype, device=neg_log_likelihood.device) neg_log_likelihood *= class_weights[y_true] loss = _reduction(neg_log_likelihood, reduction) return loss class Model(nn.Module): """ Module form of cumulative_link_loss() loss function Parameters ---------- reduction : str Method for reducing the loss. Options include 'elementwise_mean', 'none', and 'sum'. class_weights : np.ndarray, [num_classes] optional (default=None) An array of weights for each class. If included, then for each sample, look up the true class and multiply that sample's loss by the weight in this array. """ def __init__(self, reduction: 'str'='elementwise_mean', class_weights: 'Optional[torch.Tensor]'=None) ->None: super().__init__() self.class_weights = class_weights self.reduction = reduction def forward(self, y_pred: 'torch.Tensor', y_true: 'torch.Tensor' ) ->torch.Tensor: return cumulative_link_loss(y_pred, y_true, reduction=self. reduction, class_weights=self.class_weights) def get_inputs(): return [torch.ones([4, 4], dtype=torch.int64), torch.ones([4], dtype= torch.int64)] def get_init_inputs(): return []
CustomBatchNormAutograd
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/up/cupno3pzyw77bw3jxggqthxk5iageb5gntveyyc7vpvocufttkij.py # Topologically Sorted Source Nodes: [sum_1, mean, var, sub, add, sqrt, norm, mul_1, out], Original ATen: [aten.sum, aten.mul, aten.var, aten.sub, aten.add, aten.sqrt, aten.div] # Source node to ATen node mapping: # add => add # mean => mul # mul_1 => mul_1 # norm => div # out => add_1 # sqrt => sqrt # sub => sub # sum_1 => sum_1 # var => var # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%primals_1, [0]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 0.25), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [0]), kwargs = {correction: 0}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mul), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-05), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0 = async_compile.triton('triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex x5 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), xmask) tmp2 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (64 + x5), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (128 + x5), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (192 + x5), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp11 = tmp1 - tmp10 tmp12 = 4.0 tmp13 = tmp8 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp3 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp5 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp7 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp11 / tmp28 tmp30 = tmp0 * tmp29 tmp32 = tmp30 + tmp31 tl.store(in_out_ptr0 + (x4), tmp32, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sum_1, mean, var, sub, add, sqrt, norm, mul_1, out], Original ATen: [aten.sum, aten.mul, aten.var, aten.sub, aten.add, aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0.run(buf1, primals_2, primals_1, primals_3, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CustomBatchNormAutograd(nn.Module): """ This nn.module implements a custom version of the batch norm operation for MLPs. The operations called in self.forward track the history if the input tensors have the flag requires_grad set to True. """ def __init__(self, n_neurons, eps=1e-05): """ Initializes CustomBatchNormAutograd object. Args: n_neurons: int specifying the number of neurons eps: small float to be added to the variance for stability """ super(CustomBatchNormAutograd, self).__init__() self.n_neurons = n_neurons self.eps = eps self.beta = nn.Parameter(torch.zeros(self.n_neurons)) self.gamma = nn.Parameter(torch.ones(self.n_neurons)) def forward(self, input): """ Compute the batch normalization Args: input: input tensor of shape (n_batch, n_neurons) Returns: out: batch-normalized tensor """ batch_size = input.shape[0] assert input.shape[1 ] == self.n_neurons, 'Input not in the correct shape' mean = 1 / batch_size * torch.sum(input, dim=0) var = input.var(dim=0, unbiased=False) norm = (input - mean) / torch.sqrt(var + self.eps) out = self.gamma * norm + self.beta return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_neurons': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex x5 = xindex % 64 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, xmask) tmp2 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (64 + x5), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (128 + x5), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (192 + x5), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp11 = tmp1 - tmp10 tmp12 = 4.0 tmp13 = tmp8 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp3 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp5 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp7 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp11 / tmp28 tmp30 = tmp0 * tmp29 tmp32 = tmp30 + tmp31 tl.store(in_out_ptr0 + x4, tmp32, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0[grid(256)](buf1, primals_2, primals_1, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf1, primals_1 class CustomBatchNormAutogradNew(nn.Module): """ This nn.module implements a custom version of the batch norm operation for MLPs. The operations called in self.forward track the history if the input tensors have the flag requires_grad set to True. """ def __init__(self, n_neurons, eps=1e-05): """ Initializes CustomBatchNormAutograd object. Args: n_neurons: int specifying the number of neurons eps: small float to be added to the variance for stability """ super(CustomBatchNormAutogradNew, self).__init__() self.n_neurons = n_neurons self.eps = eps self.beta = nn.Parameter(torch.zeros(self.n_neurons)) self.gamma = nn.Parameter(torch.ones(self.n_neurons)) def forward(self, input_0): primals_2 = self.beta primals_3 = self.gamma primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
RaymondKoopmanschap/DL_assignment_code
CustomBatchNormAutograd
false
973
[ "MIT" ]
0
68b3290be9fbd6c55433a7585e2cfa18e0f35f5c
https://github.com/RaymondKoopmanschap/DL_assignment_code/tree/68b3290be9fbd6c55433a7585e2cfa18e0f35f5c
import torch import torch.nn as nn class Model(nn.Module): """ This nn.module implements a custom version of the batch norm operation for MLPs. The operations called in self.forward track the history if the input tensors have the flag requires_grad set to True. """ def __init__(self, n_neurons, eps=1e-05): """ Initializes CustomBatchNormAutograd object. Args: n_neurons: int specifying the number of neurons eps: small float to be added to the variance for stability """ super().__init__() self.n_neurons = n_neurons self.eps = eps self.beta = nn.Parameter(torch.zeros(self.n_neurons)) self.gamma = nn.Parameter(torch.ones(self.n_neurons)) def forward(self, input): """ Compute the batch normalization Args: input: input tensor of shape (n_batch, n_neurons) Returns: out: batch-normalized tensor """ batch_size = input.shape[0] assert input.shape[1 ] == self.n_neurons, 'Input not in the correct shape' mean = 1 / batch_size * torch.sum(input, dim=0) var = input.var(dim=0, unbiased=False) norm = (input - mean) / torch.sqrt(var + self.eps) out = self.gamma * norm + self.beta return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
MaxPool
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ud/cude6zl4nio2ly5l3l5cwlmxkoqtt4qkekbvrzk6nz7rpwc6ypf3.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem # Graph fragment: # %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 3) % 3 x0 = xindex % 3 x2 = (xindex // 9) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=float("-inf")) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + x0 + (4*x1) + (16*x2)), tmp16 & xmask, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + x0 + (4*x1) + (16*x2)), tmp23 & xmask, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2 + x0 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp5 & tmp29 tmp31 = tl.load(in_ptr0 + ((-2) + x0 + (4*x1) + (16*x2)), tmp30 & xmask, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = x1 tmp34 = tmp33 >= tmp1 tmp35 = tmp33 < tmp3 tmp36 = tmp34 & tmp35 tmp37 = tmp36 & tmp9 tmp38 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1) + (16*x2)), tmp37 & xmask, other=float("-inf")) tmp39 = triton_helpers.maximum(tmp38, tmp32) tmp40 = tmp36 & tmp15 tmp41 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp40 & xmask, other=float("-inf")) tmp42 = triton_helpers.maximum(tmp41, tmp39) tmp43 = tmp36 & tmp22 tmp44 = tl.load(in_ptr0 + (1 + x0 + (4*x1) + (16*x2)), tmp43 & xmask, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp42) tmp46 = tmp36 & tmp29 tmp47 = tl.load(in_ptr0 + (2 + x0 + (4*x1) + (16*x2)), tmp46 & xmask, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = 1 + x1 tmp50 = tmp49 >= tmp1 tmp51 = tmp49 < tmp3 tmp52 = tmp50 & tmp51 tmp53 = tmp52 & tmp9 tmp54 = tl.load(in_ptr0 + (3 + x0 + (4*x1) + (16*x2)), tmp53 & xmask, other=float("-inf")) tmp55 = triton_helpers.maximum(tmp54, tmp48) tmp56 = tmp52 & tmp15 tmp57 = tl.load(in_ptr0 + (4 + x0 + (4*x1) + (16*x2)), tmp56 & xmask, other=float("-inf")) tmp58 = triton_helpers.maximum(tmp57, tmp55) tmp59 = tmp52 & tmp22 tmp60 = tl.load(in_ptr0 + (5 + x0 + (4*x1) + (16*x2)), tmp59 & xmask, other=float("-inf")) tmp61 = triton_helpers.maximum(tmp60, tmp58) tmp62 = tmp52 & tmp29 tmp63 = tl.load(in_ptr0 + (6 + x0 + (4*x1) + (16*x2)), tmp62 & xmask, other=float("-inf")) tmp64 = triton_helpers.maximum(tmp63, tmp61) tmp65 = 2 + x1 tmp66 = tmp65 >= tmp1 tmp67 = tmp65 < tmp3 tmp68 = tmp66 & tmp67 tmp69 = tmp68 & tmp9 tmp70 = tl.load(in_ptr0 + (7 + x0 + (4*x1) + (16*x2)), tmp69 & xmask, other=float("-inf")) tmp71 = triton_helpers.maximum(tmp70, tmp64) tmp72 = tmp68 & tmp15 tmp73 = tl.load(in_ptr0 + (8 + x0 + (4*x1) + (16*x2)), tmp72 & xmask, other=float("-inf")) tmp74 = triton_helpers.maximum(tmp73, tmp71) tmp75 = tmp68 & tmp22 tmp76 = tl.load(in_ptr0 + (9 + x0 + (4*x1) + (16*x2)), tmp75 & xmask, other=float("-inf")) tmp77 = triton_helpers.maximum(tmp76, tmp74) tmp78 = tmp68 & tmp29 tmp79 = tl.load(in_ptr0 + (10 + x0 + (4*x1) + (16*x2)), tmp78 & xmask, other=float("-inf")) tmp80 = triton_helpers.maximum(tmp79, tmp77) tl.store(out_ptr0 + (x4), tmp80, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class MaxPool(nn.Module): def __init__(self, kernel_size, stride=1, padding=1, zero_pad=False): super(MaxPool, self).__init__() self.zero_pad = nn.ZeroPad2d((1, 0, 1, 0)) if zero_pad else None self.pool = nn.MaxPool2d(kernel_size, stride=stride, padding=padding) def forward(self, x): if self.zero_pad: x = self.zero_pad(x) x = self.pool(x) if self.zero_pad: x = x[:, :, 1:, 1:] return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'kernel_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 3 % 3 x0 = xindex % 3 x2 = xindex // 9 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=float('-inf')) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + x0 + 4 * x1 + 16 * x2), tmp16 & xmask, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + x0 + 4 * x1 + 16 * x2), tmp23 & xmask, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2 + x0 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp5 & tmp29 tmp31 = tl.load(in_ptr0 + (-2 + x0 + 4 * x1 + 16 * x2), tmp30 & xmask, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = x1 tmp34 = tmp33 >= tmp1 tmp35 = tmp33 < tmp3 tmp36 = tmp34 & tmp35 tmp37 = tmp36 & tmp9 tmp38 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1 + 16 * x2), tmp37 & xmask, other=float('-inf')) tmp39 = triton_helpers.maximum(tmp38, tmp32) tmp40 = tmp36 & tmp15 tmp41 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp40 & xmask, other =float('-inf')) tmp42 = triton_helpers.maximum(tmp41, tmp39) tmp43 = tmp36 & tmp22 tmp44 = tl.load(in_ptr0 + (1 + x0 + 4 * x1 + 16 * x2), tmp43 & xmask, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp42) tmp46 = tmp36 & tmp29 tmp47 = tl.load(in_ptr0 + (2 + x0 + 4 * x1 + 16 * x2), tmp46 & xmask, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = 1 + x1 tmp50 = tmp49 >= tmp1 tmp51 = tmp49 < tmp3 tmp52 = tmp50 & tmp51 tmp53 = tmp52 & tmp9 tmp54 = tl.load(in_ptr0 + (3 + x0 + 4 * x1 + 16 * x2), tmp53 & xmask, other=float('-inf')) tmp55 = triton_helpers.maximum(tmp54, tmp48) tmp56 = tmp52 & tmp15 tmp57 = tl.load(in_ptr0 + (4 + x0 + 4 * x1 + 16 * x2), tmp56 & xmask, other=float('-inf')) tmp58 = triton_helpers.maximum(tmp57, tmp55) tmp59 = tmp52 & tmp22 tmp60 = tl.load(in_ptr0 + (5 + x0 + 4 * x1 + 16 * x2), tmp59 & xmask, other=float('-inf')) tmp61 = triton_helpers.maximum(tmp60, tmp58) tmp62 = tmp52 & tmp29 tmp63 = tl.load(in_ptr0 + (6 + x0 + 4 * x1 + 16 * x2), tmp62 & xmask, other=float('-inf')) tmp64 = triton_helpers.maximum(tmp63, tmp61) tmp65 = 2 + x1 tmp66 = tmp65 >= tmp1 tmp67 = tmp65 < tmp3 tmp68 = tmp66 & tmp67 tmp69 = tmp68 & tmp9 tmp70 = tl.load(in_ptr0 + (7 + x0 + 4 * x1 + 16 * x2), tmp69 & xmask, other=float('-inf')) tmp71 = triton_helpers.maximum(tmp70, tmp64) tmp72 = tmp68 & tmp15 tmp73 = tl.load(in_ptr0 + (8 + x0 + 4 * x1 + 16 * x2), tmp72 & xmask, other=float('-inf')) tmp74 = triton_helpers.maximum(tmp73, tmp71) tmp75 = tmp68 & tmp22 tmp76 = tl.load(in_ptr0 + (9 + x0 + 4 * x1 + 16 * x2), tmp75 & xmask, other=float('-inf')) tmp77 = triton_helpers.maximum(tmp76, tmp74) tmp78 = tmp68 & tmp29 tmp79 = tl.load(in_ptr0 + (10 + x0 + 4 * x1 + 16 * x2), tmp78 & xmask, other=float('-inf')) tmp80 = triton_helpers.maximum(tmp79, tmp77) tl.store(out_ptr0 + x4, tmp80, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0[grid(144)](arg0_1, buf0, 144, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class MaxPoolNew(nn.Module): def __init__(self, kernel_size, stride=1, padding=1, zero_pad=False): super(MaxPoolNew, self).__init__() self.zero_pad = nn.ZeroPad2d((1, 0, 1, 0)) if zero_pad else None self.pool = nn.MaxPool2d(kernel_size, stride=stride, padding=padding) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Ramstein/Retinopathy2
MaxPool
false
974
[ "MIT" ]
0
669e74206c466e6351d4e3df6087c6aa39b5c6c2
https://github.com/Ramstein/Retinopathy2/tree/669e74206c466e6351d4e3df6087c6aa39b5c6c2
import torch from torch import nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class Model(nn.Module): def __init__(self, kernel_size, stride=1, padding=1, zero_pad=False): super().__init__() self.zero_pad = nn.ZeroPad2d((1, 0, 1, 0)) if zero_pad else None self.pool = nn.MaxPool2d(kernel_size, stride=stride, padding=padding) def forward(self, x): if self.zero_pad: x = self.zero_pad(x) x = self.pool(x) if self.zero_pad: x = x[:, :, 1:, 1:] return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LinearEnsemble
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/jv/cjvcsredzlnp5p23u3wgkkflope6kvqewy3nepikau7sddqcldfj.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%bmm, %unsqueeze), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(primals_2, primals_1, out=buf0) del primals_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as T import torch.nn as nn class LinearEnsemble(nn.Module): __constants__ = ['in_features', 'out_features'] ensemble_size: 'int' in_features: 'int' out_features: 'int' weight: 'T.Tensor' def __init__(self, ensemble_size: 'int', in_features: 'int', out_features: 'int', weight_decay: 'float'=0.0, bias: 'bool'=True ) ->None: super(LinearEnsemble, self).__init__() self.ensemble_size = ensemble_size self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(T.Tensor(ensemble_size, in_features, out_features)) self.weight_decay = weight_decay if bias: self.bias = nn.Parameter(T.Tensor(ensemble_size, out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: pass def forward(self, x: 'T.Tensor') ->T.Tensor: return T.add(T.bmm(x, self.weight), self.bias[:, None, :]) def extra_repr(self) ->str: return 'in_features={}, out_features={}, bias={}'.format(self. in_features, self.out_features, self.bias is not None) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'ensemble_size': 4, 'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch as T import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_2, primals_1, out=buf0) del primals_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(64)](buf1, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0) class LinearEnsembleNew(nn.Module): __constants__ = ['in_features', 'out_features'] ensemble_size: 'int' in_features: 'int' out_features: 'int' weight: 'T.Tensor' def __init__(self, ensemble_size: 'int', in_features: 'int', out_features: 'int', weight_decay: 'float'=0.0, bias: 'bool'=True ) ->None: super(LinearEnsembleNew, self).__init__() self.ensemble_size = ensemble_size self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(T.Tensor(ensemble_size, in_features, out_features)) self.weight_decay = weight_decay if bias: self.bias = nn.Parameter(T.Tensor(ensemble_size, out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: pass def extra_repr(self) ->str: return 'in_features={}, out_features={}, bias={}'.format(self. in_features, self.out_features, self.bias is not None) def forward(self, input_0): primals_1 = self.weight primals_3 = self.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
RamiSketcher/AMMI-RL
LinearEnsemble
false
975
[ "MIT" ]
0
6d51587ff4d5dc14cba87fca561bd7b340b44586
https://github.com/RamiSketcher/AMMI-RL/tree/6d51587ff4d5dc14cba87fca561bd7b340b44586
import torch import torch as T import torch.nn as nn class Model(nn.Module): __constants__ = ['in_features', 'out_features'] ensemble_size: 'int' in_features: 'int' out_features: 'int' weight: 'T.Tensor' def __init__(self, ensemble_size: 'int', in_features: 'int', out_features: 'int', weight_decay: 'float'=0.0, bias: 'bool'=True ) ->None: super().__init__() self.ensemble_size = ensemble_size self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(T.Tensor(ensemble_size, in_features, out_features)) self.weight_decay = weight_decay if bias: self.bias = nn.Parameter(T.Tensor(ensemble_size, out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: pass def forward(self, x: 'T.Tensor') ->T.Tensor: return T.add(T.bmm(x, self.weight), self.bias[:, None, :]) def extra_repr(self) ->str: return 'in_features={}, out_features={}, bias={}'.format(self. in_features, self.out_features, self.bias is not None) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
WordPredictor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/dp/cdpfrqskwwuqnfeupok3qgc45wzitvxhdnpcf5uabibiblorlnoa.py # Topologically Sorted Source Nodes: [hidden, mean_hidden, max_1, add], Original ATen: [aten.relu, aten.mean, aten.max, aten.add] # Source node to ATen node mapping: # add => add # hidden => relu # max_1 => max_1 # mean_hidden => mean # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu, [0]), kwargs = {}) # %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%relu, 0), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %getitem), kwargs = {}) triton_poi_fused_add_max_mean_relu_0 = async_compile.triton('triton_poi_fused_add_max_mean_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_mean_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_max_mean_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x2), xmask) tmp23 = tl.load(in_ptr0 + (32 + x2), xmask) tmp40 = tl.load(in_ptr0 + (48 + x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp8 = tmp4 > tmp7 tmp9 = tmp4 == tmp7 tmp10 = tmp4 != tmp4 tmp11 = tmp7 != tmp7 tmp12 = tmp10 > tmp11 tmp13 = tmp8 | tmp12 tmp14 = tmp10 & tmp11 tmp15 = tmp9 | tmp14 tmp16 = tl.full([1], 0, tl.int64) tmp17 = tl.full([1], 1, tl.int64) tmp18 = tmp16 < tmp17 tmp19 = tmp15 & tmp18 tmp20 = tmp13 | tmp19 tmp21 = tl.where(tmp20, tmp4, tmp7) tmp22 = tl.where(tmp20, tmp16, tmp17) tmp24 = tmp23 + tmp1 tmp25 = triton_helpers.maximum(tmp3, tmp24) tmp26 = tmp21 > tmp25 tmp27 = tmp21 == tmp25 tmp28 = tmp21 != tmp21 tmp29 = tmp25 != tmp25 tmp30 = tmp28 > tmp29 tmp31 = tmp26 | tmp30 tmp32 = tmp28 & tmp29 tmp33 = tmp27 | tmp32 tmp34 = tl.full([1], 2, tl.int64) tmp35 = tmp22 < tmp34 tmp36 = tmp33 & tmp35 tmp37 = tmp31 | tmp36 tmp38 = tl.where(tmp37, tmp21, tmp25) tmp39 = tl.where(tmp37, tmp22, tmp34) tmp41 = tmp40 + tmp1 tmp42 = triton_helpers.maximum(tmp3, tmp41) tmp43 = tmp38 > tmp42 tmp44 = tmp38 == tmp42 tmp45 = tmp38 != tmp38 tmp46 = tmp42 != tmp42 tmp47 = tmp45 > tmp46 tmp48 = tmp43 | tmp47 tmp49 = tmp45 & tmp46 tmp50 = tmp44 | tmp49 tmp51 = tl.full([1], 3, tl.int64) tmp52 = tmp39 < tmp51 tmp53 = tmp50 & tmp52 tmp54 = tmp48 | tmp53 tmp55 = tl.where(tmp54, tmp38, tmp42) tmp56 = tl.where(tmp54, tmp39, tmp51) tmp57 = tmp4 + tmp7 tmp58 = tmp57 + tmp25 tmp59 = tmp58 + tmp42 tmp60 = 4.0 tmp61 = tmp59 / tmp60 tmp62 = triton_helpers.maximum(tmp4, tmp7) tmp63 = triton_helpers.maximum(tmp62, tmp25) tmp64 = triton_helpers.maximum(tmp63, tmp42) tmp65 = tmp61 + tmp64 tl.store(out_ptr0 + (x2), tmp56, xmask) tl.store(out_ptr1 + (x2), tmp65, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/i3/ci32bshm7vv6yycmhvqgk6df7gy4rk2dkcyol7iwwj7ttakuvnhx.py # Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # hidden => relu # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden, mean_hidden, max_1, add], Original ATen: [aten.relu, aten.mean, aten.max, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_max_mean_relu_0.run(buf0, primals_3, buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf0, primals_3, buf4, 64, grid=grid(64), stream=stream0) del buf0 del primals_3 return (buf3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf2, primals_4, reinterpret_tensor(buf1, (1, 4, 4), (16, 4, 1), 0), buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators class WordPredictor(nn.Module): def __init__(self, encoder_output_dim, hidden_dim, output_dim, topk_labels_per_source_token=None, use_self_attention=False): super().__init__() self.encoder_output_dim = encoder_output_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.topk_labels_per_source_token = topk_labels_per_source_token self.use_self_attention = use_self_attention if self.use_self_attention: self.init_layer = nn.Linear(encoder_output_dim, encoder_output_dim) self.attn_layer = nn.Linear(2 * encoder_output_dim, 1) self.hidden_layer = nn.Linear(2 * encoder_output_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) else: self.hidden_layer = nn.Linear(encoder_output_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) def forward(self, encoder_output): encoder_hiddens, *_ = encoder_output assert encoder_hiddens.dim() if self.use_self_attention: init_state = self._get_init_state(encoder_hiddens) attn_scores = self._attention(encoder_hiddens, init_state) attned_state = (encoder_hiddens * attn_scores).sum(0) pred_input = torch.cat([init_state, attned_state], 1) pred_hidden = F.relu(self.hidden_layer(pred_input)) logits = self.output_layer(pred_hidden) else: hidden = F.relu(self.hidden_layer(encoder_hiddens)) mean_hidden = torch.mean(hidden, 0) max_hidden = torch.max(hidden, 0)[0] logits = self.output_layer(mean_hidden + max_hidden) return logits def _get_init_state(self, encoder_hiddens): x = torch.mean(encoder_hiddens, 0) x = F.relu(self.init_layer(x)) return x def _attention(self, encoder_hiddens, init_state): init_state = init_state.unsqueeze(0).expand_as(encoder_hiddens) attn_input = torch.cat([init_state, encoder_hiddens], 2) attn_scores = F.relu(self.attn_layer(attn_input)) attn_scores = F.softmax(attn_scores, 0) return attn_scores def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output if log_probs: return F.log_softmax(logits, dim=1) else: return F.softmax(logits, dim=1) def get_topk_predicted_tokens(self, net_output, src_tokens, log_probs: 'bool'): """ Get self.topk_labels_per_source_token top predicted words for vocab reduction (per source token). """ assert isinstance(self.topk_labels_per_source_token, int ) and self.topk_labels_per_source_token > 0, 'topk_labels_per_source_token must be a positive int, or None' k = src_tokens.size(1) * self.topk_labels_per_source_token probs = self.get_normalized_probs(net_output, log_probs) _, topk_indices = torch.topk(probs, k, dim=1) return topk_indices def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'encoder_output_dim': 4, 'hidden_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_max_mean_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x2), xmask) tmp23 = tl.load(in_ptr0 + (32 + x2), xmask) tmp40 = tl.load(in_ptr0 + (48 + x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp8 = tmp4 > tmp7 tmp9 = tmp4 == tmp7 tmp10 = tmp4 != tmp4 tmp11 = tmp7 != tmp7 tmp12 = tmp10 > tmp11 tmp13 = tmp8 | tmp12 tmp14 = tmp10 & tmp11 tmp15 = tmp9 | tmp14 tmp16 = tl.full([1], 0, tl.int64) tmp17 = tl.full([1], 1, tl.int64) tmp18 = tmp16 < tmp17 tmp19 = tmp15 & tmp18 tmp20 = tmp13 | tmp19 tmp21 = tl.where(tmp20, tmp4, tmp7) tmp22 = tl.where(tmp20, tmp16, tmp17) tmp24 = tmp23 + tmp1 tmp25 = triton_helpers.maximum(tmp3, tmp24) tmp26 = tmp21 > tmp25 tmp27 = tmp21 == tmp25 tmp28 = tmp21 != tmp21 tmp29 = tmp25 != tmp25 tmp30 = tmp28 > tmp29 tmp31 = tmp26 | tmp30 tmp32 = tmp28 & tmp29 tmp33 = tmp27 | tmp32 tmp34 = tl.full([1], 2, tl.int64) tmp35 = tmp22 < tmp34 tmp36 = tmp33 & tmp35 tmp37 = tmp31 | tmp36 tmp38 = tl.where(tmp37, tmp21, tmp25) tmp39 = tl.where(tmp37, tmp22, tmp34) tmp41 = tmp40 + tmp1 tmp42 = triton_helpers.maximum(tmp3, tmp41) tmp43 = tmp38 > tmp42 tmp44 = tmp38 == tmp42 tmp45 = tmp38 != tmp38 tmp46 = tmp42 != tmp42 tmp47 = tmp45 > tmp46 tmp48 = tmp43 | tmp47 tmp49 = tmp45 & tmp46 tmp50 = tmp44 | tmp49 tmp51 = tl.full([1], 3, tl.int64) tmp52 = tmp39 < tmp51 tmp53 = tmp50 & tmp52 tmp54 = tmp48 | tmp53 tl.where(tmp54, tmp38, tmp42) tmp56 = tl.where(tmp54, tmp39, tmp51) tmp57 = tmp4 + tmp7 tmp58 = tmp57 + tmp25 tmp59 = tmp58 + tmp42 tmp60 = 4.0 tmp61 = tmp59 / tmp60 tmp62 = triton_helpers.maximum(tmp4, tmp7) tmp63 = triton_helpers.maximum(tmp62, tmp25) tmp64 = triton_helpers.maximum(tmp63, tmp42) tmp65 = tmp61 + tmp64 tl.store(out_ptr0 + x2, tmp56, xmask) tl.store(out_ptr1 + x2, tmp65, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_max_mean_relu_0[grid(16)](buf0, primals_3, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(64)](buf0, primals_3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del primals_3 return buf3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf2, primals_4, reinterpret_tensor(buf1, (1, 4, 4), (16, 4, 1), 0 ), buf4 class WordPredictorNew(nn.Module): def __init__(self, encoder_output_dim, hidden_dim, output_dim, topk_labels_per_source_token=None, use_self_attention=False): super().__init__() self.encoder_output_dim = encoder_output_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.topk_labels_per_source_token = topk_labels_per_source_token self.use_self_attention = use_self_attention if self.use_self_attention: self.init_layer = nn.Linear(encoder_output_dim, encoder_output_dim) self.attn_layer = nn.Linear(2 * encoder_output_dim, 1) self.hidden_layer = nn.Linear(2 * encoder_output_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) else: self.hidden_layer = nn.Linear(encoder_output_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) def _get_init_state(self, encoder_hiddens): x = torch.mean(encoder_hiddens, 0) x = F.relu(self.init_layer(x)) return x def _attention(self, encoder_hiddens, init_state): init_state = init_state.unsqueeze(0).expand_as(encoder_hiddens) attn_input = torch.cat([init_state, encoder_hiddens], 2) attn_scores = F.relu(self.attn_layer(attn_input)) attn_scores = F.softmax(attn_scores, 0) return attn_scores def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output if log_probs: return F.log_softmax(logits, dim=1) else: return F.softmax(logits, dim=1) def get_topk_predicted_tokens(self, net_output, src_tokens, log_probs: 'bool'): """ Get self.topk_labels_per_source_token top predicted words for vocab reduction (per source token). """ assert isinstance(self.topk_labels_per_source_token, int ) and self.topk_labels_per_source_token > 0, 'topk_labels_per_source_token must be a positive int, or None' k = src_tokens.size(1) * self.topk_labels_per_source_token probs = self.get_normalized_probs(net_output, log_probs) _, topk_indices = torch.topk(probs, k, dim=1) return topk_indices def forward(self, input_0): primals_2 = self.hidden_layer.weight primals_3 = self.hidden_layer.bias primals_4 = self.output_layer.weight primals_5 = self.output_layer.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
ROCmSoftwarePlatform/translate
WordPredictor
false
976
[ "BSD-3-Clause" ]
0
32a6380d914ebe1a6c38c4992aac9600ed3d9810
https://github.com/ROCmSoftwarePlatform/translate/tree/32a6380d914ebe1a6c38c4992aac9600ed3d9810
import torch import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators class Model(nn.Module): def __init__(self, encoder_output_dim, hidden_dim, output_dim, topk_labels_per_source_token=None, use_self_attention=False): super().__init__() self.encoder_output_dim = encoder_output_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.topk_labels_per_source_token = topk_labels_per_source_token self.use_self_attention = use_self_attention if self.use_self_attention: self.init_layer = nn.Linear(encoder_output_dim, encoder_output_dim) self.attn_layer = nn.Linear(2 * encoder_output_dim, 1) self.hidden_layer = nn.Linear(2 * encoder_output_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) else: self.hidden_layer = nn.Linear(encoder_output_dim, hidden_dim) self.output_layer = nn.Linear(hidden_dim, output_dim) def forward(self, encoder_output): encoder_hiddens, *_ = encoder_output assert encoder_hiddens.dim() if self.use_self_attention: init_state = self._get_init_state(encoder_hiddens) attn_scores = self._attention(encoder_hiddens, init_state) attned_state = (encoder_hiddens * attn_scores).sum(0) pred_input = torch.cat([init_state, attned_state], 1) pred_hidden = F.relu(self.hidden_layer(pred_input)) logits = self.output_layer(pred_hidden) else: hidden = F.relu(self.hidden_layer(encoder_hiddens)) mean_hidden = torch.mean(hidden, 0) max_hidden = torch.max(hidden, 0)[0] logits = self.output_layer(mean_hidden + max_hidden) return logits def _get_init_state(self, encoder_hiddens): x = torch.mean(encoder_hiddens, 0) x = F.relu(self.init_layer(x)) return x def _attention(self, encoder_hiddens, init_state): init_state = init_state.unsqueeze(0).expand_as(encoder_hiddens) attn_input = torch.cat([init_state, encoder_hiddens], 2) attn_scores = F.relu(self.attn_layer(attn_input)) attn_scores = F.softmax(attn_scores, 0) return attn_scores def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output if log_probs: return F.log_softmax(logits, dim=1) else: return F.softmax(logits, dim=1) def get_topk_predicted_tokens(self, net_output, src_tokens, log_probs: 'bool'): """ Get self.topk_labels_per_source_token top predicted words for vocab reduction (per source token). """ assert isinstance(self.topk_labels_per_source_token, int ) and self.topk_labels_per_source_token > 0, 'topk_labels_per_source_token must be a positive int, or None' k = src_tokens.size(1) * self.topk_labels_per_source_token probs = self.get_normalized_probs(net_output, log_probs) _, topk_indices = torch.topk(probs, k, dim=1) return topk_indices def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
GlobalAvgPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class GlobalAvgPool2d(nn.Module): def __init__(self): """Global average pooling over the input's spatial dimensions""" super(GlobalAvgPool2d, self).__init__() def forward(self, inputs): in_size = inputs.size() return inputs.view((in_size[0], in_size[1], -1)).mean(dim=2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf1, class GlobalAvgPool2dNew(nn.Module): def __init__(self): """Global average pooling over the input's spatial dimensions""" super(GlobalAvgPool2dNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Rming/Self-Correction-Human-Parsing
GlobalAvgPool2d
false
977
[ "MIT" ]
0
c2b711c0a11f3980a8bf4c7a2acf85d80732620a
https://github.com/Rming/Self-Correction-Human-Parsing/tree/c2b711c0a11f3980a8bf4c7a2acf85d80732620a
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self): """Global average pooling over the input's spatial dimensions""" super().__init__() def forward(self, inputs): in_size = inputs.size() return inputs.view((in_size[0], in_size[1], -1)).mean(dim=2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CustomBatchNormManualModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/up/cupno3pzyw77bw3jxggqthxk5iageb5gntveyyc7vpvocufttkij.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.sum, aten.mul, aten.var, aten.sub, aten.add, aten.sqrt, aten.div] # Source node to ATen node mapping: # out => add, add_1, div, mul, mul_1, sqrt, sub, sum_1, var # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%primals_1, [0]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 0.25), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [0]), kwargs = {correction: 0}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mul), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-05), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0 = async_compile.triton('triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex x5 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), xmask) tmp2 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (64 + x5), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (128 + x5), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (192 + x5), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp11 = tmp1 - tmp10 tmp12 = 4.0 tmp13 = tmp8 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp3 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp5 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp7 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp11 / tmp28 tmp30 = tmp0 * tmp29 tmp32 = tmp30 + tmp31 tl.store(in_out_ptr0 + (x4), tmp32, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.sum, aten.mul, aten.var, aten.sub, aten.add, aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0.run(buf1, primals_2, primals_1, primals_3, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CustomBatchNormManualFunction(torch.autograd.Function): """ This torch.autograd.Function implements a functional custom version of the batch norm operation for MLPs. Using torch.autograd.Function allows you to write a custom backward function. The function will be called from the nn.Module CustomBatchNormManualModule Inside forward the tensors are (automatically) not recorded for automatic differentiation since the backward pass is done via the backward method. The forward pass is not called directly but via the apply() method. This makes sure that the context objects are dealt with correctly. Example: my_bn_fct = CustomBatchNormManualFunction() normalized = fct.apply(input, gamma, beta, eps) """ @staticmethod def forward(ctx, input, gamma, beta, eps=1e-05): """ Compute the batch normalization Args: ctx: context object handling storing and retrival of tensors and constants and specifying whether tensors need gradients in backward pass input: input tensor of shape (n_batch, n_neurons) gamma: variance scaling tensor, applied per neuron, shpae (n_neurons) beta: mean bias tensor, applied per neuron, shpae (n_neurons) eps: small float added to the variance for stability Returns: out: batch-normalized tensor """ batch_size = input.shape[0] mean = 1 / batch_size * torch.sum(input, dim=0) var = input.var(dim=0, unbiased=False) norm = (input - mean) / torch.sqrt(var + eps) out = gamma * norm + beta ctx.save_for_backward(norm, gamma, var) ctx.eps = eps return out @staticmethod def backward(ctx, grad_output): """ Compute backward pass of the batch normalization. Args: ctx: context object handling storing and retrival of tensors and constants and specifying whether tensors need gradients in backward pass Returns: out: tuple containing gradients for all input arguments """ normalized, gamma, var = ctx.saved_tensors eps = ctx.eps B = grad_output.shape[0] grad_gamma = (grad_output * normalized).sum(0) grad_beta = torch.sum(grad_output, dim=0) grad_input = torch.div(gamma, B * torch.sqrt(var + eps)) * (B * grad_output - grad_beta - grad_gamma * normalized) return grad_input, grad_gamma, grad_beta, None class CustomBatchNormManualModule(nn.Module): """ This nn.module implements a custom version of the batch norm operation for MLPs. In self.forward the functional version CustomBatchNormManualFunction.forward is called. The automatic differentiation of PyTorch calls the backward method of this function in the backward pass. """ def __init__(self, n_neurons, eps=1e-05): """ Initializes CustomBatchNormManualModule object. Args: n_neurons: int specifying the number of neurons eps: small float to be added to the variance for stability """ super(CustomBatchNormManualModule, self).__init__() self.n_neurons = n_neurons self.eps = eps self.beta = nn.Parameter(torch.zeros(self.n_neurons)) self.gamma = nn.Parameter(torch.ones(self.n_neurons)) def forward(self, input): """ Compute the batch normalization via CustomBatchNormManualFunction Args: input: input tensor of shape (n_batch, n_neurons) Returns: out: batch-normalized tensor """ assert input.shape[1] == self.n_neurons batch_norm_custom = CustomBatchNormManualFunction() out = batch_norm_custom.apply(input, self.gamma, self.beta, self.eps) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_neurons': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex x5 = xindex % 64 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, xmask) tmp2 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (64 + x5), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (128 + x5), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (192 + x5), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp11 = tmp1 - tmp10 tmp12 = 4.0 tmp13 = tmp8 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp3 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp5 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp7 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp11 / tmp28 tmp30 = tmp0 * tmp29 tmp32 = tmp30 + tmp31 tl.store(in_out_ptr0 + x4, tmp32, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_div_mul_sqrt_sub_sum_var_0[grid(256)](buf1, primals_2, primals_1, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf1, primals_1 class CustomBatchNormManualFunction(torch.autograd.Function): """ This torch.autograd.Function implements a functional custom version of the batch norm operation for MLPs. Using torch.autograd.Function allows you to write a custom backward function. The function will be called from the nn.Module CustomBatchNormManualModule Inside forward the tensors are (automatically) not recorded for automatic differentiation since the backward pass is done via the backward method. The forward pass is not called directly but via the apply() method. This makes sure that the context objects are dealt with correctly. Example: my_bn_fct = CustomBatchNormManualFunction() normalized = fct.apply(input, gamma, beta, eps) """ @staticmethod def forward(ctx, input, gamma, beta, eps=1e-05): """ Compute the batch normalization Args: ctx: context object handling storing and retrival of tensors and constants and specifying whether tensors need gradients in backward pass input: input tensor of shape (n_batch, n_neurons) gamma: variance scaling tensor, applied per neuron, shpae (n_neurons) beta: mean bias tensor, applied per neuron, shpae (n_neurons) eps: small float added to the variance for stability Returns: out: batch-normalized tensor """ batch_size = input.shape[0] mean = 1 / batch_size * torch.sum(input, dim=0) var = input.var(dim=0, unbiased=False) norm = (input - mean) / torch.sqrt(var + eps) out = gamma * norm + beta ctx.save_for_backward(norm, gamma, var) ctx.eps = eps return out @staticmethod def backward(ctx, grad_output): """ Compute backward pass of the batch normalization. Args: ctx: context object handling storing and retrival of tensors and constants and specifying whether tensors need gradients in backward pass Returns: out: tuple containing gradients for all input arguments """ normalized, gamma, var = ctx.saved_tensors eps = ctx.eps B = grad_output.shape[0] grad_gamma = (grad_output * normalized).sum(0) grad_beta = torch.sum(grad_output, dim=0) grad_input = torch.div(gamma, B * torch.sqrt(var + eps)) * (B * grad_output - grad_beta - grad_gamma * normalized) return grad_input, grad_gamma, grad_beta, None class CustomBatchNormManualModuleNew(nn.Module): """ This nn.module implements a custom version of the batch norm operation for MLPs. In self.forward the functional version CustomBatchNormManualFunction.forward is called. The automatic differentiation of PyTorch calls the backward method of this function in the backward pass. """ def __init__(self, n_neurons, eps=1e-05): """ Initializes CustomBatchNormManualModule object. Args: n_neurons: int specifying the number of neurons eps: small float to be added to the variance for stability """ super(CustomBatchNormManualModuleNew, self).__init__() self.n_neurons = n_neurons self.eps = eps self.beta = nn.Parameter(torch.zeros(self.n_neurons)) self.gamma = nn.Parameter(torch.ones(self.n_neurons)) def forward(self, input_0): primals_2 = self.beta primals_3 = self.gamma primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
RaymondKoopmanschap/DL_assignment_code
CustomBatchNormManualModule
false
978
[ "MIT" ]
0
68b3290be9fbd6c55433a7585e2cfa18e0f35f5c
https://github.com/RaymondKoopmanschap/DL_assignment_code/tree/68b3290be9fbd6c55433a7585e2cfa18e0f35f5c
import torch import torch.nn as nn class CustomBatchNormManualFunction(torch.autograd.Function): """ This torch.autograd.Function implements a functional custom version of the batch norm operation for MLPs. Using torch.autograd.Function allows you to write a custom backward function. The function will be called from the nn.Module CustomBatchNormManualModule Inside forward the tensors are (automatically) not recorded for automatic differentiation since the backward pass is done via the backward method. The forward pass is not called directly but via the apply() method. This makes sure that the context objects are dealt with correctly. Example: my_bn_fct = CustomBatchNormManualFunction() normalized = fct.apply(input, gamma, beta, eps) """ @staticmethod def forward(ctx, input, gamma, beta, eps=1e-05): """ Compute the batch normalization Args: ctx: context object handling storing and retrival of tensors and constants and specifying whether tensors need gradients in backward pass input: input tensor of shape (n_batch, n_neurons) gamma: variance scaling tensor, applied per neuron, shpae (n_neurons) beta: mean bias tensor, applied per neuron, shpae (n_neurons) eps: small float added to the variance for stability Returns: out: batch-normalized tensor """ batch_size = input.shape[0] mean = 1 / batch_size * torch.sum(input, dim=0) var = input.var(dim=0, unbiased=False) norm = (input - mean) / torch.sqrt(var + eps) out = gamma * norm + beta ctx.save_for_backward(norm, gamma, var) ctx.eps = eps return out @staticmethod def backward(ctx, grad_output): """ Compute backward pass of the batch normalization. Args: ctx: context object handling storing and retrival of tensors and constants and specifying whether tensors need gradients in backward pass Returns: out: tuple containing gradients for all input arguments """ normalized, gamma, var = ctx.saved_tensors eps = ctx.eps B = grad_output.shape[0] grad_gamma = (grad_output * normalized).sum(0) grad_beta = torch.sum(grad_output, dim=0) grad_input = torch.div(gamma, B * torch.sqrt(var + eps)) * (B * grad_output - grad_beta - grad_gamma * normalized) return grad_input, grad_gamma, grad_beta, None class Model(nn.Module): """ This nn.module implements a custom version of the batch norm operation for MLPs. In self.forward the functional version CustomBatchNormManualFunction.forward is called. The automatic differentiation of PyTorch calls the backward method of this function in the backward pass. """ def __init__(self, n_neurons, eps=1e-05): """ Initializes CustomBatchNormManualModule object. Args: n_neurons: int specifying the number of neurons eps: small float to be added to the variance for stability """ super().__init__() self.n_neurons = n_neurons self.eps = eps self.beta = nn.Parameter(torch.zeros(self.n_neurons)) self.gamma = nn.Parameter(torch.ones(self.n_neurons)) def forward(self, input): """ Compute the batch normalization via CustomBatchNormManualFunction Args: input: input tensor of shape (n_batch, n_neurons) Returns: out: batch-normalized tensor """ assert input.shape[1] == self.n_neurons batch_norm_custom = CustomBatchNormManualFunction() out = batch_norm_custom.apply(input, self.gamma, self.beta, self.eps) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [h_], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # h_ => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xh/cxhi2oxtldw7gsvpajvcvh4iks7iujnefav4smobuv5savmjupdj.py # Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # std => exp # z => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 0.5), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %randn), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %mul_1), kwargs = {}) triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp5 = tl.load(in_ptr2 + (x0), xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp6 = tmp4 * tmp5 tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [h_], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_var], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_7 # Topologically Sorted Source Nodes: [epsilon], Original ATen: [aten.randn_like] buf4 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add] triton_poi_fused_add_exp_mul_1.run(buf2, buf3, buf5, buf6, 256, grid=grid(256), stream=stream0) return (buf6, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf5, primals_6, primals_4, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Encoder(nn.Module): def __init__(self, input_dim, hidden_dim, latent_dim): super(Encoder, self).__init__() self.FC_input = nn.Linear(input_dim, hidden_dim) self.FC_mean = nn.Linear(hidden_dim, latent_dim) self.FC_var = nn.Linear(hidden_dim, latent_dim) self.training = True def forward(self, x): h_ = torch.relu(self.FC_input(x)) mean = self.FC_mean(h_) log_var = self.FC_var(h_) std = torch.exp(0.5 * log_var) z = self.reparameterization(mean, std) return z, mean, log_var def reparameterization(self, mean, std): epsilon = torch.randn_like(std) z = mean + std * epsilon return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'hidden_dim': 4, 'latent_dim': 4}]
import torch from torch import device from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp5 = tl.load(in_ptr2 + x0, xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp6 = tmp4 * tmp5 tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_7 buf4 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch. float32, device=device(type='cuda', index=0), pin_memory=False) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_exp_mul_1[grid(256)](buf2, buf3, buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf6, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf5, primals_6, primals_4, buf7 class EncoderNew(nn.Module): def __init__(self, input_dim, hidden_dim, latent_dim): super(EncoderNew, self).__init__() self.FC_input = nn.Linear(input_dim, hidden_dim) self.FC_mean = nn.Linear(hidden_dim, latent_dim) self.FC_var = nn.Linear(hidden_dim, latent_dim) self.training = True def reparameterization(self, mean, std): epsilon = torch.randn_like(std) z = mean + std * epsilon return z def forward(self, input_0): primals_1 = self.FC_input.weight primals_2 = self.FC_input.bias primals_4 = self.FC_mean.weight primals_5 = self.FC_mean.bias primals_6 = self.FC_var.weight primals_7 = self.FC_var.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1], output[2]
RasmusJuul/dtu_mlops
Encoder
false
979
[ "Apache-2.0" ]
0
98bca082067aa7575bb8e8193991723d474f0850
https://github.com/RasmusJuul/dtu_mlops/tree/98bca082067aa7575bb8e8193991723d474f0850
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_dim, hidden_dim, latent_dim): super().__init__() self.FC_input = nn.Linear(input_dim, hidden_dim) self.FC_mean = nn.Linear(hidden_dim, latent_dim) self.FC_var = nn.Linear(hidden_dim, latent_dim) self.training = True def forward(self, x): h_ = torch.relu(self.FC_input(x)) mean = self.FC_mean(h_) log_var = self.FC_var(h_) std = torch.exp(0.5 * log_var) z = self.reparameterization(mean, std) return z, mean, log_var def reparameterization(self, mean, std): epsilon = torch.randn_like(std) z = mean + std * epsilon return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
Brightness
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/7g/c7geimtdpt65nlqqtkhbbmnvlhudacjtrygpmzvlv5owbl5vxn77.py # Topologically Sorted Source Nodes: [add, clamp], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # add => mul # clamp => clamp_max, clamp_min # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.8), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {}) triton_poi_fused_add_clamp_0 = async_compile.triton('triton_poi_fused_add_clamp_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.8 tmp2 = tmp0 * tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 1.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, clamp], Original ATen: [aten.add, aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torchvision import transforms as ttf class Brightness(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return ttf.functional.adjust_brightness(img, self.M / 5.0) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'M': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.8 tmp2 = tmp0 * tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 1.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_clamp_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return buf0, class BrightnessNew(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Hayoung93/UDA
Brightness
false
980
[ "Apache-2.0" ]
0
a587b01c76141d64e7cead55b62e0f3ed75890bf
https://github.com/Hayoung93/UDA/tree/a587b01c76141d64e7cead55b62e0f3ed75890bf
import torch import torch.nn as nn from torchvision import transforms as ttf class Model(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return ttf.functional.adjust_brightness(img, self.M / 5.0) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4]
RegKappa
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ix/cixmn7clw6nfzwggunlhdyodrndbmn7qm42pty2mehlyh62xq5vu.py # Topologically Sorted Source Nodes: [mul, sum_1, num, norm, norm_1, denom, add_1, kappa, sub], Original ATen: [aten.mul, aten.sum, aten.linalg_vector_norm, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # add_1 => add_1 # denom => add # kappa => div # mul => mul # norm => pow_1, pow_2, sum_2 # norm_1 => pow_3, pow_4, sum_3 # num => mul_1 # sub => sub # sum_1 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, None), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 0.5), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, %pow_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1e-07), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {}) triton_per_fused_add_div_linalg_vector_norm_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_linalg_vector_norm_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tmp0 * tmp0 tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tmp1 * tmp1 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 2.0 tmp15 = tmp5 * tmp14 tmp16 = libdevice.sqrt(tmp9) tmp17 = libdevice.sqrt(tmp13) tmp18 = tmp16 + tmp17 tmp19 = 1e-07 tmp20 = tmp18 + tmp19 tmp21 = tmp15 / tmp20 tmp22 = 1.0 tmp23 = tmp22 - tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, sum_1, num, norm, norm_1, denom, add_1, kappa, sub], Original ATen: [aten.mul, aten.sum, aten.linalg_vector_norm, aten.add, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_linalg_vector_norm_mul_rsub_sum_0.run(buf3, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn.modules.loss import _Loss import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class RegKappa(_Loss): def __init__(self, ignore_index=None): super(RegKappa, self).__init__() self.min = min self.max = max self.ignore_index = ignore_index def forward(self, input, target): if self.ignore_index is not None: mask = target != self.ignore_index target = target[mask] input = input[mask] target = target.float() num = 2 * torch.sum(input * target) denom = input.norm(2) + target.norm(2) eps = 1e-07 kappa = num / (denom + eps) return 1.0 - kappa def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch.nn.modules.loss import _Loss import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_linalg_vector_norm_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tmp0 * tmp0 tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tmp1 * tmp1 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 2.0 tmp15 = tmp5 * tmp14 tmp16 = libdevice.sqrt(tmp9) tmp17 = libdevice.sqrt(tmp13) tmp18 = tmp16 + tmp17 tmp19 = 1e-07 tmp20 = tmp18 + tmp19 tmp21 = tmp15 / tmp20 tmp22 = 1.0 tmp23 = tmp22 - tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_linalg_vector_norm_mul_rsub_sum_0[grid(1)]( buf3, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class RegKappaNew(_Loss): def __init__(self, ignore_index=None): super(RegKappaNew, self).__init__() self.min = min self.max = max self.ignore_index = ignore_index def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Ramstein/Retinopathy2
RegKappa
false
981
[ "MIT" ]
0
669e74206c466e6351d4e3df6087c6aa39b5c6c2
https://github.com/Ramstein/Retinopathy2/tree/669e74206c466e6351d4e3df6087c6aa39b5c6c2
import torch from torch.nn.modules.loss import _Loss import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class Model(_Loss): def __init__(self, ignore_index=None): super().__init__() self.min = min self.max = max self.ignore_index = ignore_index def forward(self, input, target): if self.ignore_index is not None: mask = target != self.ignore_index target = target[mask] input = input[mask] target = target.float() num = 2 * torch.sum(input * target) denom = input.norm(2) + target.norm(2) eps = 1e-07 kappa = num / (denom + eps) return 1.0 - kappa def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ScaledL2Norm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/2a/c2ardebf3dijah3sug56cdg3pdrqptfnjdozbx2wvqruxlwmuixz.py # Topologically Sorted Source Nodes: [normalize, mul], Original ATen: [aten.div, aten.mul] # Source node to ATen node mapping: # mul => mul # normalize => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %unsqueeze_2), kwargs = {}) triton_poi_fused_div_mul_0 = async_compile.triton('triton_poi_fused_div_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [normalize, mul], Original ATen: [aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_2 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.onnx import torch import torch.nn as nn import torch.nn.functional as F class ScaledL2Norm(nn.Module): def __init__(self, in_channels, initial_scale): super(ScaledL2Norm, self).__init__() self.in_channels = in_channels self.scale = nn.Parameter(torch.Tensor(in_channels)) self.initial_scale = initial_scale self.reset_parameters() def forward(self, x): return F.normalize(x, p=2, dim=1) * self.scale.unsqueeze(0).unsqueeze(2 ).unsqueeze(3) def reset_parameters(self): self.scale.data.fill_(self.initial_scale) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'initial_scale': 1.0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.onnx import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf0, primals_1 class ScaledL2NormNew(nn.Module): def __init__(self, in_channels, initial_scale): super(ScaledL2NormNew, self).__init__() self.in_channels = in_channels self.scale = nn.Parameter(torch.Tensor(in_channels)) self.initial_scale = initial_scale self.reset_parameters() def reset_parameters(self): self.scale.data.fill_(self.initial_scale) def forward(self, input_0): primals_2 = self.scale primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
Richard-cpu2333/tx2dl
ScaledL2Norm
false
982
[ "Apache-2.0" ]
0
985d9f9f24004271e85745a49252ab9922aec655
https://github.com/Richard-cpu2333/tx2dl/tree/985d9f9f24004271e85745a49252ab9922aec655
import torch import torch.onnx import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_channels, initial_scale): super().__init__() self.in_channels = in_channels self.scale = nn.Parameter(torch.Tensor(in_channels)) self.initial_scale = initial_scale self.reset_parameters() def forward(self, x): return F.normalize(x, p=2, dim=1) * self.scale.unsqueeze(0).unsqueeze(2 ).unsqueeze(3) def reset_parameters(self): self.scale.data.fill_(self.initial_scale) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 1.0]
CosineLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zk/czk5xfokmwnuegxn53eciq25366p2is3a6lxx47tlosf3q225vha.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.div] # Source node to ATen node mapping: # x => div # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xe/cxewggzrfqe57dzglxrzfhfgpsywlh36utvtdulp5oi75wfs7ml3.py # Topologically Sorted Source Nodes: [w], Original ATen: [aten.div] # Source node to ATen node mapping: # w => div_1 # Graph fragment: # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand_1), kwargs = {}) triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [w], Original ATen: [aten.div] triton_poi_fused_div_1.run(primals_2, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [cos_theta], Original ATen: [aten.mm] extern_kernels.mm(buf0, buf1, out=buf2) return (buf1, buf2, primals_2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter class CosineLinear(nn.Module): def __init__(self, in_features, out_features): super(CosineLinear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.Tensor(in_features, out_features)) nn.init.xavier_uniform_(self.weight) def forward(self, input): x = F.normalize(input, dim=-1) w = F.normalize(self.weight, dim=0) cos_theta = x.mm(w) return w, cos_theta def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_div_1[grid(16)](primals_2, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, buf1, out=buf2) return buf1, buf2, primals_2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0) class CosineLinearNew(nn.Module): def __init__(self, in_features, out_features): super(CosineLinearNew, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.Tensor(in_features, out_features)) nn.init.xavier_uniform_(self.weight) def forward(self, input_0): primals_1 = self.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0], output[1]
QingquanBao/Spear-Shield
CosineLinear
false
983
[ "Apache-2.0" ]
0
d57b8f4412c3d651b6f7e056c9c45cfd0dc950c3
https://github.com/QingquanBao/Spear-Shield/tree/d57b8f4412c3d651b6f7e056c9c45cfd0dc950c3
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter class Model(nn.Module): def __init__(self, in_features, out_features): super().__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.Tensor(in_features, out_features)) nn.init.xavier_uniform_(self.weight) def forward(self, input): x = F.normalize(input, dim=-1) w = F.normalize(self.weight, dim=0) cos_theta = x.mm(w) return w, cos_theta def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
MultiheadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/yd/cydbtjoq352gcolmflbvu2nqkda7xg7q5hnvltb47jsg5dbmubym.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/s2/cs2rk3o3kmhydx4oijp6rsdb5atcrq5axy4adadrpl7gkt7scies.py # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] # Source node to ATen node mapping: # p_attn => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] # Source node to ATen node mapping: # p_attn => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, buf3, 16, 4, grid=grid(16, 4), stream=stream0) buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0) del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, buf8, 16, 4, grid=grid(16, 4), stream=stream0) buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf11) return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), buf7, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import numpy as np import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators def combine_heads(X): """ Combine heads (the inverse of split heads): 1) Transpose X from (batch size, nheads, sequence length, d_head) to (batch size, sequence length, nheads, d_head) 2) Combine (reshape) last 2 dimensions (nheads, d_head) into 1 (d_model) Inputs: X : [batch size * nheads, sequence length, d_head] nheads : integer d_head : integer Outputs: [batch_size, seq_len, d_model] """ X = X.transpose(1, 2) nheads, d_head = X.shape[-2:] return X.contiguous().view(list(X.shape[:-2]) + [nheads * d_head]) def create_src_lengths_mask(batch_size, src_lengths): max_srclen = src_lengths.max() src_indices = torch.arange(0, max_srclen).unsqueeze(0).type_as(src_lengths) src_indices = src_indices.expand(batch_size, max_srclen) src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen) return (src_indices < src_lengths).int().detach() def apply_masks(scores, batch_size, unseen_mask, src_lengths): seq_len = scores.shape[-1] sequence_mask = torch.ones(seq_len, seq_len).unsqueeze(0).int() if unseen_mask: sequence_mask = torch.tril(torch.ones(seq_len, seq_len), diagonal=0 ).unsqueeze(0).int() if src_lengths is not None: src_lengths_mask = create_src_lengths_mask(batch_size=batch_size, src_lengths=src_lengths).unsqueeze(-2) sequence_mask = sequence_mask & src_lengths_mask sequence_mask = sequence_mask.unsqueeze(1) scores = scores.masked_fill(sequence_mask == 0, -np.inf) return scores def scaled_dot_prod_attn(query, key, value, unseen_mask=False, src_lengths=None ): """ Scaled Dot Product Attention Implements equation: Attention(Q, K, V) = softmax(QK^T/\\sqrt{d_k})V Inputs: query : [batch size, nheads, sequence length, d_k] key : [batch size, nheads, sequence length, d_k] value : [batch size, nheads, sequence length, d_v] unseen_mask: if True, only attend to previous sequence positions src_lengths_mask: if True, mask padding based on src_lengths Outputs: attn: [batch size, sequence length, d_v] Note that in this implementation d_q = d_k = d_v = dim """ d_k = query.shape[-1] scores = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(d_k) if unseen_mask or src_lengths is not None: scores = apply_masks(scores=scores, batch_size=query.shape[0], unseen_mask=unseen_mask, src_lengths=src_lengths) p_attn = F.softmax(scores, dim=-1) return torch.matmul(p_attn, value), p_attn def split_heads(X, nheads): """ Split heads: 1) Split (reshape) last dimension (size d_model) into nheads, d_head 2) Transpose X from (batch size, sequence length, nheads, d_head) to (batch size, nheads, sequence length, d_head) Inputs: X : [batch size, sequence length, nheads * d_head] nheads : integer Outputs: [batch size, nheads, sequence length, d_head] """ last_dim = X.shape[-1] assert last_dim % nheads == 0 X_last_dim_split = X.view(list(X.shape[:-1]) + [nheads, last_dim // nheads] ) return X_last_dim_split.transpose(1, 2) class MultiheadAttention(nn.Module): """ Multiheaded Scaled Dot Product Attention Implements equation: MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V) Similarly to the above, d_k = d_v = d_model / h Inputs init: nheads : integer # of attention heads d_model : model dimensionality d_head : dimensionality of a single head forward: query : [batch size, sequence length, d_model] key: [batch size, sequence length, d_model] value: [batch size, sequence length, d_model] unseen_mask: if True, only attend to previous sequence positions src_lengths_mask: if True, mask padding based on src_lengths Output result : [batch_size, sequence length, d_model] """ def __init__(self, nheads, d_model): """Take in model size and number of heads.""" super(MultiheadAttention, self).__init__() assert d_model % nheads == 0 self.d_head = d_model // nheads self.nheads = nheads self.Q_fc = nn.Linear(d_model, d_model, bias=False) self.K_fc = nn.Linear(d_model, d_model, bias=False) self.V_fc = nn.Linear(d_model, d_model, bias=False) self.output_fc = nn.Linear(d_model, d_model, bias=False) self.attn = None def forward(self, query, key, value, unseen_mask=False, src_lengths=None): query = split_heads(self.Q_fc(query), self.nheads) key = split_heads(self.K_fc(key), self.nheads) value = split_heads(self.V_fc(value), self.nheads) x, self.attn = scaled_dot_prod_attn(query=query, key=key, value= value, unseen_mask=unseen_mask, src_lengths=src_lengths) x = combine_heads(x) return self.output_fc(x) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'nheads': 4, 'd_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import numpy as np import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_clone_0[grid(16, 4)](buf2, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf11) return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0 ), buf7, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0 ), primals_7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) def combine_heads(X): """ Combine heads (the inverse of split heads): 1) Transpose X from (batch size, nheads, sequence length, d_head) to (batch size, sequence length, nheads, d_head) 2) Combine (reshape) last 2 dimensions (nheads, d_head) into 1 (d_model) Inputs: X : [batch size * nheads, sequence length, d_head] nheads : integer d_head : integer Outputs: [batch_size, seq_len, d_model] """ X = X.transpose(1, 2) nheads, d_head = X.shape[-2:] return X.contiguous().view(list(X.shape[:-2]) + [nheads * d_head]) def create_src_lengths_mask(batch_size, src_lengths): max_srclen = src_lengths.max() src_indices = torch.arange(0, max_srclen).unsqueeze(0).type_as(src_lengths) src_indices = src_indices.expand(batch_size, max_srclen) src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen) return (src_indices < src_lengths).int().detach() def apply_masks(scores, batch_size, unseen_mask, src_lengths): seq_len = scores.shape[-1] sequence_mask = torch.ones(seq_len, seq_len).unsqueeze(0).int() if unseen_mask: sequence_mask = torch.tril(torch.ones(seq_len, seq_len), diagonal=0 ).unsqueeze(0).int() if src_lengths is not None: src_lengths_mask = create_src_lengths_mask(batch_size=batch_size, src_lengths=src_lengths).unsqueeze(-2) sequence_mask = sequence_mask & src_lengths_mask sequence_mask = sequence_mask.unsqueeze(1) scores = scores.masked_fill(sequence_mask == 0, -np.inf) return scores def scaled_dot_prod_attn(query, key, value, unseen_mask=False, src_lengths=None ): """ Scaled Dot Product Attention Implements equation: Attention(Q, K, V) = softmax(QK^T/\\sqrt{d_k})V Inputs: query : [batch size, nheads, sequence length, d_k] key : [batch size, nheads, sequence length, d_k] value : [batch size, nheads, sequence length, d_v] unseen_mask: if True, only attend to previous sequence positions src_lengths_mask: if True, mask padding based on src_lengths Outputs: attn: [batch size, sequence length, d_v] Note that in this implementation d_q = d_k = d_v = dim """ d_k = query.shape[-1] scores = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(d_k) if unseen_mask or src_lengths is not None: scores = apply_masks(scores=scores, batch_size=query.shape[0], unseen_mask=unseen_mask, src_lengths=src_lengths) p_attn = F.softmax(scores, dim=-1) return torch.matmul(p_attn, value), p_attn def split_heads(X, nheads): """ Split heads: 1) Split (reshape) last dimension (size d_model) into nheads, d_head 2) Transpose X from (batch size, sequence length, nheads, d_head) to (batch size, nheads, sequence length, d_head) Inputs: X : [batch size, sequence length, nheads * d_head] nheads : integer Outputs: [batch size, nheads, sequence length, d_head] """ last_dim = X.shape[-1] assert last_dim % nheads == 0 X_last_dim_split = X.view(list(X.shape[:-1]) + [nheads, last_dim // nheads] ) return X_last_dim_split.transpose(1, 2) class MultiheadAttentionNew(nn.Module): """ Multiheaded Scaled Dot Product Attention Implements equation: MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V) Similarly to the above, d_k = d_v = d_model / h Inputs init: nheads : integer # of attention heads d_model : model dimensionality d_head : dimensionality of a single head forward: query : [batch size, sequence length, d_model] key: [batch size, sequence length, d_model] value: [batch size, sequence length, d_model] unseen_mask: if True, only attend to previous sequence positions src_lengths_mask: if True, mask padding based on src_lengths Output result : [batch_size, sequence length, d_model] """ def __init__(self, nheads, d_model): """Take in model size and number of heads.""" super(MultiheadAttentionNew, self).__init__() assert d_model % nheads == 0 self.d_head = d_model // nheads self.nheads = nheads self.Q_fc = nn.Linear(d_model, d_model, bias=False) self.K_fc = nn.Linear(d_model, d_model, bias=False) self.V_fc = nn.Linear(d_model, d_model, bias=False) self.output_fc = nn.Linear(d_model, d_model, bias=False) self.attn = None def forward(self, input_0, input_1, input_2): primals_1 = self.Q_fc.weight primals_3 = self.K_fc.weight primals_5 = self.V_fc.weight primals_7 = self.output_fc.weight primals_2 = input_0 primals_4 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
ROCmSoftwarePlatform/translate
MultiheadAttention
false
984
[ "BSD-3-Clause" ]
0
32a6380d914ebe1a6c38c4992aac9600ed3d9810
https://github.com/ROCmSoftwarePlatform/translate/tree/32a6380d914ebe1a6c38c4992aac9600ed3d9810
import math import torch import numpy as np import torch.nn.functional as F import torch.nn as nn import torch.jit import torch.jit.quantized import torch.onnx.operators def combine_heads(X): """ Combine heads (the inverse of split heads): 1) Transpose X from (batch size, nheads, sequence length, d_head) to (batch size, sequence length, nheads, d_head) 2) Combine (reshape) last 2 dimensions (nheads, d_head) into 1 (d_model) Inputs: X : [batch size * nheads, sequence length, d_head] nheads : integer d_head : integer Outputs: [batch_size, seq_len, d_model] """ X = X.transpose(1, 2) nheads, d_head = X.shape[-2:] return X.contiguous().view(list(X.shape[:-2]) + [nheads * d_head]) def create_src_lengths_mask(batch_size, src_lengths): max_srclen = src_lengths.max() src_indices = torch.arange(0, max_srclen).unsqueeze(0).type_as(src_lengths) src_indices = src_indices.expand(batch_size, max_srclen) src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen) return (src_indices < src_lengths).int().detach() def apply_masks(scores, batch_size, unseen_mask, src_lengths): seq_len = scores.shape[-1] sequence_mask = torch.ones(seq_len, seq_len).unsqueeze(0).int() if unseen_mask: sequence_mask = torch.tril(torch.ones(seq_len, seq_len), diagonal=0 ).unsqueeze(0).int() if src_lengths is not None: src_lengths_mask = create_src_lengths_mask(batch_size=batch_size, src_lengths=src_lengths).unsqueeze(-2) sequence_mask = sequence_mask & src_lengths_mask sequence_mask = sequence_mask.unsqueeze(1) scores = scores.masked_fill(sequence_mask == 0, -np.inf) return scores def scaled_dot_prod_attn(query, key, value, unseen_mask=False, src_lengths=None ): """ Scaled Dot Product Attention Implements equation: Attention(Q, K, V) = softmax(QK^T/\\sqrt{d_k})V Inputs: query : [batch size, nheads, sequence length, d_k] key : [batch size, nheads, sequence length, d_k] value : [batch size, nheads, sequence length, d_v] unseen_mask: if True, only attend to previous sequence positions src_lengths_mask: if True, mask padding based on src_lengths Outputs: attn: [batch size, sequence length, d_v] Note that in this implementation d_q = d_k = d_v = dim """ d_k = query.shape[-1] scores = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(d_k) if unseen_mask or src_lengths is not None: scores = apply_masks(scores=scores, batch_size=query.shape[0], unseen_mask=unseen_mask, src_lengths=src_lengths) p_attn = F.softmax(scores, dim=-1) return torch.matmul(p_attn, value), p_attn def split_heads(X, nheads): """ Split heads: 1) Split (reshape) last dimension (size d_model) into nheads, d_head 2) Transpose X from (batch size, sequence length, nheads, d_head) to (batch size, nheads, sequence length, d_head) Inputs: X : [batch size, sequence length, nheads * d_head] nheads : integer Outputs: [batch size, nheads, sequence length, d_head] """ last_dim = X.shape[-1] assert last_dim % nheads == 0 X_last_dim_split = X.view(list(X.shape[:-1]) + [nheads, last_dim // nheads] ) return X_last_dim_split.transpose(1, 2) class Model(nn.Module): """ Multiheaded Scaled Dot Product Attention Implements equation: MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V) Similarly to the above, d_k = d_v = d_model / h Inputs init: nheads : integer # of attention heads d_model : model dimensionality d_head : dimensionality of a single head forward: query : [batch size, sequence length, d_model] key: [batch size, sequence length, d_model] value: [batch size, sequence length, d_model] # ... truncated (>4000 chars) for memory efficiency
LogisticCumulativeLink
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/cy/ccy7yru2zdy7ixr5e4xphx2c7ryepqm2xt3yzpntkputvlz2y3ua.py # Topologically Sorted Source Nodes: [getitem_2], Original ATen: [aten.lift_fresh] # Source node to ATen node mapping: # getitem_2 => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([1], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_lift_fresh_0 = async_compile.triton('triton_poi_fused_lift_fresh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {1: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=(1,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_lift_fresh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_lift_fresh_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = tl.full([1], 0, tl.int64) tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ge/cgeru34cvt6nnywd3qmie5evkuyzszcwjdamafkyhj6upvphaydq.py # Topologically Sorted Source Nodes: [getitem_3], Original ATen: [aten.lift_fresh] # Source node to ATen node mapping: # getitem_3 => full_default_1 # Graph fragment: # %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([1], -1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_lift_fresh_1 = async_compile.triton('triton_poi_fused_lift_fresh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {1: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=(1,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_lift_fresh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_lift_fresh_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = tl.full([1], -1, tl.int64) tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ub/cubbhho3d4olluhydb6hq6avsqsjszp5c44cbvmmno7salnl32jt.py # Topologically Sorted Source Nodes: [link_mat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # link_mat_1 => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%index, %sub_1, %sub_2], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 240 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 12) % 5 x0 = xindex % 3 x3 = (xindex // 60) x4 = xindex % 12 x5 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x4 + (48*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 - tmp6 tmp8 = tl.sigmoid(tmp7) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x0), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + (12 + x4 + (12*((-1) + x2)) + (48*x3)), tmp14 & xmask, other=0.0) tmp17 = tmp15 - tmp16 tmp18 = tl.sigmoid(tmp17) tmp19 = tl.load(in_ptr1 + (x4 + (12*((-1) + x2)) + (48*x3)), tmp14 & xmask, other=0.0) tmp20 = tmp15 - tmp19 tmp21 = tl.sigmoid(tmp20) tmp22 = tmp18 - tmp21 tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp14, tmp22, tmp23) tmp25 = tmp0 >= tmp12 tmp26 = tl.full([1], 5, tl.int64) tmp27 = tmp0 < tmp26 tmp28 = tl.load(in_ptr0 + (x0), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp29 = tl.load(in_ptr1 + (36 + x4 + (48*x3)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tmp28 - tmp29 tmp31 = tl.sigmoid(tmp30) tmp32 = 1.0 tmp33 = tmp32 - tmp31 tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp25, tmp33, tmp34) tmp36 = tl.where(tmp14, tmp24, tmp35) tmp37 = tl.where(tmp4, tmp10, tmp36) tl.store(out_ptr0 + (x5), tmp37, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (3, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 3), (48, 12, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [getitem_2], Original ATen: [aten.lift_fresh] stream0 = get_raw_stream(0) triton_poi_fused_lift_fresh_0.run(buf0, 1, grid=grid(1), stream=stream0) buf1 = empty_strided_cuda((1, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [getitem_3], Original ATen: [aten.lift_fresh] triton_poi_fused_lift_fresh_1.run(buf1, 1, grid=grid(1), stream=stream0) buf2 = empty_strided_cuda((4, 5, 4, 3), (60, 12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [link_mat_1], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(primals_1, primals_2, buf2, 240, grid=grid(240), stream=stream0) return (buf2, primals_1, primals_2, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 3), (48, 12, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class LogisticCumulativeLink(nn.Module): """ Converts a single number to the proportional odds of belonging to a class. Parameters ---------- num_classes : int Number of ordered classes to partition the odds into. init_cutpoints : str (default='ordered') How to initialize the cutpoints of the model. Valid values are - ordered : cutpoints are initialized to halfway between each class. - random : cutpoints are initialized with random values. """ def __init__(self, num_classes: 'int', init_cutpoints: 'str'='ordered' ) ->None: assert num_classes > 2, 'Only use this model if you have 3 or more classes' super().__init__() self.num_classes = num_classes self.init_cutpoints = init_cutpoints if init_cutpoints == 'ordered': num_cutpoints = self.num_classes - 1 cutpoints = torch.arange(num_cutpoints).float() - num_cutpoints / 2 self.cutpoints = nn.Parameter(cutpoints) elif init_cutpoints == 'random': cutpoints = torch.rand(self.num_classes - 1).sort()[0] self.cutpoints = nn.Parameter(cutpoints) else: raise ValueError( f'{init_cutpoints} is not a valid init_cutpoints type') def forward(self, X: 'torch.Tensor') ->torch.Tensor: """ Equation (11) from "On the consistency of ordinal regression methods", Pedregosa et. al. """ sigmoids = torch.sigmoid(self.cutpoints - X) link_mat = sigmoids[:, 1:] - sigmoids[:, :-1] link_mat = torch.cat((sigmoids[:, [0]], link_mat, 1 - sigmoids[:, [ -1]]), dim=1) return link_mat def get_inputs(): return [torch.rand([4, 4, 4, 3])] def get_init_inputs(): return [[], {'num_classes': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_lift_fresh_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = tl.full([1], 0, tl.int64) tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp0, None) @triton.jit def triton_poi_fused_lift_fresh_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = tl.full([1], -1, tl.int64) tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp0, None) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 240 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 12 % 5 x0 = xindex % 3 x3 = xindex // 60 x4 = xindex % 12 x5 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x4 + 48 * x3), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp5 - tmp6 tmp8 = tl.sigmoid(tmp7) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + x0, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + (12 + x4 + 12 * (-1 + x2) + 48 * x3), tmp14 & xmask, other=0.0) tmp17 = tmp15 - tmp16 tmp18 = tl.sigmoid(tmp17) tmp19 = tl.load(in_ptr1 + (x4 + 12 * (-1 + x2) + 48 * x3), tmp14 & xmask, other=0.0) tmp20 = tmp15 - tmp19 tmp21 = tl.sigmoid(tmp20) tmp22 = tmp18 - tmp21 tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp14, tmp22, tmp23) tmp25 = tmp0 >= tmp12 tl.full([1], 5, tl.int64) tmp28 = tl.load(in_ptr0 + x0, tmp25 & xmask, eviction_policy= 'evict_last', other=0.0) tmp29 = tl.load(in_ptr1 + (36 + x4 + 48 * x3), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tmp28 - tmp29 tmp31 = tl.sigmoid(tmp30) tmp32 = 1.0 tmp33 = tmp32 - tmp31 tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp25, tmp33, tmp34) tmp36 = tl.where(tmp14, tmp24, tmp35) tmp37 = tl.where(tmp4, tmp10, tmp36) tl.store(out_ptr0 + x5, tmp37, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (3,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 3), (48, 12, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1,), (1,), torch.int64) get_raw_stream(0) triton_poi_fused_lift_fresh_0[grid(1)](buf0, 1, XBLOCK=1, num_warps =1, num_stages=1) buf1 = empty_strided_cuda((1,), (1,), torch.int64) triton_poi_fused_lift_fresh_1[grid(1)](buf1, 1, XBLOCK=1, num_warps =1, num_stages=1) buf2 = empty_strided_cuda((4, 5, 4, 3), (60, 12, 3, 1), torch.float32) triton_poi_fused_cat_2[grid(240)](primals_1, primals_2, buf2, 240, XBLOCK=128, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, buf0, buf1 class LogisticCumulativeLinkNew(nn.Module): """ Converts a single number to the proportional odds of belonging to a class. Parameters ---------- num_classes : int Number of ordered classes to partition the odds into. init_cutpoints : str (default='ordered') How to initialize the cutpoints of the model. Valid values are - ordered : cutpoints are initialized to halfway between each class. - random : cutpoints are initialized with random values. """ def __init__(self, num_classes: 'int', init_cutpoints: 'str'='ordered' ) ->None: assert num_classes > 2, 'Only use this model if you have 3 or more classes' super().__init__() self.num_classes = num_classes self.init_cutpoints = init_cutpoints if init_cutpoints == 'ordered': num_cutpoints = self.num_classes - 1 cutpoints = torch.arange(num_cutpoints).float() - num_cutpoints / 2 self.cutpoints = nn.Parameter(cutpoints) elif init_cutpoints == 'random': cutpoints = torch.rand(self.num_classes - 1).sort()[0] self.cutpoints = nn.Parameter(cutpoints) else: raise ValueError( f'{init_cutpoints} is not a valid init_cutpoints type') def forward(self, input_0): primals_1 = self.cutpoints primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
Ramstein/Retinopathy2
LogisticCumulativeLink
false
985
[ "MIT" ]
0
669e74206c466e6351d4e3df6087c6aa39b5c6c2
https://github.com/Ramstein/Retinopathy2/tree/669e74206c466e6351d4e3df6087c6aa39b5c6c2
import torch from torch import nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class Model(nn.Module): """ Converts a single number to the proportional odds of belonging to a class. Parameters ---------- num_classes : int Number of ordered classes to partition the odds into. init_cutpoints : str (default='ordered') How to initialize the cutpoints of the model. Valid values are - ordered : cutpoints are initialized to halfway between each class. - random : cutpoints are initialized with random values. """ def __init__(self, num_classes: 'int', init_cutpoints: 'str'='ordered' ) ->None: assert num_classes > 2, 'Only use this model if you have 3 or more classes' super().__init__() self.num_classes = num_classes self.init_cutpoints = init_cutpoints if init_cutpoints == 'ordered': num_cutpoints = self.num_classes - 1 cutpoints = torch.arange(num_cutpoints).float() - num_cutpoints / 2 self.cutpoints = nn.Parameter(cutpoints) elif init_cutpoints == 'random': cutpoints = torch.rand(self.num_classes - 1).sort()[0] self.cutpoints = nn.Parameter(cutpoints) else: raise ValueError( f'{init_cutpoints} is not a valid init_cutpoints type') def forward(self, X: 'torch.Tensor') ->torch.Tensor: """ Equation (11) from "On the consistency of ordinal regression methods", Pedregosa et. al. """ sigmoids = torch.sigmoid(self.cutpoints - X) link_mat = sigmoids[:, 1:] - sigmoids[:, :-1] link_mat = torch.cat((sigmoids[:, [0]], link_mat, 1 - sigmoids[:, [ -1]]), dim=1) return link_mat def get_inputs(): return [torch.rand([4, 4, 4, 3])] def get_init_inputs(): return [4]
Beta
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/vl/cvlekk7mg6q4mdm2ff42mapcgym5nn43grvi5dksbd4j5rg2sv57.py # Topologically Sorted Source Nodes: [softplus, alpha], Original ATen: [aten.softplus, aten.add] # Source node to ATen node mapping: # alpha => add # softplus => exp, gt, log1p, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, 1), kwargs = {}) triton_poi_fused_add_softplus_0 = async_compile.triton('triton_poi_fused_add_softplus_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_softplus_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softplus, alpha], Original ATen: [aten.softplus, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_softplus_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 0, 4, 4), (0, 16, 4, 1), torch.float32) return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class Beta(nn.Module): def __init__(self, action_dim): super(Beta, self).__init__() self.action_dim = action_dim def forward(self, alpha_beta): alpha = 1 + F.softplus(alpha_beta[:, :self.action_dim]) beta = 1 + F.softplus(alpha_beta[:, self.action_dim:]) return alpha, beta def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'action_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_softplus_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 0, 4, 4), (0, 16, 4, 1), torch.float32) return buf0, buf1 class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class BetaNew(nn.Module): def __init__(self, action_dim): super(BetaNew, self).__init__() self.action_dim = action_dim def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0], output[1]
RohanPankaj/apex
Beta
false
986
[ "MIT" ]
0
74e96386bf9446d1179106d6d65ea0368c1b5b27
https://github.com/RohanPankaj/apex/tree/74e96386bf9446d1179106d6d65ea0368c1b5b27
import torch import torch.nn as nn import torch.nn.functional as F class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class Model(nn.Module): def __init__(self, action_dim): super().__init__() self.action_dim = action_dim def forward(self, alpha_beta): alpha = 1 + F.softplus(alpha_beta[:, :self.action_dim]) beta = 1 + F.softplus(alpha_beta[:, self.action_dim:]) return alpha, beta def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
L2Norm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ql/cqlak5tz3s7deubsy52az4l7hpzcb4ekrbzbw4nqi6gbd7v3ukso.py # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, truediv, x], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # norm => add # pow_1 => pow_1 # sqrt => sqrt # sum_1 => sum_1 # truediv => div # x => mul # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-10), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %view), kwargs = {}) triton_poi_fused_add_div_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-10 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, truediv, x], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_2 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class L2Norm(nn.Module): def __init__(self, n_channels, scale=1.0): super(L2Norm, self).__init__() self.n_channels = n_channels self.scale = scale self.eps = 1e-10 self.weight = nn.Parameter(torch.Tensor(self.n_channels)) self.weight.data *= 0.0 self.weight.data += self.scale def forward(self, x): norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps x = x / norm * self.weight.view(1, -1, 1, 1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-10 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tmp17 = tmp15 * tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf0, primals_1 class L2NormNew(nn.Module): def __init__(self, n_channels, scale=1.0): super(L2NormNew, self).__init__() self.n_channels = n_channels self.scale = scale self.eps = 1e-10 self.weight = nn.Parameter(torch.Tensor(self.n_channels)) self.weight.data *= 0.0 self.weight.data += self.scale def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
Rocketbase-AI/rockets-s3fd
L2Norm
false
987
[ "MIT" ]
0
40d978270a6b3ba2d397217ede0c735712814250
https://github.com/Rocketbase-AI/rockets-s3fd/tree/40d978270a6b3ba2d397217ede0c735712814250
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, n_channels, scale=1.0): super().__init__() self.n_channels = n_channels self.scale = scale self.eps = 1e-10 self.weight = nn.Parameter(torch.Tensor(self.n_channels)) self.weight.data *= 0.0 self.weight.data += self.scale def forward(self, x): norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps x = x / norm * self.weight.view(1, -1, 1, 1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
RMSLELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qk/cqk4s5hcy2ardmucnehpv4eizaoaykawcn6rvxhvx3dncogu2rkf.py # Topologically Sorted Source Nodes: [add, log, add_1, log_1, mse_loss, sqrt], Original ATen: [aten.add, aten.log, aten.mse_loss, aten.sqrt] # Source node to ATen node mapping: # add => add # add_1 => add_1 # log => log # log_1 => log_1 # mse_loss => mean, pow_1, sub # sqrt => sqrt # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, 1), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%log, %log_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%mean,), kwargs = {}) triton_per_fused_add_log_mse_loss_sqrt_0 = async_compile.triton('triton_per_fused_add_log_mse_loss_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mse_loss_sqrt_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_log_mse_loss_sqrt_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp4 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tl_math.log(tmp2) tmp5 = tmp4 + tmp1 tmp6 = tl_math.log(tmp5) tmp7 = tmp3 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 256.0 tmp13 = tmp11 / tmp12 tmp14 = libdevice.sqrt(tmp13) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, log, add_1, log_1, mse_loss, sqrt], Original ATen: [aten.add, aten.log, aten.mse_loss, aten.sqrt] stream0 = get_raw_stream(0) triton_per_fused_add_log_mse_loss_sqrt_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class RMSLELoss(nn.Module): def __init__(self): super().__init__() self.mse = nn.MSELoss() def forward(self, pred, actual): return torch.sqrt(self.mse(torch.log(pred + 1), torch.log(actual + 1))) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_log_mse_loss_sqrt_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp4 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tl_math.log(tmp2) tmp5 = tmp4 + tmp1 tmp6 = tl_math.log(tmp5) tmp7 = tmp3 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 256.0 tmp13 = tmp11 / tmp12 tmp14 = libdevice.sqrt(tmp13) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_log_mse_loss_sqrt_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class RMSLELossNew(nn.Module): def __init__(self): super().__init__() self.mse = nn.MSELoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
RosarioAndolina/psychXRF
RMSLELoss
false
988
[ "MIT" ]
0
e2adadbd17664d7f74c10304f84b3751c571226e
https://github.com/RosarioAndolina/psychXRF/tree/e2adadbd17664d7f74c10304f84b3751c571226e
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.mse = nn.MSELoss() def forward(self, pred, actual): return torch.sqrt(self.mse(torch.log(pred + 1), torch.log(actual + 1))) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SVIGlobalMeanPool2D
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/7h/c7hbbzvoewj2tsadwgr3uwpf6oz4y2eo5c2i5sb55oyvgaiiusmo.py # Topologically Sorted Source Nodes: [mean, x], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # x => mean_1 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [4]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [3]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 / tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 / tmp7 tmp35 = tmp26 + tmp34 tmp36 = tmp35 / tmp7 tl.store(out_ptr0 + (x0), tmp36, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, x], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SVIGlobalMeanPool2D(nn.Module): """ Expects :param x: [examples, samples, channels, H, W] :return: [examples, samples, channels] """ def __init__(self): super(SVIGlobalMeanPool2D, self).__init__() def forward(self, x): x = x.mean(4).mean(3) return x def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp32 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 / tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 / tmp7 tmp35 = tmp26 + tmp34 tmp36 = tmp35 / tmp7 tl.store(out_ptr0 + x0, tmp36, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class SVIGlobalMeanPool2DNew(nn.Module): """ Expects :param x: [examples, samples, channels, H, W] :return: [examples, samples, channels] """ def __init__(self): super(SVIGlobalMeanPool2DNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RomanShen/radial-bnn
SVIGlobalMeanPool2D
false
989
[ "Apache-2.0" ]
0
7c8bc85397c1461a6fd5ea9adf0631f9ade27f6c
https://github.com/RomanShen/radial-bnn/tree/7c8bc85397c1461a6fd5ea9adf0631f9ade27f6c
import torch import torch.nn as nn class Model(nn.Module): """ Expects :param x: [examples, samples, channels, H, W] :return: [examples, samples, channels] """ def __init__(self): super().__init__() def forward(self, x): x = x.mean(4).mean(3) return x def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return []
MAPE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/cb/ccbe5dxv34jxbymjakhumsda4ukmqsisffc2gw24t4kvazdrzarn.py # Topologically Sorted Source Nodes: [l1_loss, mul, max_1, mape, mean], Original ATen: [aten.sub, aten.abs, aten.mul, aten.maximum, aten.div, aten.mean] # Source node to ATen node mapping: # l1_loss => abs_1, sub # mape => div # max_1 => maximum # mean => mean # mul => mul # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 100), kwargs = {}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%arg1_1, %arg0_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %maximum), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {}) triton_per_fused_abs_div_maximum_mean_mul_sub_0 = async_compile.triton('triton_per_fused_abs_div_maximum_mean_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_maximum_mean_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_div_maximum_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 100.0 tmp5 = tmp3 * tmp4 tmp6 = triton_helpers.maximum(tmp0, tmp1) tmp7 = tmp5 / tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [l1_loss, mul, max_1, mape, mean], Original ATen: [aten.sub, aten.abs, aten.mul, aten.maximum, aten.div, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_div_maximum_mean_mul_sub_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MAPE(nn.Module): def __init__(self): super().__init__() self.l1 = nn.L1Loss(reduction='none') def forward(self, pred, actual): mape = 100 * self.l1(pred, actual) / torch.max(pred, actual) return mape.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_div_maximum_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 100.0 tmp5 = tmp3 * tmp4 tmp6 = triton_helpers.maximum(tmp0, tmp1) tmp7 = tmp5 / tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_div_maximum_mean_mul_sub_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class MAPENew(nn.Module): def __init__(self): super().__init__() self.l1 = nn.L1Loss(reduction='none') def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
RosarioAndolina/psychXRF
MAPE
false
990
[ "MIT" ]
0
e2adadbd17664d7f74c10304f84b3751c571226e
https://github.com/RosarioAndolina/psychXRF/tree/e2adadbd17664d7f74c10304f84b3751c571226e
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.l1 = nn.L1Loss(reduction='none') def forward(self, pred, actual): mape = 100 * self.l1(pred, actual) / torch.max(pred, actual) return mape.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MultiheadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/5w/c5wnubyijcgstpnbhnht5ommr737mwfx67lgpfc6mvwlwmhzfkmq.py # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # q_1 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ko/ckow7ci7f3mygm6ujdzdisip6tet25h4hj6uestesqalhkarwrrw.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qa/cqazar4hg4rdjbxm7zr5mix2w3dkhfmvvjksn7c6lktr5yfe6ndy.py # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_3 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/c2/cc2wsialcqiknwetscnqy3fzaqmmib3cxfb7tsfjx7hdlsxbdq7s.py # Topologically Sorted Source Nodes: [sum_1, attn_weights_4], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # attn_weights_4 => div_1 # sum_1 => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_12, [1]), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 4), kwargs = {}) triton_poi_fused_div_sum_3 = async_compile.triton('triton_poi_fused_div_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = (xindex // 64) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x1)), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + (256*x1)), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0 + (256*x1)), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0 + (256*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf3, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf4 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_weights], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 16), (1, 1, 16), 0), out=buf4) buf7 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_per_fused__softmax_1.run(buf4, buf7, 64, 16, grid=grid(64), stream=stream0) del buf4 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(buf7, reinterpret_tensor(buf2, (16, 16, 1), (1, 16, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf8, buf9, 4, 16, grid=grid(4, 16), stream=stream0) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_7 buf11 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_1, attn_weights_4], Original ATen: [aten.sum, aten.div] triton_poi_fused_div_sum_3.run(buf7, buf11, 256, grid=grid(256), stream=stream0) return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), buf11, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), primals_6, reinterpret_tensor(buf2, (16, 1, 16), (1, 1, 16), 0), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 16, 1), (1, 16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, attn_dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.attn_dropout = attn_dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) self.register_parameter('in_proj_bias', None) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.in_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward(self, query, key, value, attn_mask=None): """Input shape: Time x Batch x Channel Self-attention can be implemented by passing in the same arguments for query, key and value. Timesteps can be masked by supplying a T x T mask in the `attn_mask` argument. Padding elements can be excluded from the key by passing a binary ByteTensor (`key_padding_mask`) with shape: batch x src_len, where padding elements are indicated by 1s. """ qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr() kv_same = key.data_ptr() == value.data_ptr() tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] assert key.size() == value.size() if qkv_same: q, k, v = self.in_proj_qkv(query) elif kv_same: q = self.in_proj_q(query) if key is None: assert value is None k = v = None else: k, v = self.in_proj_kv(key) else: q = self.in_proj_q(query) k = self.in_proj_k(key) v = self.in_proj_v(value) q = q * self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros( attn_mask.size(0), 1)], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim ).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim ).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim ).transpose(0, 1) src_len = k.size(1) if self.add_zero_attn: src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros( attn_mask.size(0), 1)], dim=1) attn_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: try: attn_weights += attn_mask.unsqueeze(0) except: None None assert False attn_weights = F.softmax(attn_weights.float(), dim=-1).type_as( attn_weights) attn_weights = F.dropout(attn_weights, p=self.attn_dropout, training=self.training) attn = torch.bmm(attn_weights, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self. head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.sum(dim=1) / self.num_heads return attn, attn_weights def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_kv(self, key): return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) def in_proj_q(self, query, **kwargs): return self._in_proj(query, end=self.embed_dim, **kwargs) def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=0, end=None, **kwargs): weight = kwargs.get('weight', self.in_proj_weight) bias = kwargs.get('bias', self.in_proj_bias) weight = weight[start:end, :] if bias is not None: bias = bias[start:end] return F.linear(input, weight, bias) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'embed_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_div_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + 256 * x1), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0 + 256 * x1), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0 + 256 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(64)](buf3, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 16), (1, 1, 16), 0), out=buf4) buf7 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32) triton_per_fused__softmax_1[grid(64)](buf4, buf7, 64, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf4 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf7, reinterpret_tensor(buf2, (16, 16, 1), (1, 16, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) triton_poi_fused_clone_2[grid(4, 16)](buf8, buf9, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0) del buf8 extern_kernels.addmm(primals_7, reinterpret_tensor(buf9, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_7 buf11 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) triton_poi_fused_div_sum_3[grid(256)](buf7, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0 ), buf11, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0 ), primals_6, reinterpret_tensor(buf2, (16, 1, 16), (1, 1, 16), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0 ), reinterpret_tensor(buf1, (16, 16, 1), (1, 16, 1), 0) class MultiheadAttentionNew(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, attn_dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.attn_dropout = attn_dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) self.register_parameter('in_proj_bias', None) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.in_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_kv(self, key): return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) def in_proj_q(self, query, **kwargs): return self._in_proj(query, end=self.embed_dim, **kwargs) def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=0, end=None, **kwargs): weight = kwargs.get('weight', self.in_proj_weight) bias = kwargs.get('bias', self.in_proj_bias) weight = weight[start:end, :] if bias is not None: bias = bias[start:end] return F.linear(input, weight, bias) def forward(self, input_0, input_1, input_2): primals_4 = self.in_proj_weight primals_5 = self.in_proj_bias primals_6 = self.out_proj.weight primals_7 = self.out_proj.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1]
Redaimao/RERD
MultiheadAttention
false
991
[ "MIT" ]
0
40413d4b6743f3e5db0c30ee969d45661d001834
https://github.com/Redaimao/RERD/tree/40413d4b6743f3e5db0c30ee969d45661d001834
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter class Model(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, attn_dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.attn_dropout = attn_dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) self.register_parameter('in_proj_bias', None) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.in_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward(self, query, key, value, attn_mask=None): """Input shape: Time x Batch x Channel Self-attention can be implemented by passing in the same arguments for query, key and value. Timesteps can be masked by supplying a T x T mask in the `attn_mask` argument. Padding elements can be excluded from the key by passing a binary ByteTensor (`key_padding_mask`) with shape: batch x src_len, where padding elements are indicated by 1s. """ qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr() kv_same = key.data_ptr() == value.data_ptr() tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] assert key.size() == value.size() if qkv_same: q, k, v = self.in_proj_qkv(query) elif kv_same: q = self.in_proj_q(query) if key is None: assert value is None k = v = None else: k, v = self.in_proj_kv(key) else: q = self.in_proj_q(query) k = self.in_proj_k(key) v = self.in_proj_v(value) q = q * self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros( attn_mask.size(0), 1)], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim ).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim ).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim ).transpose(0, 1) src_len = k.size(1) if self.add_zero_attn: src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) # ... truncated (>4000 chars) for memory efficiency
SVIGlobalMaxPool2D
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/2j/c2jekx4hpgefr4mgbvd6osfagralcyjkcmltymaagoikymiaqihb.py # Topologically Sorted Source Nodes: [max_2], Original ATen: [aten.max] # Source node to ATen node mapping: # max_2 => getitem_2 # Graph fragment: # %getitem_2 : [num_users=1] = call_function[target=operator.getitem](args = (%max_2, 0), kwargs = {}) triton_poi_fused_max_0 = async_compile.triton('triton_poi_fused_max_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = triton_helpers.maximum(tmp6, tmp13) tmp17 = triton_helpers.maximum(tmp15, tmp16) tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = triton_helpers.maximum(tmp14, tmp21) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp27 = triton_helpers.maximum(tmp25, tmp26) tmp29 = triton_helpers.maximum(tmp27, tmp28) tmp30 = triton_helpers.maximum(tmp22, tmp29) tl.store(out_ptr0 + (x0), tmp30, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [max_2], Original ATen: [aten.max] stream0 = get_raw_stream(0) triton_poi_fused_max_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SVIGlobalMaxPool2D(nn.Module): """ Expects :param x: [examples, samples, channels, H, W] :return: [examples, samples, channels] """ def __init__(self): super(SVIGlobalMaxPool2D, self).__init__() def forward(self, x): x = x.max(4)[0].max(3)[0] return x def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp8 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp26 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = triton_helpers.maximum(tmp6, tmp13) tmp17 = triton_helpers.maximum(tmp15, tmp16) tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = triton_helpers.maximum(tmp14, tmp21) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp27 = triton_helpers.maximum(tmp25, tmp26) tmp29 = triton_helpers.maximum(tmp27, tmp28) tmp30 = triton_helpers.maximum(tmp22, tmp29) tl.store(out_ptr0 + x0, tmp30, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class SVIGlobalMaxPool2DNew(nn.Module): """ Expects :param x: [examples, samples, channels, H, W] :return: [examples, samples, channels] """ def __init__(self): super(SVIGlobalMaxPool2DNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RomanShen/radial-bnn
SVIGlobalMaxPool2D
false
992
[ "Apache-2.0" ]
0
7c8bc85397c1461a6fd5ea9adf0631f9ade27f6c
https://github.com/RomanShen/radial-bnn/tree/7c8bc85397c1461a6fd5ea9adf0631f9ade27f6c
import torch import torch.nn as nn class Model(nn.Module): """ Expects :param x: [examples, samples, channels, H, W] :return: [examples, samples, channels] """ def __init__(self): super().__init__() def forward(self, x): x = x.max(4)[0].max(3)[0] return x def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return []
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/do/cdo22no4lmipk7byduyah2xsadvdcbfr22puoptl5br3l66r6jra.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_2 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0) del buf3 del primals_5 return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as f from torch import nn class Critic(nn.Module): def __init__(self, input_dim): super(Critic, self).__init__() self._input_dim = input_dim self.dense1 = nn.Linear(self._input_dim, self._input_dim) self.dense2 = nn.Linear(self._input_dim, self._input_dim) def forward(self, x): x = f.leaky_relu(self.dense1(x)) x = f.leaky_relu(self.dense2(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_leaky_relu_0[grid(256)](buf3, primals_5, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_5 return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, primals_4 class CriticNew(nn.Module): def __init__(self, input_dim): super(CriticNew, self).__init__() self._input_dim = input_dim self.dense1 = nn.Linear(self._input_dim, self._input_dim) self.dense2 = nn.Linear(self._input_dim, self._input_dim) def forward(self, input_0): primals_1 = self.dense1.weight primals_2 = self.dense1.bias primals_4 = self.dense2.weight primals_5 = self.dense2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
RosalRicardo/RTRGAN
Critic
false
993
[ "MIT" ]
0
6f4551ab8445367f8b9c711f41f15dd465abaef1
https://github.com/RosalRicardo/RTRGAN/tree/6f4551ab8445367f8b9c711f41f15dd465abaef1
import torch import torch.nn.functional as f from torch import nn class Model(nn.Module): def __init__(self, input_dim): super().__init__() self._input_dim = input_dim self.dense1 = nn.Linear(self._input_dim, self._input_dim) self.dense2 = nn.Linear(self._input_dim, self._input_dim) def forward(self, x): x = f.leaky_relu(self.dense1(x)) x = f.leaky_relu(self.dense2(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
R2Score
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/np/cnp5g4we4zgdssn4oqr2jughmvlqv5fahhbwtqzc562xeba2dzqq.py # Topologically Sorted Source Nodes: [sub, pow_1, rss, ym, sub_1, pow_2, tss, truediv, sub_2], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mean, aten.div, aten.rsub] # Source node to ATen node mapping: # pow_1 => pow_1 # pow_2 => pow_2 # rss => sum_1 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # truediv => div # tss => sum_2 # ym => mean # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%arg0_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_2,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) triton_per_fused_div_mean_pow_rsub_sub_sum_0 = async_compile.triton('triton_per_fused_div_mean_pow_rsub_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_pow_rsub_sub_sum_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mean_pow_rsub_sub_sum_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tl.broadcast_to(tmp0, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp9 / tmp10 tmp12 = tmp0 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp6 / tmp16 tmp18 = 1.0 tmp19 = tmp18 - tmp17 tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([1], 0, tl.int32)), tmp19, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, pow_1, rss, ym, sub_1, pow_2, tss, truediv, sub_2], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mean, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_div_mean_pow_rsub_sub_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class R2Score(nn.Module): def __init__(self): super().__init__() def forward(self, pred, actual): rss = ((actual - pred) ** 2).sum() ym = actual.mean() tss = ((actual - ym) ** 2).sum() return 1 - rss / tss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mean_pow_rsub_sub_sum_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tl.broadcast_to(tmp0, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp9 / tmp10 tmp12 = tmp0 - tmp11 tmp13 = tmp12 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp6 / tmp16 tmp18 = 1.0 tmp19 = tmp18 - tmp17 tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([1], 0, tl.int32), tmp19, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mean_pow_rsub_sub_sum_0[grid(1)](buf3, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class R2ScoreNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
RosarioAndolina/psychXRF
R2Score
false
994
[ "MIT" ]
0
e2adadbd17664d7f74c10304f84b3751c571226e
https://github.com/RosarioAndolina/psychXRF/tree/e2adadbd17664d7f74c10304f84b3751c571226e
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, pred, actual): rss = ((actual - pred) ** 2).sum() ym = actual.mean() tss = ((actual - ym) ** 2).sum() return 1 - rss / tss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/rh/crhy6nilvaajphuuoyup37xl4ncuiyrcb3fnt5aboux6wyvcg7ie.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xl/cxldlhjpfliyaeswhsohcdhtqevqxjlvece7kkxd6sy4o7gkfgo3.py # Topologically Sorted Source Nodes: [scores_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # scores_1 => amax, div_1, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 256 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mz/cmzlu2lip25blpsdqeby7ek5757op6xw3pdkxbdediou5szw32tx.py # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear_3 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_15,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ok/cokamvfj3z4xuz3jmalftfns3huimimr3c4gzm52vaybmdliglu4.py # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.add] # Source node to ATen node mapping: # linear_3 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_11), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 16, grid=grid(16, 16), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5) buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [scores_1], Original ATen: [aten._softmax] triton_per_fused__softmax_1.run(buf5, buf8, 256, 16, grid=grid(256), stream=stream0) del buf5 buf9 = reinterpret_tensor(buf1, (4, 4, 16, 1), (64, 16, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_8, buf9, 16, 16, grid=grid(16, 16), stream=stream0) del primals_8 buf10 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (16, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf9, (16, 16, 1), (16, 1, 0), 0), out=buf10) buf11 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf10, buf11, 64, 4, grid=grid(64, 4), stream=stream0) buf12 = reinterpret_tensor(buf10, (64, 4), (4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf12) buf13 = reinterpret_tensor(buf12, (4, 16, 4), (64, 4, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf13, primals_11, 256, grid=grid(256), stream=stream0) del primals_11 return (buf13, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), buf8, reinterpret_tensor(buf11, (64, 4), (4, 1), 0), primals_10, reinterpret_tensor(buf9, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F class MultiHeadAttention(nn.Module): def __init__(self, d_model, n_heads, p_drop=0.1): super(MultiHeadAttention, self).__init__() assert d_model % n_heads == 0 self.d_model = d_model self.n_heads = n_heads self.d_hidden = d_model // n_heads self.q_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(p_drop) self.fc = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) q = self.q_linear(q).view(bs, -1, self.n_heads, self.d_hidden) k = self.k_linear(k).view(bs, -1, self.n_heads, self.d_hidden) v = self.v_linear(v).view(bs, -1, self.n_heads, self.d_hidden) q = q.transpose(1, 2) k = k.transpose(1, 2) v = v.transpose(1, 2) scores = torch.matmul(q, k.transpose(-2, -1)) / np.sqrt(self.d_hidden) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask is False, -1000000000.0) scores = F.softmax(scores, dim=-1) attn = torch.matmul(scores, v) concat = attn.transpose(1, 2).reshape(bs, -1, self.d_model) concat = self.dropout(concat) return self.fc(concat) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'n_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 256 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 16)](buf0, primals_3, buf3, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 16)](buf1, primals_5, buf4, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5) buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch .float32) triton_per_fused__softmax_1[grid(256)](buf5, buf8, 256, 16, XBLOCK= 32, num_warps=4, num_stages=1) del buf5 buf9 = reinterpret_tensor(buf1, (4, 4, 16, 1), (64, 16, 1, 1), 0) del buf1 triton_poi_fused_clone_0[grid(16, 16)](buf2, primals_8, buf9, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_8 buf10 = reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf8, (16, 16, 16), (256, 16, 1), 0), reinterpret_tensor(buf9, (16, 16, 1), (16, 1, 0), 0), out=buf10) buf11 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(64, 4)](buf10, buf11, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf12 = reinterpret_tensor(buf10, (64, 4), (4, 1), 0) del buf10 extern_kernels.mm(reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf12) buf13 = reinterpret_tensor(buf12, (4, 16, 4), (64, 4, 1), 0) del buf12 triton_poi_fused_add_3[grid(256)](buf13, primals_11, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_11 return buf13, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0 ), buf8, reinterpret_tensor(buf11, (64, 4), (4, 1), 0 ), primals_10, reinterpret_tensor(buf9, (16, 1, 16), (16, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 16), (16, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0) class MultiHeadAttentionNew(nn.Module): def __init__(self, d_model, n_heads, p_drop=0.1): super(MultiHeadAttentionNew, self).__init__() assert d_model % n_heads == 0 self.d_model = d_model self.n_heads = n_heads self.d_hidden = d_model // n_heads self.q_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(p_drop) self.fc = nn.Linear(d_model, d_model) def forward(self, input_0, input_1, input_2): primals_2 = self.q_linear.weight primals_3 = self.q_linear.bias primals_4 = self.k_linear.weight primals_5 = self.k_linear.bias primals_7 = self.v_linear.weight primals_8 = self.v_linear.bias primals_10 = self.fc.weight primals_11 = self.fc.bias primals_1 = input_0 primals_6 = input_1 primals_9 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
RegiusQuant/nlp-practice
MultiHeadAttention
false
995
[ "MIT" ]
0
ffa99aa585134941aa148da11775c2b16d42eef7
https://github.com/RegiusQuant/nlp-practice/tree/ffa99aa585134941aa148da11775c2b16d42eef7
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, d_model, n_heads, p_drop=0.1): super().__init__() assert d_model % n_heads == 0 self.d_model = d_model self.n_heads = n_heads self.d_hidden = d_model // n_heads self.q_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(p_drop) self.fc = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) q = self.q_linear(q).view(bs, -1, self.n_heads, self.d_hidden) k = self.k_linear(k).view(bs, -1, self.n_heads, self.d_hidden) v = self.v_linear(v).view(bs, -1, self.n_heads, self.d_hidden) q = q.transpose(1, 2) k = k.transpose(1, 2) v = v.transpose(1, 2) scores = torch.matmul(q, k.transpose(-2, -1)) / np.sqrt(self.d_hidden) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask is False, -1000000000.0) scores = F.softmax(scores, dim=-1) attn = torch.matmul(scores, v) concat = attn.transpose(1, 2).reshape(bs, -1, self.d_model) concat = self.dropout(concat) return self.fc(concat) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ACNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/5y/c5yq7wkgmmcygrawripwacy566sggsmh2mzk5izw35wk7ferohhu.py # Topologically Sorted Source Nodes: [pi], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # pi => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 100 x2 = xindex % 1600 x3 = (xindex // 1600) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (100, 4), (4, 1)) assert_size_stride(primals_2, (100, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 100), (100, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (100, 4), (4, 1)) assert_size_stride(primals_7, (100, ), (1, )) assert_size_stride(primals_8, (1, 100), (100, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool) # Topologically Sorted Source Nodes: [pi], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 6400, grid=grid(6400), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [actions], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(primals_4, (100, 4), (1, 100), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 100), (1, 4), 0), out=buf3) del primals_6 buf4 = reinterpret_tensor(buf3, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf3 # reuse buf7 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf4, primals_7, buf7, 6400, grid=grid(6400), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [values], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf4, (64, 100), (100, 1), 0), reinterpret_tensor(primals_8, (100, 1), (1, 100), 0), alpha=1, beta=1, out=buf6) del primals_9 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(buf4, (64, 100), (100, 1), 0), primals_8, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable def from_numpy(np_array, dtype=np.float32): if np_array.dtype != dtype: np_array = np_array.astype(dtype) return Variable(torch.from_numpy(np_array)) class ACNet(nn.Module): """ V: s -> r(scalar) Pi: s -> distribution of action """ def __init__(self, s_dim, a_dim): super(ACNet, self).__init__() self.s_dim = s_dim self.a_dim = a_dim self.v1 = nn.Linear(s_dim, 100) self.v2 = nn.Linear(100, 1) self.pi1 = nn.Linear(s_dim, 100) self.pi2 = nn.Linear(100, a_dim) self.dist_cate = torch.distributions.Categorical def forward(self, state): pi = F.relu(self.pi1(state)) actions = self.pi2(pi) v = F.relu(self.v1(state)) values = self.v2(v) return actions, values def loss_func(self, s, a, v_targets): self.train() logits, values = self.forward(s) td = v_targets - values c_loss = td.pow(2) action_pb = F.softmax(logits, dim=1) pi_dist = self.dist_cate(action_pb) a_loss = -pi_dist.log_prob(a) * td.detach() total_loss = (c_loss + a_loss).mean() return total_loss def choose_action(self, state): """ state : single state """ self.eval() states = torch.unsqueeze(from_numpy(state), dim=0) actions, _ = self.forward(states) pb = F.softmax(actions, dim=1).data return self.dist_cate(pb).sample().numpy()[0] def update(self, opt, s_t, states, actions, rs, done): """ n-step learning, s_t: last state states : state t,t+step actions : action t ,t+step rs : rewards done :last state is done? """ if done: R = 0 else: s_t = torch.unsqueeze(from_numpy(s_t[None, :]), 0) R = self.forward(s_t)[-1].data.numpy()[0] v_target = [] for r in rs[::-1]: R = r + GAMMA * R v_target.append(R) v_target.reverse() v_target = from_numpy(np.stack(v_target, 0)) loss = self.loss_func(states, actions, v_target) opt.zero_grad() loss.backward() opt.step() @classmethod def training(cls, env): ac = ACNet(N_S, N_A) opt = torch.optim.Adam(ac.parameters()) for epi in range(2005): s = env.reset() ab, sb, rb = [], [], [] total_r = 0 for i in range(200): if epi > 2000: env.render() a = ac.choose_action(s) s_, r, done, _ = env.step(a) if done: r = -1 ab.append(a) sb.append(s) rb.append(r) total_r += r if i % STEP == 0 and i > 0: ab = from_numpy(np.stack(ab), dtype=np.int64) sb = from_numpy(np.stack(sb)) ac.update(opt, s_, sb, ab, rb, done) ab, sb, rb = [], [], [] s = s_ if done: break if epi % 20 == 0: None def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'s_dim': 4, 'a_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 100 x2 = xindex % 1600 x3 = xindex // 1600 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (100, 4), (4, 1)) assert_size_stride(primals_2, (100,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 100), (100, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (100, 4), (4, 1)) assert_size_stride(primals_7, (100,), (1,)) assert_size_stride(primals_8, (1, 100), (100, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(6400)](buf1, primals_2, buf8, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(primals_4, (100, 4), (1, 100), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 100), (1, 4), 0), out=buf3) del primals_6 buf4 = reinterpret_tensor(buf3, (4, 4, 4, 100), (1600, 400, 100, 1), 0) del buf3 buf7 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(6400)](buf4, primals_7, buf7, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf4, (64, 100), (100, 1), 0), reinterpret_tensor(primals_8, (100, 1), (1, 100), 0), alpha=1, beta=1, out=buf6) del primals_9 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 100), (100, 1), 0 ), reinterpret_tensor(buf4, (64, 100), (100, 1), 0 ), primals_8, buf7, primals_4, buf8 def from_numpy(np_array, dtype=np.float32): if np_array.dtype != dtype: np_array = np_array.astype(dtype) return Variable(torch.from_numpy(np_array)) class ACNetNew(nn.Module): """ V: s -> r(scalar) Pi: s -> distribution of action """ def __init__(self, s_dim, a_dim): super(ACNetNew, self).__init__() self.s_dim = s_dim self.a_dim = a_dim self.v1 = nn.Linear(s_dim, 100) self.v2 = nn.Linear(100, 1) self.pi1 = nn.Linear(s_dim, 100) self.pi2 = nn.Linear(100, a_dim) self.dist_cate = torch.distributions.Categorical def loss_func(self, s, a, v_targets): self.train() logits, values = self.forward(s) td = v_targets - values c_loss = td.pow(2) action_pb = F.softmax(logits, dim=1) pi_dist = self.dist_cate(action_pb) a_loss = -pi_dist.log_prob(a) * td.detach() total_loss = (c_loss + a_loss).mean() return total_loss def choose_action(self, state): """ state : single state """ self.eval() states = torch.unsqueeze(from_numpy(state), dim=0) actions, _ = self.forward(states) pb = F.softmax(actions, dim=1).data return self.dist_cate(pb).sample().numpy()[0] def update(self, opt, s_t, states, actions, rs, done): """ n-step learning, s_t: last state states : state t,t+step actions : action t ,t+step rs : rewards done :last state is done? """ if done: R = 0 else: s_t = torch.unsqueeze(from_numpy(s_t[None, :]), 0) R = self.forward(s_t)[-1].data.numpy()[0] v_target = [] for r in rs[::-1]: R = r + GAMMA * R v_target.append(R) v_target.reverse() v_target = from_numpy(np.stack(v_target, 0)) loss = self.loss_func(states, actions, v_target) opt.zero_grad() loss.backward() opt.step() @classmethod def training(cls, env): ac = ACNetNew(N_S, N_A) opt = torch.optim.Adam(ac.parameters()) for epi in range(2005): s = env.reset() ab, sb, rb = [], [], [] total_r = 0 for i in range(200): if epi > 2000: env.render() a = ac.choose_action(s) s_, r, done, _ = env.step(a) if done: r = -1 ab.append(a) sb.append(s) rb.append(r) total_r += r if i % STEP == 0 and i > 0: ab = from_numpy(np.stack(ab), dtype=np.int64) sb = from_numpy(np.stack(sb)) ac.update(opt, s_, sb, ab, rb, done) ab, sb, rb = [], [], [] s = s_ if done: break if epi % 20 == 0: None def forward(self, input_0): primals_1 = self.v1.weight primals_2 = self.v1.bias primals_8 = self.v2.weight primals_9 = self.v2.bias primals_6 = self.pi1.weight primals_7 = self.pi1.bias primals_4 = self.pi2.weight primals_5 = self.pi2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
RocksonZeta/ac
ACNet
false
996
[ "MIT" ]
0
050a5cd176864cc2e1f7c376045c3342a7f93221
https://github.com/RocksonZeta/ac/tree/050a5cd176864cc2e1f7c376045c3342a7f93221
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable def from_numpy(np_array, dtype=np.float32): if np_array.dtype != dtype: np_array = np_array.astype(dtype) return Variable(torch.from_numpy(np_array)) class Model(nn.Module): """ V: s -> r(scalar) Pi: s -> distribution of action """ def __init__(self, s_dim, a_dim): super().__init__() self.s_dim = s_dim self.a_dim = a_dim self.v1 = nn.Linear(s_dim, 100) self.v2 = nn.Linear(100, 1) self.pi1 = nn.Linear(s_dim, 100) self.pi2 = nn.Linear(100, a_dim) self.dist_cate = torch.distributions.Categorical def forward(self, state): pi = F.relu(self.pi1(state)) actions = self.pi2(pi) v = F.relu(self.v1(state)) values = self.v2(v) return actions, values def loss_func(self, s, a, v_targets): self.train() logits, values = self.forward(s) td = v_targets - values c_loss = td.pow(2) action_pb = F.softmax(logits, dim=1) pi_dist = self.dist_cate(action_pb) a_loss = -pi_dist.log_prob(a) * td.detach() total_loss = (c_loss + a_loss).mean() return total_loss def choose_action(self, state): """ state : single state """ self.eval() states = torch.unsqueeze(from_numpy(state), dim=0) actions, _ = self.forward(states) pb = F.softmax(actions, dim=1).data return self.dist_cate(pb).sample().numpy()[0] def update(self, opt, s_t, states, actions, rs, done): """ n-step learning, s_t: last state states : state t,t+step actions : action t ,t+step rs : rewards done :last state is done? """ if done: R = 0 else: s_t = torch.unsqueeze(from_numpy(s_t[None, :]), 0) R = self.forward(s_t)[-1].data.numpy()[0] v_target = [] for r in rs[::-1]: R = r + GAMMA * R v_target.append(R) v_target.reverse() v_target = from_numpy(np.stack(v_target, 0)) loss = self.loss_func(states, actions, v_target) opt.zero_grad() loss.backward() opt.step() @classmethod def training(cls, env): ac = ACNet(N_S, N_A) opt = torch.optim.Adam(ac.parameters()) for epi in range(2005): s = env.reset() ab, sb, rb = [], [], [] total_r = 0 for i in range(200): if epi > 2000: env.render() a = ac.choose_action(s) s_, r, done, _ = env.step(a) if done: r = -1 ab.append(a) sb.append(s) rb.append(r) total_r += r if i % STEP == 0 and i > 0: ab = from_numpy(np.stack(ab), dtype=np.int64) sb = from_numpy(np.stack(sb)) ac.update(opt, s_, sb, ab, rb, done) ab, sb, rb = [], [], [] s = s_ if done: break if epi % 20 == 0: None def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
BReLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/4j/c4jkdxo2rtkxhqp5bq4jc27wn42tb3xs5u3tl5q64rc4ovyvgovr.py # Topologically Sorted Source Nodes: [relu, add], Original ATen: [aten.relu, aten.add] # Source node to ATen node mapping: # add => add # relu => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %arg1_1), kwargs = {}) triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp5 = tmp4.to(tl.float32) tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [relu, add], Original ATen: [aten.relu, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((), (), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class BReLU(nn.Module): """ Biased ReLU BReLU(x) = ReLU(x) + b Shape: -Input: (N, *) -Output: (N, *), same shape as the input Parameters: -in_features: number of input features -b: fixed parameter (bias like for relu) Examples: >>> input = torch.randn(300, 6) >>> afunc = BReLU(input.shape[1], b = 1.0e-8) >>> x = afunc(input) """ def __init__(self, in_features, b): super(BReLU, self).__init__() self.in_features = in_features self.b = nn.Parameter(torch.tensor(b), requires_grad=False) self.relu = nn.ReLU() def forward(self, x): return self.relu(x) + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'b': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp5 = tmp4.to(tl.float32) tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_relu_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class BReLUNew(nn.Module): """ Biased ReLU BReLU(x) = ReLU(x) + b Shape: -Input: (N, *) -Output: (N, *), same shape as the input Parameters: -in_features: number of input features -b: fixed parameter (bias like for relu) Examples: >>> input = torch.randn(300, 6) >>> afunc = BReLU(input.shape[1], b = 1.0e-8) >>> x = afunc(input) """ def __init__(self, in_features, b): super(BReLUNew, self).__init__() self.in_features = in_features self.b = nn.Parameter(torch.tensor(b), requires_grad=False) self.relu = nn.ReLU() def forward(self, input_0): arg1_1 = self.b arg0_1 = input_0 output = call([arg0_1, arg1_1]) return output[0]
RosarioAndolina/psychXRF
BReLU
false
997
[ "MIT" ]
0
e2adadbd17664d7f74c10304f84b3751c571226e
https://github.com/RosarioAndolina/psychXRF/tree/e2adadbd17664d7f74c10304f84b3751c571226e
import torch import torch.nn as nn class Model(nn.Module): """ Biased ReLU BReLU(x) = ReLU(x) + b Shape: -Input: (N, *) -Output: (N, *), same shape as the input Parameters: -in_features: number of input features -b: fixed parameter (bias like for relu) Examples: >>> input = torch.randn(300, 6) >>> afunc = BReLU(input.shape[1], b = 1.0e-8) >>> x = afunc(input) """ def __init__(self, in_features, b): super().__init__() self.in_features = in_features self.b = nn.Parameter(torch.tensor(b), requires_grad=False) self.relu = nn.ReLU() def forward(self, x): return self.relu(x) + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Beta2
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/up/cup6o5cbzbunxrgsjove7ghgc4dkxlfpf5zncfpxjlrgo5zjrjpe.py # Topologically Sorted Source Nodes: [mean, sub_2, exp, var, truediv_1, mul_1, sub_3, sub, truediv, pow_2, mul, alpha, beta], Original ATen: [aten.sigmoid, aten.rsub, aten.exp, aten.pow, aten.div, aten.mul, aten.sub] # Source node to ATen node mapping: # alpha => sub_1 # beta => sub_4 # exp => exp # mean => sigmoid # mul => mul # mul_1 => mul_1 # pow_2 => pow_2 # sub => sub # sub_2 => sub_2 # sub_3 => sub_3 # truediv => div # truediv_1 => div_1 # var => pow_1 # Graph fragment: # %sigmoid : [num_users=5] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg1_1,), kwargs = {}) # %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%exp, 2), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %pow_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %sigmoid), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %pow_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sigmoid, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %pow_2), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sigmoid), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_3, %sub_1), kwargs = {}) triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0 = async_compile.triton('triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tl_math.exp(tmp4) tmp6 = tmp5 * tmp5 tmp7 = tmp3 / tmp6 tmp8 = tmp1 * tmp1 tmp9 = tmp7 * tmp8 tmp10 = tmp9 - tmp1 tmp11 = tmp7 * tmp1 tmp12 = tmp11 - tmp2 tmp13 = tmp12 - tmp10 tl.store(out_ptr0 + (x2), tmp10, xmask) tl.store(out_ptr1 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, sub_2, exp, var, truediv_1, mul_1, sub_3, sub, truediv, pow_2, mul, alpha, beta], Original ATen: [aten.sigmoid, aten.rsub, aten.exp, aten.pow, aten.div, aten.mul, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0.run(arg0_1, arg1_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class Beta2(nn.Module): def __init__(self, action_dim, init_std=0.25, learn_std=False): super(Beta2, self).__init__() assert init_std < 0.5, 'Beta distribution has a max std dev of 0.5' self.action_dim = action_dim self.logstd = nn.Parameter(torch.ones(1, action_dim) * np.log( init_std), requires_grad=learn_std) self.learn_std = learn_std def forward(self, x): mean = torch.sigmoid(x) var = self.logstd.exp().pow(2) """ alpha = ((1 - mu) / sigma^2 - 1 / mu) * mu^2 beta = alpha * (1 / mu - 1) Implemented slightly differently for numerical stability. """ alpha = (1 - mean) / var * mean.pow(2) - mean beta = (1 - mean) / var * mean - 1 - alpha return alpha, beta def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'action_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tl_math.exp(tmp4) tmp6 = tmp5 * tmp5 tmp7 = tmp3 / tmp6 tmp8 = tmp1 * tmp1 tmp9 = tmp7 * tmp8 tmp10 = tmp9 - tmp1 tmp11 = tmp7 * tmp1 tmp12 = tmp11 - tmp2 tmp13 = tmp12 - tmp10 tl.store(out_ptr0 + x2, tmp10, xmask) tl.store(out_ptr1 + x2, tmp13, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0[grid(256)](arg0_1, arg1_1, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, buf1 class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class Beta2New(nn.Module): def __init__(self, action_dim, init_std=0.25, learn_std=False): super(Beta2New, self).__init__() assert init_std < 0.5, 'Beta distribution has a max std dev of 0.5' self.action_dim = action_dim self.logstd = nn.Parameter(torch.ones(1, action_dim) * np.log( init_std), requires_grad=learn_std) self.learn_std = learn_std def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def forward(self, input_0): arg1_1 = self.logstd arg0_1 = input_0 output = call([arg0_1, arg1_1]) return output[0], output[1]
RohanPankaj/apex
Beta2
false
998
[ "MIT" ]
0
74e96386bf9446d1179106d6d65ea0368c1b5b27
https://github.com/RohanPankaj/apex/tree/74e96386bf9446d1179106d6d65ea0368c1b5b27
import torch import numpy as np import torch.nn as nn class BoundedBeta(torch.distributions.Beta): def log_prob(self, x): return super().log_prob((x + 1) / 2) class Model(nn.Module): def __init__(self, action_dim, init_std=0.25, learn_std=False): super().__init__() assert init_std < 0.5, 'Beta distribution has a max std dev of 0.5' self.action_dim = action_dim self.logstd = nn.Parameter(torch.ones(1, action_dim) * np.log( init_std), requires_grad=learn_std) self.learn_std = learn_std def forward(self, x): mean = torch.sigmoid(x) var = self.logstd.exp().pow(2) """ alpha = ((1 - mu) / sigma^2 - 1 / mu) * mu^2 beta = alpha * (1 / mu - 1) Implemented slightly differently for numerical stability. """ alpha = (1 - mean) / var * mean.pow(2) - mean beta = (1 - mean) / var * mean - 1 - alpha return alpha, beta def sample(self, x, deterministic): if deterministic is False: action = self.evaluate(x).sample() else: return self.evaluate(x).mean return 2 * action - 1 def evaluate(self, x): alpha, beta = self(x) return BoundedBeta(alpha, beta) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LN_Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xn/cxnnvcbpimtewxjt4mimmcqawz5gv2a6icv2tr6fsnnrymigvs3d.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.relu, aten.native_layer_norm] # Source node to ATen node mapping: # x => relu # x_1 => add, rsqrt, var_mean # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%relu, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_relu_0 = async_compile.triton('triton_poi_fused_native_layer_norm_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 + tmp4 tmp7 = triton_helpers.maximum(tmp1, tmp6) tmp8 = tmp5 + tmp7 tmp10 = triton_helpers.maximum(tmp1, tmp9) tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp4 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp7 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.rsqrt(tmp27) tl.store(out_ptr0 + (x0), tmp13, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6g/c6ggq4jcdiezt4q7ougkmhavz4u3ubava2hzv5rz7w6i6lfww67j.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.relu, aten.native_layer_norm] # Source node to ATen node mapping: # x => relu # x_1 => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%relu, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_5), kwargs = {}) triton_poi_fused_native_layer_norm_relu_1 = async_compile.triton('triton_poi_fused_native_layer_norm_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_relu_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ns/cnszijuiz432ctw37rqktvk3syr2vugzeuatmva3neoizic6f3sq.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x_4 => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.relu, aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_relu_0.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_1.run(buf0, buf1, buf2, primals_4, primals_5, buf3, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = buf2; del buf2 # reuse buf6 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_0.run(buf4, buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_1.run(buf4, buf5, buf6, primals_8, primals_9, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 del primals_9 buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf9, primals_11, 256, grid=grid(256), stream=stream0) del primals_11 return (buf9, primals_4, primals_8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf7, (64, 4), (4, 1), 0), buf9, primals_10, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class LN_Actor(nn.Module): def __init__(self, state_dim, action_dim, max_action, hidden_size1, hidden_size2): super(LN_Actor, self).__init__() self.l1 = nn.Linear(state_dim, hidden_size1) self.ln1 = nn.LayerNorm(hidden_size1) self.l2 = nn.Linear(hidden_size1, hidden_size2) self.ln2 = nn.LayerNorm(hidden_size2) self.l3 = nn.Linear(hidden_size2, action_dim) def forward(self, x): x = F.relu(self.l1(x)) x = self.ln1(x) x = F.relu(self.l2(x)) x = self.ln2(x) x = torch.tanh(self.l3(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'max_action': 4, 'hidden_size1': 4, 'hidden_size2': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 + tmp4 tmp7 = triton_helpers.maximum(tmp1, tmp6) tmp8 = tmp5 + tmp7 tmp10 = triton_helpers.maximum(tmp1, tmp9) tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp4 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp7 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.rsqrt(tmp27) tl.store(out_ptr0 + x0, tmp13, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_native_layer_norm_relu_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_relu_0[grid(64)](buf0, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_relu_1[grid(256)](buf0, buf1, buf2, primals_4, primals_5, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = buf2 del buf2 buf6 = buf1 del buf1 triton_poi_fused_native_layer_norm_relu_0[grid(64)](buf4, buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_relu_1[grid(256)](buf4, buf5, buf6, primals_8, primals_9, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf5 del buf6 del primals_9 buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf8 triton_poi_fused_tanh_2[grid(256)](buf9, primals_11, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_11 return buf9, primals_4, primals_8, reinterpret_tensor(primals_3, (64, 4 ), (4, 1), 0), buf0, reinterpret_tensor(buf3, (64, 4), (4, 1), 0 ), buf4, reinterpret_tensor(buf7, (64, 4), (4, 1), 0 ), buf9, primals_10, primals_6 class LN_ActorNew(nn.Module): def __init__(self, state_dim, action_dim, max_action, hidden_size1, hidden_size2): super(LN_ActorNew, self).__init__() self.l1 = nn.Linear(state_dim, hidden_size1) self.ln1 = nn.LayerNorm(hidden_size1) self.l2 = nn.Linear(hidden_size1, hidden_size2) self.ln2 = nn.LayerNorm(hidden_size2) self.l3 = nn.Linear(hidden_size2, action_dim) def forward(self, input_0): primals_1 = self.l1.weight primals_2 = self.l1.bias primals_4 = self.ln1.weight primals_5 = self.ln1.bias primals_6 = self.l2.weight primals_7 = self.l2.bias primals_8 = self.ln2.weight primals_9 = self.ln2.bias primals_10 = self.l3.weight primals_11 = self.l3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
RohanPankaj/apex
LN_Actor
false
999
[ "MIT" ]
0
74e96386bf9446d1179106d6d65ea0368c1b5b27
https://github.com/RohanPankaj/apex/tree/74e96386bf9446d1179106d6d65ea0368c1b5b27
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, state_dim, action_dim, max_action, hidden_size1, hidden_size2): super().__init__() self.l1 = nn.Linear(state_dim, hidden_size1) self.ln1 = nn.LayerNorm(hidden_size1) self.l2 = nn.Linear(hidden_size1, hidden_size2) self.ln2 = nn.LayerNorm(hidden_size2) self.l3 = nn.Linear(hidden_size2, action_dim) def forward(self, x): x = F.relu(self.l1(x)) x = self.ln1(x) x = F.relu(self.l2(x)) x = self.ln2(x) x = torch.tanh(self.l3(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'max_action': 4, 'hidden_size1': 4, 'hidden_size2': 4}]
CFReLU
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ij/cijpjgmyxrhgzewma6oaiqf3rbibzuwqb6fihby3gaafnkiscy46.py # Topologically Sorted Source Nodes: [add, relu, add_1], Original ATen: [aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add => add # add_1 => add_1 # relu => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %primals_3), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_threshold_backward_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp6 = tl.load(in_ptr2 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp8 = tmp7.to(tl.float32) tmp9 = tmp5 + tmp8 tmp10 = 0.0 tmp11 = tmp5 <= tmp10 tl.store(out_ptr0 + (x0), tmp9, xmask) tl.store(out_ptr1 + (x0), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [add, relu, add_1], Original ATen: [aten.add, aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_threshold_backward_0.run(primals_2, primals_1, primals_3, buf0, buf1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 del primals_3 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.int64) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class CFReLU(nn.Module): """ Custom FReLU cfrelu(x) = relu(x + a) + b see psychXRF.activation.FReLU Shape: -Input: (N, *) -Output: (N, *), same shape as the input Parameters: -a: trainable parameter -b: fixed parameter Examples: >>> input = torch.randn(300, 6) >>> act = CFReLU(input.shape[1], b = 1.0e-6) >>> x = act(input) """ def __init__(self, in_features, b, a=None): """ Initialization a is initialized with zero value by default """ super(CFReLU, self).__init__() self.relu = F.relu self.in_features = in_features self.b = nn.Parameter(torch.tensor(b), requires_grad=False) if a: self.a = nn.Parameter(torch.tensor(a)) else: self.a = nn.Parameter(torch.tensor(0.0)) self.a.requiresGrad = True def forward(self, x): return self.relu(x + self.a) + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'b': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_relu_threshold_backward_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp6 = tl.load(in_ptr2 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp8 = tmp7.to(tl.float32) tmp9 = tmp5 + tmp8 tmp10 = 0.0 tmp11 = tmp5 <= tmp10 tl.store(out_ptr0 + x0, tmp9, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_add_relu_threshold_backward_0[grid(256)](primals_2, primals_1, primals_3, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 del primals_3 return buf0, buf1 class CFReLUNew(nn.Module): """ Custom FReLU cfrelu(x) = relu(x + a) + b see psychXRF.activation.FReLU Shape: -Input: (N, *) -Output: (N, *), same shape as the input Parameters: -a: trainable parameter -b: fixed parameter Examples: >>> input = torch.randn(300, 6) >>> act = CFReLU(input.shape[1], b = 1.0e-6) >>> x = act(input) """ def __init__(self, in_features, b, a=None): """ Initialization a is initialized with zero value by default """ super(CFReLUNew, self).__init__() self.relu = F.relu self.in_features = in_features self.b = nn.Parameter(torch.tensor(b), requires_grad=False) if a: self.a = nn.Parameter(torch.tensor(a)) else: self.a = nn.Parameter(torch.tensor(0.0)) self.a.requiresGrad = True def forward(self, input_0): primals_1 = self.b primals_3 = self.a primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
RosarioAndolina/psychXRF
CFReLU
false
1,000
[ "MIT" ]
0
e2adadbd17664d7f74c10304f84b3751c571226e
https://github.com/RosarioAndolina/psychXRF/tree/e2adadbd17664d7f74c10304f84b3751c571226e
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Custom FReLU cfrelu(x) = relu(x + a) + b see psychXRF.activation.FReLU Shape: -Input: (N, *) -Output: (N, *), same shape as the input Parameters: -a: trainable parameter -b: fixed parameter Examples: >>> input = torch.randn(300, 6) >>> act = CFReLU(input.shape[1], b = 1.0e-6) >>> x = act(input) """ def __init__(self, in_features, b, a=None): """ Initialization a is initialized with zero value by default """ super().__init__() self.relu = F.relu self.in_features = in_features self.b = nn.Parameter(torch.tensor(b), requires_grad=False) if a: self.a = nn.Parameter(torch.tensor(a)) else: self.a = nn.Parameter(torch.tensor(0.0)) self.a.requiresGrad = True def forward(self, x): return self.relu(x + self.a) + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
LN_DDPGCritic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat] # Source node to ATen node mapping: # xu => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/yv/cyvyo4ngtqx5yqi3aouvj5rpeudtztqrqbcgywvc5tyw4we3zr4n.py # Topologically Sorted Source Nodes: [x1, x1_1], Original ATen: [aten.relu, aten.native_layer_norm] # Source node to ATen node mapping: # x1 => relu # x1_1 => add, rsqrt, var_mean # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%addmm,), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%relu, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_relu_1 = async_compile.triton('triton_poi_fused_native_layer_norm_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 + tmp4 tmp7 = triton_helpers.maximum(tmp1, tmp6) tmp8 = tmp5 + tmp7 tmp10 = triton_helpers.maximum(tmp1, tmp9) tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp4 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp7 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.rsqrt(tmp27) tl.store(out_ptr0 + (x0), tmp13, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/n3/cn3ucymmjowa2gnsrhjc57k3cvwek7mc56s6tp6mjfw5s53i4pqk.py # Topologically Sorted Source Nodes: [x1, x1_1], Original ATen: [aten.relu, aten.native_layer_norm] # Source node to ATen node mapping: # x1 => relu # x1_1 => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%addmm,), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%relu, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_5), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_6), kwargs = {}) triton_poi_fused_native_layer_norm_relu_2 = async_compile.triton('triton_poi_fused_native_layer_norm_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_relu_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (1, 4), (4, 1)) assert_size_stride(primals_12, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [x1, x1_1], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_1.run(buf1, buf2, buf3, 4, grid=grid(4), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x1, x1_1], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_2.run(buf1, buf2, buf3, primals_5, primals_6, buf4, 16, grid=grid(16), stream=stream0) del primals_6 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = buf3; del buf3 # reuse buf7 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x1_2, x1_3], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_1.run(buf5, buf6, buf7, 4, grid=grid(4), stream=stream0) buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x1_2, x1_3], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_2.run(buf5, buf6, buf7, primals_9, primals_10, buf8, 16, grid=grid(16), stream=stream0) del buf6 del primals_10 buf10 = reinterpret_tensor(buf7, (4, 1), (1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [x1_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_12, buf8, reinterpret_tensor(primals_11, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_12 return (buf10, primals_5, primals_9, buf0, buf1, buf4, buf5, buf8, primals_11, primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class LN_DDPGCritic(nn.Module): def __init__(self, state_dim, action_dim, hidden_size1, hidden_size2): super(LN_DDPGCritic, self).__init__() self.l1 = nn.Linear(state_dim + action_dim, hidden_size1) self.ln1 = nn.LayerNorm(hidden_size1) self.l2 = nn.Linear(hidden_size1, hidden_size2) self.ln2 = nn.LayerNorm(hidden_size2) self.l3 = nn.Linear(hidden_size2, 1) def forward(self, inputs, actions): xu = torch.cat([inputs, actions], 1) x1 = F.relu(self.l1(xu)) x1 = self.ln1(x1) x1 = F.relu(self.l2(x1)) x1 = self.ln2(x1) x1 = self.l3(x1) return x1 def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'hidden_size1': 4, 'hidden_size2': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_native_layer_norm_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 + tmp4 tmp7 = triton_helpers.maximum(tmp1, tmp6) tmp8 = tmp5 + tmp7 tmp10 = triton_helpers.maximum(tmp1, tmp9) tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp4 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp7 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.rsqrt(tmp27) tl.store(out_ptr0 + x0, tmp13, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_native_layer_norm_relu_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (1, 4), (4, 1)) assert_size_stride(primals_12, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_native_layer_norm_relu_1[grid(4)](buf1, buf2, buf3, 4, XBLOCK=4, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_relu_2[grid(16)](buf1, buf2, buf3, primals_5, primals_6, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_6 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = buf3 del buf3 buf7 = buf2 del buf2 triton_poi_fused_native_layer_norm_relu_1[grid(4)](buf5, buf6, buf7, 4, XBLOCK=4, num_warps=1, num_stages=1) buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_relu_2[grid(16)](buf5, buf6, buf7, primals_9, primals_10, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf6 del primals_10 buf10 = reinterpret_tensor(buf7, (4, 1), (1, 1), 0) del buf7 extern_kernels.addmm(primals_12, buf8, reinterpret_tensor( primals_11, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_12 return (buf10, primals_5, primals_9, buf0, buf1, buf4, buf5, buf8, primals_11, primals_7) class LN_DDPGCriticNew(nn.Module): def __init__(self, state_dim, action_dim, hidden_size1, hidden_size2): super(LN_DDPGCriticNew, self).__init__() self.l1 = nn.Linear(state_dim + action_dim, hidden_size1) self.ln1 = nn.LayerNorm(hidden_size1) self.l2 = nn.Linear(hidden_size1, hidden_size2) self.ln2 = nn.LayerNorm(hidden_size2) self.l3 = nn.Linear(hidden_size2, 1) def forward(self, input_0, input_1): primals_3 = self.l1.weight primals_4 = self.l1.bias primals_5 = self.ln1.weight primals_6 = self.ln1.bias primals_1 = self.l2.weight primals_8 = self.l2.bias primals_9 = self.ln2.weight primals_10 = self.ln2.bias primals_11 = self.l3.weight primals_12 = self.l3.bias primals_2 = input_0 primals_7 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
RohanPankaj/apex
LN_DDPGCritic
false
1,001
[ "MIT" ]
0
74e96386bf9446d1179106d6d65ea0368c1b5b27
https://github.com/RohanPankaj/apex/tree/74e96386bf9446d1179106d6d65ea0368c1b5b27
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, state_dim, action_dim, hidden_size1, hidden_size2): super().__init__() self.l1 = nn.Linear(state_dim + action_dim, hidden_size1) self.ln1 = nn.LayerNorm(hidden_size1) self.l2 = nn.Linear(hidden_size1, hidden_size2) self.ln2 = nn.LayerNorm(hidden_size2) self.l3 = nn.Linear(hidden_size2, 1) def forward(self, inputs, actions): xu = torch.cat([inputs, actions], 1) x1 = F.relu(self.l1(xu)) x1 = self.ln1(x1) x1 = F.relu(self.l2(x1)) x1 = self.ln2(x1) x1 = self.l3(x1) return x1 def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'hidden_size1': 4, 'hidden_size2': 4}]
ReQUNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/be/cbe2chpvmm7us6roxewr7w2th6vorbi5luzhicrdhynmx5fq62e3.py # Topologically Sorted Source Nodes: [lt, setitem, z], Original ATen: [aten.lt, aten.lift_fresh, aten.index_put, aten.mul] # Source node to ATen node mapping: # lt => lt # setitem => full_default, index_put # z => mul # Graph fragment: # %lt : [num_users=2] = call_function[target=torch.ops.aten.lt.Scalar](args = (%view_1, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put : [num_users=2] = call_function[target=torch.ops.aten.index_put_.default](args = (%view_1, [%lt], %full_default), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %view_3), kwargs = {}) triton_poi_fused_index_put_lift_fresh_lt_mul_0 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_lt_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_lt_mul_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_put_lift_fresh_lt_mul_0(in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.0 tmp2 = tmp0 < tmp1 tmp3 = tl.where(tmp2, tmp1, tmp0) tmp4 = tmp3 * tmp3 tl.store(out_ptr0 + (x0), tmp2, None) tl.store(out_ptr2 + (x0), tmp3, None) tl.store(out_ptr3 + (x0), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/tz/ctzengiku4fpyacmhgujhvarriu4wwirpgay5u6a5wsrq2v75w32.py # Topologically Sorted Source Nodes: [pred_for_acc], Original ATen: [aten._softmax] # Source node to ATen node mapping: # pred_for_acc => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_6, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_6, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 12 x2 = (xindex // 48) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (12 + x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (24 + x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (36 + x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bv/cbvhs2xxondnsndwd2fomugf22ux53yglufxq4ntkf3shlcw366c.py # Topologically Sorted Source Nodes: [pred_for_acc], Original ATen: [aten._softmax] # Source node to ATen node mapping: # pred_for_acc => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 12 x2 = (xindex // 48) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (12 + x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (24 + x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (36 + x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (3, 64), (64, 1)) assert_size_stride(primals_5, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) buf4 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [lt, setitem, z], Original ATen: [aten.lt, aten.lift_fresh, aten.index_put, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_index_put_lift_fresh_lt_mul_0.run(buf0, buf1, buf0, buf4, 4096, grid=grid(4096), stream=stream0) buf5 = empty_strided_cuda((64, 3), (3, 1), torch.float32) # Topologically Sorted Source Nodes: [pred], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf4, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 3), (1, 64), 0), alpha=1, beta=1, out=buf5) del primals_5 buf6 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [pred_for_acc], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 192, grid=grid(192), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [pred_for_acc], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 192, grid=grid(192), stream=stream0) del buf6 return (reinterpret_tensor(buf5, (4, 4, 4, 3), (48, 12, 3, 1), 0), buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0), reinterpret_tensor(buf4, (64, 64), (64, 1), 0), buf7, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((3, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def MyReQU(x): x[x < 0] = 0 z = x * x return z class ReQUNet(nn.Module): def __init__(self): super(ReQUNet, self).__init__() n_in, n_h, n_out = 4, 64, 3 self.fc1 = nn.Linear(n_in, n_h, True) self.fc2 = nn.Linear(n_h, n_out, True) def forward(self, x): h = MyReQU(self.fc1(x)) pred = self.fc2(h) soft = nn.Softmax() pred_for_acc = soft(pred) return pred, pred_for_acc def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_index_put_lift_fresh_lt_mul_0(in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.0 tmp2 = tmp0 < tmp1 tmp3 = tl.where(tmp2, tmp1, tmp0) tmp4 = tmp3 * tmp3 tl.store(out_ptr0 + x0, tmp2, None) tl.store(out_ptr2 + x0, tmp3, None) tl.store(out_ptr3 + x0, tmp4, None) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 12 x2 = xindex // 48 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (12 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (24 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (36 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 12 x2 = xindex // 48 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (12 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (24 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (36 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (3, 64), (64, 1)) assert_size_stride(primals_5, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) buf4 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch. float32) get_raw_stream(0) triton_poi_fused_index_put_lift_fresh_lt_mul_0[grid(4096)](buf0, buf1, buf0, buf4, 4096, XBLOCK=256, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((64, 3), (3, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf4, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 3), (1, 64), 0), alpha=1, beta=1, out=buf5) del primals_5 buf6 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32) triton_poi_fused__softmax_1[grid(192)](buf5, buf6, 192, XBLOCK=256, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32) triton_poi_fused__softmax_2[grid(192)](buf6, buf7, 192, XBLOCK=256, num_warps=4, num_stages=1) del buf6 return reinterpret_tensor(buf5, (4, 4, 4, 3), (48, 12, 3, 1), 0 ), buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0 ), reinterpret_tensor(buf4, (64, 64), (64, 1), 0), buf7, primals_4 def MyReQU(x): x[x < 0] = 0 z = x * x return z class ReQUNetNew(nn.Module): def __init__(self): super(ReQUNetNew, self).__init__() n_in, n_h, n_out = 4, 64, 3 self.fc1 = nn.Linear(n_in, n_h, True) self.fc2 = nn.Linear(n_h, n_out, True) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
RoyHirsch/DeepLearningCourse
ReQUNet
false
1,002
[ "MIT" ]
0
9036c0fdbb08b610524d7be991f8e4b490a82c6c
https://github.com/RoyHirsch/DeepLearningCourse/tree/9036c0fdbb08b610524d7be991f8e4b490a82c6c
import torch import torch.nn as nn def MyReQU(x): x[x < 0] = 0 z = x * x return z class Model(nn.Module): def __init__(self): super().__init__() n_in, n_h, n_out = 4, 64, 3 self.fc1 = nn.Linear(n_in, n_h, True) self.fc2 = nn.Linear(n_h, n_out, True) def forward(self, x): h = MyReQU(self.fc1(x)) pred = self.fc2(h) soft = nn.Softmax() pred_for_acc = soft(pred) return pred, pred_for_acc def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SumNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/dz/cdzryvtc5xcfzqqm63c556qj4lnbgf74xepjuv4ftcjjramnhyrm.py # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %view), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SumNorm(nn.Module): """ Normalize dividing by the sum Shape: -Input: (N, *) -Output: (N, *), same shape as the input Parameters: -in_features: number of input features -dim(int): A dimension along witch sum will be computed Examples: >>> input = torch.randn(300, 4) >>> afunc = SumNorm(input.shape[1], dim = 1) >>> x = afunc(input) """ def __init__(self, in_features, dim=1): super(SumNorm, self).__init__() self.in_features = in_features self.dim = dim def forward(self, x): return x / x.sum(dim=self.dim).view(x.shape[0], 1) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return buf0, class SumNormNew(nn.Module): """ Normalize dividing by the sum Shape: -Input: (N, *) -Output: (N, *), same shape as the input Parameters: -in_features: number of input features -dim(int): A dimension along witch sum will be computed Examples: >>> input = torch.randn(300, 4) >>> afunc = SumNorm(input.shape[1], dim = 1) >>> x = afunc(input) """ def __init__(self, in_features, dim=1): super(SumNormNew, self).__init__() self.in_features = in_features self.dim = dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RosarioAndolina/psychXRF
SumNorm
false
1,003
[ "MIT" ]
0
e2adadbd17664d7f74c10304f84b3751c571226e
https://github.com/RosarioAndolina/psychXRF/tree/e2adadbd17664d7f74c10304f84b3751c571226e
import torch import torch.nn as nn class Model(nn.Module): """ Normalize dividing by the sum Shape: -Input: (N, *) -Output: (N, *), same shape as the input Parameters: -in_features: number of input features -dim(int): A dimension along witch sum will be computed Examples: >>> input = torch.randn(300, 4) >>> afunc = SumNorm(input.shape[1], dim = 1) >>> x = afunc(input) """ def __init__(self, in_features, dim=1): super().__init__() self.in_features = in_features self.dim = dim def forward(self, x): return x / x.sum(dim=self.dim).view(x.shape[0], 1) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4]
PITF_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/yo/cyo5c3qpjjeovvnksg7l66uxw5vj6kk2cjxmo4mrnxkgs355wopn.py # Topologically Sorted Source Nodes: [sub, sigmoid, log, neg], Original ATen: [aten.sub, aten.sigmoid, aten.log, aten.neg] # Source node to ATen node mapping: # log => log # neg => neg # sigmoid => sigmoid # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%sub,), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sigmoid,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {}) triton_poi_fused_log_neg_sigmoid_sub_0 = async_compile.triton('triton_poi_fused_log_neg_sigmoid_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_log_neg_sigmoid_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_log_neg_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = tl_math.log(tmp3) tmp5 = -tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, sigmoid, log, neg], Original ATen: [aten.sub, aten.sigmoid, aten.log, aten.neg] stream0 = get_raw_stream(0) triton_poi_fused_log_neg_sigmoid_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as t import torch.nn as nn class PITF_Loss(nn.Module): """ 定义PITF的loss function """ def __init__(self): super(PITF_Loss, self).__init__() None def forward(self, r_p, r_ne): return -t.log(t.sigmoid(r_p - r_ne)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_log_neg_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 - tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = tl_math.log(tmp3) tmp5 = -tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_log_neg_sigmoid_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class PITF_LossNew(nn.Module): """ 定义PITF的loss function """ def __init__(self): super(PITF_LossNew, self).__init__() None def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SamHaoYuan/pitf
PITF_Loss
false
1,004
[ "MIT" ]
0
5fdebc3b44c6462126876101b052a3980804da79
https://github.com/SamHaoYuan/pitf/tree/5fdebc3b44c6462126876101b052a3980804da79
import torch import torch as t import torch.nn as nn class Model(nn.Module): """ 定义PITF的loss function """ def __init__(self): super().__init__() None def forward(self, r_p, r_ne): return -t.log(t.sigmoid(r_p - r_ne)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SpatialGather_Module
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/iv/civr7hz7pwb7nd5q352sqsjvxezkx6m6jnyztaygkt2ugewh5ejx.py # Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # probs_1 => div, exp, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tmp9 / tmp13 tl.store(out_ptr2 + (r1 + (16*x0)), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_per_fused__softmax_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [probs_1, matmul], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3) del arg1_1 del buf2 return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F import torch._utils import torch.optim class SpatialGather_Module(nn.Module): """ Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. """ def __init__(self, cls_num=0, scale=1): super(SpatialGather_Module, self).__init__() self.cls_num = cls_num self.scale = scale def forward(self, feats, probs): batch_size, c, _h, _w = probs.size(0), probs.size(1), probs.size(2 ), probs.size(3) probs = probs.view(batch_size, c, -1) feats = feats.view(batch_size, feats.size(1), -1) feats = feats.permute(0, 2, 1) probs = F.softmax(self.scale * probs, dim=2) ocr_context = torch.matmul(probs, feats).permute(0, 2, 1).unsqueeze(3) return ocr_context def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch._utils import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tmp9 / tmp13 tl.store(out_ptr2 + (r1 + 16 * x0), tmp14, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK= 8, num_warps=2, num_stages=1) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3) del arg1_1 del buf2 return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 1, 4, 1), 0), class SpatialGather_ModuleNew(nn.Module): """ Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. """ def __init__(self, cls_num=0, scale=1): super(SpatialGather_ModuleNew, self).__init__() self.cls_num = cls_num self.scale = scale def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SSJIACV/HRNet-Semantic-Segmentation
SpatialGather_Module
false
1,005
[ "MIT" ]
0
7e2840ce7a91ae3845dfb203c992f84affa15e40
https://github.com/SSJIACV/HRNet-Semantic-Segmentation/tree/7e2840ce7a91ae3845dfb203c992f84affa15e40
import torch import torch.nn as nn from torch.nn import functional as F import torch._utils import torch.optim class Model(nn.Module): """ Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. """ def __init__(self, cls_num=0, scale=1): super().__init__() self.cls_num = cls_num self.scale = scale def forward(self, feats, probs): batch_size, c, _h, _w = probs.size(0), probs.size(1), probs.size(2 ), probs.size(3) probs = probs.view(batch_size, c, -1) feats = feats.view(batch_size, feats.size(1), -1) feats = feats.permute(0, 2, 1) probs = F.softmax(self.scale * probs, dim=2) ocr_context = torch.matmul(probs, feats).permute(0, 2, 1).unsqueeze(3) return ocr_context def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
_boundary
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py # Topologically Sorted Source Nodes: [residual, residual_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # residual => convolution # residual_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gz/cgz3i5sfiy2r2zcw7on5c3vgziypvqy3tqtrdk4orqs3phgqxlob.py # Topologically Sorted Source Nodes: [residual_2, out], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # out => add # residual_2 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %convolution_1), kwargs = {}) triton_poi_fused_add_convolution_1 = async_compile.triton('triton_poi_fused_add_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [residual], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [residual, residual_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [residual_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [residual_2, out], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_1.run(buf3, primals_3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class _boundary(nn.Module): def __init__(self, dim): super(_boundary, self).__init__() self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, padding=1) def forward(self, x): residual = self.conv1(x) residual = self.relu(residual) residual = self.conv2(residual) out = x + residual return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_add_convolution_1[grid(256)](buf3, primals_3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1 class _boundaryNew(nn.Module): def __init__(self, dim): super(_boundaryNew, self).__init__() self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, padding=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
STARBOYsachin/semantic-segmentation
_boundary
false
1,006
[ "MIT" ]
0
7f553a93b717641edc6c2d463903dfab67267039
https://github.com/STARBOYsachin/semantic-segmentation/tree/7f553a93b717641edc6c2d463903dfab67267039
import torch from torch import nn class Model(nn.Module): def __init__(self, dim): super().__init__() self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, padding=1) def forward(self, x): residual = self.conv1(x) residual = self.relu(residual) residual = self.conv2(residual) out = x + residual return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
SinglePITF_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xb/cxbzd3p6jl5zmocc37mlzv76h2fza5ke5ekhz7h7fnpf3udjofe2.py # Topologically Sorted Source Nodes: [sigmoid, log, neg, sum_1], Original ATen: [aten.sigmoid, aten.log, aten.neg, aten.sum] # Source node to ATen node mapping: # log => log # neg => neg # sigmoid => sigmoid # sum_1 => sum_1 # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sigmoid,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%neg,), kwargs = {}) triton_per_fused_log_neg_sigmoid_sum_0 = async_compile.triton('triton_per_fused_log_neg_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_neg_sigmoid_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_log_neg_sigmoid_sum_0(in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.sigmoid(tmp0) tmp2 = tl_math.log(tmp1) tmp3 = -tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, log, neg, sum_1], Original ATen: [aten.sigmoid, aten.log, aten.neg, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_log_neg_sigmoid_sum_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as t import torch.nn as nn class SinglePITF_Loss(nn.Module): """ 定义PITF的loss function """ def __init__(self): super(SinglePITF_Loss, self).__init__() None def forward(self, r): return t.sum(-t.log(t.sigmoid(r))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_log_neg_sigmoid_sum_0(in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.sigmoid(tmp0) tmp2 = tl_math.log(tmp1) tmp3 = -tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp6, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_log_neg_sigmoid_sum_0[grid(1)](arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf0, class SinglePITF_LossNew(nn.Module): """ 定义PITF的loss function """ def __init__(self): super(SinglePITF_LossNew, self).__init__() None def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SamHaoYuan/pitf
SinglePITF_Loss
false
1,007
[ "MIT" ]
0
5fdebc3b44c6462126876101b052a3980804da79
https://github.com/SamHaoYuan/pitf/tree/5fdebc3b44c6462126876101b052a3980804da79
import torch import torch as t import torch.nn as nn class Model(nn.Module): """ 定义PITF的loss function """ def __init__(self): super().__init__() None def forward(self, r): return t.sum(-t.log(t.sigmoid(r))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CAMMNISTClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/2x/c2xnlfml7v6uboqk242zwfdxrawephuy6yfg2pq7i4yip73axefe.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ne/cnepmjd66uu3laeexeusfxab3aayptiri2wp2knrgtgmx52tvzxj.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/u2/cu2m3b7o6dwplojxah26y2q5h6lbvoedyei4kep3vvnzwe7vkgsn.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 3844 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (3844*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + (32*x2) + (123008*y1)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/tg/ctgpg6u4ktcwk2lkrtfadblsktjvmxihx4s466rrtkg7dn7mcl4f.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 32 x1 = (xindex // 32) % 31 x2 = (xindex // 992) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1) + (3968*x2)), xmask) tmp1 = tl.load(in_ptr0 + (32 + x0 + (64*x1) + (3968*x2)), xmask) tmp3 = tl.load(in_ptr0 + (1984 + x0 + (64*x1) + (3968*x2)), xmask) tmp5 = tl.load(in_ptr0 + (2016 + x0 + (64*x1) + (3968*x2)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/4d/c4dfnf5nxia24xxkghzop4eoinjvrc4vzqjvqrhbghdmzlaefuu3.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 215296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dk/cdkgbaby3r2xif2evkxgfomw5kmoherisf2ldodrp3aludwtsxk5.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = (xindex // 64) % 14 x2 = (xindex // 896) % 14 x3 = (xindex // 12544) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (3712*x2) + (53824*x3)), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (3712*x2) + (53824*x3)), xmask) tmp3 = tl.load(in_ptr0 + (1856 + x0 + (128*x1) + (3712*x2) + (53824*x3)), xmask) tmp5 = tl.load(in_ptr0 + (1920 + x0 + (128*x1) + (3712*x2) + (53824*x3)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4), tmp6, xmask) tl.store(out_ptr1 + (x4), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ts/ctsdvxet67xj75o5d443eylzlf7yjmxhn6lm6v4xecbi22dhqpad.py # Topologically Sorted Source Nodes: [conv2d_2, x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.mean] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # x_3 => mean # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_2, [-1, -2], True), kwargs = {}) triton_red_fused_convolution_mean_relu_6 = async_compile.triton('triton_red_fused_convolution_mean_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[1024, 128], reduction_hint=ReductionHint.OUTER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_mean_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_convolution_mean_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 1024 rnumel = 72 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 128 x1 = (xindex // 128) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') _tmp6 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x3 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + (128*r2) + (9216*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = _tmp6 + tmp5 _tmp6 = tl.where(rmask & xmask, tmp7, _tmp6) tmp6 = tl.sum(_tmp6, 1)[:, None] tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vi/cvi4ovo32fwdzzp5aadeksyicr3mfbx7eue3p7kl73nprt55exzi.py # Topologically Sorted Source Nodes: [conv2d_2, x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.mean] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # x_3 => mean # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_2, [-1, -2], True), kwargs = {}) triton_per_fused_convolution_mean_relu_7 = async_compile.triton('triton_per_fused_convolution_mean_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 2], reduction_hint=ReductionHint.OUTER_TINY, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_mean_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_convolution_mean_relu_7(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 512 rnumel = 2 RBLOCK: tl.constexpr = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 128 x1 = (xindex // 128) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*r2) + (256*x1)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 144.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6a/c6aydbuigtu7cm4gfypg4ok6wfir5bprkkhebcgwmh2oblbktqaq.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (10, 128), (128, 1)) assert_size_stride(primals_9, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_4, buf0, 2048, 9, grid=grid(2048, 9), stream=stream0) del primals_4 buf1 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_6, buf1, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf3 = empty_strided_cuda((4, 32, 62, 62), (123008, 1, 1984, 32), torch.float32) # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf2, primals_2, buf3, 128, 3844, grid=grid(128, 3844), stream=stream0) del buf2 del primals_2 buf4 = empty_strided_cuda((4, 32, 31, 31), (30752, 1, 992, 32), torch.float32) buf5 = empty_strided_cuda((4, 32, 31, 31), (30752, 1, 992, 32), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf3, buf4, buf5, 123008, grid=grid(123008), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 29, 29), (53824, 1, 1856, 64)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf7, primals_5, 215296, grid=grid(215296), stream=stream0) del primals_5 buf8 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.float32) buf9 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf7, buf8, buf9, 50176, grid=grid(50176), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf8, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 12, 12), (18432, 1, 1536, 128)) buf11 = empty_strided_cuda((4, 128, 1, 1, 2), (256, 1, 1024, 1024, 128), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.mean] triton_red_fused_convolution_mean_relu_6.run(buf10, primals_7, buf11, 1024, 72, grid=grid(1024), stream=stream0) buf12 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 512, 512), torch.float32) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.mean] triton_per_fused_convolution_mean_relu_7.run(buf13, buf11, 512, 2, grid=grid(512), stream=stream0) del buf11 buf14 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf13, (4, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf14) del primals_9 buf15 = empty_strided_cuda((4, 128, 12, 12), (18432, 1, 1536, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf10, primals_7, buf15, 73728, grid=grid(73728), stream=stream0) del buf10 del primals_7 return (buf14, primals_1, primals_3, buf0, buf1, buf3, buf4, buf5, buf7, buf8, buf9, reinterpret_tensor(buf13, (4, 128), (128, 1), 0), primals_8, buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((10, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn as nn from torch import optim as optim from torchvision import transforms as transforms class CAMMNISTClassifier(nn.Module): def __init__(self): super(CAMMNISTClassifier, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3) self.relu3 = nn.ReLU() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(128, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) x = self.relu3(self.conv3(x)) x = self.avgpool(x) x = x.view(x.shape[0], -1) x = self.fc(x) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn as nn from torch import optim as optim from torchvision import transforms as transforms assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 3844 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 3844 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + 32 * x2 + 123008 * y1), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 32 x1 = xindex // 32 % 31 x2 = xindex // 992 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1 + 3968 * x2), xmask) tmp1 = tl.load(in_ptr0 + (32 + x0 + 64 * x1 + 3968 * x2), xmask) tmp3 = tl.load(in_ptr0 + (1984 + x0 + 64 * x1 + 3968 * x2), xmask) tmp5 = tl.load(in_ptr0 + (2016 + x0 + 64 * x1 + 3968 * x2), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 215296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 % 14 x2 = xindex // 896 % 14 x3 = xindex // 12544 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 3712 * x2 + 53824 * x3), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 3712 * x2 + 53824 * x3), xmask) tmp3 = tl.load(in_ptr0 + (1856 + x0 + 128 * x1 + 3712 * x2 + 53824 * x3 ), xmask) tmp5 = tl.load(in_ptr0 + (1920 + x0 + 128 * x1 + 3712 * x2 + 53824 * x3 ), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x4, tmp6, xmask) tl.store(out_ptr1 + x4, tmp16, xmask) @triton.jit def triton_red_fused_convolution_mean_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 1024 rnumel = 72 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 128 x1 = xindex // 128 tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') _tmp6 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x3 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * r2 + 9216 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = _tmp6 + tmp5 _tmp6 = tl.where(rmask & xmask, tmp7, _tmp6) tmp6 = tl.sum(_tmp6, 1)[:, None] tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_per_fused_convolution_mean_relu_7(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 512 RBLOCK: tl.constexpr = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 128 x1 = xindex // 128 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * r2 + 256 * x1), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 144.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (10, 128), (128, 1)) assert_size_stride(primals_9, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(2048, 9)](primals_4, buf0, 2048, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf1 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_1[grid(8192, 9)](primals_6, buf1, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf2 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf3 = empty_strided_cuda((4, 32, 62, 62), (123008, 1, 1984, 32), torch.float32) triton_poi_fused_convolution_relu_2[grid(128, 3844)](buf2, primals_2, buf3, 128, 3844, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf2 del primals_2 buf4 = empty_strided_cuda((4, 32, 31, 31), (30752, 1, 992, 32), torch.float32) buf5 = empty_strided_cuda((4, 32, 31, 31), (30752, 1, 992, 32), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(123008)](buf3, buf4, buf5, 123008, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 29, 29), (53824, 1, 1856, 64)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_4[grid(215296)](buf7, primals_5, 215296, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf8 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.float32) buf9 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_5[grid(50176)](buf7, buf8, buf9, 50176, XBLOCK=256, num_warps=4, num_stages=1) buf10 = extern_kernels.convolution(buf8, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 12, 12), (18432, 1, 1536, 128)) buf11 = empty_strided_cuda((4, 128, 1, 1, 2), (256, 1, 1024, 1024, 128), torch.float32) triton_red_fused_convolution_mean_relu_6[grid(1024)](buf10, primals_7, buf11, 1024, 72, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1) buf12 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 512, 512), torch.float32) buf13 = buf12 del buf12 triton_per_fused_convolution_mean_relu_7[grid(512)](buf13, buf11, 512, 2, XBLOCK=256, num_warps=4, num_stages=1) del buf11 buf14 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf13, (4, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf14) del primals_9 buf15 = empty_strided_cuda((4, 128, 12, 12), (18432, 1, 1536, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_8[grid(73728)]( buf10, primals_7, buf15, 73728, XBLOCK=1024, num_warps=4, num_stages=1) del buf10 del primals_7 return (buf14, primals_1, primals_3, buf0, buf1, buf3, buf4, buf5, buf7, buf8, buf9, reinterpret_tensor(buf13, (4, 128), (128, 1), 0), primals_8, buf15) class CAMMNISTClassifierNew(nn.Module): def __init__(self): super(CAMMNISTClassifierNew, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3) self.relu3 = nn.ReLU() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(128, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.fc.weight primals_9 = self.fc.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
RobinMaas95/GTSRB_Visualization
CAMMNISTClassifier
false
1,008
[ "MIT" ]
0
fa837ff94e089a936ef4f4418970d262b35f70b6
https://github.com/RobinMaas95/GTSRB_Visualization/tree/fa837ff94e089a936ef4f4418970d262b35f70b6
import torch from torch import nn as nn from torch import optim as optim from torchvision import transforms as transforms class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3) self.relu3 = nn.ReLU() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(128, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) x = self.relu3(self.conv3(x)) x = self.avgpool(x) x = x.view(x.shape[0], -1) x = self.fc(x) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return []
Standardize
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/kr/ckruyt6maca4ngviwzgzhxi4vkkf6jukusb63cym7d2bppobecfc.py # Topologically Sorted Source Nodes: [x, add, x_1], Original ATen: [aten.sub, aten.add, aten.div] # Source node to ATen node mapping: # add => add # x => sub # x_1 => div # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {}) triton_poi_fused_add_div_sub_0 = async_compile.triton('triton_poi_fused_add_div_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = tmp2 / tmp5 tl.store(out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr1 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, add, x_1], Original ATen: [aten.sub, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_sub_0.run(primals_2, primals_1, primals_3, buf0, buf1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, buf1, primals_3, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch.nn import init from torch.nn.parameter import Parameter class Standardize(Module): """ Applies (element-wise) standardization with trainable translation parameter μ and scale parameter σ, i.e. computes (x - μ) / σ where '/' is applied element-wise. Args: in_features: size of each input sample out_features: size of each output sample bias: If set to False, the layer will not learn a translation parameter μ. Default: ``True`` Attributes: mu: the learnable translation parameter μ. std: the learnable scale parameter σ. """ __constants__ = ['mu'] def __init__(self, in_features, bias=True, eps=1e-06): super(Standardize, self).__init__() self.in_features = in_features self.out_features = in_features self.eps = eps self.std = Parameter(torch.Tensor(in_features)) if bias: self.mu = Parameter(torch.Tensor(in_features)) else: self.register_parameter('mu', None) self.reset_parameters() def reset_parameters(self): init.constant_(self.std, 1) if self.mu is not None: init.constant_(self.mu, 0) def forward(self, x): if self.mu is not None: x -= self.mu x = torch.div(x, self.std + self.eps) return x def extra_repr(self): return 'in_features={}, out_features={}, bias={}'.format(self. in_features, self.out_features, self.mu is not None) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch.nn import init from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = tmp2 / tmp5 tl.store(out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr1 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_sub_0[grid(256)](primals_2, primals_1, primals_3, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, buf1, primals_3, buf0 class StandardizeNew(Module): """ Applies (element-wise) standardization with trainable translation parameter μ and scale parameter σ, i.e. computes (x - μ) / σ where '/' is applied element-wise. Args: in_features: size of each input sample out_features: size of each output sample bias: If set to False, the layer will not learn a translation parameter μ. Default: ``True`` Attributes: mu: the learnable translation parameter μ. std: the learnable scale parameter σ. """ __constants__ = ['mu'] def __init__(self, in_features, bias=True, eps=1e-06): super(StandardizeNew, self).__init__() self.in_features = in_features self.out_features = in_features self.eps = eps self.std = Parameter(torch.Tensor(in_features)) if bias: self.mu = Parameter(torch.Tensor(in_features)) else: self.register_parameter('mu', None) self.reset_parameters() def reset_parameters(self): init.constant_(self.std, 1) if self.mu is not None: init.constant_(self.mu, 0) def extra_repr(self): return 'in_features={}, out_features={}, bias={}'.format(self. in_features, self.out_features, self.mu is not None) def forward(self, input_0): primals_1 = self.std primals_3 = self.mu primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
SDJustus/Deep-SAD-PyTorch
Standardize
false
1,009
[ "MIT" ]
0
4d98e6474a7256329134c075894f885a56f59281
https://github.com/SDJustus/Deep-SAD-PyTorch/tree/4d98e6474a7256329134c075894f885a56f59281
from torch.nn import Module import torch from torch.nn import init from torch.nn.parameter import Parameter class Model(Module): """ Applies (element-wise) standardization with trainable translation parameter μ and scale parameter σ, i.e. computes (x - μ) / σ where '/' is applied element-wise. Args: in_features: size of each input sample out_features: size of each output sample bias: If set to False, the layer will not learn a translation parameter μ. Default: ``True`` Attributes: mu: the learnable translation parameter μ. std: the learnable scale parameter σ. """ __constants__ = ['mu'] def __init__(self, in_features, bias=True, eps=1e-06): super().__init__() self.in_features = in_features self.out_features = in_features self.eps = eps self.std = Parameter(torch.Tensor(in_features)) if bias: self.mu = Parameter(torch.Tensor(in_features)) else: self.register_parameter('mu', None) self.reset_parameters() def reset_parameters(self): init.constant_(self.std, 1) if self.mu is not None: init.constant_(self.mu, 0) def forward(self, x): if self.mu is not None: x -= self.mu x = torch.div(x, self.std + self.eps) return x def extra_repr(self): return 'in_features={}, out_features={}, bias={}'.format(self. in_features, self.out_features, self.mu is not None) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
NetFCN12
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/mx/cmxbucu53niw4mhkko67o2ijqxfkqksx6yvmymsdhrqavytlfa2x.py # Topologically Sorted Source Nodes: [x, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # relu => relu # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 246016 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 16 x0 = xindex % 3844 x4 = (xindex // 3844) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + (3872*x4)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dc/cdcqgi2asu2drj2jlx5ukk5hqfivxebjhqip5p6rp4tfvzioqf5s.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 57600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = (xindex // 30) % 30 x2 = (xindex // 900) x5 = xindex x4 = (xindex // 14400) x6 = xindex % 14400 tmp0 = tl.load(in_ptr0 + ((2*x0) + (124*x1) + (3872*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (124*x1) + (3872*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (2*x0) + (124*x1) + (3872*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (62 + (2*x0) + (124*x1) + (3872*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (63 + (2*x0) + (124*x1) + (3872*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (64 + (2*x0) + (124*x1) + (3872*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (124 + (2*x0) + (124*x1) + (3872*x2)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (125 + (2*x0) + (124*x1) + (3872*x2)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (126 + (2*x0) + (124*x1) + (3872*x2)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tmp1 > tmp0 tmp18 = tl.full([1], 1, tl.int8) tmp19 = tl.full([1], 0, tl.int8) tmp20 = tl.where(tmp17, tmp18, tmp19) tmp21 = tmp3 > tmp2 tmp22 = tl.full([1], 2, tl.int8) tmp23 = tl.where(tmp21, tmp22, tmp20) tmp24 = tmp5 > tmp4 tmp25 = tl.full([1], 3, tl.int8) tmp26 = tl.where(tmp24, tmp25, tmp23) tmp27 = tmp7 > tmp6 tmp28 = tl.full([1], 4, tl.int8) tmp29 = tl.where(tmp27, tmp28, tmp26) tmp30 = tmp9 > tmp8 tmp31 = tl.full([1], 5, tl.int8) tmp32 = tl.where(tmp30, tmp31, tmp29) tmp33 = tmp11 > tmp10 tmp34 = tl.full([1], 6, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp13 > tmp12 tmp37 = tl.full([1], 7, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp15 > tmp14 tmp40 = tl.full([1], 8, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tl.store(out_ptr0 + (x5), tmp16, xmask) tl.store(out_ptr1 + (x6 + (14464*x4)), tmp41, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/p5/cp5kyzagzpexw4kh6slbjcfecrddlnquqv3egkoyzy7u4qb6h57l.py # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 46656 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 729) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ge/cge6wng5the3ee5zgkaek4p3rauaayrmruhos66wcwk42j5gsxdg.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 5832 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 729) % 2 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (16, 16, 4, 4), (256, 16, 4, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (2, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_7, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 62, 62), (61504, 3844, 62, 1)) buf1 = empty_strided_cuda((4, 16, 62, 62), (61952, 3872, 62, 1), torch.float32) # Topologically Sorted Source Nodes: [x, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 246016, grid=grid(246016), stream=stream0) del buf0 del primals_2 buf2 = empty_strided_cuda((4, 16, 30, 30), (14400, 900, 30, 1), torch.float32) buf3 = empty_strided_cuda((4, 16, 30, 30), (14464, 900, 30, 1), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 57600, grid=grid(57600), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 27, 27), (11664, 729, 27, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 46656, grid=grid(46656), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 2, 27, 27), (1458, 729, 27, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf7, primals_7, 5832, grid=grid(5832), stream=stream0) del primals_7 return (buf7, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 16, 4, 4), (256, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((2, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class NetFCN12(nn.Module): def __init__(self): super(NetFCN12, self).__init__() self.conv = nn.Conv2d(3, 16, 3) self.pool = nn.MaxPool2d((3, 3), stride=2) self.conv2 = nn.Conv2d(16, 16, 4) self.conv3 = nn.Conv2d(16, 2, 1) def forward(self, x): x = self.conv(x) x = self.pool(F.relu(x)) x = F.relu(self.conv2(x)) x = self.conv3(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 246016 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 16 x0 = xindex % 3844 x4 = xindex // 3844 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + 3872 * x4), tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 57600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = xindex // 30 % 30 x2 = xindex // 900 x5 = xindex x4 = xindex // 14400 x6 = xindex % 14400 tmp0 = tl.load(in_ptr0 + (2 * x0 + 124 * x1 + 3872 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 124 * x1 + 3872 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 2 * x0 + 124 * x1 + 3872 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (62 + 2 * x0 + 124 * x1 + 3872 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (63 + 2 * x0 + 124 * x1 + 3872 * x2), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (64 + 2 * x0 + 124 * x1 + 3872 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (124 + 2 * x0 + 124 * x1 + 3872 * x2), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (125 + 2 * x0 + 124 * x1 + 3872 * x2), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (126 + 2 * x0 + 124 * x1 + 3872 * x2), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tmp1 > tmp0 tmp18 = tl.full([1], 1, tl.int8) tmp19 = tl.full([1], 0, tl.int8) tmp20 = tl.where(tmp17, tmp18, tmp19) tmp21 = tmp3 > tmp2 tmp22 = tl.full([1], 2, tl.int8) tmp23 = tl.where(tmp21, tmp22, tmp20) tmp24 = tmp5 > tmp4 tmp25 = tl.full([1], 3, tl.int8) tmp26 = tl.where(tmp24, tmp25, tmp23) tmp27 = tmp7 > tmp6 tmp28 = tl.full([1], 4, tl.int8) tmp29 = tl.where(tmp27, tmp28, tmp26) tmp30 = tmp9 > tmp8 tmp31 = tl.full([1], 5, tl.int8) tmp32 = tl.where(tmp30, tmp31, tmp29) tmp33 = tmp11 > tmp10 tmp34 = tl.full([1], 6, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp13 > tmp12 tmp37 = tl.full([1], 7, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp15 > tmp14 tmp40 = tl.full([1], 8, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tl.store(out_ptr0 + x5, tmp16, xmask) tl.store(out_ptr1 + (x6 + 14464 * x4), tmp41, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 46656 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 729 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 5832 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 729 % 2 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (16, 16, 4, 4), (256, 16, 4, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (2, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_7, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 62, 62), (61504, 3844, 62, 1)) buf1 = empty_strided_cuda((4, 16, 62, 62), (61952, 3872, 62, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(246016)](buf0, primals_2, buf1, 246016, XBLOCK=512, num_warps=8, num_stages=1) del buf0 del primals_2 buf2 = empty_strided_cuda((4, 16, 30, 30), (14400, 900, 30, 1), torch.float32) buf3 = empty_strided_cuda((4, 16, 30, 30), (14464, 900, 30, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(57600)](buf1, buf2, buf3, 57600, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 27, 27), (11664, 729, 27, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(46656)](buf5, primals_5, 46656, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 2, 27, 27), (1458, 729, 27, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_3[grid(5832)](buf7, primals_7, 5832, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 return (buf7, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf5) class NetFCN12New(nn.Module): def __init__(self): super(NetFCN12New, self).__init__() self.conv = nn.Conv2d(3, 16, 3) self.pool = nn.MaxPool2d((3, 3), stride=2) self.conv2 = nn.Conv2d(16, 16, 4) self.conv3 = nn.Conv2d(16, 2, 1) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
RoyHirsch/DeepLearningCourse
NetFCN12
false
1,010
[ "MIT" ]
0
9036c0fdbb08b610524d7be991f8e4b490a82c6c
https://github.com/RoyHirsch/DeepLearningCourse/tree/9036c0fdbb08b610524d7be991f8e4b490a82c6c
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(3, 16, 3) self.pool = nn.MaxPool2d((3, 3), stride=2) self.conv2 = nn.Conv2d(16, 16, 4) self.conv3 = nn.Conv2d(16, 2, 1) def forward(self, x): x = self.conv(x) x = self.pool(F.relu(x)) x = F.relu(self.conv2(x)) x = self.conv3(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
AttentionConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xy/cxy77nk6tbfgwqyn5amat6tjjfsjhqlutzehwqrmr3xcuh7sc46s.py # Topologically Sorted Source Nodes: [v_out_1, k_out_2, einsum], Original ATen: [aten.unfold, aten.cat, aten.mul] # Source node to ATen node mapping: # einsum => mul_1 # k_out_2 => cat # v_out_1 => unfold_3 # Graph fragment: # %unfold_3 : [num_users=2] = call_function[target=torch.ops.aten.unfold.default](args = (%unfold_2, 3, 4, 1), kwargs = {}) # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add, %add_1], 1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %permute_1), kwargs = {}) triton_poi_fused_cat_mul_unfold_0 = async_compile.triton('triton_poi_fused_cat_mul_unfold_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_mul_unfold_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_mul_unfold_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex x3 = (xindex // 16) % 4 x4 = (xindex // 64) x5 = xindex % 16 x2 = (xindex // 4) % 4 x1 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp20 = tl.load(in_ptr3 + (x0), xmask) tmp1 = x3 tmp2 = tl.full([1], 0, tl.int64) tmp3 = tmp1 >= tmp2 tmp4 = tl.full([1], 2, tl.int64) tmp5 = tmp1 < tmp4 tmp6 = tl.load(in_ptr0 + (x5 + (16*x3) + (64*x4)), tmp5 & xmask, other=0.0) tmp7 = tl.load(in_ptr1 + (x2 + (4*x3)), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp5, tmp8, tmp9) tmp11 = tmp1 >= tmp4 tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp1 < tmp12 tmp14 = tl.load(in_ptr0 + (32 + x5 + (16*((-2) + x3)) + (64*x4)), tmp11 & xmask, other=0.0) tmp15 = tl.load(in_ptr2 + (x1 + (4*((-2) + x3))), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp11, tmp16, tmp17) tmp19 = tl.where(tmp5, tmp10, tmp18) tmp21 = 0.0 tmp22 = tmp19 >= tmp21 tmp23 = 1.0 tmp24 = -1.0 tmp25 = tl.where(tmp22, tmp23, tmp24) tmp26 = tmp20 * tmp25 tmp27 = tmp26 - tmp26 tmp28 = tmp25 * tmp19 tmp29 = tmp27 * tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp30 / tmp30 tmp32 = tmp31 * tmp0 tl.store(in_out_ptr0 + (x0), tmp0, xmask) tl.store(out_ptr0 + (x0), tmp19, xmask) tl.store(out_ptr1 + (x0), tmp32, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (2, 1, 1, 4, 1), (4, 4, 4, 1, 1)) assert_size_stride(primals_6, (2, 1, 1, 1, 4), (4, 4, 4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [q_out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [k_out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [v_out], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 4, 4), (64, 16, 16, 4, 4, 1), 0); del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 1, 1, 4, 4), (64, 16, 16, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 4, 4, 4, 1), (64, 64, 16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [v_out_1, k_out_2, einsum], Original ATen: [aten.unfold, aten.cat, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_cat_mul_unfold_0.run(buf3, buf1, primals_5, primals_6, buf0, buf4, buf5, 256, grid=grid(256), stream=stream0) del buf1 del primals_5 del primals_6 return (reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_2, primals_3, primals_4, buf0, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, 1, 1, 4, 1), (4, 4, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((2, 1, 1, 1, 4), (4, 4, 4, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init class AttentionConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=False): super(AttentionConv, self).__init__() self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.groups = groups assert self.out_channels % self.groups == 0, 'out_channels should be divided by groups. (example: out_channels: 40, groups: 4)' self.rel_h = nn.Parameter(torch.randn(out_channels // 2, 1, 1, kernel_size, 1), requires_grad=True) self.rel_w = nn.Parameter(torch.randn(out_channels // 2, 1, 1, 1, kernel_size), requires_grad=True) self.key_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias) self.query_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.value_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.reset_parameters() def forward(self, x): batch, _channels, height, width = x.size() padded_x = F.pad(x, [self.padding, self.padding, self.padding, self .padding]) q_out = self.query_conv(x) k_out = self.key_conv(padded_x) v_out = self.value_conv(padded_x) k_out = k_out.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride) v_out = v_out.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride) k_out_h, k_out_w = k_out.split(self.out_channels // 2, dim=1) k_out = torch.cat((k_out_h + self.rel_h, k_out_w + self.rel_w), dim=1) k_out = k_out.contiguous().view(batch, self.groups, self. out_channels // self.groups, height, width, -1) v_out = v_out.contiguous().view(batch, self.groups, self. out_channels // self.groups, height, width, -1) q_out = q_out.view(batch, self.groups, self.out_channels // self. groups, height, width, 1) out = q_out * k_out out = F.softmax(out, dim=-1) out = torch.einsum('bnchwk,bnchwk -> bnchw', out, v_out).view(batch, -1, height, width) return out def reset_parameters(self): init.kaiming_normal_(self.key_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.value_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.query_conv.weight, mode='fan_out', nonlinearity='relu') init.normal_(self.rel_h, 0, 1) init.normal_(self.rel_w, 0, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.init as init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_mul_unfold_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex x3 = xindex // 16 % 4 x4 = xindex // 64 x5 = xindex % 16 x2 = xindex // 4 % 4 x1 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp20 = tl.load(in_ptr3 + x0, xmask) tmp1 = x3 tl.full([1], 0, tl.int64) tmp4 = tl.full([1], 2, tl.int64) tmp5 = tmp1 < tmp4 tmp6 = tl.load(in_ptr0 + (x5 + 16 * x3 + 64 * x4), tmp5 & xmask, other=0.0) tmp7 = tl.load(in_ptr1 + (x2 + 4 * x3), tmp5 & xmask, eviction_policy= 'evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp5, tmp8, tmp9) tmp11 = tmp1 >= tmp4 tl.full([1], 4, tl.int64) tmp14 = tl.load(in_ptr0 + (32 + x5 + 16 * (-2 + x3) + 64 * x4), tmp11 & xmask, other=0.0) tmp15 = tl.load(in_ptr2 + (x1 + 4 * (-2 + x3)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp11, tmp16, tmp17) tmp19 = tl.where(tmp5, tmp10, tmp18) tmp21 = 0.0 tmp22 = tmp19 >= tmp21 tmp23 = 1.0 tmp24 = -1.0 tmp25 = tl.where(tmp22, tmp23, tmp24) tmp26 = tmp20 * tmp25 tmp27 = tmp26 - tmp26 tmp28 = tmp25 * tmp19 tmp29 = tmp27 * tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp30 / tmp30 tmp32 = tmp31 * tmp0 tl.store(in_out_ptr0 + x0, tmp0, xmask) tl.store(out_ptr0 + x0, tmp19, xmask) tl.store(out_ptr1 + x0, tmp32, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (2, 1, 1, 4, 1), (4, 4, 4, 1, 1)) assert_size_stride(primals_6, (2, 1, 1, 1, 4), (4, 4, 4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 4, 4), (64, 16, 16, 4, 4, 1), 0) del buf2 buf4 = empty_strided_cuda((4, 4, 1, 1, 4, 4), (64, 16, 16, 16, 4, 1 ), torch.float32) buf5 = empty_strided_cuda((4, 1, 4, 4, 4, 1), (64, 64, 16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_mul_unfold_0[grid(256)](buf3, buf1, primals_5, primals_6, buf0, buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_5 del primals_6 return reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, primals_2, primals_3, primals_4, buf0, buf3, buf4 class AttentionConvNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=False): super(AttentionConvNew, self).__init__() self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.groups = groups assert self.out_channels % self.groups == 0, 'out_channels should be divided by groups. (example: out_channels: 40, groups: 4)' self.rel_h = nn.Parameter(torch.randn(out_channels // 2, 1, 1, kernel_size, 1), requires_grad=True) self.rel_w = nn.Parameter(torch.randn(out_channels // 2, 1, 1, 1, kernel_size), requires_grad=True) self.key_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias) self.query_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.value_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.reset_parameters() def reset_parameters(self): init.kaiming_normal_(self.key_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.value_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.query_conv.weight, mode='fan_out', nonlinearity='relu') init.normal_(self.rel_h, 0, 1) init.normal_(self.rel_w, 0, 1) def forward(self, input_0): primals_5 = self.rel_h primals_6 = self.rel_w primals_2 = self.key_conv.weight primals_3 = self.query_conv.weight primals_4 = self.value_conv.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
Sam-limyr/End-to-end-ASR-Pytorch
AttentionConv
false
1,011
[ "MIT" ]
0
623a50792f48218228549ea17b8ea5e8bb1b342f
https://github.com/Sam-limyr/End-to-end-ASR-Pytorch/tree/623a50792f48218228549ea17b8ea5e8bb1b342f
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=False): super().__init__() self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.groups = groups assert self.out_channels % self.groups == 0, 'out_channels should be divided by groups. (example: out_channels: 40, groups: 4)' self.rel_h = nn.Parameter(torch.randn(out_channels // 2, 1, 1, kernel_size, 1), requires_grad=True) self.rel_w = nn.Parameter(torch.randn(out_channels // 2, 1, 1, 1, kernel_size), requires_grad=True) self.key_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias) self.query_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.value_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.reset_parameters() def forward(self, x): batch, _channels, height, width = x.size() padded_x = F.pad(x, [self.padding, self.padding, self.padding, self .padding]) q_out = self.query_conv(x) k_out = self.key_conv(padded_x) v_out = self.value_conv(padded_x) k_out = k_out.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride) v_out = v_out.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride) k_out_h, k_out_w = k_out.split(self.out_channels // 2, dim=1) k_out = torch.cat((k_out_h + self.rel_h, k_out_w + self.rel_w), dim=1) k_out = k_out.contiguous().view(batch, self.groups, self. out_channels // self.groups, height, width, -1) v_out = v_out.contiguous().view(batch, self.groups, self. out_channels // self.groups, height, width, -1) q_out = q_out.view(batch, self.groups, self.out_channels // self. groups, height, width, 1) out = q_out * k_out out = F.softmax(out, dim=-1) out = torch.einsum('bnchwk,bnchwk -> bnchw', out, v_out).view(batch, -1, height, width) return out def reset_parameters(self): init.kaiming_normal_(self.key_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.value_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.query_conv.weight, mode='fan_out', nonlinearity='relu') init.normal_(self.rel_h, 0, 1) init.normal_(self.rel_w, 0, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
ResBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mz/cmz3wjq2uutgv7zzhrquuijmcstklp4wvd4q2ptdi3fpwbjqcpo6.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.add] # Source node to ATen node mapping: # x_3 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_1), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf4, 256, grid=grid(256), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf3, primals_5, primals_1, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResBlock(nn.Module): def __init__(self, size): super().__init__() self.size = size self.layer1 = nn.Linear(self.size, self.size) self.relu = nn.ReLU() self.layer2 = nn.Linear(self.size, self.size) def forward(self, x): shortcut = x x = self.layer1(x) x = self.relu(x) x = self.layer2(x) x = x + shortcut return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_add_1[grid(256)](buf3, primals_5, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf4 class ResBlockNew(nn.Module): def __init__(self, size): super().__init__() self.size = size self.layer1 = nn.Linear(self.size, self.size) self.relu = nn.ReLU() self.layer2 = nn.Linear(self.size, self.size) def forward(self, input_0): primals_2 = self.layer1.weight primals_3 = self.layer1.bias primals_4 = self.layer2.weight primals_5 = self.layer2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
RosarioAndolina/psychXRF
ResBlock
false
1,012
[ "MIT" ]
0
e2adadbd17664d7f74c10304f84b3751c571226e
https://github.com/RosarioAndolina/psychXRF/tree/e2adadbd17664d7f74c10304f84b3751c571226e
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, size): super().__init__() self.size = size self.layer1 = nn.Linear(self.size, self.size) self.relu = nn.ReLU() self.layer2 = nn.Linear(self.size, self.size) def forward(self, x): shortcut = x x = self.layer1(x) x = self.relu(x) x = self.layer2(x) x = x + shortcut return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LN_TD3Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat] # Source node to ATen node mapping: # xu => cat # Graph fragment: # %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/yv/cyvyo4ngtqx5yqi3aouvj5rpeudtztqrqbcgywvc5tyw4we3zr4n.py # Topologically Sorted Source Nodes: [x1, x1_1], Original ATen: [aten.relu, aten.native_layer_norm] # Source node to ATen node mapping: # x1 => relu # x1_1 => add, rsqrt, var_mean # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%addmm,), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%relu, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_relu_1 = async_compile.triton('triton_poi_fused_native_layer_norm_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 + tmp4 tmp7 = triton_helpers.maximum(tmp1, tmp6) tmp8 = tmp5 + tmp7 tmp10 = triton_helpers.maximum(tmp1, tmp9) tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp4 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp7 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.rsqrt(tmp27) tl.store(out_ptr0 + (x0), tmp13, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/n3/cn3ucymmjowa2gnsrhjc57k3cvwek7mc56s6tp6mjfw5s53i4pqk.py # Topologically Sorted Source Nodes: [x1, x1_1], Original ATen: [aten.relu, aten.native_layer_norm] # Source node to ATen node mapping: # x1 => relu # x1_1 => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%addmm,), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%relu, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_5), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_6), kwargs = {}) triton_poi_fused_native_layer_norm_relu_2 = async_compile.triton('triton_poi_fused_native_layer_norm_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_relu_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (1, 4), (4, 1)) assert_size_stride(primals_12, (1, ), (1, )) assert_size_stride(primals_13, (4, 8), (8, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4, ), (1, )) assert_size_stride(primals_19, (4, ), (1, )) assert_size_stride(primals_20, (4, ), (1, )) assert_size_stride(primals_21, (1, 4), (4, 1)) assert_size_stride(primals_22, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [x1, x1_1], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_1.run(buf1, buf2, buf3, 4, grid=grid(4), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x1, x1_1], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_2.run(buf1, buf2, buf3, primals_5, primals_6, buf4, 16, grid=grid(16), stream=stream0) del primals_6 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = buf3; del buf3 # reuse buf7 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x1_2, x1_3], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_1.run(buf5, buf6, buf7, 4, grid=grid(4), stream=stream0) buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x1_2, x1_3], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_2.run(buf5, buf6, buf7, primals_9, primals_10, buf8, 16, grid=grid(16), stream=stream0) del primals_10 buf10 = reinterpret_tensor(buf7, (4, 1), (1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [x1_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_12, buf8, reinterpret_tensor(primals_11, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_12 buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_14, buf0, reinterpret_tensor(primals_13, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf11) del primals_13 del primals_14 buf12 = buf6; del buf6 # reuse buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [x2, x2_1], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_1.run(buf11, buf12, buf13, 4, grid=grid(4), stream=stream0) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x2, x2_1], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_2.run(buf11, buf12, buf13, primals_15, primals_16, buf14, 16, grid=grid(16), stream=stream0) del primals_16 buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_18, buf14, reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15) del primals_18 buf16 = buf13; del buf13 # reuse buf17 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [x2_2, x2_3], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_1.run(buf15, buf16, buf17, 4, grid=grid(4), stream=stream0) buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x2_2, x2_3], Original ATen: [aten.relu, aten.native_layer_norm] triton_poi_fused_native_layer_norm_relu_2.run(buf15, buf16, buf17, primals_19, primals_20, buf18, 16, grid=grid(16), stream=stream0) del buf16 del primals_20 buf20 = reinterpret_tensor(buf17, (4, 1), (1, 1), 0); del buf17 # reuse # Topologically Sorted Source Nodes: [x2_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_22, buf18, reinterpret_tensor(primals_21, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf20) del primals_22 return (buf10, buf20, primals_5, primals_9, primals_15, primals_19, buf0, buf1, buf4, buf5, buf8, buf11, buf14, buf15, buf18, primals_21, primals_17, primals_11, primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class LN_TD3Critic(nn.Module): def __init__(self, state_dim, action_dim, hidden_size1, hidden_size2): super(LN_TD3Critic, self).__init__() self.l1 = nn.Linear(state_dim + action_dim, hidden_size1) self.ln1 = nn.LayerNorm(hidden_size1) self.l2 = nn.Linear(hidden_size1, hidden_size2) self.ln2 = nn.LayerNorm(hidden_size2) self.l3 = nn.Linear(hidden_size2, 1) self.l4 = nn.Linear(state_dim + action_dim, hidden_size1) self.ln4 = nn.LayerNorm(hidden_size1) self.l5 = nn.Linear(hidden_size1, hidden_size2) self.ln5 = nn.LayerNorm(hidden_size2) self.l6 = nn.Linear(hidden_size2, 1) def forward(self, inputs, actions): xu = torch.cat([inputs, actions], 1) x1 = F.relu(self.l1(xu)) x1 = self.ln1(x1) x1 = F.relu(self.l2(x1)) x1 = self.ln2(x1) x1 = self.l3(x1) x2 = F.relu(self.l4(xu)) x2 = self.ln4(x2) x2 = F.relu(self.l5(x2)) x2 = self.ln5(x2) x2 = self.l6(x2) return x1, x2 def Q1(self, inputs, actions): xu = torch.cat([inputs, actions], 1) x1 = F.relu(self.l1(xu)) x1 = self.ln1(x1) x1 = F.relu(self.l2(x1)) x1 = self.ln2(x1) x1 = self.l3(x1) return x1 def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'hidden_size1': 4, 'hidden_size2': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_native_layer_norm_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 + tmp4 tmp7 = triton_helpers.maximum(tmp1, tmp6) tmp8 = tmp5 + tmp7 tmp10 = triton_helpers.maximum(tmp1, tmp9) tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp4 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp7 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.rsqrt(tmp27) tl.store(out_ptr0 + x0, tmp13, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_native_layer_norm_relu_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (1, 4), (4, 1)) assert_size_stride(primals_12, (1,), (1,)) assert_size_stride(primals_13, (4, 8), (8, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4,), (1,)) assert_size_stride(primals_19, (4,), (1,)) assert_size_stride(primals_20, (4,), (1,)) assert_size_stride(primals_21, (1, 4), (4, 1)) assert_size_stride(primals_22, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_native_layer_norm_relu_1[grid(4)](buf1, buf2, buf3, 4, XBLOCK=4, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_relu_2[grid(16)](buf1, buf2, buf3, primals_5, primals_6, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_6 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = buf3 del buf3 buf7 = buf2 del buf2 triton_poi_fused_native_layer_norm_relu_1[grid(4)](buf5, buf6, buf7, 4, XBLOCK=4, num_warps=1, num_stages=1) buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_relu_2[grid(16)](buf5, buf6, buf7, primals_9, primals_10, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_10 buf10 = reinterpret_tensor(buf7, (4, 1), (1, 1), 0) del buf7 extern_kernels.addmm(primals_12, buf8, reinterpret_tensor( primals_11, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_12 buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_14, buf0, reinterpret_tensor( primals_13, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf11) del primals_13 del primals_14 buf12 = buf6 del buf6 buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_native_layer_norm_relu_1[grid(4)](buf11, buf12, buf13, 4, XBLOCK=4, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_relu_2[grid(16)](buf11, buf12, buf13, primals_15, primals_16, buf14, 16, XBLOCK=16, num_warps= 1, num_stages=1) del primals_16 buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_18, buf14, reinterpret_tensor( primals_17, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15) del primals_18 buf16 = buf13 del buf13 buf17 = buf12 del buf12 triton_poi_fused_native_layer_norm_relu_1[grid(4)](buf15, buf16, buf17, 4, XBLOCK=4, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_relu_2[grid(16)](buf15, buf16, buf17, primals_19, primals_20, buf18, 16, XBLOCK=16, num_warps= 1, num_stages=1) del buf16 del primals_20 buf20 = reinterpret_tensor(buf17, (4, 1), (1, 1), 0) del buf17 extern_kernels.addmm(primals_22, buf18, reinterpret_tensor( primals_21, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf20) del primals_22 return (buf10, buf20, primals_5, primals_9, primals_15, primals_19, buf0, buf1, buf4, buf5, buf8, buf11, buf14, buf15, buf18, primals_21, primals_17, primals_11, primals_7) class LN_TD3CriticNew(nn.Module): def __init__(self, state_dim, action_dim, hidden_size1, hidden_size2): super(LN_TD3CriticNew, self).__init__() self.l1 = nn.Linear(state_dim + action_dim, hidden_size1) self.ln1 = nn.LayerNorm(hidden_size1) self.l2 = nn.Linear(hidden_size1, hidden_size2) self.ln2 = nn.LayerNorm(hidden_size2) self.l3 = nn.Linear(hidden_size2, 1) self.l4 = nn.Linear(state_dim + action_dim, hidden_size1) self.ln4 = nn.LayerNorm(hidden_size1) self.l5 = nn.Linear(hidden_size1, hidden_size2) self.ln5 = nn.LayerNorm(hidden_size2) self.l6 = nn.Linear(hidden_size2, 1) def Q1(self, inputs, actions): xu = torch.cat([inputs, actions], 1) x1 = F.relu(self.l1(xu)) x1 = self.ln1(x1) x1 = F.relu(self.l2(x1)) x1 = self.ln2(x1) x1 = self.l3(x1) return x1 def forward(self, input_0, input_1): primals_3 = self.l1.weight primals_4 = self.l1.bias primals_5 = self.ln1.weight primals_6 = self.ln1.bias primals_1 = self.l2.weight primals_8 = self.l2.bias primals_9 = self.ln2.weight primals_10 = self.ln2.bias primals_11 = self.l3.weight primals_12 = self.l3.bias primals_13 = self.l4.weight primals_14 = self.l4.bias primals_15 = self.ln4.weight primals_16 = self.ln4.bias primals_2 = self.l5.weight primals_18 = self.l5.bias primals_19 = self.ln5.weight primals_20 = self.ln5.bias primals_21 = self.l6.weight primals_22 = self.l6.bias primals_7 = input_0 primals_17 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22]) return output[0], output[1]
RohanPankaj/apex
LN_TD3Critic
false
1,013
[ "MIT" ]
0
74e96386bf9446d1179106d6d65ea0368c1b5b27
https://github.com/RohanPankaj/apex/tree/74e96386bf9446d1179106d6d65ea0368c1b5b27
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, state_dim, action_dim, hidden_size1, hidden_size2): super().__init__() self.l1 = nn.Linear(state_dim + action_dim, hidden_size1) self.ln1 = nn.LayerNorm(hidden_size1) self.l2 = nn.Linear(hidden_size1, hidden_size2) self.ln2 = nn.LayerNorm(hidden_size2) self.l3 = nn.Linear(hidden_size2, 1) self.l4 = nn.Linear(state_dim + action_dim, hidden_size1) self.ln4 = nn.LayerNorm(hidden_size1) self.l5 = nn.Linear(hidden_size1, hidden_size2) self.ln5 = nn.LayerNorm(hidden_size2) self.l6 = nn.Linear(hidden_size2, 1) def forward(self, inputs, actions): xu = torch.cat([inputs, actions], 1) x1 = F.relu(self.l1(xu)) x1 = self.ln1(x1) x1 = F.relu(self.l2(x1)) x1 = self.ln2(x1) x1 = self.l3(x1) x2 = F.relu(self.l4(xu)) x2 = self.ln4(x2) x2 = F.relu(self.l5(x2)) x2 = self.ln5(x2) x2 = self.l6(x2) return x1, x2 def Q1(self, inputs, actions): xu = torch.cat([inputs, actions], 1) x1 = F.relu(self.l1(xu)) x1 = self.ln1(x1) x1 = F.relu(self.l2(x1)) x1 = self.ln2(x1) x1 = self.l3(x1) return x1 def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'hidden_size1': 4, 'hidden_size2': 4}]
Transformer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0) del buf3 return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf4, primals_4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as t import torch.nn as nn from torch.distributions.categorical import Categorical from torch.autograd import Variable import torch.nn.functional as F import torch.optim as optim class Transformer(nn.Module): def __init__(self, input_size, num_actions, hidden_size, learning_rate= 0.0003): super(Transformer, self).__init__() self.num_actions = num_actions self.linear1 = nn.Linear(input_size, hidden_size) self.linear2 = nn.Linear(hidden_size, num_actions) self.optimizer = optim.Adam(self.parameters(), lr=learning_rate) def forward(self, state): x = F.relu(self.linear1(state)) x = F.softmax(self.linear2(x), dim=1) return x def get_probs(self, state): return self.forward(state) def get_action(self, state): state = state.unsqueeze(0) probs = self.forward(Variable(state)) sampled_action = Categorical(probs.detach()) log_prob = t.log(probs.squeeze(0)[sampled_action]) return sampled_action, log_prob def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'num_actions': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch as t import torch.nn as nn from torch.distributions.categorical import Categorical from torch.autograd import Variable import torch.optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf4, primals_4, buf5 class TransformerNew(nn.Module): def __init__(self, input_size, num_actions, hidden_size, learning_rate= 0.0003): super(TransformerNew, self).__init__() self.num_actions = num_actions self.linear1 = nn.Linear(input_size, hidden_size) self.linear2 = nn.Linear(hidden_size, num_actions) self.optimizer = optim.Adam(self.parameters(), lr=learning_rate) def get_probs(self, state): return self.forward(state) def get_action(self, state): state = state.unsqueeze(0) probs = self.forward(Variable(state)) sampled_action = Categorical(probs.detach()) log_prob = t.log(probs.squeeze(0)[sampled_action]) return sampled_action, log_prob def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
LucWeber/2048-RLenv
Transformer
false
1,014
[ "MIT" ]
0
6beff54691f0436f0fbca6bdbb9430fd37eab37d
https://github.com/LucWeber/2048-RLenv/tree/6beff54691f0436f0fbca6bdbb9430fd37eab37d
import torch import torch as t import torch.nn as nn from torch.distributions.categorical import Categorical from torch.autograd import Variable import torch.nn.functional as F import torch.optim as optim class Model(nn.Module): def __init__(self, input_size, num_actions, hidden_size, learning_rate= 0.0003): super().__init__() self.num_actions = num_actions self.linear1 = nn.Linear(input_size, hidden_size) self.linear2 = nn.Linear(hidden_size, num_actions) self.optimizer = optim.Adam(self.parameters(), lr=learning_rate) def forward(self, state): x = F.relu(self.linear1(state)) x = F.softmax(self.linear2(x), dim=1) return x def get_probs(self, state): return self.forward(state) def get_action(self, state): state = state.unsqueeze(0) probs = self.forward(Variable(state)) sampled_action = Categorical(probs.detach()) log_prob = t.log(probs.squeeze(0)[sampled_action]) return sampled_action, log_prob def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
TwoLayerNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ai/caitnpldotnv4k4oj67wyecd2ig4qcjrnmr35rmx6o2vxx245xs3.py # Topologically Sorted Source Nodes: [h_relu], Original ATen: [aten.clamp, aten.ge] # Source node to ATen node mapping: # h_relu => clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view_1, 0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%view_1, 0), kwargs = {}) triton_poi_fused_clamp_ge_0 = async_compile.triton('triton_poi_fused_clamp_ge_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp2 >= tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [h_relu], Original ATen: [aten.clamp, aten.ge] stream0 = get_raw_stream(0) triton_poi_fused_clamp_ge_0.run(buf0, primals_2, buf1, buf3, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [y_pred], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TwoLayerNet(torch.nn.Module): def __init__(self, D_in, H, D_out): super(TwoLayerNet, self).__init__() self.linear1 = torch.nn.Linear(D_in, H) self.linear2 = torch.nn.Linear(H, D_out) def forward(self, x): h_relu = self.linear1(x).clamp(min=0) y_pred = self.linear2(h_relu) return y_pred def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'D_in': 4, 'H': 4, 'D_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_ge_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp2 >= tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp5, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_clamp_ge_0[grid(256)](buf0, primals_2, buf1, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = buf0 del buf0 extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf3 class TwoLayerNetNew(torch.nn.Module): def __init__(self, D_in, H, D_out): super(TwoLayerNetNew, self).__init__() self.linear1 = torch.nn.Linear(D_in, H) self.linear2 = torch.nn.Linear(H, D_out) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Saran-nns/delve
TwoLayerNet
false
1,015
[ "MIT" ]
0
3489d8aa13181b392d3c47a19f9d9a47d87f8790
https://github.com/Saran-nns/delve/tree/3489d8aa13181b392d3c47a19f9d9a47d87f8790
import torch class Model(torch.nn.Module): def __init__(self, D_in, H, D_out): super().__init__() self.linear1 = torch.nn.Linear(D_in, H) self.linear2 = torch.nn.Linear(H, D_out) def forward(self, x): h_relu = self.linear1(x).clamp(min=0) y_pred = self.linear2(h_relu) return y_pred def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
PixelwiseNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ot/cotu2ivn5oifbezvztnybj4hxdzlduw4unots44b65tvh2c2a6wn.py # Topologically Sorted Source Nodes: [pow_1, mean, add, y, y_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div] # Source node to ATen node mapping: # add => add # mean => mean # pow_1 => pow_1 # y => sqrt # y_1 => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2.0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %sqrt), kwargs = {}) triton_poi_fused_add_div_mean_pow_sqrt_0 = async_compile.triton('triton_poi_fused_add_div_mean_pow_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_pow_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_pow_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp0 / tmp16 tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, mean, add, y, y_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_pow_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class PixelwiseNorm(torch.nn.Module): """ ------------------------------------------------------------------------------------ Pixelwise feature vector normalization. reference: https://github.com/tkarras/progressive_growing_of_gans/blob/master/networks.py#L120 ------------------------------------------------------------------------------------ """ def __init__(self): super(PixelwiseNorm, self).__init__() @staticmethod def forward(x, alpha=1e-08): y = x.pow(2.0).mean(dim=1, keepdim=True).add(alpha).sqrt() y = x / y return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_pow_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp0 / tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_pow_sqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class PixelwiseNormNew(torch.nn.Module): """ ------------------------------------------------------------------------------------ Pixelwise feature vector normalization. reference: https://github.com/tkarras/progressive_growing_of_gans/blob/master/networks.py#L120 ------------------------------------------------------------------------------------ """ def __init__(self): super(PixelwiseNormNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SashaMatsun/torch-GAN
PixelwiseNorm
false
1,016
[ "MIT" ]
0
534a634530548d3f8b3a102c3e43e1cc64d8506d
https://github.com/SashaMatsun/torch-GAN/tree/534a634530548d3f8b3a102c3e43e1cc64d8506d
import torch class Model(torch.nn.Module): """ ------------------------------------------------------------------------------------ Pixelwise feature vector normalization. reference: https://github.com/tkarras/progressive_growing_of_gans/blob/master/networks.py#L120 ------------------------------------------------------------------------------------ """ def __init__(self): super().__init__() @staticmethod def forward(x, alpha=1e-08): y = x.pow(2.0).mean(dim=1, keepdim=True).add(alpha).sqrt() y = x / y return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CAMMNISTExtendedClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/2x/c2xnlfml7v6uboqk242zwfdxrawephuy6yfg2pq7i4yip73axefe.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ne/cnepmjd66uu3laeexeusfxab3aayptiri2wp2knrgtgmx52tvzxj.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/el/celpz7mimnmbibz7qq7jmbeys46qobeu3cs2pwbodz3v5kaii5iu.py # Topologically Sorted Source Nodes: [conv2d, relu, pad], Original ATen: [aten.convolution, aten.relu, aten.constant_pad_nd] # Source node to ATen node mapping: # conv2d => convolution # pad => constant_pad_nd # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%relu, [2, 2, 2, 2], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_convolution_relu_2 = async_compile.triton('triton_poi_fused_constant_pad_nd_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 8192], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 4225 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = (xindex // 65) x2 = xindex % 65 y4 = yindex y0 = yindex % 32 x5 = xindex y1 = (yindex // 32) tmp0 = (-2) + x3 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 61, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-2) + x2 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-124) + x2 + (61*x3) + (3721*y4)), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp12 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.full([1, 1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tl.store(out_ptr0 + (y0 + (32*x5) + (135200*y1)), tmp17, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/l4/cl4ovepq3umdhc5dq5lkereeda2b63wapoag7js33bvo34o6r5qk.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) % 32 x2 = (xindex // 1024) % 32 x3 = (xindex // 32768) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1) + (4160*x2) + (135200*x3)), None) tmp1 = tl.load(in_ptr0 + (32 + x0 + (64*x1) + (4160*x2) + (135200*x3)), None) tmp3 = tl.load(in_ptr0 + (2080 + x0 + (64*x1) + (4160*x2) + (135200*x3)), None) tmp5 = tl.load(in_ptr0 + (2112 + x0 + (64*x1) + (4160*x2) + (135200*x3)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4), tmp6, None) tl.store(out_ptr1 + (x4), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/lm/clm7iihcscfe7z4kfaeauxfl3cwsallxff6gtjtoatb4dm52gbly.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten.constant_pad_nd] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # pad_1 => constant_pad_nd_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%relu_1, [2, 2, 2, 2], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_convolution_relu_4 = async_compile.triton('triton_poi_fused_constant_pad_nd_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_convolution_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 2176) % 34 x1 = (xindex // 64) % 34 x3 = (xindex // 73984) x4 = xindex % 2176 x0 = xindex % 64 x6 = xindex tmp0 = (-2) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 30, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-2) + x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-3968) + x4 + (1920*x2) + (57600*x3)), tmp10 & xmask, other=0.0) tmp12 = tl.load(in_ptr1 + (x0), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tl.store(out_ptr0 + (x6), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/na/cnasg2q3johltgmojrkg4nbec322gl46i77upzgowwjyoudujnto.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = (xindex // 64) % 17 x2 = (xindex // 1088) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (4352*x2)), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (4352*x2)), xmask) tmp3 = tl.load(in_ptr0 + (2176 + x0 + (128*x1) + (4352*x2)), xmask) tmp5 = tl.load(in_ptr0 + (2240 + x0 + (128*x1) + (4352*x2)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3b/c3bdx5zauqq2m7ty5foifmdiznvmanqvnu6inufyeukwhezhvdpt.py # Topologically Sorted Source Nodes: [conv2d_2, x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.mean] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # x_3 => mean # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_2, [-1, -2], True), kwargs = {}) triton_red_fused_convolution_mean_relu_6 = async_compile.triton('triton_red_fused_convolution_mean_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[1024, 128], reduction_hint=ReductionHint.OUTER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_mean_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_convolution_mean_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 1024 rnumel = 113 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x1 = (xindex // 128) % 2 x0 = xindex % 128 x2 = (xindex // 256) _tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp0 = r3 + (113*x1) tmp1 = tl.full([1, 1], 225, tl.int32) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x0 + (128*((r3 + (113*x1)) % 225)) + (28800*x2)), rmask & tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tl.load(in_ptr1 + (tl.broadcast_to(x0, [XBLOCK, RBLOCK])), rmask & tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.full([1, 1], 0, tl.int32) tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp8 = tl.full(tmp7.shape, 0, tmp7.dtype) tmp9 = tl.where(tmp2, tmp7, tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = _tmp11 + tmp10 _tmp11 = tl.where(rmask & xmask, tmp12, _tmp11) tmp11 = tl.sum(_tmp11, 1)[:, None] tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/do/cdowndifnly7ygophzfe3dcwfiqfqgwqhoee4zyjsibsrr7gz7oo.py # Topologically Sorted Source Nodes: [conv2d_2, x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.mean] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # x_3 => mean # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_2, [-1, -2], True), kwargs = {}) triton_per_fused_convolution_mean_relu_7 = async_compile.triton('triton_per_fused_convolution_mean_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[512, 2], reduction_hint=ReductionHint.OUTER_TINY, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_mean_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_convolution_mean_relu_7(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 512 rnumel = 2 RBLOCK: tl.constexpr = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 128 x1 = (xindex // 128) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*r2) + (256*x1)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 225.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ge/cgej6ibs6rnbnwc2dfuwt7ui7inczmtabonaer7zvibwgyvndhxf.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 115200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/p7/cp7pjxasd7oc3lyx26szzdnaxvel6mpt2pgrovpnphqimwfdqkvq.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/sk/cskx43u5gpetob3mawqgd2whpgf4mhgwxwkcdlrrywlscrvheqpm.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 3721 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (3721*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (y0 + (32*x2) + (119072*y1)), tmp6, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (32, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (10, 128), (128, 1)) assert_size_stride(primals_9, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_4, buf0, 2048, 9, grid=grid(2048, 9), stream=stream0) del primals_4 buf1 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_6, buf1, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 61, 61), (119072, 3721, 61, 1)) buf3 = empty_strided_cuda((4, 32, 65, 65), (135200, 1, 2080, 32), torch.float32) # Topologically Sorted Source Nodes: [conv2d, relu, pad], Original ATen: [aten.convolution, aten.relu, aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_convolution_relu_2.run(buf2, primals_2, buf3, 128, 4225, grid=grid(128, 4225), stream=stream0) buf4 = empty_strided_cuda((4, 32, 32, 32), (32768, 1, 1024, 32), torch.float32) buf5 = empty_strided_cuda((4, 32, 32, 32), (32768, 1, 1024, 32), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf3, buf4, buf5, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 30, 30), (57600, 1, 1920, 64)) buf7 = empty_strided_cuda((4, 64, 34, 34), (73984, 1, 2176, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, relu_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_convolution_relu_4.run(buf6, primals_5, buf7, 295936, grid=grid(295936), stream=stream0) buf8 = empty_strided_cuda((4, 64, 17, 17), (18496, 1, 1088, 64), torch.float32) buf9 = empty_strided_cuda((4, 64, 17, 17), (18496, 1, 1088, 64), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf7, buf8, buf9, 73984, grid=grid(73984), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf8, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 15, 15), (28800, 1, 1920, 128)) buf11 = empty_strided_cuda((4, 128, 1, 1, 2), (256, 1, 1024, 1024, 128), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.mean] triton_red_fused_convolution_mean_relu_6.run(buf10, primals_7, buf11, 1024, 113, grid=grid(1024), stream=stream0) buf12 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 512, 512), torch.float32) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.mean] triton_per_fused_convolution_mean_relu_7.run(buf13, buf11, 512, 2, grid=grid(512), stream=stream0) del buf11 buf14 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf13, (4, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf14) del primals_9 buf15 = empty_strided_cuda((4, 128, 15, 15), (28800, 1, 1920, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf10, primals_7, buf15, 115200, grid=grid(115200), stream=stream0) del buf10 del primals_7 buf16 = empty_strided_cuda((4, 64, 30, 30), (57600, 1, 1920, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_9.run(buf6, primals_5, buf16, 230400, grid=grid(230400), stream=stream0) del buf6 del primals_5 buf17 = empty_strided_cuda((4, 32, 61, 61), (119072, 1, 1952, 32), torch.bool) # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_10.run(buf2, primals_2, buf17, 128, 3721, grid=grid(128, 3721), stream=stream0) del buf2 del primals_2 return (buf14, primals_1, primals_3, buf0, buf1, buf3, buf4, buf5, buf7, buf8, buf9, reinterpret_tensor(buf13, (4, 128), (128, 1), 0), primals_8, buf15, buf16, buf17, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((10, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn as nn from torch import optim as optim from torchvision import transforms as transforms from torch.nn.functional import pad class CAMMNISTExtendedClassifier(nn.Module): def __init__(self): super(CAMMNISTExtendedClassifier, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=4) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3) self.relu3 = nn.ReLU() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(128, 10) def forward(self, x): x = self.pool1(pad(self.relu1(self.conv1(x)), [2, 2, 2, 2])) x = self.pool2(pad(self.relu2(self.conv2(x)), [2, 2, 2, 2])) x = self.relu3(self.conv3(x)) x = self.avgpool(x) x = x.view(x.shape[0], -1) return self.fc(x) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn as nn from torch import optim as optim from torchvision import transforms as transforms assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 4225 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = xindex // 65 x2 = xindex % 65 y4 = yindex y0 = yindex % 32 x5 = xindex y1 = yindex // 32 tmp0 = -2 + x3 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 61, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -2 + x2 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-124 + x2 + 61 * x3 + 3721 * y4), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp12 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.full([1, 1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tl.store(out_ptr0 + (y0 + 32 * x5 + 135200 * y1), tmp17, xmask & ymask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 % 32 x2 = xindex // 1024 % 32 x3 = xindex // 32768 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1 + 4160 * x2 + 135200 * x3), None) tmp1 = tl.load(in_ptr0 + (32 + x0 + 64 * x1 + 4160 * x2 + 135200 * x3), None) tmp3 = tl.load(in_ptr0 + (2080 + x0 + 64 * x1 + 4160 * x2 + 135200 * x3 ), None) tmp5 = tl.load(in_ptr0 + (2112 + x0 + 64 * x1 + 4160 * x2 + 135200 * x3 ), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x4, tmp6, None) tl.store(out_ptr1 + x4, tmp16, None) @triton.jit def triton_poi_fused_constant_pad_nd_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 2176 % 34 x1 = xindex // 64 % 34 x3 = xindex // 73984 x4 = xindex % 2176 x0 = xindex % 64 x6 = xindex tmp0 = -2 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 30, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -2 + x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-3968 + x4 + 1920 * x2 + 57600 * x3), tmp10 & xmask, other=0.0) tmp12 = tl.load(in_ptr1 + x0, tmp10 & xmask, eviction_policy= 'evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tl.store(out_ptr0 + x6, tmp17, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 73984 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 % 17 x2 = xindex // 1088 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 4352 * x2), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 4352 * x2), xmask) tmp3 = tl.load(in_ptr0 + (2176 + x0 + 128 * x1 + 4352 * x2), xmask) tmp5 = tl.load(in_ptr0 + (2240 + x0 + 128 * x1 + 4352 * x2), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) @triton.jit def triton_red_fused_convolution_mean_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 1024 rnumel = 113 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x1 = xindex // 128 % 2 x0 = xindex % 128 x2 = xindex // 256 _tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x4 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp0 = r3 + 113 * x1 tmp1 = tl.full([1, 1], 225, tl.int32) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x0 + 128 * ((r3 + 113 * x1) % 225) + 28800 * x2), rmask & tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tl.load(in_ptr1 + tl.broadcast_to(x0, [XBLOCK, RBLOCK]), rmask & tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.full([1, 1], 0, tl.int32) tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp8 = tl.full(tmp7.shape, 0, tmp7.dtype) tmp9 = tl.where(tmp2, tmp7, tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = _tmp11 + tmp10 _tmp11 = tl.where(rmask & xmask, tmp12, _tmp11) tmp11 = tl.sum(_tmp11, 1)[:, None] tl.store(out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_per_fused_convolution_mean_relu_7(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 512 RBLOCK: tl.constexpr = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 128 x1 = xindex // 128 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * r2 + 256 * x1), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 225.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 115200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 128 xnumel = 3721 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 3721 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (y0 + 32 * x2 + 119072 * y1), tmp6, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (32, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (10, 128), (128, 1)) assert_size_stride(primals_9, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(2048, 9)](primals_4, buf0, 2048, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf1 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_1[grid(8192, 9)](primals_6, buf1, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf2 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 61, 61), (119072, 3721, 61, 1)) buf3 = empty_strided_cuda((4, 32, 65, 65), (135200, 1, 2080, 32), torch.float32) triton_poi_fused_constant_pad_nd_convolution_relu_2[grid(128, 4225)]( buf2, primals_2, buf3, 128, 4225, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((4, 32, 32, 32), (32768, 1, 1024, 32), torch.float32) buf5 = empty_strided_cuda((4, 32, 32, 32), (32768, 1, 1024, 32), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(131072)](buf3, buf4, buf5, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 30, 30), (57600, 1, 1920, 64)) buf7 = empty_strided_cuda((4, 64, 34, 34), (73984, 1, 2176, 64), torch.float32) triton_poi_fused_constant_pad_nd_convolution_relu_4[grid(295936)](buf6, primals_5, buf7, 295936, XBLOCK=512, num_warps=8, num_stages=1) buf8 = empty_strided_cuda((4, 64, 17, 17), (18496, 1, 1088, 64), torch.float32) buf9 = empty_strided_cuda((4, 64, 17, 17), (18496, 1, 1088, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_5[grid(73984)](buf7, buf8, buf9, 73984, XBLOCK=512, num_warps=8, num_stages=1) buf10 = extern_kernels.convolution(buf8, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 15, 15), (28800, 1, 1920, 128)) buf11 = empty_strided_cuda((4, 128, 1, 1, 2), (256, 1, 1024, 1024, 128), torch.float32) triton_red_fused_convolution_mean_relu_6[grid(1024)](buf10, primals_7, buf11, 1024, 113, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1) buf12 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 512, 512), torch.float32) buf13 = buf12 del buf12 triton_per_fused_convolution_mean_relu_7[grid(512)](buf13, buf11, 512, 2, XBLOCK=256, num_warps=4, num_stages=1) del buf11 buf14 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf13, (4, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf14) del primals_9 buf15 = empty_strided_cuda((4, 128, 15, 15), (28800, 1, 1920, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_8[grid(115200)]( buf10, primals_7, buf15, 115200, XBLOCK=1024, num_warps=4, num_stages=1) del buf10 del primals_7 buf16 = empty_strided_cuda((4, 64, 30, 30), (57600, 1, 1920, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_9[grid(230400)]( buf6, primals_5, buf16, 230400, XBLOCK=512, num_warps=8, num_stages=1) del buf6 del primals_5 buf17 = empty_strided_cuda((4, 32, 61, 61), (119072, 1, 1952, 32), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_10[grid(128, 3721) ](buf2, primals_2, buf17, 128, 3721, XBLOCK=8, YBLOCK=128, num_warps=4, num_stages=1) del buf2 del primals_2 return (buf14, primals_1, primals_3, buf0, buf1, buf3, buf4, buf5, buf7, buf8, buf9, reinterpret_tensor(buf13, (4, 128), (128, 1), 0), primals_8, buf15, buf16, buf17) class CAMMNISTExtendedClassifierNew(nn.Module): def __init__(self): super(CAMMNISTExtendedClassifierNew, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=4) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3) self.relu3 = nn.ReLU() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(128, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.fc.weight primals_9 = self.fc.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
RobinMaas95/GTSRB_Visualization
CAMMNISTExtendedClassifier
false
1,017
[ "MIT" ]
0
fa837ff94e089a936ef4f4418970d262b35f70b6
https://github.com/RobinMaas95/GTSRB_Visualization/tree/fa837ff94e089a936ef4f4418970d262b35f70b6
import torch from torch import nn as nn from torch import optim as optim from torchvision import transforms as transforms from torch.nn.functional import pad class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=4) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3) self.relu3 = nn.ReLU() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(128, 10) def forward(self, x): x = self.pool1(pad(self.relu1(self.conv1(x)), [2, 2, 2, 2])) x = self.pool2(pad(self.relu2(self.conv2(x)), [2, 2, 2, 2])) x = self.relu3(self.conv3(x)) x = self.avgpool(x) x = x.view(x.shape[0], -1) return self.fc(x) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return []
Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/mb/cmb72vxh36b4k6lvmt4562lj3nrqtpyzst2qbon2yqx22gdjfa7x.py # Topologically Sorted Source Nodes: [y_pred], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # y_pred => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mm,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [y_pred], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, 16, grid=grid(16), stream=stream0) return (buf1, buf1, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class Model(torch.nn.Module): def __init__(self, D_in, D_out): super(Model, self).__init__() self.w1 = torch.nn.Parameter(torch.randn(D_in, D_out), requires_grad=True) self.sig = torch.nn.Sigmoid() def forward(self, x): y_pred = self.sig(x.mm(self.w1)) return y_pred def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'D_in': 4, 'D_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(16)](buf1, 16, XBLOCK=16, num_warps =1, num_stages=1) return buf1, buf1, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0) class ModelNew(torch.nn.Module): def __init__(self, D_in, D_out): super(ModelNew, self).__init__() self.w1 = torch.nn.Parameter(torch.randn(D_in, D_out), requires_grad=True) self.sig = torch.nn.Sigmoid() def forward(self, input_0): primals_1 = self.w1 primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
Saran-nns/gradients
Model
false
1,018
[ "MIT" ]
0
67f9ff92589047828563dbbe30f225dca7ad47fd
https://github.com/Saran-nns/gradients/tree/67f9ff92589047828563dbbe30f225dca7ad47fd
import torch class Model(torch.nn.Module): def __init__(self, D_in, D_out): super(Model, self).__init__() self.w1 = torch.nn.Parameter(torch.randn(D_in, D_out), requires_grad=True) self.sig = torch.nn.Sigmoid() def forward(self, x): y_pred = self.sig(x.mm(self.w1)) return y_pred def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
DisentangledAELatent
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/q3/cq354n2touiebe3vjnslfwtenbjmnauh5czsdjtbvv5wx64dfalj.py # Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # std => exp # z => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 0.5), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%normal_functional, %exp), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %getitem), kwargs = {}) triton_poi_fused_add_exp_mul_0 = async_compile.triton('triton_poi_fused_add_exp_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (64 + x0 + (128*x1)), xmask) tmp6 = tl.load(in_ptr1 + (x0 + (128*x1)), xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp0 * tmp4 tmp7 = tmp5 + tmp6 tl.store(out_ptr0 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [z_variables], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 2, 4, 8), (64, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [eps], Original ATen: [aten.normal_functional] buf2 = torch.ops.aten.normal_functional.default(buf1) buf3 = buf2 del buf2 buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_exp_mul_0.run(buf3, buf0, buf4, 256, grid=grid(256), stream=stream0) return (buf4, reinterpret_tensor(buf0, (4, 2, 4, 8), (128, 32, 8, 1), 0), reinterpret_tensor(buf0, (4, 2, 4, 8), (128, 32, 8, 1), 64), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 2, 4, 8), (128, 32, 8, 1), 64), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class DisentangledAELatent(torch.nn.Module): """Dense Dientangled Latent Layer between encoder and decoder""" def __init__(self, hidden_size: 'int', latent_size: 'int', dropout: 'float' ): super(DisentangledAELatent, self).__init__() self.latent_size = latent_size self.hidden_size = hidden_size self.dropout = dropout self.latent = torch.nn.Linear(self.hidden_size, self.latent_size * 2) @staticmethod def reparameterize(mu, logvar, training=True): if training: std = logvar.mul(0.5).exp_() eps = std.data.new(std.size()).normal_() return eps.mul(std).add_(mu) return mu def forward(self, x, training=True): z_variables = self.latent(x) mu, logvar = torch.chunk(z_variables, 2, dim=1) z = self.reparameterize(mu, logvar, training=training) return z, mu, logvar def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4, 'latent_size': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + (64 + x0 + 128 * x1), xmask) tmp6 = tl.load(in_ptr1 + (x0 + 128 * x1), xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp0 * tmp4 tmp7 = tmp5 + tmp6 tl.store(out_ptr0 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 2, 4, 8), (64, 32, 8, 1), torch.float32) buf2 = torch.ops.aten.normal_functional.default(buf1) buf3 = buf2 del buf2 buf4 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_exp_mul_0[grid(256)](buf3, buf0, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf4, reinterpret_tensor(buf0, (4, 2, 4, 8), (128, 32, 8, 1), 0 ), reinterpret_tensor(buf0, (4, 2, 4, 8), (128, 32, 8, 1), 64 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (4, 2, 4, 8), (128, 32, 8, 1), 64), buf3 class DisentangledAELatentNew(torch.nn.Module): """Dense Dientangled Latent Layer between encoder and decoder""" def __init__(self, hidden_size: 'int', latent_size: 'int', dropout: 'float' ): super(DisentangledAELatentNew, self).__init__() self.latent_size = latent_size self.hidden_size = hidden_size self.dropout = dropout self.latent = torch.nn.Linear(self.hidden_size, self.latent_size * 2) @staticmethod def reparameterize(mu, logvar, training=True): if training: std = logvar.mul(0.5).exp_() eps = std.data.new(std.size()).normal_() return eps.mul(std).add_(mu) return mu def forward(self, input_0): primals_1 = self.latent.weight primals_2 = self.latent.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1], output[2]
Saran-nns/traja
DisentangledAELatent
false
1,019
[ "MIT" ]
0
f2256cc47abd33377b3a87f110f4c8da1cf6765f
https://github.com/Saran-nns/traja/tree/f2256cc47abd33377b3a87f110f4c8da1cf6765f
import torch class Model(torch.nn.Module): """Dense Dientangled Latent Layer between encoder and decoder""" def __init__(self, hidden_size: 'int', latent_size: 'int', dropout: 'float' ): super().__init__() self.latent_size = latent_size self.hidden_size = hidden_size self.dropout = dropout self.latent = torch.nn.Linear(self.hidden_size, self.latent_size * 2) @staticmethod def reparameterize(mu, logvar, training=True): if training: std = logvar.mul(0.5).exp_() eps = std.data.new(std.size()).normal_() return eps.mul(std).add_(mu) return mu def forward(self, x, training=True): z_variables = self.latent(x) mu, logvar = torch.chunk(z_variables, 2, dim=1) z = self.reparameterize(mu, logvar, training=training) return z, mu, logvar def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 0.5]
LayerCake
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ai/caitnpldotnv4k4oj67wyecd2ig4qcjrnmr35rmx6o2vxx245xs3.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.clamp, aten.ge] # Source node to ATen node mapping: # x => clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view_1, 0), kwargs = {}) # %ge_4 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%view_1, 0), kwargs = {}) triton_poi_fused_clamp_ge_0 = async_compile.triton('triton_poi_fused_clamp_ge_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp2 >= tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.clamp, aten.ge] stream0 = get_raw_stream(0) triton_poi_fused_clamp_ge_0.run(buf0, primals_2, buf1, buf15, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clamp, aten.ge] triton_poi_fused_clamp_ge_0.run(buf2, primals_5, buf3, buf14, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clamp, aten.ge] triton_poi_fused_clamp_ge_0.run(buf4, primals_7, buf5, buf13, 256, grid=grid(256), stream=stream0) del primals_7 buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.clamp, aten.ge] triton_poi_fused_clamp_ge_0.run(buf6, primals_9, buf7, buf12, 256, grid=grid(256), stream=stream0) del primals_9 buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.clamp, aten.ge] triton_poi_fused_clamp_ge_0.run(buf8, primals_11, buf9, buf11, 256, grid=grid(256), stream=stream0) del primals_11 buf10 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [y_pred], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_13 return (reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(buf9, (64, 4), (4, 1), 0), primals_12, buf11, primals_10, buf12, primals_8, buf13, primals_6, buf14, primals_4, buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class LayerCake(torch.nn.Module): def __init__(self, D_in, H1, H2, H3, H4, H5, D_out): """ In the constructor we instantiate two nn.Linear modules and assign them as member variables. """ super(LayerCake, self).__init__() self.linear1 = torch.nn.Linear(D_in, H1) self.linear2 = torch.nn.Linear(H1, H2) self.linear3 = torch.nn.Linear(H2, H3) self.linear4 = torch.nn.Linear(H3, H4) self.linear5 = torch.nn.Linear(H4, H5) self.linear6 = torch.nn.Linear(H5, D_out) def forward(self, x): """ In the forward function we accept a Tensor of input data and we must return a Tensor of output data. We can use Modules defined in the constructor as well as arbitrary (differentiable) operations on Tensors. """ x = self.linear1(x).clamp(min=0) x = self.linear2(x).clamp(min=0) x = self.linear3(x).clamp(min=0) x = self.linear4(x).clamp(min=0) x = self.linear5(x).clamp(min=0) y_pred = self.linear6(x) return y_pred def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'D_in': 4, 'H1': 4, 'H2': 4, 'H3': 4, 'H4': 4, 'H5': 4, 'D_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_ge_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp2 >= tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp5, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_clamp_ge_0[grid(256)](buf0, primals_2, buf1, buf15, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_clamp_ge_0[grid(256)](buf2, primals_5, buf3, buf14, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = buf2 del buf2 extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_clamp_ge_0[grid(256)](buf4, primals_7, buf5, buf13, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = buf4 del buf4 extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_clamp_ge_0[grid(256)](buf6, primals_9, buf7, buf12, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf8 = buf6 del buf6 extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_clamp_ge_0[grid(256)](buf8, primals_11, buf9, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf10 = buf8 del buf8 extern_kernels.addmm(primals_13, reinterpret_tensor(buf9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_13 return (reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(buf9, (64, 4), (4, 1), 0), primals_12, buf11, primals_10, buf12, primals_8, buf13, primals_6, buf14, primals_4, buf15 ) class LayerCakeNew(torch.nn.Module): def __init__(self, D_in, H1, H2, H3, H4, H5, D_out): """ In the constructor we instantiate two nn.Linear modules and assign them as member variables. """ super(LayerCakeNew, self).__init__() self.linear1 = torch.nn.Linear(D_in, H1) self.linear2 = torch.nn.Linear(H1, H2) self.linear3 = torch.nn.Linear(H2, H3) self.linear4 = torch.nn.Linear(H3, H4) self.linear5 = torch.nn.Linear(H4, H5) self.linear6 = torch.nn.Linear(H5, D_out) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_7 = self.linear3.bias primals_8 = self.linear4.weight primals_9 = self.linear4.bias primals_10 = self.linear5.weight primals_11 = self.linear5.bias primals_12 = self.linear6.weight primals_13 = self.linear6.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
Saran-nns/delve
LayerCake
false
1,021
[ "MIT" ]
0
3489d8aa13181b392d3c47a19f9d9a47d87f8790
https://github.com/Saran-nns/delve/tree/3489d8aa13181b392d3c47a19f9d9a47d87f8790
import torch class Model(torch.nn.Module): def __init__(self, D_in, H1, H2, H3, H4, H5, D_out): """ In the constructor we instantiate two nn.Linear modules and assign them as member variables. """ super().__init__() self.linear1 = torch.nn.Linear(D_in, H1) self.linear2 = torch.nn.Linear(H1, H2) self.linear3 = torch.nn.Linear(H2, H3) self.linear4 = torch.nn.Linear(H3, H4) self.linear5 = torch.nn.Linear(H4, H5) self.linear6 = torch.nn.Linear(H5, D_out) def forward(self, x): """ In the forward function we accept a Tensor of input data and we must return a Tensor of output data. We can use Modules defined in the constructor as well as arbitrary (differentiable) operations on Tensors. """ x = self.linear1(x).clamp(min=0) x = self.linear2(x).clamp(min=0) x = self.linear3(x).clamp(min=0) x = self.linear4(x).clamp(min=0) x = self.linear5(x).clamp(min=0) y_pred = self.linear6(x) return y_pred def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'D_in': 4, 'H1': 4, 'H2': 4, 'H3': 4, 'H4': 4, 'H5': 4, 'D_out': 4}]
GCN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/be/cbej2f3myglhqo2dienhyo4fp7tbscq32k7imbgc2psgl6gaxxhi.py # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu] # Source node to ATen node mapping: # add => add # x => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_default, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_default, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_0.run(buf2, primals_4, 16, grid=grid(16), stream=stream0) del primals_4 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_5, out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4) del primals_6 buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf4, buf5, 16, grid=grid(16), stream=stream0) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf5, buf6, 16, grid=grid(16), stream=stream0) del buf5 return (buf6, buf4, buf2, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import math import torch import torch.nn as nn import torch.utils.data import torch from torch.nn.modules.module import Module import torch.nn.functional as F from torch.nn.parameter import Parameter class GCN_Spectral(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_units: 'int', out_units: 'int', bias: 'bool'=True ) ->None: super(GCN_Spectral, self).__init__() self.in_units = in_units self.out_units = out_units self.weight = Parameter(torch.FloatTensor(in_units, out_units)) if bias: self.bias = Parameter(torch.FloatTensor(out_units)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input: 'torch.Tensor', adj: 'torch.Tensor' ) ->torch.Tensor: """ weight=(input_dim X hid_dim) :param input: (#samples X input_dim) :param adj: :return: """ support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_units ) + ' -> ' + str(self.out_units) + ')' class GCN(nn.Module): def __init__(self, nfeat: 'int', nhid: 'int', nclass: 'int', dropout: 'float') ->None: super(GCN, self).__init__() self.gc1 = GCN_Spectral(nfeat, nhid) self.gc2 = GCN_Spectral(nhid, nfeat) self.dropout = dropout def forward(self, x: 'torch.Tensor', adj: 'torch.Tensor') ->(torch. Tensor, torch.Tensor): x = F.relu(self.gc1(x, adj)) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return F.log_softmax(x, dim=1), x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module import math import torch.nn as nn import torch.utils.data import torch from torch.nn.modules.module import Module from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_relu_0[grid(16)](buf2, primals_4, 16, XBLOCK= 16, num_warps=1, num_stages=1) del primals_4 buf3 = buf0 del buf0 extern_kernels.mm(buf2, primals_5, out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4) del primals_6 buf5 = buf3 del buf3 triton_poi_fused__log_softmax_1[grid(16)](buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf5 return buf6, buf4, buf2, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0) class GCN_Spectral(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_units: 'int', out_units: 'int', bias: 'bool'=True ) ->None: super(GCN_Spectral, self).__init__() self.in_units = in_units self.out_units = out_units self.weight = Parameter(torch.FloatTensor(in_units, out_units)) if bias: self.bias = Parameter(torch.FloatTensor(out_units)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input: 'torch.Tensor', adj: 'torch.Tensor' ) ->torch.Tensor: """ weight=(input_dim X hid_dim) :param input: (#samples X input_dim) :param adj: :return: """ support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_units ) + ' -> ' + str(self.out_units) + ')' class GCNNew(nn.Module): def __init__(self, nfeat: 'int', nhid: 'int', nclass: 'int', dropout: 'float') ->None: super(GCNNew, self).__init__() self.gc1 = GCN_Spectral(nfeat, nhid) self.gc2 = GCN_Spectral(nhid, nfeat) self.dropout = dropout def forward(self, input_0, input_1): primals_1 = self.gc1.weight primals_4 = self.gc1.bias primals_2 = self.gc2.weight primals_6 = self.gc2.bias primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
SamujjwalSam/XC_GCN
GCN
false
1,022
[ "MIT" ]
0
7902cbd6b3ebc7806655080979e8c52caa4a16e0
https://github.com/SamujjwalSam/XC_GCN/tree/7902cbd6b3ebc7806655080979e8c52caa4a16e0
from torch.nn import Module import math import torch import torch.nn as nn import torch.utils.data import torch from torch.nn.modules.module import Module import torch.nn.functional as F from torch.nn.parameter import Parameter class GCN_Spectral(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_units: 'int', out_units: 'int', bias: 'bool'=True ) ->None: super().__init__() self.in_units = in_units self.out_units = out_units self.weight = Parameter(torch.FloatTensor(in_units, out_units)) if bias: self.bias = Parameter(torch.FloatTensor(out_units)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input: 'torch.Tensor', adj: 'torch.Tensor' ) ->torch.Tensor: """ weight=(input_dim X hid_dim) :param input: (#samples X input_dim) :param adj: :return: """ support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_units ) + ' -> ' + str(self.out_units) + ')' class Model(nn.Module): def __init__(self, nfeat: 'int', nhid: 'int', nclass: 'int', dropout: 'float') ->None: super().__init__() self.gc1 = GCN_Spectral(nfeat, nhid) self.gc2 = GCN_Spectral(nhid, nfeat) self.dropout = dropout def forward(self, x: 'torch.Tensor', adj: 'torch.Tensor') ->(torch. Tensor, torch.Tensor): x = F.relu(self.gc1(x, adj)) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return F.log_softmax(x, dim=1), x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4, 0.5]
ReOrgLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/md/cmdvvkvftnyzlmlhenb5cojabxyds4oikrxtdom7hg54fjve7bri.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_3 => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 2 x3 = (xindex // 2) y0 = yindex % 4 y1 = (yindex // 4) x5 = xindex y4 = yindex tmp0 = tl.load(in_ptr0 + ((2*x2) + (4*(y0 // 2)) + (8*x3) + (64*y1) + (y0 % 2)), xmask & ymask) tl.store(out_ptr0 + (x5 + (16*y4)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2, 2), (64, 16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 16, 2, 2), (64, 4, 2, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data import torch.utils.data.distributed import torch._utils class ReOrgLayer(nn.Module): def __init__(self, stride=2): super(ReOrgLayer, self).__init__() self.stride = stride def forward(self, x): assert x.data.dim() == 4 B, C, H, W = x.data.shape hs = self.stride ws = self.stride assert H % hs == 0, 'The stride ' + str(self.stride ) + ' is not a proper divisor of height ' + str(H) assert W % ws == 0, 'The stride ' + str(self.stride ) + ' is not a proper divisor of height ' + str(W) x = x.view(B, C, H // hs, hs, W // ws, ws).transpose(-2, -3 ).contiguous() x = x.view(B, C, H // hs * W // ws, hs, ws) x = x.view(B, C, H // hs * W // ws, hs * ws).transpose(-1, -2 ).contiguous() x = x.view(B, C, ws * hs, H // ws, W // ws).transpose(1, 2).contiguous( ) x = x.view(B, C * ws * hs, H // ws, W // ws) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data import torch.utils.data.distributed import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 2 x3 = xindex // 2 y0 = yindex % 4 y1 = yindex // 4 x5 = xindex y4 = yindex tmp0 = tl.load(in_ptr0 + (2 * x2 + 4 * (y0 // 2) + 8 * x3 + 64 * y1 + y0 % 2), xmask & ymask) tl.store(out_ptr0 + (x5 + 16 * y4), tmp0, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2, 2), (64, 16, 4, 2, 1), torch .float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 16)](arg0_1, buf0, 16, 16, XBLOCK =16, YBLOCK=16, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 16, 2, 2), (64, 4, 2, 1), 0), class ReOrgLayerNew(nn.Module): def __init__(self, stride=2): super(ReOrgLayerNew, self).__init__() self.stride = stride def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Sarathismg/Pose-Estimator-Old-Version
ReOrgLayer
false
1,023
[ "Apache-2.0" ]
0
ecaa03769323b94a4d7222e2d3606d1ce92a2fae
https://github.com/Sarathismg/Pose-Estimator-Old-Version/tree/ecaa03769323b94a4d7222e2d3606d1ce92a2fae
import torch import torch.nn as nn import torch.utils.data import torch.utils.data.distributed import torch._utils class Model(nn.Module): def __init__(self, stride=2): super().__init__() self.stride = stride def forward(self, x): assert x.data.dim() == 4 B, C, H, W = x.data.shape hs = self.stride ws = self.stride assert H % hs == 0, 'The stride ' + str(self.stride ) + ' is not a proper divisor of height ' + str(H) assert W % ws == 0, 'The stride ' + str(self.stride ) + ' is not a proper divisor of height ' + str(W) x = x.view(B, C, H // hs, hs, W // ws, ws).transpose(-2, -3 ).contiguous() x = x.view(B, C, H // hs * W // ws, hs, ws) x = x.view(B, C, H // hs * W // ws, hs * ws).transpose(-1, -2 ).contiguous() x = x.view(B, C, ws * hs, H // ws, W // ws).transpose(1, 2).contiguous( ) x = x.view(B, C * ws * hs, H // ws, W // ws) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
TracedModule
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/yx/cyxpk7a4eq5vq4bzeif2nk6cwpcgf7ixzqxdcgvbuuwnhguxpc26.py # Topologically Sorted Source Nodes: [sqrt, truediv, floor], Original ATen: [aten.sqrt, aten.div, aten.floor] # Source node to ATen node mapping: # floor => floor # sqrt => sqrt # truediv => div # Graph fragment: # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%arg0_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sqrt, 5.0), kwargs = {}) # %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%div,), kwargs = {}) triton_poi_fused_div_floor_sqrt_0 = async_compile.triton('triton_poi_fused_div_floor_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_floor_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_floor_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.sqrt(tmp0) tmp2 = 0.2 tmp3 = tmp1 * tmp2 tmp4 = libdevice.floor(tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sqrt, truediv, floor], Original ATen: [aten.sqrt, aten.div, aten.floor] stream0 = get_raw_stream(0) triton_poi_fused_div_floor_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.onnx import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.autograd class TracedModule(torch.nn.Module): def forward(self, x): x = x.type(torch.float32) return torch.floor(torch.sqrt(x) / 5.0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.onnx import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_floor_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.sqrt(tmp0) tmp2 = 0.2 tmp3 = tmp1 * tmp2 tmp4 = libdevice.floor(tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_floor_sqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class TracedModuleNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
ScorpioDoctor/antares02
TracedModule
false
1,024
[ "BSD-3-Clause" ]
0
631b817d2e98f351d1173b620d15c4a5efed11da
https://github.com/ScorpioDoctor/antares02/tree/631b817d2e98f351d1173b620d15c4a5efed11da
import torch import torch.onnx import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.autograd class Model(torch.nn.Module): def forward(self, x): x = x.type(torch.float32) return torch.floor(torch.sqrt(x) / 5.0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SRCNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/7a/c7a2sqxnc6bi7sq5fihvseqxlvh33ljnmvvaziqhjhuxequqirct.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.floor, aten.clamp, aten.rsub, aten._unsafe_index] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1, _unsafe_index_10, _unsafe_index_11, _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, _unsafe_index_2, _unsafe_index_3, _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, _unsafe_index_8, _unsafe_index_9, add, add_10, add_11, add_12, add_13, add_14, add_15, add_16, add_17, add_18, add_19, add_20, add_21, add_22, add_23, add_24, add_25, add_26, add_27, add_28, add_29, add_30, add_6, add_7, add_8, add_9, clamp_max, clamp_max_1, clamp_min, clamp_min_1, convert_element_type, floor, floor_1, iota, mul, mul_10, mul_11, mul_12, mul_13, mul_14, mul_15, mul_16, mul_17, mul_18, mul_19, mul_2, mul_20, mul_21, mul_22, mul_23, mul_24, mul_25, mul_26, mul_27, mul_28, mul_29, mul_3, mul_30, mul_31, mul_32, mul_33, mul_34, mul_35, mul_36, mul_37, mul_38, mul_39, mul_4, mul_40, mul_41, mul_42, mul_43, mul_44, mul_45, mul_5, mul_6, mul_7, mul_8, mul_9, sub, sub_10, sub_11, sub_12, sub_13, sub_14, sub_15, sub_16, sub_17, sub_18, sub_19, sub_2, sub_20, sub_21, sub_3, sub_6, sub_7, sub_8, sub_9 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.25), kwargs = {}) # %sub : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 0.5), kwargs = {}) # %floor : [num_users=2] = call_function[target=torch.ops.aten.floor.default](args = (%sub,), kwargs = {}) # %floor_1 : [num_users=2] = call_function[target=torch.ops.aten.floor.default](args = (%unsqueeze,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %floor_1), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max : [num_users=6] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %floor), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0.0), kwargs = {}) # %clamp_max_1 : [num_users=6] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 1.0), kwargs = {}) # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_max_1, 1.0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, -0.75), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, -3.75), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %add_6), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, -6.0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, %add_6), kwargs = {}) # %sub_7 : [num_users=4] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, -3.0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_1, 1.25), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, 2.25), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %clamp_max_1), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %clamp_max_1), kwargs = {}) # %add_8 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, 1), kwargs = {}) # %sub_9 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %clamp_max_1), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, 1.25), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_8, 2.25), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %sub_9), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_9, %sub_9), kwargs = {}) # %add_9 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, 1), kwargs = {}) # %sub_11 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (2.0, %clamp_max_1), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, -0.75), kwargs = {}) # %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_11, -3.75), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %sub_11), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_12, -6.0), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_10, %sub_11), kwargs = {}) # %sub_13 : [num_users=4] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_13, -3.0), kwargs = {}) # %add_11 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_max, 1.0), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_11, -0.75), kwargs = {}) # %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_14, -3.75), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %add_11), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_15, -6.0), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_12, %add_11), kwargs = {}) # %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_16, -3.0), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 1.25), kwargs = {}) # %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_17, 2.25), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %clamp_max), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_18, %clamp_max), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_19, 1), kwargs = {}) # %sub_17 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %clamp_max), kwargs = {}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, 1.25), kwargs = {}) # %sub_18 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_20, 2.25), kwargs = {}) # %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_18, %sub_17), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_21, %sub_17), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_22, 1), kwargs = {}) # %sub_19 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (2.0, %clamp_max), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, -0.75), kwargs = {}) # %sub_20 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_23, -3.75), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_20, %sub_19), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_24, -6.0), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_15, %sub_19), kwargs = {}) # %sub_21 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_25, -3.0), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_2, %clamp_max_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_2, %clamp_max_5]), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_2, %clamp_max_7]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_2, %clamp_max_9]), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index, %sub_7), kwargs = {}) # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_1, %add_8), kwargs = {}) # %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, %mul_27), kwargs = {}) # %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_2, %add_9), kwargs = {}) # %add_17 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_16, %mul_28), kwargs = {}) # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_3, %sub_13), kwargs = {}) # %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_17, %mul_29), kwargs = {}) # %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_10, %clamp_max_3]), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_10, %clamp_max_5]), kwargs = {}) # %_unsafe_index_6 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_10, %clamp_max_7]), kwargs = {}) # %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_10, %clamp_max_9]), kwargs = {}) # %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_4, %sub_7), kwargs = {}) # %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_5, %add_8), kwargs = {}) # %add_19 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_30, %mul_31), kwargs = {}) # %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_6, %add_9), kwargs = {}) # %add_20 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_19, %mul_32), kwargs = {}) # %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_7, %sub_13), kwargs = {}) # %add_21 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_20, %mul_33), kwargs = {}) # %_unsafe_index_8 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_18, %clamp_max_3]), kwargs = {}) # %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_18, %clamp_max_5]), kwargs = {}) # %_unsafe_index_10 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_18, %clamp_max_7]), kwargs = {}) # %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_18, %clamp_max_9]), kwargs = {}) # %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_8, %sub_7), kwargs = {}) # %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_9, %add_8), kwargs = {}) # %add_22 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_34, %mul_35), kwargs = {}) # %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_10, %add_9), kwargs = {}) # %add_23 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_22, %mul_36), kwargs = {}) # %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_11, %sub_13), kwargs = {}) # %add_24 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_23, %mul_37), kwargs = {}) # %_unsafe_index_12 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_26, %clamp_max_3]), kwargs = {}) # %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_26, %clamp_max_5]), kwargs = {}) # %_unsafe_index_14 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_26, %clamp_max_7]), kwargs = {}) # %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max_26, %clamp_max_9]), kwargs = {}) # %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_12, %sub_7), kwargs = {}) # %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_13, %add_8), kwargs = {}) # %add_25 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_38, %mul_39), kwargs = {}) # %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_14, %add_9), kwargs = {}) # %add_26 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_25, %mul_40), kwargs = {}) # %mul_41 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_15, %sub_13), kwargs = {}) # %add_27 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_26, %mul_41), kwargs = {}) # %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_18, %sub_15), kwargs = {}) # %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_21, %add_13), kwargs = {}) # %add_28 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_42, %mul_43), kwargs = {}) # %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_24, %add_14), kwargs = {}) # %add_29 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_28, %mul_44), kwargs = {}) # %mul_45 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_27, %sub_21), kwargs = {}) # %add_30 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_29, %mul_45), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0(in_out_ptr1, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 16 x0 = xindex % 16 x2 = (xindex // 256) x3 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.25 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = libdevice.floor(tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 - tmp9 tmp11 = tl.full([1], 0, tl.int64) tmp12 = triton_helpers.maximum(tmp10, tmp11) tmp13 = tl.full([1], 3, tl.int64) tmp14 = triton_helpers.minimum(tmp12, tmp13) tmp15 = x0 tmp16 = tmp15.to(tl.float32) tmp17 = tmp16 + tmp2 tmp18 = tmp17 * tmp4 tmp19 = tmp18 - tmp2 tmp20 = libdevice.floor(tmp19) tmp21 = tmp20.to(tl.int32) tmp22 = tmp21 - tmp9 tmp23 = triton_helpers.maximum(tmp22, tmp11) tmp24 = triton_helpers.minimum(tmp23, tmp13) tmp25 = tl.load(in_ptr0 + (tmp24 + (4*tmp14) + (16*x2)), xmask, eviction_policy='evict_last') tmp26 = tmp19 - tmp20 tmp27 = 0.0 tmp28 = triton_helpers.maximum(tmp26, tmp27) tmp29 = 1.0 tmp30 = triton_helpers.minimum(tmp28, tmp29) tmp31 = tmp30 + tmp29 tmp32 = -0.75 tmp33 = tmp31 * tmp32 tmp34 = -3.75 tmp35 = tmp33 - tmp34 tmp36 = tmp35 * tmp31 tmp37 = -6.0 tmp38 = tmp36 + tmp37 tmp39 = tmp38 * tmp31 tmp40 = -3.0 tmp41 = tmp39 - tmp40 tmp42 = tmp25 * tmp41 tmp43 = triton_helpers.maximum(tmp21, tmp11) tmp44 = triton_helpers.minimum(tmp43, tmp13) tmp45 = tl.load(in_ptr0 + (tmp44 + (4*tmp14) + (16*x2)), xmask, eviction_policy='evict_last') tmp46 = 1.25 tmp47 = tmp30 * tmp46 tmp48 = 2.25 tmp49 = tmp47 - tmp48 tmp50 = tmp49 * tmp30 tmp51 = tmp50 * tmp30 tmp52 = tmp51 + tmp29 tmp53 = tmp45 * tmp52 tmp54 = tmp21 + tmp9 tmp55 = triton_helpers.maximum(tmp54, tmp11) tmp56 = triton_helpers.minimum(tmp55, tmp13) tmp57 = tl.load(in_ptr0 + (tmp56 + (4*tmp14) + (16*x2)), xmask, eviction_policy='evict_last') tmp58 = tmp29 - tmp30 tmp59 = tmp58 * tmp46 tmp60 = tmp59 - tmp48 tmp61 = tmp60 * tmp58 tmp62 = tmp61 * tmp58 tmp63 = tmp62 + tmp29 tmp64 = tmp57 * tmp63 tmp65 = triton_helpers.maximum(tmp8, tmp11) tmp66 = triton_helpers.minimum(tmp65, tmp13) tmp67 = tl.load(in_ptr0 + (tmp24 + (4*tmp66) + (16*x2)), xmask, eviction_policy='evict_last') tmp68 = tmp67 * tmp41 tmp69 = tl.full([1], 2, tl.int64) tmp70 = tmp21 + tmp69 tmp71 = triton_helpers.maximum(tmp70, tmp11) tmp72 = triton_helpers.minimum(tmp71, tmp13) tmp73 = tl.load(in_ptr0 + (tmp72 + (4*tmp14) + (16*x2)), xmask, eviction_policy='evict_last') tmp74 = 2.0 tmp75 = tmp74 - tmp30 tmp76 = tmp75 * tmp32 tmp77 = tmp76 - tmp34 tmp78 = tmp77 * tmp75 tmp79 = tmp78 + tmp37 tmp80 = tmp79 * tmp75 tmp81 = tmp80 - tmp40 tmp82 = tmp73 * tmp81 tmp83 = tl.load(in_ptr0 + (tmp44 + (4*tmp66) + (16*x2)), xmask, eviction_policy='evict_last') tmp84 = tmp83 * tmp52 tmp85 = tl.load(in_ptr0 + (tmp56 + (4*tmp66) + (16*x2)), xmask, eviction_policy='evict_last') tmp86 = tmp85 * tmp63 tmp87 = tmp8 + tmp9 tmp88 = triton_helpers.maximum(tmp87, tmp11) tmp89 = triton_helpers.minimum(tmp88, tmp13) tmp90 = tl.load(in_ptr0 + (tmp24 + (4*tmp89) + (16*x2)), xmask, eviction_policy='evict_last') tmp91 = tmp90 * tmp41 tmp92 = tl.load(in_ptr0 + (tmp72 + (4*tmp66) + (16*x2)), xmask, eviction_policy='evict_last') tmp93 = tmp92 * tmp81 tmp94 = tl.load(in_ptr0 + (tmp44 + (4*tmp89) + (16*x2)), xmask, eviction_policy='evict_last') tmp95 = tmp94 * tmp52 tmp96 = tl.load(in_ptr0 + (tmp56 + (4*tmp89) + (16*x2)), xmask, eviction_policy='evict_last') tmp97 = tmp96 * tmp63 tmp98 = tmp8 + tmp69 tmp99 = triton_helpers.maximum(tmp98, tmp11) tmp100 = triton_helpers.minimum(tmp99, tmp13) tmp101 = tl.load(in_ptr0 + (tmp24 + (4*tmp100) + (16*x2)), xmask, eviction_policy='evict_last') tmp102 = tmp101 * tmp41 tmp103 = tl.load(in_ptr0 + (tmp72 + (4*tmp89) + (16*x2)), xmask, eviction_policy='evict_last') tmp104 = tmp103 * tmp81 tmp105 = tl.load(in_ptr0 + (tmp44 + (4*tmp100) + (16*x2)), xmask, eviction_policy='evict_last') tmp106 = tmp105 * tmp52 tmp107 = tl.load(in_ptr0 + (tmp56 + (4*tmp100) + (16*x2)), xmask, eviction_policy='evict_last') tmp108 = tmp107 * tmp63 tmp109 = tl.load(in_ptr0 + (tmp72 + (4*tmp100) + (16*x2)), xmask, eviction_policy='evict_last') tmp110 = tmp109 * tmp81 tmp111 = tmp42 + tmp53 tmp112 = tmp111 + tmp64 tmp113 = tmp112 + tmp82 tmp114 = tmp6 - tmp7 tmp115 = triton_helpers.maximum(tmp114, tmp27) tmp116 = triton_helpers.minimum(tmp115, tmp29) tmp117 = tmp116 + tmp29 tmp118 = tmp117 * tmp32 tmp119 = tmp118 - tmp34 tmp120 = tmp119 * tmp117 tmp121 = tmp120 + tmp37 tmp122 = tmp121 * tmp117 tmp123 = tmp122 - tmp40 tmp124 = tmp113 * tmp123 tmp125 = tmp68 + tmp84 tmp126 = tmp125 + tmp86 tmp127 = tmp126 + tmp93 tmp128 = tmp116 * tmp46 tmp129 = tmp128 - tmp48 tmp130 = tmp129 * tmp116 tmp131 = tmp130 * tmp116 tmp132 = tmp131 + tmp29 tmp133 = tmp127 * tmp132 tmp134 = tmp124 + tmp133 tmp135 = tmp91 + tmp95 tmp136 = tmp135 + tmp97 tmp137 = tmp136 + tmp104 tmp138 = tmp29 - tmp116 tmp139 = tmp138 * tmp46 tmp140 = tmp139 - tmp48 tmp141 = tmp140 * tmp138 tmp142 = tmp141 * tmp138 tmp143 = tmp142 + tmp29 tmp144 = tmp137 * tmp143 tmp145 = tmp134 + tmp144 tmp146 = tmp102 + tmp106 tmp147 = tmp146 + tmp108 tmp148 = tmp147 + tmp110 tmp149 = tmp74 - tmp116 tmp150 = tmp149 * tmp32 tmp151 = tmp150 - tmp34 tmp152 = tmp151 * tmp149 tmp153 = tmp152 + tmp37 tmp154 = tmp153 * tmp149 tmp155 = tmp154 - tmp40 tmp156 = tmp148 * tmp155 tmp157 = tmp145 + tmp156 tl.store(in_out_ptr1 + (x3), tmp157, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/f4/cf4q74veoggsxdgdkl43ap6cyqfylpfk3qs7wdqoebyfzzb36dvw.py # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # out => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_30, %primals_2, %primals_3, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bj/cbjysb56yh4ggfzb72c3xdhbbnmqhfc3pvpexw6rfp2nme2jhyyl.py # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # out_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7x/c7xnwtrjfqhdkxhfsdsjlkr7ml5ojqmtd2lrl7npuiczn7woxe2e.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 256) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_2, (64, 3, 9, 9), (243, 81, 9, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (32, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (3, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_7, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf10 = empty_strided_cuda((4, 3, 16, 16), (768, 256, 16, 1), torch.float32) buf18 = buf10; del buf10 # reuse buf20 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.floor, aten.clamp, aten.rsub, aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0.run(buf20, primals_1, 3072, grid=grid(3072), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf20, primals_2, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 64, 16, 16), (16384, 256, 16, 1)) buf22 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf22, primals_3, 65536, grid=grid(65536), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf23 = extern_kernels.convolution(buf22, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 32, 16, 16), (8192, 256, 16, 1)) buf24 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf24, primals_5, 32768, grid=grid(32768), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf25 = extern_kernels.convolution(buf24, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 3, 16, 16), (768, 256, 16, 1)) buf26 = buf25; del buf25 # reuse # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf26, primals_7, 3072, grid=grid(3072), stream=stream0) del primals_7 return (buf26, primals_2, primals_4, primals_6, buf20, buf22, buf24, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 3, 9, 9), (243, 81, 9, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((3, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import logging import torch import torchvision import warnings from collections import OrderedDict from torch.utils import model_zoo from torch.nn import functional as F import torch.nn as nn def get_root_logger(log_file=None, log_level=logging.INFO): """Get the root logger. The logger will be initialized if it has not been initialized. By default a StreamHandler will be added. If `log_file` is specified, a FileHandler will also be added. The name of the root logger is the top-level package name, e.g., "mmedit". Args: log_file (str | None): The log filename. If specified, a FileHandler will be added to the root logger. log_level (int): The root logger level. Note that only the process of rank 0 is affected, while other processes will set the level to "Error" and be silent most of the time. Returns: logging.Logger: The root logger. """ logger = get_logger(__name__.split('.')[0], log_file, log_level) return logger def _get_mmcv_home(): mmcv_home = os.path.expanduser(os.getenv(ENV_MMCV_HOME, os.path.join(os .getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) mkdir_or_exist(mmcv_home) return mmcv_home def _process_mmcls_checkpoint(checkpoint): state_dict = checkpoint['state_dict'] new_state_dict = OrderedDict() for k, v in state_dict.items(): if k.startswith('backbone.'): new_state_dict[k[9:]] = v new_checkpoint = dict(state_dict=new_state_dict) return new_checkpoint def get_deprecated_model_names(): deprecate_json_path = osp.join(mmcv.__path__[0], 'model_zoo/deprecated.json') deprecate_urls = load_file(deprecate_json_path) assert isinstance(deprecate_urls, dict) return deprecate_urls def get_external_models(): mmcv_home = _get_mmcv_home() default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') default_urls = load_file(default_json_path) assert isinstance(default_urls, dict) external_json_path = osp.join(mmcv_home, 'open_mmlab.json') if osp.exists(external_json_path): external_urls = load_file(external_json_path) assert isinstance(external_urls, dict) default_urls.update(external_urls) return default_urls def get_mmcls_models(): mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') mmcls_urls = load_file(mmcls_json_path) return mmcls_urls def get_torchvision_models(): model_urls = dict() for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): if ispkg: continue _zoo = import_module(f'torchvision.models.{name}') if hasattr(_zoo, 'model_urls'): _urls = getattr(_zoo, 'model_urls') model_urls.update(_urls) return model_urls def load_fileclient_dist(filename, backend, map_location): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) allowed_backends = ['ceph'] if backend not in allowed_backends: raise ValueError(f'Load from Backend {backend} is not supported.') if rank == 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) return checkpoint def load_url_dist(url, model_dir=None): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir) if world_size > 1: torch.distributed.barrier() if rank > 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir) return checkpoint def _load_checkpoint(filename, map_location=None): """Load checkpoint from somewhere (modelzoo, file, url). Args: filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str | None): Same as :func:`torch.load`. Default: None. Returns: dict | OrderedDict: The loaded checkpoint. It can be either an OrderedDict storing model weights or a dict containing other information, which depends on the checkpoint. """ if filename.startswith('modelzoo://'): warnings.warn( 'The URL scheme of "modelzoo://" is deprecated, please use "torchvision://" instead' ) model_urls = get_torchvision_models() model_name = filename[11:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('torchvision://'): model_urls = get_torchvision_models() model_name = filename[14:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('open-mmlab://'): model_urls = get_external_models() model_name = filename[13:] deprecated_urls = get_deprecated_model_names() if model_name in deprecated_urls: warnings.warn( f'open-mmlab://{model_name} is deprecated in favor of open-mmlab://{deprecated_urls[model_name]}' ) model_name = deprecated_urls[model_name] model_url = model_urls[model_name] if model_url.startswith(('http://', 'https://')): checkpoint = load_url_dist(model_url) else: filename = osp.join(_get_mmcv_home(), model_url) if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) elif filename.startswith('mmcls://'): model_urls = get_mmcls_models() model_name = filename[8:] checkpoint = load_url_dist(model_urls[model_name]) checkpoint = _process_mmcls_checkpoint(checkpoint) elif filename.startswith(('http://', 'https://')): checkpoint = load_url_dist(filename) elif filename.startswith('pavi://'): model_path = filename[7:] checkpoint = load_pavimodel_dist(model_path, map_location=map_location) elif filename.startswith('s3://'): checkpoint = load_fileclient_dist(filename, backend='ceph', map_location=map_location) else: if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) return checkpoint def load_state_dict(module, state_dict, strict=False, logger=None): """Load state_dict to a module. This method is modified from :meth:`torch.nn.Module.load_state_dict`. Default value for ``strict`` is set to ``False`` and the message for param mismatch will be shown even if strict is False. Args: module (Module): Module that receives the state_dict. state_dict (OrderedDict): Weights. strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. logger (:obj:`logging.Logger`, optional): Logger to log the error message. If not specified, print function will be used. """ unexpected_keys = [] all_missing_keys = [] err_msg = [] metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): if is_module_wrapper(module): module = module.module local_metadata = {} if metadata is None else metadata.get(prefix[:- 1], {}) module._load_from_state_dict(state_dict, prefix, local_metadata, True, all_missing_keys, unexpected_keys, err_msg) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(module) load = None missing_keys = [key for key in all_missing_keys if 'num_batches_tracked' not in key] if unexpected_keys: err_msg.append( f"unexpected key in source state_dict: {', '.join(unexpected_keys)}\n" ) if missing_keys: err_msg.append( f"missing keys in source state_dict: {', '.join(missing_keys)}\n") rank, _ = get_dist_info() if len(err_msg) > 0 and rank == 0: err_msg.insert(0, 'The model and loaded state dict do not match exactly\n') err_msg = '\n'.join(err_msg) if strict: raise RuntimeError(err_msg) elif logger is not None: logger.warning(err_msg) else: None def load_checkpoint(model, filename, map_location='cpu', strict=False, logger=None): """Load checkpoint from a file or URI. Args: model (Module): Module to load checkpoint. filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str): Same as :func:`torch.load`. strict (bool): Whether to allow different params for the model and checkpoint. logger (:mod:`logging.Logger` or None): The logger for error message. Returns: dict or OrderedDict: The loaded checkpoint. """ checkpoint = _load_checkpoint(filename, map_location) if not isinstance(checkpoint, dict): raise RuntimeError(f'No state_dict found in checkpoint file {filename}' ) if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] elif 'model' in checkpoint: state_dict = checkpoint['model'] else: state_dict = checkpoint if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in state_dict.items()} if state_dict.get('absolute_pos_embed') is not None: absolute_pos_embed = state_dict['absolute_pos_embed'] N1, L, C1 = absolute_pos_embed.size() N2, C2, H, W = model.absolute_pos_embed.size() if N1 != N2 or C1 != C2 or L != H * W: logger.warning('Error in loading absolute_pos_embed, pass') else: state_dict['absolute_pos_embed'] = absolute_pos_embed.view(N2, H, W, C2).permute(0, 3, 1, 2) relative_position_bias_table_keys = [k for k in state_dict.keys() if 'relative_position_bias_table' in k] for table_key in relative_position_bias_table_keys: table_pretrained = state_dict[table_key] table_current = model.state_dict()[table_key] L1, nH1 = table_pretrained.size() L2, nH2 = table_current.size() if nH1 != nH2: logger.warning(f'Error in loading {table_key}, pass') elif L1 != L2: S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) table_pretrained_resized = F.interpolate(table_pretrained. permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode= 'bicubic') state_dict[table_key] = table_pretrained_resized.view(nH2, L2 ).permute(1, 0) load_state_dict(model, state_dict, strict, logger) return checkpoint class SRCNN(nn.Module): """SRCNN network structure for image super resolution. SRCNN has three conv layers. For each layer, we can define the `in_channels`, `out_channels` and `kernel_size`. The input image will first be upsampled with a bicubic upsampler, and then super-resolved in the HR spatial size. Paper: Learning a Deep Convolutional Network for Image Super-Resolution. Args: channels (tuple[int]): A tuple of channel numbers for each layer including channels of input and output . Default: (3, 64, 32, 3). kernel_sizes (tuple[int]): A tuple of kernel sizes for each conv layer. Default: (9, 1, 5). upscale_factor (int): Upsampling factor. Default: 4. """ def __init__(self, channels=(3, 64, 32, 3), kernel_sizes=(9, 1, 5), upscale_factor=4): super().__init__() assert len(channels ) == 4, f'The length of channel tuple should be 4, but got {len(channels)}' assert len(kernel_sizes ) == 3, f'The length of kernel tuple should be 3, but got {len(kernel_sizes)}' self.upscale_factor = upscale_factor self.img_upsampler = nn.Upsample(scale_factor=self.upscale_factor, mode='bicubic', align_corners=False) self.conv1 = nn.Conv2d(channels[0], channels[1], kernel_size= kernel_sizes[0], padding=kernel_sizes[0] // 2) self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size= kernel_sizes[1], padding=kernel_sizes[1] // 2) self.conv3 = nn.Conv2d(channels[2], channels[3], kernel_size= kernel_sizes[2], padding=kernel_sizes[2] // 2) self.relu = nn.ReLU() def forward(self, x): """Forward function. Args: x (Tensor): Input tensor with shape (n, c, h, w). Returns: Tensor: Forward results. """ x = self.img_upsampler(x) out = self.relu(self.conv1(x)) out = self.relu(self.conv2(out)) out = self.conv3(out) return out def init_weights(self, pretrained=None, strict=True): """Init weights for models. Args: pretrained (str, optional): Path for pretrained weights. If given None, pretrained weights will not be loaded. Defaults to None. strict (boo, optional): Whether strictly load the pretrained model. Defaults to True. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=strict, logger=logger) elif pretrained is None: pass else: raise TypeError( f'"pretrained" must be a str or None. But received {type(pretrained)}.' ) def get_inputs(): return [torch.rand([4, 3, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import logging import torchvision import warnings from collections import OrderedDict from torch.utils import model_zoo from torch.nn import functional as F import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0( in_out_ptr1, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 16 x0 = xindex % 16 x2 = xindex // 256 x3 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.25 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = libdevice.floor(tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 - tmp9 tmp11 = tl.full([1], 0, tl.int64) tmp12 = triton_helpers.maximum(tmp10, tmp11) tmp13 = tl.full([1], 3, tl.int64) tmp14 = triton_helpers.minimum(tmp12, tmp13) tmp15 = x0 tmp16 = tmp15.to(tl.float32) tmp17 = tmp16 + tmp2 tmp18 = tmp17 * tmp4 tmp19 = tmp18 - tmp2 tmp20 = libdevice.floor(tmp19) tmp21 = tmp20.to(tl.int32) tmp22 = tmp21 - tmp9 tmp23 = triton_helpers.maximum(tmp22, tmp11) tmp24 = triton_helpers.minimum(tmp23, tmp13) tmp25 = tl.load(in_ptr0 + (tmp24 + 4 * tmp14 + 16 * x2), xmask, eviction_policy='evict_last') tmp26 = tmp19 - tmp20 tmp27 = 0.0 tmp28 = triton_helpers.maximum(tmp26, tmp27) tmp29 = 1.0 tmp30 = triton_helpers.minimum(tmp28, tmp29) tmp31 = tmp30 + tmp29 tmp32 = -0.75 tmp33 = tmp31 * tmp32 tmp34 = -3.75 tmp35 = tmp33 - tmp34 tmp36 = tmp35 * tmp31 tmp37 = -6.0 tmp38 = tmp36 + tmp37 tmp39 = tmp38 * tmp31 tmp40 = -3.0 tmp41 = tmp39 - tmp40 tmp42 = tmp25 * tmp41 tmp43 = triton_helpers.maximum(tmp21, tmp11) tmp44 = triton_helpers.minimum(tmp43, tmp13) tmp45 = tl.load(in_ptr0 + (tmp44 + 4 * tmp14 + 16 * x2), xmask, eviction_policy='evict_last') tmp46 = 1.25 tmp47 = tmp30 * tmp46 tmp48 = 2.25 tmp49 = tmp47 - tmp48 tmp50 = tmp49 * tmp30 tmp51 = tmp50 * tmp30 tmp52 = tmp51 + tmp29 tmp53 = tmp45 * tmp52 tmp54 = tmp21 + tmp9 tmp55 = triton_helpers.maximum(tmp54, tmp11) tmp56 = triton_helpers.minimum(tmp55, tmp13) tmp57 = tl.load(in_ptr0 + (tmp56 + 4 * tmp14 + 16 * x2), xmask, eviction_policy='evict_last') tmp58 = tmp29 - tmp30 tmp59 = tmp58 * tmp46 tmp60 = tmp59 - tmp48 tmp61 = tmp60 * tmp58 tmp62 = tmp61 * tmp58 tmp63 = tmp62 + tmp29 tmp64 = tmp57 * tmp63 tmp65 = triton_helpers.maximum(tmp8, tmp11) tmp66 = triton_helpers.minimum(tmp65, tmp13) tmp67 = tl.load(in_ptr0 + (tmp24 + 4 * tmp66 + 16 * x2), xmask, eviction_policy='evict_last') tmp68 = tmp67 * tmp41 tmp69 = tl.full([1], 2, tl.int64) tmp70 = tmp21 + tmp69 tmp71 = triton_helpers.maximum(tmp70, tmp11) tmp72 = triton_helpers.minimum(tmp71, tmp13) tmp73 = tl.load(in_ptr0 + (tmp72 + 4 * tmp14 + 16 * x2), xmask, eviction_policy='evict_last') tmp74 = 2.0 tmp75 = tmp74 - tmp30 tmp76 = tmp75 * tmp32 tmp77 = tmp76 - tmp34 tmp78 = tmp77 * tmp75 tmp79 = tmp78 + tmp37 tmp80 = tmp79 * tmp75 tmp81 = tmp80 - tmp40 tmp82 = tmp73 * tmp81 tmp83 = tl.load(in_ptr0 + (tmp44 + 4 * tmp66 + 16 * x2), xmask, eviction_policy='evict_last') tmp84 = tmp83 * tmp52 tmp85 = tl.load(in_ptr0 + (tmp56 + 4 * tmp66 + 16 * x2), xmask, eviction_policy='evict_last') tmp86 = tmp85 * tmp63 tmp87 = tmp8 + tmp9 tmp88 = triton_helpers.maximum(tmp87, tmp11) tmp89 = triton_helpers.minimum(tmp88, tmp13) tmp90 = tl.load(in_ptr0 + (tmp24 + 4 * tmp89 + 16 * x2), xmask, eviction_policy='evict_last') tmp91 = tmp90 * tmp41 tmp92 = tl.load(in_ptr0 + (tmp72 + 4 * tmp66 + 16 * x2), xmask, eviction_policy='evict_last') tmp93 = tmp92 * tmp81 tmp94 = tl.load(in_ptr0 + (tmp44 + 4 * tmp89 + 16 * x2), xmask, eviction_policy='evict_last') tmp95 = tmp94 * tmp52 tmp96 = tl.load(in_ptr0 + (tmp56 + 4 * tmp89 + 16 * x2), xmask, eviction_policy='evict_last') tmp97 = tmp96 * tmp63 tmp98 = tmp8 + tmp69 tmp99 = triton_helpers.maximum(tmp98, tmp11) tmp100 = triton_helpers.minimum(tmp99, tmp13) tmp101 = tl.load(in_ptr0 + (tmp24 + 4 * tmp100 + 16 * x2), xmask, eviction_policy='evict_last') tmp102 = tmp101 * tmp41 tmp103 = tl.load(in_ptr0 + (tmp72 + 4 * tmp89 + 16 * x2), xmask, eviction_policy='evict_last') tmp104 = tmp103 * tmp81 tmp105 = tl.load(in_ptr0 + (tmp44 + 4 * tmp100 + 16 * x2), xmask, eviction_policy='evict_last') tmp106 = tmp105 * tmp52 tmp107 = tl.load(in_ptr0 + (tmp56 + 4 * tmp100 + 16 * x2), xmask, eviction_policy='evict_last') tmp108 = tmp107 * tmp63 tmp109 = tl.load(in_ptr0 + (tmp72 + 4 * tmp100 + 16 * x2), xmask, eviction_policy='evict_last') tmp110 = tmp109 * tmp81 tmp111 = tmp42 + tmp53 tmp112 = tmp111 + tmp64 tmp113 = tmp112 + tmp82 tmp114 = tmp6 - tmp7 tmp115 = triton_helpers.maximum(tmp114, tmp27) tmp116 = triton_helpers.minimum(tmp115, tmp29) tmp117 = tmp116 + tmp29 tmp118 = tmp117 * tmp32 tmp119 = tmp118 - tmp34 tmp120 = tmp119 * tmp117 tmp121 = tmp120 + tmp37 tmp122 = tmp121 * tmp117 tmp123 = tmp122 - tmp40 tmp124 = tmp113 * tmp123 tmp125 = tmp68 + tmp84 tmp126 = tmp125 + tmp86 tmp127 = tmp126 + tmp93 tmp128 = tmp116 * tmp46 tmp129 = tmp128 - tmp48 tmp130 = tmp129 * tmp116 tmp131 = tmp130 * tmp116 tmp132 = tmp131 + tmp29 tmp133 = tmp127 * tmp132 tmp134 = tmp124 + tmp133 tmp135 = tmp91 + tmp95 tmp136 = tmp135 + tmp97 tmp137 = tmp136 + tmp104 tmp138 = tmp29 - tmp116 tmp139 = tmp138 * tmp46 tmp140 = tmp139 - tmp48 tmp141 = tmp140 * tmp138 tmp142 = tmp141 * tmp138 tmp143 = tmp142 + tmp29 tmp144 = tmp137 * tmp143 tmp145 = tmp134 + tmp144 tmp146 = tmp102 + tmp106 tmp147 = tmp146 + tmp108 tmp148 = tmp147 + tmp110 tmp149 = tmp74 - tmp116 tmp150 = tmp149 * tmp32 tmp151 = tmp150 - tmp34 tmp152 = tmp151 * tmp149 tmp153 = tmp152 + tmp37 tmp154 = tmp153 * tmp149 tmp155 = tmp154 - tmp40 tmp156 = tmp148 * tmp155 tmp157 = tmp145 + tmp156 tl.store(in_out_ptr1 + x3, tmp157, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 256 % 3 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_2, (64, 3, 9, 9), (243, 81, 9, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (32, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (3, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_7, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf10 = empty_strided_cuda((4, 3, 16, 16), (768, 256, 16, 1), torch .float32) buf18 = buf10 del buf10 buf20 = buf18 del buf18 get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_floor_mul_rsub_sub_0[ grid(3072)](buf20, primals_1, 3072, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf21 = extern_kernels.convolution(buf20, primals_2, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 64, 16, 16), (16384, 256, 16, 1)) buf22 = buf21 del buf21 triton_poi_fused_convolution_relu_1[grid(65536)](buf22, primals_3, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_3 buf23 = extern_kernels.convolution(buf22, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 32, 16, 16), (8192, 256, 16, 1)) buf24 = buf23 del buf23 triton_poi_fused_convolution_relu_2[grid(32768)](buf24, primals_5, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf25 = extern_kernels.convolution(buf24, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 3, 16, 16), (768, 256, 16, 1)) buf26 = buf25 del buf25 triton_poi_fused_convolution_3[grid(3072)](buf26, primals_7, 3072, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 return buf26, primals_2, primals_4, primals_6, buf20, buf22, buf24 def get_root_logger(log_file=None, log_level=logging.INFO): """Get the root logger. The logger will be initialized if it has not been initialized. By default a StreamHandler will be added. If `log_file` is specified, a FileHandler will also be added. The name of the root logger is the top-level package name, e.g., "mmedit". Args: log_file (str | None): The log filename. If specified, a FileHandler will be added to the root logger. log_level (int): The root logger level. Note that only the process of rank 0 is affected, while other processes will set the level to "Error" and be silent most of the time. Returns: logging.Logger: The root logger. """ logger = get_logger(__name__.split('.')[0], log_file, log_level) return logger def _get_mmcv_home(): mmcv_home = os.path.expanduser(os.getenv(ENV_MMCV_HOME, os.path.join(os .getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) mkdir_or_exist(mmcv_home) return mmcv_home def _process_mmcls_checkpoint(checkpoint): state_dict = checkpoint['state_dict'] new_state_dict = OrderedDict() for k, v in state_dict.items(): if k.startswith('backbone.'): new_state_dict[k[9:]] = v new_checkpoint = dict(state_dict=new_state_dict) return new_checkpoint def get_deprecated_model_names(): deprecate_json_path = osp.join(mmcv.__path__[0], 'model_zoo/deprecated.json') deprecate_urls = load_file(deprecate_json_path) assert isinstance(deprecate_urls, dict) return deprecate_urls def get_external_models(): mmcv_home = _get_mmcv_home() default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') default_urls = load_file(default_json_path) assert isinstance(default_urls, dict) external_json_path = osp.join(mmcv_home, 'open_mmlab.json') if osp.exists(external_json_path): external_urls = load_file(external_json_path) assert isinstance(external_urls, dict) default_urls.update(external_urls) return default_urls def get_mmcls_models(): mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') mmcls_urls = load_file(mmcls_json_path) return mmcls_urls def get_torchvision_models(): model_urls = dict() for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): if ispkg: continue _zoo = import_module(f'torchvision.models.{name}') if hasattr(_zoo, 'model_urls'): _urls = getattr(_zoo, 'model_urls') model_urls.update(_urls) return model_urls def load_fileclient_dist(filename, backend, map_location): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) allowed_backends = ['ceph'] if backend not in allowed_backends: raise ValueError(f'Load from Backend {backend} is not supported.') if rank == 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) return checkpoint def load_url_dist(url, model_dir=None): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir) if world_size > 1: torch.distributed.barrier() if rank > 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir) return checkpoint def _load_checkpoint(filename, map_location=None): """Load checkpoint from somewhere (modelzoo, file, url). Args: filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str | None): Same as :func:`torch.load`. Default: None. Returns: dict | OrderedDict: The loaded checkpoint. It can be either an OrderedDict storing model weights or a dict containing other information, which depends on the checkpoint. """ if filename.startswith('modelzoo://'): warnings.warn( 'The URL scheme of "modelzoo://" is deprecated, please use "torchvision://" instead' ) model_urls = get_torchvision_models() model_name = filename[11:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('torchvision://'): model_urls = get_torchvision_models() model_name = filename[14:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('open-mmlab://'): model_urls = get_external_models() model_name = filename[13:] deprecated_urls = get_deprecated_model_names() if model_name in deprecated_urls: warnings.warn( f'open-mmlab://{model_name} is deprecated in favor of open-mmlab://{deprecated_urls[model_name]}' ) model_name = deprecated_urls[model_name] model_url = model_urls[model_name] if model_url.startswith(('http://', 'https://')): checkpoint = load_url_dist(model_url) else: filename = osp.join(_get_mmcv_home(), model_url) if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) elif filename.startswith('mmcls://'): model_urls = get_mmcls_models() model_name = filename[8:] checkpoint = load_url_dist(model_urls[model_name]) checkpoint = _process_mmcls_checkpoint(checkpoint) elif filename.startswith(('http://', 'https://')): checkpoint = load_url_dist(filename) elif filename.startswith('pavi://'): model_path = filename[7:] checkpoint = load_pavimodel_dist(model_path, map_location=map_location) elif filename.startswith('s3://'): checkpoint = load_fileclient_dist(filename, backend='ceph', map_location=map_location) else: if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) return checkpoint def load_state_dict(module, state_dict, strict=False, logger=None): """Load state_dict to a module. This method is modified from :meth:`torch.nn.Module.load_state_dict`. Default value for ``strict`` is set to ``False`` and the message for param mismatch will be shown even if strict is False. Args: module (Module): Module that receives the state_dict. state_dict (OrderedDict): Weights. strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. logger (:obj:`logging.Logger`, optional): Logger to log the error message. If not specified, print function will be used. """ unexpected_keys = [] all_missing_keys = [] err_msg = [] metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): if is_module_wrapper(module): module = module.module local_metadata = {} if metadata is None else metadata.get(prefix[:- 1], {}) module._load_from_state_dict(state_dict, prefix, local_metadata, True, all_missing_keys, unexpected_keys, err_msg) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(module) load = None missing_keys = [key for key in all_missing_keys if 'num_batches_tracked' not in key] if unexpected_keys: err_msg.append( f"unexpected key in source state_dict: {', '.join(unexpected_keys)}\n" ) if missing_keys: err_msg.append( f"missing keys in source state_dict: {', '.join(missing_keys)}\n") rank, _ = get_dist_info() if len(err_msg) > 0 and rank == 0: err_msg.insert(0, 'The model and loaded state dict do not match exactly\n') err_msg = '\n'.join(err_msg) if strict: raise RuntimeError(err_msg) elif logger is not None: logger.warning(err_msg) else: None def load_checkpoint(model, filename, map_location='cpu', strict=False, logger=None): """Load checkpoint from a file or URI. Args: model (Module): Module to load checkpoint. filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str): Same as :func:`torch.load`. strict (bool): Whether to allow different params for the model and checkpoint. logger (:mod:`logging.Logger` or None): The logger for error message. Returns: dict or OrderedDict: The loaded checkpoint. """ checkpoint = _load_checkpoint(filename, map_location) if not isinstance(checkpoint, dict): raise RuntimeError(f'No state_dict found in checkpoint file {filename}' ) if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] elif 'model' in checkpoint: state_dict = checkpoint['model'] else: state_dict = checkpoint if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in state_dict.items()} if state_dict.get('absolute_pos_embed') is not None: absolute_pos_embed = state_dict['absolute_pos_embed'] N1, L, C1 = absolute_pos_embed.size() N2, C2, H, W = model.absolute_pos_embed.size() if N1 != N2 or C1 != C2 or L != H * W: logger.warning('Error in loading absolute_pos_embed, pass') else: state_dict['absolute_pos_embed'] = absolute_pos_embed.view(N2, H, W, C2).permute(0, 3, 1, 2) relative_position_bias_table_keys = [k for k in state_dict.keys() if 'relative_position_bias_table' in k] for table_key in relative_position_bias_table_keys: table_pretrained = state_dict[table_key] table_current = model.state_dict()[table_key] L1, nH1 = table_pretrained.size() L2, nH2 = table_current.size() if nH1 != nH2: logger.warning(f'Error in loading {table_key}, pass') elif L1 != L2: S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) table_pretrained_resized = F.interpolate(table_pretrained. permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode= 'bicubic') state_dict[table_key] = table_pretrained_resized.view(nH2, L2 ).permute(1, 0) load_state_dict(model, state_dict, strict, logger) return checkpoint class SRCNNNew(nn.Module): """SRCNN network structure for image super resolution. SRCNN has three conv layers. For each layer, we can define the `in_channels`, `out_channels` and `kernel_size`. The input image will first be upsampled with a bicubic upsampler, and then super-resolved in the HR spatial size. Paper: Learning a Deep Convolutional Network for Image Super-Resolution. Args: channels (tuple[int]): A tuple of channel numbers for each layer including channels of input and output . Default: (3, 64, 32, 3). kernel_sizes (tuple[int]): A tuple of kernel sizes for each conv layer. Default: (9, 1, 5). upscale_factor (int): Upsampling factor. Default: 4. """ def __init__(self, channels=(3, 64, 32, 3), kernel_sizes=(9, 1, 5), upscale_factor=4): super().__init__() assert len(channels ) == 4, f'The length of channel tuple should be 4, but got {len(channels)}' assert len(kernel_sizes ) == 3, f'The length of kernel tuple should be 3, but got {len(kernel_sizes)}' self.upscale_factor = upscale_factor self.img_upsampler = nn.Upsample(scale_factor=self.upscale_factor, mode='bicubic', align_corners=False) self.conv1 = nn.Conv2d(channels[0], channels[1], kernel_size= kernel_sizes[0], padding=kernel_sizes[0] // 2) self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size= kernel_sizes[1], padding=kernel_sizes[1] // 2) self.conv3 = nn.Conv2d(channels[2], channels[3], kernel_size= kernel_sizes[2], padding=kernel_sizes[2] // 2) self.relu = nn.ReLU() def init_weights(self, pretrained=None, strict=True): """Init weights for models. Args: pretrained (str, optional): Path for pretrained weights. If given None, pretrained weights will not be loaded. Defaults to None. strict (boo, optional): Whether strictly load the pretrained model. Defaults to True. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=strict, logger=logger) elif pretrained is None: pass else: raise TypeError( f'"pretrained" must be a str or None. But received {type(pretrained)}.' ) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Jason-Khan/mmediting
SRCNN
false
1,025
[ "Apache-2.0" ]
0
d187f95a675dff3eb975a575bd9278d643b5b645
https://github.com/Jason-Khan/mmediting/tree/d187f95a675dff3eb975a575bd9278d643b5b645
import logging import torch import torchvision import warnings from collections import OrderedDict from torch.utils import model_zoo from torch.nn import functional as F import torch.nn as nn def get_root_logger(log_file=None, log_level=logging.INFO): """Get the root logger. The logger will be initialized if it has not been initialized. By default a StreamHandler will be added. If `log_file` is specified, a FileHandler will also be added. The name of the root logger is the top-level package name, e.g., "mmedit". Args: log_file (str | None): The log filename. If specified, a FileHandler will be added to the root logger. log_level (int): The root logger level. Note that only the process of rank 0 is affected, while other processes will set the level to "Error" and be silent most of the time. Returns: logging.Logger: The root logger. """ logger = get_logger(__name__.split('.')[0], log_file, log_level) return logger def _get_mmcv_home(): mmcv_home = os.path.expanduser(os.getenv(ENV_MMCV_HOME, os.path.join(os .getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) mkdir_or_exist(mmcv_home) return mmcv_home def _process_mmcls_checkpoint(checkpoint): state_dict = checkpoint['state_dict'] new_state_dict = OrderedDict() for k, v in state_dict.items(): if k.startswith('backbone.'): new_state_dict[k[9:]] = v new_checkpoint = dict(state_dict=new_state_dict) return new_checkpoint def get_deprecated_model_names(): deprecate_json_path = osp.join(mmcv.__path__[0], 'model_zoo/deprecated.json') deprecate_urls = load_file(deprecate_json_path) assert isinstance(deprecate_urls, dict) return deprecate_urls def get_external_models(): mmcv_home = _get_mmcv_home() default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') default_urls = load_file(default_json_path) assert isinstance(default_urls, dict) external_json_path = osp.join(mmcv_home, 'open_mmlab.json') if osp.exists(external_json_path): external_urls = load_file(external_json_path) assert isinstance(external_urls, dict) default_urls.update(external_urls) return default_urls def get_mmcls_models(): mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') mmcls_urls = load_file(mmcls_json_path) return mmcls_urls def get_torchvision_models(): model_urls = dict() for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): if ispkg: continue _zoo = import_module(f'torchvision.models.{name}') if hasattr(_zoo, 'model_urls'): _urls = getattr(_zoo, 'model_urls') model_urls.update(_urls) return model_urls def load_fileclient_dist(filename, backend, map_location): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) allowed_backends = ['ceph'] if backend not in allowed_backends: raise ValueError(f'Load from Backend {backend} is not supported.') if rank == 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) return checkpoint def load_url_dist(url, model_dir=None): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: checkpoint = model_zoo.load_ # ... truncated (>4000 chars) for memory efficiency
PairCosineSim
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/io/ciob4kb36gg4wx77qlmocg7jy3y7sntoa4fvgm3oato4xhh5cpe4.py # Topologically Sorted Source Nodes: [similarities], Original ATen: [aten.stack] # Source node to ATen node mapping: # similarities => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mul, %mul_1, %mul_2, %mul_3],), kwargs = {}) triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (4*x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp6 * tmp6 tmp8 = tl.load(in_ptr1 + (1 + (4*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = tl.load(in_ptr1 + (2 + (4*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tl.load(in_ptr1 + (3 + (4*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = 1e-10 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = float("inf") tmp20 = triton_helpers.minimum(tmp18, tmp19) tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp5 * tmp21 tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp4, tmp22, tmp23) tmp25 = tmp0 >= tmp3 tmp26 = tl.full([1], 8, tl.int64) tmp27 = tmp0 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tl.load(in_ptr2 + ((-4) + x0), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr1 + (16 + (4*((-4) + x0))), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp30 * tmp30 tmp32 = tl.load(in_ptr1 + (17 + (4*((-4) + x0))), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp33 = tmp32 * tmp32 tmp34 = tmp31 + tmp33 tmp35 = tl.load(in_ptr1 + (18 + (4*((-4) + x0))), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tmp35 * tmp35 tmp37 = tmp34 + tmp36 tmp38 = tl.load(in_ptr1 + (19 + (4*((-4) + x0))), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tmp38 * tmp38 tmp40 = tmp37 + tmp39 tmp41 = triton_helpers.maximum(tmp40, tmp17) tmp42 = triton_helpers.minimum(tmp41, tmp19) tmp43 = libdevice.rsqrt(tmp42) tmp44 = tmp29 * tmp43 tmp45 = tl.full(tmp44.shape, 0.0, tmp44.dtype) tmp46 = tl.where(tmp28, tmp44, tmp45) tmp47 = tmp0 >= tmp26 tmp48 = tl.full([1], 12, tl.int64) tmp49 = tmp0 < tmp48 tmp50 = tmp47 & tmp49 tmp51 = tl.load(in_ptr3 + ((-8) + x0), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp52 = tl.load(in_ptr1 + (32 + (4*((-8) + x0))), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp53 = tmp52 * tmp52 tmp54 = tl.load(in_ptr1 + (33 + (4*((-8) + x0))), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp55 = tmp54 * tmp54 tmp56 = tmp53 + tmp55 tmp57 = tl.load(in_ptr1 + (34 + (4*((-8) + x0))), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp58 = tmp57 * tmp57 tmp59 = tmp56 + tmp58 tmp60 = tl.load(in_ptr1 + (35 + (4*((-8) + x0))), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp61 = tmp60 * tmp60 tmp62 = tmp59 + tmp61 tmp63 = triton_helpers.maximum(tmp62, tmp17) tmp64 = triton_helpers.minimum(tmp63, tmp19) tmp65 = libdevice.rsqrt(tmp64) tmp66 = tmp51 * tmp65 tmp67 = tl.full(tmp66.shape, 0.0, tmp66.dtype) tmp68 = tl.where(tmp50, tmp66, tmp67) tmp69 = tmp0 >= tmp48 tmp70 = tl.full([1], 16, tl.int64) tmp71 = tmp0 < tmp70 tmp72 = tl.load(in_ptr4 + ((-12) + x0), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp73 = tl.load(in_ptr1 + (48 + (4*((-12) + x0))), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tmp73 * tmp73 tmp75 = tl.load(in_ptr1 + (49 + (4*((-12) + x0))), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tmp75 * tmp75 tmp77 = tmp74 + tmp76 tmp78 = tl.load(in_ptr1 + (50 + (4*((-12) + x0))), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp79 = tmp78 * tmp78 tmp80 = tmp77 + tmp79 tmp81 = tl.load(in_ptr1 + (51 + (4*((-12) + x0))), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp82 = tmp81 * tmp81 tmp83 = tmp80 + tmp82 tmp84 = triton_helpers.maximum(tmp83, tmp17) tmp85 = triton_helpers.minimum(tmp84, tmp19) tmp86 = libdevice.rsqrt(tmp85) tmp87 = tmp72 * tmp86 tmp88 = tl.full(tmp87.shape, 0.0, tmp87.dtype) tmp89 = tl.where(tmp69, tmp87, tmp88) tmp90 = tl.where(tmp50, tmp68, tmp89) tmp91 = tl.where(tmp28, tmp46, tmp90) tmp92 = tl.where(tmp4, tmp24, tmp91) tl.store(out_ptr0 + (x0), tmp92, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_product], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 0), out=buf0) buf1 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_product_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 16), out=buf1) buf2 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_product_4], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 32), out=buf2) buf3 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_product_6], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 48), out=buf3) del arg1_1 buf4 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [similarities], Original ATen: [aten.stack] stream0 = get_raw_stream(0) triton_poi_fused_stack_0.run(buf0, arg0_1, buf1, buf2, buf3, buf4, 16, grid=grid(16), stream=stream0) del arg0_1 del buf0 del buf1 del buf2 del buf3 return (reinterpret_tensor(buf4, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class PairCosineSim(nn.Module): def __init__(self): super(PairCosineSim, self).__init__() def forward(self, supports, target): """ Calculates pairwise cosine similarity of support sets with target sample. :param supports: The embeddings of the support set samples, tensor of shape [batch_size, sequence_length, input_size] :param targets: The embedding of the target sample, tensor of shape [batch_size, input_size] -> [batch_size, sequence_length, input_size] :return: Tensor with cosine similarities of shape [batch_size, target_size, support_size] """ eps = 1e-10 similarities = [] for support_image in supports: sum_support = torch.sum(torch.pow(support_image, 2), 1) support_magnitude = sum_support.clamp(eps, float('inf')).rsqrt() target_unsqueeze = target.unsqueeze(1) support_image_unsqueeze = support_image.unsqueeze(2) dot_product = target_unsqueeze.bmm(support_image_unsqueeze) dot_product = dot_product.squeeze() cos_sim = dot_product * support_magnitude similarities.append(cos_sim) similarities = torch.stack(similarities) return similarities def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_stack_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + 4 * x0, tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp6 * tmp6 tmp8 = tl.load(in_ptr1 + (1 + 4 * x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = tl.load(in_ptr1 + (2 + 4 * x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tl.load(in_ptr1 + (3 + 4 * x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = 1e-10 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = float('inf') tmp20 = triton_helpers.minimum(tmp18, tmp19) tmp21 = libdevice.rsqrt(tmp20) tmp22 = tmp5 * tmp21 tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp4, tmp22, tmp23) tmp25 = tmp0 >= tmp3 tmp26 = tl.full([1], 8, tl.int64) tmp27 = tmp0 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tl.load(in_ptr2 + (-4 + x0), tmp28 & xmask, eviction_policy= 'evict_last', other=0.0) tmp30 = tl.load(in_ptr1 + (16 + 4 * (-4 + x0)), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp30 * tmp30 tmp32 = tl.load(in_ptr1 + (17 + 4 * (-4 + x0)), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp33 = tmp32 * tmp32 tmp34 = tmp31 + tmp33 tmp35 = tl.load(in_ptr1 + (18 + 4 * (-4 + x0)), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tmp35 * tmp35 tmp37 = tmp34 + tmp36 tmp38 = tl.load(in_ptr1 + (19 + 4 * (-4 + x0)), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tmp38 * tmp38 tmp40 = tmp37 + tmp39 tmp41 = triton_helpers.maximum(tmp40, tmp17) tmp42 = triton_helpers.minimum(tmp41, tmp19) tmp43 = libdevice.rsqrt(tmp42) tmp44 = tmp29 * tmp43 tmp45 = tl.full(tmp44.shape, 0.0, tmp44.dtype) tmp46 = tl.where(tmp28, tmp44, tmp45) tmp47 = tmp0 >= tmp26 tmp48 = tl.full([1], 12, tl.int64) tmp49 = tmp0 < tmp48 tmp50 = tmp47 & tmp49 tmp51 = tl.load(in_ptr3 + (-8 + x0), tmp50 & xmask, eviction_policy= 'evict_last', other=0.0) tmp52 = tl.load(in_ptr1 + (32 + 4 * (-8 + x0)), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp53 = tmp52 * tmp52 tmp54 = tl.load(in_ptr1 + (33 + 4 * (-8 + x0)), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp55 = tmp54 * tmp54 tmp56 = tmp53 + tmp55 tmp57 = tl.load(in_ptr1 + (34 + 4 * (-8 + x0)), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp58 = tmp57 * tmp57 tmp59 = tmp56 + tmp58 tmp60 = tl.load(in_ptr1 + (35 + 4 * (-8 + x0)), tmp50 & xmask, eviction_policy='evict_last', other=0.0) tmp61 = tmp60 * tmp60 tmp62 = tmp59 + tmp61 tmp63 = triton_helpers.maximum(tmp62, tmp17) tmp64 = triton_helpers.minimum(tmp63, tmp19) tmp65 = libdevice.rsqrt(tmp64) tmp66 = tmp51 * tmp65 tmp67 = tl.full(tmp66.shape, 0.0, tmp66.dtype) tmp68 = tl.where(tmp50, tmp66, tmp67) tmp69 = tmp0 >= tmp48 tl.full([1], 16, tl.int64) tmp72 = tl.load(in_ptr4 + (-12 + x0), tmp69 & xmask, eviction_policy= 'evict_last', other=0.0) tmp73 = tl.load(in_ptr1 + (48 + 4 * (-12 + x0)), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tmp73 * tmp73 tmp75 = tl.load(in_ptr1 + (49 + 4 * (-12 + x0)), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tmp75 * tmp75 tmp77 = tmp74 + tmp76 tmp78 = tl.load(in_ptr1 + (50 + 4 * (-12 + x0)), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp79 = tmp78 * tmp78 tmp80 = tmp77 + tmp79 tmp81 = tl.load(in_ptr1 + (51 + 4 * (-12 + x0)), tmp69 & xmask, eviction_policy='evict_last', other=0.0) tmp82 = tmp81 * tmp81 tmp83 = tmp80 + tmp82 tmp84 = triton_helpers.maximum(tmp83, tmp17) tmp85 = triton_helpers.minimum(tmp84, tmp19) tmp86 = libdevice.rsqrt(tmp85) tmp87 = tmp72 * tmp86 tmp88 = tl.full(tmp87.shape, 0.0, tmp87.dtype) tmp89 = tl.where(tmp69, tmp87, tmp88) tmp90 = tl.where(tmp50, tmp68, tmp89) tmp91 = tl.where(tmp28, tmp46, tmp90) tmp92 = tl.where(tmp4, tmp24, tmp91) tl.store(out_ptr0 + x0, tmp92, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 0), out=buf0) buf1 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 16), out=buf1) buf2 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 32), out=buf2) buf3 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(arg0_1, (4, 4, 1), (4, 1, 1), 48), out=buf3) del arg1_1 buf4 = empty_strided_cuda((16,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_stack_0[grid(16)](buf0, arg0_1, buf1, buf2, buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del buf0 del buf1 del buf2 del buf3 return reinterpret_tensor(buf4, (4, 4), (4, 1), 0), class PairCosineSimNew(nn.Module): def __init__(self): super(PairCosineSimNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SamujjwalSam/MatchingNetworks4XC
PairCosineSim
false
1,026
[ "MIT" ]
0
2519cc1a527ea121c4966c1a860d890d5182f887
https://github.com/SamujjwalSam/MatchingNetworks4XC/tree/2519cc1a527ea121c4966c1a860d890d5182f887
import torch import torch.utils.data import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, supports, target): """ Calculates pairwise cosine similarity of support sets with target sample. :param supports: The embeddings of the support set samples, tensor of shape [batch_size, sequence_length, input_size] :param targets: The embedding of the target sample, tensor of shape [batch_size, input_size] -> [batch_size, sequence_length, input_size] :return: Tensor with cosine similarities of shape [batch_size, target_size, support_size] """ eps = 1e-10 similarities = [] for support_image in supports: sum_support = torch.sum(torch.pow(support_image, 2), 1) support_magnitude = sum_support.clamp(eps, float('inf')).rsqrt() target_unsqueeze = target.unsqueeze(1) support_image_unsqueeze = support_image.unsqueeze(2) dot_product = target_unsqueeze.bmm(support_image_unsqueeze) dot_product = dot_product.squeeze() cos_sim = dot_product * support_magnitude similarities.append(cos_sim) similarities = torch.stack(similarities) return similarities def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return []
squeeze
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3u/c3ub52l73zdv4klgqzgxmtzrzxvztuyczv2jksnvrjr7erq7guxd.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%getitem,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 64, 1, 1), (64, 1, 64, 64), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class squeeze(nn.Module): def __init__(self, block_size): super(squeeze, self).__init__() self.block_size = block_size self.block_size_sq = block_size * block_size def inverse(self, input): output = input.permute(0, 2, 3, 1) batch_size, d_height, d_width, d_depth = output.size() s_depth = int(d_depth / self.block_size_sq) s_width = int(d_width * self.block_size) s_height = int(d_height * self.block_size) t_1 = output.contiguous().view(batch_size, d_height, d_width, self. block_size_sq, s_depth) spl = t_1.split(self.block_size, 3) stack = [t_t.contiguous().view(batch_size, d_height, s_width, s_depth) for t_t in spl] output = torch.stack(stack, 0).transpose(0, 1).permute(0, 2, 1, 3, 4 ).contiguous().view(batch_size, s_height, s_width, s_depth) output = output.permute(0, 3, 1, 2) return output.contiguous() def forward(self, input): output = input.permute(0, 2, 3, 1) batch_size, s_height, _s_width, s_depth = output.size() d_depth = s_depth * self.block_size_sq d_height = int(s_height / self.block_size) t_1 = output.split(self.block_size, 2) stack = [t_t.contiguous().view(batch_size, d_height, d_depth) for t_t in t_1] output = torch.stack(stack, 1) output = output.permute(0, 2, 1, 3) output = output.permute(0, 3, 1, 2) return output.contiguous() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'block_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](arg0_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 64, 1, 1), (64, 1, 64, 64), 0), class squeezeNew(nn.Module): def __init__(self, block_size): super(squeezeNew, self).__init__() self.block_size = block_size self.block_size_sq = block_size * block_size def inverse(self, input): output = input.permute(0, 2, 3, 1) batch_size, d_height, d_width, d_depth = output.size() s_depth = int(d_depth / self.block_size_sq) s_width = int(d_width * self.block_size) s_height = int(d_height * self.block_size) t_1 = output.contiguous().view(batch_size, d_height, d_width, self. block_size_sq, s_depth) spl = t_1.split(self.block_size, 3) stack = [t_t.contiguous().view(batch_size, d_height, s_width, s_depth) for t_t in spl] output = torch.stack(stack, 0).transpose(0, 1).permute(0, 2, 1, 3, 4 ).contiguous().view(batch_size, s_height, s_width, s_depth) output = output.permute(0, 3, 1, 2) return output.contiguous() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Schwartz-Zha/My-invertible-resnet
squeeze
false
1,027
[ "MIT" ]
0
5415975bb0d640f3bf3ef4a7b986563e84109270
https://github.com/Schwartz-Zha/My-invertible-resnet/tree/5415975bb0d640f3bf3ef4a7b986563e84109270
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, block_size): super().__init__() self.block_size = block_size self.block_size_sq = block_size * block_size def inverse(self, input): output = input.permute(0, 2, 3, 1) batch_size, d_height, d_width, d_depth = output.size() s_depth = int(d_depth / self.block_size_sq) s_width = int(d_width * self.block_size) s_height = int(d_height * self.block_size) t_1 = output.contiguous().view(batch_size, d_height, d_width, self. block_size_sq, s_depth) spl = t_1.split(self.block_size, 3) stack = [t_t.contiguous().view(batch_size, d_height, s_width, s_depth) for t_t in spl] output = torch.stack(stack, 0).transpose(0, 1).permute(0, 2, 1, 3, 4 ).contiguous().view(batch_size, s_height, s_width, s_depth) output = output.permute(0, 3, 1, 2) return output.contiguous() def forward(self, input): output = input.permute(0, 2, 3, 1) batch_size, s_height, _s_width, s_depth = output.size() d_depth = s_depth * self.block_size_sq d_height = int(s_height / self.block_size) t_1 = output.split(self.block_size, 2) stack = [t_t.contiguous().view(batch_size, d_height, d_depth) for t_t in t_1] output = torch.stack(stack, 1) output = output.permute(0, 2, 1, 3) output = output.permute(0, 3, 1, 2) return output.contiguous() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
MaxMinGroup
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/6p/c6p6sxn6eyjkfrrvgdkwlhviqvdquvcktva3443bsgc22ofn2dk7.py # Topologically Sorted Source Nodes: [maxmin], Original ATen: [aten.cat] # Source node to ATen node mapping: # maxmin => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 8 x0 = xindex % 4 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x1) + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x1) + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x1) + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x1) + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 8, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr0 + ((4*x0) + (16*((-4) + x1)) + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr0 + (1 + (4*x0) + (16*((-4) + x1)) + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = triton_helpers.minimum(tmp17, tmp18) tmp20 = tl.load(in_ptr0 + (2 + (4*x0) + (16*((-4) + x1)) + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.minimum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (3 + (4*x0) + (16*((-4) + x1)) + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.minimum(tmp21, tmp22) tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp14, tmp23, tmp24) tmp26 = tl.where(tmp4, tmp13, tmp25) tl.store(out_ptr0 + (x3), tmp26, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 4, 1), (32, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [maxmin], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def process_maxmin_groupsize(x, group_size, axis=-1): size = list(x.size()) num_channels = size[axis] if num_channels % group_size: raise ValueError( 'number of features({}) is not a multiple of group_size({})'. format(num_channels, num_channels)) size[axis] = -1 if axis == -1: size += [group_size] else: size.insert(axis + 1, group_size) return size def maxout_by_group(x, group_size, axis=-1): size = process_maxmin_groupsize(x, group_size, axis) sort_dim = axis if axis == -1 else axis + 1 return torch.max(x.view(*size), sort_dim)[0] def minout_by_group(x, group_size, axis=-1): size = process_maxmin_groupsize(x, group_size, axis) sort_dim = axis if axis == -1 else axis + 1 return torch.min(x.view(*size), sort_dim)[0] class MaxMinGroup(nn.Module): def __init__(self, group_size, axis=-1): super(MaxMinGroup, self).__init__() self.group_size = group_size self.axis = axis def forward(self, x): maxes = maxout_by_group(x, self.group_size, self.axis) mins = minout_by_group(x, self.group_size, self.axis) maxmin = torch.cat((maxes, mins), dim=1) return maxmin def extra_repr(self): return 'group_size: {}'.format(self.group_size) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'group_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 8 x0 = xindex % 4 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x1 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x1 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x1 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x1 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp17 = tl.load(in_ptr0 + (4 * x0 + 16 * (-4 + x1) + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1) + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = triton_helpers.minimum(tmp17, tmp18) tmp20 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-4 + x1) + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.minimum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-4 + x1) + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.minimum(tmp21, tmp22) tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp14, tmp23, tmp24) tmp26 = tl.where(tmp4, tmp13, tmp25) tl.store(out_ptr0 + x3, tmp26, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 4, 1), (32, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](arg0_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, def process_maxmin_groupsize(x, group_size, axis=-1): size = list(x.size()) num_channels = size[axis] if num_channels % group_size: raise ValueError( 'number of features({}) is not a multiple of group_size({})'. format(num_channels, num_channels)) size[axis] = -1 if axis == -1: size += [group_size] else: size.insert(axis + 1, group_size) return size def maxout_by_group(x, group_size, axis=-1): size = process_maxmin_groupsize(x, group_size, axis) sort_dim = axis if axis == -1 else axis + 1 return torch.max(x.view(*size), sort_dim)[0] def minout_by_group(x, group_size, axis=-1): size = process_maxmin_groupsize(x, group_size, axis) sort_dim = axis if axis == -1 else axis + 1 return torch.min(x.view(*size), sort_dim)[0] class MaxMinGroupNew(nn.Module): def __init__(self, group_size, axis=-1): super(MaxMinGroupNew, self).__init__() self.group_size = group_size self.axis = axis def extra_repr(self): return 'group_size: {}'.format(self.group_size) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Schwartz-Zha/My-invertible-resnet
MaxMinGroup
false
1,028
[ "MIT" ]
0
5415975bb0d640f3bf3ef4a7b986563e84109270
https://github.com/Schwartz-Zha/My-invertible-resnet/tree/5415975bb0d640f3bf3ef4a7b986563e84109270
import torch import torch.nn as nn def process_maxmin_groupsize(x, group_size, axis=-1): size = list(x.size()) num_channels = size[axis] if num_channels % group_size: raise ValueError( 'number of features({}) is not a multiple of group_size({})'. format(num_channels, num_channels)) size[axis] = -1 if axis == -1: size += [group_size] else: size.insert(axis + 1, group_size) return size def maxout_by_group(x, group_size, axis=-1): size = process_maxmin_groupsize(x, group_size, axis) sort_dim = axis if axis == -1 else axis + 1 return torch.max(x.view(*size), sort_dim)[0] def minout_by_group(x, group_size, axis=-1): size = process_maxmin_groupsize(x, group_size, axis) sort_dim = axis if axis == -1 else axis + 1 return torch.min(x.view(*size), sort_dim)[0] class Model(nn.Module): def __init__(self, group_size, axis=-1): super().__init__() self.group_size = group_size self.axis = axis def forward(self, x): maxes = maxout_by_group(x, self.group_size, self.axis) mins = minout_by_group(x, self.group_size, self.axis) maxmin = torch.cat((maxes, mins), dim=1) return maxmin def extra_repr(self): return 'group_size: {}'.format(self.group_size) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Split
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/cp/ccplpqa4hjz3n3j5jujs47gyz26ndm5naxvwku5nkktkkpfuh4um.py # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.clone] # Source node to ATen node mapping: # x1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%slice_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ie/cie6ockbfnni22s6gh6b3qk2guxsbx7g4f3xzhpygcbbqvw47fbq.py # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.clone] # Source node to ATen node mapping: # x2 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%slice_6,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0) buf1 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(arg0_1, buf1, 128, grid=grid(128), stream=stream0) del arg0_1 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Split(nn.Module): def __init__(self): super(Split, self).__init__() def forward(self, x): n = int(x.size(1) / 2) x1 = x[:, :n, :, :].contiguous() x2 = x[:, n:, :, :].contiguous() return x1, x2 def inverse(self, x1, x2): return torch.cat((x1, x2), 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(128)](arg0_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(128)](arg0_1, buf1, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, buf1 class SplitNew(nn.Module): def __init__(self): super(SplitNew, self).__init__() def inverse(self, x1, x2): return torch.cat((x1, x2), 1) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0], output[1]
Schwartz-Zha/My-invertible-resnet
Split
false
1,029
[ "MIT" ]
0
5415975bb0d640f3bf3ef4a7b986563e84109270
https://github.com/Schwartz-Zha/My-invertible-resnet/tree/5415975bb0d640f3bf3ef4a7b986563e84109270
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x): n = int(x.size(1) / 2) x1 = x[:, :n, :, :].contiguous() x2 = x[:, n:, :, :].contiguous() return x1, x2 def inverse(self, x1, x2): return torch.cat((x1, x2), 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
NormalAttention_gaussian
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qk/cqkamalvxbuxnfcdqxwqnh7w6tog7uhcqbe6niuydyowvdvbnfoc.py # Topologically Sorted Source Nodes: [energy_1, energy_sum, energy_2], Original ATen: [aten.exp, aten.sum, aten.div] # Source node to ATen node mapping: # energy_1 => exp # energy_2 => div # energy_sum => sum_1 # Graph fragment: # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%bmm,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused_div_exp_sum_0 = async_compile.triton('triton_per_fused_div_exp_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_exp_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_exp_sum_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl_math.exp(tmp0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = tmp1 / tmp5 tl.store(out_ptr1 + (r1 + (16*x0)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [energy], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), out=buf0) buf2 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [energy_1, energy_sum, energy_2], Original ATen: [aten.exp, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_exp_sum_0.run(buf0, buf2, 64, 16, grid=grid(64), stream=stream0) del buf0 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf4, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 buf5 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (4, 4, 16), (64, 16, 1), 0), buf2, out=buf5) del buf4 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf7, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf7, primals_1, primals_2, primals_4, reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf2, (4, 16, 16), (256, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class NormalAttention_gaussian(nn.Module): def __init__(self, input_channel_num): super(NormalAttention_gaussian, self).__init__() self.c_in = input_channel_num self.value_conv = nn.Conv2d(in_channels=self.c_in, out_channels= self.c_in, kernel_size=1) self.gamma = nn.Conv2d(in_channels=self.c_in, out_channels=self. c_in, kernel_size=1) def forward(self, x): B, C, H, W = x.size() proj_query = x.view(B, -1, H * W).permute(0, 2, 1) proj_key = x.view(B, -1, H * W) energy = torch.bmm(proj_query, proj_key) energy = torch.exp(energy) energy_sum = torch.sum(energy, dim=2, keepdim=True) energy = energy / energy_sum proj_value = self.value_conv(x).view(B, -1, H * W) out = torch.bmm(proj_value, energy).view(B, C, H, W) out = self.gamma(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channel_num': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_div_exp_sum_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl_math.exp(tmp0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = tmp1 / tmp5 tl.store(out_ptr1 + (r1 + 16 * x0), tmp6, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), out=buf0) buf2 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused_div_exp_sum_0[grid(64)](buf0, buf2, 64, 16, XBLOCK =8, num_warps=2, num_stages=1) del buf0 buf3 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_1[grid(256)](buf4, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf5 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf4, (4, 4, 16), (64, 16, 1), 0), buf2, out=buf5) del buf4 buf6 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(0, 0 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_1[grid(256)](buf7, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf7, primals_1, primals_2, primals_4, reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf2, (4, 16, 16), (256, 1, 16), 0) class NormalAttention_gaussianNew(nn.Module): def __init__(self, input_channel_num): super(NormalAttention_gaussianNew, self).__init__() self.c_in = input_channel_num self.value_conv = nn.Conv2d(in_channels=self.c_in, out_channels= self.c_in, kernel_size=1) self.gamma = nn.Conv2d(in_channels=self.c_in, out_channels=self. c_in, kernel_size=1) def forward(self, input_0): primals_2 = self.value_conv.weight primals_3 = self.value_conv.bias primals_4 = self.gamma.weight primals_5 = self.gamma.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Schwartz-Zha/My-invertible-resnet
NormalAttention_gaussian
false
1,030
[ "MIT" ]
0
5415975bb0d640f3bf3ef4a7b986563e84109270
https://github.com/Schwartz-Zha/My-invertible-resnet/tree/5415975bb0d640f3bf3ef4a7b986563e84109270
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_channel_num): super().__init__() self.c_in = input_channel_num self.value_conv = nn.Conv2d(in_channels=self.c_in, out_channels= self.c_in, kernel_size=1) self.gamma = nn.Conv2d(in_channels=self.c_in, out_channels=self. c_in, kernel_size=1) def forward(self, x): B, C, H, W = x.size() proj_query = x.view(B, -1, H * W).permute(0, 2, 1) proj_key = x.view(B, -1, H * W) energy = torch.bmm(proj_query, proj_key) energy = torch.exp(energy) energy_sum = torch.sum(energy, dim=2, keepdim=True) energy = energy / energy_sum proj_value = self.value_conv(x).view(B, -1, H * W) out = torch.bmm(proj_value, energy).view(B, C, H, W) out = self.gamma(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Conv2dZeroInit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/b5/cb5h536lfxehnv2ezobudfl5wugu2y6mu444yw7yei4n22rp33zu.py # Topologically Sorted Source Nodes: [out, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp] # Source node to ATen node mapping: # exp => exp # mul => mul # mul_1 => mul_1 # out => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3.0), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %exp), kwargs = {}) triton_poi_fused_convolution_exp_mul_0 = async_compile.triton('triton_poi_fused_convolution_exp_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_exp_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr0 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [out, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_convolution_exp_mul_0.run(buf1, primals_2, primals_4, buf2, 16, grid=grid(16), stream=stream0) del primals_2 return (buf2, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Conv2dZeroInit(nn.Conv2d): def __init__(self, channels_in, channels_out, filter_size, stride=1, padding=0, logscale=3.0): super().__init__(channels_in, channels_out, filter_size, stride= stride, padding=padding) self.register_parameter('logs', nn.Parameter(torch.zeros( channels_out, 1, 1))) self.logscale_factor = logscale def reset_parameters(self): self.weight.data.zero_() self.bias.data.zero_() def forward(self, input): out = super().forward(input) return out * torch.exp(self.logs * self.logscale_factor) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels_in': 4, 'channels_out': 4, 'filter_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_exp_mul_0[grid(16)](buf1, primals_2, primals_4, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf2, primals_1, primals_3, primals_4, buf1 class Conv2dZeroInitNew(nn.Conv2d): def __init__(self, channels_in, channels_out, filter_size, stride=1, padding=0, logscale=3.0): super().__init__(channels_in, channels_out, filter_size, stride= stride, padding=padding) self.register_parameter('logs', nn.Parameter(torch.zeros( channels_out, 1, 1))) self.logscale_factor = logscale def reset_parameters(self): self.weight.data.zero_() self.bias.data.zero_() def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_4 = self.logs primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Schwartz-Zha/My-invertible-resnet
Conv2dZeroInit
false
1,031
[ "MIT" ]
0
5415975bb0d640f3bf3ef4a7b986563e84109270
https://github.com/Schwartz-Zha/My-invertible-resnet/tree/5415975bb0d640f3bf3ef4a7b986563e84109270
import torch import torch.nn as nn class Model(nn.Conv2d): def __init__(self, channels_in, channels_out, filter_size, stride=1, padding=0, logscale=3.0): super().__init__(channels_in, channels_out, filter_size, stride= stride, padding=padding) self.register_parameter('logs', nn.Parameter(torch.zeros( channels_out, 1, 1))) self.logscale_factor = logscale def reset_parameters(self): self.weight.data.zero_() self.bias.data.zero_() def forward(self, input): out = super().forward(input) return out * torch.exp(self.logs * self.logscale_factor) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zv/czvfpj3ah2lefbwpcuw4esv23bxs5a3ab63ply3ntgbsdktepd5v.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 784) % 6 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/v7/cv7qi7gg3bpfwb3hj7zgy5jlgh7x7wdgqsfsodkjsoverxdjlf6z.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = (xindex // 14) x2 = (xindex // 1176) x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + (1184*x2)), tmp6, xmask) tl.store(out_ptr1 + (x4 + (1280*x2)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xe/cxelxvpw3asckozc53rh36773aohp5hqpbp2nos5ymcdqhxvo4bl.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 100) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/tn/ctnw4tbgfy47ppke77vu7rtiz7dl5o3ahickx4p64n7c5rmrrix6.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jn/cjnqv3sgcv5x2iz7ij5zdad6ofabcnonrlksgsxu2ob7n274gz6b.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/v4/cv4ko24f26un3axamp426zbnugqu4jhirnvlxjjqhipcugzzgcbk.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6, ), (1, )) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120, ), (1, )) assert_size_stride(primals_8, (4, 120), (120, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (10, 4), (4, 1)) assert_size_stride(primals_11, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 18816, grid=grid(18816), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch.float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 4704, grid=grid(4704), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 6400, grid=grid(6400), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 1600, grid=grid(1600), stream=stream0) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_7, 480, grid=grid(480), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 4), (1, 120), 0), out=buf10) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_5.run(buf11, primals_9, 16, grid=grid(16), stream=stream0) del primals_9 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(primals_10, (4, 10), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_11 return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, primals_10, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((6, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 6, 5, 5), (150, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((120, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 120), (120, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((10, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self, h2): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, h2) self.fc3 = nn.Linear(h2, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {'h2': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 6 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 1176 x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120,), (1,)) assert_size_stride(primals_8, (4, 120), (120, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (10, 4), (4, 1)) assert_size_stride(primals_11, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(18816)](buf1, primals_2, 18816, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch .float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2, buf3, 4704, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(6400)](buf5, primals_5, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6, buf7, 1600, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 4), (1, 120), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_5[grid(16)](buf11, primals_9, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_9 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_11, buf11, reinterpret_tensor( primals_10, (4, 10), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_11 return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, primals_10, primals_8, primals_6) class NetNew(nn.Module): def __init__(self, h2): super(NetNew, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, h2) self.fc3 = nn.Linear(h2, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Saran-nns/delve
Net
false
1,032
[ "MIT" ]
0
3489d8aa13181b392d3c47a19f9d9a47d87f8790
https://github.com/Saran-nns/delve/tree/3489d8aa13181b392d3c47a19f9d9a47d87f8790
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, h2): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, h2) self.fc3 = nn.Linear(h2, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [4]
MeanVarFC
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xl/cxltji5v4pd435j44wezjn5dhexfkx4wrcadp35cffwfzsbaisad.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.add] # Source node to ATen node mapping: # x => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 8), (8, 1)) assert_size_stride(primals_2, (4, 4, 4, 8), (128, 32, 8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_2, primals_1, buf0, 512, grid=grid(512), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 8), (128, 32, 8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MeanVarFC(nn.Module): def __init__(self, input_shape): super(MeanVarFC, self).__init__() shape = list(input_shape) shape[0] = 1 shape[1] *= 2 self.param = nn.Parameter(0.01 * torch.randn(shape)) def forward(self, x): x = x + self.param return x def get_inputs(): return [torch.rand([4, 4, 4, 8])] def get_init_inputs(): return [[], {'input_shape': [4, 4]}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 8), (8, 1)) assert_size_stride(primals_2, (4, 4, 4, 8), (128, 32, 8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(512)](primals_2, primals_1, buf0, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class MeanVarFCNew(nn.Module): def __init__(self, input_shape): super(MeanVarFCNew, self).__init__() shape = list(input_shape) shape[0] = 1 shape[1] *= 2 self.param = nn.Parameter(0.01 * torch.randn(shape)) def forward(self, input_0): primals_1 = self.param primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
Schwartz-Zha/My-invertible-resnet
MeanVarFC
false
1,033
[ "MIT" ]
0
5415975bb0d640f3bf3ef4a7b986563e84109270
https://github.com/Schwartz-Zha/My-invertible-resnet/tree/5415975bb0d640f3bf3ef4a7b986563e84109270
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_shape): super().__init__() shape = list(input_shape) shape[0] = 1 shape[1] *= 2 self.param = nn.Parameter(0.01 * torch.randn(shape)) def forward(self, x): x = x + self.param return x def get_inputs(): return [torch.rand([4, 4, 4, 8])] def get_init_inputs(): return []
injective_pad
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ct/cct5cn6mo6zny2z4rzeplk2fltbb4cibi5gdqoa7cpdxa6kif7lx.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x_1 => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%permute, [0, 0, 0, 4], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 8 x0 = xindex % 4 x2 = (xindex // 32) % 4 x3 = (xindex // 128) x4 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 4), (128, 32, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 512, grid=grid(512), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 8, 4, 4), (128, 4, 32, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class injective_pad(nn.Module): def __init__(self, pad_size): super(injective_pad, self).__init__() self.pad_size = pad_size self.pad = nn.ZeroPad2d((0, 0, 0, pad_size)) def forward(self, x): x = x.permute(0, 2, 1, 3) x = self.pad(x) return x.permute(0, 2, 1, 3) def inverse(self, x): return x[:, :x.size(1) - self.pad_size, :, :] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'pad_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 8 x0 = xindex % 4 x2 = xindex // 32 % 4 x3 = xindex // 128 x4 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 4), (128, 32, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(512)](arg0_1, buf0, 512, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 8, 4, 4), (128, 4, 32, 1), 0), class injective_padNew(nn.Module): def __init__(self, pad_size): super(injective_padNew, self).__init__() self.pad_size = pad_size self.pad = nn.ZeroPad2d((0, 0, 0, pad_size)) def inverse(self, x): return x[:, :x.size(1) - self.pad_size, :, :] def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Schwartz-Zha/My-invertible-resnet
injective_pad
false
1,034
[ "MIT" ]
0
5415975bb0d640f3bf3ef4a7b986563e84109270
https://github.com/Schwartz-Zha/My-invertible-resnet/tree/5415975bb0d640f3bf3ef4a7b986563e84109270
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, pad_size): super().__init__() self.pad_size = pad_size self.pad = nn.ZeroPad2d((0, 0, 0, pad_size)) def forward(self, x): x = x.permute(0, 2, 1, 3) x = self.pad(x) return x.permute(0, 2, 1, 3) def inverse(self, x): return x[:, :x.size(1) - self.pad_size, :, :] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ANNClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/eg/ceg5r5lesy4yjcsgwggyxi634wo4m2ibfbfrzibrfm7cykiqvg76.py # Topologically Sorted Source Nodes: [feature_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # feature_1 => getitem # Graph fragment: # %getitem : [num_users=3] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uk/cuk5lavfoty5guvxyu3dtcj2ziwvajlbsezoxgszx5nevrcmthnr.py # Topologically Sorted Source Nodes: [padded_x], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # padded_x => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=3] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%getitem, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_1 = async_compile.triton('triton_poi_fused_constant_pad_nd_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 3) x0 = xindex % 3 x2 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp5 < tmp7 tmp9 = tmp2 & tmp4 tmp10 = tmp9 & tmp6 tmp11 = tmp10 & tmp8 tmp12 = tl.load(in_ptr0 + ((-1) + x1), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/5x/c5xvls7xnlknpp2gn4xtpmhjw3qey4npwog52sanzzlugzbe3nuh.py # Topologically Sorted Source Nodes: [k_out_2, out_1], Original ATen: [aten.cat, aten._softmax] # Source node to ATen node mapping: # k_out_2 => cat # out_1 => div, exp, sum_1 # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add, %add_1], 1), kwargs = {}) # %scalar_tensor_default : [num_users=2] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False}) # %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%view_2, 0), kwargs = {}) # %neg_default : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default,), kwargs = {}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default, %neg_default), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %where_self), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %view_2), kwargs = {}) # %mul_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_2,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_cat_2 = async_compile.triton('triton_per_fused__softmax_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[128, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 80 rnumel = 9 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel x1 = (xindex // 4) r5 = rindex x0 = xindex % 4 r3 = (rindex // 3) r2 = rindex % 3 x4 = xindex tmp19 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last') tmp0 = x1 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 10, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (r5 + (3*x0) + (18*x1)), rmask & tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + (r3 + (3*x1)), rmask & tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1, 1], 20, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr0 + (180 + r5 + (3*x0) + (18*((-10) + x1))), rmask & tmp10 & xmask, other=0.0) tmp14 = tl.load(in_ptr2 + (r2 + (3*((-10) + x1))), rmask & tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp13 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp9, tmp17) tmp20 = 0.0 tmp21 = tmp19 >= tmp20 tmp22 = 1.0 tmp23 = -1.0 tmp24 = tl.where(tmp21, tmp22, tmp23) tmp25 = tmp18 * tmp24 tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp28 = tl.where(rmask & xmask, tmp26, float("-inf")) tmp29 = triton_helpers.max2(tmp28, 1)[:, None] tmp30 = tmp25 - tmp29 tmp31 = tmp24 * tmp19 tmp32 = tmp30 * tmp31 tmp33 = tl_math.exp(tmp32) tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.where(rmask & xmask, tmp34, 0) tmp37 = tl.sum(tmp36, 1)[:, None] tmp38 = tmp33 / tmp37 tl.store(out_ptr0 + (r5 + (9*x4)), tmp18, rmask & xmask) tl.store(out_ptr3 + (r5 + (9*x4)), tmp38, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gb/cgbpq6g2egq2fxmxrkb5cl25fh5pxlxvodou3mrtl4672gbnhrm7.py # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%unfold_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 720 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 9 x1 = (xindex // 9) % 4 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (3*x1) + (18*x2)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zc/czcg4krcjbxycgug3jpxbvrq54v7wgydsnqyhluixxyapo3b4ep3.py # Topologically Sorted Source Nodes: [feature_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # feature_2 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (20, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_3, (20, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_4, (20, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (10, 1, 1, 3, 1), (3, 3, 3, 1, 1)) assert_size_stride(primals_6, (10, 1, 1, 1, 3), (3, 3, 3, 3, 1)) assert_size_stride(primals_7, (80, 20), (20, 1)) assert_size_stride(primals_8, (80, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 4, 1), (4, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [feature_1], Original ATen: [aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0.run(primals_1, buf0, 4, grid=grid(4), stream=stream0) del primals_1 buf1 = empty_strided_cuda((1, 1, 6, 3), (18, 18, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [padded_x], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_1.run(buf0, buf1, 18, grid=grid(18), stream=stream0) # Topologically Sorted Source Nodes: [q_out], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (1, 20, 4, 1), (80, 4, 1, 1)) # Topologically Sorted Source Nodes: [k_out], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (1, 20, 6, 3), (360, 18, 3, 1)) # Topologically Sorted Source Nodes: [v_out], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (1, 20, 6, 3), (360, 18, 3, 1)) buf5 = empty_strided_cuda((1, 20, 4, 1, 3, 3), (720, 36, 9, 9, 3, 1), torch.float32) buf8 = empty_strided_cuda((1, 1, 20, 4, 1, 9), (720, 720, 36, 9, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [k_out_2, out_1], Original ATen: [aten.cat, aten._softmax] triton_per_fused__softmax_cat_2.run(buf3, primals_5, primals_6, buf2, buf5, buf8, 80, 9, grid=grid(80), stream=stream0) del buf3 del primals_5 del primals_6 buf9 = empty_strided_cuda((1, 20, 4, 1, 3, 3), (720, 36, 9, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf4, buf9, 720, grid=grid(720), stream=stream0) del buf4 buf10 = empty_strided_cuda((80, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (80, 1, 9), (9, 9, 1), 0), reinterpret_tensor(buf9, (80, 9, 1), (9, 1, 0), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (1, 20, 4, 1), (80, 4, 1, 1), 0); del buf10 # reuse buf17 = empty_strided_cuda((1, 20, 4, 1), (80, 4, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [feature_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_4.run(buf11, buf17, 80, grid=grid(80), stream=stream0) buf16 = empty_strided_cuda((4, 80), (80, 1), torch.float32) buf12 = reinterpret_tensor(buf16, (1, 80), (80, 1), 0) # alias # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(buf11, (1, 20), (0, 1), 0), reinterpret_tensor(primals_7, (20, 80), (1, 20), 0), alpha=1, beta=1, out=buf12) buf13 = reinterpret_tensor(buf16, (1, 80), (80, 1), 80) # alias # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(buf11, (1, 20), (0, 1), 20), reinterpret_tensor(primals_7, (20, 80), (1, 20), 0), alpha=1, beta=1, out=buf13) buf14 = reinterpret_tensor(buf16, (1, 80), (80, 1), 160) # alias # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(buf11, (1, 20), (0, 1), 40), reinterpret_tensor(primals_7, (20, 80), (1, 20), 0), alpha=1, beta=1, out=buf14) buf15 = reinterpret_tensor(buf16, (1, 80), (80, 1), 240) # alias # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(buf11, (1, 20), (0, 1), 60), reinterpret_tensor(primals_7, (20, 80), (1, 20), 0), alpha=1, beta=1, out=buf15) del primals_8 return (reinterpret_tensor(buf16, (1, 4, 80), (80, 80, 1), 0), primals_2, primals_3, primals_4, buf0, buf1, buf2, buf5, buf8, reinterpret_tensor(buf11, (1, 20), (20, 1), 0), reinterpret_tensor(buf11, (1, 20), (20, 1), 20), reinterpret_tensor(buf11, (1, 20), (20, 1), 40), reinterpret_tensor(buf11, (1, 20), (20, 1), 60), primals_7, buf17, reinterpret_tensor(buf9, (80, 1, 9), (9, 720, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((20, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((20, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((20, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((10, 1, 1, 3, 1), (3, 3, 3, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((10, 1, 1, 1, 3), (3, 3, 3, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((80, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((80, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init class AttentionConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=False): super(AttentionConv, self).__init__() self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.groups = groups assert self.out_channels % self.groups == 0, 'out_channels should be divided by groups. (example: out_channels: 40, groups: 4)' self.rel_h = nn.Parameter(torch.randn(out_channels // 2, 1, 1, kernel_size, 1), requires_grad=True) self.rel_w = nn.Parameter(torch.randn(out_channels // 2, 1, 1, 1, kernel_size), requires_grad=True) self.key_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias) self.query_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.value_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.reset_parameters() def forward(self, x): batch, _channels, height, width = x.size() padded_x = F.pad(x, [self.padding, self.padding, self.padding, self .padding]) q_out = self.query_conv(x) k_out = self.key_conv(padded_x) v_out = self.value_conv(padded_x) k_out = k_out.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride) v_out = v_out.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride) k_out_h, k_out_w = k_out.split(self.out_channels // 2, dim=1) k_out = torch.cat((k_out_h + self.rel_h, k_out_w + self.rel_w), dim=1) k_out = k_out.contiguous().view(batch, self.groups, self. out_channels // self.groups, height, width, -1) v_out = v_out.contiguous().view(batch, self.groups, self. out_channels // self.groups, height, width, -1) q_out = q_out.view(batch, self.groups, self.out_channels // self. groups, height, width, 1) out = q_out * k_out out = F.softmax(out, dim=-1) out = torch.einsum('bnchwk,bnchwk -> bnchw', out, v_out).view(batch, -1, height, width) return out def reset_parameters(self): init.kaiming_normal_(self.key_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.value_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.query_conv.weight, mode='fan_out', nonlinearity='relu') init.normal_(self.rel_h, 0, 1) init.normal_(self.rel_w, 0, 1) class BaseClassifier(nn.Module): _timestep_dimension = 2 _max_timesteps = 2048 _value_to_pad = 0 @staticmethod def pad_variable_timesteps(tensor, timestep_dimension= _timestep_dimension, max_timesteps=_max_timesteps, value_to_pad= _value_to_pad): """ Pads a variable-length tensor to a fixed length along the specified dimension. e.g. shape [1, 1, 200, 1280] --> [1, 1, 512, 1280], with dim=2. timestep_dimension: Dimension to pad along. For shape [a, b, c, d], the respective dims are [0, 1, 2, 3]. max_timesteps: Number of elements to pad until. value_to_pad: Constant value used for padding. """ number_of_timesteps = tensor.size(dim=timestep_dimension) assert number_of_timesteps <= max_timesteps, 'Input received that is longer than . Unable to pad.' number_of_padded_timesteps = max_timesteps - number_of_timesteps padding = [0, 0] * (len(tensor.shape) - timestep_dimension - 1) + [ 0, number_of_padded_timesteps] return F.pad(tensor, padding, 'constant', value_to_pad) class ANNClassifier(BaseClassifier): def __init__(self, input_dim): super(ANNClassifier, self).__init__() self._pool_value = 4 self.hidden_dim_1 = hidden_dim_1 = 20 self.linear_input_dim = hidden_dim_1 * input_dim // self._pool_value self.out_dim = 80 attn_hyperparams = {'kernel_size': 3, 'padding': 1} self.attn = AttentionConv(1, hidden_dim_1, **attn_hyperparams) self.dense = nn.Linear(self.linear_input_dim, self.out_dim) self.pool = nn.MaxPool2d((1, self._pool_value)) def reshape_input(self, feature, group_size): down_sample_len = feature.size(1) // group_size feature = feature[:, :down_sample_len * group_size, :] reshape_feature = feature.reshape(feature.size(0) * down_sample_len, group_size * feature.size(2)) return reshape_feature def forward(self, feature): feature = feature.unsqueeze(dim=0).unsqueeze(dim=1) feature = self.pool(feature) feature = self.attn(feature) feature = F.relu(feature) feature = feature.transpose(0, 1) feature = feature.view(-1, self.linear_input_dim) feature = torch.stack([self.dense(feature[index].unsqueeze(dim=0)) for index in range(feature.size()[0])]) feature = feature.transpose(0, 1) return feature def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 3 x0 = xindex % 3 x2 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp5 < tmp7 tmp9 = tmp2 & tmp4 tmp10 = tmp9 & tmp6 tmp11 = tmp10 & tmp8 tmp12 = tl.load(in_ptr0 + (-1 + x1), tmp11 & xmask, eviction_policy= 'evict_last', other=0.0) tl.store(out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_per_fused__softmax_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 80 rnumel = 9 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel x1 = xindex // 4 r5 = rindex x0 = xindex % 4 r3 = rindex // 3 r2 = rindex % 3 x4 = xindex tmp19 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last') tmp0 = x1 tl.full([1, 1], 0, tl.int64) tmp3 = tl.full([1, 1], 10, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (r5 + 3 * x0 + 18 * x1), rmask & tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + (r3 + 3 * x1), rmask & tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1, 1], 20, tl.int64) tmp13 = tl.load(in_ptr0 + (180 + r5 + 3 * x0 + 18 * (-10 + x1)), rmask & tmp10 & xmask, other=0.0) tmp14 = tl.load(in_ptr2 + (r2 + 3 * (-10 + x1)), rmask & tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp13 + tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp9, tmp17) tmp20 = 0.0 tmp21 = tmp19 >= tmp20 tmp22 = 1.0 tmp23 = -1.0 tmp24 = tl.where(tmp21, tmp22, tmp23) tmp25 = tmp18 * tmp24 tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp28 = tl.where(rmask & xmask, tmp26, float('-inf')) tmp29 = triton_helpers.max2(tmp28, 1)[:, None] tmp30 = tmp25 - tmp29 tmp31 = tmp24 * tmp19 tmp32 = tmp30 * tmp31 tmp33 = tl_math.exp(tmp32) tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.where(rmask & xmask, tmp34, 0) tmp37 = tl.sum(tmp36, 1)[:, None] tmp38 = tmp33 / tmp37 tl.store(out_ptr0 + (r5 + 9 * x4), tmp18, rmask & xmask) tl.store(out_ptr3 + (r5 + 9 * x4), tmp38, rmask & xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 720 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 9 x1 = xindex // 9 % 4 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 3 * x1 + 18 * x2), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (20, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_3, (20, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_4, (20, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (10, 1, 1, 3, 1), (3, 3, 3, 1, 1)) assert_size_stride(primals_6, (10, 1, 1, 1, 3), (3, 3, 3, 3, 1)) assert_size_stride(primals_7, (80, 20), (20, 1)) assert_size_stride(primals_8, (80,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 4, 1), (4, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0[grid(4)](primals_1, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((1, 1, 6, 3), (18, 18, 3, 1), torch.float32) triton_poi_fused_constant_pad_nd_1[grid(18)](buf0, buf1, 18, XBLOCK =32, num_warps=1, num_stages=1) buf2 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (1, 20, 4, 1), (80, 4, 1, 1)) buf3 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (1, 20, 6, 3), (360, 18, 3, 1)) buf4 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (1, 20, 6, 3), (360, 18, 3, 1)) buf5 = empty_strided_cuda((1, 20, 4, 1, 3, 3), (720, 36, 9, 9, 3, 1 ), torch.float32) buf8 = empty_strided_cuda((1, 1, 20, 4, 1, 9), (720, 720, 36, 9, 9, 1), torch.float32) triton_per_fused__softmax_cat_2[grid(80)](buf3, primals_5, primals_6, buf2, buf5, buf8, 80, 9, XBLOCK=1, num_warps=2, num_stages=1) del buf3 del primals_5 del primals_6 buf9 = empty_strided_cuda((1, 20, 4, 1, 3, 3), (720, 36, 9, 9, 3, 1 ), torch.float32) triton_poi_fused_clone_3[grid(720)](buf4, buf9, 720, XBLOCK=128, num_warps=4, num_stages=1) del buf4 buf10 = empty_strided_cuda((80, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf8, (80, 1, 9), (9, 9, 1), 0), reinterpret_tensor(buf9, (80, 9, 1), (9, 1, 0), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (1, 20, 4, 1), (80, 4, 1, 1), 0) del buf10 buf17 = empty_strided_cuda((1, 20, 4, 1), (80, 4, 1, 1), torch.bool) triton_poi_fused_relu_threshold_backward_4[grid(80)](buf11, buf17, 80, XBLOCK=128, num_warps=4, num_stages=1) buf16 = empty_strided_cuda((4, 80), (80, 1), torch.float32) buf12 = reinterpret_tensor(buf16, (1, 80), (80, 1), 0) extern_kernels.addmm(primals_8, reinterpret_tensor(buf11, (1, 20), (0, 1), 0), reinterpret_tensor(primals_7, (20, 80), (1, 20), 0), alpha=1, beta=1, out=buf12) buf13 = reinterpret_tensor(buf16, (1, 80), (80, 1), 80) extern_kernels.addmm(primals_8, reinterpret_tensor(buf11, (1, 20), (0, 1), 20), reinterpret_tensor(primals_7, (20, 80), (1, 20), 0 ), alpha=1, beta=1, out=buf13) buf14 = reinterpret_tensor(buf16, (1, 80), (80, 1), 160) extern_kernels.addmm(primals_8, reinterpret_tensor(buf11, (1, 20), (0, 1), 40), reinterpret_tensor(primals_7, (20, 80), (1, 20), 0 ), alpha=1, beta=1, out=buf14) buf15 = reinterpret_tensor(buf16, (1, 80), (80, 1), 240) extern_kernels.addmm(primals_8, reinterpret_tensor(buf11, (1, 20), (0, 1), 60), reinterpret_tensor(primals_7, (20, 80), (1, 20), 0 ), alpha=1, beta=1, out=buf15) del primals_8 return (reinterpret_tensor(buf16, (1, 4, 80), (80, 80, 1), 0), primals_2, primals_3, primals_4, buf0, buf1, buf2, buf5, buf8, reinterpret_tensor(buf11, (1, 20), (20, 1), 0), reinterpret_tensor( buf11, (1, 20), (20, 1), 20), reinterpret_tensor(buf11, (1, 20), ( 20, 1), 40), reinterpret_tensor(buf11, (1, 20), (20, 1), 60), primals_7, buf17, reinterpret_tensor(buf9, (80, 1, 9), (9, 720, 1), 0)) class AttentionConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=False): super(AttentionConv, self).__init__() self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.groups = groups assert self.out_channels % self.groups == 0, 'out_channels should be divided by groups. (example: out_channels: 40, groups: 4)' self.rel_h = nn.Parameter(torch.randn(out_channels // 2, 1, 1, kernel_size, 1), requires_grad=True) self.rel_w = nn.Parameter(torch.randn(out_channels // 2, 1, 1, 1, kernel_size), requires_grad=True) self.key_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias) self.query_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.value_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.reset_parameters() def forward(self, x): batch, _channels, height, width = x.size() padded_x = F.pad(x, [self.padding, self.padding, self.padding, self .padding]) q_out = self.query_conv(x) k_out = self.key_conv(padded_x) v_out = self.value_conv(padded_x) k_out = k_out.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride) v_out = v_out.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride) k_out_h, k_out_w = k_out.split(self.out_channels // 2, dim=1) k_out = torch.cat((k_out_h + self.rel_h, k_out_w + self.rel_w), dim=1) k_out = k_out.contiguous().view(batch, self.groups, self. out_channels // self.groups, height, width, -1) v_out = v_out.contiguous().view(batch, self.groups, self. out_channels // self.groups, height, width, -1) q_out = q_out.view(batch, self.groups, self.out_channels // self. groups, height, width, 1) out = q_out * k_out out = F.softmax(out, dim=-1) out = torch.einsum('bnchwk,bnchwk -> bnchw', out, v_out).view(batch, -1, height, width) return out def reset_parameters(self): init.kaiming_normal_(self.key_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.value_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.query_conv.weight, mode='fan_out', nonlinearity='relu') init.normal_(self.rel_h, 0, 1) init.normal_(self.rel_w, 0, 1) class BaseClassifier(nn.Module): _timestep_dimension = 2 _max_timesteps = 2048 _value_to_pad = 0 @staticmethod def pad_variable_timesteps(tensor, timestep_dimension= _timestep_dimension, max_timesteps=_max_timesteps, value_to_pad= _value_to_pad): """ Pads a variable-length tensor to a fixed length along the specified dimension. e.g. shape [1, 1, 200, 1280] --> [1, 1, 512, 1280], with dim=2. timestep_dimension: Dimension to pad along. For shape [a, b, c, d], the respective dims are [0, 1, 2, 3]. max_timesteps: Number of elements to pad until. value_to_pad: Constant value used for padding. """ number_of_timesteps = tensor.size(dim=timestep_dimension) assert number_of_timesteps <= max_timesteps, 'Input received that is longer than . Unable to pad.' number_of_padded_timesteps = max_timesteps - number_of_timesteps padding = [0, 0] * (len(tensor.shape) - timestep_dimension - 1) + [ 0, number_of_padded_timesteps] return F.pad(tensor, padding, 'constant', value_to_pad) class ANNClassifierNew(BaseClassifier): def __init__(self, input_dim): super(ANNClassifierNew, self).__init__() self._pool_value = 4 self.hidden_dim_1 = hidden_dim_1 = 20 self.linear_input_dim = hidden_dim_1 * input_dim // self._pool_value self.out_dim = 80 attn_hyperparams = {'kernel_size': 3, 'padding': 1} self.attn = AttentionConv(1, hidden_dim_1, **attn_hyperparams) self.dense = nn.Linear(self.linear_input_dim, self.out_dim) self.pool = nn.MaxPool2d((1, self._pool_value)) def reshape_input(self, feature, group_size): down_sample_len = feature.size(1) // group_size feature = feature[:, :down_sample_len * group_size, :] reshape_feature = feature.reshape(feature.size(0) * down_sample_len, group_size * feature.size(2)) return reshape_feature def forward(self, input_0): primals_5 = self.attn.rel_h primals_6 = self.attn.rel_w primals_2 = self.attn.key_conv.weight primals_3 = self.attn.query_conv.weight primals_4 = self.attn.value_conv.weight primals_7 = self.dense.weight primals_8 = self.dense.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
Sam-limyr/End-to-end-ASR-Pytorch
ANNClassifier
false
1,035
[ "MIT" ]
0
623a50792f48218228549ea17b8ea5e8bb1b342f
https://github.com/Sam-limyr/End-to-end-ASR-Pytorch/tree/623a50792f48218228549ea17b8ea5e8bb1b342f
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init class AttentionConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=False): super().__init__() self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.groups = groups assert self.out_channels % self.groups == 0, 'out_channels should be divided by groups. (example: out_channels: 40, groups: 4)' self.rel_h = nn.Parameter(torch.randn(out_channels // 2, 1, 1, kernel_size, 1), requires_grad=True) self.rel_w = nn.Parameter(torch.randn(out_channels // 2, 1, 1, 1, kernel_size), requires_grad=True) self.key_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias) self.query_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.value_conv = nn.Conv2d(in_channels, out_channels, kernel_size= 1, bias=bias) self.reset_parameters() def forward(self, x): batch, _channels, height, width = x.size() padded_x = F.pad(x, [self.padding, self.padding, self.padding, self .padding]) q_out = self.query_conv(x) k_out = self.key_conv(padded_x) v_out = self.value_conv(padded_x) k_out = k_out.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride) v_out = v_out.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride) k_out_h, k_out_w = k_out.split(self.out_channels // 2, dim=1) k_out = torch.cat((k_out_h + self.rel_h, k_out_w + self.rel_w), dim=1) k_out = k_out.contiguous().view(batch, self.groups, self. out_channels // self.groups, height, width, -1) v_out = v_out.contiguous().view(batch, self.groups, self. out_channels // self.groups, height, width, -1) q_out = q_out.view(batch, self.groups, self.out_channels // self. groups, height, width, 1) out = q_out * k_out out = F.softmax(out, dim=-1) out = torch.einsum('bnchwk,bnchwk -> bnchw', out, v_out).view(batch, -1, height, width) return out def reset_parameters(self): init.kaiming_normal_(self.key_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.value_conv.weight, mode='fan_out', nonlinearity='relu') init.kaiming_normal_(self.query_conv.weight, mode='fan_out', nonlinearity='relu') init.normal_(self.rel_h, 0, 1) init.normal_(self.rel_w, 0, 1) class BaseClassifier(nn.Module): _timestep_dimension = 2 _max_timesteps = 2048 _value_to_pad = 0 @staticmethod def pad_variable_timesteps(tensor, timestep_dimension= _timestep_dimension, max_timesteps=_max_timesteps, value_to_pad= _value_to_pad): """ Pads a variable-length tensor to a fixed length along the specified dimension. e.g. shape [1, 1, 200, 1280] --> [1, 1, 512, 1280], with dim=2. timestep_dimension: Dimension to pad along. For shape [a, b, c, d], the respective dims are [0, 1, 2, 3]. max_timesteps: Number of elements to pad until. value_to_pad: Constant value used for padding. """ number_of_timesteps = tensor.size(dim=timestep_dimension) assert number_of_timesteps <= max_timesteps, 'Input received that is longer than . Unable to pad.' number_of_padded_timesteps = max_timesteps - number_of_timesteps padding = [0, 0] * (len(tensor.shape) - timestep_dimension - 1) + [ 0, number_of_padded_timesteps] return F.pad(tensor, padding, 'constant', value_to_pad) class Model(BaseClassifier): def __init__(self, input_dim): # ... truncated (>4000 chars) for memory efficiency
ActNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/nz/cnzkzycmku6msmsiehonl6lvkxkalhor6qvech326gpy2lqc3hoy.py # Topologically Sorted Source Nodes: [logdet], Original ATen: [aten.sum] # Source node to ATen node mapping: # logdet => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%unsqueeze,), kwargs = {}) triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/w6/cw6fwvvd65omur5x74r5pig6wm7q3m5ho7q4pfmcjdleaujxnwkx.py # Topologically Sorted Source Nodes: [exp, mul, add], Original ATen: [aten.exp, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # exp => exp # mul => mul # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%unsqueeze,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %exp), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %unsqueeze_1), kwargs = {}) triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [logdet], Original ATen: [aten.sum] stream0 = get_raw_stream(0) triton_per_fused_sum_0.run(primals_1, buf0, 1, 4, grid=grid(1), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [exp, mul, add], Original ATen: [aten.exp, aten.mul, aten.add] triton_poi_fused_add_exp_mul_1.run(primals_2, primals_1, primals_3, buf1, 256, grid=grid(256), stream=stream0) del primals_3 return (buf1, buf0, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import Parameter class ActNorm(nn.Module): def __init__(self, num_channels, eps=1e-05): super(ActNorm, self).__init__() self.eps = eps self.num_channels = num_channels self._log_scale = Parameter(torch.Tensor(num_channels)) self._shift = Parameter(torch.Tensor(num_channels)) self._init = False def log_scale(self): return self._log_scale[None, :] def shift(self): return self._shift[None, :] def forward(self, x): if not self._init: with torch.no_grad(): assert self.num_channels == x.size(1) mean = torch.transpose(x, 0, 1).contiguous().view(self. num_channels, -1).mean(dim=1) zero_mean = x - mean[None, :] var = torch.transpose(zero_mean ** 2, 0, 1).contiguous().view( self.num_channels, -1).mean(dim=1) std = (var + self.eps) ** 0.5 log_scale = torch.log(1.0 / std) self._shift.data = -mean * torch.exp(log_scale) self._log_scale.data = log_scale self._init = True log_scale = self.log_scale() logdet = log_scale.sum() return x * torch.exp(log_scale) + self.shift(), logdet def inverse(self, x): return (x - self.shift()) * torch.exp(-self.log_scale()) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None) @triton.jit def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + x2, tmp5, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_sum_0[grid(1)](primals_1, buf0, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_exp_mul_1[grid(256)](primals_2, primals_1, primals_3, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf1, buf0, primals_1, primals_2 class ActNormNew(nn.Module): def __init__(self, num_channels, eps=1e-05): super(ActNormNew, self).__init__() self.eps = eps self.num_channels = num_channels self._log_scale = Parameter(torch.Tensor(num_channels)) self._shift = Parameter(torch.Tensor(num_channels)) self._init = False def log_scale(self): return self._log_scale[None, :] def shift(self): return self._shift[None, :] def inverse(self, x): return (x - self.shift()) * torch.exp(-self.log_scale()) def forward(self, input_0): primals_1 = self._log_scale primals_3 = self._shift primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
Schwartz-Zha/My-invertible-resnet
ActNorm
false
1,036
[ "MIT" ]
0
5415975bb0d640f3bf3ef4a7b986563e84109270
https://github.com/Schwartz-Zha/My-invertible-resnet/tree/5415975bb0d640f3bf3ef4a7b986563e84109270
import torch import torch.nn as nn from torch.nn import Parameter class Model(nn.Module): def __init__(self, num_channels, eps=1e-05): super().__init__() self.eps = eps self.num_channels = num_channels self._log_scale = Parameter(torch.Tensor(num_channels)) self._shift = Parameter(torch.Tensor(num_channels)) self._init = False def log_scale(self): return self._log_scale[None, :] def shift(self): return self._shift[None, :] def forward(self, x): if not self._init: with torch.no_grad(): assert self.num_channels == x.size(1) mean = torch.transpose(x, 0, 1).contiguous().view(self. num_channels, -1).mean(dim=1) zero_mean = x - mean[None, :] var = torch.transpose(zero_mean ** 2, 0, 1).contiguous().view( self.num_channels, -1).mean(dim=1) std = (var + self.eps) ** 0.5 log_scale = torch.log(1.0 / std) self._shift.data = -mean * torch.exp(log_scale) self._log_scale.data = log_scale self._init = True log_scale = self.log_scale() logdet = log_scale.sum() return x * torch.exp(log_scale) + self.shift(), logdet def inverse(self, x): return (x - self.shift()) * torch.exp(-self.log_scale()) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]