entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
sequencelengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
| pytorch_code
stringlengths 200
4.05k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
ReinforcedReceiver | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/4o/c4ogi2senpwcpw6txtj5wtbczsxx4tpnaiobsgnww74a4sg5v4tv.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%addmm, %primals_4], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (8*x1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/mw/cmwzknalwxktanoh44ufubtjqx2krdcfovayd5pouztckog24vas.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_2 => gt, mul, where
# Graph fragment:
# %add_tensor_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_1, 0.01), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_tensor_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ww/cwwjihozrbvgbotl7lstvjlcjsn7z2sg2hm2ibtgdzkrluulifjb.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# probs => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (8, 8), (8, 1))
assert_size_stride(primals_6, (8, ), (1, ))
assert_size_stride(primals_7, (4, 8), (8, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf0 = reinterpret_tensor(buf2, (4, 4), (8, 1), 0) # alias
# Topologically Sorted Source Nodes: [embedded_bits], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = reinterpret_tensor(buf2, (4, 4), (8, 1), 4) # alias
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_4, buf1, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (8, 8), (1, 8), 0), out=buf3)
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.bool)
buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(buf3, primals_6, buf4, buf5, 32, grid=grid(32), stream=stream0)
del buf3
del primals_6
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf7, primals_8, 16, grid=grid(16), stream=stream0)
del primals_8
return (buf7, buf7, primals_1, buf2, buf4, buf5, buf7, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.utils.data
from torch.distributions import Bernoulli
import torch.distributions
class ReinforcedReceiver(nn.Module):
def __init__(self, n_bits, n_hidden):
super(ReinforcedReceiver, self).__init__()
self.emb_column = nn.Linear(n_bits, n_hidden)
self.fc1 = nn.Linear(2 * n_hidden, 2 * n_hidden)
self.fc2 = nn.Linear(2 * n_hidden, n_bits)
def forward(self, embedded_message, bits, _aux_input=None):
embedded_bits = self.emb_column(bits.float())
x = torch.cat([embedded_bits, embedded_message], dim=1)
x = self.fc1(x)
x = F.leaky_relu(x)
x = self.fc2(x)
probs = x.sigmoid()
distr = Bernoulli(probs=probs)
entropy = distr.entropy()
if self.training:
sample = distr.sample()
else:
sample = (probs > 0.5).float()
log_prob = distr.log_prob(sample).sum(dim=1)
return sample, log_prob, entropy
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'n_bits': 4, 'n_hidden': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 8 * x1), tmp0, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (8, 8), (8, 1))
assert_size_stride(primals_6, (8,), (1,))
assert_size_stride(primals_7, (4, 8), (8, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf0 = reinterpret_tensor(buf2, (4, 4), (8, 1), 0)
extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(
primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = reinterpret_tensor(buf2, (4, 4), (8, 1), 4)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(16)](primals_4, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (8, 8), (1, 8
), 0), out=buf3)
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.bool)
buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_leaky_relu_1[grid(32)](buf3, primals_6, buf4, buf5,
32, XBLOCK=32, num_warps=1, num_stages=1)
del buf3
del primals_6
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (8, 4), (1, 8
), 0), out=buf6)
buf7 = buf6
del buf6
triton_poi_fused_sigmoid_2[grid(16)](buf7, primals_8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_8
return buf7, buf7, primals_1, buf2, buf4, buf5, buf7, primals_7, primals_5
class ReinforcedReceiverNew(nn.Module):
def __init__(self, n_bits, n_hidden):
super(ReinforcedReceiverNew, self).__init__()
self.emb_column = nn.Linear(n_bits, n_hidden)
self.fc1 = nn.Linear(2 * n_hidden, 2 * n_hidden)
self.fc2 = nn.Linear(2 * n_hidden, n_bits)
def forward(self, input_0, input_1):
primals_1 = self.emb_column.weight
primals_3 = self.emb_column.bias
primals_5 = self.fc1.weight
primals_6 = self.fc1.bias
primals_7 = self.fc2.weight
primals_8 = self.fc2.bias
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0], output[1], output[2]
| XeniaOhmer/SystematicRepresentations | ReinforcedReceiver | false | 1,241 | [
"MIT"
] | 0 | 825208d1be659dc820e61f577cdb53afc47302f4 | https://github.com/XeniaOhmer/SystematicRepresentations/tree/825208d1be659dc820e61f577cdb53afc47302f4 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.utils.data
from torch.distributions import Bernoulli
import torch.distributions
class Model(nn.Module):
def __init__(self, n_bits, n_hidden):
super().__init__()
self.emb_column = nn.Linear(n_bits, n_hidden)
self.fc1 = nn.Linear(2 * n_hidden, 2 * n_hidden)
self.fc2 = nn.Linear(2 * n_hidden, n_bits)
def forward(self, embedded_message, bits, _aux_input=None):
embedded_bits = self.emb_column(bits.float())
x = torch.cat([embedded_bits, embedded_message], dim=1)
x = self.fc1(x)
x = F.leaky_relu(x)
x = self.fc2(x)
probs = x.sigmoid()
distr = Bernoulli(probs=probs)
entropy = distr.entropy()
if self.training:
sample = distr.sample()
else:
sample = (probs > 0.5).float()
log_prob = distr.log_prob(sample).sum(dim=1)
return sample, log_prob, entropy
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
MLPComposition | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/vu/cvunr3tqqko6u5n2kkmuhftfsjfayeemm2taiyvs64psvn36w4ul.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_4), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (50, 8), (8, 1))
assert_size_stride(primals_4, (50, ), (1, ))
assert_size_stride(primals_5, (4, 50), (50, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 50), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf2, primals_4, 200, grid=grid(200), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5, (50, 4), (1, 50), 0), alpha=1, beta=1, out=buf3)
del primals_6
return (buf3, buf0, buf2, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((50, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.parallel
import torch.utils.data
import torch.distributions
class CompositionFunction(torch.nn.Module):
def __init__(self, representation_size: 'int'):
super().__init__()
def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor:
raise NotImplementedError
class MLPComposition(CompositionFunction):
def __init__(self, representation_size: 'int'):
super().__init__(representation_size)
self.linear_1 = torch.nn.Linear(representation_size * 2, 50)
self.linear_2 = torch.nn.Linear(50, representation_size)
def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor:
return self.linear_2(torch.tanh(self.linear_1(torch.cat((x, y), dim
=1))))
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'representation_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn.parallel
import torch.utils.data
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (50, 8), (8, 1))
assert_size_stride(primals_4, (50,), (1,))
assert_size_stride(primals_5, (4, 50), (50, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 50), (1,
8), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_tanh_1[grid(200)](buf2, primals_4, 200, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5,
(50, 4), (1, 50), 0), alpha=1, beta=1, out=buf3)
del primals_6
return buf3, buf0, buf2, primals_5
class CompositionFunction(torch.nn.Module):
def __init__(self, representation_size: 'int'):
super().__init__()
def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor:
raise NotImplementedError
class MLPCompositionNew(CompositionFunction):
def __init__(self, representation_size: 'int'):
super().__init__(representation_size)
self.linear_1 = torch.nn.Linear(representation_size * 2, 50)
self.linear_2 = torch.nn.Linear(50, representation_size)
def forward(self, input_0, input_1):
primals_3 = self.linear_1.weight
primals_4 = self.linear_1.bias
primals_5 = self.linear_2.weight
primals_6 = self.linear_2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| XeniaOhmer/SystematicRepresentations | MLPComposition | false | 1,242 | [
"MIT"
] | 0 | 825208d1be659dc820e61f577cdb53afc47302f4 | https://github.com/XeniaOhmer/SystematicRepresentations/tree/825208d1be659dc820e61f577cdb53afc47302f4 | import torch
import torch.nn.parallel
import torch.utils.data
import torch.distributions
class CompositionFunction(torch.nn.Module):
def __init__(self, representation_size: 'int'):
super().__init__()
def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor:
raise NotImplementedError
class Model(CompositionFunction):
def __init__(self, representation_size: 'int'):
super().__init__(representation_size)
self.linear_1 = torch.nn.Linear(representation_size * 2, 50)
self.linear_2 = torch.nn.Linear(50, representation_size)
def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor:
return self.linear_2(torch.tanh(self.linear_1(torch.cat((x, y), dim
=1))))
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4]
|
TopicEmbeddingAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/y5/cy5ayiyaee6vuhke2jplerlwfywqphi7re7c35cdc4ktr6xrktb6.py
# Topologically Sorted Source Nodes: [topic_seq_w], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# topic_seq_w => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex % 16
x2 = (xindex // 16)
y0 = yindex
x3 = xindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3 + (64*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ln/clnjzph6f6ljwdpi223cif3gjupa56icp7ouy2ii6hkgcopz7ssl.py
# Topologically Sorted Source Nodes: [topic_seq_w], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# topic_seq_w => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/7c/c7ctaqolvvihnwa7tlcfxod35jfhr4j2tsli64jyt43n7qqi4lhv.py
# Topologically Sorted Source Nodes: [seq_topic_w_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# seq_topic_w_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_4, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_4, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/u3/cu3nkkpsb4i2i7d6n6rkag3p4fnx5qjjay2ykzvhps67hsbhltyh.py
# Topologically Sorted Source Nodes: [seq_topic_w_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# seq_topic_w_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [topic_seq_w], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_3, buf0, 4, 64, grid=grid(4, 64), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [topic_seq_w], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [topic_seq_w], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, buf2, 64, 4, grid=grid(64, 4), stream=stream0)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [seq_topic_w], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [seq_topic_w_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [seq_topic_w_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [hidden_topic_state], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4, 4), (16, 4, 1), 0), out=buf6)
del buf5
return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3, reinterpret_tensor(primals_3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn import functional as F
import torch.multiprocessing
from torch import nn
import torch.utils.data
class TopicEmbeddingAttention(nn.Module):
"""
query: encoder的隐藏状态 key value:主题嵌入向量
计算每个时间步t 对于加权topic embedding向量
"""
def __init__(self, encoder_hidden_size, topic_num, topic_emb_dim):
super(TopicEmbeddingAttention, self).__init__()
self.encoder_hidden_size = encoder_hidden_size
self.topic_num = topic_num
self.topic_emb_dim = topic_emb_dim
self.W = nn.Parameter(torch.Tensor(encoder_hidden_size, topic_emb_dim))
nn.init.xavier_uniform_(self.W)
def forward(self, encoder_memory, topic_emb):
"""
encoder_memory: [batch_size,seq_len,hidden_dim]
attention_dist: [batch_size, seq_len]
topic_emb: [topic_num, embedding_dim]
topic_dist: [batch_size,topic_num]
"""
encoder_memory.shape[0]
topic_seq_w = torch.matmul(self.W, topic_emb.T)
seq_topic_w = torch.matmul(encoder_memory, topic_seq_w)
seq_topic_w = F.softmax(seq_topic_w, dim=2)
hidden_topic_state = torch.matmul(seq_topic_w, topic_emb)
return hidden_topic_state
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'encoder_hidden_size': 4, 'topic_num': 4, 'topic_emb_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.multiprocessing
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex % 16
x2 = xindex // 16
y0 = yindex
x3 = xindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * x1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x3 + 64 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(4, 64)](primals_3, buf0, 4, 64,
XBLOCK=32, YBLOCK=4, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(64, 4)](buf1, buf2, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (16, 4,
1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0),
out=buf3)
buf4 = buf2
del buf2
triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(256)](buf4, buf5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0)
del buf4
extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(primals_3, (16, 4, 4), (16, 4, 1), 0),
out=buf6)
del buf5
return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0
), buf3, reinterpret_tensor(primals_3, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0)
class TopicEmbeddingAttentionNew(nn.Module):
"""
query: encoder的隐藏状态 key value:主题嵌入向量
计算每个时间步t 对于加权topic embedding向量
"""
def __init__(self, encoder_hidden_size, topic_num, topic_emb_dim):
super(TopicEmbeddingAttentionNew, self).__init__()
self.encoder_hidden_size = encoder_hidden_size
self.topic_num = topic_num
self.topic_emb_dim = topic_emb_dim
self.W = nn.Parameter(torch.Tensor(encoder_hidden_size, topic_emb_dim))
nn.init.xavier_uniform_(self.W)
def forward(self, input_0, input_1):
primals_2 = self.W
primals_1 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
| WuDiDaBinGe/TAKG | TopicEmbeddingAttention | false | 1,243 | [
"MIT"
] | 0 | 83e608e677a4ee74722d18cb5ef430f4f6c6ad31 | https://github.com/WuDiDaBinGe/TAKG/tree/83e608e677a4ee74722d18cb5ef430f4f6c6ad31 | import torch
from torch.nn import functional as F
import torch.multiprocessing
from torch import nn
import torch.utils.data
class Model(nn.Module):
"""
query: encoder的隐藏状态 key value:主题嵌入向量
计算每个时间步t 对于加权topic embedding向量
"""
def __init__(self, encoder_hidden_size, topic_num, topic_emb_dim):
super().__init__()
self.encoder_hidden_size = encoder_hidden_size
self.topic_num = topic_num
self.topic_emb_dim = topic_emb_dim
self.W = nn.Parameter(torch.Tensor(encoder_hidden_size, topic_emb_dim))
nn.init.xavier_uniform_(self.W)
def forward(self, encoder_memory, topic_emb):
"""
encoder_memory: [batch_size,seq_len,hidden_dim]
attention_dist: [batch_size, seq_len]
topic_emb: [topic_num, embedding_dim]
topic_dist: [batch_size,topic_num]
"""
encoder_memory.shape[0]
topic_seq_w = torch.matmul(self.W, topic_emb.T)
seq_topic_w = torch.matmul(encoder_memory, topic_seq_w)
seq_topic_w = F.softmax(seq_topic_w, dim=2)
hidden_topic_state = torch.matmul(seq_topic_w, topic_emb)
return hidden_topic_state
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
MultiHeadedAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/bs/cbsluabtq7ll426nybkislhh3cajm6f7ggrxam362hohynwnvtk6.py
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.eq]
# Source node to ATen node mapping:
# mask => eq
# Graph fragment:
# %eq : [num_users=3] = call_function[target=torch.ops.aten.eq.Scalar](args = (%unsqueeze, 0), kwargs = {})
triton_poi_fused_eq_1 = async_compile.triton('triton_poi_fused_eq_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/2m/c2mqa6egkdg5wothwstp4t4dtvjgjekw5mx5ldieie6krs4bxolb.py
# Topologically Sorted Source Nodes: [scores, scores_1, softmax], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# scores => div
# scores_1 => full_default, where
# softmax => amax, exp, sub, sum_1
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_div_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = float("-inf")
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tmp12 * tmp2
tmp14 = tl.where(tmp11, tmp4, tmp13)
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tmp17 * tmp2
tmp19 = tl.where(tmp16, tmp4, tmp18)
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp9 - tmp20
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = tmp14 - tmp20
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tmp19 - tmp20
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp28 + tmp30
tl.store(out_ptr0 + (x3), tmp20, xmask)
tl.store(out_ptr1 + (x3), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/qh/cqhmiexfxtu22w5zckygdewcq6zc6ji4wfscqj2genrriihibfdb.py
# Topologically Sorted Source Nodes: [scores, scores_1, softmax, attn], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attn => full_default_1, where_1
# scores => div
# scores_1 => full_default, where
# softmax => amax, div_1, exp, sub
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %div_1), kwargs = {})
triton_poi_fused__softmax_div_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 64)
x4 = xindex % 16
x5 = xindex
x6 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x4 + (16*x3)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (x5), xmask)
tmp6 = tl.load(in_ptr2 + (x6), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr3 + (x6), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = float("-inf")
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp7 = tmp5 - tmp6
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tmp11 = 0.0
tmp12 = tl.where(tmp0, tmp11, tmp10)
tl.store(out_ptr0 + (x5), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.eq]
triton_poi_fused_eq_1.run(primals_10, buf6, 64, grid=grid(64), stream=stream0)
del primals_10
buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [scores, scores_1, softmax], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_2.run(buf6, buf5, buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [scores, scores_1, softmax, attn], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_3.run(buf6, buf5, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_8, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_12, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_12
return (reinterpret_tensor(buf13, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf5, buf6, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), primals_11, reinterpret_tensor(buf9, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from typing import Optional
from typing import Tuple
from torch import nn
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head: 'int', n_feat: 'int', dropout_rate: 'float'):
"""Construct an MultiHeadedAttention object."""
super().__init__()
assert n_feat % n_head == 0
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
return q, k, v
def forward_attention(self, value: 'torch.Tensor', scores:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
if mask is not None:
mask = mask.unsqueeze(1).eq(0)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
else:
attn = torch.softmax(scores, dim=-1)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value)
x = x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
return self.linear_out(x)
def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'n_head': 4, 'n_feat': 4, 'dropout_rate': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from typing import Optional
from typing import Tuple
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4 * x0 + 16 * x2), xmask, eviction_policy=
'evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = float('-inf')
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tmp12 * tmp2
tmp14 = tl.where(tmp11, tmp4, tmp13)
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tmp17 * tmp2
tmp19 = tl.where(tmp16, tmp4, tmp18)
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp9 - tmp20
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = tmp14 - tmp20
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tmp19 - tmp20
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp28 + tmp30
tl.store(out_ptr0 + x3, tmp20, xmask)
tl.store(out_ptr1 + x3, tmp31, xmask)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_3(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 64
x4 = xindex % 16
x5 = xindex
x6 = xindex // 4
tmp0 = tl.load(in_ptr0 + (x4 + 16 * x3), xmask, eviction_policy=
'evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + x5, xmask)
tmp6 = tl.load(in_ptr2 + x6, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr3 + x6, xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = float('-inf')
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp7 = tmp5 - tmp6
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tmp11 = 0.0
tmp12 = tl.where(tmp0, tmp11, tmp10)
tl.store(out_ptr0 + x5, tmp12, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool)
triton_poi_fused_eq_1[grid(64)](primals_10, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_10
buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_div_masked_fill_2[grid(64)](buf6, buf5,
buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_div_masked_fill_3[grid(256)](buf6, buf5,
buf7, buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf8
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_8, buf10, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_8
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0)
del buf11
extern_kernels.addmm(primals_12, reinterpret_tensor(buf12, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf13)
del primals_12
return reinterpret_tensor(buf13, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0
), buf5, buf6, reinterpret_tensor(buf12, (16, 4), (4, 1), 0
), primals_11, reinterpret_tensor(buf9, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class MultiHeadedAttentionNew(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head: 'int', n_feat: 'int', dropout_rate: 'float'):
"""Construct an MultiHeadedAttention object."""
super().__init__()
assert n_feat % n_head == 0
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
return q, k, v
def forward_attention(self, value: 'torch.Tensor', scores:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
if mask is not None:
mask = mask.unsqueeze(1).eq(0)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
else:
attn = torch.softmax(scores, dim=-1)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value)
x = x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
return self.linear_out(x)
def forward(self, input_0, input_1, input_2, input_3):
primals_2 = self.linear_q.weight
primals_3 = self.linear_q.bias
primals_4 = self.linear_k.weight
primals_5 = self.linear_k.bias
primals_7 = self.linear_v.weight
primals_8 = self.linear_v.bias
primals_11 = self.linear_out.weight
primals_12 = self.linear_out.bias
primals_1 = input_0
primals_6 = input_1
primals_9 = input_2
primals_10 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
| WenjingXia/wenet | MultiHeadedAttention | false | 1,244 | [
"Apache-2.0"
] | 0 | 9a1fd005cd06be16518a5476076b2ae6af2ec41a | https://github.com/WenjingXia/wenet/tree/9a1fd005cd06be16518a5476076b2ae6af2ec41a | import math
import torch
from typing import Optional
from typing import Tuple
from torch import nn
class Model(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head: 'int', n_feat: 'int', dropout_rate: 'float'):
"""Construct an MultiHeadedAttention object."""
super().__init__()
assert n_feat % n_head == 0
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
return q, k, v
def forward_attention(self, value: 'torch.Tensor', scores:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
if mask is not None:
mask = mask.unsqueeze(1).eq(0)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
else:
attn = torch.softmax(scores, dim=-1)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value)
x = x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
return self.linear_out(x)
def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
# ... truncated (>4000 chars) for memory efficiency |
F_conv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/oz/cozqxlcluuaqzreyfue6z5fkzxjeuuwqcorl77txds26n7irqcna.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# out => convolution
# out_1 => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_4 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0)
del buf3
del primals_5
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf7, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf7, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import warnings
import torch.nn as nn
import torch.nn.functional as F
class F_conv(nn.Module):
"""ResNet transformation, not itself reversible, just used below"""
def __init__(self, in_channels, channels, channels_hidden=None, stride=
None, kernel_size=3, leaky_slope=0.1, batch_norm=False):
super(F_conv, self).__init__()
if stride:
warnings.warn(
"Stride doesn't do anything, the argument should be removed",
DeprecationWarning)
if not channels_hidden:
channels_hidden = channels
pad = kernel_size // 2
self.leaky_slope = leaky_slope
self.conv1 = nn.Conv2d(in_channels, channels_hidden, kernel_size=
kernel_size, padding=pad, bias=not batch_norm)
self.conv2 = nn.Conv2d(channels_hidden, channels_hidden,
kernel_size=kernel_size, padding=pad, bias=not batch_norm)
self.conv3 = nn.Conv2d(channels_hidden, channels, kernel_size=
kernel_size, padding=pad, bias=not batch_norm)
if batch_norm:
self.bn1 = nn.BatchNorm2d(channels_hidden)
self.bn1.weight.data.fill_(1)
self.bn2 = nn.BatchNorm2d(channels_hidden)
self.bn2.weight.data.fill_(1)
self.bn3 = nn.BatchNorm2d(channels)
self.bn3.weight.data.fill_(1)
self.batch_norm = batch_norm
def forward(self, x):
out = self.conv1(x)
if self.batch_norm:
out = self.bn1(out)
out = F.leaky_relu(out, self.leaky_slope)
out = self.conv2(out)
if self.batch_norm:
out = self.bn2(out)
out = F.leaky_relu(out, self.leaky_slope)
out = self.conv3(out)
if self.batch_norm:
out = self.bn3(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import warnings
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf0,
primals_2, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = buf0
del buf0
triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf3,
primals_5, buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf3
del primals_5
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_1[grid(256)](buf7, primals_7, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
return (buf7, primals_1, primals_3, primals_4, primals_6, buf1, buf2,
buf4, buf5)
class F_convNew(nn.Module):
"""ResNet transformation, not itself reversible, just used below"""
def __init__(self, in_channels, channels, channels_hidden=None, stride=
None, kernel_size=3, leaky_slope=0.1, batch_norm=False):
super(F_convNew, self).__init__()
if stride:
warnings.warn(
"Stride doesn't do anything, the argument should be removed",
DeprecationWarning)
if not channels_hidden:
channels_hidden = channels
pad = kernel_size // 2
self.leaky_slope = leaky_slope
self.conv1 = nn.Conv2d(in_channels, channels_hidden, kernel_size=
kernel_size, padding=pad, bias=not batch_norm)
self.conv2 = nn.Conv2d(channels_hidden, channels_hidden,
kernel_size=kernel_size, padding=pad, bias=not batch_norm)
self.conv3 = nn.Conv2d(channels_hidden, channels, kernel_size=
kernel_size, padding=pad, bias=not batch_norm)
if batch_norm:
self.bn1 = nn.BatchNorm2d(channels_hidden)
self.bn1.weight.data.fill_(1)
self.bn2 = nn.BatchNorm2d(channels_hidden)
self.bn2.weight.data.fill_(1)
self.bn3 = nn.BatchNorm2d(channels)
self.bn3.weight.data.fill_(1)
self.batch_norm = batch_norm
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Xenovortex/INN_Embedding_Classification | F_conv | false | 1,245 | [
"MIT"
] | 0 | df31ec3dcf70780cae5140a69ffafdd64f218e5f | https://github.com/Xenovortex/INN_Embedding_Classification/tree/df31ec3dcf70780cae5140a69ffafdd64f218e5f | import torch
import warnings
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""ResNet transformation, not itself reversible, just used below"""
def __init__(self, in_channels, channels, channels_hidden=None, stride=
None, kernel_size=3, leaky_slope=0.1, batch_norm=False):
super().__init__()
if stride:
warnings.warn(
"Stride doesn't do anything, the argument should be removed",
DeprecationWarning)
if not channels_hidden:
channels_hidden = channels
pad = kernel_size // 2
self.leaky_slope = leaky_slope
self.conv1 = nn.Conv2d(in_channels, channels_hidden, kernel_size=
kernel_size, padding=pad, bias=not batch_norm)
self.conv2 = nn.Conv2d(channels_hidden, channels_hidden,
kernel_size=kernel_size, padding=pad, bias=not batch_norm)
self.conv3 = nn.Conv2d(channels_hidden, channels, kernel_size=
kernel_size, padding=pad, bias=not batch_norm)
if batch_norm:
self.bn1 = nn.BatchNorm2d(channels_hidden)
self.bn1.weight.data.fill_(1)
self.bn2 = nn.BatchNorm2d(channels_hidden)
self.bn2.weight.data.fill_(1)
self.bn3 = nn.BatchNorm2d(channels)
self.bn3.weight.data.fill_(1)
self.batch_norm = batch_norm
def forward(self, x):
out = self.conv1(x)
if self.batch_norm:
out = self.bn1(out)
out = F.leaky_relu(out, self.leaky_slope)
out = self.conv2(out)
if self.batch_norm:
out = self.bn2(out)
out = F.leaky_relu(out, self.leaky_slope)
out = self.conv3(out)
if self.batch_norm:
out = self.bn3(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Discriminator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/fl/cfl47w3jenzjato5bn5xjoj5tva4lgt6os2dcyaczcbvy2k2fx2y.py
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# logits => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%squeeze, %squeeze_1],), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16)
x0 = xindex % 16
x2 = xindex
tmp6 = tl.load(in_ptr1 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1)), tmp4 & xmask, other=0.0)
tmp8 = tmp5 + tmp7
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp11 = tmp0 >= tmp3
tmp12 = tl.full([1], 8, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + (x0 + (16*((-4) + x1))), tmp11 & xmask, other=0.0)
tmp15 = tmp14 + tmp7
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp11, tmp15, tmp16)
tmp18 = tl.where(tmp4, tmp10, tmp17)
tl.store(out_ptr0 + (x2), tmp18, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (1, ), (1, ))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear]
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
buf1 = buf0
del buf0
# Topologically Sorted Source Nodes: [bilinear_1], Original ATen: [aten._trilinear]
buf2 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_3
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((8, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf1, primals_4, buf3, buf4, 128, grid=grid(128), stream=stream0)
del buf1
del buf3
del primals_4
return (buf4, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Discriminator(nn.Module):
"""
The discriminator
.. math::
\\begin{equation}
\\mathcal{D}\\left(\\mathbf{h}_{i}^{(r)}, \\mathbf{s}^{(r)}\\right)=\\sigma\\left(\\mathbf{h}_{i}^{(r) T} \\mathbf{M}^{(r)} \\mathbf{s}^{(r)}\\right)
\\end{equation}
where :math:`M^{(r)}` is a trainable scoring matrix.
"""
def __init__(self, n_h):
super(Discriminator, self).__init__()
self.f_k_bilinear = nn.Bilinear(n_h, n_h, 1)
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Bilinear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, c, h_pl, h_mi, s_bias1=None, s_bias2=None):
c_x = c.expand_as(h_pl)
sc_1 = torch.squeeze(self.f_k_bilinear(h_pl, c_x), 1)
sc_2 = torch.squeeze(self.f_k_bilinear(h_mi, c_x), 1)
if s_bias1 is not None:
sc_1 += s_bias1
if s_bias2 is not None:
sc_2 += s_bias2
logits = torch.cat((sc_1, sc_2), 0)
return logits
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_h': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16
x0 = xindex % 16
x2 = xindex
tmp6 = tl.load(in_ptr1 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1), tmp4 & xmask, other=0.0)
tmp8 = tmp5 + tmp7
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp11 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp14 = tl.load(in_ptr2 + (x0 + 16 * (-4 + x1)), tmp11 & xmask, other=0.0)
tmp15 = tmp14 + tmp7
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp11, tmp15, tmp16)
tmp18 = tl.where(tmp4, tmp10, tmp17)
tl.store(out_ptr0 + x2, tmp18, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (1,), (1,))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(
primals_2, (64, 4), (4, 1), 0), primals_3, reinterpret_tensor(
primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
buf1 = buf0
del buf0
buf2 = torch.ops.aten._trilinear.default(reinterpret_tensor(
primals_5, (64, 4), (4, 1), 0), primals_3, reinterpret_tensor(
primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_3
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((8, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](buf1, primals_4, buf3, buf4, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del buf3
del primals_4
return buf4, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_5, (64, 4), (4, 1), 0)
class DiscriminatorNew(nn.Module):
"""
The discriminator
.. math::
\\begin{equation}
\\mathcal{D}\\left(\\mathbf{h}_{i}^{(r)}, \\mathbf{s}^{(r)}\\right)=\\sigma\\left(\\mathbf{h}_{i}^{(r) T} \\mathbf{M}^{(r)} \\mathbf{s}^{(r)}\\right)
\\end{equation}
where :math:`M^{(r)}` is a trainable scoring matrix.
"""
def __init__(self, n_h):
super(DiscriminatorNew, self).__init__()
self.f_k_bilinear = nn.Bilinear(n_h, n_h, 1)
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Bilinear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, input_0, input_1, input_2):
primals_3 = self.f_k_bilinear.weight
primals_4 = self.f_k_bilinear.bias
primals_1 = input_0
primals_2 = input_1
primals_5 = input_2
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Xinstein3033/OpenHGNN | Discriminator | false | 1,246 | [
"Apache-2.0"
] | 0 | a9ca499834523419ecdaaa09e4b42f640486f262 | https://github.com/Xinstein3033/OpenHGNN/tree/a9ca499834523419ecdaaa09e4b42f640486f262 | import torch
import torch.nn as nn
class Model(nn.Module):
"""
The discriminator
.. math::
\\begin{equation}
\\mathcal{D}\\left(\\mathbf{h}_{i}^{(r)}, \\mathbf{s}^{(r)}\\right)=\\sigma\\left(\\mathbf{h}_{i}^{(r) T} \\mathbf{M}^{(r)} \\mathbf{s}^{(r)}\\right)
\\end{equation}
where :math:`M^{(r)}` is a trainable scoring matrix.
"""
def __init__(self, n_h):
super().__init__()
self.f_k_bilinear = nn.Bilinear(n_h, n_h, 1)
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Bilinear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, c, h_pl, h_mi, s_bias1=None, s_bias2=None):
c_x = c.expand_as(h_pl)
sc_1 = torch.squeeze(self.f_k_bilinear(h_pl, c_x), 1)
sc_2 = torch.squeeze(self.f_k_bilinear(h_mi, c_x), 1)
if s_bias1 is not None:
sc_1 += s_bias1
if s_bias2 is not None:
sc_2 += s_bias2
logits = torch.cat((sc_1, sc_2), 0)
return logits
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
WavePool | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/it/cittqitccw6vgbgjm3dqut4jy5pep47qoosplnw4qp55jzbbllk7.py
# Topologically Sorted Source Nodes: [conv2d, conv2d_1, conv2d_2, conv2d_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# conv2d_1 => convolution_1
# conv2d_2 => convolution_2
# conv2d_3 => convolution_3
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [2, 2], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {})
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg2_1, None, [2, 2], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {})
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg3_1, None, [2, 2], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {})
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg4_1, None, [2, 2], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
tl.store(out_ptr1 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
tl.store(out_ptr2 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
tl.store(out_ptr3 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/5i/c5iuv6v7eggudqpwvokzc6nbwpfull4j36zkwmtjfwwtnhluvvhi.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [2, 2], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 1, 2, 2), (4, 4, 2, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 1, 2, 2), (4, 4, 2, 1))
assert_size_stride(arg3_1, (4, 1, 2, 2), (4, 4, 2, 1))
assert_size_stride(arg4_1, (4, 1, 2, 2), (4, 4, 2, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, conv2d_1, conv2d_2, conv2d_3], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(arg1_1, buf0, buf3, buf6, buf9, 16, 16, grid=grid(16, 16), stream=stream0)
del arg1_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf1, (4, 4, 2, 2), (16, 1, 8, 4))
del arg0_1
del buf0
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf1, buf2, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, arg2_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (4, 4, 2, 2), (16, 1, 8, 4))
del arg2_1
del buf3
buf5 = reinterpret_tensor(buf1, (4, 4, 2, 2), (16, 4, 2, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf4, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, arg3_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf7, (4, 4, 2, 2), (16, 1, 8, 4))
del arg3_1
del buf6
buf8 = reinterpret_tensor(buf4, (4, 4, 2, 2), (16, 4, 2, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf7, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, arg4_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf10, (4, 4, 2, 2), (16, 1, 8, 4))
del arg4_1
del buf9
buf11 = reinterpret_tensor(buf7, (4, 4, 2, 2), (16, 4, 2, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf10, buf11, 16, 4, grid=grid(16, 4), stream=stream0)
del buf10
return (buf2, buf5, buf8, buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 1, 2, 2), (4, 4, 2, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 1, 2, 2), (4, 4, 2, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 1, 2, 2), (4, 4, 2, 1), device='cuda:0', dtype=torch.float32)
arg4_1 = rand_strided((4, 1, 2, 2), (4, 4, 2, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import nn
def getWavelet(in_channels, pool=True):
"""wavelet decomposition using conv2d"""
harr_wav_L = 1 / np.sqrt(2) * np.ones((1, 2))
harr_wav_H = 1 / np.sqrt(2) * np.ones((1, 2))
harr_wav_H[0, 0] = -1 * harr_wav_H[0, 0]
harr_wav_LL = np.transpose(harr_wav_L) * harr_wav_L
harr_wav_LH = np.transpose(harr_wav_L) * harr_wav_H
harr_wav_HL = np.transpose(harr_wav_H) * harr_wav_L
harr_wav_HH = np.transpose(harr_wav_H) * harr_wav_H
filter_LL = torch.from_numpy(harr_wav_LL).unsqueeze(0)
filter_LH = torch.from_numpy(harr_wav_LH).unsqueeze(0)
filter_HL = torch.from_numpy(harr_wav_HL).unsqueeze(0)
filter_HH = torch.from_numpy(harr_wav_HH).unsqueeze(0)
if pool:
net = nn.Conv2d
else:
net = nn.ConvTranspose2d
LL = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
LH = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
HL = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
HH = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
LL.weight.requires_grad = False
LH.weight.requires_grad = False
HL.weight.requires_grad = False
HH.weight.requires_grad = False
LL.weight.data = filter_LL.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
LH.weight.data = filter_LH.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
HL.weight.data = filter_HL.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
HH.weight.data = filter_HH.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
return LL, LH, HL, HH
class WavePool(nn.Module):
def __init__(self, in_channels):
super(WavePool, self).__init__()
self.LL, self.LH, self.HL, self.HH = getWavelet(in_channels)
def forward(self, x):
return self.LL(x), self.LH(x), self.HL(x), self.HH(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2,
out_ptr3, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
tl.store(out_ptr1 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
tl.store(out_ptr2 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
tl.store(out_ptr3 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 1, 2, 2), (4, 4, 2, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 1, 2, 2), (4, 4, 2, 1))
assert_size_stride(arg3_1, (4, 1, 2, 2), (4, 4, 2, 1))
assert_size_stride(arg4_1, (4, 1, 2, 2), (4, 4, 2, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 16)](arg1_1, buf0, buf3,
buf6, buf9, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1
)
del arg1_1
buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf1, (4, 4, 2, 2), (16, 1, 8, 4))
del arg0_1
del buf0
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused_convolution_1[grid(16, 4)](buf1, buf2, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(buf3, arg2_1, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (4, 4, 2, 2), (16, 1, 8, 4))
del arg2_1
del buf3
buf5 = reinterpret_tensor(buf1, (4, 4, 2, 2), (16, 4, 2, 1), 0)
del buf1
triton_poi_fused_convolution_1[grid(16, 4)](buf4, buf5, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf7 = extern_kernels.convolution(buf6, arg3_1, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf7, (4, 4, 2, 2), (16, 1, 8, 4))
del arg3_1
del buf6
buf8 = reinterpret_tensor(buf4, (4, 4, 2, 2), (16, 4, 2, 1), 0)
del buf4
triton_poi_fused_convolution_1[grid(16, 4)](buf7, buf8, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf10 = extern_kernels.convolution(buf9, arg4_1, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf10, (4, 4, 2, 2), (16, 1, 8, 4))
del arg4_1
del buf9
buf11 = reinterpret_tensor(buf7, (4, 4, 2, 2), (16, 4, 2, 1), 0)
del buf7
triton_poi_fused_convolution_1[grid(16, 4)](buf10, buf11, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del buf10
return buf2, buf5, buf8, buf11
def getWavelet(in_channels, pool=True):
"""wavelet decomposition using conv2d"""
harr_wav_L = 1 / np.sqrt(2) * np.ones((1, 2))
harr_wav_H = 1 / np.sqrt(2) * np.ones((1, 2))
harr_wav_H[0, 0] = -1 * harr_wav_H[0, 0]
harr_wav_LL = np.transpose(harr_wav_L) * harr_wav_L
harr_wav_LH = np.transpose(harr_wav_L) * harr_wav_H
harr_wav_HL = np.transpose(harr_wav_H) * harr_wav_L
harr_wav_HH = np.transpose(harr_wav_H) * harr_wav_H
filter_LL = torch.from_numpy(harr_wav_LL).unsqueeze(0)
filter_LH = torch.from_numpy(harr_wav_LH).unsqueeze(0)
filter_HL = torch.from_numpy(harr_wav_HL).unsqueeze(0)
filter_HH = torch.from_numpy(harr_wav_HH).unsqueeze(0)
if pool:
net = nn.Conv2d
else:
net = nn.ConvTranspose2d
LL = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
LH = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
HL = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
HH = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
LL.weight.requires_grad = False
LH.weight.requires_grad = False
HL.weight.requires_grad = False
HH.weight.requires_grad = False
LL.weight.data = filter_LL.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
LH.weight.data = filter_LH.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
HL.weight.data = filter_HL.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
HH.weight.data = filter_HH.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
return LL, LH, HL, HH
class WavePoolNew(nn.Module):
def __init__(self, in_channels):
super(WavePoolNew, self).__init__()
self.LL, self.LH, self.HL, self.HH = getWavelet(in_channels)
def forward(self, input_0):
arg0_1 = self.LL.weight
arg2_1 = self.LH.weight
arg3_1 = self.HL.weight
arg4_1 = self.HH.weight
arg1_1 = input_0
output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1])
return output[0], output[1], output[2], output[3]
| XHChen0528/ConditionalGAN_Develop | WavePool | false | 1,247 | [
"MIT"
] | 0 | 4ea6d8ea130589bc3ff8f3117660050ba41cdd0f | https://github.com/XHChen0528/ConditionalGAN_Develop/tree/4ea6d8ea130589bc3ff8f3117660050ba41cdd0f | import torch
import numpy as np
from torch import nn
def getWavelet(in_channels, pool=True):
"""wavelet decomposition using conv2d"""
harr_wav_L = 1 / np.sqrt(2) * np.ones((1, 2))
harr_wav_H = 1 / np.sqrt(2) * np.ones((1, 2))
harr_wav_H[0, 0] = -1 * harr_wav_H[0, 0]
harr_wav_LL = np.transpose(harr_wav_L) * harr_wav_L
harr_wav_LH = np.transpose(harr_wav_L) * harr_wav_H
harr_wav_HL = np.transpose(harr_wav_H) * harr_wav_L
harr_wav_HH = np.transpose(harr_wav_H) * harr_wav_H
filter_LL = torch.from_numpy(harr_wav_LL).unsqueeze(0)
filter_LH = torch.from_numpy(harr_wav_LH).unsqueeze(0)
filter_HL = torch.from_numpy(harr_wav_HL).unsqueeze(0)
filter_HH = torch.from_numpy(harr_wav_HH).unsqueeze(0)
if pool:
net = nn.Conv2d
else:
net = nn.ConvTranspose2d
LL = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
LH = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
HL = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
HH = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0,
bias=False, groups=in_channels)
LL.weight.requires_grad = False
LH.weight.requires_grad = False
HL.weight.requires_grad = False
HH.weight.requires_grad = False
LL.weight.data = filter_LL.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
LH.weight.data = filter_LH.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
HL.weight.data = filter_HL.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
HH.weight.data = filter_HH.float().unsqueeze(0).expand(in_channels, -1,
-1, -1)
return LL, LH, HL, HH
class Model(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.LL, self.LH, self.HL, self.HH = getWavelet(in_channels)
def forward(self, x):
return self.LL(x), self.LH(x), self.HL(x), self.HH(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
RelPositionMultiHeadedAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/st/cstdkeotatufdikalo45nsknyfku4ofvhlziami6ybawevy72lal.py
# Topologically Sorted Source Nodes: [matrix_ac, matrix_bd], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matrix_ac => clone
# matrix_bd => clone_2
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (y0), ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp2 + tmp5
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
tl.store(out_ptr1 + (x2 + (4*y3)), tmp6, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/mh/cmhet4vfl4jlxtge4zzaaa2nugvxpr5f4ge7rs72qwe2aow7vxwy.py
# Topologically Sorted Source Nodes: [matrix_ac], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matrix_ac => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/xp/cxp3ouwpdhdlmipppq44wjaey2obmthzec7uqoddmpoigfmupxdx.py
# Topologically Sorted Source Nodes: [matrix_bd], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matrix_bd => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/u3/cu3opkmzrgckmrk64elyf7ml2a2gq2grpcbtiejtq54tloftwrmr.py
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.eq]
# Source node to ATen node mapping:
# mask => eq
# Graph fragment:
# %eq : [num_users=3] = call_function[target=torch.ops.aten.eq.Scalar](args = (%unsqueeze, 0), kwargs = {})
triton_poi_fused_eq_3 = async_compile.triton('triton_poi_fused_eq_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/el/celmnq4cmthcneo2qgxp66qy3keynodxqjqu5pn2ewxs4o4pk4pv.py
# Topologically Sorted Source Nodes: [add_2, scores, scores_1, softmax], Original ATen: [aten.add, aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# add_2 => add_2
# scores => div
# scores_1 => full_default, where
# softmax => amax, exp, sub, sum_1
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_14, %view_17), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 1.0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_div_masked_fill_4 = async_compile.triton('triton_poi_fused__softmax_add_div_masked_fill_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_masked_fill_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_div_masked_fill_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (4*x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp9 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp16 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr2 + (2 + (4*x3)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp23 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (3 + (4*x3)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = float("-inf")
tmp7 = tl.where(tmp0, tmp6, tmp5)
tmp11 = tmp9 + tmp10
tmp12 = tmp11 * tmp4
tmp13 = tl.where(tmp8, tmp6, tmp12)
tmp14 = triton_helpers.maximum(tmp7, tmp13)
tmp18 = tmp16 + tmp17
tmp19 = tmp18 * tmp4
tmp20 = tl.where(tmp15, tmp6, tmp19)
tmp21 = triton_helpers.maximum(tmp14, tmp20)
tmp25 = tmp23 + tmp24
tmp26 = tmp25 * tmp4
tmp27 = tl.where(tmp22, tmp6, tmp26)
tmp28 = triton_helpers.maximum(tmp21, tmp27)
tmp29 = tmp7 - tmp28
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp13 - tmp28
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tmp34 = tmp20 - tmp28
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp33 + tmp35
tmp37 = tmp27 - tmp28
tmp38 = tl_math.exp(tmp37)
tmp39 = tmp36 + tmp38
tl.store(out_ptr0 + (x3), tmp28, xmask)
tl.store(out_ptr1 + (x3), tmp39, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/fn/cfnmi7pncqelvz56byxmokejmd37qckxv3wfecynqkl3e6gmjuq3.py
# Topologically Sorted Source Nodes: [add_2, scores, scores_1, softmax, attn], Original ATen: [aten.add, aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# add_2 => add_2
# attn => full_default_1, where_1
# scores => div
# scores_1 => full_default, where
# softmax => div_1, exp, sub
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_14, %view_17), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 1.0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %div_1), kwargs = {})
triton_poi_fused__softmax_add_div_masked_fill_5 = async_compile.triton('triton_poi_fused__softmax_add_div_masked_fill_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_masked_fill_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_div_masked_fill_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 64)
x4 = xindex % 16
x5 = xindex
x6 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x4 + (16*x3)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + (x5), xmask)
tmp2 = tl.load(in_ptr1 + (x5), xmask)
tmp8 = tl.load(in_ptr2 + (x6), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr3 + (x6), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = float("-inf")
tmp7 = tl.where(tmp0, tmp6, tmp5)
tmp9 = tmp7 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 / tmp11
tmp13 = 0.0
tmp14 = tl.where(tmp0, tmp13, tmp12)
tl.store(in_out_ptr0 + (x5), tmp12, xmask)
tl.store(out_ptr0 + (x5), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, 1), (1, 1))
assert_size_stride(primals_13, (4, 1), (1, 1))
assert_size_stride(primals_14, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf3)
del primals_11
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matrix_ac, matrix_bd], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, primals_12, primals_13, buf4, buf7, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_12
del primals_13
del primals_3
buf5 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matrix_ac], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, primals_5, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matrix_ac], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf8 = reinterpret_tensor(buf1, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [matrix_bd], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf3, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
buf9 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matrix_bd], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf8, (16, 1, 4), (4, 0, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.eq]
triton_poi_fused_eq_3.run(primals_14, buf10, 64, grid=grid(64), stream=stream0)
del primals_14
buf11 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf3 # reuse
buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [add_2, scores, scores_1, softmax], Original ATen: [aten.add, aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_add_div_masked_fill_4.run(buf10, buf6, buf9, buf11, buf12, 64, grid=grid(64), stream=stream0)
buf13 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add_2, scores, scores_1, softmax, attn], Original ATen: [aten.add, aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_add_div_masked_fill_5.run(buf13, buf10, buf9, buf11, buf12, buf14, 256, grid=grid(256), stream=stream0)
del buf9
buf15 = reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf12 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf2, primals_8, buf15, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf16 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf14, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf15, (16, 4, 1), (4, 1, 0), 0), out=buf16)
buf17 = reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf16, buf17, 16, 4, grid=grid(16, 4), stream=stream0)
buf18 = reinterpret_tensor(buf16, (16, 4), (4, 1), 0); del buf16 # reuse
# Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_16, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf18)
del primals_16
return (reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (16, 4), (4, 1), 0), buf10, buf13, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), primals_15, reinterpret_tensor(buf14, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf15, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from typing import Optional
from typing import Tuple
from torch import nn
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head: 'int', n_feat: 'int', dropout_rate: 'float'):
"""Construct an MultiHeadedAttention object."""
super().__init__()
assert n_feat % n_head == 0
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
return q, k, v
def forward_attention(self, value: 'torch.Tensor', scores:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
if mask is not None:
mask = mask.unsqueeze(1).eq(0)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
else:
attn = torch.softmax(scores, dim=-1)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value)
x = x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
return self.linear_out(x)
def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask)
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head, n_feat, dropout_rate):
"""Construct an RelPositionMultiHeadedAttention object."""
super().__init__(n_head, n_feat, dropout_rate)
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x, zero_triu: 'bool'=False):
"""Compute relative positinal encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, size).
zero_triu (bool): If true, return the lower triangular part of
the matrix.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
device=x.device, dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.size()[0], x.size()[1], x.size(3) + 1, x
.size(2))
x = x_padded[:, :, 1:].view_as(x)
if zero_triu:
ones = torch.ones((x.size(2), x.size(3)))
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
return x
def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor', pos_emb: 'torch.Tensor', mask: 'Optional[torch.Tensor]'
):
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
pos_emb (torch.Tensor): Positional embedding tensor
(#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
q = q.transpose(1, 2)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'n_head': 4, 'n_feat': 4, 'dropout_rate': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
from typing import Optional
from typing import Tuple
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + y0, ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp2 + tmp5
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
tl.store(out_ptr1 + (x2 + 4 * y3), tmp6, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_eq_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_add_div_masked_fill_4(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4 * x0 + 16 * x2), xmask, eviction_policy=
'evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + 4 * x3, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy
='evict_last').to(tl.int1)
tmp9 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (1 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last').to(tl.int1)
tmp16 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr2 + (2 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last').to(tl.int1)
tmp23 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp24 = tl.load(in_ptr2 + (3 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp3 = tmp1 + tmp2
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = float('-inf')
tmp7 = tl.where(tmp0, tmp6, tmp5)
tmp11 = tmp9 + tmp10
tmp12 = tmp11 * tmp4
tmp13 = tl.where(tmp8, tmp6, tmp12)
tmp14 = triton_helpers.maximum(tmp7, tmp13)
tmp18 = tmp16 + tmp17
tmp19 = tmp18 * tmp4
tmp20 = tl.where(tmp15, tmp6, tmp19)
tmp21 = triton_helpers.maximum(tmp14, tmp20)
tmp25 = tmp23 + tmp24
tmp26 = tmp25 * tmp4
tmp27 = tl.where(tmp22, tmp6, tmp26)
tmp28 = triton_helpers.maximum(tmp21, tmp27)
tmp29 = tmp7 - tmp28
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp13 - tmp28
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tmp34 = tmp20 - tmp28
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp33 + tmp35
tmp37 = tmp27 - tmp28
tmp38 = tl_math.exp(tmp37)
tmp39 = tmp36 + tmp38
tl.store(out_ptr0 + x3, tmp28, xmask)
tl.store(out_ptr1 + x3, tmp39, xmask)
@triton.jit
def triton_poi_fused__softmax_add_div_masked_fill_5(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 64
x4 = xindex % 16
x5 = xindex
x6 = xindex // 4
tmp0 = tl.load(in_ptr0 + (x4 + 16 * x3), xmask, eviction_policy=
'evict_last').to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x5, xmask)
tmp2 = tl.load(in_ptr1 + x5, xmask)
tmp8 = tl.load(in_ptr2 + x6, xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr3 + x6, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = float('-inf')
tmp7 = tl.where(tmp0, tmp6, tmp5)
tmp9 = tmp7 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 / tmp11
tmp13 = 0.0
tmp14 = tl.where(tmp0, tmp13, tmp12)
tl.store(in_out_ptr0 + x5, tmp12, xmask)
tl.store(out_ptr0 + x5, tmp14, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, 1), (1, 1))
assert_size_stride(primals_13, (4, 1), (1, 1))
assert_size_stride(primals_14, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf3)
del primals_11
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, primals_12,
primals_13, buf4, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1,
num_stages=1)
del primals_12
del primals_13
del primals_3
buf5 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_1[grid(16, 4)](buf1, primals_5, buf5, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf8 = reinterpret_tensor(buf1, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf1
triton_poi_fused_clone_2[grid(16, 4)](buf3, buf8, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf8, (16, 1, 4), (4, 0, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool)
triton_poi_fused_eq_3[grid(64)](primals_14, buf10, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_14
buf11 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf3
buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_add_div_masked_fill_4[grid(64)](buf10,
buf6, buf9, buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf13 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_add_div_masked_fill_5[grid(256)](buf13,
buf10, buf9, buf11, buf12, buf14, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf9
buf15 = reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf12
triton_poi_fused_clone_1[grid(16, 4)](buf2, primals_8, buf15, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_8
buf16 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf14, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf15, (16, 4, 1), (4, 1, 0), 0), out=buf16)
buf17 = reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf11
triton_poi_fused_clone_2[grid(16, 4)](buf16, buf17, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf18 = reinterpret_tensor(buf16, (16, 4), (4, 1), 0)
del buf16
extern_kernels.addmm(primals_16, reinterpret_tensor(buf17, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf18)
del primals_16
return reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_10, (16, 4), (4, 1), 0
), buf10, buf13, reinterpret_tensor(buf17, (16, 4), (4, 1), 0
), primals_15, reinterpret_tensor(buf14, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf15, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 4), 0
), reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0)
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head: 'int', n_feat: 'int', dropout_rate: 'float'):
"""Construct an MultiHeadedAttention object."""
super().__init__()
assert n_feat % n_head == 0
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
return q, k, v
def forward_attention(self, value: 'torch.Tensor', scores:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
if mask is not None:
mask = mask.unsqueeze(1).eq(0)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
else:
attn = torch.softmax(scores, dim=-1)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value)
x = x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
return self.linear_out(x)
def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask)
class RelPositionMultiHeadedAttentionNew(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head, n_feat, dropout_rate):
"""Construct an RelPositionMultiHeadedAttention object."""
super().__init__(n_head, n_feat, dropout_rate)
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
def rel_shift(self, x, zero_triu: 'bool'=False):
"""Compute relative positinal encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, size).
zero_triu (bool): If true, return the lower triangular part of
the matrix.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
device=x.device, dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.size()[0], x.size()[1], x.size(3) + 1, x
.size(2))
x = x_padded[:, :, 1:].view_as(x)
if zero_triu:
ones = torch.ones((x.size(2), x.size(3)))
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
return x
def forward(self, input_0, input_1, input_2, input_3, input_4):
primals_12 = self.pos_bias_u
primals_13 = self.pos_bias_v
primals_2 = self.linear_q.weight
primals_3 = self.linear_q.bias
primals_4 = self.linear_k.weight
primals_5 = self.linear_k.bias
primals_7 = self.linear_v.weight
primals_8 = self.linear_v.bias
primals_11 = self.linear_out.weight
primals_16 = self.linear_out.bias
primals_15 = self.linear_pos.weight
primals_1 = input_0
primals_6 = input_1
primals_9 = input_2
primals_10 = input_3
primals_14 = input_4
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16])
return output[0]
| WenjingXia/wenet | RelPositionMultiHeadedAttention | false | 1,248 | [
"Apache-2.0"
] | 0 | 9a1fd005cd06be16518a5476076b2ae6af2ec41a | https://github.com/WenjingXia/wenet/tree/9a1fd005cd06be16518a5476076b2ae6af2ec41a | import math
import torch
from typing import Optional
from typing import Tuple
from torch import nn
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(self, n_head: 'int', n_feat: 'int', dropout_rate: 'float'):
"""Construct an MultiHeadedAttention object."""
super().__init__()
assert n_feat % n_head == 0
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
def forward_qkv(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor, size
(#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor, size
(#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor, size
(#batch, n_head, time2, d_k).
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
return q, k, v
def forward_attention(self, value: 'torch.Tensor', scores:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value, size
(#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score, size
(#batch, n_head, time1, time2).
mask (torch.Tensor): Mask, size (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
if mask is not None:
mask = mask.unsqueeze(1).eq(0)
scores = scores.masked_fill(mask, -float('inf'))
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
else:
attn = torch.softmax(scores, dim=-1)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value)
x = x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
return self.linear_out(x)
def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value:
'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask)
class Model(MultiHeadedAttention):
"""Multi-Head Attention layer with rela
# ... truncated (>4000 chars) for memory efficiency |
ActivationQuantizer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/ax/caxqwy7hkta2iwkxoactganfzlkk726zsu664tgnokgen2uwjeb4.py
# Topologically Sorted Source Nodes: [mul, output, truediv, sign, abs_1, add, floor, output_1, output_2], Original ATen: [aten.mul, aten.clamp, aten.div, aten.sign, aten.abs, aten.add, aten.floor]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# floor => floor
# mul => mul
# output => clamp_max, clamp_min
# output_1 => mul_1
# output_2 => mul_2
# sign => sign
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 0.06666666666666667), kwargs = {})
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%div,), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign, %floor), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 0.06666666666666667), kwargs = {})
triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0 = async_compile.triton('triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 1.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 15.0
tmp8 = tmp6 * tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = tmp9 < tmp8
tmp11 = tmp10.to(tl.int8)
tmp12 = tmp8 < tmp9
tmp13 = tmp12.to(tl.int8)
tmp14 = tmp11 - tmp13
tmp15 = tmp14.to(tmp8.dtype)
tmp16 = tl_math.abs(tmp8)
tmp17 = 0.5
tmp18 = tmp16 + tmp17
tmp19 = libdevice.floor(tmp18)
tmp20 = tmp15 * tmp19
tmp21 = 0.06666666666666667
tmp22 = tmp20 * tmp21
tl.store(out_ptr0 + (x0), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, output, truediv, sign, abs_1, add, floor, output_1, output_2], Original ATen: [aten.mul, aten.clamp, aten.div, aten.sign, aten.abs, aten.add, aten.floor]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import torch
import torch.nn as nn
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class ActivationQuantizer(nn.Module):
def __init__(self, a_bits):
super(ActivationQuantizer, self).__init__()
self.a_bits = a_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.a_bits == 32:
output = input
elif self.a_bits == 1:
None
assert self.a_bits != 1
else:
output = torch.clamp(input * 0.1, 0, 1)
scale = 1 / float(2 ** self.a_bits - 1)
output = self.round(output / scale) * scale
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'a_bits': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.autograd import Function
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 1.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 15.0
tmp8 = tmp6 * tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = tmp9 < tmp8
tmp11 = tmp10.to(tl.int8)
tmp12 = tmp8 < tmp9
tmp13 = tmp12.to(tl.int8)
tmp14 = tmp11 - tmp13
tmp15 = tmp14.to(tmp8.dtype)
tmp16 = tl_math.abs(tmp8)
tmp17 = 0.5
tmp18 = tmp16 + tmp17
tmp19 = libdevice.floor(tmp18)
tmp20 = tmp15 * tmp19
tmp21 = 0.06666666666666667
tmp22 = tmp20 * tmp21
tl.store(out_ptr0 + x0, tmp22, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class ActivationQuantizerNew(nn.Module):
def __init__(self, a_bits):
super(ActivationQuantizerNew, self).__init__()
self.a_bits = a_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| XueYue404/QNN | ActivationQuantizer | false | 1,249 | [
"MIT"
] | 0 | 43cea970404156b591088d77672df58261edf1eb | https://github.com/XueYue404/QNN/tree/43cea970404156b591088d77672df58261edf1eb | from torch.autograd import Function
import torch
import torch.nn as nn
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class Model(nn.Module):
def __init__(self, a_bits):
super().__init__()
self.a_bits = a_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.a_bits == 32:
output = input
elif self.a_bits == 1:
None
assert self.a_bits != 1
else:
output = torch.clamp(input * 0.1, 0, 1)
scale = 1 / float(2 ** self.a_bits - 1)
output = self.round(output / scale) * scale
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ChannelReplicate | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/tl/ctlha7utx2yjv6jjhvmklxymkaqfowxfnz3rswzevys4mrusqnji.py
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_2 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %view], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 12
x0 = xindex % 16
x2 = (xindex // 192)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 12, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr0 + (x0 + (16*(((-4) + x1) % 4)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12, 4, 4), (192, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 768, grid=grid(768), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ChannelReplicate(nn.Module):
def __init__(self, factor=3):
super(ChannelReplicate, self).__init__()
self.factor = factor
def forward(self, input):
template = input
for i in range(0, self.factor - 1):
input = torch.cat((template, input), 1)
return input
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 12
x0 = xindex % 16
x2 = xindex // 192
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 12, tl.int64)
tmp9 = tl.load(in_ptr0 + (x0 + 16 * ((-4 + x1) % 4) + 64 * x2), tmp6 &
xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12, 4, 4), (192, 16, 4, 1), torch.float32
)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(768)](arg0_1, buf0, 768, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ChannelReplicateNew(nn.Module):
def __init__(self, factor=3):
super(ChannelReplicateNew, self).__init__()
self.factor = factor
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| YingqiLiulll/scrips_for_SR | ChannelReplicate | false | 1,250 | [
"MIT"
] | 0 | 04fa6fdaf157e913d3e2521cd80315a10a2ccedc | https://github.com/YingqiLiulll/scrips_for_SR/tree/04fa6fdaf157e913d3e2521cd80315a10a2ccedc | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, factor=3):
super().__init__()
self.factor = factor
def forward(self, input):
template = input
for i in range(0, self.factor - 1):
input = torch.cat((template, input), 1)
return input
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
HFM | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/o4/co4unbqztafxk5wsbnua63h3xnwixyge6ajhdkpgoy4z5j5xz3d7.py
# Topologically Sorted Source Nodes: [input_1, input_2, sub], Original ATen: [aten.avg_pool2d, aten._unsafe_index, aten.sub]
# Source node to ATen node mapping:
# input_1 => avg_pool2d
# input_2 => _unsafe_index
# sub => sub
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2]), kwargs = {})
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%avg_pool2d, [None, None, %unsqueeze, %convert_element_type_3]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %_unsafe_index), kwargs = {})
triton_poi_fused__unsafe_index_avg_pool2d_sub_0 = async_compile.triton('triton_poi_fused__unsafe_index_avg_pool2d_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_avg_pool2d_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_avg_pool2d_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = x1
tmp2 = tmp1.to(tl.float32)
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = tmp4.to(tl.int32)
tmp6 = x0
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp7 * tmp3
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.load(in_ptr0 + ((2*tmp9) + (8*tmp5) + (16*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (1 + (2*tmp9) + (8*tmp5) + (16*x2)), xmask, eviction_policy='evict_last')
tmp12 = tmp11 + tmp10
tmp13 = tl.load(in_ptr0 + (4 + (2*tmp9) + (8*tmp5) + (16*x2)), xmask, eviction_policy='evict_last')
tmp14 = tmp13 + tmp12
tmp15 = tl.load(in_ptr0 + (5 + (2*tmp9) + (8*tmp5) + (16*x2)), xmask, eviction_policy='evict_last')
tmp16 = tmp15 + tmp14
tmp17 = 0.25
tmp18 = tmp16 * tmp17
tmp19 = tmp0 - tmp18
tl.store(out_ptr0 + (x3), tmp19, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1, input_2, sub], Original ATen: [aten.avg_pool2d, aten._unsafe_index, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_avg_pool2d_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class HFM(nn.Module):
def __init__(self, k=2):
super().__init__()
self.k = k
self.net = nn.Sequential(nn.AvgPool2d(kernel_size=self.k, stride=
self.k), nn.Upsample(scale_factor=self.k, mode='nearest'))
def forward(self, tL):
assert tL.shape[2] % self.k == 0, 'h, w must divisible by k'
return tL - self.net(tL)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_avg_pool2d_sub_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = x1
tmp2 = tmp1.to(tl.float32)
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = tmp4.to(tl.int32)
tmp6 = x0
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp7 * tmp3
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.load(in_ptr0 + (2 * tmp9 + 8 * tmp5 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (1 + 2 * tmp9 + 8 * tmp5 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp12 = tmp11 + tmp10
tmp13 = tl.load(in_ptr0 + (4 + 2 * tmp9 + 8 * tmp5 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp14 = tmp13 + tmp12
tmp15 = tl.load(in_ptr0 + (5 + 2 * tmp9 + 8 * tmp5 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp16 = tmp15 + tmp14
tmp17 = 0.25
tmp18 = tmp16 * tmp17
tmp19 = tmp0 - tmp18
tl.store(out_ptr0 + x3, tmp19, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_avg_pool2d_sub_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class HFMNew(nn.Module):
def __init__(self, k=2):
super().__init__()
self.k = k
self.net = nn.Sequential(nn.AvgPool2d(kernel_size=self.k, stride=
self.k), nn.Upsample(scale_factor=self.k, mode='nearest'))
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| YingqiLiulll/scrips_for_SR | HFM | false | 1,251 | [
"MIT"
] | 0 | 04fa6fdaf157e913d3e2521cd80315a10a2ccedc | https://github.com/YingqiLiulll/scrips_for_SR/tree/04fa6fdaf157e913d3e2521cd80315a10a2ccedc | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, k=2):
super().__init__()
self.k = k
self.net = nn.Sequential(nn.AvgPool2d(kernel_size=self.k, stride=
self.k), nn.Upsample(scale_factor=self.k, mode='nearest'))
def forward(self, tL):
assert tL.shape[2] % self.k == 0, 'h, w must divisible by k'
return tL - self.net(tL)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
InformedSender | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/gy/cgyfx47penjbxrnlqdpur6wznrc2npiddss2rmhvsk53kjjd4wdb.py
# Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# h_4 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_1, %unsqueeze_3, %unsqueeze_5, %unsqueeze_7], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + (4*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr3 + (x0 + (4*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x3), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/2s/c2s2pec3vduo4xn2kfu53hypzbhir2ql56lmvazfmymhwv2ehhv5.py
# Topologically Sorted Source Nodes: [h_6], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# h_6 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/3w/c3wxeqk5okayj66zgai4mx3d5w7kam547j5qjthdexbfu7754q7x.py
# Topologically Sorted Source Nodes: [h_9], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# h_9 => sigmoid_1
# Graph fragment:
# %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/6u/c6ultulfey36ctsvwbs642uch4qmc3elyv6cdtf3dh7jgv5ywknj.py
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# logits => exp, log, sub_1, sum_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm_4, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %log), kwargs = {})
triton_per_fused__log_softmax_3 = async_compile.triton('triton_per_fused__log_softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 128],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 100
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (100*x0)), rmask & xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(rmask & xmask, tmp3, float("-inf"))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = tmp7 * tmp1
tmp9 = tl_math.exp(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(rmask & xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = tl_math.log(tmp13)
tmp15 = tmp8 - tmp14
tl.store(out_ptr2 + (r1 + (100*x0)), tmp15, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 1, 4, 1), (4, 4, 1, 1))
assert_size_stride(primals_4, (1, 1, 4, 1), (4, 4, 1, 1))
assert_size_stride(primals_5, (100, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_i], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_i_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_i_6], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_i_9], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, buf1, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0)
del buf0
del buf1
del buf2
del buf3
# Topologically Sorted Source Nodes: [h_5], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_3, stride=(4, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 1, 4), (16, 4, 4, 1))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [h_6], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf6, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [h_8], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (4, 1, 4, 4), (16, 4, 4, 1), 0), primals_4, stride=(4, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 1, 1, 4), (4, 4, 4, 1))
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [h_9], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf8, 16, grid=grid(16), stream=stream0)
buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_12], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 100), (1, 4), 0), out=buf9)
buf12 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten._log_softmax]
triton_per_fused__log_softmax_3.run(buf9, buf12, 4, 100, grid=grid(4), stream=stream0)
del buf9
return (buf12, primals_3, primals_4, reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), buf4, buf6, buf8, buf12, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.utils.data
import torch.distributions
class InformedSender(nn.Module):
def __init__(self, game_size, feat_size, embedding_size, hidden_size,
vocab_size=100, temp=1.0):
super(InformedSender, self).__init__()
self.game_size = game_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.temp = temp
self.lin1 = nn.Linear(feat_size, embedding_size, bias=False)
self.conv2 = nn.Conv2d(1, hidden_size, kernel_size=(game_size, 1),
stride=(game_size, 1), bias=False)
self.conv3 = nn.Conv2d(1, 1, kernel_size=(hidden_size, 1), stride=(
hidden_size, 1), bias=False)
self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False)
def forward(self, x, _aux_input=None):
emb = self.return_embeddings(x)
h = self.conv2(emb)
h = torch.sigmoid(h)
h = h.transpose(1, 2)
h = self.conv3(h)
h = torch.sigmoid(h)
h = h.squeeze(dim=1)
h = h.squeeze(dim=1)
h = self.lin4(h)
h = h.mul(1.0 / self.temp)
logits = F.log_softmax(h, dim=1)
return logits
def return_embeddings(self, x):
embs = []
for i in range(self.game_size):
h = x[i]
if len(h.size()) == 3:
h = h.squeeze(dim=-1)
h_i = self.lin1(h)
h_i = h_i.unsqueeze(dim=1)
h_i = h_i.unsqueeze(dim=1)
embs.append(h_i)
h = torch.cat(embs, dim=2)
return h
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'game_size': 4, 'feat_size': 4, 'embedding_size': 4,
'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4 * x2), tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + 4 * x2), tmp14 & xmask, eviction_policy
='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 4, tl.int64)
tmp19 = tl.load(in_ptr3 + (x0 + 4 * x2), tmp16 & xmask, eviction_policy
='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x3, tmp22, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_per_fused__log_softmax_3(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
rnumel = 100
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 100 * x0), rmask & xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(rmask & xmask, tmp3, float('-inf'))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = tmp7 * tmp1
tmp9 = tl_math.exp(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(rmask & xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = tl_math.log(tmp13)
tmp15 = tmp8 - tmp14
tl.store(out_ptr2 + (r1 + 100 * x0), tmp15, rmask & xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 1, 4, 1), (4, 4, 1, 1))
assert_size_stride(primals_4, (1, 1, 4, 1), (4, 4, 1, 1))
assert_size_stride(primals_5, (100, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(64)](buf0, buf1, buf2, buf3, buf4, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del buf1
del buf2
del buf3
buf5 = extern_kernels.convolution(buf4, primals_3, stride=(4, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 1, 4), (16, 4, 4, 1))
buf6 = buf5
del buf5
triton_poi_fused_sigmoid_1[grid(64)](buf6, 64, XBLOCK=64, num_warps
=1, num_stages=1)
buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (4, 1, 4,
4), (16, 4, 4, 1), 0), primals_4, stride=(4, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf7, (4, 1, 1, 4), (4, 4, 4, 1))
buf8 = buf7
del buf7
triton_poi_fused_sigmoid_2[grid(16)](buf8, 16, XBLOCK=16, num_warps
=1, num_stages=1)
buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 100), (1, 4), 0), out=buf9)
buf12 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
triton_per_fused__log_softmax_3[grid(4)](buf9, buf12, 4, 100,
XBLOCK=1, num_warps=2, num_stages=1)
del buf9
return buf12, primals_3, primals_4, reinterpret_tensor(primals_1, (4, 4
), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (4, 1), 16
), reinterpret_tensor(primals_1, (4, 4), (4, 1), 32
), reinterpret_tensor(primals_1, (4, 4), (4, 1), 48
), buf4, buf6, buf8, buf12, primals_5
class InformedSenderNew(nn.Module):
def __init__(self, game_size, feat_size, embedding_size, hidden_size,
vocab_size=100, temp=1.0):
super(InformedSenderNew, self).__init__()
self.game_size = game_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.temp = temp
self.lin1 = nn.Linear(feat_size, embedding_size, bias=False)
self.conv2 = nn.Conv2d(1, hidden_size, kernel_size=(game_size, 1),
stride=(game_size, 1), bias=False)
self.conv3 = nn.Conv2d(1, 1, kernel_size=(hidden_size, 1), stride=(
hidden_size, 1), bias=False)
self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False)
def return_embeddings(self, x):
embs = []
for i in range(self.game_size):
h = x[i]
if len(h.size()) == 3:
h = h.squeeze(dim=-1)
h_i = self.lin1(h)
h_i = h_i.unsqueeze(dim=1)
h_i = h_i.unsqueeze(dim=1)
embs.append(h_i)
h = torch.cat(embs, dim=2)
return h
def forward(self, input_0):
primals_2 = self.lin1.weight
primals_3 = self.conv2.weight
primals_4 = self.conv3.weight
primals_5 = self.lin4.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| XeniaOhmer/SystematicRepresentations | InformedSender | false | 1,252 | [
"MIT"
] | 0 | 825208d1be659dc820e61f577cdb53afc47302f4 | https://github.com/XeniaOhmer/SystematicRepresentations/tree/825208d1be659dc820e61f577cdb53afc47302f4 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.utils.data
import torch.distributions
class Model(nn.Module):
def __init__(self, game_size, feat_size, embedding_size, hidden_size,
vocab_size=100, temp=1.0):
super().__init__()
self.game_size = game_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.temp = temp
self.lin1 = nn.Linear(feat_size, embedding_size, bias=False)
self.conv2 = nn.Conv2d(1, hidden_size, kernel_size=(game_size, 1),
stride=(game_size, 1), bias=False)
self.conv3 = nn.Conv2d(1, 1, kernel_size=(hidden_size, 1), stride=(
hidden_size, 1), bias=False)
self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False)
def forward(self, x, _aux_input=None):
emb = self.return_embeddings(x)
h = self.conv2(emb)
h = torch.sigmoid(h)
h = h.transpose(1, 2)
h = self.conv3(h)
h = torch.sigmoid(h)
h = h.squeeze(dim=1)
h = h.squeeze(dim=1)
h = self.lin4(h)
h = h.mul(1.0 / self.temp)
logits = F.log_softmax(h, dim=1)
return logits
def return_embeddings(self, x):
embs = []
for i in range(self.game_size):
h = x[i]
if len(h.size()) == 3:
h = h.squeeze(dim=-1)
h_i = self.lin1(h)
h_i = h_i.unsqueeze(dim=1)
h_i = h_i.unsqueeze(dim=1)
embs.append(h_i)
h = torch.cat(embs, dim=2)
return h
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'game_size': 4, 'feat_size': 4, 'embedding_size': 4,
'hidden_size': 4}]
|
ScaledDotProductAttention | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/eb/cebif7n46pnveudkauh2e6eqfvhyna4txmr2zqwf4dgc22bthlfo.py
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_1 => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 4), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/fj/cfjl47pvhwbpfbvh6rfehwy5ijxc5p3zgkld2lwf3mw5bl6pbkak.py
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_1 => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3)
del arg2_1
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class ScaledDotProductAttention(nn.Module):
def __init__(self, temperature, dropout=0.1):
super(ScaledDotProductAttention, self).__init__()
self.temperature = temperature
self.dropout = nn.Dropout(p=dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q, k.transpose(2, 3)) / self.temperature
if mask is not None:
attn = attn.masked_fill(mask=mask, value=float('-inf'))
attn = torch.softmax(attn, dim=-1)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
return out, attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'temperature': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1
), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 1, 4), 0),
out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3
)
del arg2_1
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2
class ScaledDotProductAttentionNew(nn.Module):
def __init__(self, temperature, dropout=0.1):
super(ScaledDotProductAttentionNew, self).__init__()
self.temperature = temperature
self.dropout = nn.Dropout(p=dropout)
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
| YacobBY/vedastr | ScaledDotProductAttention | false | 1,253 | [
"Apache-2.0"
] | 0 | 2353780489b58d2398b9af49d238ef0df3f45f2a | https://github.com/YacobBY/vedastr/tree/2353780489b58d2398b9af49d238ef0df3f45f2a | import torch
from torch import nn
class Model(nn.Module):
def __init__(self, temperature, dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(p=dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q, k.transpose(2, 3)) / self.temperature
if mask is not None:
attn = attn.masked_fill(mask=mask, value=float('-inf'))
attn = torch.softmax(attn, dim=-1)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
return out, attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
RelationCrossing | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/te/ctez6v53ld4k45ykiwq5ndlpz3jrny2atstdxadog7gcnit65abw.py
# Topologically Sorted Source Nodes: [mul, dsttype_node_relation_attention], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# dsttype_node_relation_attention => sum_1
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %arg1_1), kwargs = {})
# %sum_1 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1], True), kwargs = {})
triton_poi_fused_mul_sum_0 = async_compile.triton('triton_poi_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/2i/c2ir37xoljdhwkg75h2sbixyvepyluu4socgnd4wiw7oq57nugu4.py
# Topologically Sorted Source Nodes: [leaky_relu, dsttype_node_relation_attention_1], Original ATen: [aten.leaky_relu, aten._softmax]
# Source node to ATen node mapping:
# dsttype_node_relation_attention_1 => amax, exp, sub
# leaky_relu => gt, mul_1, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%sum_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %sum_1, %mul_1), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_leaky_relu_1 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp6 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp7 = tmp6 > tmp1
tmp8 = tmp6 * tmp3
tmp9 = tl.where(tmp7, tmp6, tmp8)
tmp11 = tmp10 > tmp1
tmp12 = tmp10 * tmp3
tmp13 = tl.where(tmp11, tmp10, tmp12)
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 > tmp1
tmp17 = tmp15 * tmp3
tmp18 = tl.where(tmp16, tmp15, tmp17)
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp21 = tmp20 > tmp1
tmp22 = tmp20 * tmp3
tmp23 = tl.where(tmp21, tmp20, tmp22)
tmp24 = triton_helpers.maximum(tmp19, tmp23)
tmp25 = tmp5 - tmp24
tmp26 = tl_math.exp(tmp25)
tl.store(out_ptr0 + (x2), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/f5/cf5347orlkm5ylmh4iouw6qvowwebewwg66dnqrhzt7tg7a4irp5.py
# Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# dsttype_node_relation_attention_1 => div, sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/af/cafnizcuehobeophh3e6mmdetxkitfomc7vxb4m5zc4zqmm42u5i.py
# Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1, mul_1, dsttype_node_features_1], Original ATen: [aten._softmax, aten.mul, aten.sum]
# Source node to ATen node mapping:
# dsttype_node_features_1 => sum_3
# dsttype_node_relation_attention_1 => div, sum_2
# mul_1 => mul_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %div), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [0]), kwargs = {})
triton_poi_fused__softmax_mul_sum_3 = async_compile.triton('triton_poi_fused__softmax_mul_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x2), xmask)
tmp4 = tl.load(in_ptr1 + (16 + x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (128 + x2), xmask)
tmp8 = tl.load(in_ptr1 + (32 + x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (192 + x2), xmask)
tmp12 = tl.load(in_ptr1 + (48 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [mul, dsttype_node_relation_attention], Original ATen: [aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sum_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu, dsttype_node_relation_attention_1], Original ATen: [aten.leaky_relu, aten._softmax]
triton_poi_fused__softmax_leaky_relu_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [dsttype_node_relation_attention_1, mul_1, dsttype_node_features_1], Original ATen: [aten._softmax, aten.mul, aten.sum]
triton_poi_fused__softmax_mul_sum_3.run(arg0_1, buf2, buf3, 64, grid=grid(64), stream=stream0)
del arg0_1
del buf2
return (reinterpret_tensor(buf3, (4, 16), (16, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class RelationCrossing(nn.Module):
def __init__(self, in_feats: 'int', out_feats: 'int', num_heads: 'int',
dropout: 'float'=0.0, negative_slope: 'float'=0.2):
"""
Description
----------
Relation crossing layer
Parameters
----------
in_feats : pair of ints
input feature size
out_feats : int
output feature size
num_heads : int
number of heads in Multi-Head Attention
dropout : float
optional, dropout rate, defaults: 0.0
negative_slope : float
optional, negative slope rate, defaults: 0.2
"""
super(RelationCrossing, self).__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self._num_heads = num_heads
self.dropout = nn.Dropout(dropout)
self.leaky_relu = nn.LeakyReLU(negative_slope)
def forward(self, dsttype_node_features: 'torch.Tensor',
relations_crossing_attention_weight: 'nn.Parameter'):
"""
Parameters
----------
dsttype_node_features:
a tensor of (dsttype_node_relations_num, num_dst_nodes, n_heads * hidden_dim)
relations_crossing_attention_weight:
Parameter the shape is (n_heads, hidden_dim)
Returns:
----------
output_features: Tensor
"""
if len(dsttype_node_features) == 1:
dsttype_node_features = dsttype_node_features.squeeze(dim=0)
else:
dsttype_node_features = dsttype_node_features.reshape(
dsttype_node_features.shape[0], -1, self._num_heads, self.
_out_feats)
dsttype_node_relation_attention = (dsttype_node_features *
relations_crossing_attention_weight).sum(dim=-1, keepdim=True)
dsttype_node_relation_attention = F.softmax(self.leaky_relu(
dsttype_node_relation_attention), dim=0)
dsttype_node_features = (dsttype_node_features *
dsttype_node_relation_attention).sum(dim=0)
dsttype_node_features = self.dropout(dsttype_node_features)
dsttype_node_features = dsttype_node_features.reshape(-1, self.
_num_heads * self._out_feats)
return dsttype_node_features
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_feats': 4, 'out_feats': 4, 'num_heads': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused__softmax_leaky_relu_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp6 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp7 = tmp6 > tmp1
tmp8 = tmp6 * tmp3
tmp9 = tl.where(tmp7, tmp6, tmp8)
tmp11 = tmp10 > tmp1
tmp12 = tmp10 * tmp3
tmp13 = tl.where(tmp11, tmp10, tmp12)
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 > tmp1
tmp17 = tmp15 * tmp3
tmp18 = tl.where(tmp16, tmp15, tmp17)
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp21 = tmp20 > tmp1
tmp22 = tmp20 * tmp3
tmp23 = tl.where(tmp21, tmp20, tmp22)
tmp24 = triton_helpers.maximum(tmp19, tmp23)
tmp25 = tmp5 - tmp24
tmp26 = tl_math.exp(tmp25)
tl.store(out_ptr0 + x2, tmp26, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__softmax_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + x2), xmask)
tmp4 = tl.load(in_ptr1 + (16 + x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (128 + x2), xmask)
tmp8 = tl.load(in_ptr1 + (32 + x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (192 + x2), xmask)
tmp12 = tl.load(in_ptr1 + (48 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sum_0[grid(64)](arg0_1, arg1_1, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_leaky_relu_1[grid(64)](buf0, buf1, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_2[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
triton_poi_fused__softmax_mul_sum_3[grid(64)](arg0_1, buf2, buf3,
64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del buf2
return reinterpret_tensor(buf3, (4, 16), (16, 1), 0),
class RelationCrossingNew(nn.Module):
def __init__(self, in_feats: 'int', out_feats: 'int', num_heads: 'int',
dropout: 'float'=0.0, negative_slope: 'float'=0.2):
"""
Description
----------
Relation crossing layer
Parameters
----------
in_feats : pair of ints
input feature size
out_feats : int
output feature size
num_heads : int
number of heads in Multi-Head Attention
dropout : float
optional, dropout rate, defaults: 0.0
negative_slope : float
optional, negative slope rate, defaults: 0.2
"""
super(RelationCrossingNew, self).__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self._num_heads = num_heads
self.dropout = nn.Dropout(dropout)
self.leaky_relu = nn.LeakyReLU(negative_slope)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Xinstein3033/OpenHGNN | RelationCrossing | false | 1,254 | [
"Apache-2.0"
] | 0 | a9ca499834523419ecdaaa09e4b42f640486f262 | https://github.com/Xinstein3033/OpenHGNN/tree/a9ca499834523419ecdaaa09e4b42f640486f262 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, in_feats: 'int', out_feats: 'int', num_heads: 'int',
dropout: 'float'=0.0, negative_slope: 'float'=0.2):
"""
Description
----------
Relation crossing layer
Parameters
----------
in_feats : pair of ints
input feature size
out_feats : int
output feature size
num_heads : int
number of heads in Multi-Head Attention
dropout : float
optional, dropout rate, defaults: 0.0
negative_slope : float
optional, negative slope rate, defaults: 0.2
"""
super().__init__()
self._in_feats = in_feats
self._out_feats = out_feats
self._num_heads = num_heads
self.dropout = nn.Dropout(dropout)
self.leaky_relu = nn.LeakyReLU(negative_slope)
def forward(self, dsttype_node_features: 'torch.Tensor',
relations_crossing_attention_weight: 'nn.Parameter'):
"""
Parameters
----------
dsttype_node_features:
a tensor of (dsttype_node_relations_num, num_dst_nodes, n_heads * hidden_dim)
relations_crossing_attention_weight:
Parameter the shape is (n_heads, hidden_dim)
Returns:
----------
output_features: Tensor
"""
if len(dsttype_node_features) == 1:
dsttype_node_features = dsttype_node_features.squeeze(dim=0)
else:
dsttype_node_features = dsttype_node_features.reshape(
dsttype_node_features.shape[0], -1, self._num_heads, self.
_out_feats)
dsttype_node_relation_attention = (dsttype_node_features *
relations_crossing_attention_weight).sum(dim=-1, keepdim=True)
dsttype_node_relation_attention = F.softmax(self.leaky_relu(
dsttype_node_relation_attention), dim=0)
dsttype_node_features = (dsttype_node_features *
dsttype_node_relation_attention).sum(dim=0)
dsttype_node_features = self.dropout(dsttype_node_features)
dsttype_node_features = dsttype_node_features.reshape(-1, self.
_num_heads * self._out_feats)
return dsttype_node_features
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
WeightQuantizer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/ht/chtz4skjkeiftsmfkvq537et5kk2r3dmbv6xickaujadc75z7ru4.py
# Topologically Sorted Source Nodes: [output, truediv, abs_1, max_1, truediv_1, output_1, truediv_2, sign, abs_2, add_1, floor, output_2, output_3, mul_2, output_4], Original ATen: [aten.tanh, aten.div, aten.abs, aten.max, aten.add, aten.sign, aten.floor, aten.mul, aten.sub]
# Source node to ATen node mapping:
# abs_1 => abs_1
# abs_2 => abs_2
# add_1 => add_1
# floor => floor
# max_1 => max_1
# mul_2 => mul_2
# output => tanh
# output_1 => add
# output_2 => mul
# output_3 => mul_1
# output_4 => sub
# sign => sign
# truediv => div
# truediv_1 => div_1
# truediv_2 => div_2
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%arg0_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%tanh, 2), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%tanh,), kwargs = {})
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%abs_1,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%div, %max_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_1, 0.5), kwargs = {})
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 0.06666666666666667), kwargs = {})
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%div_2,), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div_2,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_2, 0.5), kwargs = {})
# %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%add_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign, %floor), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 0.06666666666666667), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, 1), kwargs = {})
triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0 = async_compile.triton('triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0(in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = libdevice.tanh(tmp0)
tmp2 = tl_math.abs(tmp1)
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp3, 0))
tmp6 = 0.5
tmp7 = tmp1 * tmp6
tmp8 = tmp7 / tmp5
tmp9 = tmp8 + tmp6
tmp10 = 15.0
tmp11 = tmp9 * tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = tmp12 < tmp11
tmp14 = tmp13.to(tl.int8)
tmp15 = tmp11 < tmp12
tmp16 = tmp15.to(tl.int8)
tmp17 = tmp14 - tmp16
tmp18 = tmp17.to(tmp11.dtype)
tmp19 = tl_math.abs(tmp11)
tmp20 = tmp19 + tmp6
tmp21 = libdevice.floor(tmp20)
tmp22 = tmp18 * tmp21
tmp23 = 0.06666666666666667
tmp24 = tmp22 * tmp23
tmp25 = 2.0
tmp26 = tmp24 * tmp25
tmp27 = 1.0
tmp28 = tmp26 - tmp27
tl.store(out_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp28, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output, truediv, abs_1, max_1, truediv_1, output_1, truediv_2, sign, abs_2, add_1, floor, output_2, output_3, mul_2, output_4], Original ATen: [aten.tanh, aten.div, aten.abs, aten.max, aten.add, aten.sign, aten.floor, aten.mul, aten.sub]
stream0 = get_raw_stream(0)
triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0.run(arg0_1, buf1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import torch
import torch.nn as nn
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class WeightQuantizer(nn.Module):
def __init__(self, w_bits):
super(WeightQuantizer, self).__init__()
self.w_bits = w_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.w_bits == 32:
output = input
elif self.w_bits == 1:
None
assert self.w_bits != 1
else:
output = torch.tanh(input)
output = output / 2 / torch.max(torch.abs(output)) + 0.5
scale = 1 / float(2 ** self.w_bits - 1)
output = self.round(output / scale) * scale
output = 2 * output - 1
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'w_bits': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.autograd import Function
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0(in_ptr0,
out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = libdevice.tanh(tmp0)
tmp2 = tl_math.abs(tmp1)
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp3, 0))
tmp6 = 0.5
tmp7 = tmp1 * tmp6
tmp8 = tmp7 / tmp5
tmp9 = tmp8 + tmp6
tmp10 = 15.0
tmp11 = tmp9 * tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = tmp12 < tmp11
tmp14 = tmp13.to(tl.int8)
tmp15 = tmp11 < tmp12
tmp16 = tmp15.to(tl.int8)
tmp17 = tmp14 - tmp16
tmp18 = tmp17.to(tmp11.dtype)
tmp19 = tl_math.abs(tmp11)
tmp20 = tmp19 + tmp6
tmp21 = libdevice.floor(tmp20)
tmp22 = tmp18 * tmp21
tmp23 = 0.06666666666666667
tmp24 = tmp22 * tmp23
tmp25 = 2.0
tmp26 = tmp24 * tmp25
tmp27 = 1.0
tmp28 = tmp26 - tmp27
tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp28, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0[grid(1)](
arg0_1, buf1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
return buf1,
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class WeightQuantizerNew(nn.Module):
def __init__(self, w_bits):
super(WeightQuantizerNew, self).__init__()
self.w_bits = w_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| XueYue404/QNN | WeightQuantizer | false | 1,255 | [
"MIT"
] | 0 | 43cea970404156b591088d77672df58261edf1eb | https://github.com/XueYue404/QNN/tree/43cea970404156b591088d77672df58261edf1eb | from torch.autograd import Function
import torch
import torch.nn as nn
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class Model(nn.Module):
def __init__(self, w_bits):
super().__init__()
self.w_bits = w_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.w_bits == 32:
output = input
elif self.w_bits == 1:
None
assert self.w_bits != 1
else:
output = torch.tanh(input)
output = output / 2 / torch.max(torch.abs(output)) + 0.5
scale = 1 / float(2 ** self.w_bits - 1)
output = self.round(output / scale) * scale
output = 2 * output - 1
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
LogisticRegression | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py
# Topologically Sorted Source Nodes: [_probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# _probs => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_default, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_default, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/wk/cwk2wao7opapqbjj7klnqrd6tgist3ts3nc5veryzhzstwpx7d4l.py
# Topologically Sorted Source Nodes: [_probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# _probs => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.addmm(primals_3, primals_1, primals_2, alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [_probs], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [_probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 16, grid=grid(16), stream=stream0)
del buf1
return (buf2, buf2, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.utils.data
class LogisticRegression(nn.Module):
def __init__(self, input_units: 'int', output_units: 'int'):
super().__init__()
self._weights = nn.Parameter(torch.randn((input_units, output_units
)), requires_grad=True)
self._bias = nn.Parameter(torch.zeros(output_units), requires_grad=True
)
@property
def weights(self) ->nn.Parameter:
return self._weights
@property
def bias(self) ->nn.Parameter:
return self._bias
def forward(self, inputs) ->torch.Tensor:
_logits = inputs.mm(self.weights) + self.bias
_probs = torch.softmax(_logits, dim=1)
return _probs
def get_loss(self, inputs, y_true):
_outputs = self.forward(inputs)
_logmul_outputs = torch.log(_outputs + 1e-13) * y_true
_logsum = torch.sum(_logmul_outputs, dim=1)
_logsum_mean = torch.mean(_logsum)
return -_logsum_mean
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_units': 4, 'output_units': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, primals_1, primals_2, alpha=1, beta
=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(16)](buf1, buf2, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf1
return buf2, buf2, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0)
class LogisticRegressionNew(nn.Module):
def __init__(self, input_units: 'int', output_units: 'int'):
super().__init__()
self._weights = nn.Parameter(torch.randn((input_units, output_units
)), requires_grad=True)
self._bias = nn.Parameter(torch.zeros(output_units), requires_grad=True
)
@property
def weights(self) ->nn.Parameter:
return self._weights
@property
def bias(self) ->nn.Parameter:
return self._bias
def get_loss(self, inputs, y_true):
_outputs = self.forward(inputs)
_logmul_outputs = torch.log(_outputs + 1e-13) * y_true
_logsum = torch.sum(_logmul_outputs, dim=1)
_logsum_mean = torch.mean(_logsum)
return -_logsum_mean
def forward(self, input_0):
primals_1 = self._weights
primals_3 = self._bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Yalfoosh/DUBUCE | LogisticRegression | false | 1,256 | [
"Apache-2.0"
] | 0 | 3f53923c27b1bce0ac592b20c5bb98649cb7fb75 | https://github.com/Yalfoosh/DUBUCE/tree/3f53923c27b1bce0ac592b20c5bb98649cb7fb75 | import torch
from torch import nn
import torch.utils.data
class Model(nn.Module):
def __init__(self, input_units: 'int', output_units: 'int'):
super().__init__()
self._weights = nn.Parameter(torch.randn((input_units, output_units
)), requires_grad=True)
self._bias = nn.Parameter(torch.zeros(output_units), requires_grad=True
)
@property
def weights(self) ->nn.Parameter:
return self._weights
@property
def bias(self) ->nn.Parameter:
return self._bias
def forward(self, inputs) ->torch.Tensor:
_logits = inputs.mm(self.weights) + self.bias
_probs = torch.softmax(_logits, dim=1)
return _probs
def get_loss(self, inputs, y_true):
_outputs = self.forward(inputs)
_logmul_outputs = torch.log(_outputs + 1e-13) * y_true
_logsum = torch.sum(_logmul_outputs, dim=1)
_logsum_mean = torch.mean(_logsum)
return -_logsum_mean
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
QuantLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/jo/cjorabsrr3ff337n76dqc222xlvzwenyvioogaissyhr3ecoqfta.py
# Topologically Sorted Source Nodes: [output_3, truediv_1, abs_2, max_1, truediv_2, output_4, truediv_3, output_5, output_6, mul_4, output_7], Original ATen: [aten.tanh, aten.div, aten.abs, aten.max, aten.add, aten.sign, aten.floor, aten.mul, aten.sub]
# Source node to ATen node mapping:
# abs_2 => abs_2
# max_1 => max_1
# mul_4 => mul_5
# output_3 => tanh
# output_4 => add_1
# output_5 => abs_3, add_2, floor_1, mul_3, sign_1
# output_6 => mul_4
# output_7 => sub
# truediv_1 => div_1
# truediv_2 => div_2
# truediv_3 => div_3
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%primals_2,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%tanh, 2), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%tanh,), kwargs = {})
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.default](args = (%abs_2,), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%div_1, %max_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_2, 0.5), kwargs = {})
# %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, 0.00392156862745098), kwargs = {})
# %sign_1 : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%div_3,), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div_3,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_3, 0.5), kwargs = {})
# %floor_1 : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%add_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign_1, %floor_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, 0.00392156862745098), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, 1), kwargs = {})
triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0 = async_compile.triton('triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = libdevice.tanh(tmp0)
tmp2 = tl_math.abs(tmp1)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = triton_helpers.max2(tmp3, 1)[:, None]
tmp6 = 0.5
tmp7 = tmp1 * tmp6
tmp8 = tmp7 / tmp5
tmp9 = tmp8 + tmp6
tmp10 = 255.0
tmp11 = tmp9 * tmp10
tmp12 = tl.full([1, 1], 0, tl.int32)
tmp13 = tmp12 < tmp11
tmp14 = tmp13.to(tl.int8)
tmp15 = tmp11 < tmp12
tmp16 = tmp15.to(tl.int8)
tmp17 = tmp14 - tmp16
tmp18 = tmp17.to(tmp11.dtype)
tmp19 = tl_math.abs(tmp11)
tmp20 = tmp19 + tmp6
tmp21 = libdevice.floor(tmp20)
tmp22 = tmp18 * tmp21
tmp23 = 0.00392156862745098
tmp24 = tmp22 * tmp23
tmp25 = 2.0
tmp26 = tmp24 * tmp25
tmp27 = 1.0
tmp28 = tmp26 - tmp27
tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp28, None)
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/el/celbxapdu6wxfvti4kxqew2gbzohznoc24x2o7ir6mjhq537vxnu.py
# Topologically Sorted Source Nodes: [mul, output, truediv, sign, abs_1, add, floor, output_1, output_2], Original ATen: [aten.mul, aten.clamp, aten.div, aten.sign, aten.abs, aten.add, aten.floor]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# floor => floor
# mul => mul
# output => clamp_max, clamp_min
# output_1 => mul_1
# output_2 => mul_2
# sign => sign
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 0.00392156862745098), kwargs = {})
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%div,), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign, %floor), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 0.00392156862745098), kwargs = {})
triton_poi_fused_abs_add_clamp_div_floor_mul_sign_1 = async_compile.triton('triton_poi_fused_abs_add_clamp_div_floor_mul_sign_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_clamp_div_floor_mul_sign_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_clamp_div_floor_mul_sign_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 1.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 255.0
tmp8 = tmp6 * tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = tmp9 < tmp8
tmp11 = tmp10.to(tl.int8)
tmp12 = tmp8 < tmp9
tmp13 = tmp12.to(tl.int8)
tmp14 = tmp11 - tmp13
tmp15 = tmp14.to(tmp8.dtype)
tmp16 = tl_math.abs(tmp8)
tmp17 = 0.5
tmp18 = tmp16 + tmp17
tmp19 = libdevice.floor(tmp18)
tmp20 = tmp15 * tmp19
tmp21 = 0.00392156862745098
tmp22 = tmp20 * tmp21
tl.store(out_ptr0 + (x0), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_3, truediv_1, abs_2, max_1, truediv_2, output_4, truediv_3, output_5, output_6, mul_4, output_7], Original ATen: [aten.tanh, aten.div, aten.abs, aten.max, aten.add, aten.sign, aten.floor, aten.mul, aten.sub]
stream0 = get_raw_stream(0)
triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0.run(primals_2, buf0, buf2, 1, 16, grid=grid(1), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, output, truediv, sign, abs_1, add, floor, output_1, output_2], Original ATen: [aten.mul, aten.clamp, aten.div, aten.sign, aten.abs, aten.add, aten.floor]
triton_poi_fused_abs_add_clamp_div_floor_mul_sign_1.run(primals_1, buf1, 256, grid=grid(256), stream=stream0)
del primals_1
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_8], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del buf2
del primals_3
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_2, buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import torch
import torch.nn as nn
import torch.nn.functional as F
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class ActivationQuantizer(nn.Module):
def __init__(self, a_bits):
super(ActivationQuantizer, self).__init__()
self.a_bits = a_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.a_bits == 32:
output = input
elif self.a_bits == 1:
None
assert self.a_bits != 1
else:
output = torch.clamp(input * 0.1, 0, 1)
scale = 1 / float(2 ** self.a_bits - 1)
output = self.round(output / scale) * scale
return output
class WeightQuantizer(nn.Module):
def __init__(self, w_bits):
super(WeightQuantizer, self).__init__()
self.w_bits = w_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.w_bits == 32:
output = input
elif self.w_bits == 1:
None
assert self.w_bits != 1
else:
output = torch.tanh(input)
output = output / 2 / torch.max(torch.abs(output)) + 0.5
scale = 1 / float(2 ** self.w_bits - 1)
output = self.round(output / scale) * scale
output = 2 * output - 1
return output
class QuantLinear(nn.Linear):
def __init__(self, in_features, out_features, bias=True, a_bits=8,
w_bits=8, quant_inference=False):
super(QuantLinear, self).__init__(in_features, out_features, bias)
self.quant_inference = quant_inference
self.activation_quantizer = ActivationQuantizer(a_bits=a_bits)
self.weight_quantizer = WeightQuantizer(w_bits=w_bits)
def forward(self, input):
quant_input = self.activation_quantizer(input)
if not self.quant_inference:
quant_weight = self.weight_quantizer(self.weight)
else:
quant_weight = self.weight
output = F.linear(quant_input, quant_weight, self.bias)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.autograd import Function
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0(in_ptr0,
out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = libdevice.tanh(tmp0)
tmp2 = tl_math.abs(tmp1)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = triton_helpers.max2(tmp3, 1)[:, None]
tmp6 = 0.5
tmp7 = tmp1 * tmp6
tmp8 = tmp7 / tmp5
tmp9 = tmp8 + tmp6
tmp10 = 255.0
tmp11 = tmp9 * tmp10
tmp12 = tl.full([1, 1], 0, tl.int32)
tmp13 = tmp12 < tmp11
tmp14 = tmp13.to(tl.int8)
tmp15 = tmp11 < tmp12
tmp16 = tmp15.to(tl.int8)
tmp17 = tmp14 - tmp16
tmp18 = tmp17.to(tmp11.dtype)
tmp19 = tl_math.abs(tmp11)
tmp20 = tmp19 + tmp6
tmp21 = libdevice.floor(tmp20)
tmp22 = tmp18 * tmp21
tmp23 = 0.00392156862745098
tmp24 = tmp22 * tmp23
tmp25 = 2.0
tmp26 = tmp24 * tmp25
tmp27 = 1.0
tmp28 = tmp26 - tmp27
tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp28, None)
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None)
@triton.jit
def triton_poi_fused_abs_add_clamp_div_floor_mul_sign_1(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 1.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 255.0
tmp8 = tmp6 * tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = tmp9 < tmp8
tmp11 = tmp10.to(tl.int8)
tmp12 = tmp8 < tmp9
tmp13 = tmp12.to(tl.int8)
tmp14 = tmp11 - tmp13
tmp15 = tmp14.to(tmp8.dtype)
tmp16 = tl_math.abs(tmp8)
tmp17 = 0.5
tmp18 = tmp16 + tmp17
tmp19 = libdevice.floor(tmp18)
tmp20 = tmp15 * tmp19
tmp21 = 0.00392156862745098
tmp22 = tmp20 * tmp21
tl.store(out_ptr0 + x0, tmp22, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_0[grid(1)](
primals_2, buf0, buf2, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_abs_add_clamp_div_floor_mul_sign_1[grid(256)](
primals_1, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), alpha=1,
beta=1, out=buf3)
del buf2
del primals_3
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_2, buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0)
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class ActivationQuantizer(nn.Module):
def __init__(self, a_bits):
super(ActivationQuantizer, self).__init__()
self.a_bits = a_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.a_bits == 32:
output = input
elif self.a_bits == 1:
None
assert self.a_bits != 1
else:
output = torch.clamp(input * 0.1, 0, 1)
scale = 1 / float(2 ** self.a_bits - 1)
output = self.round(output / scale) * scale
return output
class WeightQuantizer(nn.Module):
def __init__(self, w_bits):
super(WeightQuantizer, self).__init__()
self.w_bits = w_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.w_bits == 32:
output = input
elif self.w_bits == 1:
None
assert self.w_bits != 1
else:
output = torch.tanh(input)
output = output / 2 / torch.max(torch.abs(output)) + 0.5
scale = 1 / float(2 ** self.w_bits - 1)
output = self.round(output / scale) * scale
output = 2 * output - 1
return output
class QuantLinearNew(nn.Linear):
def __init__(self, in_features, out_features, bias=True, a_bits=8,
w_bits=8, quant_inference=False):
super(QuantLinearNew, self).__init__(in_features, out_features, bias)
self.quant_inference = quant_inference
self.activation_quantizer = ActivationQuantizer(a_bits=a_bits)
self.weight_quantizer = WeightQuantizer(w_bits=w_bits)
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| XueYue404/QNN | QuantLinear | false | 1,257 | [
"MIT"
] | 0 | 43cea970404156b591088d77672df58261edf1eb | https://github.com/XueYue404/QNN/tree/43cea970404156b591088d77672df58261edf1eb | from torch.autograd import Function
import torch
import torch.nn as nn
import torch.nn.functional as F
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class ActivationQuantizer(nn.Module):
def __init__(self, a_bits):
super().__init__()
self.a_bits = a_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.a_bits == 32:
output = input
elif self.a_bits == 1:
None
assert self.a_bits != 1
else:
output = torch.clamp(input * 0.1, 0, 1)
scale = 1 / float(2 ** self.a_bits - 1)
output = self.round(output / scale) * scale
return output
class WeightQuantizer(nn.Module):
def __init__(self, w_bits):
super().__init__()
self.w_bits = w_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.w_bits == 32:
output = input
elif self.w_bits == 1:
None
assert self.w_bits != 1
else:
output = torch.tanh(input)
output = output / 2 / torch.max(torch.abs(output)) + 0.5
scale = 1 / float(2 ** self.w_bits - 1)
output = self.round(output / scale) * scale
output = 2 * output - 1
return output
class Model(nn.Linear):
def __init__(self, in_features, out_features, bias=True, a_bits=8,
w_bits=8, quant_inference=False):
super().__init__(in_features, out_features, bias)
self.quant_inference = quant_inference
self.activation_quantizer = ActivationQuantizer(a_bits=a_bits)
self.weight_quantizer = WeightQuantizer(w_bits=w_bits)
def forward(self, input):
quant_input = self.activation_quantizer(input)
if not self.quant_inference:
quant_weight = self.weight_quantizer(self.weight)
else:
quant_weight = self.weight
output = F.linear(quant_input, quant_weight, self.bias)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
PointwiseFeedForward | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/i3/ci3nuuurbsrmcufle642yc7udhwn4itsu6aptfssij5nzrnylpne.py
# Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv1d => convolution
# output => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/lf/clf7hs52i4bd5d3e73uio27ntyjfqmszkbsw6dta3r6rzgeftva3.py
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
del buf0
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4), (16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf4, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
return (reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class PointwiseFeedForward(nn.Module):
""" A two-feed-forward-layer module """
def __init__(self, d_hid, d_inner_hid=None, d_out=None, dropout=0):
super(PointwiseFeedForward, self).__init__()
if d_inner_hid is None:
d_inner_hid = d_hid
if d_out is None:
d_out = d_inner_hid
self.w_1 = nn.Conv1d(d_hid, d_inner_hid, 1)
self.w_2 = nn.Conv1d(d_inner_hid, d_out, 1)
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU()
def forward(self, x):
output = self.relu(self.w_1(x.transpose(1, 2)))
output = self.w_2(output).transpose(2, 1)
output = self.dropout(output)
return output
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'d_hid': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
del buf0
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4), (16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_2[grid(64)](buf4, primals_5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
return reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0
), primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), (
16, 1, 4), 0), buf2
class PointwiseFeedForwardNew(nn.Module):
""" A two-feed-forward-layer module """
def __init__(self, d_hid, d_inner_hid=None, d_out=None, dropout=0):
super(PointwiseFeedForwardNew, self).__init__()
if d_inner_hid is None:
d_inner_hid = d_hid
if d_out is None:
d_out = d_inner_hid
self.w_1 = nn.Conv1d(d_hid, d_inner_hid, 1)
self.w_2 = nn.Conv1d(d_inner_hid, d_out, 1)
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU()
def forward(self, input_0):
primals_2 = self.w_1.weight
primals_3 = self.w_1.bias
primals_4 = self.w_2.weight
primals_5 = self.w_2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| XuMayi/PyABSA | PointwiseFeedForward | false | 1,258 | [
"MIT"
] | 0 | 3d71c0cdaea7ea1eff600d9091c3c63f61c111e5 | https://github.com/XuMayi/PyABSA/tree/3d71c0cdaea7ea1eff600d9091c3c63f61c111e5 | import torch
import torch.nn as nn
class Model(nn.Module):
""" A two-feed-forward-layer module """
def __init__(self, d_hid, d_inner_hid=None, d_out=None, dropout=0):
super().__init__()
if d_inner_hid is None:
d_inner_hid = d_hid
if d_out is None:
d_out = d_inner_hid
self.w_1 = nn.Conv1d(d_hid, d_inner_hid, 1)
self.w_2 = nn.Conv1d(d_inner_hid, d_out, 1)
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU()
def forward(self, x):
output = self.relu(self.w_1(x.transpose(1, 2)))
output = self.w_2(output).transpose(2, 1)
output = self.dropout(output)
return output
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4]
|
ConcatenateLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 8), (8, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.tensorboard
import torch.utils.data
import torch.distributed
class ConcatenateLinear(torch.nn.Module):
"""A torch module which concatenates several inputs and mixes them using a linear layer. """
def __init__(self, left_size, right_size, output_size):
"""Creates a new concatenating linear layer.
Parameters
----------
left_size : int
Size of the left input
right_size : int
Size of the right input
output_size : int
Size of the output.
"""
super(ConcatenateLinear, self).__init__()
self.left_size = left_size
self.right_size = right_size
self.output_size = output_size
self._linear = torch.nn.Linear(left_size + right_size, output_size)
def forward(self, left, right):
return self._linear(torch.cat((left, right), dim=-1))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'left_size': 4, 'right_size': 4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.tensorboard
import torch.utils.data
import torch.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 8), (
8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0),
alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 8), (8, 1), 0)
class ConcatenateLinearNew(torch.nn.Module):
"""A torch module which concatenates several inputs and mixes them using a linear layer. """
def __init__(self, left_size, right_size, output_size):
"""Creates a new concatenating linear layer.
Parameters
----------
left_size : int
Size of the left input
right_size : int
Size of the right input
output_size : int
Size of the output.
"""
super(ConcatenateLinearNew, self).__init__()
self.left_size = left_size
self.right_size = right_size
self.output_size = output_size
self._linear = torch.nn.Linear(left_size + right_size, output_size)
def forward(self, input_0, input_1):
primals_3 = self._linear.weight
primals_4 = self._linear.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| JoeLambourne/SketchGraphs | ConcatenateLinear | false | 1,259 | [
"MIT"
] | 0 | 183c65f82d71d82c62b253092e9b7fa65846a3e6 | https://github.com/JoeLambourne/SketchGraphs/tree/183c65f82d71d82c62b253092e9b7fa65846a3e6 | import torch
import torch.utils.tensorboard
import torch.utils.data
import torch.distributed
class Model(torch.nn.Module):
"""A torch module which concatenates several inputs and mixes them using a linear layer. """
def __init__(self, left_size, right_size, output_size):
"""Creates a new concatenating linear layer.
Parameters
----------
left_size : int
Size of the left input
right_size : int
Size of the right input
output_size : int
Size of the output.
"""
super().__init__()
self.left_size = left_size
self.right_size = right_size
self.output_size = output_size
self._linear = torch.nn.Linear(left_size + right_size, output_size)
def forward(self, left, right):
return self._linear(torch.cat((left, right), dim=-1))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
SqueezeEmbedding | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/bl/cbl2rxdmd7vl7atdeosqikyevrmaoinhggmygw2rjrqvkexjpxgt.py
# Topologically Sorted Source Nodes: [neg, sort, sort_1, x_len], Original ATen: [aten.neg, aten.sort, aten.index]
# Source node to ATen node mapping:
# neg => neg
# sort => sort
# sort_1 => getitem_3, sort_1
# x_len => index
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%neg,), kwargs = {})
# %sort_1 : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%getitem_1,), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%sort_1, 1), kwargs = {})
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%getitem_1]), kwargs = {})
triton_per_fused_index_neg_sort_0 = async_compile.triton('triton_per_fused_index_neg_sort_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i16', 2: '*i64', 3: '*i64', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_neg_sort_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_index_neg_sort_0(in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = -tmp0
tmp2 = r0
tmp3 = tmp2.to(tl.int16)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6, tmp7, = triton_helpers.sort_with_index(tmp4, tmp5, None, 1, stable=False, descending=False)
tmp8 = tmp7.to(tl.int64)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp10, tmp11, = triton_helpers.sort_with_index(tmp9, tmp5, None, 1, stable=False, descending=False)
tmp12 = tmp11.to(tl.int64)
tmp13 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp14 = tmp8 + tmp13
tmp15 = tmp8 < 0
tmp16 = tl.where(tmp15, tmp14, tmp8)
tl.device_assert((0 <= tmp16) & (tmp16 < 4), "index out of bounds: 0 <= tmp16 < 4")
tmp18 = tl.load(in_ptr0 + (tmp16), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp7, None)
tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp12, None)
tl.store(out_ptr3 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp18, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/lq/clqymvokcnia6n7yv7kbq5esk6ua7uet4ifi3agynd3zh6rr47mg.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.index]
# Source node to ATen node mapping:
# x => index_1
# Graph fragment:
# %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [%getitem_1]), kwargs = {})
triton_poi_fused_index_1 = async_compile.triton('triton_poi_fused_index_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i16', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 64)
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tmp0.to(tl.int64)
tmp2 = tl.full([XBLOCK], 4, tl.int32)
tmp3 = tmp1 + tmp2
tmp4 = tmp1 < 0
tmp5 = tl.where(tmp4, tmp3, tmp1)
tl.device_assert(((0 <= tmp5) & (tmp5 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp5 < 4")
tmp7 = tl.load(in_ptr1 + (x0 + (64*tmp5)), xmask)
tl.store(out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, ), (1, ))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, ), (1, ), torch.int16)
buf4 = empty_strided_cuda((4, ), (1, ), torch.int64)
buf6 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [neg, sort, sort_1, x_len], Original ATen: [aten.neg, aten.sort, aten.index]
stream0 = get_raw_stream(0)
triton_per_fused_index_neg_sort_0.run(arg0_1, buf1, buf4, buf6, 1, 4, grid=grid(1), stream=stream0)
del arg0_1
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.index]
triton_poi_fused_index_1.run(buf1, arg1_1, buf5, 256, grid=grid(256), stream=stream0)
del arg1_1
del buf1
buf7 = empty_strided_cpu((4, ), (1, ), torch.int64)
buf7.copy_(buf6)
return (buf5, buf7, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SqueezeEmbedding(nn.Module):
"""
Squeeze sequence embedding length to the longest one in the batch
"""
def __init__(self, batch_first=True):
super(SqueezeEmbedding, self).__init__()
self.batch_first = batch_first
def forward(self, x, x_len):
"""
sequence -> sort -> pad and pack -> unpack ->unsort
:param x: sequence embedding vectors
:param x_len: numpy/tensor list
:return:
"""
"""sort"""
x_sort_idx = torch.sort(-x_len)[1].long()
x_unsort_idx = torch.sort(x_sort_idx)[1].long()
x_len = x_len[x_sort_idx]
x = x[x_sort_idx]
"""pack"""
x_emb_p = torch.nn.utils.rnn.pack_padded_sequence(x, x_len.cpu(),
batch_first=self.batch_first)
"""unpack: out"""
out = torch.nn.utils.rnn.pad_packed_sequence(x_emb_p, batch_first=
self.batch_first)
out = out[0]
"""unsort"""
out = out[x_unsort_idx]
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_index_neg_sort_0(in_ptr0, out_ptr0, out_ptr2, out_ptr3,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = -tmp0
tmp2 = r0
tmp3 = tmp2.to(tl.int16)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
_tmp6, tmp7 = triton_helpers.sort_with_index(tmp4, tmp5, None, 1,
stable=False, descending=False)
tmp8 = tmp7.to(tl.int64)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
_tmp10, tmp11 = triton_helpers.sort_with_index(tmp9, tmp5, None, 1,
stable=False, descending=False)
tmp12 = tmp11.to(tl.int64)
tmp13 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp14 = tmp8 + tmp13
tmp15 = tmp8 < 0
tmp16 = tl.where(tmp15, tmp14, tmp8)
tl.device_assert((0 <= tmp16) & (tmp16 < 4),
'index out of bounds: 0 <= tmp16 < 4')
tmp18 = tl.load(in_ptr0 + tmp16, None, eviction_policy='evict_last')
tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp7, None)
tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp12, None)
tl.store(out_ptr3 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp18, None)
@triton.jit
def triton_poi_fused_index_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 64
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tmp0.to(tl.int64)
tmp2 = tl.full([XBLOCK], 4, tl.int32)
tmp3 = tmp1 + tmp2
tmp4 = tmp1 < 0
tmp5 = tl.where(tmp4, tmp3, tmp1)
tl.device_assert((0 <= tmp5) & (tmp5 < 4) | ~xmask,
'index out of bounds: 0 <= tmp5 < 4')
tmp7 = tl.load(in_ptr1 + (x0 + 64 * tmp5), xmask)
tl.store(out_ptr0 + x2, tmp7, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4,), (1,))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4,), (1,), torch.int16)
buf4 = empty_strided_cuda((4,), (1,), torch.int64)
buf6 = empty_strided_cuda((4,), (1,), torch.int64)
get_raw_stream(0)
triton_per_fused_index_neg_sort_0[grid(1)](arg0_1, buf1, buf4, buf6,
1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_index_1[grid(256)](buf1, arg1_1, buf5, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del arg1_1
del buf1
buf7 = empty_strided_cpu((4,), (1,), torch.int64)
buf7.copy_(buf6)
return buf5, buf7, buf4
class SqueezeEmbeddingNew(nn.Module):
"""
Squeeze sequence embedding length to the longest one in the batch
"""
def __init__(self, batch_first=True):
super(SqueezeEmbeddingNew, self).__init__()
self.batch_first = batch_first
def forward(self, input_0, input_1):
arg1_1 = input_0
arg0_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| XuMayi/PyABSA | SqueezeEmbedding | false | 1,260 | [
"MIT"
] | 0 | 3d71c0cdaea7ea1eff600d9091c3c63f61c111e5 | https://github.com/XuMayi/PyABSA/tree/3d71c0cdaea7ea1eff600d9091c3c63f61c111e5 | import torch
import torch.nn as nn
class Model(nn.Module):
"""
Squeeze sequence embedding length to the longest one in the batch
"""
def __init__(self, batch_first=True):
super().__init__()
self.batch_first = batch_first
def forward(self, x, x_len):
"""
sequence -> sort -> pad and pack -> unpack ->unsort
:param x: sequence embedding vectors
:param x_len: numpy/tensor list
:return:
"""
"""sort"""
x_sort_idx = torch.sort(-x_len)[1].long()
x_unsort_idx = torch.sort(x_sort_idx)[1].long()
x_len = x_len[x_sort_idx]
x = x[x_sort_idx]
"""pack"""
x_emb_p = torch.nn.utils.rnn.pack_padded_sequence(x, x_len.cpu(),
batch_first=self.batch_first)
"""unpack: out"""
out = torch.nn.utils.rnn.pad_packed_sequence(x_emb_p, batch_first=
self.batch_first)
out = out[0]
"""unsort"""
out = out[x_unsort_idx]
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)]
def get_init_inputs():
return []
|
QuantConv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/h5/ch5lfvnllcvazjuezszebfgon7p2ejca3vxfydnmq7vrxlqz74lc.py
# Topologically Sorted Source Nodes: [mul, output, truediv, sign, abs_1, add, floor, output_1, output_2], Original ATen: [aten.mul, aten.clamp, aten.div, aten.sign, aten.abs, aten.add, aten.floor]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# floor => floor
# mul => mul
# output => clamp_max, clamp_min
# output_1 => mul_1
# output_2 => mul_2
# sign => sign
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 0.00392156862745098), kwargs = {})
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%div,), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign, %floor), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 0.00392156862745098), kwargs = {})
triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0 = async_compile.triton('triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 1.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 255.0
tmp8 = tmp6 * tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = tmp9 < tmp8
tmp11 = tmp10.to(tl.int8)
tmp12 = tmp8 < tmp9
tmp13 = tmp12.to(tl.int8)
tmp14 = tmp11 - tmp13
tmp15 = tmp14.to(tmp8.dtype)
tmp16 = tl_math.abs(tmp8)
tmp17 = 0.5
tmp18 = tmp16 + tmp17
tmp19 = libdevice.floor(tmp18)
tmp20 = tmp15 * tmp19
tmp21 = 0.00392156862745098
tmp22 = tmp20 * tmp21
tl.store(out_ptr0 + (x0), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/cu/ccu2oa5e6uaucwepitulp5ppunndrp4etqw7x3565dbmjgvli4jk.py
# Topologically Sorted Source Nodes: [output_3, truediv_1, abs_2, max_1, truediv_2, output_4, truediv_3, output_5, output_6, mul_4, output_7], Original ATen: [aten.tanh, aten.div, aten.abs, aten.max, aten.add, aten.sign, aten.floor, aten.mul, aten.sub]
# Source node to ATen node mapping:
# abs_2 => abs_2
# max_1 => max_1
# mul_4 => mul_5
# output_3 => tanh
# output_4 => add_1
# output_5 => abs_3, add_2, floor_1, mul_3, sign_1
# output_6 => mul_4
# output_7 => sub
# truediv_1 => div_1
# truediv_2 => div_2
# truediv_3 => div_3
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%primals_2,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%tanh, 2), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%tanh,), kwargs = {})
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.default](args = (%abs_2,), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%div_1, %max_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_2, 0.5), kwargs = {})
# %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, 0.00392156862745098), kwargs = {})
# %sign_1 : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%div_3,), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div_3,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_3, 0.5), kwargs = {})
# %floor_1 : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%add_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign_1, %floor_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, 0.00392156862745098), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, 2), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, 1), kwargs = {})
triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_1 = async_compile.triton('triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_1', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = libdevice.tanh(tmp0)
tmp2 = tl_math.abs(tmp1)
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp3, 0))
tmp6 = 0.5
tmp7 = tmp1 * tmp6
tmp8 = tmp7 / tmp5
tmp9 = tmp8 + tmp6
tmp10 = 255.0
tmp11 = tmp9 * tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = tmp12 < tmp11
tmp14 = tmp13.to(tl.int8)
tmp15 = tmp11 < tmp12
tmp16 = tmp15.to(tl.int8)
tmp17 = tmp14 - tmp16
tmp18 = tmp17.to(tmp11.dtype)
tmp19 = tl_math.abs(tmp11)
tmp20 = tmp19 + tmp6
tmp21 = libdevice.floor(tmp20)
tmp22 = tmp18 * tmp21
tmp23 = 0.00392156862745098
tmp24 = tmp22 * tmp23
tmp25 = 2.0
tmp26 = tmp24 * tmp25
tmp27 = 1.0
tmp28 = tmp26 - tmp27
tl.store(out_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp28, None)
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/k2/ck2mamkqpmuzem4n3p4ij6fmfpy2bcbblg6sx6wwslgqwuqq5ifh.py
# Topologically Sorted Source Nodes: [output_8], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# output_8 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_2, %sub, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, output, truediv, sign, abs_1, add, floor, output_1, output_2], Original ATen: [aten.mul, aten.clamp, aten.div, aten.sign, aten.abs, aten.add, aten.floor]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_3, truediv_1, abs_2, max_1, truediv_2, output_4, truediv_3, output_5, output_6, mul_4, output_7], Original ATen: [aten.tanh, aten.div, aten.abs, aten.max, aten.add, aten.sign, aten.floor, aten.mul, aten.sub]
triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_1.run(primals_2, buf1, buf2, 1, 256, grid=grid(1), stream=stream0)
# Topologically Sorted Source Nodes: [output_8], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf0, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [output_8], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf4, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
return (buf4, primals_2, buf0, buf1, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import torch
import torch.nn as nn
import torch.nn.functional as F
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class ActivationQuantizer(nn.Module):
def __init__(self, a_bits):
super(ActivationQuantizer, self).__init__()
self.a_bits = a_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.a_bits == 32:
output = input
elif self.a_bits == 1:
None
assert self.a_bits != 1
else:
output = torch.clamp(input * 0.1, 0, 1)
scale = 1 / float(2 ** self.a_bits - 1)
output = self.round(output / scale) * scale
return output
class WeightQuantizer(nn.Module):
def __init__(self, w_bits):
super(WeightQuantizer, self).__init__()
self.w_bits = w_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.w_bits == 32:
output = input
elif self.w_bits == 1:
None
assert self.w_bits != 1
else:
output = torch.tanh(input)
output = output / 2 / torch.max(torch.abs(output)) + 0.5
scale = 1 / float(2 ** self.w_bits - 1)
output = self.round(output / scale) * scale
output = 2 * output - 1
return output
class QuantConv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros',
a_bits=8, w_bits=8, quant_inference=False):
super(QuantConv2d, self).__init__(in_channels, out_channels,
kernel_size, stride, padding, dilation, groups, bias, padding_mode)
self.quant_inference = quant_inference
self.activation_quantizer = ActivationQuantizer(a_bits=a_bits)
self.weight_quantizer = WeightQuantizer(w_bits=w_bits)
def forward(self, input):
quant_input = self.activation_quantizer(input)
if not self.quant_inference:
quant_weight = self.weight_quantizer(self.weight)
else:
quant_weight = self.weight
output = F.conv2d(quant_input, quant_weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.autograd import Function
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 1.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 255.0
tmp8 = tmp6 * tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = tmp9 < tmp8
tmp11 = tmp10.to(tl.int8)
tmp12 = tmp8 < tmp9
tmp13 = tmp12.to(tl.int8)
tmp14 = tmp11 - tmp13
tmp15 = tmp14.to(tmp8.dtype)
tmp16 = tl_math.abs(tmp8)
tmp17 = 0.5
tmp18 = tmp16 + tmp17
tmp19 = libdevice.floor(tmp18)
tmp20 = tmp15 * tmp19
tmp21 = 0.00392156862745098
tmp22 = tmp20 * tmp21
tl.store(out_ptr0 + x0, tmp22, xmask)
@triton.jit
def triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_1(in_ptr0,
out_ptr0, out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = libdevice.tanh(tmp0)
tmp2 = tl_math.abs(tmp1)
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp3, 0))
tmp6 = 0.5
tmp7 = tmp1 * tmp6
tmp8 = tmp7 / tmp5
tmp9 = tmp8 + tmp6
tmp10 = 255.0
tmp11 = tmp9 * tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = tmp12 < tmp11
tmp14 = tmp13.to(tl.int8)
tmp15 = tmp11 < tmp12
tmp16 = tmp15.to(tl.int8)
tmp17 = tmp14 - tmp16
tmp18 = tmp17.to(tmp11.dtype)
tmp19 = tl_math.abs(tmp11)
tmp20 = tmp19 + tmp6
tmp21 = libdevice.floor(tmp20)
tmp22 = tmp18 * tmp21
tmp23 = 0.00392156862745098
tmp24 = tmp22 * tmp23
tmp25 = 2.0
tmp26 = tmp24 * tmp25
tmp27 = 1.0
tmp28 = tmp26 - tmp27
tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp28, None)
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp5, None)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_add_clamp_div_floor_mul_sign_0[grid(256)](
primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused_abs_add_div_floor_max_mul_sign_sub_tanh_1[grid(1)](
primals_2, buf1, buf2, 1, 256, num_warps=2, num_stages=1)
buf3 = extern_kernels.convolution(buf0, buf2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_2[grid(16)](buf4, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
return buf4, primals_2, buf0, buf1, buf2
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class ActivationQuantizer(nn.Module):
def __init__(self, a_bits):
super(ActivationQuantizer, self).__init__()
self.a_bits = a_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.a_bits == 32:
output = input
elif self.a_bits == 1:
None
assert self.a_bits != 1
else:
output = torch.clamp(input * 0.1, 0, 1)
scale = 1 / float(2 ** self.a_bits - 1)
output = self.round(output / scale) * scale
return output
class WeightQuantizer(nn.Module):
def __init__(self, w_bits):
super(WeightQuantizer, self).__init__()
self.w_bits = w_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.w_bits == 32:
output = input
elif self.w_bits == 1:
None
assert self.w_bits != 1
else:
output = torch.tanh(input)
output = output / 2 / torch.max(torch.abs(output)) + 0.5
scale = 1 / float(2 ** self.w_bits - 1)
output = self.round(output / scale) * scale
output = 2 * output - 1
return output
class QuantConv2dNew(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros',
a_bits=8, w_bits=8, quant_inference=False):
super(QuantConv2dNew, self).__init__(in_channels, out_channels,
kernel_size, stride, padding, dilation, groups, bias, padding_mode)
self.quant_inference = quant_inference
self.activation_quantizer = ActivationQuantizer(a_bits=a_bits)
self.weight_quantizer = WeightQuantizer(w_bits=w_bits)
def forward(self, input_0):
primals_1 = self.weight
primals_3 = self.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| XueYue404/QNN | QuantConv2d | false | 1,261 | [
"MIT"
] | 0 | 43cea970404156b591088d77672df58261edf1eb | https://github.com/XueYue404/QNN/tree/43cea970404156b591088d77672df58261edf1eb | from torch.autograd import Function
import torch
import torch.nn as nn
import torch.nn.functional as F
class Round(Function):
@staticmethod
def forward(self, input):
sign = torch.sign(input)
output = sign * torch.floor(torch.abs(input) + 0.5)
return output
@staticmethod
def backward(self, grad_output):
grad_input = grad_output.clone()
return grad_input
class ActivationQuantizer(nn.Module):
def __init__(self, a_bits):
super().__init__()
self.a_bits = a_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.a_bits == 32:
output = input
elif self.a_bits == 1:
None
assert self.a_bits != 1
else:
output = torch.clamp(input * 0.1, 0, 1)
scale = 1 / float(2 ** self.a_bits - 1)
output = self.round(output / scale) * scale
return output
class WeightQuantizer(nn.Module):
def __init__(self, w_bits):
super().__init__()
self.w_bits = w_bits
def round(self, input):
output = Round.apply(input)
return output
def forward(self, input):
if self.w_bits == 32:
output = input
elif self.w_bits == 1:
None
assert self.w_bits != 1
else:
output = torch.tanh(input)
output = output / 2 / torch.max(torch.abs(output)) + 0.5
scale = 1 / float(2 ** self.w_bits - 1)
output = self.round(output / scale) * scale
output = 2 * output - 1
return output
class Model(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros',
a_bits=8, w_bits=8, quant_inference=False):
super().__init__(in_channels, out_channels,
kernel_size, stride, padding, dilation, groups, bias, padding_mode)
self.quant_inference = quant_inference
self.activation_quantizer = ActivationQuantizer(a_bits=a_bits)
self.weight_quantizer = WeightQuantizer(w_bits=w_bits)
def forward(self, input):
quant_input = self.activation_quantizer(input)
if not self.quant_inference:
quant_weight = self.weight_quantizer(self.weight)
else:
quant_weight = self.weight
output = F.conv2d(quant_input, quant_weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
PA | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/cf/ccffwnd4sq3sztv4dcw45c3j2dsqwq3jy7vc3mqe4l5j4dxdabmr.py
# Topologically Sorted Source Nodes: [y, y_1, out], Original ATen: [aten.convolution, aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# out => mul
# y => convolution
# y_1 => sigmoid
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %sigmoid), kwargs = {})
triton_poi_fused_convolution_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y, y_1, out], Original ATen: [aten.convolution, aten.sigmoid, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_mul_sigmoid_0.run(buf1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf2, primals_1, primals_3, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class PA(nn.Module):
"""PA is pixel attention"""
def __init__(self, nf):
super(PA, self).__init__()
self.conv = nn.Conv2d(nf, nf, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
y = self.conv(x)
y = self.sigmoid(y)
out = torch.mul(x, y)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'nf': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_mul_sigmoid_0[grid(256)](buf1,
primals_2, primals_3, buf2, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_2
return buf2, primals_1, primals_3, buf1
class PANew(nn.Module):
"""PA is pixel attention"""
def __init__(self, nf):
super(PANew, self).__init__()
self.conv = nn.Conv2d(nf, nf, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| YingqiLiulll/scrips_for_SR | PA | false | 1,262 | [
"MIT"
] | 0 | 04fa6fdaf157e913d3e2521cd80315a10a2ccedc | https://github.com/YingqiLiulll/scrips_for_SR/tree/04fa6fdaf157e913d3e2521cd80315a10a2ccedc | import torch
import torch.nn as nn
class Model(nn.Module):
"""PA is pixel attention"""
def __init__(self, nf):
super().__init__()
self.conv = nn.Conv2d(nf, nf, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
y = self.conv(x)
y = self.sigmoid(y)
out = torch.mul(x, y)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
BSConvU | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/p5/cp56rg7mpbf3ekga7gqadrbxvyrlzzia7mkho3ecsunbsiae7n7a.py
# Topologically Sorted Source Nodes: [fea_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# fea_1 => add, clone, rsqrt, var_mean
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x2), tmp8, xmask)
tl.store(out_ptr1 + (x2), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/6o/c6oafbjblndczsen5rr4eepeo6dausq2sfn76lkd4pqrw5oujfb5.py
# Topologically Sorted Source Nodes: [fea_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# fea_1 => add, add_1, clone, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_4), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y3), ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (y3), ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2 + (4*y3)), tmp8, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/li/cliuki7kw34pevna3gnu3ihq5qfn3kvidywzkiifm6ybijryhkq6.py
# Topologically Sorted Source Nodes: [fea_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# fea_2 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_1, %primals_5, %primals_6, [1, 1], [1, 1], [1, 1], False, [0, 0], 4), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [fea], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [fea_1], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [fea_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(buf0, buf1, buf2, primals_3, primals_4, buf3, 64, 4, grid=grid(64, 4), stream=stream0)
del buf1
del buf2
del primals_4
# Topologically Sorted Source Nodes: [fea_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 1, 16, 4), 0), primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 1, 16, 4))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [fea_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_6, 256, grid=grid(256), stream=stream0)
del primals_6
return (buf5, primals_1, primals_2, primals_3, primals_5, buf0, reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 1, 16, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class BSConvU(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, dilation=1, bias=True, padding_mode='zeros', with_norm=
True, bn_kwargs=None):
super().__init__()
self.with_norm = with_norm
if bn_kwargs is None:
bn_kwargs = {}
self.pw = torch.nn.Conv2d(in_channels=in_channels, out_channels=
out_channels, kernel_size=(1, 1), stride=1, padding=0, dilation
=1, groups=1, bias=False)
if with_norm:
self.ln = torch.nn.LayerNorm(out_channels, **bn_kwargs)
self.dw = torch.nn.Conv2d(in_channels=out_channels, out_channels=
out_channels, kernel_size=kernel_size, stride=stride, padding=
padding, dilation=dilation, groups=out_channels, bias=bias,
padding_mode=padding_mode)
def forward(self, fea):
fea = self.pw(fea)
if self.with_norm:
fea = self.ln(fea.permute(0, 2, 3, 1))
fea = self.dw(fea.permute(0, 3, 1, 2))
return fea
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x2, tmp8, xmask)
tl.store(out_ptr1 + x2, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.
constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y3, ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2 + 4 * y3), tmp8, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](buf0, buf1, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64, 4)](buf0, buf1, buf2,
primals_3, primals_4, buf3, 64, 4, XBLOCK=4, YBLOCK=64,
num_warps=4, num_stages=1)
del buf1
del buf2
del primals_4
buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (4, 4, 4,
4), (64, 1, 16, 4), 0), primals_5, stride=(1, 1), padding=(1, 1
), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 1, 16, 4))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(256)](buf5, primals_6, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_6
return (buf5, primals_1, primals_2, primals_3, primals_5, buf0,
reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 1, 16, 4), 0))
class BSConvUNew(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, dilation=1, bias=True, padding_mode='zeros', with_norm=
True, bn_kwargs=None):
super().__init__()
self.with_norm = with_norm
if bn_kwargs is None:
bn_kwargs = {}
self.pw = torch.nn.Conv2d(in_channels=in_channels, out_channels=
out_channels, kernel_size=(1, 1), stride=1, padding=0, dilation
=1, groups=1, bias=False)
if with_norm:
self.ln = torch.nn.LayerNorm(out_channels, **bn_kwargs)
self.dw = torch.nn.Conv2d(in_channels=out_channels, out_channels=
out_channels, kernel_size=kernel_size, stride=stride, padding=
padding, dilation=dilation, groups=out_channels, bias=bias,
padding_mode=padding_mode)
def forward(self, input_0):
primals_1 = self.pw.weight
primals_3 = self.ln.weight
primals_4 = self.ln.bias
primals_5 = self.dw.weight
primals_6 = self.dw.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| YingqiLiulll/scrips_for_SR | BSConvU | false | 1,263 | [
"MIT"
] | 0 | 04fa6fdaf157e913d3e2521cd80315a10a2ccedc | https://github.com/YingqiLiulll/scrips_for_SR/tree/04fa6fdaf157e913d3e2521cd80315a10a2ccedc | import torch
class Model(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, dilation=1, bias=True, padding_mode='zeros', with_norm=
True, bn_kwargs=None):
super().__init__()
self.with_norm = with_norm
if bn_kwargs is None:
bn_kwargs = {}
self.pw = torch.nn.Conv2d(in_channels=in_channels, out_channels=
out_channels, kernel_size=(1, 1), stride=1, padding=0, dilation
=1, groups=1, bias=False)
if with_norm:
self.ln = torch.nn.LayerNorm(out_channels, **bn_kwargs)
self.dw = torch.nn.Conv2d(in_channels=out_channels, out_channels=
out_channels, kernel_size=kernel_size, stride=stride, padding=
padding, dilation=dilation, groups=out_channels, bias=bias,
padding_mode=padding_mode)
def forward(self, fea):
fea = self.pw(fea)
if self.with_norm:
fea = self.ln(fea.permute(0, 2, 3, 1))
fea = self.dw(fea.permute(0, 3, 1, 2))
return fea
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
aeEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/py/cpyvxrzojrh23u52ozj34l5wniwsesk5muu5oimh2tw6hugljlk3.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/dq/cdqym7oizoj7gtxp62ozatoecbvpjnaeuszmvb7mjtc6amd2tthy.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/hx/chxytogdtmpugiv6rn2uiw63dwoyaqiv3qhvhhtxqjwnxzi4biow.py
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/q3/cq3ipbuhg7k772o3np2qz6awu4uyatbfzota2s3vpeuwqf2lfiyu.py
# Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# x_3 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/xq/cxqcis6brvj32emeb3ynz5vze3puspyilddcwysuidaf7rbnnp3m.py
# Topologically Sorted Source Nodes: [conv2d_4, x_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# x_4 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (8, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (8, ), (1, ))
assert_size_stride(primals_6, (16, 8, 4, 4), (128, 16, 4, 1))
assert_size_stride(primals_7, (16, ), (1, ))
assert_size_stride(primals_8, (32, 16, 4, 4), (256, 16, 4, 1))
assert_size_stride(primals_9, (32, ), (1, ))
assert_size_stride(primals_10, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_11, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 32, 32), (4096, 1024, 32, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 16, 16), (2048, 256, 16, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 8192, grid=grid(8192), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 8, 8), (1024, 64, 8, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 4096, grid=grid(4096), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 4, 4), (512, 16, 4, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf7, primals_9, 2048, grid=grid(2048), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 2, 2), (256, 4, 2, 1))
buf9 = buf8; del buf8 # reuse
buf10 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_4, x_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_4.run(buf9, primals_11, buf10, 1024, grid=grid(1024), stream=stream0)
del primals_11
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 8, 4, 4), (128, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((32, 16, 4, 4), (256, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
class aeEncoder(nn.Module):
def __init__(self, capacity, channel):
super(aeEncoder, self).__init__()
self.c = capacity
self.channel = channel
self.conv1 = nn.Conv2d(in_channels=self.channel, out_channels=self.
c, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(in_channels=self.c, out_channels=self.c * 2,
kernel_size=4, stride=2, padding=1)
self.conv3 = nn.Conv2d(in_channels=self.c * 2, out_channels=self.c *
4, kernel_size=4, stride=2, padding=1)
self.conv4 = nn.Conv2d(in_channels=self.c * 4, out_channels=self.c *
8, kernel_size=4, stride=2, padding=1)
self.conv5 = nn.Conv2d(in_channels=self.c * 8, out_channels=self.c *
16, kernel_size=4, stride=2, padding=1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.relu(self.conv5(x))
return x
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'capacity': 4, 'channel': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 8
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 16
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_4(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (8, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (8,), (1,))
assert_size_stride(primals_6, (16, 8, 4, 4), (128, 16, 4, 1))
assert_size_stride(primals_7, (16,), (1,))
assert_size_stride(primals_8, (32, 16, 4, 4), (256, 16, 4, 1))
assert_size_stride(primals_9, (32,), (1,))
assert_size_stride(primals_10, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_11, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 32, 32), (4096, 1024, 32, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(16384)](buf1, primals_2,
16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 16, 16), (2048, 256, 16, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(8192)](buf3, primals_5,
8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 8, 8), (1024, 64, 8, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(4096)](buf5, primals_7,
4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 4, 4), (512, 16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_3[grid(2048)](buf7, primals_9,
2048, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 2, 2), (256, 4, 2, 1))
buf9 = buf8
del buf8
buf10 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_4[grid(1024)](buf9
, primals_11, buf10, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_11
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, buf1, buf3, buf5, buf7, buf10)
class aeEncoderNew(nn.Module):
def __init__(self, capacity, channel):
super(aeEncoderNew, self).__init__()
self.c = capacity
self.channel = channel
self.conv1 = nn.Conv2d(in_channels=self.channel, out_channels=self.
c, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(in_channels=self.c, out_channels=self.c * 2,
kernel_size=4, stride=2, padding=1)
self.conv3 = nn.Conv2d(in_channels=self.c * 2, out_channels=self.c *
4, kernel_size=4, stride=2, padding=1)
self.conv4 = nn.Conv2d(in_channels=self.c * 4, out_channels=self.c *
8, kernel_size=4, stride=2, padding=1)
self.conv5 = nn.Conv2d(in_channels=self.c * 8, out_channels=self.c *
16, kernel_size=4, stride=2, padding=1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.conv5.weight
primals_11 = self.conv5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| XiaoyuanGuo/TEND_MedicalNoveltyDetection | aeEncoder | false | 1,264 | [
"MIT"
] | 0 | 5c2144f0592373d814540cc0fa8e60197ea51756 | https://github.com/XiaoyuanGuo/TEND_MedicalNoveltyDetection/tree/5c2144f0592373d814540cc0fa8e60197ea51756 | import torch
from torch import nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, capacity, channel):
super().__init__()
self.c = capacity
self.channel = channel
self.conv1 = nn.Conv2d(in_channels=self.channel, out_channels=self.
c, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(in_channels=self.c, out_channels=self.c * 2,
kernel_size=4, stride=2, padding=1)
self.conv3 = nn.Conv2d(in_channels=self.c * 2, out_channels=self.c *
4, kernel_size=4, stride=2, padding=1)
self.conv4 = nn.Conv2d(in_channels=self.c * 4, out_channels=self.c *
8, kernel_size=4, stride=2, padding=1)
self.conv5 = nn.Conv2d(in_channels=self.c * 8, out_channels=self.c *
16, kernel_size=4, stride=2, padding=1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.relu(self.conv5(x))
return x
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [4, 4]
|
Attention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py
# Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# score_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# score_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_3
del primals_4
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_5
del primals_6
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf2, buf3, 64, grid=grid(64), stream=stream0)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(buf4, reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_8
return (reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0), buf4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), buf4, reinterpret_tensor(buf5, (16, 4), (4, 1), 0), primals_7, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 4), (16, 4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Attention(nn.Module):
def __init__(self, embed_dim, hidden_dim=None, out_dim=None, n_head=1,
score_function='dot_product', dropout=0):
""" Attention Mechanism
:param embed_dim:
:param hidden_dim:
:param out_dim:
:param n_head: num of head (Multi-Head Attention)
:param score_function: scaled_dot_product / mlp (concat) / bi_linear (general dot)
:return (?, q_len, out_dim,)
"""
super(Attention, self).__init__()
if hidden_dim is None:
hidden_dim = embed_dim // n_head
if out_dim is None:
out_dim = embed_dim
self.embed_dim = embed_dim
self.hidden_dim = hidden_dim
self.n_head = n_head
self.score_function = score_function
self.w_k = nn.Linear(embed_dim, n_head * hidden_dim)
self.w_q = nn.Linear(embed_dim, n_head * hidden_dim)
self.proj = nn.Linear(n_head * hidden_dim, out_dim)
self.dropout = nn.Dropout(dropout)
if score_function == 'mlp':
self.weight = nn.Parameter(torch.Tensor(hidden_dim * 2))
elif self.score_function == 'bi_linear':
self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim))
else:
self.register_parameter('weight', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_dim)
if self.weight is not None:
self.weight.data.uniform_(-stdv, stdv)
def forward(self, k, q):
if len(q.shape) == 2:
q = torch.unsqueeze(q, dim=1)
if len(k.shape) == 2:
k = torch.unsqueeze(k, dim=1)
mb_size = k.shape[0]
k_len = k.shape[1]
q_len = q.shape[1]
kx = self.w_k(k).view(mb_size, k_len, self.n_head, self.hidden_dim)
kx = kx.permute(2, 0, 1, 3).contiguous().view(-1, k_len, self.
hidden_dim)
qx = self.w_q(q).view(mb_size, q_len, self.n_head, self.hidden_dim)
qx = qx.permute(2, 0, 1, 3).contiguous().view(-1, q_len, self.
hidden_dim)
if self.score_function == 'dot_product':
kt = kx.permute(0, 2, 1)
score = torch.bmm(qx, kt)
elif self.score_function == 'scaled_dot_product':
kt = kx.permute(0, 2, 1)
qkt = torch.bmm(qx, kt)
score = torch.div(qkt, math.sqrt(self.hidden_dim))
elif self.score_function == 'mlp':
kxx = torch.unsqueeze(kx, dim=1).expand(-1, q_len, -1, -1)
qxx = torch.unsqueeze(qx, dim=2).expand(-1, -1, k_len, -1)
kq = torch.cat((kxx, qxx), dim=-1)
score = F.tanh(torch.matmul(kq, self.weight))
elif self.score_function == 'bi_linear':
qw = torch.matmul(qx, self.weight)
kt = kx.permute(0, 2, 1)
score = torch.bmm(qw, kt)
else:
raise RuntimeError('invalid score_function')
score = F.softmax(score, dim=-1)
output = torch.bmm(score, kx)
output = torch.cat(torch.split(output, mb_size, dim=0), dim=-1)
output = self.proj(output)
output = self.dropout(output)
return output, score
def get_inputs():
return [torch.rand([4, 4, 1, 4]), torch.rand([4, 4, 1, 4])]
def get_init_inputs():
return [[], {'embed_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 4), (16, 4, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16,
4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_3
del primals_4
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_1, (16,
4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_5
del primals_6
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = buf2
del buf2
triton_poi_fused__softmax_1[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = buf3
del buf3
extern_kernels.bmm(buf4, reinterpret_tensor(buf0, (4, 4, 4), (16, 4,
1), 0), out=buf5)
buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(buf5, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf6)
del primals_8
return reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0
), buf4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0
), buf4, reinterpret_tensor(buf5, (16, 4), (4, 1), 0
), primals_7, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0)
class AttentionNew(nn.Module):
def __init__(self, embed_dim, hidden_dim=None, out_dim=None, n_head=1,
score_function='dot_product', dropout=0):
""" Attention Mechanism
:param embed_dim:
:param hidden_dim:
:param out_dim:
:param n_head: num of head (Multi-Head Attention)
:param score_function: scaled_dot_product / mlp (concat) / bi_linear (general dot)
:return (?, q_len, out_dim,)
"""
super(AttentionNew, self).__init__()
if hidden_dim is None:
hidden_dim = embed_dim // n_head
if out_dim is None:
out_dim = embed_dim
self.embed_dim = embed_dim
self.hidden_dim = hidden_dim
self.n_head = n_head
self.score_function = score_function
self.w_k = nn.Linear(embed_dim, n_head * hidden_dim)
self.w_q = nn.Linear(embed_dim, n_head * hidden_dim)
self.proj = nn.Linear(n_head * hidden_dim, out_dim)
self.dropout = nn.Dropout(dropout)
if score_function == 'mlp':
self.weight = nn.Parameter(torch.Tensor(hidden_dim * 2))
elif self.score_function == 'bi_linear':
self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim))
else:
self.register_parameter('weight', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_dim)
if self.weight is not None:
self.weight.data.uniform_(-stdv, stdv)
def forward(self, input_0, input_1):
primals_3 = self.w_k.weight
primals_4 = self.w_k.bias
primals_5 = self.w_q.weight
primals_6 = self.w_q.bias
primals_7 = self.proj.weight
primals_8 = self.proj.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0], output[1]
| XuMayi/PyABSA | Attention | false | 1,265 | [
"MIT"
] | 0 | 3d71c0cdaea7ea1eff600d9091c3c63f61c111e5 | https://github.com/XuMayi/PyABSA/tree/3d71c0cdaea7ea1eff600d9091c3c63f61c111e5 | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, embed_dim, hidden_dim=None, out_dim=None, n_head=1,
score_function='dot_product', dropout=0):
""" Attention Mechanism
:param embed_dim:
:param hidden_dim:
:param out_dim:
:param n_head: num of head (Multi-Head Attention)
:param score_function: scaled_dot_product / mlp (concat) / bi_linear (general dot)
:return (?, q_len, out_dim,)
"""
super().__init__()
if hidden_dim is None:
hidden_dim = embed_dim // n_head
if out_dim is None:
out_dim = embed_dim
self.embed_dim = embed_dim
self.hidden_dim = hidden_dim
self.n_head = n_head
self.score_function = score_function
self.w_k = nn.Linear(embed_dim, n_head * hidden_dim)
self.w_q = nn.Linear(embed_dim, n_head * hidden_dim)
self.proj = nn.Linear(n_head * hidden_dim, out_dim)
self.dropout = nn.Dropout(dropout)
if score_function == 'mlp':
self.weight = nn.Parameter(torch.Tensor(hidden_dim * 2))
elif self.score_function == 'bi_linear':
self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim))
else:
self.register_parameter('weight', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_dim)
if self.weight is not None:
self.weight.data.uniform_(-stdv, stdv)
def forward(self, k, q):
if len(q.shape) == 2:
q = torch.unsqueeze(q, dim=1)
if len(k.shape) == 2:
k = torch.unsqueeze(k, dim=1)
mb_size = k.shape[0]
k_len = k.shape[1]
q_len = q.shape[1]
kx = self.w_k(k).view(mb_size, k_len, self.n_head, self.hidden_dim)
kx = kx.permute(2, 0, 1, 3).contiguous().view(-1, k_len, self.
hidden_dim)
qx = self.w_q(q).view(mb_size, q_len, self.n_head, self.hidden_dim)
qx = qx.permute(2, 0, 1, 3).contiguous().view(-1, q_len, self.
hidden_dim)
if self.score_function == 'dot_product':
kt = kx.permute(0, 2, 1)
score = torch.bmm(qx, kt)
elif self.score_function == 'scaled_dot_product':
kt = kx.permute(0, 2, 1)
qkt = torch.bmm(qx, kt)
score = torch.div(qkt, math.sqrt(self.hidden_dim))
elif self.score_function == 'mlp':
kxx = torch.unsqueeze(kx, dim=1).expand(-1, q_len, -1, -1)
qxx = torch.unsqueeze(qx, dim=2).expand(-1, -1, k_len, -1)
kq = torch.cat((kxx, qxx), dim=-1)
score = F.tanh(torch.matmul(kq, self.weight))
elif self.score_function == 'bi_linear':
qw = torch.matmul(qx, self.weight)
kt = kx.permute(0, 2, 1)
score = torch.bmm(qw, kt)
else:
raise RuntimeError('invalid score_function')
score = F.softmax(score, dim=-1)
output = torch.bmm(score, kx)
output = torch.cat(torch.split(output, mb_size, dim=0), dim=-1)
output = self.proj(output)
output = self.dropout(output)
return output, score
def get_inputs():
return [torch.rand([4, 4, 1, 4]), torch.rand([4, 4, 1, 4])]
def get_init_inputs():
return [4]
|
F_fully_convolutional | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/cb/ccbgymnr2fvk43axzcuowohjalipdfn2nc4qqvidfjzuqhtxsj6g.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/j5/cj5nf2owtsdm2zwcezqxpyn63iwddjyadpotkhm2ua52inoqxdcl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/t6/ct6zirskpfqsqbhnjmn23xlleilffwmhs2zollktf3dfb4p7sip3.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 66560
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 260
y1 = (yindex // 260)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (260*x2) + (2340*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/hg/chg7sirnnhnknz3ptn3eoozzgbzupxzm5x6senlay6ofgympgnsv.py
# Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x1 => gt
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/dl/cdlfh7a22exmfr3ajvsn6fluwbocwskyu3xwvsimvoduia6uozcl.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %where], 1), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 260
x1 = (xindex // 260)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 260, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((256*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1)
tmp10 = tl.load(in_ptr2 + ((256*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr3 + ((-4) + x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.02
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp6, tmp15, tmp16)
tmp18 = tl.where(tmp4, tmp5, tmp17)
tl.store(out_ptr0 + (x2), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/vq/cvqzjkjohlrzvzpfntwnuriz72pk6hkhjyhcvmyaozp225qe7yfo.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %where, %where_1], 1), kwargs = {})
triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 33024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 516
x1 = (xindex // 516)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 260, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((256*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1)
tmp11 = tl.load(in_ptr2 + ((256*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr3 + ((-4) + x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tmp11 + tmp12
tmp14 = 0.02
tmp15 = tmp13 * tmp14
tmp16 = tl.where(tmp10, tmp13, tmp15)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp9, tmp16, tmp17)
tmp19 = tmp0 >= tmp7
tmp20 = tl.full([1], 516, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tl.load(in_ptr4 + ((256*x1) + ((-260) + x0)), tmp19 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1)
tmp23 = tl.load(in_ptr5 + ((256*x1) + ((-260) + x0)), tmp19 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr6 + ((-260) + x0), tmp19 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tmp25 * tmp14
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp19, tmp27, tmp28)
tmp30 = tl.where(tmp9, tmp18, tmp29)
tmp31 = tl.where(tmp4, tmp5, tmp30)
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/6f/c6f22zofgmmauujzzpvikmba5mkauq7gnmpdgxxhjctuzlhxxl55.py
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask)
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 260, 3, 3), (2340, 9, 3, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (4, 516, 1, 1), (516, 1, 1, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 4, 3, 3), (36, 1, 12, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 1024, 9, grid=grid(1024, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((256, 260, 3, 3), (2340, 1, 780, 260), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 66560, 9, grid=grid(66560, 9), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 256, 4, 4), (4096, 1, 1024, 256))
buf4 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_3.run(buf3, primals_2, buf4, 16384, grid=grid(16384), stream=stream0)
buf5 = empty_strided_cuda((4, 260, 4, 4), (4160, 1, 1040, 260), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(buf1, buf4, buf3, primals_2, buf5, 16640, grid=grid(16640), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 1, 1024, 256))
buf7 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_1, x2], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_3.run(buf6, primals_5, buf7, 16384, grid=grid(16384), stream=stream0)
buf8 = empty_strided_cuda((4, 516, 4, 4), (8256, 1, 2064, 516), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_5.run(buf1, buf4, buf3, primals_2, buf7, buf6, primals_5, buf8, 33024, grid=grid(33024), stream=stream0)
del buf3
del buf6
del primals_2
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 4, 4), (64, 1, 16, 4))
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf9, primals_7, buf10, 16, 16, grid=grid(16, 16), stream=stream0)
del buf9
del primals_7
return (buf10, buf0, buf1, buf2, primals_6, buf4, buf5, buf7, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 260, 3, 3), (2340, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 516, 1, 1), (516, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class F_fully_convolutional(nn.Module):
def __init__(self, in_channels, out_channels, internal_size=256,
kernel_size=3, leaky_slope=0.02):
super().__init__()
pad = kernel_size // 2
self.leaky_slope = leaky_slope
self.conv1 = nn.Conv2d(in_channels, internal_size, kernel_size=
kernel_size, padding=pad)
self.conv2 = nn.Conv2d(in_channels + internal_size, internal_size,
kernel_size=kernel_size, padding=pad)
self.conv3 = nn.Conv2d(in_channels + 2 * internal_size,
out_channels, kernel_size=1, padding=0)
def forward(self, x):
x1 = F.leaky_relu(self.conv1(x), self.leaky_slope)
x2 = F.leaky_relu(self.conv2(torch.cat([x, x1], 1)), self.leaky_slope)
return self.conv3(torch.cat([x, x1, x2], 1))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 260
y1 = yindex // 260
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 260 * x2 + 2340 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 260
x1 = xindex // 260
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 260, tl.int64)
tmp9 = tl.load(in_ptr1 + (256 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0).to(tl.int1)
tmp10 = tl.load(in_ptr2 + (256 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr3 + (-4 + x0), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.02
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp6, tmp15, tmp16)
tmp18 = tl.where(tmp4, tmp5, tmp17)
tl.store(out_ptr0 + x2, tmp18, xmask)
@triton.jit
def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 33024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 516
x1 = xindex // 516
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 260, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (256 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0).to(tl.int1)
tmp11 = tl.load(in_ptr2 + (256 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr3 + (-4 + x0), tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp13 = tmp11 + tmp12
tmp14 = 0.02
tmp15 = tmp13 * tmp14
tmp16 = tl.where(tmp10, tmp13, tmp15)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp9, tmp16, tmp17)
tmp19 = tmp0 >= tmp7
tl.full([1], 516, tl.int64)
tmp22 = tl.load(in_ptr4 + (256 * x1 + (-260 + x0)), tmp19 & xmask,
eviction_policy='evict_last', other=0.0).to(tl.int1)
tmp23 = tl.load(in_ptr5 + (256 * x1 + (-260 + x0)), tmp19 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr6 + (-260 + x0), tmp19 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tmp25 * tmp14
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp19, tmp27, tmp28)
tmp30 = tl.where(tmp9, tmp18, tmp29)
tmp31 = tl.where(tmp4, tmp5, tmp30)
tl.store(out_ptr0 + x2, tmp31, xmask)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 260, 3, 3), (2340, 9, 3, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (4, 516, 1, 1), (516, 1, 1, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 4, 3, 3), (36, 1, 12, 4), torch.float32
)
get_raw_stream(0)
triton_poi_fused_0[grid(1024, 9)](primals_1, buf0, 1024, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((256, 260, 3, 3), (2340, 1, 780, 260),
torch.float32)
triton_poi_fused_2[grid(66560, 9)](primals_4, buf2, 66560, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 256, 4, 4), (4096, 1, 1024, 256))
buf4 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256),
torch.bool)
triton_poi_fused_convolution_leaky_relu_3[grid(16384)](buf3,
primals_2, buf4, 16384, XBLOCK=128, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 260, 4, 4), (4160, 1, 1040, 260),
torch.float32)
triton_poi_fused_cat_4[grid(16640)](buf1, buf4, buf3, primals_2,
buf5, 16640, XBLOCK=256, num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(buf5, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 1, 1024, 256))
buf7 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256),
torch.bool)
triton_poi_fused_convolution_leaky_relu_3[grid(16384)](buf6,
primals_5, buf7, 16384, XBLOCK=128, num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((4, 516, 4, 4), (8256, 1, 2064, 516),
torch.float32)
triton_poi_fused_cat_5[grid(33024)](buf1, buf4, buf3, primals_2,
buf7, buf6, primals_5, buf8, 33024, XBLOCK=256, num_warps=4,
num_stages=1)
del buf3
del buf6
del primals_2
del primals_5
buf9 = extern_kernels.convolution(buf8, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 4, 4), (64, 1, 16, 4))
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_convolution_6[grid(16, 16)](buf9, primals_7, buf10,
16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf9
del primals_7
return buf10, buf0, buf1, buf2, primals_6, buf4, buf5, buf7, buf8
class F_fully_convolutionalNew(nn.Module):
def __init__(self, in_channels, out_channels, internal_size=256,
kernel_size=3, leaky_slope=0.02):
super().__init__()
pad = kernel_size // 2
self.leaky_slope = leaky_slope
self.conv1 = nn.Conv2d(in_channels, internal_size, kernel_size=
kernel_size, padding=pad)
self.conv2 = nn.Conv2d(in_channels + internal_size, internal_size,
kernel_size=kernel_size, padding=pad)
self.conv3 = nn.Conv2d(in_channels + 2 * internal_size,
out_channels, kernel_size=1, padding=0)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Xenovortex/INN_Embedding_Classification | F_fully_convolutional | false | 1,266 | [
"MIT"
] | 0 | df31ec3dcf70780cae5140a69ffafdd64f218e5f | https://github.com/Xenovortex/INN_Embedding_Classification/tree/df31ec3dcf70780cae5140a69ffafdd64f218e5f | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, in_channels, out_channels, internal_size=256,
kernel_size=3, leaky_slope=0.02):
super().__init__()
pad = kernel_size // 2
self.leaky_slope = leaky_slope
self.conv1 = nn.Conv2d(in_channels, internal_size, kernel_size=
kernel_size, padding=pad)
self.conv2 = nn.Conv2d(in_channels + internal_size, internal_size,
kernel_size=kernel_size, padding=pad)
self.conv3 = nn.Conv2d(in_channels + 2 * internal_size,
out_channels, kernel_size=1, padding=0)
def forward(self, x):
x1 = F.leaky_relu(self.conv1(x), self.leaky_slope)
x2 = F.leaky_relu(self.conv2(torch.cat([x, x1], 1)), self.leaky_slope)
return self.conv3(torch.cat([x, x1, x2], 1))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
PAConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/cf/ccffwnd4sq3sztv4dcw45c3j2dsqwq3jy7vc3mqe4l5j4dxdabmr.py
# Topologically Sorted Source Nodes: [y, y_1, out], Original ATen: [aten.convolution, aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# out => mul
# y => convolution
# y_1 => sigmoid
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, %sigmoid), kwargs = {})
triton_poi_fused_convolution_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y, y_1, out], Original ATen: [aten.convolution, aten.sigmoid, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_mul_sigmoid_0.run(buf1, primals_2, buf2, buf3, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
return (buf4, primals_1, primals_3, primals_4, primals_5, buf1, buf2, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class PAConv(nn.Module):
def __init__(self, nf, k_size=3):
super(PAConv, self).__init__()
self.k2 = nn.Conv2d(nf, nf, 1)
self.sigmoid = nn.Sigmoid()
self.k3 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1
) // 2, bias=False)
self.k4 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1
) // 2, bias=False)
def forward(self, x):
y = self.k2(x)
y = self.sigmoid(y)
out = torch.mul(self.k3(x), y)
out = self.k4(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'nf': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_mul_sigmoid_0[grid(256)](buf1,
primals_2, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf4 = extern_kernels.convolution(buf3, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
return buf4, primals_1, primals_3, primals_4, primals_5, buf1, buf2, buf3
class PAConvNew(nn.Module):
def __init__(self, nf, k_size=3):
super(PAConvNew, self).__init__()
self.k2 = nn.Conv2d(nf, nf, 1)
self.sigmoid = nn.Sigmoid()
self.k3 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1
) // 2, bias=False)
self.k4 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1
) // 2, bias=False)
def forward(self, input_0):
primals_1 = self.k2.weight
primals_2 = self.k2.bias
primals_4 = self.k3.weight
primals_5 = self.k4.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| YingqiLiulll/scrips_for_SR | PAConv | false | 1,267 | [
"MIT"
] | 0 | 04fa6fdaf157e913d3e2521cd80315a10a2ccedc | https://github.com/YingqiLiulll/scrips_for_SR/tree/04fa6fdaf157e913d3e2521cd80315a10a2ccedc | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, nf, k_size=3):
super().__init__()
self.k2 = nn.Conv2d(nf, nf, 1)
self.sigmoid = nn.Sigmoid()
self.k3 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1
) // 2, bias=False)
self.k4 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1
) // 2, bias=False)
def forward(self, x):
y = self.k2(x)
y = self.sigmoid(y)
out = torch.mul(self.k3(x), y)
out = self.k4(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
PVABlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/3u/c3ub52l73zdv4klgqzgxmtzrzxvztuyczv2jksnvrjr7erq7guxd.py
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# linear_1 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/2r/c2rfym7x5d6gfe43hgp23gbkfnsow7ttgn2hby3xsrg6fgja77us.py
# Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# tanh => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %unsqueeze), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_1 = async_compile.triton('triton_poi_fused_add_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 512
x2 = (xindex // 8192) % 4
x3 = (xindex // 32768)
x4 = xindex % 8192
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (512*x2)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x4 + (8192*x3)), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(out_ptr0 + (x5), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/g2/cg266bzrczdgrg4t2bizcm563ududawebjvz37s7yg2panbw22xg.py
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_1 => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 512), (512, 1))
assert_size_stride(primals_3, (512, 512), (512, 1))
assert_size_stride(primals_4, (512, 4), (4, 1))
assert_size_stride(primals_5, (1, 512), (512, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, reinterpret_tensor(primals_3, (512, 512), (1, 512), 0), out=buf0)
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf1, 64, 4, grid=grid(64, 4), stream=stream0)
buf2 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 512), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((4, 4, 16, 512), (32768, 8192, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh]
triton_poi_fused_add_tanh_1.run(buf0, buf2, buf3, 131072, grid=grid(131072), stream=stream0)
del buf0
del buf2
buf4 = empty_strided_cuda((256, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf3, (256, 512), (512, 1), 0), reinterpret_tensor(primals_5, (512, 1), (1, 512), 0), out=buf4)
buf7 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
triton_per_fused__softmax_2.run(buf4, buf7, 16, 16, grid=grid(16), stream=stream0)
del buf4
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(buf7, reinterpret_tensor(primals_1, (4, 16, 4), (64, 1, 16), 0), out=buf8)
return (buf8, primals_2, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf3, buf7, reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), primals_5, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 512), (512, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
def constant_init(module, val, bias=0):
nn.init.constant_(module.weight, val)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def kaiming_init(module, a=0, is_rnn=False, mode='fan_in', nonlinearity=
'leaky_relu', bias=0, distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
if is_rnn:
for name, param in module.named_parameters():
if 'bias' in name:
nn.init.constant_(param, bias)
elif 'weight' in name:
nn.init.kaiming_uniform_(param, a=a, mode=mode,
nonlinearity=nonlinearity)
else:
nn.init.kaiming_uniform_(module.weight, a=a, mode=mode,
nonlinearity=nonlinearity)
elif is_rnn:
for name, param in module.named_parameters():
if 'bias' in name:
nn.init.constant_(param, bias)
elif 'weight' in name:
nn.init.kaiming_normal_(param, a=a, mode=mode, nonlinearity
=nonlinearity)
else:
nn.init.kaiming_normal_(module.weight, a=a, mode=mode, nonlinearity
=nonlinearity)
if not is_rnn and hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def xavier_init(module, gain=1, bias=0, distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
nn.init.xavier_uniform_(module.weight, gain=gain)
else:
nn.init.xavier_normal_(module.weight, gain=gain)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def init_weights(modules):
for m in modules:
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
constant_init(m, 1)
elif isinstance(m, nn.Linear):
xavier_init(m)
elif isinstance(m, (nn.LSTM, nn.LSTMCell)):
kaiming_init(m, is_rnn=True)
class PVABlock(nn.Module):
def __init__(self, num_steps, in_channels, embedding_channels=512,
inner_channels=512):
super(PVABlock, self).__init__()
self.num_steps = num_steps
self.in_channels = in_channels
self.inner_channels = inner_channels
self.embedding_channels = embedding_channels
self.order_embeddings = nn.Parameter(torch.randn(self.num_steps,
self.embedding_channels), requires_grad=True)
self.v_linear = nn.Linear(self.in_channels, self.inner_channels,
bias=False)
self.o_linear = nn.Linear(self.embedding_channels, self.
inner_channels, bias=False)
self.e_linear = nn.Linear(self.inner_channels, 1, bias=False)
init_weights(self.modules())
def forward(self, x):
b, c, h, w = x.size()
x = x.reshape(b, c, h * w).permute(0, 2, 1)
o_out = self.o_linear(self.order_embeddings).view(1, self.num_steps,
1, self.inner_channels)
v_out = self.v_linear(x).unsqueeze(1)
att = self.e_linear(torch.tanh(o_out + v_out)).squeeze(3)
att = torch.softmax(att, dim=2)
out = torch.bmm(att, x)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_steps': 4, 'in_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_tanh_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 512
x2 = xindex // 8192 % 4
x3 = xindex // 32768
x4 = xindex % 8192
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 512 * x2), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x4 + 8192 * x3), None, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(out_ptr0 + x5, tmp3, None)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 512), (512, 1))
assert_size_stride(primals_3, (512, 512), (512, 1))
assert_size_stride(primals_4, (512, 4), (4, 1))
assert_size_stride(primals_5, (1, 512), (512, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512), (512, 1), torch.float32)
extern_kernels.mm(primals_2, reinterpret_tensor(primals_3, (512,
512), (1, 512), 0), out=buf0)
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf1, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 512), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((4, 4, 16, 512), (32768, 8192, 512, 1),
torch.float32)
triton_poi_fused_add_tanh_1[grid(131072)](buf0, buf2, buf3, 131072,
XBLOCK=512, num_warps=8, num_stages=1)
del buf0
del buf2
buf4 = empty_strided_cuda((256, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (256, 512), (512, 1), 0),
reinterpret_tensor(primals_5, (512, 1), (1, 512), 0), out=buf4)
buf7 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
triton_per_fused__softmax_2[grid(16)](buf4, buf7, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del buf4
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf7, reinterpret_tensor(primals_1, (4, 16, 4),
(64, 1, 16), 0), out=buf8)
return buf8, primals_2, reinterpret_tensor(buf1, (64, 4), (4, 1), 0
), buf3, buf7, reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0
), primals_5, primals_3
def constant_init(module, val, bias=0):
nn.init.constant_(module.weight, val)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def kaiming_init(module, a=0, is_rnn=False, mode='fan_in', nonlinearity=
'leaky_relu', bias=0, distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
if is_rnn:
for name, param in module.named_parameters():
if 'bias' in name:
nn.init.constant_(param, bias)
elif 'weight' in name:
nn.init.kaiming_uniform_(param, a=a, mode=mode,
nonlinearity=nonlinearity)
else:
nn.init.kaiming_uniform_(module.weight, a=a, mode=mode,
nonlinearity=nonlinearity)
elif is_rnn:
for name, param in module.named_parameters():
if 'bias' in name:
nn.init.constant_(param, bias)
elif 'weight' in name:
nn.init.kaiming_normal_(param, a=a, mode=mode, nonlinearity
=nonlinearity)
else:
nn.init.kaiming_normal_(module.weight, a=a, mode=mode, nonlinearity
=nonlinearity)
if not is_rnn and hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def xavier_init(module, gain=1, bias=0, distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
nn.init.xavier_uniform_(module.weight, gain=gain)
else:
nn.init.xavier_normal_(module.weight, gain=gain)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def init_weights(modules):
for m in modules:
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
constant_init(m, 1)
elif isinstance(m, nn.Linear):
xavier_init(m)
elif isinstance(m, (nn.LSTM, nn.LSTMCell)):
kaiming_init(m, is_rnn=True)
class PVABlockNew(nn.Module):
def __init__(self, num_steps, in_channels, embedding_channels=512,
inner_channels=512):
super(PVABlockNew, self).__init__()
self.num_steps = num_steps
self.in_channels = in_channels
self.inner_channels = inner_channels
self.embedding_channels = embedding_channels
self.order_embeddings = nn.Parameter(torch.randn(self.num_steps,
self.embedding_channels), requires_grad=True)
self.v_linear = nn.Linear(self.in_channels, self.inner_channels,
bias=False)
self.o_linear = nn.Linear(self.embedding_channels, self.
inner_channels, bias=False)
self.e_linear = nn.Linear(self.inner_channels, 1, bias=False)
init_weights(self.modules())
def forward(self, input_0):
primals_2 = self.order_embeddings
primals_4 = self.v_linear.weight
primals_3 = self.o_linear.weight
primals_5 = self.e_linear.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| YacobBY/vedastr | PVABlock | false | 1,268 | [
"Apache-2.0"
] | 0 | 2353780489b58d2398b9af49d238ef0df3f45f2a | https://github.com/YacobBY/vedastr/tree/2353780489b58d2398b9af49d238ef0df3f45f2a | import torch
from torch import nn
def constant_init(module, val, bias=0):
nn.init.constant_(module.weight, val)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def kaiming_init(module, a=0, is_rnn=False, mode='fan_in', nonlinearity=
'leaky_relu', bias=0, distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
if is_rnn:
for name, param in module.named_parameters():
if 'bias' in name:
nn.init.constant_(param, bias)
elif 'weight' in name:
nn.init.kaiming_uniform_(param, a=a, mode=mode,
nonlinearity=nonlinearity)
else:
nn.init.kaiming_uniform_(module.weight, a=a, mode=mode,
nonlinearity=nonlinearity)
elif is_rnn:
for name, param in module.named_parameters():
if 'bias' in name:
nn.init.constant_(param, bias)
elif 'weight' in name:
nn.init.kaiming_normal_(param, a=a, mode=mode, nonlinearity
=nonlinearity)
else:
nn.init.kaiming_normal_(module.weight, a=a, mode=mode, nonlinearity
=nonlinearity)
if not is_rnn and hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def xavier_init(module, gain=1, bias=0, distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
nn.init.xavier_uniform_(module.weight, gain=gain)
else:
nn.init.xavier_normal_(module.weight, gain=gain)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def init_weights(modules):
for m in modules:
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
constant_init(m, 1)
elif isinstance(m, nn.Linear):
xavier_init(m)
elif isinstance(m, (nn.LSTM, nn.LSTMCell)):
kaiming_init(m, is_rnn=True)
class Model(nn.Module):
def __init__(self, num_steps, in_channels, embedding_channels=512,
inner_channels=512):
super().__init__()
self.num_steps = num_steps
self.in_channels = in_channels
self.inner_channels = inner_channels
self.embedding_channels = embedding_channels
self.order_embeddings = nn.Parameter(torch.randn(self.num_steps,
self.embedding_channels), requires_grad=True)
self.v_linear = nn.Linear(self.in_channels, self.inner_channels,
bias=False)
self.o_linear = nn.Linear(self.embedding_channels, self.
inner_channels, bias=False)
self.e_linear = nn.Linear(self.inner_channels, 1, bias=False)
init_weights(self.modules())
def forward(self, x):
b, c, h, w = x.size()
x = x.reshape(b, c, h * w).permute(0, 2, 1)
o_out = self.o_linear(self.order_embeddings).view(1, self.num_steps,
1, self.inner_channels)
v_out = self.v_linear(x).unsqueeze(1)
att = self.e_linear(torch.tanh(o_out + v_out)).squeeze(3)
att = torch.softmax(att, dim=2)
out = torch.bmm(att, x)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
MyModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/fg/cfgmyx5n6r653ugs4uf5gvloegaueiuru5j2d4hwea4a6qemkiqi.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7680
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 120
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/vz/cvzhluf7i4hedmweicu3ryemkecneccta6woftv634hsqoiwbwpo.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5376
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 84
x2 = xindex % 1344
x3 = (xindex // 1344)
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x2 + (1408*x3)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (120, 4), (4, 1))
assert_size_stride(primals_2, (120, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (84, 120), (120, 1))
assert_size_stride(primals_5, (84, ), (1, ))
assert_size_stride(primals_6, (4, 84), (84, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 120), (120, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 120), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 120), (1920, 480, 120, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 120), (1920, 480, 120, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 7680, grid=grid(7680), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 84), (84, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 120), (120, 1), 0), reinterpret_tensor(primals_4, (120, 84), (1, 120), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 84), (1344, 336, 84, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 84), (1408, 336, 84, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf5, 5376, grid=grid(5376), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 84), (84, 1), 0), reinterpret_tensor(primals_6, (84, 4), (1, 84), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 120), (120, 1), 0), reinterpret_tensor(buf3, (64, 84), (84, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((120, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((84, 120), (120, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((84, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 84), (84, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class MyModel(nn.Module):
def __init__(self, state_size, action_size):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(state_size, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, action_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def select_action(self, state):
self.eval()
x = self.forward(state)
self.train()
return x.max(1)[1].view(1, 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 7680
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 120
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 5376
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 84
x2 = xindex % 1344
x3 = xindex // 1344
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + (x2 + 1408 * x3), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (120, 4), (4, 1))
assert_size_stride(primals_2, (120,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (84, 120), (120, 1))
assert_size_stride(primals_5, (84,), (1,))
assert_size_stride(primals_6, (4, 84), (84, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 120), (120, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 120), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 120), (1920, 480, 120, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 120), (1920, 480, 120, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(7680)](buf1,
primals_2, buf6, 7680, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 84), (84, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 120), (120, 1), 0),
reinterpret_tensor(primals_4, (120, 84), (1, 120), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 84), (1344, 336, 84, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 84), (1408, 336, 84, 1), torch.bool
)
triton_poi_fused_relu_threshold_backward_1[grid(5376)](buf3,
primals_5, buf5, 5376, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 84),
(84, 1), 0), reinterpret_tensor(primals_6, (84, 4), (1, 84), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 120), (120, 1), 0
), reinterpret_tensor(buf3, (64, 84), (84, 1), 0
), primals_6, buf5, primals_4, buf6
class MyModelNew(nn.Module):
def __init__(self, state_size, action_size):
super(MyModelNew, self).__init__()
self.fc1 = nn.Linear(state_size, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, action_size)
def select_action(self, state):
self.eval()
x = self.forward(state)
self.train()
return x.max(1)[1].view(1, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Yaphetsf75/slimevolleygym | MyModel | false | 1,269 | [
"Apache-2.0"
] | 0 | 39882c2c8c86c974c9b1083e8d93b2b0fdeecb56 | https://github.com/Yaphetsf75/slimevolleygym/tree/39882c2c8c86c974c9b1083e8d93b2b0fdeecb56 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, state_size, action_size):
super().__init__()
self.fc1 = nn.Linear(state_size, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, action_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def select_action(self, state):
self.eval()
x = self.forward(state)
self.train()
return x.max(1)[1].view(1, 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
GumbelSoftmaxLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/jd/cjdnaobowqernajenb4axacuvfjpuu3bnchwmpvbem4jevqy6y4v.py
# Topologically Sorted Source Nodes: [indexes], Original ATen: [aten.argmax]
# Source node to ATen node mapping:
# indexes => argmax
# Graph fragment:
# %argmax : [num_users=1] = call_function[target=torch.ops.aten.argmax.default](args = (%arg0_1, -1), kwargs = {})
triton_poi_fused_argmax_0 = async_compile.triton('triton_poi_fused_argmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_argmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + (x0), tmp46, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/if/cifak5fetarqn6wy6kapdta3ra37zxer74aicozekjrdjtc73bfd.py
# Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter]
# Source node to ATen node mapping:
# scatter_ => scatter_upon_const_tensor
# Graph fragment:
# %scatter_upon_const_tensor : [num_users=1] = call_function[target=torch._inductor.fx_passes.post_grad.scatter_upon_const_tensor](args = (), kwargs = {shape: [64, 4], background_val: 0.0, dtype: torch.float32, dim: 1, selector: %view_1, val: 1})
# %view_6 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_5, [4, 4, 4, 4]), kwargs = {})
triton_poi_fused_scatter_1 = async_compile.triton('triton_poi_fused_scatter_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_scatter_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_scatter_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = x0
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(in_out_ptr0 + (x4), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [indexes], Original ATen: [aten.argmax]
stream0 = get_raw_stream(0)
triton_poi_fused_argmax_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter]
triton_poi_fused_scatter_1.run(buf2, buf0, 256, grid=grid(256), stream=stream0)
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.distributions import RelaxedOneHotCategorical
import torch.nn.parallel
import torch.utils.data
import torch.distributions
def gumbel_softmax_sample(logits: 'torch.Tensor', temperature: 'float'=1.0,
training: 'bool'=True, straight_through: 'bool'=False):
size = logits.size()
if not training:
indexes = logits.argmax(dim=-1)
one_hot = torch.zeros_like(logits).view(-1, size[-1])
one_hot.scatter_(1, indexes.view(-1, 1), 1)
one_hot = one_hot.view(*size)
return one_hot
sample = RelaxedOneHotCategorical(logits=logits, temperature=temperature
).rsample()
if straight_through:
size = sample.size()
indexes = sample.argmax(dim=-1)
hard_sample = torch.zeros_like(sample).view(-1, size[-1])
hard_sample.scatter_(1, indexes.view(-1, 1), 1)
hard_sample = hard_sample.view(*size)
sample = sample + (hard_sample - sample).detach()
return sample
class GumbelSoftmaxLayer(nn.Module):
def __init__(self, temperature: 'float'=1.0, trainable_temperature:
'bool'=False, straight_through: 'bool'=False):
super(GumbelSoftmaxLayer, self).__init__()
self.straight_through = straight_through
if not trainable_temperature:
self.temperature = temperature
else:
self.temperature = torch.nn.Parameter(torch.tensor([temperature
]), requires_grad=True)
def forward(self, logits: 'torch.Tensor'):
return gumbel_softmax_sample(logits, self.temperature, self.
training, self.straight_through)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.distributions import RelaxedOneHotCategorical
import torch.nn.parallel
import torch.utils.data
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_argmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + x0, tmp46, xmask)
@triton.jit
def triton_poi_fused_scatter_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = x0
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(in_out_ptr0 + x4, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused_argmax_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_scatter_1[grid(256)](buf2, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf0
return buf2,
def gumbel_softmax_sample(logits: 'torch.Tensor', temperature: 'float'=1.0,
training: 'bool'=True, straight_through: 'bool'=False):
size = logits.size()
if not training:
indexes = logits.argmax(dim=-1)
one_hot = torch.zeros_like(logits).view(-1, size[-1])
one_hot.scatter_(1, indexes.view(-1, 1), 1)
one_hot = one_hot.view(*size)
return one_hot
sample = RelaxedOneHotCategorical(logits=logits, temperature=temperature
).rsample()
if straight_through:
size = sample.size()
indexes = sample.argmax(dim=-1)
hard_sample = torch.zeros_like(sample).view(-1, size[-1])
hard_sample.scatter_(1, indexes.view(-1, 1), 1)
hard_sample = hard_sample.view(*size)
sample = sample + (hard_sample - sample).detach()
return sample
class GumbelSoftmaxLayerNew(nn.Module):
def __init__(self, temperature: 'float'=1.0, trainable_temperature:
'bool'=False, straight_through: 'bool'=False):
super(GumbelSoftmaxLayerNew, self).__init__()
self.straight_through = straight_through
if not trainable_temperature:
self.temperature = temperature
else:
self.temperature = torch.nn.Parameter(torch.tensor([temperature
]), requires_grad=True)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| XeniaOhmer/SystematicRepresentations | GumbelSoftmaxLayer | false | 1,270 | [
"MIT"
] | 0 | 825208d1be659dc820e61f577cdb53afc47302f4 | https://github.com/XeniaOhmer/SystematicRepresentations/tree/825208d1be659dc820e61f577cdb53afc47302f4 | import torch
import torch.nn as nn
from torch.distributions import RelaxedOneHotCategorical
import torch.nn.parallel
import torch.utils.data
import torch.distributions
def gumbel_softmax_sample(logits: 'torch.Tensor', temperature: 'float'=1.0,
training: 'bool'=True, straight_through: 'bool'=False):
size = logits.size()
if not training:
indexes = logits.argmax(dim=-1)
one_hot = torch.zeros_like(logits).view(-1, size[-1])
one_hot.scatter_(1, indexes.view(-1, 1), 1)
one_hot = one_hot.view(*size)
return one_hot
sample = RelaxedOneHotCategorical(logits=logits, temperature=temperature
).rsample()
if straight_through:
size = sample.size()
indexes = sample.argmax(dim=-1)
hard_sample = torch.zeros_like(sample).view(-1, size[-1])
hard_sample.scatter_(1, indexes.view(-1, 1), 1)
hard_sample = hard_sample.view(*size)
sample = sample + (hard_sample - sample).detach()
return sample
class Model(nn.Module):
def __init__(self, temperature: 'float'=1.0, trainable_temperature:
'bool'=False, straight_through: 'bool'=False):
super().__init__()
self.straight_through = straight_through
if not trainable_temperature:
self.temperature = temperature
else:
self.temperature = torch.nn.Parameter(torch.tensor([temperature
]), requires_grad=True)
def forward(self, logits: 'torch.Tensor'):
return gumbel_softmax_sample(logits, self.temperature, self.
training, self.straight_through)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
ChannelRate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/jq/cjqrdjdw4lutpjfilscnzxbqokgu5zdhc3aplva375bjiqh3hlxy.py
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %view), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 / tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
return (buf0, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ChannelRate(nn.Module):
rates: 'torch.Tensor'
def __init__(self, num_channels: 'int', device=None, dtype=None):
super().__init__()
kw = {'device': device, 'dtype': dtype}
self.rates = nn.Parameter(torch.ones(num_channels, **kw))
def forward(self, x):
return x / self.rates.reshape(-1, 1, 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 / tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](primals_2, primals_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
return buf0, primals_1, primals_2
class ChannelRateNew(nn.Module):
rates: 'torch.Tensor'
def __init__(self, num_channels: 'int', device=None, dtype=None):
super().__init__()
kw = {'device': device, 'dtype': dtype}
self.rates = nn.Parameter(torch.ones(num_channels, **kw))
def forward(self, input_0):
primals_1 = self.rates
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| YodaEmbedding/deep-compression | ChannelRate | false | 1,271 | [
"MIT"
] | 0 | cc1ea691921fbe2e5cffeb30a02b777dadd08700 | https://github.com/YodaEmbedding/deep-compression/tree/cc1ea691921fbe2e5cffeb30a02b777dadd08700 | import torch
import torch.nn as nn
class Model(nn.Module):
rates: 'torch.Tensor'
def __init__(self, num_channels: 'int', device=None, dtype=None):
super().__init__()
kw = {'device': device, 'dtype': dtype}
self.rates = nn.Parameter(torch.ones(num_channels, **kw))
def forward(self, x):
return x / self.rates.reshape(-1, 1, 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
TransformerEncoderLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/6s/c6sstbvcita246hkfqwdeatnmsh3e6vlcncrzcwlsoqg7dmxvabp.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/zv/czv3tzezwxkylzsgkrivaldxprnr7tvjr5iihe4mbc7bzdev5lsj.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ah/cahpqo3o7hv3q647n5lretlqvfljlubj4ic7gscxws4yvkm5jzff.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul_2
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/7s/c7spagnqvsgjrukyw5jujzjmswxuigeuvpyhxgdob766q2gfvgzr.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/dw/cdwqsjnh2osfmjr2utzzaqdg2vrfivzkuhareq3urgidllj2bsvr.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/y5/cy5gjrtl7netbzcjhig66pdorub2vbq2qvwmv3tamld2ehimmlz7.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ji/cjikooh3unjvssdwbmc5bbgrf7argvwkpdjikzfpajfrzpotlkhf.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# x_2 => add_2
# x_3 => var_mean_1
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [1]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/j4/cj4vucbv6vxdldbfg73k3ixw2brnd6f754oxugjq3s7syrcrb4qe.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# x_2 => add_2
# x_3 => add_3, add_4, mul_3, mul_4, rsqrt_1, sub_2
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_9), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {})
triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/qh/cqhjuvjwt67rfrtkbjxo2mmttmolmi426zzzghxnkgalqlbdvejq.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_4 => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_11), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_8 = async_compile.triton('triton_poi_fused_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/44/c444sh6bryz652bk24ocru63kbqhe67iwwzctt3isl7imfgv5iaa.py
# Topologically Sorted Source Nodes: [x_2, x_8], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_2 => add_2
# x_8 => add_5
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_13), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add_tensor), kwargs = {})
triton_poi_fused_add_9 = async_compile.triton('triton_poi_fused_add_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_out_ptr0 + (x2), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, 4), (4, 1))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 4, grid=grid(4), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, grid=grid(16), stream=stream0)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf4)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf5)
buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf6, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_4.run(buf8, buf9, 64, grid=grid(64), stream=stream0)
del buf8
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_5.run(buf10, buf11, 4, 4, grid=grid(4, 4), stream=stream0)
buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_7
buf13 = buf1; del buf1 # reuse
buf14 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf12, buf13, buf14, 4, grid=grid(4), stream=stream0)
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, grid=grid(16), stream=stream0)
del buf13
del buf14
del primals_9
buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf16)
buf17 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
triton_poi_fused_relu_8.run(buf17, primals_11, 16, grid=grid(16), stream=stream0)
del primals_11
buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf17, reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf18)
buf19 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [x_2, x_8], Original ATen: [aten.add]
triton_poi_fused_add_9.run(buf19, primals_1, buf12, primals_13, 16, grid=grid(16), stream=stream0)
del primals_13
return (buf19, primals_1, primals_8, buf2, buf9, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf12, buf15, buf17, primals_12, primals_10, primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.utils.data
import torch.distributions
class TransformerEncoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, hidden_size, dropout=0.0,
attention_dropout=0.0, activation_dropout=0.0):
super().__init__()
self.embed_dim = embed_dim
self.self_attn = torch.nn.MultiheadAttention(embed_dim=self.
embed_dim, num_heads=num_heads, dropout=attention_dropout)
self.self_attn_layer_norm = torch.nn.LayerNorm(self.embed_dim)
self.dropout = dropout
self.activation_dropout = activation_dropout
self.normalize_before = True
self.fc1 = torch.nn.Linear(self.embed_dim, hidden_size)
self.fc2 = torch.nn.Linear(hidden_size, self.embed_dim)
self.layer_norm = torch.nn.LayerNorm(self.embed_dim)
self.init_parameters()
def forward(self, x, key_padding_mask=None, attn_mask=None):
residual = x
x = self.self_attn_layer_norm(x)
x, _att = self.self_attn(query=x, key=x, value=x, key_padding_mask=
key_padding_mask, attn_mask=attn_mask)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
residual = x
x = self.layer_norm(x)
x = F.relu(self.fc1(x))
x = F.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
return x
def init_parameters(self):
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.constant_(self.fc1.bias, 0.0)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.constant_(self.fc2.bias, 0.0)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embed_dim': 4, 'num_heads': 4, 'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_out_ptr0 + x2, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4, 4), (4, 1))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(4)](primals_1, buf0, buf1,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(16)](primals_1, buf0,
buf1, primals_2, primals_3, buf2, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4
), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4),
buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=
1, beta=1, out=buf4)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8),
buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=
1, beta=1, out=buf5)
buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0)
del buf3
triton_poi_fused_mul_2[grid(16)](buf6, primals_5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1,
4), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(64)](buf7, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf9 = buf7
del buf7
triton_poi_fused__softmax_4[grid(64)](buf8, buf9, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf8
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4,
1), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_5[grid(4, 4)](buf10, buf11, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0)
del buf10
extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf12)
del primals_7
buf13 = buf1
del buf1
buf14 = buf0
del buf0
triton_poi_fused_add_native_layer_norm_6[grid(4)](primals_1, buf12,
buf13, buf14, 4, XBLOCK=4, num_warps=1, num_stages=1)
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_7[grid(16)](primals_1, buf12,
buf13, buf14, primals_8, primals_9, buf15, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf13
del buf14
del primals_9
buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (4, 4), (1,
4), 0), out=buf16)
buf17 = buf16
del buf16
triton_poi_fused_relu_8[grid(16)](buf17, primals_11, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_11
buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf17, reinterpret_tensor(primals_12, (4, 4), (1,
4), 0), out=buf18)
buf19 = buf18
del buf18
triton_poi_fused_add_9[grid(16)](buf19, primals_1, buf12,
primals_13, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_13
return (buf19, primals_1, primals_8, buf2, buf9, reinterpret_tensor(
buf11, (4, 4), (4, 1), 0), buf12, buf15, buf17, primals_12,
primals_10, primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4
), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0),
reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (4, 1), 32),
reinterpret_tensor(primals_4, (4, 4), (4, 1), 16),
reinterpret_tensor(primals_4, (4, 4), (4, 1), 0))
class TransformerEncoderLayerNew(nn.Module):
def __init__(self, embed_dim, num_heads, hidden_size, dropout=0.0,
attention_dropout=0.0, activation_dropout=0.0):
super().__init__()
self.embed_dim = embed_dim
self.self_attn = torch.nn.MultiheadAttention(embed_dim=self.
embed_dim, num_heads=num_heads, dropout=attention_dropout)
self.self_attn_layer_norm = torch.nn.LayerNorm(self.embed_dim)
self.dropout = dropout
self.activation_dropout = activation_dropout
self.normalize_before = True
self.fc1 = torch.nn.Linear(self.embed_dim, hidden_size)
self.fc2 = torch.nn.Linear(hidden_size, self.embed_dim)
self.layer_norm = torch.nn.LayerNorm(self.embed_dim)
self.init_parameters()
def init_parameters(self):
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.constant_(self.fc1.bias, 0.0)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.constant_(self.fc2.bias, 0.0)
def forward(self, input_0):
primals_4 = self.self_attn.in_proj_weight
primals_5 = self.self_attn.in_proj_bias
primals_1 = self.self_attn.out_proj.weight
primals_2 = self.self_attn.out_proj.bias
primals_3 = self.self_attn_layer_norm.weight
primals_7 = self.self_attn_layer_norm.bias
primals_6 = self.fc1.weight
primals_8 = self.fc1.bias
primals_10 = self.fc2.weight
primals_9 = self.fc2.bias
primals_11 = self.layer_norm.weight
primals_13 = self.layer_norm.bias
primals_12 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| XeniaOhmer/SystematicRepresentations | TransformerEncoderLayer | false | 1,272 | [
"MIT"
] | 0 | 825208d1be659dc820e61f577cdb53afc47302f4 | https://github.com/XeniaOhmer/SystematicRepresentations/tree/825208d1be659dc820e61f577cdb53afc47302f4 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.utils.data
import torch.distributions
class Model(nn.Module):
def __init__(self, embed_dim, num_heads, hidden_size, dropout=0.0,
attention_dropout=0.0, activation_dropout=0.0):
super().__init__()
self.embed_dim = embed_dim
self.self_attn = torch.nn.MultiheadAttention(embed_dim=self.
embed_dim, num_heads=num_heads, dropout=attention_dropout)
self.self_attn_layer_norm = torch.nn.LayerNorm(self.embed_dim)
self.dropout = dropout
self.activation_dropout = activation_dropout
self.normalize_before = True
self.fc1 = torch.nn.Linear(self.embed_dim, hidden_size)
self.fc2 = torch.nn.Linear(hidden_size, self.embed_dim)
self.layer_norm = torch.nn.LayerNorm(self.embed_dim)
self.init_parameters()
def forward(self, x, key_padding_mask=None, attn_mask=None):
residual = x
x = self.self_attn_layer_norm(x)
x, _att = self.self_attn(query=x, key=x, value=x, key_padding_mask=
key_padding_mask, attn_mask=attn_mask)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
residual = x
x = self.layer_norm(x)
x = F.relu(self.fc1(x))
x = F.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
return x
def init_parameters(self):
nn.init.xavier_uniform_(self.fc1.weight)
nn.init.constant_(self.fc1.bias, 0.0)
nn.init.xavier_uniform_(self.fc2.weight)
nn.init.constant_(self.fc2.bias, 0.0)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ARFB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/sr/csrg6irduolxnaubd5v3tlh5eeuhw27sxkg3o56t4veh47sq6ce3.py
# Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# res => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 2
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ch/cchqfn77hgdz3w4ctp6pjfp4bouddm5eb6iqxroh6llwgfgjn4o7.py
# Topologically Sorted Source Nodes: [conv2d_1, res_1, mul_1, x], Original ATen: [aten.convolution, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# mul_1 => mul_1
# res_1 => mul
# x => add
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 4), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 4), kwargs = {})
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul), kwargs = {})
triton_poi_fused_add_convolution_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp3 = tl.load(in_out_ptr0 + (x3), xmask)
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp1 = 4.0
tmp2 = tmp0 * tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp5 * tmp1
tmp7 = tmp2 + tmp6
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ue/cuehc7u7feddnn7nl7zmlfn6dafg575ohyddnvfzmsnogrm7ijp7.py
# Topologically Sorted Source Nodes: [x_ru], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_ru => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add, %add_1], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr0 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = 4.0
tmp11 = tmp9 * tmp10
tmp12 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp13 = tl.load(in_ptr2 + ((-4) + x1), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tmp12 + tmp13
tmp15 = tmp14 * tmp10
tmp16 = tmp11 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp6, tmp16, tmp17)
tmp19 = tl.where(tmp4, tmp5, tmp18)
tl.store(out_ptr0 + (x3), tmp19, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/u6/cu6ppqw2tef2csmqih3m6yevzpiffzzc2gccmddl472xincnyixn.py
# Topologically Sorted Source Nodes: [x_ru_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_ru_1 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (2, ), (1, ))
assert_size_stride(primals_8, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (8, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_11, (8, ), (1, ))
assert_size_stride(primals_12, (4, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, res_1, mul_1, x], Original ATen: [aten.convolution, aten.mul, aten.add]
triton_poi_fused_add_convolution_mul_1.run(buf3, primals_3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [res_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 2, 4, 4), (32, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [res_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf5, primals_7, 128, grid=grid(128), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_ru], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf3, buf6, primals_9, buf7, 512, grid=grid(512), stream=stream0)
del buf6
del primals_9
# Topologically Sorted Source Nodes: [x_ru_1], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 8, 4, 4), (128, 16, 4, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_ru_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf9, primals_11, 512, grid=grid(512), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [x_ru_2], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [mul_1, x_ru_2, x_ru_3, x_2], Original ATen: [aten.mul, aten.convolution, aten.add]
triton_poi_fused_add_convolution_mul_1.run(buf11, primals_3, primals_13, 256, grid=grid(256), stream=stream0)
del primals_13
return (buf11, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, buf1, buf3, buf5, buf7, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((8, 8, 1, 1), (8, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def defaultConv(inChannels, outChannels, kernelSize, bias=True):
return nn.Conv2d(inChannels, outChannels, kernelSize, padding=
kernelSize // 2, bias=bias)
class ResidualUnit(nn.Module):
def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True
):
super().__init__()
self.reduction = defaultConv(inChannel, outChannel // 2, kernelSize,
bias)
self.expansion = defaultConv(outChannel // 2, inChannel, kernelSize,
bias)
self.lamRes = reScale[0]
self.lamX = reScale[1]
def forward(self, x):
res = self.reduction(x)
res = self.lamRes * self.expansion(res)
x = self.lamX * x + res
return x
class ARFB(nn.Module):
def __init__(self, inChannel, outChannel, reScale):
super().__init__()
self.RU1 = ResidualUnit(inChannel, outChannel, reScale)
self.RU2 = ResidualUnit(inChannel, outChannel, reScale)
self.conv1 = defaultConv(2 * inChannel, 2 * outChannel, kernelSize=1)
self.conv3 = defaultConv(2 * inChannel, outChannel, kernelSize=3)
self.lamRes = reScale[0]
self.lamX = reScale[1]
def forward(self, x):
x_ru1 = self.RU1(x)
x_ru2 = self.RU2(x_ru1)
x_ru = torch.cat((x_ru1, x_ru2), 1)
x_ru = self.conv1(x_ru)
x_ru = self.conv3(x_ru)
x_ru = self.lamRes * x_ru
x = x * self.lamX + x_ru
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inChannel': 4, 'outChannel': 4, 'reScale': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 2
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp3 = tl.load(in_out_ptr0 + x3, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp1 = 4.0
tmp2 = tmp0 * tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp5 * tmp1
tmp7 = tmp2 + tmp6
tl.store(in_out_ptr0 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr0 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = 4.0
tmp11 = tmp9 * tmp10
tmp12 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp13 = tl.load(in_ptr2 + (-4 + x1), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp14 = tmp12 + tmp13
tmp15 = tmp14 * tmp10
tmp16 = tmp11 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp6, tmp16, tmp17)
tmp19 = tl.where(tmp4, tmp5, tmp18)
tl.store(out_ptr0 + x3, tmp19, xmask)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 8
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (2,), (1,))
assert_size_stride(primals_8, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (8, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_11, (8,), (1,))
assert_size_stride(primals_12, (4, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(128)](buf1, primals_2, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_add_convolution_mul_1[grid(256)](buf3, primals_3,
primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 2, 4, 4), (32, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_0[grid(128)](buf5, primals_7, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
triton_poi_fused_cat_2[grid(512)](buf3, buf6, primals_9, buf7, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del buf6
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 8, 4, 4), (128, 16, 4, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_3[grid(512)](buf9, primals_11, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1))
buf11 = buf10
del buf10
triton_poi_fused_add_convolution_mul_1[grid(256)](buf11, primals_3,
primals_13, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_13
return (buf11, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, buf1, buf3, buf5, buf7, buf9)
def defaultConv(inChannels, outChannels, kernelSize, bias=True):
return nn.Conv2d(inChannels, outChannels, kernelSize, padding=
kernelSize // 2, bias=bias)
class ResidualUnit(nn.Module):
def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True
):
super().__init__()
self.reduction = defaultConv(inChannel, outChannel // 2, kernelSize,
bias)
self.expansion = defaultConv(outChannel // 2, inChannel, kernelSize,
bias)
self.lamRes = reScale[0]
self.lamX = reScale[1]
def forward(self, x):
res = self.reduction(x)
res = self.lamRes * self.expansion(res)
x = self.lamX * x + res
return x
class ARFBNew(nn.Module):
def __init__(self, inChannel, outChannel, reScale):
super().__init__()
self.RU1 = ResidualUnit(inChannel, outChannel, reScale)
self.RU2 = ResidualUnit(inChannel, outChannel, reScale)
self.conv1 = defaultConv(2 * inChannel, 2 * outChannel, kernelSize=1)
self.conv3 = defaultConv(2 * inChannel, outChannel, kernelSize=3)
self.lamRes = reScale[0]
self.lamX = reScale[1]
def forward(self, input_0):
primals_1 = self.RU1.reduction.weight
primals_2 = self.RU1.reduction.bias
primals_4 = self.RU1.expansion.weight
primals_5 = self.RU1.expansion.bias
primals_6 = self.RU2.reduction.weight
primals_7 = self.RU2.reduction.bias
primals_8 = self.RU2.expansion.weight
primals_9 = self.RU2.expansion.bias
primals_10 = self.conv1.weight
primals_11 = self.conv1.bias
primals_12 = self.conv3.weight
primals_13 = self.conv3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| YingqiLiulll/scrips_for_SR | ARFB | false | 1,273 | [
"MIT"
] | 0 | 04fa6fdaf157e913d3e2521cd80315a10a2ccedc | https://github.com/YingqiLiulll/scrips_for_SR/tree/04fa6fdaf157e913d3e2521cd80315a10a2ccedc | import torch
import torch.nn as nn
def defaultConv(inChannels, outChannels, kernelSize, bias=True):
return nn.Conv2d(inChannels, outChannels, kernelSize, padding=
kernelSize // 2, bias=bias)
class ResidualUnit(nn.Module):
def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True
):
super().__init__()
self.reduction = defaultConv(inChannel, outChannel // 2, kernelSize,
bias)
self.expansion = defaultConv(outChannel // 2, inChannel, kernelSize,
bias)
self.lamRes = reScale[0]
self.lamX = reScale[1]
def forward(self, x):
res = self.reduction(x)
res = self.lamRes * self.expansion(res)
x = self.lamX * x + res
return x
class Model(nn.Module):
def __init__(self, inChannel, outChannel, reScale):
super().__init__()
self.RU1 = ResidualUnit(inChannel, outChannel, reScale)
self.RU2 = ResidualUnit(inChannel, outChannel, reScale)
self.conv1 = defaultConv(2 * inChannel, 2 * outChannel, kernelSize=1)
self.conv3 = defaultConv(2 * inChannel, outChannel, kernelSize=3)
self.lamRes = reScale[0]
self.lamX = reScale[1]
def forward(self, x):
x_ru1 = self.RU1(x)
x_ru2 = self.RU2(x_ru1)
x_ru = torch.cat((x_ru1, x_ru2), 1)
x_ru = self.conv1(x_ru)
x_ru = self.conv3(x_ru)
x_ru = self.lamRes * x_ru
x = x * self.lamX + x_ru
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
MultiHeadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/cg/ccgeyggrwjatnn72xyolgiel5jx5opfkk6aojxc7vj2fl7mzhxkt.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 8
x3 = (xindex // 128)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (32*x1) + (128*x3)), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ut/cutioxpozohxld7suyz35rbmr3jityexhfxm3jifg5gap564gweg.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 128
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 32
y1 = (yindex // 32)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (32*x2) + (128*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ic/cicrq5pxpvj2ulyewbc5dtvpbbh52nuwnwntw63r3254uun2czvo.py
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_1 => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/d2/cd2tzxoj6qyacqcakrmgzt7bvwbnjpz3zietppzw2tbanup3un7q.py
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_1 => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/6f/c6fejvwx3uipcn6sk47lzukzhjoniygbfkexqu53il2mhn7vy2ot.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 8
x2 = (xindex // 32) % 4
x3 = (xindex // 128)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (128*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (32, 4), (4, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (32, 4), (4, 1))
assert_size_stride(primals_7, (32, ), (1, ))
assert_size_stride(primals_8, (32, 4), (4, 1))
assert_size_stride(primals_9, (32, ), (1, ))
assert_size_stride(primals_10, (4, 32), (32, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 32), (1, 4), 0), out=buf0)
del primals_4
buf1 = empty_strided_cuda((16, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 32), (1, 4), 0), out=buf1)
del primals_6
buf2 = empty_strided_cuda((16, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 32), (1, 4), 0), out=buf2)
del primals_8
buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_5, buf3, 512, grid=grid(512), stream=stream0)
del primals_5
buf4 = reinterpret_tensor(buf0, (4, 8, 4, 4), (128, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, primals_7, buf4, 128, 4, grid=grid(128, 4), stream=stream0)
del primals_7
buf5 = reinterpret_tensor(buf1, (32, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (32, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (32, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 512, grid=grid(512), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 8, 4, 4), (128, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf6, buf7, 512, grid=grid(512), stream=stream0)
buf8 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_9, buf8, 512, grid=grid(512), stream=stream0)
del primals_9
buf9 = reinterpret_tensor(buf2, (32, 4, 4), (16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (32, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (32, 4, 4), (16, 4, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 8, 4), (128, 32, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 512, grid=grid(512), stream=stream0)
del buf9
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 32), (32, 1), 0), reinterpret_tensor(primals_10, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf11)
del primals_11
return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), buf7, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 32), (32, 1), 0), primals_10, reinterpret_tensor(buf8, (32, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (32, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (32, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class ScaledDotProductAttention(nn.Module):
def __init__(self, temperature, dropout=0.1):
super(ScaledDotProductAttention, self).__init__()
self.temperature = temperature
self.dropout = nn.Dropout(p=dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q, k.transpose(2, 3)) / self.temperature
if mask is not None:
attn = attn.masked_fill(mask=mask, value=float('-inf'))
attn = torch.softmax(attn, dim=-1)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
return out, attn
class MultiHeadAttention(nn.Module):
def __init__(self, in_channels, k_channels, v_channels, n_head=8,
dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.in_channels = in_channels
self.k_channels = k_channels
self.v_channels = v_channels
self.n_head = n_head
self.q_linear = nn.Linear(in_channels, n_head * k_channels)
self.k_linear = nn.Linear(in_channels, n_head * k_channels)
self.v_linear = nn.Linear(in_channels, n_head * v_channels)
self.attention = ScaledDotProductAttention(temperature=k_channels **
0.5, dropout=dropout)
self.out_linear = nn.Linear(n_head * v_channels, in_channels)
self.dropout = nn.Dropout(p=dropout)
def forward(self, q, k, v, mask=None):
b, q_len, k_len, v_len = q.size(0), q.size(1), k.size(1), v.size(1)
q = self.q_linear(q).view(b, q_len, self.n_head, self.k_channels
).transpose(1, 2)
k = self.k_linear(k).view(b, k_len, self.n_head, self.k_channels
).transpose(1, 2)
v = self.v_linear(v).view(b, v_len, self.n_head, self.v_channels
).transpose(1, 2)
if mask is not None:
mask = mask.unsqueeze(1)
out, attn = self.attention(q, k, v, mask=mask)
out = out.transpose(1, 2).contiguous().view(b, q_len, self.n_head *
self.v_channels)
out = self.out_linear(out)
out = self.dropout(out)
return out, attn
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'in_channels': 4, 'k_channels': 4, 'v_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 8
x3 = xindex // 128
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 32 * x1 + 128 * x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x4, tmp2, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 128
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 32
y1 = yindex // 32
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 32 * x2 + 128 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 8
x2 = xindex // 32 % 4
x3 = xindex // 128
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 128 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (32, 4), (4, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (32, 4), (4, 1))
assert_size_stride(primals_7, (32,), (1,))
assert_size_stride(primals_8, (32, 4), (4, 1))
assert_size_stride(primals_9, (32,), (1,))
assert_size_stride(primals_10, (4, 32), (32, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 32), (1, 4), 0), out=buf0)
del primals_4
buf1 = empty_strided_cuda((16, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 32), (1, 4), 0), out=buf1)
del primals_6
buf2 = empty_strided_cuda((16, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 32), (1, 4), 0), out=buf2)
del primals_8
buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(512)](buf0, primals_5, buf3, 512,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = reinterpret_tensor(buf0, (4, 8, 4, 4), (128, 16, 4, 1), 0)
del buf0
triton_poi_fused_clone_1[grid(128, 4)](buf1, primals_7, buf4, 128,
4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_7
buf5 = reinterpret_tensor(buf1, (32, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf3, (32, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf4, (32, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(512)](buf5, buf6, 512, XBLOCK=128,
num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 8, 4, 4), (128, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_3[grid(512)](buf6, buf7, 512, XBLOCK=256,
num_warps=4, num_stages=1)
buf8 = buf6
del buf6
triton_poi_fused_clone_0[grid(512)](buf2, primals_9, buf8, 512,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
buf9 = reinterpret_tensor(buf2, (32, 4, 4), (16, 4, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (32, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (32, 4, 4), (16, 4, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 8, 4), (128, 32, 4, 1), torch.float32
)
triton_poi_fused_clone_4[grid(512)](buf9, buf10, 512, XBLOCK=256,
num_warps=4, num_stages=1)
del buf9
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 32),
(32, 1), 0), reinterpret_tensor(primals_10, (32, 4), (1, 32), 0
), alpha=1, beta=1, out=buf11)
del primals_11
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), buf7, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf10, (16, 32), (32, 1), 0
), primals_10, reinterpret_tensor(buf8, (32, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf3, (32, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf4, (32, 4, 4), (16, 1, 4), 0)
class ScaledDotProductAttention(nn.Module):
def __init__(self, temperature, dropout=0.1):
super(ScaledDotProductAttention, self).__init__()
self.temperature = temperature
self.dropout = nn.Dropout(p=dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q, k.transpose(2, 3)) / self.temperature
if mask is not None:
attn = attn.masked_fill(mask=mask, value=float('-inf'))
attn = torch.softmax(attn, dim=-1)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
return out, attn
class MultiHeadAttentionNew(nn.Module):
def __init__(self, in_channels, k_channels, v_channels, n_head=8,
dropout=0.1):
super(MultiHeadAttentionNew, self).__init__()
self.in_channels = in_channels
self.k_channels = k_channels
self.v_channels = v_channels
self.n_head = n_head
self.q_linear = nn.Linear(in_channels, n_head * k_channels)
self.k_linear = nn.Linear(in_channels, n_head * k_channels)
self.v_linear = nn.Linear(in_channels, n_head * v_channels)
self.attention = ScaledDotProductAttention(temperature=k_channels **
0.5, dropout=dropout)
self.out_linear = nn.Linear(n_head * v_channels, in_channels)
self.dropout = nn.Dropout(p=dropout)
def forward(self, input_0, input_1, input_2):
primals_4 = self.q_linear.weight
primals_5 = self.q_linear.bias
primals_6 = self.k_linear.weight
primals_7 = self.k_linear.bias
primals_8 = self.v_linear.weight
primals_9 = self.v_linear.bias
primals_10 = self.out_linear.weight
primals_11 = self.out_linear.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0], output[1]
| YacobBY/vedastr | MultiHeadAttention | false | 1,274 | [
"Apache-2.0"
] | 0 | 2353780489b58d2398b9af49d238ef0df3f45f2a | https://github.com/YacobBY/vedastr/tree/2353780489b58d2398b9af49d238ef0df3f45f2a | import torch
from torch import nn
class ScaledDotProductAttention(nn.Module):
def __init__(self, temperature, dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(p=dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q, k.transpose(2, 3)) / self.temperature
if mask is not None:
attn = attn.masked_fill(mask=mask, value=float('-inf'))
attn = torch.softmax(attn, dim=-1)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
return out, attn
class Model(nn.Module):
def __init__(self, in_channels, k_channels, v_channels, n_head=8,
dropout=0.1):
super().__init__()
self.in_channels = in_channels
self.k_channels = k_channels
self.v_channels = v_channels
self.n_head = n_head
self.q_linear = nn.Linear(in_channels, n_head * k_channels)
self.k_linear = nn.Linear(in_channels, n_head * k_channels)
self.v_linear = nn.Linear(in_channels, n_head * v_channels)
self.attention = ScaledDotProductAttention(temperature=k_channels **
0.5, dropout=dropout)
self.out_linear = nn.Linear(n_head * v_channels, in_channels)
self.dropout = nn.Dropout(p=dropout)
def forward(self, q, k, v, mask=None):
b, q_len, k_len, v_len = q.size(0), q.size(1), k.size(1), v.size(1)
q = self.q_linear(q).view(b, q_len, self.n_head, self.k_channels
).transpose(1, 2)
k = self.k_linear(k).view(b, k_len, self.n_head, self.k_channels
).transpose(1, 2)
v = self.v_linear(v).view(b, v_len, self.n_head, self.v_channels
).transpose(1, 2)
if mask is not None:
mask = mask.unsqueeze(1)
out, attn = self.attention(q, k, v, mask=mask)
out = out.transpose(1, 2).contiguous().view(b, q_len, self.n_head *
self.v_channels)
out = self.out_linear(out)
out = self.dropout(out)
return out, attn
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [4, 4, 4]
|
DrugDrugAttentionLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/x5/cx54xkftpqklbvm7id7ofhuft243ezj5rkv2utlq6n4lgglrfoc4.py
# Topologically Sorted Source Nodes: [attentions], Original ATen: [aten.mv]
# Source node to ATen node mapping:
# attentions => mul, sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %primals_6), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
triton_poi_fused_mv_0 = async_compile.triton('triton_poi_fused_mv_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mv_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mv_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + ((2*(x0 % 4)) + (8*(x0 // 16))), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (2*(x0 // 4)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (0))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp7 = tl.load(in_ptr3 + (0))
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp10 = tl.load(in_ptr0 + (1 + (2*(x0 % 4)) + (8*(x0 // 16))), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (1 + (2*(x0 // 4))), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr2 + (1))
tmp14 = tl.broadcast_to(tmp13, [XBLOCK])
tmp17 = tl.load(in_ptr3 + (1))
tmp18 = tl.broadcast_to(tmp17, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp5 = tmp2 + tmp4
tmp6 = libdevice.tanh(tmp5)
tmp9 = tmp6 * tmp8
tmp12 = tmp10 + tmp11
tmp15 = tmp12 + tmp14
tmp16 = libdevice.tanh(tmp15)
tmp19 = tmp16 * tmp18
tmp20 = tmp9 + tmp19
tl.store(out_ptr0 + (x0), tmp20, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 2), (2, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 2), (2, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [keys], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [queries], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_3, out=buf1)
del primals_3
buf2 = empty_strided_cuda((256, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [attentions], Original ATen: [aten.mv]
stream0 = get_raw_stream(0)
triton_poi_fused_mv_0.run(buf1, buf0, primals_5, primals_6, buf2, 256, grid=grid(256), stream=stream0)
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_5, primals_6, buf0, buf1, reinterpret_tensor(primals_4, (4, 64), (1, 4), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional
class DrugDrugAttentionLayer(torch.nn.Module):
"""Co-attention layer for drug pairs."""
def __init__(self, feature_number: 'int'):
"""Initialize the co-attention layer.
:param feature_number: Number of input features.
"""
super().__init__()
self.weight_query = torch.nn.Parameter(torch.zeros(feature_number,
feature_number // 2))
self.weight_key = torch.nn.Parameter(torch.zeros(feature_number,
feature_number // 2))
self.bias = torch.nn.Parameter(torch.zeros(feature_number // 2))
self.attention = torch.nn.Parameter(torch.zeros(feature_number // 2))
self.tanh = torch.nn.Tanh()
torch.nn.init.xavier_uniform_(self.weight_query)
torch.nn.init.xavier_uniform_(self.weight_key)
torch.nn.init.xavier_uniform_(self.bias.view(*self.bias.shape, -1))
torch.nn.init.xavier_uniform_(self.attention.view(*self.attention.
shape, -1))
def forward(self, left_representations: 'torch.Tensor',
right_representations: 'torch.Tensor'):
"""Make a forward pass with the co-attention calculation.
:param left_representations: Matrix of left hand side representations.
:param right_representations: Matrix of right hand side representations.
:returns: Attention scores.
"""
keys = left_representations @ self.weight_key
queries = right_representations @ self.weight_query
e_activations = queries.unsqueeze(-3) + keys.unsqueeze(-2) + self.bias
attentions = self.tanh(e_activations) @ self.attention
return attentions
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'feature_number': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn.functional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mv_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (2 * (x0 % 4) + 8 * (x0 // 16)), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 2 * (x0 // 4), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr2 + 0)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK])
tmp7 = tl.load(in_ptr3 + 0)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp10 = tl.load(in_ptr0 + (1 + 2 * (x0 % 4) + 8 * (x0 // 16)), xmask,
eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (1 + 2 * (x0 // 4)), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr2 + 1)
tmp14 = tl.broadcast_to(tmp13, [XBLOCK])
tmp17 = tl.load(in_ptr3 + 1)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp5 = tmp2 + tmp4
tmp6 = libdevice.tanh(tmp5)
tmp9 = tmp6 * tmp8
tmp12 = tmp10 + tmp11
tmp15 = tmp12 + tmp14
tmp16 = libdevice.tanh(tmp15)
tmp19 = tmp16 * tmp18
tmp20 = tmp9 + tmp19
tl.store(out_ptr0 + x0, tmp20, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 2), (2, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 2), (2, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
primals_3, out=buf1)
del primals_3
buf2 = empty_strided_cuda((256,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_mv_0[grid(256)](buf1, buf0, primals_5, primals_6,
buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_5, primals_6, buf0, buf1, reinterpret_tensor(primals_4,
(4, 64), (1, 4), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0)
class DrugDrugAttentionLayerNew(torch.nn.Module):
"""Co-attention layer for drug pairs."""
def __init__(self, feature_number: 'int'):
"""Initialize the co-attention layer.
:param feature_number: Number of input features.
"""
super().__init__()
self.weight_query = torch.nn.Parameter(torch.zeros(feature_number,
feature_number // 2))
self.weight_key = torch.nn.Parameter(torch.zeros(feature_number,
feature_number // 2))
self.bias = torch.nn.Parameter(torch.zeros(feature_number // 2))
self.attention = torch.nn.Parameter(torch.zeros(feature_number // 2))
self.tanh = torch.nn.Tanh()
torch.nn.init.xavier_uniform_(self.weight_query)
torch.nn.init.xavier_uniform_(self.weight_key)
torch.nn.init.xavier_uniform_(self.bias.view(*self.bias.shape, -1))
torch.nn.init.xavier_uniform_(self.attention.view(*self.attention.
shape, -1))
def forward(self, input_0, input_1):
primals_1 = self.weight_query
primals_3 = self.weight_key
primals_5 = self.bias
primals_6 = self.attention
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| YuWVandy/chemicalx | DrugDrugAttentionLayer | false | 1,275 | [
"Apache-2.0"
] | 0 | c02f979a502409c26700e6d5a1b2e6c0aa77e64c | https://github.com/YuWVandy/chemicalx/tree/c02f979a502409c26700e6d5a1b2e6c0aa77e64c | import torch
import torch.nn.functional
class Model(torch.nn.Module):
"""Co-attention layer for drug pairs."""
def __init__(self, feature_number: 'int'):
"""Initialize the co-attention layer.
:param feature_number: Number of input features.
"""
super().__init__()
self.weight_query = torch.nn.Parameter(torch.zeros(feature_number,
feature_number // 2))
self.weight_key = torch.nn.Parameter(torch.zeros(feature_number,
feature_number // 2))
self.bias = torch.nn.Parameter(torch.zeros(feature_number // 2))
self.attention = torch.nn.Parameter(torch.zeros(feature_number // 2))
self.tanh = torch.nn.Tanh()
torch.nn.init.xavier_uniform_(self.weight_query)
torch.nn.init.xavier_uniform_(self.weight_key)
torch.nn.init.xavier_uniform_(self.bias.view(*self.bias.shape, -1))
torch.nn.init.xavier_uniform_(self.attention.view(*self.attention.
shape, -1))
def forward(self, left_representations: 'torch.Tensor',
right_representations: 'torch.Tensor'):
"""Make a forward pass with the co-attention calculation.
:param left_representations: Matrix of left hand side representations.
:param right_representations: Matrix of right hand side representations.
:returns: Attention scores.
"""
keys = left_representations @ self.weight_key
queries = right_representations @ self.weight_query
e_activations = queries.unsqueeze(-3) + keys.unsqueeze(-2) + self.bias
attentions = self.tanh(e_activations) @ self.attention
return attentions
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Highway | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [concat_inputs], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# concat_inputs => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/j6/cj642lkltul6ng5xdm5ruyypnaou34nb7p4bvvsymqlc4par2c4c.py
# Topologically Sorted Source Nodes: [proj_result, proj_gate, mul, sub, mul_1, gated], Original ATen: [aten.relu, aten.sigmoid, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# gated => add
# mul => mul
# mul_1 => mul_1
# proj_gate => sigmoid
# proj_result => relu
# sub => sub
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%addmm,), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %relu), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_relu_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_relu_rsub_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp8 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tmp1 * tmp4
tmp6 = 1.0
tmp7 = tmp6 - tmp1
tmp9 = tmp7 * tmp8
tmp10 = tmp5 + tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [concat_inputs], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_result, proj_gate, mul, sub, mul_1, gated], Original ATen: [aten.relu, aten.sigmoid, aten.mul, aten.rsub, aten.add]
triton_poi_fused_add_mul_relu_rsub_sigmoid_1.run(buf2, buf1, primals_1, buf3, 16, grid=grid(16), stream=stream0)
return (buf3, primals_1, buf0, buf1, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
from torch.nn import functional as F
import torch.nn.functional
class Highway(nn.Module):
"""The Highway update layer from [srivastava2015]_.
.. [srivastava2015] Srivastava, R. K., *et al.* (2015).
`Highway Networks <http://arxiv.org/abs/1505.00387>`_.
*arXiv*, 1505.00387.
"""
def __init__(self, input_size: 'int', prev_input_size: 'int'):
"""Instantiate the Highway update layer.
:param input_size: Current representation size.
:param prev_input_size: Size of the representation obtained by the previous convolutional layer.
"""
super().__init__()
total_size = input_size + prev_input_size
self.proj = nn.Linear(total_size, input_size)
self.transform = nn.Linear(total_size, input_size)
self.transform.bias.data.fill_(-2.0)
def forward(self, current: 'torch.Tensor', previous: 'torch.Tensor'
) ->torch.Tensor:
"""Compute the gated update.
:param current: Current layer node representations.
:param previous: Previous layer node representations.
:returns: The highway-updated inputs.
"""
concat_inputs = torch.cat((current, previous), 1)
proj_result = F.relu(self.proj(concat_inputs))
proj_gate = F.sigmoid(self.transform(concat_inputs))
gated = proj_gate * proj_result + (1 - proj_gate) * current
return gated
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'prev_input_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn.functional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp8 = tl.load(in_ptr2 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tmp1 * tmp4
tmp6 = 1.0
tmp7 = tmp6 - tmp1
tmp9 = tmp7 * tmp8
tmp10 = tmp5 + tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_relu_rsub_sigmoid_1[grid(16)](buf2, buf1,
primals_1, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1)
return buf3, primals_1, buf0, buf1, buf2
class HighwayNew(nn.Module):
"""The Highway update layer from [srivastava2015]_.
.. [srivastava2015] Srivastava, R. K., *et al.* (2015).
`Highway Networks <http://arxiv.org/abs/1505.00387>`_.
*arXiv*, 1505.00387.
"""
def __init__(self, input_size: 'int', prev_input_size: 'int'):
"""Instantiate the Highway update layer.
:param input_size: Current representation size.
:param prev_input_size: Size of the representation obtained by the previous convolutional layer.
"""
super().__init__()
total_size = input_size + prev_input_size
self.proj = nn.Linear(total_size, input_size)
self.transform = nn.Linear(total_size, input_size)
self.transform.bias.data.fill_(-2.0)
def forward(self, input_0, input_1):
primals_3 = self.proj.weight
primals_4 = self.proj.bias
primals_5 = self.transform.weight
primals_6 = self.transform.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| YuWVandy/chemicalx | Highway | false | 1,276 | [
"Apache-2.0"
] | 0 | c02f979a502409c26700e6d5a1b2e6c0aa77e64c | https://github.com/YuWVandy/chemicalx/tree/c02f979a502409c26700e6d5a1b2e6c0aa77e64c | import torch
from torch import nn
from torch.nn import functional as F
import torch.nn.functional
class Model(nn.Module):
"""The Highway update layer from [srivastava2015]_.
.. [srivastava2015] Srivastava, R. K., *et al.* (2015).
`Highway Networks <http://arxiv.org/abs/1505.00387>`_.
*arXiv*, 1505.00387.
"""
def __init__(self, input_size: 'int', prev_input_size: 'int'):
"""Instantiate the Highway update layer.
:param input_size: Current representation size.
:param prev_input_size: Size of the representation obtained by the previous convolutional layer.
"""
super().__init__()
total_size = input_size + prev_input_size
self.proj = nn.Linear(total_size, input_size)
self.transform = nn.Linear(total_size, input_size)
self.transform.bias.data.fill_(-2.0)
def forward(self, current: 'torch.Tensor', previous: 'torch.Tensor'
) ->torch.Tensor:
"""Compute the gated update.
:param current: Current layer node representations.
:param previous: Previous layer node representations.
:returns: The highway-updated inputs.
"""
concat_inputs = torch.cat((current, previous), 1)
proj_result = F.relu(self.proj(concat_inputs))
proj_gate = F.sigmoid(self.transform(concat_inputs))
gated = proj_gate * proj_result + (1 - proj_gate) * current
return gated
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
DiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/k2/ck2pmvqzgf3ivis6s5272iqz64xv74oq4c4pspxxjsr6mpagscjo.py
# Topologically Sorted Source Nodes: [mul, sum_1, intersection, add_1, sum_2, sum_3, union, dice_score, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
# Source node to ATen node mapping:
# add_1 => add_1
# dice_score => div
# intersection => mul_1
# mul => mul
# sub => sub
# sum_1 => sum_1
# sum_2 => sum_2
# sum_3 => sum_3
# union => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1e-09), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {})
triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp2 = tl.load(in_ptr1 + (r0), None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = tl.broadcast_to(tmp1, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = tl.broadcast_to(tmp2, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = 2.0
tmp14 = tmp6 * tmp13
tmp15 = 1e-09
tmp16 = tmp14 + tmp15
tmp17 = tmp9 + tmp12
tmp18 = tmp16 / tmp17
tmp19 = 1.0
tmp20 = tmp19 - tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, sum_1, intersection, add_1, sum_2, sum_3, union, dice_score, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mul_rsub_sum_0.run(buf3, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DiceLoss(nn.Module):
def __init__(self, eps: 'float'=1e-09):
super(DiceLoss, self).__init__()
self.smooth = 1.0
self.eps = eps
def forward(self, y_pred, y_true):
num = y_true.size(0)
probability = torch.sigmoid(y_pred)
probability = probability.view(num, -1)
targets = y_true.view(num, -1)
assert probability.shape == targets.shape
intersection = 2.0 * (probability * targets).sum()
union = probability.sum() + targets.sum()
dice_score = (intersection + self.eps) / union
return 1.0 - dice_score
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = tl.broadcast_to(tmp1, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = tl.broadcast_to(tmp2, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = 2.0
tmp14 = tmp6 * tmp13
tmp15 = 1e-09
tmp16 = tmp14 + tmp15
tmp17 = tmp9 + tmp12
tmp18 = tmp16 / tmp17
tmp19 = 1.0
tmp20 = tmp19 - tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mul_rsub_sum_0[grid(1)](buf3, arg1_1,
arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf3,
class DiceLossNew(nn.Module):
def __init__(self, eps: 'float'=1e-09):
super(DiceLossNew, self).__init__()
self.smooth = 1.0
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Yukei7/Multimodal-Segmentation-Network | DiceLoss | false | 1,277 | [
"MIT"
] | 0 | 0a38aa8bbd2eb87e28209c810438248c0464a240 | https://github.com/Yukei7/Multimodal-Segmentation-Network/tree/0a38aa8bbd2eb87e28209c810438248c0464a240 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, eps: 'float'=1e-09):
super().__init__()
self.smooth = 1.0
self.eps = eps
def forward(self, y_pred, y_true):
num = y_true.size(0)
probability = torch.sigmoid(y_pred)
probability = probability.view(num, -1)
targets = y_true.view(num, -1)
assert probability.shape == targets.shape
intersection = 2.0 * (probability * targets).sum()
union = probability.sum() + targets.sum()
dice_score = (intersection + self.eps) / union
return 1.0 - dice_score
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
RegressionModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/au/caug6nesiygukdpkrndsclkfho3dygoeotjtbnihl4wlyyiuddug.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# out => convolution
# out_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/4o/c4oynjhxltgnkdcsutwrds4x22cqjggasperddyqletajvmlw6xo.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (4, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 256, 4, 4), (4096, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 4, 4), (4096, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 16384, grid=grid(16384), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 4, 4), (4096, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf5, primals_7, 16384, grid=grid(16384), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 16, 4, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [out_6, out_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf7, primals_9, 16384, grid=grid(16384), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1))
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf8, primals_11, buf9, 64, 4, grid=grid(64, 4), stream=stream0)
del buf8
del primals_11
return (reinterpret_tensor(buf9, (4, 16, 4), (64, 4, 1), 0), primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data.distributed
class RegressionModel(nn.Module):
def __init__(self, num_features_in, num_anchors=1, feature_size=256):
super(RegressionModel, self).__init__()
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3,
padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchors * 4, kernel_size=
3, padding=1)
def forward(self, x):
out = self.conv1(x)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.conv3(out)
out = self.act3(out)
out = self.conv4(out)
out = self.act4(out)
out = self.output(out)
out = out.permute(0, 2, 3, 1)
return out.contiguous().view(out.shape[0], -1, 4)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features_in': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (4, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 256, 4, 4), (4096, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(16384)](buf1, primals_2,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 4, 4), (4096, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_0[grid(16384)](buf3, primals_5,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 4, 4), (4096, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_0[grid(16384)](buf5, primals_7,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_0[grid(16384)](buf7, primals_9,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1))
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(64, 4)](buf8, primals_11, buf9, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del buf8
del primals_11
return (reinterpret_tensor(buf9, (4, 16, 4), (64, 4, 1), 0), primals_1,
primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3,
buf5, buf7)
class RegressionModelNew(nn.Module):
def __init__(self, num_features_in, num_anchors=1, feature_size=256):
super(RegressionModelNew, self).__init__()
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3,
padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchors * 4, kernel_size=
3, padding=1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.output.weight
primals_11 = self.output.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| YuBeomGon/pytorch_retina | RegressionModel | false | 1,278 | [
"Apache-2.0"
] | 0 | a1713ecbf99e3cf2f8f5edce3329b808b4f9dee8 | https://github.com/YuBeomGon/pytorch_retina/tree/a1713ecbf99e3cf2f8f5edce3329b808b4f9dee8 | import torch
import torch.nn as nn
import torch.utils.data.distributed
class Model(nn.Module):
def __init__(self, num_features_in, num_anchors=1, feature_size=256):
super().__init__()
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3,
padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchors * 4, kernel_size=
3, padding=1)
def forward(self, x):
out = self.conv1(x)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.conv3(out)
out = self.act3(out)
out = self.conv4(out)
out = self.act4(out)
out = self.output(out)
out = out.permute(0, 2, 3, 1)
return out.contiguous().view(out.shape[0], -1, 4)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
RNNModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/hz/chzyhov2xqetpxutrr7zhuwi672sgyqlffwh7xov7v7t6b4o2gze.py
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# ret => add, tanh
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {})
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_tensor_1, %add_tensor), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(in_out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0)
del primals_4
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_tanh_0.run(buf2, primals_6, buf1, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
del primals_6
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [otp], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf2, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_8
return (buf3, buf2, primals_1, primals_2, buf2, primals_7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def initialize(dims, connection_prob=1.0, shape=0.1, scale=1.0):
w = np.random.gamma(shape, scale, size=dims)
w *= np.random.rand(*dims) < connection_prob
return np.float32(w)
class VanillaRNNCell(nn.Module):
def __init__(self, input_size, hidden_size, nonlinearity='tanh', ct=False):
super(VanillaRNNCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.nonlinearity = nonlinearity
self.ct = ct
self.weight_ih = nn.Parameter(torch.zeros((input_size, hidden_size)))
self.weight_hh = nn.Parameter(torch.zeros((hidden_size, hidden_size)))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.reset_parameters()
if self.nonlinearity == 'tanh':
self.act = F.tanh
elif self.nonlinearity == 'relu':
self.act = F.relu
else:
raise RuntimeError('Unknown nonlinearity: {}'.format(self.
nonlinearity))
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
nn.init.uniform_(weight, -stdv, stdv)
def forward(self, inp, hidden_in):
if not self.ct:
hidden_out = self.act(torch.matmul(inp, self.weight_ih) + torch
.matmul(hidden_in, self.weight_hh) + self.bias)
else:
alpha = 0.1
hidden_out = (1 - alpha) * hidden_in + alpha * self.act(torch.
matmul(inp, self.weight_ih) + torch.matmul(hidden_in, self.
weight_hh) + self.bias)
return hidden_out
def init_hidden(self, batch_s):
return torch.zeros(batch_s, self.hidden_size)
class RNNSTSPConfig:
def __init__(self, in_size, h_size):
self.n_input = in_size
self.n_hidden = h_size
self.exc_inh_prop = 0.8
self.balance_EI = True
self.synapse_config = 'exc_dep_inh_fac'
self.membrane_time_constant = 100
self.tau_fast = 200
self.tau_slow = 1500
self.dt = 10
self.dt_sec = self.dt / 1000
self.trial_length = 2500
self.num_time_steps = self.trial_length // self.dt
if self.exc_inh_prop < 1:
self.EI = True
else:
self.EI = False
self.num_exc_units = int(np.round(self.n_hidden * self.exc_inh_prop))
self.num_inh_units = self.n_hidden - self.num_exc_units
self.EI_list = np.ones(self.n_hidden, dtype=np.float32)
self.EI_list[-self.num_inh_units:] = -1.0
self.ind_inh = np.where(self.EI_list == -1)[0]
self.EI_matrix = np.diag(self.EI_list)
self.alpha_neuron = np.float32(self.dt) / self.membrane_time_constant
self.h0 = 0.1 * np.ones((1, self.n_hidden), dtype=np.float32)
self.w_in0 = initialize([self.n_input, self.n_hidden], shape=0.2,
scale=1.0)
if self.EI:
self.w_rnn0 = initialize([self.n_hidden, self.n_hidden])
if self.balance_EI:
self.w_rnn0[:, self.ind_inh] = initialize([self.n_hidden,
self.num_inh_units], shape=0.2, scale=1.0)
self.w_rnn0[self.ind_inh, :] = initialize([self.
num_inh_units, self.n_hidden], shape=0.2, scale=1.0)
else:
self.w_rnn0 = 0.54 * np.eye(self.n_hidden)
self.b_rnn0 = np.zeros(self.n_hidden, dtype=np.float32)
self.w_rnn_mask = np.ones_like(self.w_rnn0)
if self.EI:
self.w_rnn_mask = np.ones((self.n_hidden, self.n_hidden), dtype
=np.float32) - np.eye(self.n_hidden, dtype=np.float32)
self.w_rnn0 *= self.w_rnn_mask
synaptic_configurations = {'full': [('facilitating' if i % 2 == 0 else
'depressing') for i in range(self.n_hidden)], 'fac': [
'facilitating' for i in range(self.n_hidden)], 'dep': [
'depressing' for i in range(self.n_hidden)], 'exc_fac': [(
'facilitating' if self.EI_list[i] == 1 else 'static') for i in
range(self.n_hidden)], 'exc_dep': [('depressing' if self.
EI_list[i] == 1 else 'static') for i in range(self.n_hidden)],
'inh_fac': [('facilitating' if self.EI_list[i] == -1 else
'static') for i in range(self.n_hidden)], 'inh_dep': [(
'depressing' if self.EI_list[i] == -1 else 'static') for i in
range(self.n_hidden)], 'exc_dep_inh_fac': [('depressing' if
self.EI_list[i] == 1 else 'facilitating') for i in range(self.
n_hidden)]}
self.alpha_stf = np.ones((1, self.n_hidden), dtype=np.float32)
self.alpha_std = np.ones((1, self.n_hidden), dtype=np.float32)
self.U = np.ones((1, self.n_hidden), dtype=np.float32)
self.syn_x_init = np.ones((1, self.n_hidden), dtype=np.float32)
self.syn_u_init = 0.3 * np.ones((1, self.n_hidden), dtype=np.float32)
self.dynamic_synapse = np.ones((1, self.n_hidden), dtype=np.float32)
for i in range(self.n_hidden):
if self.synapse_config not in synaptic_configurations.keys():
self.dynamic_synapse[0, i] = 0
elif synaptic_configurations[self.synapse_config][i
] == 'facilitating':
self.alpha_stf[0, i] = self.dt / self.tau_slow
self.alpha_std[0, i] = self.dt / self.tau_fast
self.U[0, i] = 0.15
self.syn_u_init[0, i] = self.U[0, i]
self.dynamic_synapse[0, i] = 1
elif synaptic_configurations[self.synapse_config][i
] == 'depressing':
self.alpha_stf[0, i] = self.dt / self.tau_fast
self.alpha_std[0, i] = self.dt / self.tau_slow
self.U[0, i] = 0.45
self.syn_u_init[0, i] = self.U[0, i]
self.dynamic_synapse[0, i] = 1
class RNNSTSPCell(nn.Module):
def __init__(self, input_size, hidden_size, nonlinearity='relu'):
super(RNNSTSPCell, self).__init__()
self.syncfg = RNNSTSPConfig(input_size, hidden_size)
self.input_size = self.syncfg.n_input
self.hidden_size = self.syncfg.n_hidden
self.nonlinearity = nonlinearity
self.weight_ih = nn.Parameter(torch.from_numpy(self.syncfg.w_in0))
self.weight_hh = nn.Parameter(torch.from_numpy(self.syncfg.w_rnn0))
self.bias = nn.Parameter(torch.from_numpy(self.syncfg.b_rnn0))
self.EI = self.syncfg.EI
if self.EI:
self.EI_matrix = torch.from_numpy(self.syncfg.EI_matrix)
self.w_rnn_mask = torch.from_numpy(self.syncfg.w_rnn_mask)
self.alpha_stf = torch.from_numpy(self.syncfg.alpha_stf)
self.alpha_std = torch.from_numpy(self.syncfg.alpha_std)
self.U = torch.from_numpy(self.syncfg.U)
self.dynamic_synapse = torch.from_numpy(self.syncfg.dynamic_synapse)
if self.nonlinearity == 'tanh':
self.act = F.tanh
elif self.nonlinearity == 'relu':
self.act = F.relu
else:
raise RuntimeError('Unknown nonlinearity: {}'.format(self.
nonlinearity))
def forward(self, inp, hidden_in):
h_in, syn_x, syn_u = hidden_in
syn_x = syn_x + (self.alpha_std * (1.0 - syn_x) - self.syncfg.
dt_sec * syn_u * syn_x * h_in) * self.dynamic_synapse
syn_u = syn_u + (self.alpha_stf * (self.U - syn_u) + self.syncfg.
dt_sec * self.U * (1.0 - syn_u) * h_in) * self.dynamic_synapse
syn_x = torch.clamp(syn_x, min=0.0, max=1.0)
syn_u = torch.clamp(syn_u, min=0.0, max=1.0)
h_post = syn_u * syn_x * h_in
if self.EI:
eff_rnn_w = self.w_rnn_mask * torch.matmul(self.EI_matrix, F.
relu(self.weight_hh))
else:
eff_rnn_w = self.w_rnn_mask * self.weight_hh
h_out = h_in * (1 - self.syncfg.alpha_neuron
) + self.syncfg.alpha_neuron * self.act(torch.matmul(inp, F.
relu(self.weight_ih)) + torch.matmul(h_post, eff_rnn_w) + self.bias
)
hidden_out = h_out, syn_x, syn_u
return hidden_out
def init_hidden(self, batch_s):
h_out_init = torch.from_numpy(self.syncfg.h0).repeat(batch_s, 1)
syn_x_init = torch.from_numpy(self.syncfg.syn_x_init).repeat(batch_s, 1
)
syn_u_init = torch.from_numpy(self.syncfg.syn_u_init).repeat(batch_s, 1
)
hidden_init = h_out_init, syn_x_init, syn_u_init
return hidden_init
class RNNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, rnn_type):
super(RNNModel, self).__init__()
assert rnn_type in ['plainRNN', 'VanillaRNN', 'CTRNN', 'LSTM',
'GRU', 'RNNSTSP'], 'Given RNN type must be implemented'
self.hidden_size = hidden_size
self.rnn_type = rnn_type
if self.rnn_type == 'plainRNN':
self.rnn = nn.RNNCell(input_size, hidden_size)
elif self.rnn_type == 'VanillaRNN':
self.rnn = VanillaRNNCell(input_size, hidden_size)
elif self.rnn_type == 'CTRNN':
self.rnn = VanillaRNNCell(input_size, hidden_size, ct=True)
elif self.rnn_type == 'LSTM':
self.rnn = nn.LSTMCell(input_size, hidden_size)
elif self.rnn_type == 'GRU':
self.rnn = nn.GRUCell(input_size, hidden_size)
elif self.rnn_type == 'RNNSTSP':
self.rnn = RNNSTSPCell(input_size, hidden_size)
else:
raise NotImplementedError('RNN cell not implemented')
self.out_layer = nn.Linear(hidden_size, output_size)
def forward(self, inp, hidden_in):
hid_out = self.rnn(inp, hidden_in)
if self.rnn_type in ['LSTM', 'RNNSTSP']:
rnn_out = hid_out[0]
else:
rnn_out = hid_out
otp = self.out_layer(rnn_out)
return otp, hid_out
def init_hidden(self, batch_s):
if self.rnn_type == 'LSTM':
init_hid = torch.zeros(batch_s, self.hidden_size), torch.zeros(
batch_s, self.hidden_size)
elif self.rnn_type in ['plainRNN', 'GRU']:
init_hid = torch.zeros(batch_s, self.hidden_size)
elif self.rnn_type in ['VanillaRNN', 'CTRNN', 'RNNSTSP']:
init_hid = self.rnn.init_hidden(batch_s)
else:
raise NotImplementedError('RNN init not implemented')
return init_hid
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4,
'rnn_type': 'plainRNN'}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(in_out_ptr0 + x2, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_2, reinterpret_tensor(primals_4, (4, 4),
(1, 4), 0), out=buf0)
del primals_4
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_3, (4, 4),
(1, 4), 0), out=buf1)
del primals_3
buf2 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(16)](buf2, primals_6, buf1,
primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_5
del primals_6
buf3 = buf1
del buf1
extern_kernels.addmm(primals_8, buf2, reinterpret_tensor(primals_7,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_8
return buf3, buf2, primals_1, primals_2, buf2, primals_7
def initialize(dims, connection_prob=1.0, shape=0.1, scale=1.0):
w = np.random.gamma(shape, scale, size=dims)
w *= np.random.rand(*dims) < connection_prob
return np.float32(w)
class VanillaRNNCell(nn.Module):
def __init__(self, input_size, hidden_size, nonlinearity='tanh', ct=False):
super(VanillaRNNCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.nonlinearity = nonlinearity
self.ct = ct
self.weight_ih = nn.Parameter(torch.zeros((input_size, hidden_size)))
self.weight_hh = nn.Parameter(torch.zeros((hidden_size, hidden_size)))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.reset_parameters()
if self.nonlinearity == 'tanh':
self.act = F.tanh
elif self.nonlinearity == 'relu':
self.act = F.relu
else:
raise RuntimeError('Unknown nonlinearity: {}'.format(self.
nonlinearity))
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
nn.init.uniform_(weight, -stdv, stdv)
def forward(self, inp, hidden_in):
if not self.ct:
hidden_out = self.act(torch.matmul(inp, self.weight_ih) + torch
.matmul(hidden_in, self.weight_hh) + self.bias)
else:
alpha = 0.1
hidden_out = (1 - alpha) * hidden_in + alpha * self.act(torch.
matmul(inp, self.weight_ih) + torch.matmul(hidden_in, self.
weight_hh) + self.bias)
return hidden_out
def init_hidden(self, batch_s):
return torch.zeros(batch_s, self.hidden_size)
class RNNSTSPConfig:
def __init__(self, in_size, h_size):
self.n_input = in_size
self.n_hidden = h_size
self.exc_inh_prop = 0.8
self.balance_EI = True
self.synapse_config = 'exc_dep_inh_fac'
self.membrane_time_constant = 100
self.tau_fast = 200
self.tau_slow = 1500
self.dt = 10
self.dt_sec = self.dt / 1000
self.trial_length = 2500
self.num_time_steps = self.trial_length // self.dt
if self.exc_inh_prop < 1:
self.EI = True
else:
self.EI = False
self.num_exc_units = int(np.round(self.n_hidden * self.exc_inh_prop))
self.num_inh_units = self.n_hidden - self.num_exc_units
self.EI_list = np.ones(self.n_hidden, dtype=np.float32)
self.EI_list[-self.num_inh_units:] = -1.0
self.ind_inh = np.where(self.EI_list == -1)[0]
self.EI_matrix = np.diag(self.EI_list)
self.alpha_neuron = np.float32(self.dt) / self.membrane_time_constant
self.h0 = 0.1 * np.ones((1, self.n_hidden), dtype=np.float32)
self.w_in0 = initialize([self.n_input, self.n_hidden], shape=0.2,
scale=1.0)
if self.EI:
self.w_rnn0 = initialize([self.n_hidden, self.n_hidden])
if self.balance_EI:
self.w_rnn0[:, self.ind_inh] = initialize([self.n_hidden,
self.num_inh_units], shape=0.2, scale=1.0)
self.w_rnn0[self.ind_inh, :] = initialize([self.
num_inh_units, self.n_hidden], shape=0.2, scale=1.0)
else:
self.w_rnn0 = 0.54 * np.eye(self.n_hidden)
self.b_rnn0 = np.zeros(self.n_hidden, dtype=np.float32)
self.w_rnn_mask = np.ones_like(self.w_rnn0)
if self.EI:
self.w_rnn_mask = np.ones((self.n_hidden, self.n_hidden), dtype
=np.float32) - np.eye(self.n_hidden, dtype=np.float32)
self.w_rnn0 *= self.w_rnn_mask
synaptic_configurations = {'full': [('facilitating' if i % 2 == 0 else
'depressing') for i in range(self.n_hidden)], 'fac': [
'facilitating' for i in range(self.n_hidden)], 'dep': [
'depressing' for i in range(self.n_hidden)], 'exc_fac': [(
'facilitating' if self.EI_list[i] == 1 else 'static') for i in
range(self.n_hidden)], 'exc_dep': [('depressing' if self.
EI_list[i] == 1 else 'static') for i in range(self.n_hidden)],
'inh_fac': [('facilitating' if self.EI_list[i] == -1 else
'static') for i in range(self.n_hidden)], 'inh_dep': [(
'depressing' if self.EI_list[i] == -1 else 'static') for i in
range(self.n_hidden)], 'exc_dep_inh_fac': [('depressing' if
self.EI_list[i] == 1 else 'facilitating') for i in range(self.
n_hidden)]}
self.alpha_stf = np.ones((1, self.n_hidden), dtype=np.float32)
self.alpha_std = np.ones((1, self.n_hidden), dtype=np.float32)
self.U = np.ones((1, self.n_hidden), dtype=np.float32)
self.syn_x_init = np.ones((1, self.n_hidden), dtype=np.float32)
self.syn_u_init = 0.3 * np.ones((1, self.n_hidden), dtype=np.float32)
self.dynamic_synapse = np.ones((1, self.n_hidden), dtype=np.float32)
for i in range(self.n_hidden):
if self.synapse_config not in synaptic_configurations.keys():
self.dynamic_synapse[0, i] = 0
elif synaptic_configurations[self.synapse_config][i
] == 'facilitating':
self.alpha_stf[0, i] = self.dt / self.tau_slow
self.alpha_std[0, i] = self.dt / self.tau_fast
self.U[0, i] = 0.15
self.syn_u_init[0, i] = self.U[0, i]
self.dynamic_synapse[0, i] = 1
elif synaptic_configurations[self.synapse_config][i
] == 'depressing':
self.alpha_stf[0, i] = self.dt / self.tau_fast
self.alpha_std[0, i] = self.dt / self.tau_slow
self.U[0, i] = 0.45
self.syn_u_init[0, i] = self.U[0, i]
self.dynamic_synapse[0, i] = 1
class RNNSTSPCell(nn.Module):
def __init__(self, input_size, hidden_size, nonlinearity='relu'):
super(RNNSTSPCell, self).__init__()
self.syncfg = RNNSTSPConfig(input_size, hidden_size)
self.input_size = self.syncfg.n_input
self.hidden_size = self.syncfg.n_hidden
self.nonlinearity = nonlinearity
self.weight_ih = nn.Parameter(torch.from_numpy(self.syncfg.w_in0))
self.weight_hh = nn.Parameter(torch.from_numpy(self.syncfg.w_rnn0))
self.bias = nn.Parameter(torch.from_numpy(self.syncfg.b_rnn0))
self.EI = self.syncfg.EI
if self.EI:
self.EI_matrix = torch.from_numpy(self.syncfg.EI_matrix)
self.w_rnn_mask = torch.from_numpy(self.syncfg.w_rnn_mask)
self.alpha_stf = torch.from_numpy(self.syncfg.alpha_stf)
self.alpha_std = torch.from_numpy(self.syncfg.alpha_std)
self.U = torch.from_numpy(self.syncfg.U)
self.dynamic_synapse = torch.from_numpy(self.syncfg.dynamic_synapse)
if self.nonlinearity == 'tanh':
self.act = F.tanh
elif self.nonlinearity == 'relu':
self.act = F.relu
else:
raise RuntimeError('Unknown nonlinearity: {}'.format(self.
nonlinearity))
def forward(self, inp, hidden_in):
h_in, syn_x, syn_u = hidden_in
syn_x = syn_x + (self.alpha_std * (1.0 - syn_x) - self.syncfg.
dt_sec * syn_u * syn_x * h_in) * self.dynamic_synapse
syn_u = syn_u + (self.alpha_stf * (self.U - syn_u) + self.syncfg.
dt_sec * self.U * (1.0 - syn_u) * h_in) * self.dynamic_synapse
syn_x = torch.clamp(syn_x, min=0.0, max=1.0)
syn_u = torch.clamp(syn_u, min=0.0, max=1.0)
h_post = syn_u * syn_x * h_in
if self.EI:
eff_rnn_w = self.w_rnn_mask * torch.matmul(self.EI_matrix, F.
relu(self.weight_hh))
else:
eff_rnn_w = self.w_rnn_mask * self.weight_hh
h_out = h_in * (1 - self.syncfg.alpha_neuron
) + self.syncfg.alpha_neuron * self.act(torch.matmul(inp, F.
relu(self.weight_ih)) + torch.matmul(h_post, eff_rnn_w) + self.bias
)
hidden_out = h_out, syn_x, syn_u
return hidden_out
def init_hidden(self, batch_s):
h_out_init = torch.from_numpy(self.syncfg.h0).repeat(batch_s, 1)
syn_x_init = torch.from_numpy(self.syncfg.syn_x_init).repeat(batch_s, 1
)
syn_u_init = torch.from_numpy(self.syncfg.syn_u_init).repeat(batch_s, 1
)
hidden_init = h_out_init, syn_x_init, syn_u_init
return hidden_init
class RNNModelNew(nn.Module):
def __init__(self, input_size, hidden_size, output_size, rnn_type):
super(RNNModelNew, self).__init__()
assert rnn_type in ['plainRNN', 'VanillaRNN', 'CTRNN', 'LSTM',
'GRU', 'RNNSTSP'], 'Given RNN type must be implemented'
self.hidden_size = hidden_size
self.rnn_type = rnn_type
if self.rnn_type == 'plainRNN':
self.rnn = nn.RNNCell(input_size, hidden_size)
elif self.rnn_type == 'VanillaRNN':
self.rnn = VanillaRNNCell(input_size, hidden_size)
elif self.rnn_type == 'CTRNN':
self.rnn = VanillaRNNCell(input_size, hidden_size, ct=True)
elif self.rnn_type == 'LSTM':
self.rnn = nn.LSTMCell(input_size, hidden_size)
elif self.rnn_type == 'GRU':
self.rnn = nn.GRUCell(input_size, hidden_size)
elif self.rnn_type == 'RNNSTSP':
self.rnn = RNNSTSPCell(input_size, hidden_size)
else:
raise NotImplementedError('RNN cell not implemented')
self.out_layer = nn.Linear(hidden_size, output_size)
def init_hidden(self, batch_s):
if self.rnn_type == 'LSTM':
init_hid = torch.zeros(batch_s, self.hidden_size), torch.zeros(
batch_s, self.hidden_size)
elif self.rnn_type in ['plainRNN', 'GRU']:
init_hid = torch.zeros(batch_s, self.hidden_size)
elif self.rnn_type in ['VanillaRNN', 'CTRNN', 'RNNSTSP']:
init_hid = self.rnn.init_hidden(batch_s)
else:
raise NotImplementedError('RNN init not implemented')
return init_hid
def forward(self, input_0, input_1):
primals_1 = self.rnn.weight_ih
primals_2 = self.rnn.weight_hh
primals_5 = self.rnn.bias_ih
primals_6 = self.rnn.bias_hh
primals_3 = self.out_layer.weight
primals_8 = self.out_layer.bias
primals_4 = input_0
primals_7 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0], output[1]
| YuXie96/time | RNNModel | false | 1,279 | [
"MIT"
] | 0 | 8539d55d2449c712f54331b06720ab7faf3593df | https://github.com/YuXie96/time/tree/8539d55d2449c712f54331b06720ab7faf3593df | import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def initialize(dims, connection_prob=1.0, shape=0.1, scale=1.0):
w = np.random.gamma(shape, scale, size=dims)
w *= np.random.rand(*dims) < connection_prob
return np.float32(w)
class VanillaRNNCell(nn.Module):
def __init__(self, input_size, hidden_size, nonlinearity='tanh', ct=False):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.nonlinearity = nonlinearity
self.ct = ct
self.weight_ih = nn.Parameter(torch.zeros((input_size, hidden_size)))
self.weight_hh = nn.Parameter(torch.zeros((hidden_size, hidden_size)))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.reset_parameters()
if self.nonlinearity == 'tanh':
self.act = F.tanh
elif self.nonlinearity == 'relu':
self.act = F.relu
else:
raise RuntimeError('Unknown nonlinearity: {}'.format(self.
nonlinearity))
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
nn.init.uniform_(weight, -stdv, stdv)
def forward(self, inp, hidden_in):
if not self.ct:
hidden_out = self.act(torch.matmul(inp, self.weight_ih) + torch
.matmul(hidden_in, self.weight_hh) + self.bias)
else:
alpha = 0.1
hidden_out = (1 - alpha) * hidden_in + alpha * self.act(torch.
matmul(inp, self.weight_ih) + torch.matmul(hidden_in, self.
weight_hh) + self.bias)
return hidden_out
def init_hidden(self, batch_s):
return torch.zeros(batch_s, self.hidden_size)
class RNNSTSPConfig:
def __init__(self, in_size, h_size):
self.n_input = in_size
self.n_hidden = h_size
self.exc_inh_prop = 0.8
self.balance_EI = True
self.synapse_config = 'exc_dep_inh_fac'
self.membrane_time_constant = 100
self.tau_fast = 200
self.tau_slow = 1500
self.dt = 10
self.dt_sec = self.dt / 1000
self.trial_length = 2500
self.num_time_steps = self.trial_length // self.dt
if self.exc_inh_prop < 1:
self.EI = True
else:
self.EI = False
self.num_exc_units = int(np.round(self.n_hidden * self.exc_inh_prop))
self.num_inh_units = self.n_hidden - self.num_exc_units
self.EI_list = np.ones(self.n_hidden, dtype=np.float32)
self.EI_list[-self.num_inh_units:] = -1.0
self.ind_inh = np.where(self.EI_list == -1)[0]
self.EI_matrix = np.diag(self.EI_list)
self.alpha_neuron = np.float32(self.dt) / self.membrane_time_constant
self.h0 = 0.1 * np.ones((1, self.n_hidden), dtype=np.float32)
self.w_in0 = initialize([self.n_input, self.n_hidden], shape=0.2,
scale=1.0)
if self.EI:
self.w_rnn0 = initialize([self.n_hidden, self.n_hidden])
if self.balance_EI:
self.w_rnn0[:, self.ind_inh] = initialize([self.n_hidden,
self.num_inh_units], shape=0.2, scale=1.0)
self.w_rnn0[self.ind_inh, :] = initialize([self.
num_inh_units, self.n_hidden], shape=0.2, scale=1.0)
else:
self.w_rnn0 = 0.54 * np.eye(self.n_hidden)
self.b_rnn0 = np.zeros(self.n_hidden, dtype=np.float32)
self.w_rnn_mask = np.ones_like(self.w_rnn0)
if self.EI:
self.w_rnn_mask = np.ones((self.n_hidden, self.n_hidden), dtype
=np.float32) - np.eye(self.n_hidden, dtype=np.float32)
self.w_rnn0 *= self.w_rnn_mask
synaptic_configurations = {'full': [('facilitating' if i % 2 == 0 else
'depressing') for i in range(self.n_hidden)], 'fac': [
'facilitating' for i in range(self.n_hidden)], 'dep': [
# ... truncated (>4000 chars) for memory efficiency |
NHDUnitV2 | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/lp/clpruzn7qk5b5z6blq7r7ssn3t3qm7f3sf3n7azxyioeo2l6cing.py
# Topologically Sorted Source Nodes: [conv2d_1, feat, adaptive_avg_pool2d], Original ATen: [aten.convolution, aten.relu, aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => mean
# conv2d_1 => convolution_1
# feat => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_1, [-1, -2], True), kwargs = {})
triton_per_fused_convolution_mean_relu_1 = async_compile.triton('triton_per_fused_convolution_mean_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_mean_relu_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_convolution_mean_relu_1(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = 16.0
tmp10 = tmp8 / tmp9
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp4, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/jd/cjdgjytdmb4vnqondclaeabo24zlhmig222taliklzkzh66d2idv.py
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/5v/c5vp5kwiougsjrt24sbuebc3tdgtaqyy6acw5g4woberjney646p.py
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/jm/cjmuz3njjaogx63pceprjmn7gfcsqwajnxiqmzkv72xcrimmla4h.py
# Topologically Sorted Source Nodes: [trans, atmos, mul, sub, mul_1, out], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# atmos => sigmoid_1
# mul => mul
# mul_1 => mul_1
# out => add
# sub => sub
# trans => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_3,), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_4,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %sigmoid), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sigmoid_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_4 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
x4 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp2
tmp7 = tl.sigmoid(tmp6)
tmp8 = tmp5 * tmp7
tmp9 = tmp3 + tmp8
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_9, (1, ), (1, ))
assert_size_stride(primals_10, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
buf8 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf9 = reinterpret_tensor(buf8, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, feat, adaptive_avg_pool2d], Original ATen: [aten.convolution, aten.relu, aten.mean]
triton_per_fused_convolution_mean_relu_1.run(buf3, buf9, primals_5, 16, 16, grid=grid(16), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf5, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 1, 4, 4), (16, 16, 4, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf7, primals_9, 64, grid=grid(64), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 1, 1), (4, 1, 1, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf11, primals_11, 16, grid=grid(16), stream=stream0)
del primals_11
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [trans, atmos, mul, sub, mul_1, out], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add]
triton_poi_fused_add_mul_rsub_sigmoid_4.run(primals_3, buf7, buf11, buf12, 256, grid=grid(256), stream=stream0)
return (buf12, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf9, buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class NHDUnitV2(nn.Module):
def __init__(self, in_channels, hidden_channels, *args, **kwargs):
super(NHDUnitV2, self).__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self._build()
def _build(self):
self.conv_1 = nn.Conv2d(self.in_channels, self.hidden_channels, 1)
self.conv_2 = nn.Conv2d(self.hidden_channels, self.hidden_channels,
3, stride=1, padding=1)
self.conv_trans_1 = nn.Conv2d(self.hidden_channels, self.
hidden_channels, 1)
self.conv_trans_2 = nn.Conv2d(self.hidden_channels, 1, 1)
self.conv_atmos = nn.Conv2d(self.hidden_channels, self.in_channels, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.global_avg = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, inp):
feat = self.relu(self.conv_2(self.relu(self.conv_1(inp))))
trans = self.sigmoid(self.conv_trans_2(self.relu(self.conv_trans_1(
feat))))
atmos = self.sigmoid(self.conv_atmos(self.global_avg(feat)))
out = inp * trans + (1 - trans) * atmos
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'hidden_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_per_fused_convolution_mean_relu_1(in_out_ptr0, in_out_ptr1,
in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(xmask, tmp5, 0)
tmp8 = tl.sum(tmp7, 1)[:, None]
tmp9 = 16.0
tmp10 = tmp8 / tmp9
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp4, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_4(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
x4 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp2
tmp7 = tl.sigmoid(tmp6)
tmp8 = tmp5 * tmp7
tmp9 = tmp3 + tmp8
tl.store(out_ptr0 + x3, tmp9, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_9, (1,), (1,))
assert_size_stride(primals_10, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
buf8 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf9 = reinterpret_tensor(buf8, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf8
triton_per_fused_convolution_mean_relu_1[grid(16)](buf3, buf9,
primals_5, 16, 16, XBLOCK=1, num_warps=2, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_0[grid(256)](buf5, primals_7, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 1, 4, 4), (16, 16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_2[grid(64)](buf7, primals_9, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_9
buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 1, 1), (4, 1, 1, 1))
buf11 = buf10
del buf10
triton_poi_fused_convolution_3[grid(16)](buf11, primals_11, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_11
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_rsub_sigmoid_4[grid(256)](primals_3, buf7,
buf11, buf12, 256, XBLOCK=128, num_warps=4, num_stages=1)
return (buf12, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, buf1, buf3, buf5, buf7, buf9, buf11)
class NHDUnitV2New(nn.Module):
def __init__(self, in_channels, hidden_channels, *args, **kwargs):
super(NHDUnitV2New, self).__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self._build()
def _build(self):
self.conv_1 = nn.Conv2d(self.in_channels, self.hidden_channels, 1)
self.conv_2 = nn.Conv2d(self.hidden_channels, self.hidden_channels,
3, stride=1, padding=1)
self.conv_trans_1 = nn.Conv2d(self.hidden_channels, self.
hidden_channels, 1)
self.conv_trans_2 = nn.Conv2d(self.hidden_channels, 1, 1)
self.conv_atmos = nn.Conv2d(self.hidden_channels, self.in_channels, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.global_avg = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, input_0):
primals_1 = self.conv_1.weight
primals_2 = self.conv_1.bias
primals_4 = self.conv_2.weight
primals_5 = self.conv_2.bias
primals_6 = self.conv_trans_1.weight
primals_7 = self.conv_trans_1.bias
primals_8 = self.conv_trans_2.weight
primals_9 = self.conv_trans_2.bias
primals_10 = self.conv_atmos.weight
primals_11 = self.conv_atmos.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| YiqunChen1999/NTIRE2021NHDehazing | NHDUnitV2 | false | 1,280 | [
"MIT"
] | 0 | 3341ae561ac8caff7f40ddf6d4408032a28ff13c | https://github.com/YiqunChen1999/NTIRE2021NHDehazing/tree/3341ae561ac8caff7f40ddf6d4408032a28ff13c | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, in_channels, hidden_channels, *args, **kwargs):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self._build()
def _build(self):
self.conv_1 = nn.Conv2d(self.in_channels, self.hidden_channels, 1)
self.conv_2 = nn.Conv2d(self.hidden_channels, self.hidden_channels,
3, stride=1, padding=1)
self.conv_trans_1 = nn.Conv2d(self.hidden_channels, self.
hidden_channels, 1)
self.conv_trans_2 = nn.Conv2d(self.hidden_channels, 1, 1)
self.conv_atmos = nn.Conv2d(self.hidden_channels, self.in_channels, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.global_avg = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, inp):
feat = self.relu(self.conv_2(self.relu(self.conv_1(inp))))
trans = self.sigmoid(self.conv_trans_2(self.relu(self.conv_trans_1(
feat))))
atmos = self.sigmoid(self.conv_atmos(self.global_avg(feat)))
out = inp * trans + (1 - trans) * atmos
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
EmbeddingLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/hb/chbhiaabilrxfybu2ffrrnkpdqbtolbw723vatlywaxvb4btkitd.py
# Topologically Sorted Source Nodes: [left_representations], Original ATen: [aten.div]
# Source node to ATen node mapping:
# left_representations => div_1
# Graph fragment:
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand_1), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ce/cceitkb57gvjhg5ldpl5r7iv6yefxb7tczymuq3ptw4ifiklh2os.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten.div]
# Source node to ATen node mapping:
# attention => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/th/cthdkgtbydaxuo2pr75uprzrf65whavqouee5pugywxhy32lilvm.py
# Topologically Sorted Source Nodes: [scores, sum_1], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# scores => mul
# sum_1 => sum_4
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %view_6), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-2, -1]), kwargs = {})
triton_per_fused_mul_sum_2 = async_compile.triton('triton_per_fused_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [left_representations], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten.div]
triton_poi_fused_div_1.run(primals_1, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (0, 4, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [right_representations], Original ATen: [aten.div]
triton_poi_fused_div_0.run(primals_3, buf3, 256, grid=grid(256), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf2, reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), out=buf4)
del buf2
buf5 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [scores, sum_1], Original ATen: [aten.mul, aten.sum]
triton_per_fused_mul_sum_2.run(primals_4, buf4, buf5, 16, 16, grid=grid(16), stream=stream0)
del buf4
return (reinterpret_tensor(buf5, (16, 1), (1, 1), 0), primals_1, primals_4, reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional
class EmbeddingLayer(torch.nn.Module):
"""Attention layer."""
def __init__(self, feature_number: 'int'):
"""Initialize the relational embedding layer.
:param feature_number: Number of features.
"""
super().__init__()
self.weights = torch.nn.Parameter(torch.zeros(feature_number,
feature_number))
torch.nn.init.xavier_uniform_(self.weights)
def forward(self, left_representations: 'torch.FloatTensor',
right_representations: 'torch.FloatTensor', alpha_scores:
'torch.FloatTensor'):
"""
Make a forward pass with the drug representations.
:param left_representations: Left side drug representations.
:param right_representations: Right side drug representations.
:param alpha_scores: Attention scores.
:returns: Positive label scores vector.
"""
attention = torch.nn.functional.normalize(self.weights, dim=-1)
left_representations = torch.nn.functional.normalize(
left_representations, dim=-1)
right_representations = torch.nn.functional.normalize(
right_representations, dim=-1)
attention = attention.view(-1, self.weights.shape[0], self.weights.
shape[1])
scores = alpha_scores * (left_representations @ attention @
right_representations.transpose(-2, -1))
scores = scores.sum(dim=(-2, -1)).view(-1, 1)
return scores
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'feature_number': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn.functional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_per_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](primals_2, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_1[grid(16)](primals_1, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf1, (16, 4, 4), (0, 4, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_div_0[grid(256)](primals_3, buf3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf2, reinterpret_tensor(buf3, (16, 4, 4), (16,
1, 4), 0), out=buf4)
del buf2
buf5 = buf1
del buf1
triton_per_fused_mul_sum_2[grid(16)](primals_4, buf4, buf5, 16, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del buf4
return reinterpret_tensor(buf5, (16, 1), (1, 1), 0
), primals_1, primals_4, reinterpret_tensor(buf3, (16, 4, 4), (16,
4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 1, 4), 0)
class EmbeddingLayerNew(torch.nn.Module):
"""Attention layer."""
def __init__(self, feature_number: 'int'):
"""Initialize the relational embedding layer.
:param feature_number: Number of features.
"""
super().__init__()
self.weights = torch.nn.Parameter(torch.zeros(feature_number,
feature_number))
torch.nn.init.xavier_uniform_(self.weights)
def forward(self, input_0, input_1, input_2):
primals_1 = self.weights
primals_2 = input_0
primals_3 = input_1
primals_4 = input_2
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| YuWVandy/chemicalx | EmbeddingLayer | false | 1,281 | [
"Apache-2.0"
] | 0 | c02f979a502409c26700e6d5a1b2e6c0aa77e64c | https://github.com/YuWVandy/chemicalx/tree/c02f979a502409c26700e6d5a1b2e6c0aa77e64c | import torch
import torch.nn.functional
class Model(torch.nn.Module):
"""Attention layer."""
def __init__(self, feature_number: 'int'):
"""Initialize the relational embedding layer.
:param feature_number: Number of features.
"""
super().__init__()
self.weights = torch.nn.Parameter(torch.zeros(feature_number,
feature_number))
torch.nn.init.xavier_uniform_(self.weights)
def forward(self, left_representations: 'torch.FloatTensor',
right_representations: 'torch.FloatTensor', alpha_scores:
'torch.FloatTensor'):
"""
Make a forward pass with the drug representations.
:param left_representations: Left side drug representations.
:param right_representations: Right side drug representations.
:param alpha_scores: Attention scores.
:returns: Positive label scores vector.
"""
attention = torch.nn.functional.normalize(self.weights, dim=-1)
left_representations = torch.nn.functional.normalize(
left_representations, dim=-1)
right_representations = torch.nn.functional.normalize(
right_representations, dim=-1)
attention = attention.view(-1, self.weights.shape[0], self.weights.
shape[1])
scores = alpha_scores * (left_representations @ attention @
right_representations.transpose(-2, -1))
scores = scores.sum(dim=(-2, -1)).view(-1, 1)
return scores
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
VanillaRNNCell | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/3p/c3pia4rpcrpmqyu72ckb4vapyboldigx52sup3a4tg7vkg554xsc.py
# Topologically Sorted Source Nodes: [add, add_1, hidden_out], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# hidden_out => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %primals_5), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {})
triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = libdevice.tanh(tmp4)
tl.store(in_out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_3, out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [add, add_1, hidden_out], Original ATen: [aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_tanh_0.run(buf2, buf1, primals_5, 256, grid=grid(256), stream=stream0)
del buf1
del primals_5
return (buf2, buf2, reinterpret_tensor(primals_4, (4, 64), (1, 4), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class VanillaRNNCell(nn.Module):
def __init__(self, input_size, hidden_size, nonlinearity='tanh', ct=False):
super(VanillaRNNCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.nonlinearity = nonlinearity
self.ct = ct
self.weight_ih = nn.Parameter(torch.zeros((input_size, hidden_size)))
self.weight_hh = nn.Parameter(torch.zeros((hidden_size, hidden_size)))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.reset_parameters()
if self.nonlinearity == 'tanh':
self.act = F.tanh
elif self.nonlinearity == 'relu':
self.act = F.relu
else:
raise RuntimeError('Unknown nonlinearity: {}'.format(self.
nonlinearity))
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
nn.init.uniform_(weight, -stdv, stdv)
def forward(self, inp, hidden_in):
if not self.ct:
hidden_out = self.act(torch.matmul(inp, self.weight_ih) + torch
.matmul(hidden_in, self.weight_hh) + self.bias)
else:
alpha = 0.1
hidden_out = (1 - alpha) * hidden_in + alpha * self.act(torch.
matmul(inp, self.weight_ih) + torch.matmul(hidden_in, self.
weight_hh) + self.bias)
return hidden_out
def init_hidden(self, batch_s):
return torch.zeros(batch_s, self.hidden_size)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = libdevice.tanh(tmp4)
tl.store(in_out_ptr0 + x2, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
primals_3, out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(256)](buf2, buf1, primals_5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_5
return buf2, buf2, reinterpret_tensor(primals_4, (4, 64), (1, 4), 0
), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0)
class VanillaRNNCellNew(nn.Module):
def __init__(self, input_size, hidden_size, nonlinearity='tanh', ct=False):
super(VanillaRNNCellNew, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.nonlinearity = nonlinearity
self.ct = ct
self.weight_ih = nn.Parameter(torch.zeros((input_size, hidden_size)))
self.weight_hh = nn.Parameter(torch.zeros((hidden_size, hidden_size)))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.reset_parameters()
if self.nonlinearity == 'tanh':
self.act = F.tanh
elif self.nonlinearity == 'relu':
self.act = F.relu
else:
raise RuntimeError('Unknown nonlinearity: {}'.format(self.
nonlinearity))
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
nn.init.uniform_(weight, -stdv, stdv)
def init_hidden(self, batch_s):
return torch.zeros(batch_s, self.hidden_size)
def forward(self, input_0, input_1):
primals_1 = self.weight_ih
primals_3 = self.weight_hh
primals_5 = self.bias
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| YuXie96/time | VanillaRNNCell | false | 1,282 | [
"MIT"
] | 0 | 8539d55d2449c712f54331b06720ab7faf3593df | https://github.com/YuXie96/time/tree/8539d55d2449c712f54331b06720ab7faf3593df | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, input_size, hidden_size, nonlinearity='tanh', ct=False):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.nonlinearity = nonlinearity
self.ct = ct
self.weight_ih = nn.Parameter(torch.zeros((input_size, hidden_size)))
self.weight_hh = nn.Parameter(torch.zeros((hidden_size, hidden_size)))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.reset_parameters()
if self.nonlinearity == 'tanh':
self.act = F.tanh
elif self.nonlinearity == 'relu':
self.act = F.relu
else:
raise RuntimeError('Unknown nonlinearity: {}'.format(self.
nonlinearity))
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
nn.init.uniform_(weight, -stdv, stdv)
def forward(self, inp, hidden_in):
if not self.ct:
hidden_out = self.act(torch.matmul(inp, self.weight_ih) + torch
.matmul(hidden_in, self.weight_hh) + self.bias)
else:
alpha = 0.1
hidden_out = (1 - alpha) * hidden_in + alpha * self.act(torch.
matmul(inp, self.weight_ih) + torch.matmul(hidden_in, self.
weight_hh) + self.bias)
return hidden_out
def init_hidden(self, batch_s):
return torch.zeros(batch_s, self.hidden_size)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
SpatialAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/46/c46mg7rvdztu6n5oosf5c4if7ziag6obrxhwbn43lcdfibfuom7w.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %getitem], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 2
x0 = xindex % 16
x2 = (xindex // 32)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tmp7 + tmp8
tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = 4.0
tmp13 = tmp11 / tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp4, tmp13, tmp14)
tmp16 = tmp0 >= tmp3
tmp17 = tl.full([1], 2, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = triton_helpers.maximum(tmp19, tmp20)
tmp22 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = triton_helpers.maximum(tmp21, tmp22)
tmp24 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp16, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp15, tmp27)
tl.store(out_ptr0 + (x3), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/my/cmyzznlnv3aykf56hqxijqkl7hycovubzmkxdtihopwgojtdv2p3.py
# Topologically Sorted Source Nodes: [sigmoid, mul], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {})
triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (x3), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, mul], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_1.run(buf1, primals_1, buf2, 256, grid=grid(256), stream=stream0)
return (buf2, primals_1, primals_2, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 2, 7, 7), (98, 49, 7, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
residual = x
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x) * residual
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 2
x0 = xindex % 16
x2 = xindex // 32
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp9 = tmp7 + tmp8
tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = 4.0
tmp13 = tmp11 / tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp4, tmp13, tmp14)
tmp16 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp19 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = triton_helpers.maximum(tmp19, tmp20)
tmp22 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp23 = triton_helpers.maximum(tmp21, tmp22)
tmp24 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp16, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp15, tmp27)
tl.store(out_ptr0 + x3, tmp28, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr1 + x3, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x3, tmp3, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_1[grid(256)](buf1, primals_1, buf2,
256, XBLOCK=256, num_warps=4, num_stages=1)
return buf2, primals_1, primals_2, buf0, buf1
class SpatialAttentionNew(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttentionNew, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| YuanZi1501040205/Ice-detection-for-smart-track-heating-with-normal-only-self-supervised-learning | SpatialAttention | false | 1,283 | [
"MIT"
] | 0 | ac7603dc27cf1cc9ce29cfae6c525dd5dbbcdd83 | https://github.com/YuanZi1501040205/Ice-detection-for-smart-track-heating-with-normal-only-self-supervised-learning/tree/ac7603dc27cf1cc9ce29cfae6c525dd5dbbcdd83 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, kernel_size=7):
super().__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
residual = x
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x) * residual
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
ResidualUnit | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/sr/csrg6irduolxnaubd5v3tlh5eeuhw27sxkg3o56t4veh47sq6ce3.py
# Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# res => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 2
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ch/cchqfn77hgdz3w4ctp6pjfp4bouddm5eb6iqxroh6llwgfgjn4o7.py
# Topologically Sorted Source Nodes: [conv2d_1, res_1, mul_1, x], Original ATen: [aten.convolution, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# mul_1 => mul_1
# res_1 => mul
# x => add
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul), kwargs = {})
triton_poi_fused_add_convolution_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp3 = tl.load(in_out_ptr0 + (x3), xmask)
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp1 = 4.0
tmp2 = tmp0 * tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp5 * tmp1
tmp7 = tmp2 + tmp6
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [res], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, res_1, mul_1, x], Original ATen: [aten.convolution, aten.mul, aten.add]
triton_poi_fused_add_convolution_mul_1.run(buf3, primals_3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def defaultConv(inChannels, outChannels, kernelSize, bias=True):
return nn.Conv2d(inChannels, outChannels, kernelSize, padding=
kernelSize // 2, bias=bias)
class ResidualUnit(nn.Module):
def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True
):
super().__init__()
self.reduction = defaultConv(inChannel, outChannel // 2, kernelSize,
bias)
self.expansion = defaultConv(outChannel // 2, inChannel, kernelSize,
bias)
self.lamRes = reScale[0]
self.lamX = reScale[1]
def forward(self, x):
res = self.reduction(x)
res = self.lamRes * self.expansion(res)
x = self.lamX * x + res
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inChannel': 4, 'outChannel': 4, 'reScale': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 2
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp3 = tl.load(in_out_ptr0 + x3, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp1 = 4.0
tmp2 = tmp0 * tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp5 * tmp1
tmp7 = tmp2 + tmp6
tl.store(in_out_ptr0 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(128)](buf1, primals_2, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_add_convolution_mul_1[grid(256)](buf3, primals_3,
primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
def defaultConv(inChannels, outChannels, kernelSize, bias=True):
return nn.Conv2d(inChannels, outChannels, kernelSize, padding=
kernelSize // 2, bias=bias)
class ResidualUnitNew(nn.Module):
def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True
):
super().__init__()
self.reduction = defaultConv(inChannel, outChannel // 2, kernelSize,
bias)
self.expansion = defaultConv(outChannel // 2, inChannel, kernelSize,
bias)
self.lamRes = reScale[0]
self.lamX = reScale[1]
def forward(self, input_0):
primals_1 = self.reduction.weight
primals_2 = self.reduction.bias
primals_4 = self.expansion.weight
primals_5 = self.expansion.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| YingqiLiulll/scrips_for_SR | ResidualUnit | false | 1,284 | [
"MIT"
] | 0 | 04fa6fdaf157e913d3e2521cd80315a10a2ccedc | https://github.com/YingqiLiulll/scrips_for_SR/tree/04fa6fdaf157e913d3e2521cd80315a10a2ccedc | import torch
import torch.nn as nn
def defaultConv(inChannels, outChannels, kernelSize, bias=True):
return nn.Conv2d(inChannels, outChannels, kernelSize, padding=
kernelSize // 2, bias=bias)
class Model(nn.Module):
def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True
):
super().__init__()
self.reduction = defaultConv(inChannel, outChannel // 2, kernelSize,
bias)
self.expansion = defaultConv(outChannel // 2, inChannel, kernelSize,
bias)
self.lamRes = reScale[0]
self.lamX = reScale[1]
def forward(self, x):
res = self.reduction(x)
res = self.lamRes * self.expansion(res)
x = self.lamX * x + res
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ClassificationModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/au/caug6nesiygukdpkrndsclkfho3dygoeotjtbnihl4wlyyiuddug.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# out => convolution
# out_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/pk/cpk7tmbtr6hjhj7xpktnoajzachnsfzcnobvbmq3ogfgmadduv42.py
# Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_8 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 80
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/es/cesyurkrbdezfu7wa2bvsf542s53kpclztaezctpomw5ywulphg6.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 128], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 80
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (1280*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tl.store(out_ptr0 + (x2 + (80*y3)), tmp1, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (80, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (80, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 256, 4, 4), (4096, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 4, 4), (4096, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 16384, grid=grid(16384), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 4, 4), (4096, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf5, primals_7, 16384, grid=grid(16384), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 16, 4, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [out_6, out_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf7, primals_9, 16384, grid=grid(16384), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 80, 4, 4), (1280, 16, 4, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf9, primals_11, 5120, grid=grid(5120), stream=stream0)
del primals_11
buf10 = empty_strided_cuda((4, 4, 4, 1, 80), (1280, 320, 80, 80, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf9, buf10, 64, 80, grid=grid(64, 80), stream=stream0)
return (reinterpret_tensor(buf10, (4, 16, 80), (1280, 80, 1), 0), primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((80, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((80, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data.distributed
class ClassificationModel(nn.Module):
def __init__(self, num_features_in, num_anchors=1, num_classes=80,
prior=0.01, feature_size=256):
super(ClassificationModel, self).__init__()
self.num_classes = num_classes
self.num_anchors = num_anchors
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3,
padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchors * num_classes,
kernel_size=3, padding=1)
self.output_act = nn.Sigmoid()
def forward(self, x):
out = self.conv1(x)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.conv3(out)
out = self.act3(out)
out = self.conv4(out)
out = self.act4(out)
out = self.output(out)
out = self.output_act(out)
out1 = out.permute(0, 2, 3, 1)
batch_size, width, height, _channels = out1.shape
out2 = out1.view(batch_size, width, height, self.num_anchors, self.
num_classes)
return out2.contiguous().view(x.shape[0], -1, self.num_classes)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features_in': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 80
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 80
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 1280 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tl.store(out_ptr0 + (x2 + 80 * y3), tmp1, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (80, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (80,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 256, 4, 4), (4096, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(16384)](buf1, primals_2,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 4, 4), (4096, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_0[grid(16384)](buf3, primals_5,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 4, 4), (4096, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_0[grid(16384)](buf5, primals_7,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_0[grid(16384)](buf7, primals_9,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 80, 4, 4), (1280, 16, 4, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_1[grid(5120)](buf9, primals_11, 5120,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_11
buf10 = empty_strided_cuda((4, 4, 4, 1, 80), (1280, 320, 80, 80, 1),
torch.float32)
triton_poi_fused_clone_2[grid(64, 80)](buf9, buf10, 64, 80, XBLOCK=
32, YBLOCK=32, num_warps=4, num_stages=1)
return (reinterpret_tensor(buf10, (4, 16, 80), (1280, 80, 1), 0),
primals_1, primals_3, primals_4, primals_6, primals_8, primals_10,
buf1, buf3, buf5, buf7, buf9)
class ClassificationModelNew(nn.Module):
def __init__(self, num_features_in, num_anchors=1, num_classes=80,
prior=0.01, feature_size=256):
super(ClassificationModelNew, self).__init__()
self.num_classes = num_classes
self.num_anchors = num_anchors
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3,
padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchors * num_classes,
kernel_size=3, padding=1)
self.output_act = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.output.weight
primals_11 = self.output.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| YuBeomGon/pytorch_retina | ClassificationModel | false | 1,285 | [
"Apache-2.0"
] | 0 | a1713ecbf99e3cf2f8f5edce3329b808b4f9dee8 | https://github.com/YuBeomGon/pytorch_retina/tree/a1713ecbf99e3cf2f8f5edce3329b808b4f9dee8 | import torch
import torch.nn as nn
import torch.utils.data.distributed
class Model(nn.Module):
def __init__(self, num_features_in, num_anchors=1, num_classes=80,
prior=0.01, feature_size=256):
super().__init__()
self.num_classes = num_classes
self.num_anchors = num_anchors
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3,
padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3,
padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchors * num_classes,
kernel_size=3, padding=1)
self.output_act = nn.Sigmoid()
def forward(self, x):
out = self.conv1(x)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.conv3(out)
out = self.act3(out)
out = self.conv4(out)
out = self.act4(out)
out = self.output(out)
out = self.output_act(out)
out1 = out.permute(0, 2, 3, 1)
batch_size, width, height, _channels = out1.shape
out2 = out1.view(batch_size, width, height, self.num_anchors, self.
num_classes)
return out2.contiguous().view(x.shape[0], -1, self.num_classes)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
TopicMemeoryMechanism | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/tf/ctfobpckmiv3kkga3a6gzs6unuclcnxpb4xc2h5r3udgxgix4ip5.py
# Topologically Sorted Source Nodes: [source_weight], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# source_weight => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_5), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/e2/ce2gqjbekcvwka5oycz35luyptqz2vda72hfvi5aqdhpel2chq6u.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*(x1 % 4))), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (4*(x1 // 4))), xmask)
tmp4 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/3q/c3qtqan2vmrqvcdnvl6hygk7irrbu4lhcatzwtggnatd7vtzzvlt.py
# Topologically Sorted Source Nodes: [mul, p_batch], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# p_batch => add_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, 0.8), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_11), kwargs = {})
triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x2), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 0.8
tmp3 = tmp1 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (1, 4), (4, 1))
assert_size_stride(primals_10, (1, ), (1, ))
assert_size_stride(primals_11, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_12, (4, 4), (4, 1))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_6, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [source_weight], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf2, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf3, primals_8, buf0, primals_3, buf4, 64, grid=grid(64), stream=stream0)
del buf0
del primals_3
del primals_8
buf6 = reinterpret_tensor(buf3, (16, 1), (1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_10
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, p_batch], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_2.run(buf6, primals_11, buf7, 256, grid=grid(256), stream=stream0)
del primals_11
return (buf7, primals_1, primals_6, buf2, buf4, buf6, primals_9, primals_7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.multiprocessing
from torch import nn
import torch.utils.data
class TopicMemeoryMechanism(nn.Module):
def __init__(self, topic_num, bow_size, embed_size):
super(TopicMemeoryMechanism, self).__init__()
self.topic_num = topic_num
self.bow_size = bow_size
self.embed_size = embed_size
self.source_linear = nn.Linear(bow_size, embed_size)
self.target_linear = nn.Linear(bow_size, embed_size)
self.embed_project = nn.Linear(embed_size, embed_size)
self.source_project = nn.Linear(embed_size, embed_size)
self.weight_p = nn.Linear(embed_size, 1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
def forward(self, y_embed, topic_word_dist, topic_represent, gamma=0.8):
batch_size = y_embed.shape[0]
y_features = self.embed_project(y_embed)
y_features = y_features.unsqueeze(1).expand(batch_size, self.
topic_num, self.embed_size).contiguous()
y_features = y_features.view(-1, self.embed_size)
source_weight = self.relu(self.source_linear(topic_word_dist))
source_features = self.source_project(source_weight)
source_features = source_features.unsqueeze(0).expand(batch_size,
self.topic_num, self.embed_size).contiguous()
source_features = source_features.view(-1, self.embed_size)
p_k_weights = self.sigmoid(self.weight_p(source_features + y_features))
p_k_weights = p_k_weights.view(batch_size, self.topic_num)
p_batch = torch.add(gamma * p_k_weights, topic_represent)
target_weight = self.relu(self.target_linear(topic_word_dist))
torch.matmul(p_batch, target_weight)
return p_batch
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'topic_num': 4, 'bow_size': 4, 'embed_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.multiprocessing
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * (x1 % 4)), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 4 * (x1 // 4)), xmask)
tmp4 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x2, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 0.8
tmp3 = tmp1 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x2, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (1, 4), (4, 1))
assert_size_stride(primals_10, (1,), (1,))
assert_size_stride(primals_11, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_12, (4, 4), (4, 1))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_6, reinterpret_tensor(primals_4, (4, 4),
(1, 4), 0), out=buf1)
del primals_4
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_relu_0[grid(16)](buf2, primals_5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_7, (4, 4), (1, 4
), 0), out=buf3)
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused_add_1[grid(64)](buf3, primals_8, buf0, primals_3,
buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del primals_3
del primals_8
buf6 = reinterpret_tensor(buf3, (16, 1), (1, 1), 0)
del buf3
extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9,
(4, 1), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_10
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_2[grid(256)](buf6, primals_11, buf7, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
return buf7, primals_1, primals_6, buf2, buf4, buf6, primals_9, primals_7
class TopicMemeoryMechanismNew(nn.Module):
def __init__(self, topic_num, bow_size, embed_size):
super(TopicMemeoryMechanismNew, self).__init__()
self.topic_num = topic_num
self.bow_size = bow_size
self.embed_size = embed_size
self.source_linear = nn.Linear(bow_size, embed_size)
self.target_linear = nn.Linear(bow_size, embed_size)
self.embed_project = nn.Linear(embed_size, embed_size)
self.source_project = nn.Linear(embed_size, embed_size)
self.weight_p = nn.Linear(embed_size, 1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
def forward(self, input_0, input_1, input_2):
primals_1 = self.source_linear.weight
primals_3 = self.source_linear.bias
primals_2 = self.target_linear.weight
primals_5 = self.target_linear.bias
primals_4 = self.embed_project.weight
primals_8 = self.embed_project.bias
primals_6 = self.source_project.weight
primals_13 = self.source_project.bias
primals_9 = self.weight_p.weight
primals_10 = self.weight_p.bias
primals_7 = input_0
primals_12 = input_1
primals_11 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| WuDiDaBinGe/TAKG | TopicMemeoryMechanism | false | 1,286 | [
"MIT"
] | 0 | 83e608e677a4ee74722d18cb5ef430f4f6c6ad31 | https://github.com/WuDiDaBinGe/TAKG/tree/83e608e677a4ee74722d18cb5ef430f4f6c6ad31 | import torch
import torch.multiprocessing
from torch import nn
import torch.utils.data
class Model(nn.Module):
def __init__(self, topic_num, bow_size, embed_size):
super().__init__()
self.topic_num = topic_num
self.bow_size = bow_size
self.embed_size = embed_size
self.source_linear = nn.Linear(bow_size, embed_size)
self.target_linear = nn.Linear(bow_size, embed_size)
self.embed_project = nn.Linear(embed_size, embed_size)
self.source_project = nn.Linear(embed_size, embed_size)
self.weight_p = nn.Linear(embed_size, 1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
def forward(self, y_embed, topic_word_dist, topic_represent, gamma=0.8):
batch_size = y_embed.shape[0]
y_features = self.embed_project(y_embed)
y_features = y_features.unsqueeze(1).expand(batch_size, self.
topic_num, self.embed_size).contiguous()
y_features = y_features.view(-1, self.embed_size)
source_weight = self.relu(self.source_linear(topic_word_dist))
source_features = self.source_project(source_weight)
source_features = source_features.unsqueeze(0).expand(batch_size,
self.topic_num, self.embed_size).contiguous()
source_features = source_features.view(-1, self.embed_size)
p_k_weights = self.sigmoid(self.weight_p(source_features + y_features))
p_k_weights = p_k_weights.view(batch_size, self.topic_num)
p_batch = torch.add(gamma * p_k_weights, topic_represent)
target_weight = self.relu(self.target_linear(topic_word_dist))
torch.matmul(p_batch, target_weight)
return p_batch
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Lda2Vec | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py
# Topologically Sorted Source Nodes: [topic_dist], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# topic_dist => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%primals_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/pr/cpryc2mvr66ejsfvutaedsyoeqrycwc24oxdc7qft6awlrjfik64.py
# Topologically Sorted Source Nodes: [topic_dist, topic_dist_1], Original ATen: [aten._softmax, aten.sub]
# Source node to ATen node mapping:
# topic_dist => div, sum_1
# topic_dist_1 => sub_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, 0.1), kwargs = {})
triton_poi_fused__softmax_sub_1 = async_compile.triton('triton_poi_fused__softmax_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = 0.1
tmp10 = tmp8 - tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/zd/czdeq2ohbgubcyeps2ukquvfhigxtyega57i24ketclusfgmyedi.py
# Topologically Sorted Source Nodes: [context_input], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# context_input => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %mm], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/5h/c5hndxjn4tcu42dmezwqqu5idicda7dbfkobei3otukyd6x4tzuh.py
# Topologically Sorted Source Nodes: [context_gate, mul, sub_1, mul_1, context_fusion, merge_embedding], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add, aten.tanh]
# Source node to ATen node mapping:
# context_fusion => add
# context_gate => sigmoid
# merge_embedding => tanh
# mul => mul
# mul_1 => mul_1
# sub_1 => sub_2
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_3), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %mm), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_tanh_3 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp6 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp1
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tmp9 = libdevice.tanh(tmp8)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [topic_dist], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [topic_dist, topic_dist_1], Original ATen: [aten._softmax, aten.sub]
triton_poi_fused__softmax_sub_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [topic_dist, topic_dist_1, topic_hidden], Original ATen: [aten._softmax, aten.sub, aten.mm]
extern_kernels.mm(buf1, primals_2, out=buf2)
del primals_2
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_input], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(primals_3, buf2, buf3, 32, grid=grid(32), stream=stream0)
buf4 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4)
del primals_4
del primals_5
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_gate, mul, sub_1, mul_1, context_fusion, merge_embedding], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add, aten.tanh]
triton_poi_fused_add_mul_rsub_sigmoid_tanh_3.run(buf4, primals_3, buf2, buf5, 16, grid=grid(16), stream=stream0)
return (buf5, primals_3, buf2, buf3, buf4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn import functional as F
import torch.multiprocessing
from torch import nn
import torch.utils.data
class ContextGate(nn.Module):
def __init__(self, vector_dim, topic_dim):
super().__init__()
assert vector_dim == topic_dim
self.fusion_linear = nn.Linear(vector_dim + topic_dim, vector_dim)
self.sigmoid = nn.Sigmoid()
self.tanh = nn.Tanh()
def forward(self, source_vector, other_vector):
context_input = torch.cat((source_vector, other_vector), dim=1)
context_gate = self.sigmoid(self.fusion_linear(context_input))
context_fusion = context_gate * source_vector + (1.0 - context_gate
) * other_vector
return self.tanh(context_fusion)
class SingleGate(nn.Module):
def __init__(self, vector_dim, topic_dim):
super().__init__()
assert vector_dim == topic_dim
self.fusion_linear = nn.Linear(vector_dim + topic_dim, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, source_vector, other_vector):
context_input = torch.cat((source_vector, other_vector), dim=1)
context_gate = self.sigmoid(self.fusion_linear(context_input))
context_fusion = context_gate * source_vector + (1.0 - context_gate
) * other_vector
return context_fusion
class Lda2Vec(nn.Module):
def __init__(self, word_vec_dim, topic_emb_dim, topic_threshold=0.1,
mode='gate_all'):
super(Lda2Vec, self).__init__()
self.mode = mode
if mode == 'gate_one':
self.fusion_layer = SingleGate(word_vec_dim, topic_emb_dim)
elif mode == 'gate_all':
assert word_vec_dim == topic_emb_dim
self.fusion_layer = ContextGate(word_vec_dim, topic_emb_dim)
self.topic_threshold = topic_threshold
self.sigmoid = nn.Sigmoid()
def forward(self, word_embedding, topic_embedding, topic_dist):
topic_dist = F.softmax(topic_dist, dim=1)
topic_dist = topic_dist - self.topic_threshold
topic_hidden = torch.matmul(topic_dist, topic_embedding)
merge_embedding = self.fusion_layer(word_embedding, topic_hidden)
return merge_embedding
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'word_vec_dim': 4, 'topic_emb_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.multiprocessing
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = 0.1
tmp10 = tmp8 - tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_3(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp6 = tl.load(in_ptr2 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp1
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tmp9 = libdevice.tanh(tmp8)
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](primals_1, buf0, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_sub_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
extern_kernels.mm(buf1, primals_2, out=buf2)
del primals_2
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_2[grid(32)](primals_3, buf2, buf3, 32, XBLOCK=
32, num_warps=1, num_stages=1)
buf4 = buf1
del buf1
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4)
del primals_4
del primals_5
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_rsub_sigmoid_tanh_3[grid(16)](buf4,
primals_3, buf2, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1)
return buf5, primals_3, buf2, buf3, buf4, buf5
class ContextGate(nn.Module):
def __init__(self, vector_dim, topic_dim):
super().__init__()
assert vector_dim == topic_dim
self.fusion_linear = nn.Linear(vector_dim + topic_dim, vector_dim)
self.sigmoid = nn.Sigmoid()
self.tanh = nn.Tanh()
def forward(self, source_vector, other_vector):
context_input = torch.cat((source_vector, other_vector), dim=1)
context_gate = self.sigmoid(self.fusion_linear(context_input))
context_fusion = context_gate * source_vector + (1.0 - context_gate
) * other_vector
return self.tanh(context_fusion)
class SingleGate(nn.Module):
def __init__(self, vector_dim, topic_dim):
super().__init__()
assert vector_dim == topic_dim
self.fusion_linear = nn.Linear(vector_dim + topic_dim, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, source_vector, other_vector):
context_input = torch.cat((source_vector, other_vector), dim=1)
context_gate = self.sigmoid(self.fusion_linear(context_input))
context_fusion = context_gate * source_vector + (1.0 - context_gate
) * other_vector
return context_fusion
class Lda2VecNew(nn.Module):
def __init__(self, word_vec_dim, topic_emb_dim, topic_threshold=0.1,
mode='gate_all'):
super(Lda2VecNew, self).__init__()
self.mode = mode
if mode == 'gate_one':
self.fusion_layer = SingleGate(word_vec_dim, topic_emb_dim)
elif mode == 'gate_all':
assert word_vec_dim == topic_emb_dim
self.fusion_layer = ContextGate(word_vec_dim, topic_emb_dim)
self.topic_threshold = topic_threshold
self.sigmoid = nn.Sigmoid()
def forward(self, input_0, input_1, input_2):
primals_4 = self.fusion_layer.fusion_linear.weight
primals_5 = self.fusion_layer.fusion_linear.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| WuDiDaBinGe/TAKG | Lda2Vec | false | 1,287 | [
"MIT"
] | 0 | 83e608e677a4ee74722d18cb5ef430f4f6c6ad31 | https://github.com/WuDiDaBinGe/TAKG/tree/83e608e677a4ee74722d18cb5ef430f4f6c6ad31 | import torch
from torch.nn import functional as F
import torch.multiprocessing
from torch import nn
import torch.utils.data
class ContextGate(nn.Module):
def __init__(self, vector_dim, topic_dim):
super().__init__()
assert vector_dim == topic_dim
self.fusion_linear = nn.Linear(vector_dim + topic_dim, vector_dim)
self.sigmoid = nn.Sigmoid()
self.tanh = nn.Tanh()
def forward(self, source_vector, other_vector):
context_input = torch.cat((source_vector, other_vector), dim=1)
context_gate = self.sigmoid(self.fusion_linear(context_input))
context_fusion = context_gate * source_vector + (1.0 - context_gate
) * other_vector
return self.tanh(context_fusion)
class SingleGate(nn.Module):
def __init__(self, vector_dim, topic_dim):
super().__init__()
assert vector_dim == topic_dim
self.fusion_linear = nn.Linear(vector_dim + topic_dim, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, source_vector, other_vector):
context_input = torch.cat((source_vector, other_vector), dim=1)
context_gate = self.sigmoid(self.fusion_linear(context_input))
context_fusion = context_gate * source_vector + (1.0 - context_gate
) * other_vector
return context_fusion
class Model(nn.Module):
def __init__(self, word_vec_dim, topic_emb_dim, topic_threshold=0.1,
mode='gate_all'):
super().__init__()
self.mode = mode
if mode == 'gate_one':
self.fusion_layer = SingleGate(word_vec_dim, topic_emb_dim)
elif mode == 'gate_all':
assert word_vec_dim == topic_emb_dim
self.fusion_layer = ContextGate(word_vec_dim, topic_emb_dim)
self.topic_threshold = topic_threshold
self.sigmoid = nn.Sigmoid()
def forward(self, word_embedding, topic_embedding, topic_dist):
topic_dist = F.softmax(topic_dist, dim=1)
topic_dist = topic_dist - self.topic_threshold
topic_hidden = torch.matmul(topic_dist, topic_embedding)
merge_embedding = self.fusion_layer(word_embedding, topic_hidden)
return merge_embedding
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
PA_UP | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._unsafe_index]
# Source node to ATen node mapping:
# interpolate => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x0 = xindex % 8
x2 = (xindex // 64)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/mt/cmt4roffhwfg6vw2odjfrgu4bjav3cztqx74kxjfq5igljucibfl.py
# Topologically Sorted Source Nodes: [fea], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# fea => convolution
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/v5/cv5kxgn2kjoqi637ep4nrgqmxqegz5veirfaewxxjs34zme3lddj.py
# Topologically Sorted Source Nodes: [y, y_1, out, fea_1], Original ATen: [aten.convolution, aten.sigmoid, aten.mul, aten.leaky_relu]
# Source node to ATen node mapping:
# fea_1 => gt, mul_5, where
# out => mul_4
# y => convolution_1
# y_1 => sigmoid
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %mul_4 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul_4, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul_4, %mul_5), kwargs = {})
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_mul_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_mul_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tmp6 = 0.0
tmp7 = tmp5 > tmp6
tmp8 = 0.2
tmp9 = tmp5 * tmp8
tmp10 = tl.where(tmp7, tmp5, tmp9)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/5f/c5f2afcmmv553z7zzpjtqsabkp6o4q2u2oowxevzrgutfupwhlew.py
# Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# interpolate_1 => add_4, add_5, convert_element_type_4, convert_element_type_5, iota_2, mul_7, mul_8
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, 0), kwargs = {})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_4, torch.float32), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {})
# %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_8, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_3 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_3(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/cp/ccpyogb4dcf5oozbljbjglodfd3yvnzivime22jc4ciogyprrjs2.py
# Topologically Sorted Source Nodes: [conv2d_2, fea_2, interpolate_1], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# fea_2 => gt_1, mul_6, where_1
# interpolate_1 => _unsafe_index_1
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_2, %mul_6), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_1, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_leaky_relu_4 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_leaky_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_leaky_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_leaky_relu_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 16) % 16
x0 = xindex % 16
x5 = (xindex // 256)
x2 = (xindex // 256) % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 8, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (8*tmp4) + (64*x5)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.2
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tl.store(out_ptr0 + (x6), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/2c/c2c5dpi33ebewcnfnyupi5iczy42fos4zowym7dqaqr5p3wcijnw.py
# Topologically Sorted Source Nodes: [fea_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# fea_3 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/sw/csw35z7z7h2hfqfzqyv6avhhdw4q7oqlp5xpa3ytzbr3kh65es4m.py
# Topologically Sorted Source Nodes: [y_2, y_3, out_1, fea_4], Original ATen: [aten.convolution, aten.sigmoid, aten.mul, aten.leaky_relu]
# Source node to ATen node mapping:
# fea_4 => gt_2, mul_12, where_2
# out_1 => mul_11
# y_2 => convolution_4
# y_3 => sigmoid_1
# Graph fragment:
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_4,), kwargs = {})
# %mul_11 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, %sigmoid_1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul_11, 0), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_11, 0.2), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %mul_11, %mul_12), kwargs = {})
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), None)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tmp6 = 0.0
tmp7 = tmp5 > tmp6
tmp8 = 0.2
tmp9 = tmp5 * tmp8
tmp10 = tl.where(tmp7, tmp5, tmp9)
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(out_ptr0 + (x3), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/x2/cx27o46nibt3nzj5ahxh5pmpcemf4k3lswbjk5d3wuhxrdkhecp2.py
# Topologically Sorted Source Nodes: [conv2d_5, fea_5], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_5 => convolution_5
# fea_5 => gt_3, mul_13, where_3
# Graph fragment:
# %convolution_5 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_5, 0), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_5, 0.2), kwargs = {})
# %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_5, %mul_13), kwargs = {})
triton_poi_fused_convolution_leaky_relu_7 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/o6/co64527kssqqqiilfhrcmx3cwxdb3lxwahsmprwt5ys4aiejhmly.py
# Topologically Sorted Source Nodes: [conv2d_2, fea_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# fea_2 => gt_1, mul_6, where_1
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_2, %mul_6), kwargs = {})
# %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_1, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_8 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_15, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [fea], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 8, 8), (256, 64, 8, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [fea], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 1024, grid=grid(1024), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 8, 8), (256, 64, 8, 1))
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [y, y_1, out, fea_1], Original ATen: [aten.convolution, aten.sigmoid, aten.mul, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_2.run(buf4, primals_5, buf2, buf5, 1024, grid=grid(1024), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 8, 8), (256, 64, 8, 1))
buf7 = empty_strided_cuda((16, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_3.run(buf7, 16, grid=grid(16), stream=stream0)
buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, fea_2, interpolate_1], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index]
triton_poi_fused__unsafe_index_convolution_leaky_relu_4.run(buf7, buf6, primals_7, buf8, 4096, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [fea_3], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 16, 16), (1024, 256, 16, 1))
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [fea_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf10, primals_9, 4096, grid=grid(4096), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 16, 16), (1024, 256, 16, 1))
buf12 = buf11; del buf11 # reuse
buf13 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_2, y_3, out_1, fea_4], Original ATen: [aten.convolution, aten.sigmoid, aten.mul, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6.run(buf12, primals_11, buf10, buf13, 4096, grid=grid(4096), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 16, 16), (1024, 256, 16, 1))
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, fea_5], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_7.run(buf15, primals_13, 4096, grid=grid(4096), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [fea_6], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 4, 16, 16), (1024, 256, 16, 1))
buf17 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [fea_6], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf17, primals_15, 4096, grid=grid(4096), stream=stream0)
del primals_15
buf18 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, fea_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_8.run(buf6, primals_7, buf18, 1024, grid=grid(1024), stream=stream0)
del buf6
del primals_7
return (buf17, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf0, buf2, buf4, buf5, buf7, buf8, buf10, buf12, buf13, buf15, buf18, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class PA(nn.Module):
"""PA is pixel attention"""
def __init__(self, nf):
super(PA, self).__init__()
self.conv = nn.Conv2d(nf, nf, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
y = self.conv(x)
y = self.sigmoid(y)
out = torch.mul(x, y)
return out
class PA_UP(nn.Module):
def __init__(self, nf, unf, out_nc, scale=4):
super(PA_UP, self).__init__()
self.upconv1 = nn.Conv2d(nf, unf, 3, 1, 1, bias=True)
self.att1 = PA(unf)
self.HRconv1 = nn.Conv2d(unf, unf, 3, 1, 1, bias=True)
if scale == 4:
self.upconv2 = nn.Conv2d(unf, unf, 3, 1, 1, bias=True)
self.att2 = PA(unf)
self.HRconv2 = nn.Conv2d(unf, unf, 3, 1, 1, bias=True)
self.conv_last = nn.Conv2d(unf, out_nc, 3, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, fea):
fea = self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest'))
fea = self.lrelu(self.att1(fea))
fea = self.lrelu(self.HRconv1(fea))
fea = self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest'))
fea = self.lrelu(self.att2(fea))
fea = self.lrelu(self.HRconv2(fea))
fea = self.conv_last(fea)
return fea
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'nf': 4, 'unf': 4, 'out_nc': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_2(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tmp6 = 0.0
tmp7 = tmp5 > tmp6
tmp8 = 0.2
tmp9 = tmp5 * tmp8
tmp10 = tl.where(tmp7, tmp5, tmp9)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_3(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_leaky_relu_4(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 16 % 16
x0 = xindex % 16
x5 = xindex // 256
x2 = xindex // 256 % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 8, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 8 * tmp4 + 64 * x5), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.2
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tl.store(out_ptr0 + x6, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, None)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tmp6 = 0.0
tmp7 = tmp5 > tmp6
tmp8 = 0.2
tmp9 = tmp5 * tmp8
tmp10 = tl.where(tmp7, tmp5, tmp9)
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(out_ptr0 + x3, tmp10, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_8(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_15, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 8, 8), (256, 64, 8, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(1024)](buf2, primals_3, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 8, 8), (256, 64, 8, 1))
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_2[grid(1024)](buf4,
primals_5, buf2, buf5, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 8, 8), (256, 64, 8, 1))
buf7 = empty_strided_cuda((16,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_3[grid(16)](buf7, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
triton_poi_fused__unsafe_index_convolution_leaky_relu_4[grid(4096)](
buf7, buf6, primals_7, buf8, 4096, XBLOCK=256, num_warps=4,
num_stages=1)
buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 16, 16), (1024, 256, 16, 1))
buf10 = buf9
del buf9
triton_poi_fused_convolution_5[grid(4096)](buf10, primals_9, 4096,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 16, 16), (1024, 256, 16, 1))
buf12 = buf11
del buf11
buf13 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1),
torch.float32)
triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6[grid(4096)](buf12
, primals_11, buf10, buf13, 4096, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_11
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 16, 16), (1024, 256, 16, 1))
buf15 = buf14
del buf14
triton_poi_fused_convolution_leaky_relu_7[grid(4096)](buf15,
primals_13, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_13
buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 4, 16, 16), (1024, 256, 16, 1))
buf17 = buf16
del buf16
triton_poi_fused_convolution_5[grid(4096)](buf17, primals_15, 4096,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_15
buf18 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_8[grid(
1024)](buf6, primals_7, buf18, 1024, XBLOCK=256, num_warps=4,
num_stages=1)
del buf6
del primals_7
return (buf17, primals_2, primals_4, primals_6, primals_8, primals_10,
primals_12, primals_14, buf0, buf2, buf4, buf5, buf7, buf8, buf10,
buf12, buf13, buf15, buf18)
class PA(nn.Module):
"""PA is pixel attention"""
def __init__(self, nf):
super(PA, self).__init__()
self.conv = nn.Conv2d(nf, nf, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
y = self.conv(x)
y = self.sigmoid(y)
out = torch.mul(x, y)
return out
class PA_UPNew(nn.Module):
def __init__(self, nf, unf, out_nc, scale=4):
super(PA_UPNew, self).__init__()
self.upconv1 = nn.Conv2d(nf, unf, 3, 1, 1, bias=True)
self.att1 = PA(unf)
self.HRconv1 = nn.Conv2d(unf, unf, 3, 1, 1, bias=True)
if scale == 4:
self.upconv2 = nn.Conv2d(unf, unf, 3, 1, 1, bias=True)
self.att2 = PA(unf)
self.HRconv2 = nn.Conv2d(unf, unf, 3, 1, 1, bias=True)
self.conv_last = nn.Conv2d(unf, out_nc, 3, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, input_0):
primals_2 = self.upconv1.weight
primals_3 = self.upconv1.bias
primals_4 = self.att1.conv.weight
primals_5 = self.att1.conv.bias
primals_6 = self.HRconv1.weight
primals_7 = self.HRconv1.bias
primals_8 = self.upconv2.weight
primals_9 = self.upconv2.bias
primals_10 = self.att2.conv.weight
primals_11 = self.att2.conv.bias
primals_12 = self.HRconv2.weight
primals_13 = self.HRconv2.bias
primals_14 = self.conv_last.weight
primals_15 = self.conv_last.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
| YingqiLiulll/scrips_for_SR | PA_UP | false | 1,288 | [
"MIT"
] | 0 | 04fa6fdaf157e913d3e2521cd80315a10a2ccedc | https://github.com/YingqiLiulll/scrips_for_SR/tree/04fa6fdaf157e913d3e2521cd80315a10a2ccedc | import torch
import torch.nn as nn
import torch.nn.functional as F
class PA(nn.Module):
"""PA is pixel attention"""
def __init__(self, nf):
super().__init__()
self.conv = nn.Conv2d(nf, nf, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
y = self.conv(x)
y = self.sigmoid(y)
out = torch.mul(x, y)
return out
class Model(nn.Module):
def __init__(self, nf, unf, out_nc, scale=4):
super().__init__()
self.upconv1 = nn.Conv2d(nf, unf, 3, 1, 1, bias=True)
self.att1 = PA(unf)
self.HRconv1 = nn.Conv2d(unf, unf, 3, 1, 1, bias=True)
if scale == 4:
self.upconv2 = nn.Conv2d(unf, unf, 3, 1, 1, bias=True)
self.att2 = PA(unf)
self.HRconv2 = nn.Conv2d(unf, unf, 3, 1, 1, bias=True)
self.conv_last = nn.Conv2d(unf, out_nc, 3, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, fea):
fea = self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest'))
fea = self.lrelu(self.att1(fea))
fea = self.lrelu(self.HRconv1(fea))
fea = self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest'))
fea = self.lrelu(self.att2(fea))
fea = self.lrelu(self.HRconv2(fea))
fea = self.conv_last(fea)
return fea
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
BCEDiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/45/c45ffiak2t77rvodbmgit6bq4fu5kxgvj3oz4vpyfcrar4nugnjz.py
# Topologically Sorted Source Nodes: [bce_loss, mul, sum_1, intersection, add_1, sum_2, sum_3, union, dice_score, dice_loss, add_2], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
# Source node to ATen node mapping:
# add_1 => add_1
# add_2 => add_2
# bce_loss => abs_1, exp, full_default, log1p, mean, minimum, mul_2, neg, sub_1, sub_2, sub_3
# dice_loss => sub
# dice_score => div
# intersection => mul_1
# mul => mul
# sum_1 => sum_1
# sum_2 => sum_2
# sum_3 => sum_3
# union => add
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %sub_2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_3,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1e-09), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %sub), kwargs = {})
triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = tl.sigmoid(tmp3)
tmp17 = tmp16 * tmp0
tmp18 = tl.broadcast_to(tmp17, [RBLOCK])
tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0))
tmp21 = tl.broadcast_to(tmp16, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tmp24 = tl.broadcast_to(tmp0, [RBLOCK])
tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0))
tmp27 = 256.0
tmp28 = tmp15 / tmp27
tmp29 = 2.0
tmp30 = tmp20 * tmp29
tmp31 = 1e-09
tmp32 = tmp30 + tmp31
tmp33 = tmp23 + tmp26
tmp34 = tmp32 / tmp33
tmp35 = tmp1 - tmp34
tmp36 = tmp28 + tmp35
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp36, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [bce_loss, mul, sum_1, intersection, add_1, sum_2, sum_3, union, dice_score, dice_loss, add_2], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
stream0 = get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0.run(buf4, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DiceLoss(nn.Module):
def __init__(self, eps: 'float'=1e-09):
super(DiceLoss, self).__init__()
self.smooth = 1.0
self.eps = eps
def forward(self, y_pred, y_true):
num = y_true.size(0)
probability = torch.sigmoid(y_pred)
probability = probability.view(num, -1)
targets = y_true.view(num, -1)
assert probability.shape == targets.shape
intersection = 2.0 * (probability * targets).sum()
union = probability.sum() + targets.sum()
dice_score = (intersection + self.eps) / union
return 1.0 - dice_score
class BCEDiceLoss(nn.Module):
"""Compute objective loss: BCE loss + DICE loss."""
def __init__(self):
super(BCEDiceLoss, self).__init__()
self.bce = nn.BCEWithLogitsLoss()
self.dice = DiceLoss()
def forward(self, logits: 'torch.Tensor', targets: 'torch.Tensor'
) ->torch.Tensor:
assert logits.shape == targets.shape
dice_loss = self.dice(logits, targets)
bce_loss = self.bce(logits, targets)
return bce_loss + dice_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = tl.sigmoid(tmp3)
tmp17 = tmp16 * tmp0
tmp18 = tl.broadcast_to(tmp17, [RBLOCK])
tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0))
tmp21 = tl.broadcast_to(tmp16, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tmp24 = tl.broadcast_to(tmp0, [RBLOCK])
tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0))
tmp27 = 256.0
tmp28 = tmp15 / tmp27
tmp29 = 2.0
tmp30 = tmp20 * tmp29
tmp31 = 1e-09
tmp32 = tmp30 + tmp31
tmp33 = tmp23 + tmp26
tmp34 = tmp32 / tmp33
tmp35 = tmp1 - tmp34
tmp36 = tmp28 + tmp35
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp36, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_div_mul_rsub_sum_0[
grid(1)](buf4, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf4,
class DiceLoss(nn.Module):
def __init__(self, eps: 'float'=1e-09):
super(DiceLoss, self).__init__()
self.smooth = 1.0
self.eps = eps
def forward(self, y_pred, y_true):
num = y_true.size(0)
probability = torch.sigmoid(y_pred)
probability = probability.view(num, -1)
targets = y_true.view(num, -1)
assert probability.shape == targets.shape
intersection = 2.0 * (probability * targets).sum()
union = probability.sum() + targets.sum()
dice_score = (intersection + self.eps) / union
return 1.0 - dice_score
class BCEDiceLossNew(nn.Module):
"""Compute objective loss: BCE loss + DICE loss."""
def __init__(self):
super(BCEDiceLossNew, self).__init__()
self.bce = nn.BCEWithLogitsLoss()
self.dice = DiceLoss()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Yukei7/Multimodal-Segmentation-Network | BCEDiceLoss | false | 1,289 | [
"MIT"
] | 0 | 0a38aa8bbd2eb87e28209c810438248c0464a240 | https://github.com/Yukei7/Multimodal-Segmentation-Network/tree/0a38aa8bbd2eb87e28209c810438248c0464a240 | import torch
import torch.nn as nn
class DiceLoss(nn.Module):
def __init__(self, eps: 'float'=1e-09):
super().__init__()
self.smooth = 1.0
self.eps = eps
def forward(self, y_pred, y_true):
num = y_true.size(0)
probability = torch.sigmoid(y_pred)
probability = probability.view(num, -1)
targets = y_true.view(num, -1)
assert probability.shape == targets.shape
intersection = 2.0 * (probability * targets).sum()
union = probability.sum() + targets.sum()
dice_score = (intersection + self.eps) / union
return 1.0 - dice_score
class Model(nn.Module):
"""Compute objective loss: BCE loss + DICE loss."""
def __init__(self):
super().__init__()
self.bce = nn.BCEWithLogitsLoss()
self.dice = DiceLoss()
def forward(self, logits: 'torch.Tensor', targets: 'torch.Tensor'
) ->torch.Tensor:
assert logits.shape == targets.shape
dice_loss = self.dice(logits, targets)
bce_loss = self.bce(logits, targets)
return bce_loss + dice_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Upsample | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
# Source node to ATen node mapping:
# x => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x0 = xindex % 8
x2 = (xindex // 64)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/mt/cmt4roffhwfg6vw2odjfrgu4bjav3cztqx74kxjfq5igljucibfl.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_1 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 8, 8), (256, 64, 8, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 1024, grid=grid(1024), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3,
padding=1)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] *
2), mode='nearest')
else:
x = F.interpolate(x, scale_factor=2, mode='nearest')
if self.use_conv:
x = self.conv(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'use_conv': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 8, 8), (256, 64, 8, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(1024)](buf2, primals_3, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, buf0
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
class UpsampleNew(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3,
padding=1)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ZGCTroy/guided-diffusion | Upsample | false | 1,290 | [
"MIT"
] | 0 | af987bb2b65db2875148a5466df79736ea5ae6a1 | https://github.com/ZGCTroy/guided-diffusion/tree/af987bb2b65db2875148a5466df79736ea5ae6a1 | import torch
import torch.nn.functional as F
import torch.nn as nn
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
class Model(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3,
padding=1)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] *
2), mode='nearest')
else:
x = F.interpolate(x, scale_factor=2, mode='nearest')
if self.use_conv:
x = self.conv(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ValueNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, 4), (4, 1))
assert_size_stride(primals_9, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf10, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf9, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf5, primals_7, buf8, 256, grid=grid(256), stream=stream0)
del primals_7
buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_9
return (reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0), primals_8, buf8, primals_6, buf9, primals_4, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class ValueNetwork(nn.Module):
def __init__(self, num_inputs, hidden_dim):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear4 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = F.relu(self.linear4(x))
x = self.linear3(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4, 'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1, 4), (4, 1))
assert_size_stride(primals_9, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3,
primals_5, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf5,
primals_7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_8, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf7)
del primals_9
return reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0
), primals_8, buf8, primals_6, buf9, primals_4, buf10
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class ValueNetworkNew(nn.Module):
def __init__(self, num_inputs, hidden_dim):
super(ValueNetworkNew, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear4 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_6 = self.linear4.weight
primals_7 = self.linear4.bias
primals_8 = self.linear3.weight
primals_9 = self.linear3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| Yunaik/drl_env | ValueNetwork | false | 1,291 | [
"MIT"
] | 0 | d284e79847c59daa6ccb222f30fc7e2a86375546 | https://github.com/Yunaik/drl_env/tree/d284e79847c59daa6ccb222f30fc7e2a86375546 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class Model(nn.Module):
def __init__(self, num_inputs, hidden_dim):
super().__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear4 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = F.relu(self.linear4(x))
x = self.linear3(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
QNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# xu => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/5b/c5br3r4gpi7zzaygqfdgcqeerwiekt2d2t2wkw4sj54lam6radgq.py
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x1 => relu
# Graph fragment:
# %add_tensor_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_5, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_5,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (1, 4), (4, 1))
assert_size_stride(primals_10, (1, ), (1, ))
assert_size_stride(primals_11, (4, 8), (8, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (1, 4), (4, 1))
assert_size_stride(primals_18, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, primals_6, 16, grid=grid(16), stream=stream0)
del primals_6
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf5)
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [x1_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf6, primals_8, 16, grid=grid(16), stream=stream0)
del primals_8
buf8 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, buf6, reinterpret_tensor(primals_9, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf8)
del primals_10
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_11, (8, 4), (1, 8), 0), out=buf9)
del primals_11
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf10, primals_12, 16, grid=grid(16), stream=stream0)
del primals_12
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf10, reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf11)
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf12, primals_14, 16, grid=grid(16), stream=stream0)
del primals_14
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf12, reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf13)
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [x2_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf14, primals_16, 16, grid=grid(16), stream=stream0)
del primals_16
buf16 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_18, buf14, reinterpret_tensor(primals_17, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf16)
del primals_18
return (buf8, buf16, buf0, buf2, buf4, buf6, buf10, buf12, buf14, primals_17, primals_15, primals_13, primals_9, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class QNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super(QNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear7 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear5 = nn.Linear(hidden_dim, hidden_dim)
self.linear8 = nn.Linear(hidden_dim, hidden_dim)
self.linear6 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state, action):
xu = torch.cat([state, action], 1)
x1 = F.relu(self.linear1(xu))
x1 = F.relu(self.linear2(x1))
x1 = F.relu(self.linear7(x1))
x1 = self.linear3(x1)
x2 = F.relu(self.linear4(xu))
x2 = F.relu(self.linear5(x2))
x2 = F.relu(self.linear8(x2))
x2 = self.linear6(x2)
return x1, x2
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4, 'num_actions': 4, 'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17, primals_18
) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (1, 4), (4, 1))
assert_size_stride(primals_10, (1,), (1,))
assert_size_stride(primals_11, (4, 8), (8, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (1, 4), (4, 1))
assert_size_stride(primals_18, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8
), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4
), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(16)](buf4, primals_6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_6
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4
), 0), out=buf5)
buf6 = buf5
del buf5
triton_poi_fused_relu_1[grid(16)](buf6, primals_8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_8
buf8 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_10, buf6, reinterpret_tensor(primals_9,
(4, 1), (1, 4), 0), alpha=1, beta=1, out=buf8)
del primals_10
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_11, (8, 4), (1,
8), 0), out=buf9)
del primals_11
buf10 = buf9
del buf9
triton_poi_fused_relu_1[grid(16)](buf10, primals_12, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_12
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf10, reinterpret_tensor(primals_13, (4, 4), (1,
4), 0), out=buf11)
buf12 = buf11
del buf11
triton_poi_fused_relu_1[grid(16)](buf12, primals_14, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_14
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf12, reinterpret_tensor(primals_15, (4, 4), (1,
4), 0), out=buf13)
buf14 = buf13
del buf13
triton_poi_fused_relu_1[grid(16)](buf14, primals_16, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_16
buf16 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_18, buf14, reinterpret_tensor(
primals_17, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf16)
del primals_18
return (buf8, buf16, buf0, buf2, buf4, buf6, buf10, buf12, buf14,
primals_17, primals_15, primals_13, primals_9, primals_7, primals_5)
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class QNetworkNew(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super(QNetworkNew, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear7 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear5 = nn.Linear(hidden_dim, hidden_dim)
self.linear8 = nn.Linear(hidden_dim, hidden_dim)
self.linear6 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, input_0, input_1):
primals_3 = self.linear1.weight
primals_4 = self.linear1.bias
primals_1 = self.linear2.weight
primals_6 = self.linear2.bias
primals_2 = self.linear7.weight
primals_8 = self.linear7.bias
primals_9 = self.linear3.weight
primals_10 = self.linear3.bias
primals_11 = self.linear4.weight
primals_12 = self.linear4.bias
primals_5 = self.linear5.weight
primals_14 = self.linear5.bias
primals_7 = self.linear8.weight
primals_16 = self.linear8.bias
primals_17 = self.linear6.weight
primals_18 = self.linear6.bias
primals_13 = input_0
primals_15 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18])
return output[0], output[1]
| Yunaik/drl_env | QNetwork | false | 1,292 | [
"MIT"
] | 0 | d284e79847c59daa6ccb222f30fc7e2a86375546 | https://github.com/Yunaik/drl_env/tree/d284e79847c59daa6ccb222f30fc7e2a86375546 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class Model(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super().__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear7 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear5 = nn.Linear(hidden_dim, hidden_dim)
self.linear8 = nn.Linear(hidden_dim, hidden_dim)
self.linear6 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state, action):
xu = torch.cat([state, action], 1)
x1 = F.relu(self.linear1(xu))
x1 = F.relu(self.linear2(x1))
x1 = F.relu(self.linear7(x1))
x1 = self.linear3(x1)
x2 = F.relu(self.linear4(xu))
x2 = F.relu(self.linear5(x2))
x2 = F.relu(self.linear8(x2))
x2 = self.linear6(x2)
return x1, x2
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
InnerProductModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/jb/cjbh6emqja7rl4lagss2czst5sqfxza2dkqgllp2soznirengezy.py
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mv]
# Source node to ATen node mapping:
# linear => mul, sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %primals_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
triton_poi_fused_mv_0 = async_compile.triton('triton_poi_fused_mv_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mv_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mv_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (1))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (2))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (3))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp3 = tmp0 * tmp2
tmp7 = tmp4 * tmp6
tmp8 = tmp3 + tmp7
tmp12 = tmp9 * tmp11
tmp13 = tmp8 + tmp12
tmp17 = tmp14 * tmp16
tmp18 = tmp13 + tmp17
tl.store(out_ptr0 + (x0), tmp18, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mv]
stream0 = get_raw_stream(0)
triton_poi_fused_mv_0.run(primals_2, primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
return (reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class InnerProductModel(torch.nn.Module):
@staticmethod
def is_valid_model_type(model_type):
raise NotImplementedError
@staticmethod
def get_model_from_type(model_type):
raise NotImplementedError
@property
def loss_criterion(self):
return torch.nn.MSELoss()
def __init__(self, n):
super().__init__()
self.layer = torch.nn.Linear(n, 1, bias=False)
self.layer.weight.data = torch.arange(n, dtype=torch.float32)
def forward(self, x):
return self.layer(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mv_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 1)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + 2)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr1 + 3)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp3 = tmp0 * tmp2
tmp7 = tmp4 * tmp6
tmp8 = tmp3 + tmp7
tmp12 = tmp9 * tmp11
tmp13 = tmp8 + tmp12
tmp17 = tmp14 * tmp16
tmp18 = tmp13 + tmp17
tl.store(out_ptr0 + x0, tmp18, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_mv_0[grid(64)](primals_2, primals_1, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_1
return reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), primals_2
class InnerProductModelNew(torch.nn.Module):
@staticmethod
def is_valid_model_type(model_type):
raise NotImplementedError
@staticmethod
def get_model_from_type(model_type):
raise NotImplementedError
@property
def loss_criterion(self):
return torch.nn.MSELoss()
def __init__(self, n):
super().__init__()
self.layer = torch.nn.Linear(n, 1, bias=False)
self.layer.weight.data = torch.arange(n, dtype=torch.float32)
def forward(self, input_0):
primals_1 = self.layer.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| Yufei-Kang/plato | InnerProductModel | false | 1,293 | [
"Apache-2.0"
] | 0 | 16b170698242b1e11677e80229c3439a9e26965a | https://github.com/Yufei-Kang/plato/tree/16b170698242b1e11677e80229c3439a9e26965a | import torch
class Model(torch.nn.Module):
@staticmethod
def is_valid_model_type(model_type):
raise NotImplementedError
@staticmethod
def get_model_from_type(model_type):
raise NotImplementedError
@property
def loss_criterion(self):
return torch.nn.MSELoss()
def __init__(self, n):
super().__init__()
self.layer = torch.nn.Linear(n, 1, bias=False)
self.layer.weight.data = torch.arange(n, dtype=torch.float32)
def forward(self, x):
return self.layer(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SequenceSummaryLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/vy/cvy76z3xhuu5iebvxsmwl44toxyhkogty6m2fwp7r47fvhvoziwi.py
# Topologically Sorted Source Nodes: [pooled_hidden_states], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# pooled_hidden_states => tanh
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [resized_hidden_states], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (4, 4), (16, 1), 192), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [pooled_hidden_states], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf2, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
return (buf2, reinterpret_tensor(primals_1, (4, 4), (16, 1), 192), buf0, buf2, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SequenceSummaryLayer(nn.Module):
def __init__(self, hidden_size, summary_layers):
super().__init__()
self.summary_layers = summary_layers
self.linear = nn.Linear(hidden_size * summary_layers, hidden_size)
self.pooler = nn.Linear(hidden_size, hidden_size)
self.pooler_activation = nn.Tanh()
def forward(self, x):
stacked_hidden_states = torch.stack(list(x[-self.summary_layers:]),
dim=-2)
stacked_hidden_states = stacked_hidden_states[:, 0]
concat_hidden_states = stacked_hidden_states.view(stacked_hidden_states
.shape[0], stacked_hidden_states.shape[-2] *
stacked_hidden_states.shape[-1])
resized_hidden_states = self.linear(concat_hidden_states)
pooled_hidden_states = self.pooler_activation(self.pooler(
resized_hidden_states))
return pooled_hidden_states
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'summary_layers': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (4, 4
), (16, 1), 192), reinterpret_tensor(primals_2, (4, 4), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4
), 0), out=buf1)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(16)](buf2, primals_5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
return buf2, reinterpret_tensor(primals_1, (4, 4), (16, 1), 192
), buf0, buf2, primals_4
class SequenceSummaryLayerNew(nn.Module):
def __init__(self, hidden_size, summary_layers):
super().__init__()
self.summary_layers = summary_layers
self.linear = nn.Linear(hidden_size * summary_layers, hidden_size)
self.pooler = nn.Linear(hidden_size, hidden_size)
self.pooler_activation = nn.Tanh()
def forward(self, input_0):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_4 = self.pooler.weight
primals_5 = self.pooler.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Zaaachary/CSQA | SequenceSummaryLayer | false | 1,294 | [
"BSD-3-Clause"
] | 0 | 6da6e076f67e9458deacb665d31463db14c7d860 | https://github.com/Zaaachary/CSQA/tree/6da6e076f67e9458deacb665d31463db14c7d860 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, hidden_size, summary_layers):
super().__init__()
self.summary_layers = summary_layers
self.linear = nn.Linear(hidden_size * summary_layers, hidden_size)
self.pooler = nn.Linear(hidden_size, hidden_size)
self.pooler_activation = nn.Tanh()
def forward(self, x):
stacked_hidden_states = torch.stack(list(x[-self.summary_layers:]),
dim=-2)
stacked_hidden_states = stacked_hidden_states[:, 0]
concat_hidden_states = stacked_hidden_states.view(stacked_hidden_states
.shape[0], stacked_hidden_states.shape[-2] *
stacked_hidden_states.shape[-1])
resized_hidden_states = self.linear(concat_hidden_states)
pooled_hidden_states = self.pooler_activation(self.pooler(
resized_hidden_states))
return pooled_hidden_states
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 1]
|
EltwiseProdScoring | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/oe/coethfes7r2w6tzgot3xnemdzapqkiikobh7ozi3ggenkf6qr6g2.py
# Topologically Sorted Source Nodes: [eltprod], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# eltprod => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %view_3), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 4096
x2 = (xindex // 16384)
x3 = xindex % 16384
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x4), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 4), (4, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (1, 256), (256, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [context], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 256), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4, 256), (16384, 4096, 1024, 256, 1), torch.float32)
# Topologically Sorted Source Nodes: [eltprod], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf0, buf1, buf2, 65536, grid=grid(65536), stream=stream0)
buf4 = empty_strided_cuda((256, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 256), (256, 1), 0), reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf4)
del primals_8
return (reinterpret_tensor(buf4, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (256, 256), (256, 1), 0), primals_7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class EltwiseProdScoring(nn.Module):
"""
Linearly mapping h and v to the same dimension, and do a elementwise
multiplication and a linear scoring
"""
def __init__(self, h_dim, a_dim, dot_dim=256):
"""Initialize layer."""
super(EltwiseProdScoring, self).__init__()
self.linear_in_h = nn.Linear(h_dim, dot_dim, bias=True)
self.linear_in_a = nn.Linear(a_dim, dot_dim, bias=True)
self.linear_out = nn.Linear(dot_dim, 1, bias=True)
def forward(self, h, all_u_t, mask=None):
"""Propagate h through the network.
h: batch x h_dim
all_u_t: batch x a_num x a_dim
"""
target = self.linear_in_h(h).unsqueeze(1)
context = self.linear_in_a(all_u_t)
eltprod = torch.mul(target, context)
logits = self.linear_out(eltprod).squeeze(2)
return logits
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'h_dim': 4, 'a_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 4096
x2 = xindex // 16384
x3 = xindex % 16384
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + x3, None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x4, tmp2, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 4), (4, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (1, 256), (256, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 256), (1, 4),
0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4, 256), (16384, 4096, 1024,
256, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(65536)](buf0, buf1, buf2, 65536, XBLOCK
=256, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((256, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 256),
(256, 1), 0), reinterpret_tensor(primals_7, (256, 1), (1, 256),
0), alpha=1, beta=1, out=buf4)
del primals_8
return reinterpret_tensor(buf4, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (256, 256), (256, 1), 0), primals_7
class EltwiseProdScoringNew(nn.Module):
"""
Linearly mapping h and v to the same dimension, and do a elementwise
multiplication and a linear scoring
"""
def __init__(self, h_dim, a_dim, dot_dim=256):
"""Initialize layer."""
super(EltwiseProdScoringNew, self).__init__()
self.linear_in_h = nn.Linear(h_dim, dot_dim, bias=True)
self.linear_in_a = nn.Linear(a_dim, dot_dim, bias=True)
self.linear_out = nn.Linear(dot_dim, 1, bias=True)
def forward(self, input_0, input_1):
primals_1 = self.linear_in_h.weight
primals_2 = self.linear_in_h.bias
primals_4 = self.linear_in_a.weight
primals_5 = self.linear_in_a.bias
primals_7 = self.linear_out.weight
primals_8 = self.linear_out.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| YzyLmc/AC-GG_0.2 | EltwiseProdScoring | false | 1,295 | [
"BSD-2-Clause",
"MIT"
] | 0 | ddedbbe4062f6646041e24c16593b087d3cf0095 | https://github.com/YzyLmc/AC-GG_0.2/tree/ddedbbe4062f6646041e24c16593b087d3cf0095 | import torch
import torch.nn as nn
class Model(nn.Module):
"""
Linearly mapping h and v to the same dimension, and do a elementwise
multiplication and a linear scoring
"""
def __init__(self, h_dim, a_dim, dot_dim=256):
"""Initialize layer."""
super().__init__()
self.linear_in_h = nn.Linear(h_dim, dot_dim, bias=True)
self.linear_in_a = nn.Linear(a_dim, dot_dim, bias=True)
self.linear_out = nn.Linear(dot_dim, 1, bias=True)
def forward(self, h, all_u_t, mask=None):
"""Propagate h through the network.
h: batch x h_dim
all_u_t: batch x a_num x a_dim
"""
target = self.linear_in_h(h).unsqueeze(1)
context = self.linear_in_a(all_u_t)
eltprod = torch.mul(target, context)
logits = self.linear_out(eltprod).squeeze(2)
return logits
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
AttentionMerge | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/2v/c2vwatafc7bysodsvfwld7cmvue26dh5jpkxqo6qevfrerixs7yp.py
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.zeros_like]
# Source node to ATen node mapping:
# mask => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_zeros_like_0 = async_compile.triton('triton_poi_fused_zeros_like_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_like_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_like_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/hj/chjzotk5iydxvuetxetlv36s7car7cdb24whkuqihxwcy5kkr4o2.py
# Topologically Sorted Source Nodes: [keys_1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# keys_1 => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ea/cea5yne5izrm4dwfevjiopwabvvjqfozp3vfjjoz6g74qmj22bqp.py
# Topologically Sorted Source Nodes: [query_var, mul], Original ATen: [aten.var, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# query_var => var
# Graph fragment:
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_4,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%var, 4), kwargs = {})
triton_per_fused_mul_var_2 = async_compile.triton('triton_per_fused_mul_var_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_var_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_var_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.full([XBLOCK, 1], 4, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = 3.0
tmp15 = tmp13 / tmp14
tmp16 = 4.0
tmp17 = tmp15 * tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.zeros_like]
stream0 = get_raw_stream(0)
triton_poi_fused_zeros_like_0.run(buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [keys_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((), (), torch.float32)
buf7 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [query_var, mul], Original ATen: [aten.var, aten.mul]
triton_per_fused_mul_var_2.run(buf7, primals_4, 1, 4, grid=grid(1), stream=stream0)
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, out=buf6)
return (reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0), buf7, buf0, primals_4, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class AttentionMerge(nn.Module):
def __init__(self, input_size, attention_size, dropout_prob=0.1):
super(AttentionMerge, self).__init__()
self.attention_size = attention_size
self.hidden_layer = nn.Linear(input_size, self.attention_size)
self.query_ = nn.Parameter(torch.Tensor(self.attention_size, 1))
self.dropout = nn.Dropout(dropout_prob)
self.query_.data.normal_(mean=0.0, std=0.02)
def forward(self, values, mask=None):
"""
H (B, L, hidden_size) => h (B, hidden_size)
(B, L1, L2, hidden_size) => (B, L2, hidden)
"""
if mask is None:
mask = torch.zeros_like(values)
else:
mask = (1 - mask.unsqueeze(-1).type(torch.float)) * -1000.0
keys = self.hidden_layer(values)
keys = torch.tanh(keys)
query_var = torch.var(self.query_)
attention_probs = keys @ self.query_ / math.sqrt(self.
attention_size * query_var)
attention_probs = F.softmax(attention_probs * mask, dim=1)
attention_probs = self.dropout(attention_probs)
context = torch.sum(attention_probs + values, dim=1)
return context
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'attention_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_zeros_like_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_per_fused_mul_var_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.full([XBLOCK, 1], 4, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = 3.0
tmp15 = tmp13 / tmp14
tmp16 = 4.0
tmp17 = tmp15 * tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp17, None)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_zeros_like_0[grid(256)](buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_tanh_1[grid(256)](buf2, primals_3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((), (), torch.float32)
buf7 = buf4
del buf4
triton_per_fused_mul_var_2[grid(1)](buf7, primals_4, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
primals_4, out=buf6)
return reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0
), buf7, buf0, primals_4, reinterpret_tensor(primals_1, (64, 4), (4,
1), 0), buf2
class AttentionMergeNew(nn.Module):
def __init__(self, input_size, attention_size, dropout_prob=0.1):
super(AttentionMergeNew, self).__init__()
self.attention_size = attention_size
self.hidden_layer = nn.Linear(input_size, self.attention_size)
self.query_ = nn.Parameter(torch.Tensor(self.attention_size, 1))
self.dropout = nn.Dropout(dropout_prob)
self.query_.data.normal_(mean=0.0, std=0.02)
def forward(self, input_0):
primals_4 = self.query_
primals_2 = self.hidden_layer.weight
primals_3 = self.hidden_layer.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| Zaaachary/CSQA | AttentionMerge | false | 1,297 | [
"BSD-3-Clause"
] | 0 | 6da6e076f67e9458deacb665d31463db14c7d860 | https://github.com/Zaaachary/CSQA/tree/6da6e076f67e9458deacb665d31463db14c7d860 | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, input_size, attention_size, dropout_prob=0.1):
super().__init__()
self.attention_size = attention_size
self.hidden_layer = nn.Linear(input_size, self.attention_size)
self.query_ = nn.Parameter(torch.Tensor(self.attention_size, 1))
self.dropout = nn.Dropout(dropout_prob)
self.query_.data.normal_(mean=0.0, std=0.02)
def forward(self, values, mask=None):
"""
H (B, L, hidden_size) => h (B, hidden_size)
(B, L1, L2, hidden_size) => (B, L2, hidden)
"""
if mask is None:
mask = torch.zeros_like(values)
else:
mask = (1 - mask.unsqueeze(-1).type(torch.float)) * -1000.0
keys = self.hidden_layer(values)
keys = torch.tanh(keys)
query_var = torch.var(self.query_)
attention_probs = keys @ self.query_ / math.sqrt(self.
attention_size * query_var)
attention_probs = F.softmax(attention_probs * mask, dim=1)
attention_probs = self.dropout(attention_probs)
context = torch.sum(attention_probs + values, dim=1)
return context
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ConformerFeedForward | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/6b/c6bpxckx47becppkk5ixcba2hybdk775hnag55qn2o7x3tn3gaks.py
# Topologically Sorted Source Nodes: [sigmoid, x_1], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# x_1 => mul
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, x_1], Original ATen: [aten.sigmoid, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.utils.data
import torch.optim
class Swish(nn.Module):
"""
Swish activation function introduced in 'https://arxiv.org/abs/1710.05941'
"""
def forward(self, x):
return x * torch.sigmoid(x)
class ConformerFeedForward(nn.Module):
"""
feed-forward module of Conformer model.
"""
def __init__(self, d_model, d_ff, dropout, activation=Swish()):
super(ConformerFeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.activation = activation
self.dropout = nn.Dropout(p=dropout)
self.linear2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.linear1(x)
x = self.activation(x)
x = self.dropout(x)
x = self.linear2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'd_ff': 4, 'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.utils.data
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0[grid(256)](buf0, buf1, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4
class Swish(nn.Module):
"""
Swish activation function introduced in 'https://arxiv.org/abs/1710.05941'
"""
def forward(self, x):
return x * torch.sigmoid(x)
class ConformerFeedForwardNew(nn.Module):
"""
feed-forward module of Conformer model.
"""
def __init__(self, d_model, d_ff, dropout, activation=Swish()):
super(ConformerFeedForwardNew, self).__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.activation = activation
self.dropout = nn.Dropout(p=dropout)
self.linear2 = nn.Linear(d_ff, d_model)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Zenodia/NeMo | ConformerFeedForward | false | 1,298 | [
"Apache-2.0"
] | 0 | 3c288d8a7caf667c95444c39434e3ebc5f53d911 | https://github.com/Zenodia/NeMo/tree/3c288d8a7caf667c95444c39434e3ebc5f53d911 | import torch
from torch import nn
import torch.utils.data
import torch.optim
class Swish(nn.Module):
"""
Swish activation function introduced in 'https://arxiv.org/abs/1710.05941'
"""
def forward(self, x):
return x * torch.sigmoid(x)
class Model(nn.Module):
"""
feed-forward module of Conformer model.
"""
def __init__(self, d_model, d_ff, dropout, activation=Swish()):
super().__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.activation = activation
self.dropout = nn.Dropout(p=dropout)
self.linear2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.linear1(x)
x = self.activation(x)
x = self.dropout(x)
x = self.linear2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 0.5]
|
MultiLayerPerceptron | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [output_states_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# output_states_2 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/g5/cg5f2rptqnpi2mrqpqc4tujqpbrrrjrse6plhgftx425znsffpfv.py
# Topologically Sorted Source Nodes: [output_states_4], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# output_states_4 => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/yh/cyhogxneodczl7mcnuf7mkhxldvr2nc5wj5e42agntthff4e45p7.py
# Topologically Sorted Source Nodes: [output_states_4], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# output_states_4 => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [output_states_2], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf5, 256, grid=grid(256), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_states_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_states_4], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [output_states_4], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0)
del buf3
return (buf4, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf4, primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.optim
class MultiLayerPerceptron(torch.nn.Module):
"""
A simple MLP that can either be used independently or put on top
of pretrained models (such as BERT) and act as a classifier.
Args:
hidden_size (int): the size of each layer
num_classes (int): number of output classes
num_layers (int): number of layers
activation (str): type of activations for layers in between
log_softmax (bool): whether to add a log_softmax layer before output
"""
def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers:
'int'=2, activation: 'str'='relu', log_softmax: 'bool'=True):
super().__init__()
self.layers = 0
for _ in range(num_layers - 1):
layer = torch.nn.Linear(hidden_size, hidden_size)
setattr(self, f'layer{self.layers}', layer)
setattr(self, f'layer{self.layers + 1}', getattr(torch, activation)
)
self.layers += 2
layer = torch.nn.Linear(hidden_size, num_classes)
setattr(self, f'layer{self.layers}', layer)
self.layers += 1
self.log_softmax = log_softmax
@property
def last_linear_layer(self):
return getattr(self, f'layer{self.layers - 1}')
def forward(self, hidden_states):
output_states = hidden_states[:]
for i in range(self.layers):
output_states = getattr(self, f'layer{i}')(output_states)
if self.log_softmax:
output_states = torch.log_softmax(output_states, dim=-1)
return output_states
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_3, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused__log_softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del buf3
return buf4, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf4, primals_4, buf5
class MultiLayerPerceptronNew(torch.nn.Module):
"""
A simple MLP that can either be used independently or put on top
of pretrained models (such as BERT) and act as a classifier.
Args:
hidden_size (int): the size of each layer
num_classes (int): number of output classes
num_layers (int): number of layers
activation (str): type of activations for layers in between
log_softmax (bool): whether to add a log_softmax layer before output
"""
def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers:
'int'=2, activation: 'str'='relu', log_softmax: 'bool'=True):
super().__init__()
self.layers = 0
for _ in range(num_layers - 1):
layer = torch.nn.Linear(hidden_size, hidden_size)
setattr(self, f'layer{self.layers}', layer)
setattr(self, f'layer{self.layers + 1}', getattr(torch, activation)
)
self.layers += 2
layer = torch.nn.Linear(hidden_size, num_classes)
setattr(self, f'layer{self.layers}', layer)
self.layers += 1
self.log_softmax = log_softmax
@property
def last_linear_layer(self):
return getattr(self, f'layer{self.layers - 1}')
def forward(self, input_0):
primals_2 = self.layer0.weight
primals_3 = self.layer0.bias
primals_4 = self.layer2.weight
primals_5 = self.layer2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Zenodia/NeMo | MultiLayerPerceptron | false | 1,299 | [
"Apache-2.0"
] | 0 | 3c288d8a7caf667c95444c39434e3ebc5f53d911 | https://github.com/Zenodia/NeMo/tree/3c288d8a7caf667c95444c39434e3ebc5f53d911 | import torch
import torch.utils.data
import torch.optim
class Model(torch.nn.Module):
"""
A simple MLP that can either be used independently or put on top
of pretrained models (such as BERT) and act as a classifier.
Args:
hidden_size (int): the size of each layer
num_classes (int): number of output classes
num_layers (int): number of layers
activation (str): type of activations for layers in between
log_softmax (bool): whether to add a log_softmax layer before output
"""
def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers:
'int'=2, activation: 'str'='relu', log_softmax: 'bool'=True):
super().__init__()
self.layers = 0
for _ in range(num_layers - 1):
layer = torch.nn.Linear(hidden_size, hidden_size)
setattr(self, f'layer{self.layers}', layer)
setattr(self, f'layer{self.layers + 1}', getattr(torch, activation)
)
self.layers += 2
layer = torch.nn.Linear(hidden_size, num_classes)
setattr(self, f'layer{self.layers}', layer)
self.layers += 1
self.log_softmax = log_softmax
@property
def last_linear_layer(self):
return getattr(self, f'layer{self.layers - 1}')
def forward(self, hidden_states):
output_states = hidden_states[:]
for i in range(self.layers):
output_states = getattr(self, f'layer{i}')(output_states)
if self.log_softmax:
output_states = torch.log_softmax(output_states, dim=-1)
return output_states
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Encoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/lp/clp5td7lbqtje3pt7v6xbcp766swgazqemomz2nzsxtdtmjesxht.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/wy/cwyx3wa4jndgnwzcjpr33hhlviahccyeckxfax46ztwjbjc22gd7.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_2 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/j6/cj6faeofhfnxsh5iuwazughjlau4igyajnmvjequyelq7apzs4qm.py
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_3 => convolution_1
# x_4 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/6y/c6yx6oq7oo2cwoaop3iwu5iqfdckg6lycdtu4jjuiv3wdcf2o6p7.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_5 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/d4/cd4s5ogbgu46xbdaa3oicwxi7l6pnddrap26pxiqzcpei77ta53h.py
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_6 => convolution_2
# x_7 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/a4/ca43wvja2n3mesrfuj54dcwx324bk23dhpnatmpi7kjryanvrx2z.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_8 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/pw/cpwsgxngvwi42czirdy5mqcvlzqz5ddbdn3ytrocy4pgt7bp7hcr.py
# Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_10 => relu_3
# x_9 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/nk/cnkzs5jmhhmrcpvb6zj5jqdidguxoz45pd7jrl3rxado6v5daf6k.py
# Topologically Sorted Source Nodes: [x_11, h], Original ATen: [aten.max_pool2d_with_indices, aten.mean]
# Source node to ATen node mapping:
# h => mean
# x_11 => _low_memory_max_pool2d_with_offsets_3, getitem_7
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_3 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_3, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%getitem_6, [2, 3]), kwargs = {})
triton_per_fused_max_pool2d_with_indices_mean_7 = async_compile.triton('triton_per_fused_max_pool2d_with_indices_mean_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_max_pool2d_with_indices_mean_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_max_pool2d_with_indices_mean_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 4
r2 = (rindex // 4)
x0 = xindex
r3 = rindex
tmp0 = tl.load(in_ptr0 + ((2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + (2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr0 + (8 + (2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr0 + (9 + (2*r1) + (16*r2) + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = 16.0
tmp22 = tmp20 / tmp21
tl.store(out_ptr0 + (r3 + (16*x0)), tmp15, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/nx/cnxa3vlwdljrqxm7y6obufkshm4wnjkxynv7ec3urwiscpmwzsfe.py
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_13 => relu_4
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_8 = async_compile.triton('triton_poi_fused_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 64), (64, 1))
assert_size_stride(primals_11, (64, ), (1, ))
assert_size_stride(primals_12, (64, 64), (64, 1))
assert_size_stride(primals_13, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 131072, grid=grid(131072), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.float32)
buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 32768, grid=grid(32768), stream=stream0)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 256, 16, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 65536, grid=grid(65536), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.float32)
buf11 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 16384, grid=grid(16384), stream=stream0)
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 8, 8), (4096, 64, 8, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_9, x_10], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf13, primals_9, 16384, grid=grid(16384), stream=stream0)
del primals_9
buf14 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.int8)
buf15 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [x_11, h], Original ATen: [aten.max_pool2d_with_indices, aten.mean]
triton_per_fused_max_pool2d_with_indices_mean_7.run(buf16, buf13, buf14, 256, 16, grid=grid(256), stream=stream0)
buf17 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf16, reinterpret_tensor(primals_10, (64, 64), (1, 64), 0), out=buf17)
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.relu]
triton_poi_fused_relu_8.run(buf18, primals_11, 256, grid=grid(256), stream=stream0)
del primals_11
buf19 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, buf18, reinterpret_tensor(primals_12, (64, 64), (1, 64), 0), alpha=1, beta=1, out=buf19)
del primals_13
return (buf16, buf19, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11, buf13, buf14, buf16, buf18, primals_12, primals_10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self, out_dim=64):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.l1 = nn.Linear(64, 64)
self.l2 = nn.Linear(64, out_dim)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv4(x)
x = F.relu(x)
x = self.pool(x)
h = torch.mean(x, dim=[2, 3])
x = self.l1(h)
x = F.relu(x)
x = self.l2(x)
return h, x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 16
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_per_fused_max_pool2d_with_indices_mean_7(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex % 4
r2 = rindex // 4
x0 = xindex
r3 = rindex
tmp0 = tl.load(in_ptr0 + (2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + 2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr0 + (8 + 2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr0 + (9 + 2 * r1 + 16 * r2 + 64 * x0), xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = 16.0
tmp22 = tmp20 / tmp21
tl.store(out_ptr0 + (r3 + 16 * x0), tmp15, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp22, xmask)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 64), (64, 1))
assert_size_stride(primals_11, (64,), (1,))
assert_size_stride(primals_12, (64, 64), (64, 1))
assert_size_stride(primals_13, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(262144)](buf1, primals_2,
262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(65536)](buf1, buf2,
buf3, 65536, XBLOCK=512, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(131072)](buf5, primals_5,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1),
torch.float32)
buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(32768)](buf5, buf6,
buf7, 32768, XBLOCK=128, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 256, 16, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_4[grid(65536)](buf9, primals_7,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.
float32)
buf11 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_5[grid(16384)](buf9, buf10,
buf11, 16384, XBLOCK=256, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 8, 8), (4096, 64, 8, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_relu_6[grid(16384)](buf13, primals_9,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf14 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.int8)
buf15 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
buf16 = buf15
del buf15
triton_per_fused_max_pool2d_with_indices_mean_7[grid(256)](buf16,
buf13, buf14, 256, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf17 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(buf16, reinterpret_tensor(primals_10, (64, 64), (
1, 64), 0), out=buf17)
buf18 = buf17
del buf17
triton_poi_fused_relu_8[grid(256)](buf18, primals_11, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_11
buf19 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.addmm(primals_13, buf18, reinterpret_tensor(
primals_12, (64, 64), (1, 64), 0), alpha=1, beta=1, out=buf19)
del primals_13
return (buf16, buf19, primals_1, primals_3, primals_4, primals_6,
primals_8, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, buf11,
buf13, buf14, buf16, buf18, primals_12, primals_10)
class EncoderNew(nn.Module):
def __init__(self, out_dim=64):
super(EncoderNew, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.l1 = nn.Linear(64, 64)
self.l2 = nn.Linear(64, out_dim)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.l1.weight
primals_11 = self.l1.bias
primals_12 = self.l2.weight
primals_13 = self.l2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0], output[1]
| YoniSchirris/SimCLR | Encoder | false | 1,300 | [
"MIT"
] | 0 | a99b7f7d0fdbc5a9747abf70a8b216b328608796 | https://github.com/YoniSchirris/SimCLR/tree/a99b7f7d0fdbc5a9747abf70a8b216b328608796 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, out_dim=64):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.l1 = nn.Linear(64, 64)
self.l2 = nn.Linear(64, out_dim)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv4(x)
x = F.relu(x)
x = self.pool(x)
h = torch.mean(x, dim=[2, 3])
x = self.l1(h)
x = F.relu(x)
x = self.l2(x)
return h, x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return []
|
mnist_model | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/2x/c2xnlfml7v6uboqk242zwfdxrawephuy6yfg2pq7i4yip73axefe.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = (yindex // 32)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ve/cveb3osdbirmgkdggpcp26xmjvg7nfzghbmoqfoh3rl3yj7mc3f3.py
# Topologically Sorted Source Nodes: [conv2d, h1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# h1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128, 1024], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 128
xnumel = 900
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = (yindex // 32)
tmp0 = tl.load(in_ptr0 + (x2 + (900*y3)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (y0 + (32*x2) + (28800*y1)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ev/cevehzsvk6uc4z2tb7d7thbtlw6kxki6tmsmjtcqyfxnprccgit7.py
# Topologically Sorted Source Nodes: [conv2d_1, h2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# h2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 200704
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ds/cds24z3ydgvz5ijr4sq4xs6f3qnicjzqpug2myrgsgy45qpstzw3.py
# Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# relu_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 401408
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ao/cao3c4rv7c2aroweyezi6yvyg5mpqllay4fpwgfq4qjxccmhbn6n.py
# Topologically Sorted Source Nodes: [h3], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# h3 => _low_memory_max_pool2d_with_offsets, getitem_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_2, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_4 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 128], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 784
xnumel = 128
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 14
y1 = (yindex // 14)
y5 = yindex
y4 = (yindex // 196)
y6 = yindex % 196
tmp0 = tl.load(in_ptr0 + (x2 + (256*y0) + (7168*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (128 + x2 + (256*y0) + (7168*y1)), xmask & ymask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (3584 + x2 + (256*y0) + (7168*y1)), xmask & ymask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (3712 + x2 + (256*y0) + (7168*y1)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x2 + (128*y5)), tmp15, xmask & ymask)
tl.store(out_ptr1 + (y6 + (196*x2) + (25088*y4)), tmp16, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/i3/ci3gjxynws4b6snihkmy4mi7mtg3xhsmd2rvhtmsnpenwlazlbbl.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, exp, log, sub, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_per_fused__log_softmax_5 = async_compile.triton('triton_per_fused__log_softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + (10*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 1, 32, 32), (1024, 1024, 32, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (1024, 25088), (25088, 1))
assert_size_stride(primals_9, (1024, ), (1, ))
assert_size_stride(primals_10, (10, 1024), (1024, 1))
assert_size_stride(primals_11, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_4, buf0, 2048, 9, grid=grid(2048, 9), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 32, 30, 30), (28800, 900, 30, 1))
buf2 = empty_strided_cuda((4, 32, 30, 30), (28800, 1, 960, 32), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, h1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf1, primals_2, buf2, 128, 900, grid=grid(128, 900), stream=stream0)
del buf1
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 64, 28, 28), (50176, 1, 1792, 64))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, h2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf4, primals_5, 200704, grid=grid(200704), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 128, 28, 28), (100352, 1, 3584, 128))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf6, primals_7, 401408, grid=grid(401408), stream=stream0)
del primals_7
buf7 = empty_strided_cuda((4, 128, 14, 14), (25088, 1, 1792, 128), torch.int8)
buf8 = empty_strided_cuda((4, 128, 14, 14), (25088, 196, 14, 1), torch.float32)
# Topologically Sorted Source Nodes: [h3], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_4.run(buf6, buf7, buf8, 784, 128, grid=grid(784, 128), stream=stream0)
buf9 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [h4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf8, (4, 25088), (25088, 1), 0), reinterpret_tensor(primals_8, (25088, 1024), (1, 25088), 0), alpha=1, beta=1, out=buf9)
del primals_9
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [h5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, buf9, reinterpret_tensor(primals_10, (1024, 10), (1, 1024), 0), alpha=1, beta=1, out=buf10)
del primals_11
buf13 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_per_fused__log_softmax_5.run(buf10, buf13, 4, 10, grid=grid(4), stream=stream0)
del buf10
return (buf13, primals_1, primals_3, buf0, primals_6, buf2, buf4, buf6, buf7, reinterpret_tensor(buf8, (4, 25088), (25088, 1), 0), buf9, buf13, primals_10, primals_8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 32, 32), (1024, 1024, 32, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1024, 25088), (25088, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((10, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class mnist_model(nn.Module):
def __init__(self):
super(mnist_model, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1, 0)
self.conv2 = nn.Conv2d(32, 64, 3, 1, 0)
self.conv3 = nn.Conv2d(64, 128, 1, 1, 0)
self.pool1 = nn.MaxPool2d(2, 2, 0)
self.fc1 = nn.Linear(128 * 14 * 14, 1024)
self.fc2 = nn.Linear(1024, 10)
self.relu = nn.ReLU()
def forward(self, x):
h1 = self.relu(self.conv1(x))
h2 = self.relu(self.conv2(h1))
h3 = self.pool1(self.relu(self.conv3(h2)))
h3 = h3.view(-1, 128 * 14 * 14)
h4 = self.fc1(h3)
h5 = self.fc2(h4)
return F.log_softmax(h5, dim=1)
def get_inputs():
return [torch.rand([4, 1, 32, 32])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 128
xnumel = 900
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 900 * y3), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (y0 + 32 * x2 + 28800 * y1), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, out_ptr1,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 784
xnumel = 128
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 14
y1 = yindex // 14
y5 = yindex
y4 = yindex // 196
y6 = yindex % 196
tmp0 = tl.load(in_ptr0 + (x2 + 256 * y0 + 7168 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (128 + x2 + 256 * y0 + 7168 * y1), xmask &
ymask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (3584 + x2 + 256 * y0 + 7168 * y1), xmask &
ymask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (3712 + x2 + 256 * y0 + 7168 * y1), xmask &
ymask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1, 1], 1, tl.int8)
tmp4 = tl.full([1, 1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1, 1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1, 1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x2 + 128 * y5), tmp15, xmask & ymask)
tl.store(out_ptr1 + (y6 + 196 * x2 + 25088 * y4), tmp16, xmask & ymask)
@triton.jit
def triton_per_fused__log_softmax_5(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 1, 32, 32), (1024, 1024, 32, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (1024, 25088), (25088, 1))
assert_size_stride(primals_9, (1024,), (1,))
assert_size_stride(primals_10, (10, 1024), (1024, 1))
assert_size_stride(primals_11, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.
float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 9)](primals_4, buf0, 2048, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf1 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 32, 30, 30), (28800, 900, 30, 1))
buf2 = empty_strided_cuda((4, 32, 30, 30), (28800, 1, 960, 32),
torch.float32)
triton_poi_fused_convolution_relu_1[grid(128, 900)](buf1, primals_2,
buf2, 128, 900, XBLOCK=8, YBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_2
buf3 = extern_kernels.convolution(buf2, buf0, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 64, 28, 28), (50176, 1, 1792, 64))
buf4 = buf3
del buf3
triton_poi_fused_convolution_relu_2[grid(200704)](buf4, primals_5,
200704, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 128, 28, 28), (100352, 1, 3584, 128))
buf6 = buf5
del buf5
triton_poi_fused_convolution_relu_3[grid(401408)](buf6, primals_7,
401408, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf7 = empty_strided_cuda((4, 128, 14, 14), (25088, 1, 1792, 128),
torch.int8)
buf8 = empty_strided_cuda((4, 128, 14, 14), (25088, 196, 14, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_4[grid(784, 128)](buf6,
buf7, buf8, 784, 128, XBLOCK=128, YBLOCK=8, num_warps=4,
num_stages=1)
buf9 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf8, (4, 25088),
(25088, 1), 0), reinterpret_tensor(primals_8, (25088, 1024), (1,
25088), 0), alpha=1, beta=1, out=buf9)
del primals_9
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_11, buf9, reinterpret_tensor(
primals_10, (1024, 10), (1, 1024), 0), alpha=1, beta=1, out=buf10)
del primals_11
buf13 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
triton_per_fused__log_softmax_5[grid(4)](buf10, buf13, 4, 10,
XBLOCK=1, num_warps=2, num_stages=1)
del buf10
return (buf13, primals_1, primals_3, buf0, primals_6, buf2, buf4, buf6,
buf7, reinterpret_tensor(buf8, (4, 25088), (25088, 1), 0), buf9,
buf13, primals_10, primals_8)
class mnist_modelNew(nn.Module):
def __init__(self):
super(mnist_modelNew, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1, 0)
self.conv2 = nn.Conv2d(32, 64, 3, 1, 0)
self.conv3 = nn.Conv2d(64, 128, 1, 1, 0)
self.pool1 = nn.MaxPool2d(2, 2, 0)
self.fc1 = nn.Linear(128 * 14 * 14, 1024)
self.fc2 = nn.Linear(1024, 10)
self.relu = nn.ReLU()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.fc1.weight
primals_9 = self.fc1.bias
primals_10 = self.fc2.weight
primals_11 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| Xenovortex/INN_Embedding_Classification | mnist_model | false | 1,302 | [
"MIT"
] | 0 | df31ec3dcf70780cae5140a69ffafdd64f218e5f | https://github.com/Xenovortex/INN_Embedding_Classification/tree/df31ec3dcf70780cae5140a69ffafdd64f218e5f | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1, 0)
self.conv2 = nn.Conv2d(32, 64, 3, 1, 0)
self.conv3 = nn.Conv2d(64, 128, 1, 1, 0)
self.pool1 = nn.MaxPool2d(2, 2, 0)
self.fc1 = nn.Linear(128 * 14 * 14, 1024)
self.fc2 = nn.Linear(1024, 10)
self.relu = nn.ReLU()
def forward(self, x):
h1 = self.relu(self.conv1(x))
h2 = self.relu(self.conv2(h1))
h3 = self.pool1(self.relu(self.conv3(h2)))
h3 = h3.view(-1, 128 * 14 * 14)
h4 = self.fc1(h3)
h5 = self.fc2(h4)
return F.log_softmax(h5, dim=1)
def get_inputs():
return [torch.rand([4, 1, 32, 32])]
def get_init_inputs():
return []
|
ConvGLU | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/q7/cq7qwv755rskgi3fxmqbrnzfm6sxg6uprg2cozcqvgaiyr3e5jdv.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/mq/cmqeslewj7qjge6hbekvyub6f2jo7tbkd7w6kkeabjbjtnu6r4kr.py
# Topologically Sorted Source Nodes: [sigmoid, x_1], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# x_1 => mul
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%slice_4,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_2, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = (xindex // 64)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (128*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1)), xmask)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (8, 4, 7, 7), (196, 49, 7, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 512, grid=grid(512), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, x_1], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
return (buf2, primals_1, primals_3, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 4, 7, 7), (196, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.utils.data
import torch.optim
def str2act(txt):
"""Translates text to neural network activation"""
return {'sigmoid': nn.Sigmoid(), 'relu': nn.ReLU(), 'none': nn.
Sequential(), 'lrelu': nn.LeakyReLU(0.2), 'selu': nn.SELU()}[txt.
lower()]
class ConvGLU(nn.Module):
"""
A convGlu operation, used by the Degli paper's model.
"""
def __init__(self, in_ch, out_ch, kernel_size=(7, 7), padding=None,
batchnorm=False, act='sigmoid', stride=None):
super().__init__()
if not padding:
padding = kernel_size[0] // 2, kernel_size[1] // 2
if stride is None:
self.conv = nn.Conv2d(in_ch, out_ch * 2, kernel_size, padding=
padding)
else:
self.conv = nn.Conv2d(in_ch, out_ch * 2, kernel_size, padding=
padding, stride=stride)
self.weight = self.conv.weight
self.bias = self.conv.bias
if batchnorm:
self.conv = nn.Sequential(self.conv, nn.BatchNorm2d(out_ch * 2))
self.sigmoid = str2act(act)
def forward(self, x):
x = self.conv(x)
ch = x.shape[1]
x = x[:, :ch // 2, ...] * self.sigmoid(x[:, ch // 2:, ...])
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_ch': 4, 'out_ch': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.utils.data
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 8
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x1 = xindex // 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1), xmask)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (8, 4, 7, 7), (196, 49, 7, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(512)](buf1, primals_2, 512,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_1[grid(256)](buf1, buf2, 256, XBLOCK=
256, num_warps=4, num_stages=1)
return buf2, primals_1, primals_3, buf1
def str2act(txt):
"""Translates text to neural network activation"""
return {'sigmoid': nn.Sigmoid(), 'relu': nn.ReLU(), 'none': nn.
Sequential(), 'lrelu': nn.LeakyReLU(0.2), 'selu': nn.SELU()}[txt.
lower()]
class ConvGLUNew(nn.Module):
"""
A convGlu operation, used by the Degli paper's model.
"""
def __init__(self, in_ch, out_ch, kernel_size=(7, 7), padding=None,
batchnorm=False, act='sigmoid', stride=None):
super().__init__()
if not padding:
padding = kernel_size[0] // 2, kernel_size[1] // 2
if stride is None:
self.conv = nn.Conv2d(in_ch, out_ch * 2, kernel_size, padding=
padding)
else:
self.conv = nn.Conv2d(in_ch, out_ch * 2, kernel_size, padding=
padding, stride=stride)
self.weight = self.conv.weight
self.bias = self.conv.bias
if batchnorm:
self.conv = nn.Sequential(self.conv, nn.BatchNorm2d(out_ch * 2))
self.sigmoid = str2act(act)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Zenodia/NeMo | ConvGLU | false | 1,303 | [
"Apache-2.0"
] | 0 | 3c288d8a7caf667c95444c39434e3ebc5f53d911 | https://github.com/Zenodia/NeMo/tree/3c288d8a7caf667c95444c39434e3ebc5f53d911 | import torch
from torch import nn
import torch.utils.data
import torch.optim
def str2act(txt):
"""Translates text to neural network activation"""
return {'sigmoid': nn.Sigmoid(), 'relu': nn.ReLU(), 'none': nn.
Sequential(), 'lrelu': nn.LeakyReLU(0.2), 'selu': nn.SELU()}[txt.
lower()]
class Model(nn.Module):
"""
A convGlu operation, used by the Degli paper's model.
"""
def __init__(self, in_ch, out_ch, kernel_size=(7, 7), padding=None,
batchnorm=False, act='sigmoid', stride=None):
super().__init__()
if not padding:
padding = kernel_size[0] // 2, kernel_size[1] // 2
if stride is None:
self.conv = nn.Conv2d(in_ch, out_ch * 2, kernel_size, padding=
padding)
else:
self.conv = nn.Conv2d(in_ch, out_ch * 2, kernel_size, padding=
padding, stride=stride)
self.weight = self.conv.weight
self.bias = self.conv.bias
if batchnorm:
self.conv = nn.Sequential(self.conv, nn.BatchNorm2d(out_ch * 2))
self.sigmoid = str2act(act)
def forward(self, x):
x = self.conv(x)
ch = x.shape[1]
x = x[:, :ch // 2, ...] * self.sigmoid(x[:, ch // 2:, ...])
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
BertSelfAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {})
# %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/iz/ciztqj6kop3hxov46yrmzprkzfir3eljcic4mkqznz2j5cfeaudr.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_8), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%add_tensor, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = float("-inf")
tmp27 = tmp2 == tmp26
tmp28 = tmp27 == 0
tmp29 = tmp28.to(tl.int64)
tmp30 = (tmp29 != 0)
tmp31 = tmp5 == tmp26
tmp32 = tmp31 == 0
tmp33 = tmp32.to(tl.int64)
tmp34 = (tmp33 != 0)
tmp35 = tmp30 | tmp34
tmp36 = tmp9 == tmp26
tmp37 = tmp36 == 0
tmp38 = tmp37.to(tl.int64)
tmp39 = (tmp38 != 0)
tmp40 = tmp35 | tmp39
tmp41 = tmp13 == tmp26
tmp42 = tmp41 == 0
tmp43 = tmp42.to(tl.int64)
tmp44 = (tmp43 != 0)
tmp45 = tmp40 | tmp44
tl.store(out_ptr0 + (x2), tmp14, xmask)
tl.store(out_ptr1 + (x2), tmp25, xmask)
tl.store(out_ptr2 + (x2), tmp45, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/x5/cx5uvbfethxuwwkwxf3xaualzhlcwqsz4jxqpbhintggaypzjwqf.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_8), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 4)
x4 = xindex
x5 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last').to(tl.int1)
tmp2 = tl.load(in_out_ptr0 + (x4), xmask)
tmp3 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tmp0 == 0
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tmp10 = 0.0
tmp11 = tl.where(tmp1, tmp10, tmp9)
tl.store(in_out_ptr0 + (x4), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, primals_8, buf6, buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf9, buf8, primals_8, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf8
del primals_8
buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(buf2, primals_7, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
del buf11
return (reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import math
import torch
import torch.nn as nn
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, num_attention_heads=
4, attention_probs_dropout_prob=0.5)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = float('-inf')
tmp27 = tmp2 == tmp26
tmp28 = tmp27 == 0
tmp29 = tmp28.to(tl.int64)
tmp30 = tmp29 != 0
tmp31 = tmp5 == tmp26
tmp32 = tmp31 == 0
tmp33 = tmp32.to(tl.int64)
tmp34 = tmp33 != 0
tmp35 = tmp30 | tmp34
tmp36 = tmp9 == tmp26
tmp37 = tmp36 == 0
tmp38 = tmp37.to(tl.int64)
tmp39 = tmp38 != 0
tmp40 = tmp35 | tmp39
tmp41 = tmp13 == tmp26
tmp42 = tmp41 == 0
tmp43 = tmp42.to(tl.int64)
tmp44 = tmp43 != 0
tmp45 = tmp40 | tmp44
tl.store(out_ptr0 + x2, tmp14, xmask)
tl.store(out_ptr1 + x2, tmp25, xmask)
tl.store(out_ptr2 + x2, tmp45, xmask)
@triton.jit
def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 4
x4 = xindex
x5 = xindex % 64
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp2 = tl.load(in_out_ptr0 + x4, xmask)
tmp3 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + x3, xmask, eviction_policy='evict_last')
tmp1 = tmp0 == 0
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tmp10 = 0.0
tmp11 = tl.where(tmp1, tmp10, tmp9)
tl.store(in_out_ptr0 + x4, tmp11, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool)
triton_poi_fused_1[grid(64)](buf5, primals_8, buf6, buf7, buf8, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_2[grid(256)](buf9, buf8, primals_8, buf6, buf7,
256, XBLOCK=256, num_warps=4, num_stages=1)
del buf8
del primals_8
buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_3[grid(16, 4)](buf2, primals_7, buf10, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_7
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf6
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf11
return reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class BertSelfAttentionNew(nn.Module):
def __init__(self, config):
super(BertSelfAttentionNew, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1):
primals_1 = self.query.weight
primals_2 = self.query.bias
primals_4 = self.key.weight
primals_5 = self.key.bias
primals_6 = self.value.weight
primals_7 = self.value.bias
primals_3 = input_0
primals_8 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| Andr3wis2Cool4School/AI-pro | BertSelfAttention | false | 1,304 | [
"MIT"
] | 0 | dfe5f5959bc187d899a86f13b84158c66f64d1cc | https://github.com/Andr3wis2Cool4School/AI-pro/tree/dfe5f5959bc187d899a86f13b84158c66f64d1cc | from _paritybench_helpers import _mock_config
import math
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, num_attention_heads=
4, attention_probs_dropout_prob=0.5)}]
|
ResidualBlock_noBN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# out => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/li/climin3xbj6rm2mbnxyxnqlna6vggaazmibti2uk3s4hdmjrzu3e.py
# Topologically Sorted Source Nodes: [out_1, add], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# add => add
# out_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution_1), kwargs = {})
triton_poi_fused_add_convolution_1 = async_compile.triton('triton_poi_fused_add_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_out_ptr0 + (x3), None)
tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 1048576, grid=grid(1048576), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1, add], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_1.run(buf3, primals_1, primals_5, 1048576, grid=grid(1048576), stream=stream0)
del primals_5
return (buf3, primals_1, primals_2, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
class ResidualBlock_noBN(nn.Module):
"""Residual block w/o BN
---Conv-ReLU-Conv-+-
|________________|
"""
def __init__(self, nf=64):
super(ResidualBlock_noBN, self).__init__()
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = F.relu(self.conv1(x), inplace=True)
out = self.conv2(out)
return identity + out
def get_inputs():
return [torch.rand([4, 64, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.init as init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_out_ptr0 + x3, None)
tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_3,
1048576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = buf2
del buf2
triton_poi_fused_add_convolution_1[grid(1048576)](buf3, primals_1,
primals_5, 1048576, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
return buf3, primals_1, primals_2, primals_4, buf1
def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
class ResidualBlock_noBNNew(nn.Module):
"""Residual block w/o BN
---Conv-ReLU-Conv-+-
|________________|
"""
def __init__(self, nf=64):
super(ResidualBlock_noBNNew, self).__init__()
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| YingqiLiulll/scrips_for_SR | ResidualBlock_noBN | false | 1,306 | [
"MIT"
] | 0 | 04fa6fdaf157e913d3e2521cd80315a10a2ccedc | https://github.com/YingqiLiulll/scrips_for_SR/tree/04fa6fdaf157e913d3e2521cd80315a10a2ccedc | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
class Model(nn.Module):
"""Residual block w/o BN
---Conv-ReLU-Conv-+-
|________________|
"""
def __init__(self, nf=64):
super().__init__()
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
initialize_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = F.relu(self.conv1(x), inplace=True)
out = self.conv2(out)
return identity + out
def get_inputs():
return [torch.rand([4, 64, 64, 64])]
def get_init_inputs():
return []
|
AttentionPool2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/ov/covbryzjnff2kb26c5gkcqbvct6kdwzanlx3iu6ee24itsit76o3.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ct/cctgbe64jgxq3sxjjjqccvq653sunfecfcizp3jcofnl7uiib7wo.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.add]
# Source node to ATen node mapping:
# x_1 => cat
# x_2 => add
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %view], -1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%cat, %unsqueeze), kwargs = {})
triton_poi_fused_add_cat_1 = async_compile.triton('triton_poi_fused_add_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 17
x3 = (xindex // 17)
x4 = xindex % 68
x5 = xindex
tmp15 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = 16.0
tmp7 = tmp5 / tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 17, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr1 + ((16*x3) + ((-1) + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tmp16 = tmp14 + tmp15
tl.store(out_ptr0 + (x5), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/rq/crqhbpxwwpvdowuqzuzvjdahxv45tx2y4dpxda2rurvr5kralgbn.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, 0.7071067811865475), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 68)
x3 = xindex % 68
x1 = (xindex // 17) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (204*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/cr/ccrjqh2olqyevqox4t3kpoubo2s2m44cuvtxmf2k3slvdcgmmlcm.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 0.7071067811865475), kwargs = {})
triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 68)
x3 = xindex % 68
x1 = (xindex // 17) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (68 + x3 + (204*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/6p/c6p34hneq7lp7a3tjiwk44lxqe2hzbpdjgbgmanamv35xvznwb2j.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_6, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_6, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_4 = async_compile.triton('triton_per_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 32],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 68
rnumel = 17
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (17*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (17*x0)), tmp11, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/wf/cwf36kt6t5p6sv4fjknukcyy4vz6ejfamnreogfggthvquklzkf6.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_3 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add, %primals_3, %primals_4, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 17) % 12
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/oe/coet3g5rxo652nti4d4ogiwpej2mrpgh4cyidpv6aivegc4mda7s.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_5 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 17
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (68*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (17*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/uk/cuk32wvqx6lzak6biu2zut26pzpqa3ell4xsxs3qv3cpuuon7kkw.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_5 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 17) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 17), (17, 1))
assert_size_stride(primals_3, (12, 4, 1), (4, 1, 1))
assert_size_stride(primals_4, (12, ), (1, ))
assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(primals_1, buf0, 16, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.cat, aten.add]
triton_poi_fused_add_cat_1.run(buf0, primals_1, primals_2, buf1, 272, grid=grid(272), stream=stream0)
del buf0
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 12, 17), (204, 17, 1))
buf3 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf2, primals_4, buf3, 272, grid=grid(272), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_3.run(buf2, primals_4, buf4, 272, grid=grid(272), stream=stream0)
buf5 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [weight], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 17, 4), (68, 1, 17), 0), buf4, out=buf5)
buf8 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_per_fused__softmax_4.run(buf5, buf8, 68, 17, grid=grid(68), stream=stream0)
del buf5
buf9 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf9, primals_4, 816, grid=grid(816), stream=stream0)
del primals_4
buf10 = empty_strided_cuda((4, 17, 4), (68, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.bmm]
extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 17, 4), (204, 1, 17), 136), out=buf10)
buf11 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf10, buf11, 16, 17, grid=grid(16, 17), stream=stream0)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_5, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 17), (68, 17, 1))
del buf11
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf13, primals_6, 272, grid=grid(272), stream=stream0)
del primals_6
return (reinterpret_tensor(buf13, (4, 4), (68, 17), 0), primals_3, primals_5, buf1, buf8, reinterpret_tensor(buf10, (4, 4, 17), (68, 1, 4), 0), reinterpret_tensor(buf9, (4, 4, 17), (204, 17, 1), 136), buf3, reinterpret_tensor(buf4, (4, 17, 4), (68, 1, 17), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 17), (17, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
import torch as th
import torch.nn as nn
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
matmul_ops = 2 * b * num_spatial ** 2 * c
model.total_ops += th.DoubleTensor([matmul_ops])
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum('bct,bcs->bts', (q * scale).view(bs * self.
n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch,
length))
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum('bts,bcs->bct', weight, v.reshape(bs * self.n_heads,
ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(self, spacial_dim: 'int', embed_dim: 'int',
num_heads_channels: 'int', output_dim: 'int'=None):
super().__init__()
self.positional_embedding = nn.Parameter(th.randn(embed_dim,
spacial_dim ** 2 + 1) / embed_dim ** 0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)
x = x + self.positional_embedding[None, :, :]
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'spacial_dim': 4, 'embed_dim': 4, 'num_heads_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import numpy as np
import torch as th
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 17
x3 = xindex // 17
x4 = xindex % 68
x5 = xindex
tmp15 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x3, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = 16.0
tmp7 = tmp5 / tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 17, tl.int64)
tmp13 = tl.load(in_ptr1 + (16 * x3 + (-1 + x0)), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tmp16 = tmp14 + tmp15
tl.store(out_ptr0 + x5, tmp16, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 68
x3 = xindex % 68
x1 = xindex // 17 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + 204 * x2), xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 68
x3 = xindex % 68
x1 = xindex // 17 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (68 + x3 + 204 * x2), xmask)
tmp1 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_per_fused__softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 68
rnumel = 17
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 17 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 17 * x0), tmp11, rmask & xmask)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 17 % 12
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 17
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 68 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 17 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 17 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 17), (17, 1))
assert_size_stride(primals_3, (12, 4, 1), (4, 1, 1))
assert_size_stride(primals_4, (12,), (1,))
assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](primals_1, buf0, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_add_cat_1[grid(272)](buf0, primals_1, primals_2,
buf1, 272, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_1
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 12, 17), (204, 17, 1))
buf3 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_mul_2[grid(272)](buf2, primals_4, buf3, 272,
XBLOCK=128, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_mul_3[grid(272)](buf2, primals_4, buf4, 272,
XBLOCK=256, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 17, 4), (68, 1, 17),
0), buf4, out=buf5)
buf8 = empty_strided_cuda((4, 17, 17), (289, 17, 1), torch.float32)
triton_per_fused__softmax_4[grid(68)](buf5, buf8, 68, 17, XBLOCK=8,
num_warps=2, num_stages=1)
del buf5
buf9 = buf2
del buf2
triton_poi_fused_convolution_5[grid(816)](buf9, primals_4, 816,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf10 = empty_strided_cuda((4, 17, 4), (68, 4, 1), torch.float32)
extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 17, 4), (204,
1, 17), 136), out=buf10)
buf11 = empty_strided_cuda((4, 4, 17), (68, 17, 1), torch.float32)
triton_poi_fused_convolution_6[grid(16, 17)](buf10, buf11, 16, 17,
XBLOCK=32, YBLOCK=16, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf11, primals_5, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 17), (68, 17, 1))
del buf11
buf13 = buf12
del buf12
triton_poi_fused_convolution_7[grid(272)](buf13, primals_6, 272,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_6
return reinterpret_tensor(buf13, (4, 4), (68, 17), 0
), primals_3, primals_5, buf1, buf8, reinterpret_tensor(buf10, (4,
4, 17), (68, 1, 4), 0), reinterpret_tensor(buf9, (4, 4, 17), (204,
17, 1), 136), buf3, reinterpret_tensor(buf4, (4, 17, 4), (68, 1, 17), 0
)
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
matmul_ops = 2 * b * num_spatial ** 2 * c
model.total_ops += th.DoubleTensor([matmul_ops])
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum('bct,bcs->bts', (q * scale).view(bs * self.
n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch,
length))
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum('bts,bcs->bct', weight, v.reshape(bs * self.n_heads,
ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class AttentionPool2dNew(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(self, spacial_dim: 'int', embed_dim: 'int',
num_heads_channels: 'int', output_dim: 'int'=None):
super().__init__()
self.positional_embedding = nn.Parameter(th.randn(embed_dim,
spacial_dim ** 2 + 1) / embed_dim ** 0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, input_0):
primals_2 = self.positional_embedding
primals_3 = self.qkv_proj.weight
primals_4 = self.qkv_proj.bias
primals_5 = self.c_proj.weight
primals_6 = self.c_proj.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| ZGCTroy/guided-diffusion | AttentionPool2d | false | 1,307 | [
"MIT"
] | 0 | af987bb2b65db2875148a5466df79736ea5ae6a1 | https://github.com/ZGCTroy/guided-diffusion/tree/af987bb2b65db2875148a5466df79736ea5ae6a1 | import math
import torch
import numpy as np
import torch as th
import torch.nn as nn
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
matmul_ops = 2 * b * num_spatial ** 2 * c
model.total_ops += th.DoubleTensor([matmul_ops])
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum('bct,bcs->bts', (q * scale).view(bs * self.
n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch,
length))
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum('bts,bcs->bct', weight, v.reshape(bs * self.n_heads,
ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class Model(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(self, spacial_dim: 'int', embed_dim: 'int',
num_heads_channels: 'int', output_dim: 'int'=None):
super().__init__()
self.positional_embedding = nn.Parameter(th.randn(embed_dim,
spacial_dim ** 2 + 1) / embed_dim ** 0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)
x = x + self.positional_embedding[None, :, :]
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
MaxPoolBlock | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/tw/ctwvjh3sk72wvpvfe6qttbbnuv7go7omfvhyfpoli3k62h5jasad.py
# Topologically Sorted Source Nodes: [img_out], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# img_out => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [img_out], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Block(nn.Module):
def __init__(self):
"""Initialisation for a lower-level DeepLPF conv block
:returns: N/A
:rtype: N/A
"""
super(Block, self).__init__()
def conv3x3(self, in_channels, out_channels, stride=1):
"""Represents a convolution of shape 3x3
:param in_channels: number of input channels
:param out_channels: number of output channels
:param stride: the convolution stride
:returns: convolution function with the specified parameterisation
:rtype: function
"""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=
stride, padding=1, bias=True)
class MaxPoolBlock(Block, nn.Module):
def __init__(self):
"""Initialise function for the max pooling block
:returns: N/A
:rtype: N/A
"""
super(Block, self).__init__()
self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
""" Forward function for the max pooling block
:param x: Tensor representing the input BxCxWxH, where B is the batch size, C is the number of channels, W and H are the width and image height
:returns: Tensor representing the output of the block
:rtype: Tensor
"""
img_out = self.max_pool(x)
return img_out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(64)](arg0_1, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
return buf0,
class Block(nn.Module):
def __init__(self):
"""Initialisation for a lower-level DeepLPF conv block
:returns: N/A
:rtype: N/A
"""
super(Block, self).__init__()
def conv3x3(self, in_channels, out_channels, stride=1):
"""Represents a convolution of shape 3x3
:param in_channels: number of input channels
:param out_channels: number of output channels
:param stride: the convolution stride
:returns: convolution function with the specified parameterisation
:rtype: function
"""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=
stride, padding=1, bias=True)
class MaxPoolBlockNew(Block, nn.Module):
def __init__(self):
"""Initialise function for the max pooling block
:returns: N/A
:rtype: N/A
"""
super(Block, self).__init__()
self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| ZombaSY/DeepLPF | MaxPoolBlock | false | 1,310 | [
"BSD-3-Clause"
] | 0 | adce64ae01bc9e32f465a354cb1f6534f0d13597 | https://github.com/ZombaSY/DeepLPF/tree/adce64ae01bc9e32f465a354cb1f6534f0d13597 | import torch
import torch.nn as nn
class Block(nn.Module):
def __init__(self):
"""Initialisation for a lower-level DeepLPF conv block
:returns: N/A
:rtype: N/A
"""
super().__init__()
def conv3x3(self, in_channels, out_channels, stride=1):
"""Represents a convolution of shape 3x3
:param in_channels: number of input channels
:param out_channels: number of output channels
:param stride: the convolution stride
:returns: convolution function with the specified parameterisation
:rtype: function
"""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=
stride, padding=1, bias=True)
class Model(Block, nn.Module):
def __init__(self):
"""Initialise function for the max pooling block
:returns: N/A
:rtype: N/A
"""
super().__init__()
self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
""" Forward function for the max pooling block
:param x: Tensor representing the input BxCxWxH, where B is the batch size, C is the number of channels, W and H are the width and image height
:returns: Tensor representing the output of the block
:rtype: Tensor
"""
img_out = self.max_pool(x)
return img_out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
NumericalFeaturesEmbedding | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/jn/cjnv5uptstyk4xaisuiw5kf5lbz3m33meejxhbfbsta5ozps7ijn.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-2]), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.tensorboard
import torch.utils.data
import torch.distributed
class NumericalFeaturesEmbedding(torch.nn.Module):
"""Transform a sequence of numerical feature vectors into a single vector.
Currently, this module simply aggregates the features by averaging, although more
elaborate aggregation schemes (e.g. RNN) could be chosen.
"""
def __init__(self, embedding_dim):
super(NumericalFeaturesEmbedding, self).__init__()
self.embedding_dim = embedding_dim
def forward(self, embeddings):
return embeddings.mean(axis=-2)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'embedding_dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.tensorboard
import torch.utils.data
import torch.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class NumericalFeaturesEmbeddingNew(torch.nn.Module):
"""Transform a sequence of numerical feature vectors into a single vector.
Currently, this module simply aggregates the features by averaging, although more
elaborate aggregation schemes (e.g. RNN) could be chosen.
"""
def __init__(self, embedding_dim):
super(NumericalFeaturesEmbeddingNew, self).__init__()
self.embedding_dim = embedding_dim
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| JoeLambourne/SketchGraphs | NumericalFeaturesEmbedding | false | 1,312 | [
"MIT"
] | 0 | 183c65f82d71d82c62b253092e9b7fa65846a3e6 | https://github.com/JoeLambourne/SketchGraphs/tree/183c65f82d71d82c62b253092e9b7fa65846a3e6 | import torch
import torch.utils.tensorboard
import torch.utils.data
import torch.distributed
class Model(torch.nn.Module):
"""Transform a sequence of numerical feature vectors into a single vector.
Currently, this module simply aggregates the features by averaging, although more
elaborate aggregation schemes (e.g. RNN) could be chosen.
"""
def __init__(self, embedding_dim):
super().__init__()
self.embedding_dim = embedding_dim
def forward(self, embeddings):
return embeddings.mean(axis=-2)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
BinaryLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/zy/czyscnnxj3g3lyyjhg3q4airae4625yoe5ygsjf2qxbxvi3gpiqn.py
# Topologically Sorted Source Nodes: [sign], Original ATen: [aten.sign]
# Source node to ATen node mapping:
# sign => sign
# Graph fragment:
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_sign_0 = async_compile.triton('triton_poi_fused_sign_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sign_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sign_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = tmp1 < tmp0
tmp3 = tmp2.to(tl.int8)
tmp4 = tmp0 < tmp1
tmp5 = tmp4.to(tl.int8)
tmp6 = tmp3 - tmp5
tmp7 = tmp6.to(tmp0.dtype)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sign], Original ATen: [aten.sign]
stream0 = get_raw_stream(0)
triton_poi_fused_sign_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class BinaryLayer(nn.Module):
def forward(self, input):
"""Forward function for binary layer
:param input: data
:returns: sign of data
:rtype: Tensor
"""
return torch.sign(input)
def backward(self, grad_output):
"""Straight through estimator
:param grad_output: gradient tensor
:returns: truncated gradient tensor
:rtype: Tensor
"""
input = self.saved_tensors
grad_output[input > 1] = 0
grad_output[input < -1] = 0
return grad_output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_sign_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = tmp1 < tmp0
tmp3 = tmp2.to(tl.int8)
tmp4 = tmp0 < tmp1
tmp5 = tmp4.to(tl.int8)
tmp6 = tmp3 - tmp5
tmp7 = tmp6.to(tmp0.dtype)
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sign_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class BinaryLayerNew(nn.Module):
def backward(self, grad_output):
"""Straight through estimator
:param grad_output: gradient tensor
:returns: truncated gradient tensor
:rtype: Tensor
"""
input = self.saved_tensors
grad_output[input > 1] = 0
grad_output[input < -1] = 0
return grad_output
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| ZombaSY/DeepLPF | BinaryLayer | false | 1,314 | [
"BSD-3-Clause"
] | 0 | adce64ae01bc9e32f465a354cb1f6534f0d13597 | https://github.com/ZombaSY/DeepLPF/tree/adce64ae01bc9e32f465a354cb1f6534f0d13597 | import torch
import torch.nn as nn
class Model(nn.Module):
def forward(self, input):
"""Forward function for binary layer
:param input: data
:returns: sign of data
:rtype: Tensor
"""
return torch.sign(input)
def backward(self, grad_output):
"""Straight through estimator
:param grad_output: gradient tensor
:returns: truncated gradient tensor
:rtype: Tensor
"""
input = self.saved_tensors
grad_output[input > 1] = 0
grad_output[input < -1] = 0
return grad_output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Critic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/gj/cgjannwrbcahjcq5axj3nygglvwwn2brfqpje6x4nfwgd55teghg.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4096
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ml/cml2b5c636nadrg47xkvpjoo5j2nqtzxphyjve65dkdrm4btjxjb.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/md/cmdemqqhzykbln4aouhkgtuc32rwqfphtl333buie7a3cyqmzfhd.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_2 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/y4/cy44nput6v6foharb6yczn7nmd3w7s6cpcch7vdwijt5dqbe4f3f.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_3 => relu_3
# Graph fragment:
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/z7/cz7bvxb2tmtiwogcfbhcg47wdtutc5jsahxqpwod466tgqctbce6.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_4 => relu_4
# Graph fragment:
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4096, 4), (4, 1))
assert_size_stride(primals_2, (4096, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2048, 4096), (4096, 1))
assert_size_stride(primals_5, (2048, ), (1, ))
assert_size_stride(primals_6, (1024, 2048), (2048, 1))
assert_size_stride(primals_7, (1024, ), (1, ))
assert_size_stride(primals_8, (512, 1024), (1024, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (256, 512), (512, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (1, 256), (256, 1))
assert_size_stride(primals_13, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4096), (4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4096), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4096), (65536, 16384, 4096, 1), 0); del buf0 # reuse
buf16 = empty_strided_cuda((4, 4, 4, 4096), (65536, 16384, 4096, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf16, 262144, grid=grid(262144), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4096), (4096, 1), 0), reinterpret_tensor(primals_4, (4096, 2048), (1, 4096), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2048), (32768, 8192, 2048, 1), 0); del buf2 # reuse
buf15 = empty_strided_cuda((4, 4, 4, 2048), (32768, 8192, 2048, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf15, 131072, grid=grid(131072), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 2048), (2048, 1), 0), reinterpret_tensor(primals_6, (2048, 1024), (1, 2048), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf4 # reuse
buf14 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf14, 65536, grid=grid(65536), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_8, (1024, 512), (1, 1024), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf6 # reuse
buf13 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_3.run(buf7, primals_9, buf13, 32768, grid=grid(32768), stream=stream0)
del primals_9
buf8 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (64, 512), (512, 1), 0), reinterpret_tensor(primals_10, (512, 256), (1, 512), 0), out=buf8)
buf9 = reinterpret_tensor(buf8, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf8 # reuse
buf12 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_4.run(buf9, primals_11, buf12, 16384, grid=grid(16384), stream=stream0)
del primals_11
buf11 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [value], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, reinterpret_tensor(buf9, (64, 256), (256, 1), 0), reinterpret_tensor(primals_12, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf11)
del primals_13
return (reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4096), (4096, 1), 0), reinterpret_tensor(buf3, (64, 2048), (2048, 1), 0), reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0), reinterpret_tensor(buf7, (64, 512), (512, 1), 0), reinterpret_tensor(buf9, (64, 256), (256, 1), 0), primals_12, buf12, primals_10, buf13, primals_8, buf14, primals_6, buf15, primals_4, buf16, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4096, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2048, 4096), (4096, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1024, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Critic(nn.Module):
def __init__(self, numberOfInputs):
super(Critic, self).__init__()
self.fc1 = nn.Linear(numberOfInputs, 4096)
self.fc2 = nn.Linear(4096, 2048)
self.fc3 = nn.Linear(2048, 1024)
self.fc4 = nn.Linear(1024, 512)
self.fc5 = nn.Linear(512, 256)
self.state_value = nn.Linear(256, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
x = F.relu(self.fc5(x))
value = self.state_value(x)
return value
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'numberOfInputs': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4096
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4096, 4), (4, 1))
assert_size_stride(primals_2, (4096,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2048, 4096), (4096, 1))
assert_size_stride(primals_5, (2048,), (1,))
assert_size_stride(primals_6, (1024, 2048), (2048, 1))
assert_size_stride(primals_7, (1024,), (1,))
assert_size_stride(primals_8, (512, 1024), (1024, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (256, 512), (512, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (1, 256), (256, 1))
assert_size_stride(primals_13, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4096), (4096, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4096), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4096), (65536, 16384,
4096, 1), 0)
del buf0
buf16 = empty_strided_cuda((4, 4, 4, 4096), (65536, 16384, 4096, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(262144)](buf1,
primals_2, buf16, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2048), (2048, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4096), (4096, 1), 0
), reinterpret_tensor(primals_4, (4096, 2048), (1, 4096), 0),
out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2048), (32768, 8192, 2048,
1), 0)
del buf2
buf15 = empty_strided_cuda((4, 4, 4, 2048), (32768, 8192, 2048, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(131072)](buf3,
primals_5, buf15, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 2048), (2048, 1), 0
), reinterpret_tensor(primals_6, (2048, 1024), (1, 2048), 0),
out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1024), (16384, 4096, 1024,
1), 0)
del buf4
buf14 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(65536)](buf5,
primals_7, buf14, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0
), reinterpret_tensor(primals_8, (1024, 512), (1, 1024), 0),
out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 512), (8192, 2048, 512, 1), 0
)
del buf6
buf13 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_3[grid(32768)](buf7,
primals_9, buf13, 32768, XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
buf8 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (64, 512), (512, 1), 0),
reinterpret_tensor(primals_10, (512, 256), (1, 512), 0), out=buf8)
buf9 = reinterpret_tensor(buf8, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf8
buf12 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_4[grid(16384)](buf9,
primals_11, buf12, 16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
buf11 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_13, reinterpret_tensor(buf9, (64, 256),
(256, 1), 0), reinterpret_tensor(primals_12, (256, 1), (1, 256),
0), alpha=1, beta=1, out=buf11)
del primals_13
return (reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0),
reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(buf1, (64, 4096), (4096, 1), 0),
reinterpret_tensor(buf3, (64, 2048), (2048, 1), 0),
reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0),
reinterpret_tensor(buf7, (64, 512), (512, 1), 0),
reinterpret_tensor(buf9, (64, 256), (256, 1), 0), primals_12, buf12,
primals_10, buf13, primals_8, buf14, primals_6, buf15, primals_4, buf16
)
class CriticNew(nn.Module):
def __init__(self, numberOfInputs):
super(CriticNew, self).__init__()
self.fc1 = nn.Linear(numberOfInputs, 4096)
self.fc2 = nn.Linear(4096, 2048)
self.fc3 = nn.Linear(2048, 1024)
self.fc4 = nn.Linear(1024, 512)
self.fc5 = nn.Linear(512, 256)
self.state_value = nn.Linear(256, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_10 = self.fc5.weight
primals_11 = self.fc5.bias
primals_12 = self.state_value.weight
primals_13 = self.state_value.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| ZY-KK/panda | Critic | false | 1,315 | [
"MIT"
] | 0 | 48fcbd65d563ef74aab2554be8de7662560c43da | https://github.com/ZY-KK/panda/tree/48fcbd65d563ef74aab2554be8de7662560c43da | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, numberOfInputs):
super().__init__()
self.fc1 = nn.Linear(numberOfInputs, 4096)
self.fc2 = nn.Linear(4096, 2048)
self.fc3 = nn.Linear(2048, 1024)
self.fc4 = nn.Linear(1024, 512)
self.fc5 = nn.Linear(512, 256)
self.state_value = nn.Linear(256, 1)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
x = F.relu(self.fc5(x))
value = self.state_value(x)
return value
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
FC2LayersShortcut | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/lg/clgg7lidrsfgaud7ua7lulq4csdjjfhoa5iu6ldcldqvnqeoprch.py
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# h_1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 8, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/p5/cp5tfqfwrfwxlkkeq5u27dwcgidea534dshg3prbpaz2f7xapt3e.py
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_2), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_2, primals_3, buf1, 32, grid=grid(32), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf0, primals_2, buf3, 16, grid=grid(16), stream=stream0)
del buf0
del primals_2
return (buf2, primals_3, buf1, primals_4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class FC2LayersShortcut(nn.Module):
def __init__(self, n_in, n_hidden, n_out, activation=F.relu):
super(FC2LayersShortcut, self).__init__()
self.fc1 = nn.Linear(n_in, n_hidden)
self.fc2 = nn.Linear(n_hidden + n_in, n_out)
self.activation = activation
def forward(self, x):
h = self.activation(self.fc1(x))
h = torch.cat((h, x), 1)
x = self.fc2(h)
return x
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'n_in': 4, 'n_hidden': 4, 'n_out': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp15 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp12 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4),
(1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](buf0, primals_2, primals_3, buf1,
32, XBLOCK=32, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(16)](buf0,
primals_2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf0
del primals_2
return buf2, primals_3, buf1, primals_4, buf3
class FC2LayersShortcutNew(nn.Module):
def __init__(self, n_in, n_hidden, n_out, activation=F.relu):
super(FC2LayersShortcutNew, self).__init__()
self.fc1 = nn.Linear(n_in, n_hidden)
self.fc2 = nn.Linear(n_hidden + n_in, n_out)
self.activation = activation
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ZhiangChen/vca | FC2LayersShortcut | false | 1,316 | [
"MIT"
] | 0 | 22b7568ac1894a56e7e64443565f7e44e096d778 | https://github.com/ZhiangChen/vca/tree/22b7568ac1894a56e7e64443565f7e44e096d778 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, n_in, n_hidden, n_out, activation=F.relu):
super().__init__()
self.fc1 = nn.Linear(n_in, n_hidden)
self.fc2 = nn.Linear(n_hidden + n_in, n_out)
self.activation = activation
def forward(self, x):
h = self.activation(self.fc1(x))
h = torch.cat((h, x), 1)
x = self.fc2(h)
return x
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
EncoderImagePrecomp | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/q5/cq5voi6tqfyk3zzxnl6i5kre2q2bl3s5mpbahmi6iecgg42j3jri.py
# Topologically Sorted Source Nodes: [norm, clamp, features_1], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div]
# Source node to ATen node mapping:
# clamp => clamp_min
# features_1 => div
# norm => pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %clamp_min), kwargs = {})
triton_poi_fused_clamp_div_linalg_vector_norm_0 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-06
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [features], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, clamp, features_1], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
return (buf1, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from collections import OrderedDict
import torch.nn as nn
import torch.nn.init
def l2norm(x, dim=-1):
return x / x.norm(2, dim=dim, keepdim=True).clamp(min=1e-06)
class EncoderImagePrecomp(nn.Module):
""" image encoder """
def __init__(self, img_dim, embed_size, no_imgnorm=False):
super(EncoderImagePrecomp, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
""" Xavier initialization for the fully connected layer """
r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def forward(self, images):
""" extract image feature vectors """
features = self.fc(images.float())
if not self.no_imgnorm:
features = l2norm(features)
return features
def load_state_dict(self, state_dict):
""" copies parameters, overwritting the default one to
accept state_dict from Full model """
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImagePrecomp, self).load_state_dict(new_state)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'img_dim': 4, 'embed_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
from collections import OrderedDict
import torch.nn as nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-06
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0[grid(256)](buf0,
buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
return buf1, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf0
def l2norm(x, dim=-1):
return x / x.norm(2, dim=dim, keepdim=True).clamp(min=1e-06)
class EncoderImagePrecompNew(nn.Module):
""" image encoder """
def __init__(self, img_dim, embed_size, no_imgnorm=False):
super(EncoderImagePrecompNew, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
""" Xavier initialization for the fully connected layer """
r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def load_state_dict(self, state_dict):
""" copies parameters, overwritting the default one to
accept state_dict from Full model """
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImagePrecompNew, self).load_state_dict(new_state)
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ZhouXing19/VGNSL_multilang | EncoderImagePrecomp | false | 1,317 | [
"MIT"
] | 0 | 097ed7bf978dbff052075a26231984ade5522409 | https://github.com/ZhouXing19/VGNSL_multilang/tree/097ed7bf978dbff052075a26231984ade5522409 | import torch
import numpy as np
from collections import OrderedDict
import torch.nn as nn
import torch.nn.init
def l2norm(x, dim=-1):
return x / x.norm(2, dim=dim, keepdim=True).clamp(min=1e-06)
class Model(nn.Module):
""" image encoder """
def __init__(self, img_dim, embed_size, no_imgnorm=False):
super().__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
""" Xavier initialization for the fully connected layer """
r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def forward(self, images):
""" extract image feature vectors """
features = self.fc(images.float())
if not self.no_imgnorm:
features = l2norm(features)
return features
def load_state_dict(self, state_dict):
""" copies parameters, overwritting the default one to
accept state_dict from Full model """
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImagePrecomp, self).load_state_dict(new_state)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
InvConvNear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/eu/ceuywbmhtjrjbdgiqzjvxg6kppccq4gu554vmz5lt2nvjjmly3vh.py
# Topologically Sorted Source Nodes: [logdet], Original ATen: [aten.eq]
# Source node to ATen node mapping:
# logdet => eq
# Graph fragment:
# %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%getitem, -1.0), kwargs = {})
triton_poi_fused_eq_0 = async_compile.triton('triton_poi_fused_eq_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = -1.0
tmp3 = tmp1 == tmp2
tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/k6/ck6rcj2aiwjvx7ctsrajcnweqtvvjefeww6f2svf4tye2ixq4d65.py
# Topologically Sorted Source Nodes: [x_len, logdet, mul_1, logdet_1], Original ATen: [aten.mul, aten.scalar_tensor, aten.where]
# Source node to ATen node mapping:
# logdet => full_default_1, where
# logdet_1 => mul_2
# mul_1 => mul_1
# x_len => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4], 4.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %getitem_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1.0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %full_default), kwargs = {})
triton_poi_fused_mul_scalar_tensor_where_1 = async_compile.triton('triton_poi_fused_mul_scalar_tensor_where_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_scalar_tensor_where_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_scalar_tensor_where_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0)).to(tl.int1)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp4 = float("nan")
tmp5 = tl.where(tmp1, tmp4, tmp3)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp8 = 4.0
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/y5/cy55qfc456xtrn5xgyv4h2r4osqtkteize5kc2wocd7ecb52e6fh.py
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# z => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_1, %view_2, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/6q/c6qeh4gh27f25datiqvo65rhtoulr47ssh6rvmydde7ujxxgpvwu.py
# Topologically Sorted Source Nodes: [z_2], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# z_2 => mul_3
# Graph fragment:
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, 1), kwargs = {})
triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_3(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (1, 4))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [logdet], Original ATen: [aten._linalg_slogdet]
buf0 = torch.ops.aten._linalg_slogdet.default(primals_2)
buf1 = buf0[0]
buf2 = buf0[1]
buf3 = buf0[2]
buf4 = buf0[3]
del buf0
buf5 = empty_strided_cuda((), (), torch.bool)
# Topologically Sorted Source Nodes: [logdet], Original ATen: [aten.eq]
stream0 = get_raw_stream(0)
triton_poi_fused_eq_0.run(buf1, buf5, 1, grid=grid(1), stream=stream0)
del buf1
buf6 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_len, logdet, mul_1, logdet_1], Original ATen: [aten.mul, aten.scalar_tensor, aten.where]
triton_poi_fused_mul_scalar_tensor_where_1.run(buf5, buf2, buf6, 4, grid=grid(4), stream=stream0)
del buf2
buf7 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(primals_2, buf7, 4, 4, grid=grid(4, 4), stream=stream0)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 1, 4), (16, 4, 4, 1), 0), buf7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 1, 4), (16, 4, 4, 1))
del buf7
buf9 = reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [z_2], Original ATen: [aten.mul]
triton_poi_fused_mul_3.run(buf9, 64, grid=grid(64), stream=stream0)
return (buf9, buf6, reinterpret_tensor(primals_1, (4, 4, 1, 4), (16, 4, 8, 1), 0), buf3, buf4, buf5, reinterpret_tensor(primals_2, (4, 4, 1, 1), (1, 4, 4, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (1, 4), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn import functional as F
from torch import nn
import torch.utils.data
import torch.optim
class InvConvNear(nn.Module):
def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
super().__init__()
assert n_split % 2 == 0
self.channels = channels
self.n_split = n_split
self.no_jacobian = no_jacobian
w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).
normal_())[0]
if torch.det(w_init) < 0:
w_init[:, 0] = -1 * w_init[:, 0]
self.weight = nn.Parameter(w_init)
def forward(self, x, x_mask=None, reverse=False, **kwargs):
b, c, t = x.size()
assert c % self.n_split == 0
if x_mask is None:
x_mask = 1
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
else:
x_len = torch.sum(x_mask, [1, 2])
x = x.view(b, 2, c // self.n_split, self.n_split // 2, t)
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c //
self.n_split, t)
if reverse:
if hasattr(self, 'weight_inv'):
weight = self.weight_inv
else:
weight = torch.inverse(self.weight.float())
logdet = None
else:
weight = self.weight
if self.no_jacobian:
logdet = 0
else:
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len
weight = weight.view(self.n_split, self.n_split, 1, 1)
z = F.conv2d(x, weight)
z = z.view(b, 2, self.n_split // 2, c // self.n_split, t)
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
return z, logdet
def store_inverse(self):
self.weight_inv = torch.inverse(self.weight.float())
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.utils.data
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_eq_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = -1.0
tmp3 = tmp1 == tmp2
tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp3, None)
@triton.jit
def triton_poi_fused_mul_scalar_tensor_where_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0).to(tl.int1)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp4 = float('nan')
tmp5 = tl.where(tmp1, tmp4, tmp3)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp8 = 4.0
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_mul_3(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (1, 4))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._linalg_slogdet.default(primals_2)
buf1 = buf0[0]
buf2 = buf0[1]
buf3 = buf0[2]
buf4 = buf0[3]
del buf0
buf5 = empty_strided_cuda((), (), torch.bool)
get_raw_stream(0)
triton_poi_fused_eq_0[grid(1)](buf1, buf5, 1, XBLOCK=1, num_warps=1,
num_stages=1)
del buf1
buf6 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_scalar_tensor_where_1[grid(4)](buf5, buf2,
buf6, 4, XBLOCK=4, num_warps=1, num_stages=1)
del buf2
buf7 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
triton_poi_fused_convolution_2[grid(4, 4)](primals_2, buf7, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
buf8 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4,
4, 1, 4), (16, 4, 4, 1), 0), buf7, stride=(1, 1), padding=(0, 0
), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 1, 4), (16, 4, 4, 1))
del buf7
buf9 = reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0)
del buf8
triton_poi_fused_mul_3[grid(64)](buf9, 64, XBLOCK=64, num_warps=1,
num_stages=1)
return buf9, buf6, reinterpret_tensor(primals_1, (4, 4, 1, 4), (16, 4,
8, 1), 0), buf3, buf4, buf5, reinterpret_tensor(primals_2, (4, 4, 1,
1), (1, 4, 4, 4), 0)
class InvConvNearNew(nn.Module):
def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
super().__init__()
assert n_split % 2 == 0
self.channels = channels
self.n_split = n_split
self.no_jacobian = no_jacobian
w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).
normal_())[0]
if torch.det(w_init) < 0:
w_init[:, 0] = -1 * w_init[:, 0]
self.weight = nn.Parameter(w_init)
def store_inverse(self):
self.weight_inv = torch.inverse(self.weight.float())
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0], output[1]
| Zenodia/NeMo | InvConvNear | false | 1,318 | [
"Apache-2.0"
] | 0 | 3c288d8a7caf667c95444c39434e3ebc5f53d911 | https://github.com/Zenodia/NeMo/tree/3c288d8a7caf667c95444c39434e3ebc5f53d911 | import torch
from torch.nn import functional as F
from torch import nn
import torch.utils.data
import torch.optim
class Model(nn.Module):
def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
super().__init__()
assert n_split % 2 == 0
self.channels = channels
self.n_split = n_split
self.no_jacobian = no_jacobian
w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).
normal_())[0]
if torch.det(w_init) < 0:
w_init[:, 0] = -1 * w_init[:, 0]
self.weight = nn.Parameter(w_init)
def forward(self, x, x_mask=None, reverse=False, **kwargs):
b, c, t = x.size()
assert c % self.n_split == 0
if x_mask is None:
x_mask = 1
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
else:
x_len = torch.sum(x_mask, [1, 2])
x = x.view(b, 2, c // self.n_split, self.n_split // 2, t)
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c //
self.n_split, t)
if reverse:
if hasattr(self, 'weight_inv'):
weight = self.weight_inv
else:
weight = torch.inverse(self.weight.float())
logdet = None
else:
weight = self.weight
if self.no_jacobian:
logdet = 0
else:
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len
weight = weight.view(self.n_split, self.n_split, 1, 1)
z = F.conv2d(x, weight)
z = z.view(b, 2, self.n_split // 2, c // self.n_split, t)
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
return z, logdet
def store_inverse(self):
self.weight_inv = torch.inverse(self.weight.float())
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4]
|
BCELosswithLogits | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/7k/c7klfhonqiraw2tsdvfyktxztp6ke7d3rzldzp4wbvukdjkqadcj.py
# Topologically Sorted Source Nodes: [mul, logits, log, mul_1, sub, sub_1, log_1, mul_2, loss, loss_1], Original ATen: [aten.mul, aten.sigmoid, aten.log, aten.rsub, aten.sub, aten.mean]
# Source node to ATen node mapping:
# log => log
# log_1 => log_1
# logits => sigmoid
# loss => sub_2
# loss_1 => mean
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# sub => sub
# sub_1 => sub_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, -1), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sigmoid,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %log), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sub_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %log_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
triton_per_fused_log_mean_mul_rsub_sigmoid_sub_0 = async_compile.triton('triton_per_fused_log_mean_mul_rsub_sigmoid_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_mean_mul_rsub_sigmoid_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_log_mean_mul_rsub_sigmoid_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = -1.0
tmp2 = tmp0 * tmp1
tmp4 = tl.sigmoid(tmp3)
tmp5 = tl_math.log(tmp4)
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp7 - tmp0
tmp9 = tmp7 - tmp4
tmp10 = tl_math.log(tmp9)
tmp11 = tmp8 * tmp10
tmp12 = tmp6 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp15 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, logits, log, mul_1, sub, sub_1, log_1, mul_2, loss, loss_1], Original ATen: [aten.mul, aten.sigmoid, aten.log, aten.rsub, aten.sub, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_log_mean_mul_rsub_sigmoid_sub_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class BCELosswithLogits(nn.Module):
def __init__(self, pos_weight=1, reduction='mean'):
super(BCELosswithLogits, self).__init__()
self.pos_weight = pos_weight
self.reduction = reduction
def forward(self, logits, target):
logits = F.sigmoid(logits)
loss = -self.pos_weight * target * torch.log(logits) - (1 - target
) * torch.log(1 - logits)
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_log_mean_mul_rsub_sigmoid_sub_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = -1.0
tmp2 = tmp0 * tmp1
tmp4 = tl.sigmoid(tmp3)
tmp5 = tl_math.log(tmp4)
tmp6 = tmp2 * tmp5
tmp7 = 1.0
tmp8 = tmp7 - tmp0
tmp9 = tmp7 - tmp4
tmp10 = tl_math.log(tmp9)
tmp11 = tmp8 * tmp10
tmp12 = tmp6 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp15 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_log_mean_mul_rsub_sigmoid_sub_0[grid(1)](buf1,
arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class BCELosswithLogitsNew(nn.Module):
def __init__(self, pos_weight=1, reduction='mean'):
super(BCELosswithLogitsNew, self).__init__()
self.pos_weight = pos_weight
self.reduction = reduction
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ZonghaiZhu/EZBM | BCELosswithLogits | false | 1,319 | [
"MIT"
] | 0 | b4f6fbd10598c79f144b778ef848554ac62a173a | https://github.com/ZonghaiZhu/EZBM/tree/b4f6fbd10598c79f144b778ef848554ac62a173a | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, pos_weight=1, reduction='mean'):
super().__init__()
self.pos_weight = pos_weight
self.reduction = reduction
def forward(self, logits, target):
logits = F.sigmoid(logits)
loss = -self.pos_weight * target * torch.log(logits) - (1 - target
) * torch.log(1 - logits)
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
GateLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/xd/cxd4uci6rjegwbywzsx6cw3kvglstmvbzbgt3umstqvdwi7esmj5.py
# Topologically Sorted Source Nodes: [gate, mul, sub, mul_1, gated_emb], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# gate => sigmoid
# gated_emb => add
# mul => mul
# mul_1 => mul_1
# sub => sub
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (x2), xmask)
tmp6 = tl.load(in_ptr2 + (x2), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp1
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (1, 4), (4, 1))
assert_size_stride(primals_6, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm_input], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, buf1, reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gate, mul, sub, mul_1, gated_emb], Original ATen: [aten.sigmoid, aten.mul, aten.rsub, aten.add]
triton_poi_fused_add_mul_rsub_sigmoid_1.run(buf3, primals_1, primals_2, buf4, 256, grid=grid(256), stream=stream0)
return (buf4, primals_1, primals_2, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf1, buf3, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class GateLayer(nn.Module):
def __init__(self, input_dim):
super(GateLayer, self).__init__()
self._norm_layer1 = nn.Linear(input_dim * 2, input_dim)
self._norm_layer2 = nn.Linear(input_dim, 1)
def forward(self, input1, input2):
norm_input = self._norm_layer1(torch.cat([input1, input2], dim=-1))
gate = torch.sigmoid(self._norm_layer2(norm_input))
gated_emb = gate * input1 + (1 - gate) * input2
return gated_emb
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + x2, xmask)
tmp6 = tl.load(in_ptr2 + x2, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = 1.0
tmp5 = tmp4 - tmp1
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (1, 4), (4, 1))
assert_size_stride(primals_6, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 8), (
8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0),
alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_6, buf1, reinterpret_tensor(primals_5,
(4, 1), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_rsub_sigmoid_1[grid(256)](buf3, primals_1,
primals_2, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1)
return buf4, primals_1, primals_2, reinterpret_tensor(buf0, (64, 8), (8,
1), 0), buf1, buf3, primals_5
class GateLayerNew(nn.Module):
def __init__(self, input_dim):
super(GateLayerNew, self).__init__()
self._norm_layer1 = nn.Linear(input_dim * 2, input_dim)
self._norm_layer2 = nn.Linear(input_dim, 1)
def forward(self, input_0, input_1):
primals_3 = self._norm_layer1.weight
primals_4 = self._norm_layer1.bias
primals_5 = self._norm_layer2.weight
primals_6 = self._norm_layer2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| Zilize/CRSLab | GateLayer | false | 1,320 | [
"MIT"
] | 0 | fb357d0dfb7d2cf7b67b892d98e52032a31ca564 | https://github.com/Zilize/CRSLab/tree/fb357d0dfb7d2cf7b67b892d98e52032a31ca564 | import torch
from torch import nn
class Model(nn.Module):
def __init__(self, input_dim):
super().__init__()
self._norm_layer1 = nn.Linear(input_dim * 2, input_dim)
self._norm_layer2 = nn.Linear(input_dim, 1)
def forward(self, input1, input2):
norm_input = self._norm_layer1(torch.cat([input1, input2], dim=-1))
gate = torch.sigmoid(self._norm_layer2(norm_input))
gated_emb = gate * input1 + (1 - gate) * input2
return gated_emb
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
NormedLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/zk/czk5xfokmwnuegxn53eciq25366p2is3a6lxx47tlosf3q225vha.py
# Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div]
# Source node to ATen node mapping:
# normalize => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/xe/cxewggzrfqe57dzglxrzfhfgpsywlh36utvtdulp5oi75wfs7ml3.py
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div]
# Source node to ATen node mapping:
# normalize_1 => div_1
# Graph fragment:
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand_1), kwargs = {})
triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div]
triton_poi_fused_div_1.run(primals_2, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize_1, out], Original ATen: [aten.div, aten.mm]
extern_kernels.mm(buf0, buf1, out=buf2)
del buf1
return (buf2, primals_2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
class NormedLinear(nn.Module):
def __init__(self, in_features, out_features):
super(NormedLinear, self).__init__()
self.weight = Parameter(torch.Tensor(in_features, out_features))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-05).mul_(100000.0)
def forward(self, x):
out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0))
return out
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_1[grid(16)](primals_2, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, buf1, out=buf2)
del buf1
return buf2, primals_2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0)
class NormedLinearNew(nn.Module):
def __init__(self, in_features, out_features):
super(NormedLinearNew, self).__init__()
self.weight = Parameter(torch.Tensor(in_features, out_features))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-05).mul_(100000.0)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| ZonghaiZhu/EZBM | NormedLinear | false | 1,321 | [
"MIT"
] | 0 | b4f6fbd10598c79f144b778ef848554ac62a173a | https://github.com/ZonghaiZhu/EZBM/tree/b4f6fbd10598c79f144b778ef848554ac62a173a | import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
class Model(nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
self.weight = Parameter(torch.Tensor(in_features, out_features))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-05).mul_(100000.0)
def forward(self, x):
out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0))
return out
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
RFDB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/qp/cqph2bsyndmlid3h74nkuymuqomz2wgda4kwncb2q6pg745tftj6.py
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# linear => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4096
y1 = (yindex // 4096)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4096*x2) + (16384*y1)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/e3/ce3r7cbmyiavyqmwofjzfi4xacr3ogxjhc2emhhzl34rmmlpc5ld.py
# Topologically Sorted Source Nodes: [r_c1, add, r_c1_1], Original ATen: [aten.convolution, aten.add, aten.gelu]
# Source node to ATen node mapping:
# add => add_2
# r_c1 => convolution
# r_c1_1 => add_3, erf_1, mul_3, mul_4, mul_5
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %primals_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.5), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.7071067811865476), kwargs = {})
# %erf_1 : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_4,), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf_1, 1), kwargs = {})
# %mul_5 : [num_users=4] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %add_3), kwargs = {})
triton_poi_fused_add_convolution_gelu_1 = async_compile.triton('triton_poi_fused_add_convolution_gelu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_gelu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_gelu_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = 0.5
tmp6 = tmp4 * tmp5
tmp7 = 0.7071067811865476
tmp8 = tmp4 * tmp7
tmp9 = libdevice.erf(tmp8)
tmp10 = 1.0
tmp11 = tmp9 + tmp10
tmp12 = tmp6 * tmp11
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(out_ptr0 + (x3), tmp12, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/mj/cmjfqbxg7yokl4xfsftijierjdcyoil7fs6yexo36izxqjuobjvo.py
# Topologically Sorted Source Nodes: [r_c2, add_1, r_c2_1], Original ATen: [aten.convolution, aten.add, aten.gelu, aten.gelu_backward]
# Source node to ATen node mapping:
# add_1 => add_6
# r_c2 => convolution_1
# r_c2_1 => add_7, erf_3, mul_10, mul_11, mul_9
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_6 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %mul_5), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, 0.5), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, 0.7071067811865476), kwargs = {})
# %erf_3 : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_10,), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf_3, 1), kwargs = {})
# %mul_11 : [num_users=4] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_9, %add_7), kwargs = {})
# %mul_88 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, 0.5), kwargs = {})
# %mul_89 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, %add_6), kwargs = {})
# %mul_90 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_89, -0.5), kwargs = {})
# %exp_5 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_90,), kwargs = {})
# %mul_91 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_5, 0.3989422804014327), kwargs = {})
# %mul_92 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, %mul_91), kwargs = {})
# %add_48 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_88, %mul_92), kwargs = {})
triton_poi_fused_add_convolution_gelu_gelu_backward_2 = async_compile.triton('triton_poi_fused_add_convolution_gelu_gelu_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_gelu_gelu_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_gelu_gelu_backward_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x3), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = 0.5
tmp6 = tmp4 * tmp5
tmp7 = 0.7071067811865476
tmp8 = tmp4 * tmp7
tmp9 = libdevice.erf(tmp8)
tmp10 = 1.0
tmp11 = tmp9 + tmp10
tmp12 = tmp6 * tmp11
tmp13 = tmp11 * tmp5
tmp14 = tmp4 * tmp4
tmp15 = -0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = 0.3989422804014327
tmp19 = tmp17 * tmp18
tmp20 = tmp4 * tmp19
tmp21 = tmp13 + tmp20
tl.store(out_ptr0 + (x3), tmp12, None)
tl.store(out_ptr1 + (x3), tmp21, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ft/cft5urcg6ipsfw257no4r6jdr3f6molba5nnjws4xrokb43c3vl4.py
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_17, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/kn/ckn3a2mql3y62wcgqgkdjshmc3th2evxmroncin6vxxiaiqjhlkw.py
# Topologically Sorted Source Nodes: [linear, distilled_c1, linear_1, distilled_c2, linear_2, distilled_c3, mul, mul_1, add_3, mul_2, add_4, mul_3, out], Original ATen: [aten.add, aten.gelu, aten.mul]
# Source node to ATen node mapping:
# add_3 => add_13
# add_4 => add_14
# distilled_c1 => add_1, erf, mul, mul_1, mul_2
# distilled_c2 => add_5, erf_2, mul_6, mul_7, mul_8
# distilled_c3 => add_9, erf_4, mul_12, mul_13, mul_14
# linear => add
# linear_1 => add_4
# linear_2 => add_8
# mul => mul_21
# mul_1 => mul_22
# mul_2 => mul_23
# mul_3 => mul_24
# out => add_15
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_7), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, 0.5), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, 0.7071067811865476), kwargs = {})
# %erf_2 : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_7,), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf_2, 1), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %add_5), kwargs = {})
# %add_8 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %primals_11), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, 0.5), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, 0.7071067811865476), kwargs = {})
# %erf_4 : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_13,), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf_4, 1), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_12, %add_9), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_16), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_8, %primals_17), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_21, %mul_22), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_14, %primals_18), kwargs = {})
# %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, %mul_23), kwargs = {})
# %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_6, %primals_19), kwargs = {})
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_14, %mul_24), kwargs = {})
triton_poi_fused_add_gelu_mul_4 = async_compile.triton('triton_poi_fused_add_gelu_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: 'i32', 13: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_gelu_mul_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_gelu_mul_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
y2 = yindex % 4096
y3 = (yindex // 4096)
tmp0 = tl.load(in_ptr0 + (x1 + (4*y0)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr3 + (x1 + (4*y0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr6 + (x1 + (4*y0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr7 + (x1), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr9 + (y2 + (4096*x1) + (16384*y3)), xmask, eviction_policy='evict_last')
tmp41 = tl.load(in_ptr10 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = 0.7071067811865476
tmp6 = tmp2 * tmp5
tmp7 = libdevice.erf(tmp6)
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tmp12 = tmp10 * tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp15 * tmp3
tmp17 = tmp15 * tmp5
tmp18 = libdevice.erf(tmp17)
tmp19 = tmp18 + tmp8
tmp20 = tmp16 * tmp19
tmp22 = tmp20 * tmp21
tmp23 = tmp12 + tmp22
tmp26 = tmp24 + tmp25
tmp27 = tmp26 * tmp3
tmp28 = tmp26 * tmp5
tmp29 = libdevice.erf(tmp28)
tmp30 = tmp29 + tmp8
tmp31 = tmp27 * tmp30
tmp33 = tmp31 * tmp32
tmp34 = tmp23 + tmp33
tmp36 = tmp35 * tmp3
tmp37 = tmp35 * tmp5
tmp38 = libdevice.erf(tmp37)
tmp39 = tmp38 + tmp8
tmp40 = tmp36 * tmp39
tmp42 = tmp40 * tmp41
tmp43 = tmp34 + tmp42
tl.debug_barrier()
tl.store(in_out_ptr0 + (x1 + (4*y0)), tmp43, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/63/c63237yiygoqum4kecgvklpskmdznolueloblxszhyrqyijbjz47.py
# Topologically Sorted Source Nodes: [c1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# c1 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_10, %primals_22, %primals_23, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3844
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/yy/cyypa74mr2cja5sohkk2x6wffxxi7txyas6q45lvwekf3sggvy5k.py
# Topologically Sorted Source Nodes: [conv2d_5, v_range], Original ATen: [aten.convolution, aten.gelu]
# Source node to ATen node mapping:
# conv2d_5 => convolution_5
# v_range => add_16, erf_7, mul_25, mul_26, mul_27
# Graph fragment:
# %convolution_5 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_5, 0.5), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_5, 0.7071067811865476), kwargs = {})
# %erf_7 : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_26,), kwargs = {})
# %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf_7, 1), kwargs = {})
# %mul_27 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_25, %add_16), kwargs = {})
triton_poi_fused_convolution_gelu_6 = async_compile.triton('triton_poi_fused_convolution_gelu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_gelu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_gelu_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 196
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tmp6 = 0.7071067811865476
tmp7 = tmp3 * tmp6
tmp8 = libdevice.erf(tmp7)
tmp9 = 1.0
tmp10 = tmp8 + tmp9
tmp11 = tmp5 * tmp10
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/y2/cy2hsdbwb7sewgaj7o6snpavj3gsdzhgn2csnk73btq46kvrxw5i.py
# Topologically Sorted Source Nodes: [conv2d_6, c3], Original ATen: [aten.convolution, aten.gelu]
# Source node to ATen node mapping:
# c3 => add_17, erf_8, mul_28, mul_29, mul_30
# conv2d_6 => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_27, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.5), kwargs = {})
# %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.7071067811865476), kwargs = {})
# %erf_8 : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_29,), kwargs = {})
# %add_17 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf_8, 1), kwargs = {})
# %mul_30 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_28, %add_17), kwargs = {})
triton_poi_fused_convolution_gelu_7 = async_compile.triton('triton_poi_fused_convolution_gelu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_gelu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_gelu_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 100
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tmp6 = 0.7071067811865476
tmp7 = tmp3 * tmp6
tmp8 = libdevice.erf(tmp7)
tmp9 = 1.0
tmp10 = tmp8 + tmp9
tmp11 = tmp5 * tmp10
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/lq/clqqarjonvnvcxaxsst5so4jgnuffoszkks7hnpkkwpca2udypca.py
# Topologically Sorted Source Nodes: [c3_2], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# c3_2 => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_8, torch.int64), kwargs = {})
triton_poi_fused__to_copy_8 = async_compile.triton('triton_poi_fused__to_copy_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_8(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.046875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/22/c226fxelidjurbvo3ejaegzgjic4grh6nhxrg4dzmmynewpue65o.py
# Topologically Sorted Source Nodes: [c3_2], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# c3_2 => add_19, clamp_max
# Graph fragment:
# %add_19 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_19, 2), kwargs = {})
triton_poi_fused_add_clamp_9 = async_compile.triton('triton_poi_fused_add_clamp_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_9(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.046875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 2, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/gf/cgf7t6pbr27slnmxnqrzs3h3pzrxiqenbticsvy2djat2r4a7fst.py
# Topologically Sorted Source Nodes: [c3_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# c3_2 => add_18, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_31, sub, sub_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_18, 0.046875), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_31, 0.5), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_10 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_10(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.046875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/sh/cshao2xl3f2outtqb4jbsqwo4vjpty7hxzozcnm2ggwq7sju7hau.py
# Topologically Sorted Source Nodes: [c3_1, c3_2, add_6], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# add_6 => add_25
# c3_1 => convolution_7
# c3_2 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_22, add_23, mul_33, mul_34, mul_35, sub_3, sub_4, sub_6
# Graph fragment:
# %convolution_7 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_30, %primals_28, %primals_29, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_7, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_7, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_7, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_7, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_22 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_33), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_23 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_34), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_23, %add_22), kwargs = {})
# %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_25 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_12, %view_11), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_sub_11 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_11(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 64) % 64
x0 = xindex % 64
x2 = (xindex // 4096)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (0))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr8 + (x3), None)
tmp39 = tl.load(in_ptr9 + (0))
tmp40 = tl.broadcast_to(tmp39, [XBLOCK])
tmp1 = tl.full([XBLOCK], 3, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (3*tmp4) + (9*x2)), None, eviction_policy='evict_last')
tmp12 = tmp9 + tmp11
tmp14 = tmp13 + tmp1
tmp15 = tmp13 < 0
tmp16 = tl.where(tmp15, tmp14, tmp13)
tmp17 = tl.load(in_ptr2 + (tmp16 + (3*tmp4) + (9*x2)), None, eviction_policy='evict_last')
tmp18 = tmp17 + tmp11
tmp19 = tmp18 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp12 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp23 < 0
tmp26 = tl.where(tmp25, tmp24, tmp23)
tmp27 = tl.load(in_ptr2 + (tmp8 + (3*tmp26) + (9*x2)), None, eviction_policy='evict_last')
tmp28 = tmp27 + tmp11
tmp29 = tl.load(in_ptr2 + (tmp16 + (3*tmp26) + (9*x2)), None, eviction_policy='evict_last')
tmp30 = tmp29 + tmp11
tmp31 = tmp30 - tmp28
tmp32 = tmp31 * tmp20
tmp33 = tmp28 + tmp32
tmp34 = tmp33 - tmp22
tmp36 = tmp34 * tmp35
tmp37 = tmp22 + tmp36
tmp41 = tmp38 + tmp40
tmp42 = tmp37 + tmp41
tl.store(in_out_ptr0 + (x3), tmp42, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/3q/c3qviepuxdztk6wr5disowro6zwdeupgztk56b32ujay7aaalgzg.py
# Topologically Sorted Source Nodes: [m, out_fused], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# m => sigmoid
# out_fused => mul_36
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%permute_14,), kwargs = {})
# %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_7, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_12 = async_compile.triton('triton_poi_fused_mul_sigmoid_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_12(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr1 + (x0), None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x0), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/cm/ccmrx5yvqvvnl5mkjh4uyunhkrceudth26rza2wuya2xp2ssyff4.py
# Topologically Sorted Source Nodes: [add_7], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_7 => add_26
# Graph fragment:
# %add_26 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_17, %primals_1), kwargs = {})
triton_poi_fused_add_13 = async_compile.triton('triton_poi_fused_add_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_13(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4096
y1 = (yindex // 4096)
tmp0 = tl.load(in_out_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (y0 + (4096*x2) + (16384*y1)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.debug_barrier()
tl.store(in_out_ptr0 + (x2 + (4*y3)), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (1, 4), (4, 1))
assert_size_stride(primals_17, (1, 4), (4, 1))
assert_size_stride(primals_18, (1, 4), (4, 1))
assert_size_stride(primals_19, (1, 4), (4, 1))
assert_size_stride(primals_20, (1, 4), (4, 1))
assert_size_stride(primals_21, (1, ), (1, ))
assert_size_stride(primals_22, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_23, (1, ), (1, ))
assert_size_stride(primals_24, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_25, (1, ), (1, ))
assert_size_stride(primals_26, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_27, (1, ), (1, ))
assert_size_stride(primals_28, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_29, (1, ), (1, ))
assert_size_stride(primals_30, (1, 1), (1, 1))
assert_size_stride(primals_31, (1, ), (1, ))
assert_size_stride(primals_32, (4, 1), (1, 1))
assert_size_stride(primals_33, (4, ), (1, ))
assert_size_stride(primals_34, (4, 4), (4, 1))
assert_size_stride(primals_35, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 64, 4), (16384, 256, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 16384, 4, grid=grid(16384, 4), stream=stream0)
buf1 = empty_strided_cuda((16384, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (16384, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
# Topologically Sorted Source Nodes: [r_c1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [r_c1, add, r_c1_1], Original ATen: [aten.convolution, aten.add, aten.gelu]
triton_poi_fused_add_convolution_gelu_1.run(buf3, primals_5, primals_1, buf4, 65536, grid=grid(65536), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((4, 64, 64, 4), (16384, 256, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf4, buf5, 16384, 4, grid=grid(16384, 4), stream=stream0)
buf6 = empty_strided_cuda((16384, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf5, (16384, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf6)
# Topologically Sorted Source Nodes: [r_c2], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf4, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf8 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
buf46 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [r_c2, add_1, r_c2_1], Original ATen: [aten.convolution, aten.add, aten.gelu, aten.gelu_backward]
triton_poi_fused_add_convolution_gelu_gelu_backward_2.run(buf7, primals_9, buf4, buf8, buf46, 65536, grid=grid(65536), stream=stream0)
del primals_9
buf9 = reinterpret_tensor(buf7, (4, 64, 64, 4), (16384, 256, 4, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf8, buf9, 16384, 4, grid=grid(16384, 4), stream=stream0)
buf10 = empty_strided_cuda((16384, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf9, (16384, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf10)
# Topologically Sorted Source Nodes: [r_c3], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf8, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf12 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
buf45 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [r_c3, add_2, r_c3_1], Original ATen: [aten.convolution, aten.add, aten.gelu, aten.gelu_backward]
triton_poi_fused_add_convolution_gelu_gelu_backward_2.run(buf11, primals_13, buf8, buf12, buf45, 65536, grid=grid(65536), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf13 = extern_kernels.convolution(buf12, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf14, primals_15, 65536, grid=grid(65536), stream=stream0)
del primals_15
buf15 = reinterpret_tensor(buf11, (4, 64, 64, 4), (16384, 256, 4, 1), 0); del buf11 # reuse
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [linear, distilled_c1, linear_1, distilled_c2, linear_2, distilled_c3, mul, mul_1, add_3, mul_2, add_4, mul_3, out], Original ATen: [aten.add, aten.gelu, aten.mul]
triton_poi_fused_add_gelu_mul_4.run(buf16, buf1, primals_3, primals_16, buf6, primals_7, primals_17, buf10, primals_11, primals_18, buf14, primals_19, 16384, 4, grid=grid(16384, 4), stream=stream0)
buf18 = empty_strided_cuda((16384, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [c1_], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_21, reinterpret_tensor(buf16, (16384, 4), (4, 1), 0), reinterpret_tensor(primals_20, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf18)
del primals_21
# Topologically Sorted Source Nodes: [c1], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(reinterpret_tensor(buf18, (4, 1, 64, 64), (4096, 1, 64, 1), 0), primals_22, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 1, 31, 31), (961, 1, 31, 1))
buf20 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [c1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf20, primals_23, 3844, grid=grid(3844), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [v_max], Original ATen: [aten.max_pool2d_with_indices]
buf21 = torch.ops.aten.max_pool2d_with_indices.default(buf20, [7, 7], [3, 3])
buf22 = buf21[0]
buf23 = buf21[1]
del buf21
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf22, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 1, 7, 7), (49, 1, 7, 1))
buf25 = buf24; del buf24 # reuse
buf26 = empty_strided_cuda((4, 1, 7, 7), (49, 1, 7, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_5, v_range], Original ATen: [aten.convolution, aten.gelu]
triton_poi_fused_convolution_gelu_6.run(buf25, primals_25, buf26, 196, grid=grid(196), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(buf26, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 1, 5, 5), (25, 1, 5, 1))
buf28 = buf27; del buf27 # reuse
buf29 = empty_strided_cuda((4, 1, 5, 5), (25, 1, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_6, c3], Original ATen: [aten.convolution, aten.gelu]
triton_poi_fused_convolution_gelu_7.run(buf28, primals_27, buf29, 100, grid=grid(100), stream=stream0)
del primals_27
# Topologically Sorted Source Nodes: [c3_1], Original ATen: [aten.convolution]
buf30 = extern_kernels.convolution(buf29, primals_28, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 1, 3, 3), (9, 1, 3, 1))
buf31 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [c3_2], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_8.run(buf31, 64, grid=grid(64), stream=stream0)
buf32 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [c3_2], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_9.run(buf32, 64, grid=grid(64), stream=stream0)
buf33 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [c3_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_8.run(buf33, 64, grid=grid(64), stream=stream0)
buf34 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [c3_2], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_9.run(buf34, 64, grid=grid(64), stream=stream0)
buf35 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [c3_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_10.run(buf35, 64, grid=grid(64), stream=stream0)
buf37 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [c3_2], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_10.run(buf37, 64, grid=grid(64), stream=stream0)
buf39 = empty_strided_cuda((16384, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf18, primals_30, out=buf39)
buf38 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf40 = reinterpret_tensor(buf38, (4, 64, 64, 1), (4096, 64, 1, 1), 0); del buf38 # reuse
# Topologically Sorted Source Nodes: [c3_1, c3_2, add_6], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_sub_11.run(buf40, buf31, buf33, buf30, primals_29, buf34, buf35, buf32, buf37, buf39, primals_31, 16384, grid=grid(16384), stream=stream0)
del buf30
del buf39
del primals_29
del primals_31
buf41 = empty_strided_cuda((16384, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_33, reinterpret_tensor(buf40, (16384, 1), (1, 0), 0), reinterpret_tensor(primals_32, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf41)
del primals_33
buf42 = empty_strided_cuda((4, 4, 64, 64), (16384, 1, 256, 4), torch.float32)
# Topologically Sorted Source Nodes: [m, out_fused], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_12.run(buf16, buf41, buf42, 65536, grid=grid(65536), stream=stream0)
buf43 = empty_strided_cuda((16384, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf42, (16384, 4), (4, 1), 0), reinterpret_tensor(primals_34, (4, 4), (1, 4), 0), out=buf43)
buf44 = reinterpret_tensor(buf43, (4, 4, 64, 64), (16384, 1, 256, 4), 0); del buf43 # reuse
# Topologically Sorted Source Nodes: [add_7], Original ATen: [aten.add]
triton_poi_fused_add_13.run(buf44, primals_35, primals_1, 16384, 4, grid=grid(16384, 4), stream=stream0)
del primals_35
return (buf44, primals_1, primals_3, primals_4, primals_7, primals_8, primals_11, primals_12, primals_14, primals_16, primals_17, primals_18, primals_19, primals_22, primals_24, primals_26, primals_28, reinterpret_tensor(buf0, (16384, 4), (4, 1), 0), buf1, buf3, buf4, reinterpret_tensor(buf5, (16384, 4), (4, 1), 0), buf6, buf8, reinterpret_tensor(buf9, (16384, 4), (4, 1), 0), buf10, buf12, buf14, reinterpret_tensor(buf16, (4, 4, 64, 64), (16384, 1, 256, 4), 0), buf18, buf20, buf22, buf23, buf25, buf26, buf28, buf29, buf31, buf32, buf33, buf34, buf35, buf37, reinterpret_tensor(buf40, (16384, 1), (1, 1), 0), buf41, reinterpret_tensor(buf42, (16384, 4), (4, 1), 0), primals_34, primals_32, primals_30, primals_20, buf45, primals_10, buf46, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class ESA(nn.Module):
def __init__(self, num_feat=50, conv=nn.Conv2d, p=0.25):
super(ESA, self).__init__()
f = num_feat // 4
BSConvS_kwargs = {}
if conv.__name__ == 'BSConvS':
BSConvS_kwargs = {'p': p}
self.conv1 = nn.Linear(num_feat, f)
self.conv_f = nn.Linear(f, f)
self.maxPooling = nn.MaxPool2d(kernel_size=7, stride=3)
self.conv_max = conv(f, f, kernel_size=3, **BSConvS_kwargs)
self.conv2 = nn.Conv2d(f, f, 3, 2, 0)
self.conv3 = conv(f, f, kernel_size=3, **BSConvS_kwargs)
self.conv3_ = conv(f, f, kernel_size=3, **BSConvS_kwargs)
self.conv4 = nn.Linear(f, num_feat)
self.sigmoid = nn.Sigmoid()
self.GELU = nn.GELU()
def forward(self, input):
x = input.permute(0, 2, 3, 1)
c1_ = self.conv1(x)
c1 = self.conv2(c1_.permute(0, 3, 1, 2))
v_max = self.maxPooling(c1)
v_range = self.GELU(self.conv_max(v_max))
c3 = self.GELU(self.conv3(v_range))
c3 = self.conv3_(c3)
c3 = F.interpolate(c3, (input.size(2), input.size(3)), mode=
'bilinear', align_corners=False)
cf = self.conv_f(c1_)
c4 = self.conv4(c3.permute(0, 2, 3, 1) + cf)
m = self.sigmoid(c4.permute(0, 3, 1, 2))
return input * m
class RFDB(nn.Module):
def __init__(self, in_channels, out_channels, distillation_rate=0.25,
conv=nn.Conv2d, p=0.25):
super(RFDB, self).__init__()
kwargs = {'padding': 1}
if conv.__name__ == 'BSConvS':
kwargs = {'p': p}
self.dc = self.distilled_channels = in_channels // 2
self.rc = self.remaining_channels = in_channels
self.c1_d = nn.Linear(in_channels, self.rc)
self.c1_r = conv(in_channels, self.rc, kernel_size=3, **kwargs)
self.c2_d = nn.Linear(self.remaining_channels, self.rc)
self.c2_r = conv(self.remaining_channels, self.rc, kernel_size=3,
**kwargs)
self.c3_d = nn.Linear(self.remaining_channels, self.rc)
self.c3_r = conv(self.remaining_channels, self.rc, kernel_size=3,
**kwargs)
self.c4 = conv(self.remaining_channels, in_channels, kernel_size=3,
**kwargs)
self.act = nn.GELU()
self.alpha1 = nn.Parameter(torch.ones(1, in_channels))
self.alpha2 = nn.Parameter(torch.ones(1, in_channels))
self.alpha3 = nn.Parameter(torch.ones(1, in_channels))
self.alpha4 = nn.Parameter(torch.ones(1, in_channels))
self.esa = ESA(in_channels, conv)
self.conv_out = nn.Linear(in_channels, out_channels)
def forward(self, input):
distilled_c1 = self.act(self.c1_d(input.permute(0, 2, 3, 1)))
r_c1 = self.c1_r(input)
r_c1 = self.act(r_c1 + input)
distilled_c2 = self.act(self.c2_d(r_c1.permute(0, 2, 3, 1)))
r_c2 = self.c2_r(r_c1)
r_c2 = self.act(r_c2 + r_c1)
distilled_c3 = self.act(self.c3_d(r_c2.permute(0, 2, 3, 1)))
r_c3 = self.c3_r(r_c2)
r_c3 = self.act(r_c3 + r_c2)
r_c4 = self.act(self.c4(r_c3))
out = (distilled_c1 * self.alpha1 + distilled_c2 * self.alpha2 +
distilled_c3 * self.alpha3 + r_c4.permute(0, 2, 3, 1) * self.alpha4
)
out_fused = self.esa(out.permute(0, 3, 1, 2))
out_fused = self.conv_out(out_fused.permute(0, 2, 3, 1))
return out_fused.permute(0, 3, 1, 2) + input
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4096
y1 = yindex // 4096
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4096 * x2 + 16384 * y1), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask)
@triton.jit
def triton_poi_fused_add_convolution_gelu_1(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = 0.5
tmp6 = tmp4 * tmp5
tmp7 = 0.7071067811865476
tmp8 = tmp4 * tmp7
tmp9 = libdevice.erf(tmp8)
tmp10 = 1.0
tmp11 = tmp9 + tmp10
tmp12 = tmp6 * tmp11
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(out_ptr0 + x3, tmp12, None)
@triton.jit
def triton_poi_fused_add_convolution_gelu_gelu_backward_2(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x3, None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = 0.5
tmp6 = tmp4 * tmp5
tmp7 = 0.7071067811865476
tmp8 = tmp4 * tmp7
tmp9 = libdevice.erf(tmp8)
tmp10 = 1.0
tmp11 = tmp9 + tmp10
tmp12 = tmp6 * tmp11
tmp13 = tmp11 * tmp5
tmp14 = tmp4 * tmp4
tmp15 = -0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = 0.3989422804014327
tmp19 = tmp17 * tmp18
tmp20 = tmp4 * tmp19
tmp21 = tmp13 + tmp20
tl.store(out_ptr0 + x3, tmp12, None)
tl.store(out_ptr1 + x3, tmp21, None)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_add_gelu_mul_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
y2 = yindex % 4096
y3 = yindex // 4096
tmp0 = tl.load(in_ptr0 + (x1 + 4 * y0), xmask, eviction_policy='evict_last'
)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr3 + (x1 + 4 * y0), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr6 + (x1 + 4 * y0), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr7 + x1, xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr9 + (y2 + 4096 * x1 + 16384 * y3), xmask,
eviction_policy='evict_last')
tmp41 = tl.load(in_ptr10 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = 0.7071067811865476
tmp6 = tmp2 * tmp5
tmp7 = libdevice.erf(tmp6)
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tmp12 = tmp10 * tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp15 * tmp3
tmp17 = tmp15 * tmp5
tmp18 = libdevice.erf(tmp17)
tmp19 = tmp18 + tmp8
tmp20 = tmp16 * tmp19
tmp22 = tmp20 * tmp21
tmp23 = tmp12 + tmp22
tmp26 = tmp24 + tmp25
tmp27 = tmp26 * tmp3
tmp28 = tmp26 * tmp5
tmp29 = libdevice.erf(tmp28)
tmp30 = tmp29 + tmp8
tmp31 = tmp27 * tmp30
tmp33 = tmp31 * tmp32
tmp34 = tmp23 + tmp33
tmp36 = tmp35 * tmp3
tmp37 = tmp35 * tmp5
tmp38 = libdevice.erf(tmp37)
tmp39 = tmp38 + tmp8
tmp40 = tmp36 * tmp39
tmp42 = tmp40 * tmp41
tmp43 = tmp34 + tmp42
tl.debug_barrier()
tl.store(in_out_ptr0 + (x1 + 4 * y0), tmp43, xmask)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 3844
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_convolution_gelu_6(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 196
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tmp6 = 0.7071067811865476
tmp7 = tmp3 * tmp6
tmp8 = libdevice.erf(tmp7)
tmp9 = 1.0
tmp10 = tmp8 + tmp9
tmp11 = tmp5 * tmp10
tl.store(in_out_ptr0 + x0, tmp3, xmask)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused_convolution_gelu_7(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 100
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tmp6 = 0.7071067811865476
tmp7 = tmp3 * tmp6
tmp8 = libdevice.erf(tmp7)
tmp9 = 1.0
tmp10 = tmp8 + tmp9
tmp11 = tmp5 * tmp10
tl.store(in_out_ptr0 + x0, tmp3, xmask)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__to_copy_8(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.046875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_clamp_9(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.046875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 2, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_10(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.046875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_11(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7,
in_ptr8, in_ptr9, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 64 % 64
x0 = xindex % 64
x2 = xindex // 4096
x3 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + 0)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr8 + x3, None)
tmp39 = tl.load(in_ptr9 + 0)
tmp40 = tl.broadcast_to(tmp39, [XBLOCK])
tmp1 = tl.full([XBLOCK], 3, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 3 * tmp4 + 9 * x2), None,
eviction_policy='evict_last')
tmp12 = tmp9 + tmp11
tmp14 = tmp13 + tmp1
tmp15 = tmp13 < 0
tmp16 = tl.where(tmp15, tmp14, tmp13)
tmp17 = tl.load(in_ptr2 + (tmp16 + 3 * tmp4 + 9 * x2), None,
eviction_policy='evict_last')
tmp18 = tmp17 + tmp11
tmp19 = tmp18 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp12 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp23 < 0
tmp26 = tl.where(tmp25, tmp24, tmp23)
tmp27 = tl.load(in_ptr2 + (tmp8 + 3 * tmp26 + 9 * x2), None,
eviction_policy='evict_last')
tmp28 = tmp27 + tmp11
tmp29 = tl.load(in_ptr2 + (tmp16 + 3 * tmp26 + 9 * x2), None,
eviction_policy='evict_last')
tmp30 = tmp29 + tmp11
tmp31 = tmp30 - tmp28
tmp32 = tmp31 * tmp20
tmp33 = tmp28 + tmp32
tmp34 = tmp33 - tmp22
tmp36 = tmp34 * tmp35
tmp37 = tmp22 + tmp36
tmp41 = tmp38 + tmp40
tmp42 = tmp37 + tmp41
tl.store(in_out_ptr0 + x3, tmp42, None)
@triton.jit
def triton_poi_fused_mul_sigmoid_12(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = tl.load(in_ptr1 + x0, None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x0, tmp3, None)
@triton.jit
def triton_poi_fused_add_13(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4096
y1 = yindex // 4096
tmp0 = tl.load(in_out_ptr0 + (x2 + 4 * y3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (y0 + 4096 * x2 + 16384 * y1), xmask,
eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.debug_barrier()
tl.store(in_out_ptr0 + (x2 + 4 * y3), tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (1, 4), (4, 1))
assert_size_stride(primals_17, (1, 4), (4, 1))
assert_size_stride(primals_18, (1, 4), (4, 1))
assert_size_stride(primals_19, (1, 4), (4, 1))
assert_size_stride(primals_20, (1, 4), (4, 1))
assert_size_stride(primals_21, (1,), (1,))
assert_size_stride(primals_22, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_23, (1,), (1,))
assert_size_stride(primals_24, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_25, (1,), (1,))
assert_size_stride(primals_26, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_27, (1,), (1,))
assert_size_stride(primals_28, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_29, (1,), (1,))
assert_size_stride(primals_30, (1, 1), (1, 1))
assert_size_stride(primals_31, (1,), (1,))
assert_size_stride(primals_32, (4, 1), (1, 1))
assert_size_stride(primals_33, (4,), (1,))
assert_size_stride(primals_34, (4, 4), (4, 1))
assert_size_stride(primals_35, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 64, 4), (16384, 256, 4, 1), torch
.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16384, 4)](primals_1, buf0, 16384, 4,
XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((16384, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16384, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
triton_poi_fused_add_convolution_gelu_1[grid(65536)](buf3,
primals_5, primals_1, buf4, 65536, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_5
buf5 = empty_strided_cuda((4, 64, 64, 4), (16384, 256, 4, 1), torch
.float32)
triton_poi_fused_clone_0[grid(16384, 4)](buf4, buf5, 16384, 4,
XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((16384, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (16384, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf6)
buf7 = extern_kernels.convolution(buf4, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf8 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
buf46 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
triton_poi_fused_add_convolution_gelu_gelu_backward_2[grid(65536)](buf7
, primals_9, buf4, buf8, buf46, 65536, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_9
buf9 = reinterpret_tensor(buf7, (4, 64, 64, 4), (16384, 256, 4, 1), 0)
del buf7
triton_poi_fused_clone_0[grid(16384, 4)](buf8, buf9, 16384, 4,
XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1)
buf10 = empty_strided_cuda((16384, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf9, (16384, 4), (4, 1), 0),
reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf10)
buf11 = extern_kernels.convolution(buf8, primals_12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf12 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
buf45 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
triton_poi_fused_add_convolution_gelu_gelu_backward_2[grid(65536)](
buf11, primals_13, buf8, buf12, buf45, 65536, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_13
buf13 = extern_kernels.convolution(buf12, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf14 = buf13
del buf13
triton_poi_fused_convolution_3[grid(65536)](buf14, primals_15,
65536, XBLOCK=256, num_warps=4, num_stages=1)
del primals_15
buf15 = reinterpret_tensor(buf11, (4, 64, 64, 4), (16384, 256, 4, 1), 0
)
del buf11
buf16 = buf15
del buf15
triton_poi_fused_add_gelu_mul_4[grid(16384, 4)](buf16, buf1,
primals_3, primals_16, buf6, primals_7, primals_17, buf10,
primals_11, primals_18, buf14, primals_19, 16384, 4, XBLOCK=4,
YBLOCK=256, num_warps=4, num_stages=1)
buf18 = empty_strided_cuda((16384, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_21, reinterpret_tensor(buf16, (16384,
4), (4, 1), 0), reinterpret_tensor(primals_20, (4, 1), (1, 4),
0), alpha=1, beta=1, out=buf18)
del primals_21
buf19 = extern_kernels.convolution(reinterpret_tensor(buf18, (4, 1,
64, 64), (4096, 1, 64, 1), 0), primals_22, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 1, 31, 31), (961, 1, 31, 1))
buf20 = buf19
del buf19
triton_poi_fused_convolution_5[grid(3844)](buf20, primals_23, 3844,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_23
buf21 = torch.ops.aten.max_pool2d_with_indices.default(buf20, [7, 7
], [3, 3])
buf22 = buf21[0]
buf23 = buf21[1]
del buf21
buf24 = extern_kernels.convolution(buf22, primals_24, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 1, 7, 7), (49, 1, 7, 1))
buf25 = buf24
del buf24
buf26 = empty_strided_cuda((4, 1, 7, 7), (49, 1, 7, 1), torch.float32)
triton_poi_fused_convolution_gelu_6[grid(196)](buf25, primals_25,
buf26, 196, XBLOCK=256, num_warps=4, num_stages=1)
del primals_25
buf27 = extern_kernels.convolution(buf26, primals_26, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 1, 5, 5), (25, 1, 5, 1))
buf28 = buf27
del buf27
buf29 = empty_strided_cuda((4, 1, 5, 5), (25, 1, 5, 1), torch.float32)
triton_poi_fused_convolution_gelu_7[grid(100)](buf28, primals_27,
buf29, 100, XBLOCK=128, num_warps=4, num_stages=1)
del primals_27
buf30 = extern_kernels.convolution(buf29, primals_28, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 1, 3, 3), (9, 1, 3, 1))
buf31 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_8[grid(64)](buf31, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf32 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_9[grid(64)](buf32, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf33 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_8[grid(64)](buf33, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf34 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_9[grid(64)](buf34, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf35 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_10[grid(64)](buf35,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf37 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_10[grid(64)](buf37,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf39 = empty_strided_cuda((16384, 1), (1, 1), torch.float32)
extern_kernels.mm(buf18, primals_30, out=buf39)
buf38 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf40 = reinterpret_tensor(buf38, (4, 64, 64, 1), (4096, 64, 1, 1), 0)
del buf38
triton_poi_fused__unsafe_index_add_convolution_mul_sub_11[grid(16384)](
buf40, buf31, buf33, buf30, primals_29, buf34, buf35, buf32,
buf37, buf39, primals_31, 16384, XBLOCK=256, num_warps=4,
num_stages=1)
del buf30
del buf39
del primals_29
del primals_31
buf41 = empty_strided_cuda((16384, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_33, reinterpret_tensor(buf40, (16384,
1), (1, 0), 0), reinterpret_tensor(primals_32, (1, 4), (1, 1),
0), alpha=1, beta=1, out=buf41)
del primals_33
buf42 = empty_strided_cuda((4, 4, 64, 64), (16384, 1, 256, 4),
torch.float32)
triton_poi_fused_mul_sigmoid_12[grid(65536)](buf16, buf41, buf42,
65536, XBLOCK=256, num_warps=4, num_stages=1)
buf43 = empty_strided_cuda((16384, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf42, (16384, 4), (4, 1), 0),
reinterpret_tensor(primals_34, (4, 4), (1, 4), 0), out=buf43)
buf44 = reinterpret_tensor(buf43, (4, 4, 64, 64), (16384, 1, 256, 4), 0
)
del buf43
triton_poi_fused_add_13[grid(16384, 4)](buf44, primals_35,
primals_1, 16384, 4, XBLOCK=4, YBLOCK=128, num_warps=4,
num_stages=1)
del primals_35
return (buf44, primals_1, primals_3, primals_4, primals_7, primals_8,
primals_11, primals_12, primals_14, primals_16, primals_17,
primals_18, primals_19, primals_22, primals_24, primals_26,
primals_28, reinterpret_tensor(buf0, (16384, 4), (4, 1), 0), buf1,
buf3, buf4, reinterpret_tensor(buf5, (16384, 4), (4, 1), 0), buf6,
buf8, reinterpret_tensor(buf9, (16384, 4), (4, 1), 0), buf10, buf12,
buf14, reinterpret_tensor(buf16, (4, 4, 64, 64), (16384, 1, 256, 4),
0), buf18, buf20, buf22, buf23, buf25, buf26, buf28, buf29, buf31,
buf32, buf33, buf34, buf35, buf37, reinterpret_tensor(buf40, (16384,
1), (1, 1), 0), buf41, reinterpret_tensor(buf42, (16384, 4), (4, 1),
0), primals_34, primals_32, primals_30, primals_20, buf45,
primals_10, buf46, primals_6)
class ESA(nn.Module):
def __init__(self, num_feat=50, conv=nn.Conv2d, p=0.25):
super(ESA, self).__init__()
f = num_feat // 4
BSConvS_kwargs = {}
if conv.__name__ == 'BSConvS':
BSConvS_kwargs = {'p': p}
self.conv1 = nn.Linear(num_feat, f)
self.conv_f = nn.Linear(f, f)
self.maxPooling = nn.MaxPool2d(kernel_size=7, stride=3)
self.conv_max = conv(f, f, kernel_size=3, **BSConvS_kwargs)
self.conv2 = nn.Conv2d(f, f, 3, 2, 0)
self.conv3 = conv(f, f, kernel_size=3, **BSConvS_kwargs)
self.conv3_ = conv(f, f, kernel_size=3, **BSConvS_kwargs)
self.conv4 = nn.Linear(f, num_feat)
self.sigmoid = nn.Sigmoid()
self.GELU = nn.GELU()
def forward(self, input):
x = input.permute(0, 2, 3, 1)
c1_ = self.conv1(x)
c1 = self.conv2(c1_.permute(0, 3, 1, 2))
v_max = self.maxPooling(c1)
v_range = self.GELU(self.conv_max(v_max))
c3 = self.GELU(self.conv3(v_range))
c3 = self.conv3_(c3)
c3 = F.interpolate(c3, (input.size(2), input.size(3)), mode=
'bilinear', align_corners=False)
cf = self.conv_f(c1_)
c4 = self.conv4(c3.permute(0, 2, 3, 1) + cf)
m = self.sigmoid(c4.permute(0, 3, 1, 2))
return input * m
class RFDBNew(nn.Module):
def __init__(self, in_channels, out_channels, distillation_rate=0.25,
conv=nn.Conv2d, p=0.25):
super(RFDBNew, self).__init__()
kwargs = {'padding': 1}
if conv.__name__ == 'BSConvS':
kwargs = {'p': p}
self.dc = self.distilled_channels = in_channels // 2
self.rc = self.remaining_channels = in_channels
self.c1_d = nn.Linear(in_channels, self.rc)
self.c1_r = conv(in_channels, self.rc, kernel_size=3, **kwargs)
self.c2_d = nn.Linear(self.remaining_channels, self.rc)
self.c2_r = conv(self.remaining_channels, self.rc, kernel_size=3,
**kwargs)
self.c3_d = nn.Linear(self.remaining_channels, self.rc)
self.c3_r = conv(self.remaining_channels, self.rc, kernel_size=3,
**kwargs)
self.c4 = conv(self.remaining_channels, in_channels, kernel_size=3,
**kwargs)
self.act = nn.GELU()
self.alpha1 = nn.Parameter(torch.ones(1, in_channels))
self.alpha2 = nn.Parameter(torch.ones(1, in_channels))
self.alpha3 = nn.Parameter(torch.ones(1, in_channels))
self.alpha4 = nn.Parameter(torch.ones(1, in_channels))
self.esa = ESA(in_channels, conv)
self.conv_out = nn.Linear(in_channels, out_channels)
def forward(self, input_0):
primals_16 = self.alpha1
primals_17 = self.alpha2
primals_18 = self.alpha3
primals_19 = self.alpha4
primals_2 = self.c1_d.weight
primals_3 = self.c1_d.bias
primals_4 = self.c1_r.weight
primals_5 = self.c1_r.bias
primals_6 = self.c2_d.weight
primals_7 = self.c2_d.bias
primals_8 = self.c2_r.weight
primals_9 = self.c2_r.bias
primals_10 = self.c3_d.weight
primals_11 = self.c3_d.bias
primals_12 = self.c3_r.weight
primals_13 = self.c3_r.bias
primals_14 = self.c4.weight
primals_15 = self.c4.bias
primals_20 = self.esa.conv1.weight
primals_21 = self.esa.conv1.bias
primals_30 = self.esa.conv_f.weight
primals_23 = self.esa.conv_f.bias
primals_22 = self.esa.conv_max.weight
primals_25 = self.esa.conv_max.bias
primals_24 = self.esa.conv2.weight
primals_27 = self.esa.conv2.bias
primals_26 = self.esa.conv3.weight
primals_29 = self.esa.conv3.bias
primals_28 = self.esa.conv3_.weight
primals_31 = self.esa.conv3_.bias
primals_32 = self.esa.conv4.weight
primals_33 = self.esa.conv4.bias
primals_34 = self.conv_out.weight
primals_35 = self.conv_out.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35])
return output[0]
| YingqiLiulll/scrips_for_SR | RFDB | false | 1,322 | [
"MIT"
] | 0 | 04fa6fdaf157e913d3e2521cd80315a10a2ccedc | https://github.com/YingqiLiulll/scrips_for_SR/tree/04fa6fdaf157e913d3e2521cd80315a10a2ccedc | import torch
import torch.nn as nn
import torch.nn.functional as F
class ESA(nn.Module):
def __init__(self, num_feat=50, conv=nn.Conv2d, p=0.25):
super().__init__()
f = num_feat // 4
BSConvS_kwargs = {}
if conv.__name__ == 'BSConvS':
BSConvS_kwargs = {'p': p}
self.conv1 = nn.Linear(num_feat, f)
self.conv_f = nn.Linear(f, f)
self.maxPooling = nn.MaxPool2d(kernel_size=7, stride=3)
self.conv_max = conv(f, f, kernel_size=3, **BSConvS_kwargs)
self.conv2 = nn.Conv2d(f, f, 3, 2, 0)
self.conv3 = conv(f, f, kernel_size=3, **BSConvS_kwargs)
self.conv3_ = conv(f, f, kernel_size=3, **BSConvS_kwargs)
self.conv4 = nn.Linear(f, num_feat)
self.sigmoid = nn.Sigmoid()
self.GELU = nn.GELU()
def forward(self, input):
x = input.permute(0, 2, 3, 1)
c1_ = self.conv1(x)
c1 = self.conv2(c1_.permute(0, 3, 1, 2))
v_max = self.maxPooling(c1)
v_range = self.GELU(self.conv_max(v_max))
c3 = self.GELU(self.conv3(v_range))
c3 = self.conv3_(c3)
c3 = F.interpolate(c3, (input.size(2), input.size(3)), mode=
'bilinear', align_corners=False)
cf = self.conv_f(c1_)
c4 = self.conv4(c3.permute(0, 2, 3, 1) + cf)
m = self.sigmoid(c4.permute(0, 3, 1, 2))
return input * m
class Model(nn.Module):
def __init__(self, in_channels, out_channels, distillation_rate=0.25,
conv=nn.Conv2d, p=0.25):
super().__init__()
kwargs = {'padding': 1}
if conv.__name__ == 'BSConvS':
kwargs = {'p': p}
self.dc = self.distilled_channels = in_channels // 2
self.rc = self.remaining_channels = in_channels
self.c1_d = nn.Linear(in_channels, self.rc)
self.c1_r = conv(in_channels, self.rc, kernel_size=3, **kwargs)
self.c2_d = nn.Linear(self.remaining_channels, self.rc)
self.c2_r = conv(self.remaining_channels, self.rc, kernel_size=3,
**kwargs)
self.c3_d = nn.Linear(self.remaining_channels, self.rc)
self.c3_r = conv(self.remaining_channels, self.rc, kernel_size=3,
**kwargs)
self.c4 = conv(self.remaining_channels, in_channels, kernel_size=3,
**kwargs)
self.act = nn.GELU()
self.alpha1 = nn.Parameter(torch.ones(1, in_channels))
self.alpha2 = nn.Parameter(torch.ones(1, in_channels))
self.alpha3 = nn.Parameter(torch.ones(1, in_channels))
self.alpha4 = nn.Parameter(torch.ones(1, in_channels))
self.esa = ESA(in_channels, conv)
self.conv_out = nn.Linear(in_channels, out_channels)
def forward(self, input):
distilled_c1 = self.act(self.c1_d(input.permute(0, 2, 3, 1)))
r_c1 = self.c1_r(input)
r_c1 = self.act(r_c1 + input)
distilled_c2 = self.act(self.c2_d(r_c1.permute(0, 2, 3, 1)))
r_c2 = self.c2_r(r_c1)
r_c2 = self.act(r_c2 + r_c1)
distilled_c3 = self.act(self.c3_d(r_c2.permute(0, 2, 3, 1)))
r_c3 = self.c3_r(r_c2)
r_c3 = self.act(r_c3 + r_c2)
r_c4 = self.act(self.c4(r_c3))
out = (distilled_c1 * self.alpha1 + distilled_c2 * self.alpha2 +
distilled_c3 * self.alpha3 + r_c4.permute(0, 2, 3, 1) * self.alpha4
)
out_fused = self.esa(out.permute(0, 3, 1, 2))
out_fused = self.conv_out(out_fused.permute(0, 2, 3, 1))
return out_fused.permute(0, 3, 1, 2) + input
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [4, 4]
|
GeneralizedFocalLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/rc/crc7kbbogkuuhfpfmzp6yxphs4hsrq2a4i2wjegyrs6y4r7sfcoh.py
# Topologically Sorted Source Nodes: [sub, abs_1, scale_factor, log, mul, sub_1, sub_2, log_1, mul_1, add, mul_2, cls_weights_1, mul_3, loss, sum_2, eq, positive_index, num_positive, num_positive_1, loss_1], Original ATen: [aten.sub, aten.abs, aten.pow, aten.log, aten.mul, aten.rsub, aten.add, aten.repeat, aten.sum, aten.eq, aten._to_copy, aten.clamp, aten.div]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# cls_weights_1 => repeat
# eq => eq
# log => log
# log_1 => log_1
# loss => sub_3
# loss_1 => div
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# num_positive => sum_1
# num_positive_1 => clamp_min
# positive_index => convert_element_type
# scale_factor => pow_1
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sum_2 => sum_2
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg2_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %log), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg2_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sub_2,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %log_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %add), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze_1, [1, 1, 4, 4]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %repeat), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (0.0, %mul_3), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_3,), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg2_1, 1), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.float32), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_1, 1.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %clamp_min), kwargs = {})
triton_per_fused__to_copy_abs_add_clamp_div_eq_log_mul_pow_repeat_rsub_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_abs_add_clamp_div_eq_log_mul_pow_repeat_rsub_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_abs_add_clamp_div_eq_log_mul_pow_repeat_rsub_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_abs_add_clamp_div_eq_log_mul_pow_repeat_rsub_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r2), None)
tmp1 = tl.load(in_ptr1 + (r2), None)
tmp14 = tl.load(in_ptr2 + (r1), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tmp3 * tmp3
tmp5 = tl_math.log(tmp1)
tmp6 = tmp0 * tmp5
tmp7 = 1.0
tmp8 = tmp7 - tmp0
tmp9 = tmp7 - tmp1
tmp10 = tl_math.log(tmp9)
tmp11 = tmp8 * tmp10
tmp12 = tmp6 + tmp11
tmp13 = tmp4 * tmp12
tmp15 = tmp13 * tmp14
tmp16 = 0.0
tmp17 = tmp16 - tmp15
tmp18 = tl.broadcast_to(tmp17, [RBLOCK])
tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0))
tmp21 = tmp0 == tmp7
tmp22 = tmp21.to(tl.float32)
tmp23 = tl.broadcast_to(tmp22, [RBLOCK])
tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0))
tmp26 = triton_helpers.maximum(tmp25, tmp7)
tmp27 = tmp20 / tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp27, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, abs_1, scale_factor, log, mul, sub_1, sub_2, log_1, mul_1, add, mul_2, cls_weights_1, mul_3, loss, sum_2, eq, positive_index, num_positive, num_positive_1, loss_1], Original ATen: [aten.sub, aten.abs, aten.pow, aten.log, aten.mul, aten.rsub, aten.add, aten.repeat, aten.sum, aten.eq, aten._to_copy, aten.clamp, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_abs_add_clamp_div_eq_log_mul_pow_repeat_rsub_sub_sum_0.run(buf2, arg2_1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch import nn
class GeneralizedFocalLoss(nn.Module):
def __init__(self, beta=2):
super(GeneralizedFocalLoss, self).__init__()
self.beta = beta
def forward(self, prediction, target, cls_weights):
cls_weights = cls_weights.unsqueeze(-1).unsqueeze(-1)
shape = prediction.shape
cls_weights = cls_weights.repeat(1, 1, shape[2], shape[3])
loss = 0.0
positive_index = target.eq(1).float()
num_positive = positive_index.float().sum()
scale_factor = torch.pow((target - prediction).abs(), self.beta)
loss -= scale_factor * (target * torch.log(prediction) + (1 -
target) * torch.log(1 - prediction)) * cls_weights
num_positive = max(1.0, num_positive)
loss = loss.sum() / num_positive
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_abs_add_clamp_div_eq_log_mul_pow_repeat_rsub_sub_sum_0(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + r2, None)
tmp1 = tl.load(in_ptr1 + r2, None)
tmp14 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tmp3 * tmp3
tmp5 = tl_math.log(tmp1)
tmp6 = tmp0 * tmp5
tmp7 = 1.0
tmp8 = tmp7 - tmp0
tmp9 = tmp7 - tmp1
tmp10 = tl_math.log(tmp9)
tmp11 = tmp8 * tmp10
tmp12 = tmp6 + tmp11
tmp13 = tmp4 * tmp12
tmp15 = tmp13 * tmp14
tmp16 = 0.0
tmp17 = tmp16 - tmp15
tmp18 = tl.broadcast_to(tmp17, [RBLOCK])
tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0))
tmp21 = tmp0 == tmp7
tmp22 = tmp21.to(tl.float32)
tmp23 = tl.broadcast_to(tmp22, [RBLOCK])
tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0))
tmp26 = triton_helpers.maximum(tmp25, tmp7)
tmp27 = tmp20 / tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp27, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused__to_copy_abs_add_clamp_div_eq_log_mul_pow_repeat_rsub_sub_sum_0[
grid(1)](buf2, arg2_1, arg1_1, arg0_1, 1, 256, num_warps=2,
num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf2,
class GeneralizedFocalLossNew(nn.Module):
def __init__(self, beta=2):
super(GeneralizedFocalLossNew, self).__init__()
self.beta = beta
def forward(self, input_0, input_1, input_2):
arg1_1 = input_0
arg2_1 = input_1
arg0_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| ZhuokunYao/smoke | GeneralizedFocalLoss | false | 1,323 | [
"MIT"
] | 0 | d524fbe43b1aba6078c25d9aca7924b71a635e1d | https://github.com/ZhuokunYao/smoke/tree/d524fbe43b1aba6078c25d9aca7924b71a635e1d | import torch
import torch.utils.data
from torch import nn
class Model(nn.Module):
def __init__(self, beta=2):
super().__init__()
self.beta = beta
def forward(self, prediction, target, cls_weights):
cls_weights = cls_weights.unsqueeze(-1).unsqueeze(-1)
shape = prediction.shape
cls_weights = cls_weights.repeat(1, 1, shape[2], shape[3])
loss = 0.0
positive_index = target.eq(1).float()
num_positive = positive_index.float().sum()
scale_factor = torch.pow((target - prediction).abs(), self.beta)
loss -= scale_factor * (target * torch.log(prediction) + (1 -
target) * torch.log(1 - prediction)) * cls_weights
num_positive = max(1.0, num_positive)
loss = loss.sum() / num_positive
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4])]
def get_init_inputs():
return []
|
ClsConvHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# x => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_1 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
return (reinterpret_tensor(buf3, (4, 4), (4, 1), 0), primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
class ClsConvHead(nn.Module):
"""Global average pooling + conv head for classification
"""
def __init__(self, input_dim, output_dim):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.conv = nn.Conv2d(input_dim, output_dim, 1)
def forward(self, x):
x = self.avg_pool(x)
x = self.conv(x)
x = x.view(x.size(0), -1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 16, 16), 0)
del buf2
triton_poi_fused_convolution_1[grid(16)](buf3, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf3, (4, 4), (4, 1), 0), primals_2, buf1
class ClsConvHeadNew(nn.Module):
"""Global average pooling + conv head for classification
"""
def __init__(self, input_dim, output_dim):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.conv = nn.Conv2d(input_dim, output_dim, 1)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| a1004123217/pytorch-mobile | ClsConvHead | false | 1,324 | [
"MIT"
] | 0 | 97974af3259a2073efbc334d57841efbd3eaadfb | https://github.com/a1004123217/pytorch-mobile/tree/97974af3259a2073efbc334d57841efbd3eaadfb | import torch
import torch.nn as nn
import torch.nn.parallel
class Model(nn.Module):
"""Global average pooling + conv head for classification
"""
def __init__(self, input_dim, output_dim):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.conv = nn.Conv2d(input_dim, output_dim, 1)
def forward(self, x):
x = self.avg_pool(x)
x = self.conv(x)
x = x.view(x.size(0), -1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ConvBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/zx/czxlhx4s6te5f22sga2xc2brf4uagtr2xkl46odyfqb25nksyekm.py
# Topologically Sorted Source Nodes: [conv2d, img_out], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d => convolution
# img_out => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1))
buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, img_out], Original ATen: [aten.convolution, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 64, grid=grid(64), stream=stream0)
del buf0
del primals_2
return (buf2, primals_1, primals_3, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Block(nn.Module):
def __init__(self):
"""Initialisation for a lower-level DeepLPF conv block
:returns: N/A
:rtype: N/A
"""
super(Block, self).__init__()
def conv3x3(self, in_channels, out_channels, stride=1):
"""Represents a convolution of shape 3x3
:param in_channels: number of input channels
:param out_channels: number of output channels
:param stride: the convolution stride
:returns: convolution function with the specified parameterisation
:rtype: function
"""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=
stride, padding=1, bias=True)
class ConvBlock(Block, nn.Module):
def __init__(self, num_in_channels, num_out_channels, stride=1):
"""Initialise function for the higher level convolution block
:param in_channels:
:param out_channels:
:param stride:
:param padding:
:returns:
:rtype:
"""
super(Block, self).__init__()
self.conv = self.conv3x3(num_in_channels, num_out_channels, stride=2)
self.lrelu = nn.LeakyReLU()
def forward(self, x):
""" Forward function for the higher level convolution block
:param x: Tensor representing the input BxCxWxH, where B is the batch size, C is the number of channels, W and H are the width and image height
:returns: Tensor representing the output of the block
:rtype: Tensor
"""
img_out = self.lrelu(self.conv(x))
return img_out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_in_channels': 4, 'num_out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1))
buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(64)](buf0, primals_2,
buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del primals_2
return buf2, primals_1, primals_3, buf1
class Block(nn.Module):
def __init__(self):
"""Initialisation for a lower-level DeepLPF conv block
:returns: N/A
:rtype: N/A
"""
super(Block, self).__init__()
def conv3x3(self, in_channels, out_channels, stride=1):
"""Represents a convolution of shape 3x3
:param in_channels: number of input channels
:param out_channels: number of output channels
:param stride: the convolution stride
:returns: convolution function with the specified parameterisation
:rtype: function
"""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=
stride, padding=1, bias=True)
class ConvBlockNew(Block, nn.Module):
def __init__(self, num_in_channels, num_out_channels, stride=1):
"""Initialise function for the higher level convolution block
:param in_channels:
:param out_channels:
:param stride:
:param padding:
:returns:
:rtype:
"""
super(Block, self).__init__()
self.conv = self.conv3x3(num_in_channels, num_out_channels, stride=2)
self.lrelu = nn.LeakyReLU()
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ZombaSY/DeepLPF | ConvBlock | false | 1,325 | [
"BSD-3-Clause"
] | 0 | adce64ae01bc9e32f465a354cb1f6534f0d13597 | https://github.com/ZombaSY/DeepLPF/tree/adce64ae01bc9e32f465a354cb1f6534f0d13597 | import torch
import torch.nn as nn
class Block(nn.Module):
def __init__(self):
"""Initialisation for a lower-level DeepLPF conv block
:returns: N/A
:rtype: N/A
"""
super().__init__()
def conv3x3(self, in_channels, out_channels, stride=1):
"""Represents a convolution of shape 3x3
:param in_channels: number of input channels
:param out_channels: number of output channels
:param stride: the convolution stride
:returns: convolution function with the specified parameterisation
:rtype: function
"""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=
stride, padding=1, bias=True)
class Model(Block, nn.Module):
def __init__(self, num_in_channels, num_out_channels, stride=1):
"""Initialise function for the higher level convolution block
:param in_channels:
:param out_channels:
:param stride:
:param padding:
:returns:
:rtype:
"""
super().__init__()
self.conv = self.conv3x3(num_in_channels, num_out_channels, stride=2)
self.lrelu = nn.LeakyReLU()
def forward(self, x):
""" Forward function for the higher level convolution block
:param x: Tensor representing the input BxCxWxH, where B is the batch size, C is the number of channels, W and H are the width and image height
:returns: Tensor representing the output of the block
:rtype: Tensor
"""
img_out = self.lrelu(self.conv(x))
return img_out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
TorchMulScalar | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/p3/cp3qleddjiuuytozrtebx5pzf2ycpwtw4mkq2jsx7qqswymv2bm6.py
# Topologically Sorted Source Nodes: [r], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# r => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [r], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
from torch.nn.quantized.modules import FloatFunctional
class TorchMulScalar(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul_scalar(x, y)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
from torch.nn.quantized.modules import FloatFunctional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class TorchMulScalarNew(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| a1004123217/pytorch-mobile | TorchMulScalar | false | 1,326 | [
"MIT"
] | 0 | 97974af3259a2073efbc334d57841efbd3eaadfb | https://github.com/a1004123217/pytorch-mobile/tree/97974af3259a2073efbc334d57841efbd3eaadfb | import torch
import torch.nn as nn
import torch.nn.parallel
from torch.nn.quantized.modules import FloatFunctional
class Model(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul_scalar(x, y)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SelfAttentionBatch | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/er/cer6wyrsysb27mf4qvndrgb67as5vdr6kshph65tjwxcgctyw35g.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%mm,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/vm/cvmz5zb5hklcqpb7jp3aicaos5mk3fnzhheoduici43zwr4y2zyd.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tmp9 = tmp5 / tmp8
tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm]
extern_kernels.mm(buf1, primals_3, out=buf2)
buf5 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf2, buf5, 1, 4, grid=grid(1), stream=stream0)
buf6 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf5, (1, 4), (0, 1), 0), primals_2, out=buf6)
del buf5
return (reinterpret_tensor(buf6, (4, ), (1, ), 0), buf1, buf2, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), reinterpret_tensor(primals_3, (1, 4), (1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
class SelfAttentionBatch(nn.Module):
def __init__(self, dim, da, alpha=0.2, dropout=0.5):
super(SelfAttentionBatch, self).__init__()
self.dim = dim
self.da = da
self.alpha = alpha
self.dropout = dropout
self.a = nn.Parameter(torch.zeros(size=(self.dim, self.da)),
requires_grad=True)
self.b = nn.Parameter(torch.zeros(size=(self.da, 1)), requires_grad
=True)
nn.init.xavier_uniform_(self.a.data, gain=1.414)
nn.init.xavier_uniform_(self.b.data, gain=1.414)
def forward(self, h):
e = torch.matmul(torch.tanh(torch.matmul(h, self.a)), self.b).squeeze(
dim=1)
attention = F.softmax(e, dim=0)
return torch.matmul(attention, h)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'dim': 4, 'da': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tmp9 = tmp5 / tmp8
tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp9, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(16)](buf1, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(buf1, primals_3, out=buf2)
buf5 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused__softmax_1[grid(1)](buf2, buf5, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
buf6 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (1, 4), (0, 1), 0),
primals_2, out=buf6)
del buf5
return reinterpret_tensor(buf6, (4,), (1,), 0
), buf1, buf2, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), reinterpret_tensor(primals_3, (1, 4), (1, 1), 0)
class SelfAttentionBatchNew(nn.Module):
def __init__(self, dim, da, alpha=0.2, dropout=0.5):
super(SelfAttentionBatchNew, self).__init__()
self.dim = dim
self.da = da
self.alpha = alpha
self.dropout = dropout
self.a = nn.Parameter(torch.zeros(size=(self.dim, self.da)),
requires_grad=True)
self.b = nn.Parameter(torch.zeros(size=(self.da, 1)), requires_grad
=True)
nn.init.xavier_uniform_(self.a.data, gain=1.414)
nn.init.xavier_uniform_(self.b.data, gain=1.414)
def forward(self, input_0):
primals_1 = self.a
primals_3 = self.b
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Zilize/CRSLab | SelfAttentionBatch | false | 1,327 | [
"MIT"
] | 0 | fb357d0dfb7d2cf7b67b892d98e52032a31ca564 | https://github.com/Zilize/CRSLab/tree/fb357d0dfb7d2cf7b67b892d98e52032a31ca564 | import torch
from torch import nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, dim, da, alpha=0.2, dropout=0.5):
super().__init__()
self.dim = dim
self.da = da
self.alpha = alpha
self.dropout = dropout
self.a = nn.Parameter(torch.zeros(size=(self.dim, self.da)),
requires_grad=True)
self.b = nn.Parameter(torch.zeros(size=(self.da, 1)), requires_grad
=True)
nn.init.xavier_uniform_(self.a.data, gain=1.414)
nn.init.xavier_uniform_(self.b.data, gain=1.414)
def forward(self, h):
e = torch.matmul(torch.tanh(torch.matmul(h, self.a)), self.b).squeeze(
dim=1)
attention = F.softmax(e, dim=0)
return torch.matmul(attention, h)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
Swish | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/xe/cxejxkqtxrljth4tyzjublg5tugf3him5iha62nf2gwemawndksr.py
# Topologically Sorted Source Nodes: [mul, sigmoid, mul_1], Original ATen: [aten.mul, aten.sigmoid]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# sigmoid => sigmoid
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp2 * tmp0
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp0 * tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sigmoid, mul_1], Original ATen: [aten.mul, aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
return (buf0, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Swish(nn.Module):
def __init__(self):
super(Swish, self).__init__()
self.beta = nn.Parameter(torch.tensor(1.0))
def forward(self, x):
return x * torch.sigmoid(self.beta * x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp2 * tmp0
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp0 * tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0[grid(256)](primals_2, primals_1,
buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
return buf0, primals_1, primals_2
class SwishNew(nn.Module):
def __init__(self):
super(SwishNew, self).__init__()
self.beta = nn.Parameter(torch.tensor(1.0))
def forward(self, input_0):
primals_1 = self.beta
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| a07458666/UncertaintyFlow | Swish | false | 1,328 | [
"MIT"
] | 0 | cef2512901d4e27bb22fc3997522cd47c03b569c | https://github.com/a07458666/UncertaintyFlow/tree/cef2512901d4e27bb22fc3997522cd47c03b569c | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
self.beta = nn.Parameter(torch.tensor(1.0))
def forward(self, x):
return x * torch.sigmoid(self.beta * x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
MultiHeadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/7c/c7c7bmvdtfwg2cjdph3ycnfts3mkxkveriaohpvvm4wxz2v7zwbx.py
# Topologically Sorted Source Nodes: [query_1, attention_scores], Original ATen: [aten.div, aten.clone]
# Source node to ATen node mapping:
# attention_scores => clone
# query_1 => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_3, 1.0), kwargs = {})
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_div_0 = async_compile.triton('triton_poi_fused_clone_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_div_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/3v/c3vbbnaoh2ala54xhjzwr7f44xb5tmg7hvdni6ytelrhdlekfg4j.py
# Topologically Sorted Source Nodes: [attention_scores_1, attention_probs], Original ATen: [aten.add, aten._softmax]
# Source node to ATen node mapping:
# attention_probs => amax, exp, sub, sum_1
# attention_scores_1 => add
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %primals_10), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_1 = async_compile.triton('triton_poi_fused__softmax_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tl.store(out_ptr0 + (x2), tmp14, xmask)
tl.store(out_ptr1 + (x2), tmp25, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/5b/c5bxb5ewlk2yffmquilpokgd2m43xu4sfizb2gbivqnyerkx3tao.py
# Topologically Sorted Source Nodes: [attention_scores_1, attention_probs], Original ATen: [aten.add, aten._softmax]
# Source node to ATen node mapping:
# attention_probs => amax, div_2, exp, sub
# attention_scores_1 => add
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %primals_10), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_add_2 = async_compile.triton('triton_poi_fused__softmax_add_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/3r/c3rsks6vi53ggj2qfjmhu7vc3vqskqtyr7gc4fdp74wzt6pdrjx4.py
# Topologically Sorted Source Nodes: [context], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [context_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [query_1, attention_scores], Original ATen: [aten.div, aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_div_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
triton_poi_fused_clone_div_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores_1, attention_probs], Original ATen: [aten.add, aten._softmax]
triton_poi_fused__softmax_add_1.run(buf5, primals_10, buf6, buf7, 64, grid=grid(64), stream=stream0)
buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [attention_scores_1, attention_probs], Original ATen: [aten.add, aten._softmax]
triton_poi_fused__softmax_add_2.run(buf8, primals_10, buf6, buf7, 256, grid=grid(256), stream=stream0)
del primals_10
buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [context], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf2, primals_8, buf9, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [context_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf10, buf11, 16, 4, grid=grid(16, 4), stream=stream0)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [output_states], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_12, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_12
return (reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf8, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), primals_11, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
import torch.utils.data
import torch.optim
class MultiHeadAttention(nn.Module):
"""
Multi-head scaled dot-product attention layer.
Args:
hidden_size: size of the embeddings in the model, also known as d_model
num_attention_heads: number of heads in multi-head attention
attn_score_dropout: probability of dropout applied to attention scores
attn_layer_dropout: probability of dropout applied to the output of the
whole layer, but before layer normalization
"""
def __init__(self, hidden_size, num_attention_heads, attn_score_dropout
=0.0, attn_layer_dropout=0.0):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (hidden_size, num_attention_heads))
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.attn_head_size = int(hidden_size / num_attention_heads)
self.attn_scale = math.sqrt(math.sqrt(self.attn_head_size))
self.query_net = nn.Linear(hidden_size, hidden_size)
self.key_net = nn.Linear(hidden_size, hidden_size)
self.value_net = nn.Linear(hidden_size, hidden_size)
self.out_projection = nn.Linear(hidden_size, hidden_size)
self.attn_dropout = nn.Dropout(attn_score_dropout)
self.layer_dropout = nn.Dropout(attn_layer_dropout)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attn_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, queries, keys, values, attention_mask):
query = self.query_net(queries)
key = self.key_net(keys)
value = self.value_net(values)
query = self.transpose_for_scores(query) / self.attn_scale
key = self.transpose_for_scores(key) / self.attn_scale
value = self.transpose_for_scores(value)
attention_scores = torch.matmul(query, key.transpose(-1, -2))
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = torch.softmax(attention_scores, dim=-1)
attention_probs = self.attn_dropout(attention_probs)
context = torch.matmul(attention_probs, value)
context = context.permute(0, 2, 1, 3).contiguous()
new_context_shape = context.size()[:-2] + (self.hidden_size,)
context = context.view(*new_context_shape)
output_states = self.out_projection(context)
output_states = self.layer_dropout(output_states)
return output_states
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'num_attention_heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
from torch import nn
import torch.utils.data
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_div_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_add_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tl.store(out_ptr0 + x2, tmp14, xmask)
tl.store(out_ptr1 + x2, tmp25, xmask)
@triton.jit
def triton_poi_fused__softmax_add_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(in_out_ptr0 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_div_0[grid(16, 4)](buf0, primals_2, buf3, 16,
4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_div_0[grid(16, 4)](buf1, primals_5, buf4, 16,
4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_add_1[grid(64)](buf5, primals_10, buf6,
buf7, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_add_2[grid(256)](buf8, primals_10, buf6,
buf7, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_10
buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_clone_3[grid(16, 4)](buf2, primals_8, buf9, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_8
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf6
triton_poi_fused_clone_4[grid(16, 4)](buf10, buf11, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0)
del buf10
extern_kernels.addmm(primals_12, reinterpret_tensor(buf11, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf12)
del primals_12
return reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0
), buf8, reinterpret_tensor(buf11, (16, 4), (4, 1), 0
), primals_11, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class MultiHeadAttentionNew(nn.Module):
"""
Multi-head scaled dot-product attention layer.
Args:
hidden_size: size of the embeddings in the model, also known as d_model
num_attention_heads: number of heads in multi-head attention
attn_score_dropout: probability of dropout applied to attention scores
attn_layer_dropout: probability of dropout applied to the output of the
whole layer, but before layer normalization
"""
def __init__(self, hidden_size, num_attention_heads, attn_score_dropout
=0.0, attn_layer_dropout=0.0):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (hidden_size, num_attention_heads))
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.attn_head_size = int(hidden_size / num_attention_heads)
self.attn_scale = math.sqrt(math.sqrt(self.attn_head_size))
self.query_net = nn.Linear(hidden_size, hidden_size)
self.key_net = nn.Linear(hidden_size, hidden_size)
self.value_net = nn.Linear(hidden_size, hidden_size)
self.out_projection = nn.Linear(hidden_size, hidden_size)
self.attn_dropout = nn.Dropout(attn_score_dropout)
self.layer_dropout = nn.Dropout(attn_layer_dropout)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attn_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1, input_2, input_3):
primals_1 = self.query_net.weight
primals_2 = self.query_net.bias
primals_4 = self.key_net.weight
primals_5 = self.key_net.bias
primals_7 = self.value_net.weight
primals_8 = self.value_net.bias
primals_11 = self.out_projection.weight
primals_12 = self.out_projection.bias
primals_3 = input_0
primals_6 = input_1
primals_9 = input_2
primals_10 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
| Zenodia/NeMo | MultiHeadAttention | false | 1,329 | [
"Apache-2.0"
] | 0 | 3c288d8a7caf667c95444c39434e3ebc5f53d911 | https://github.com/Zenodia/NeMo/tree/3c288d8a7caf667c95444c39434e3ebc5f53d911 | import math
import torch
from torch import nn
import torch.utils.data
import torch.optim
class Model(nn.Module):
"""
Multi-head scaled dot-product attention layer.
Args:
hidden_size: size of the embeddings in the model, also known as d_model
num_attention_heads: number of heads in multi-head attention
attn_score_dropout: probability of dropout applied to attention scores
attn_layer_dropout: probability of dropout applied to the output of the
whole layer, but before layer normalization
"""
def __init__(self, hidden_size, num_attention_heads, attn_score_dropout
=0.0, attn_layer_dropout=0.0):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (hidden_size, num_attention_heads))
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.attn_head_size = int(hidden_size / num_attention_heads)
self.attn_scale = math.sqrt(math.sqrt(self.attn_head_size))
self.query_net = nn.Linear(hidden_size, hidden_size)
self.key_net = nn.Linear(hidden_size, hidden_size)
self.value_net = nn.Linear(hidden_size, hidden_size)
self.out_projection = nn.Linear(hidden_size, hidden_size)
self.attn_dropout = nn.Dropout(attn_score_dropout)
self.layer_dropout = nn.Dropout(attn_layer_dropout)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attn_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, queries, keys, values, attention_mask):
query = self.query_net(queries)
key = self.key_net(keys)
value = self.value_net(values)
query = self.transpose_for_scores(query) / self.attn_scale
key = self.transpose_for_scores(key) / self.attn_scale
value = self.transpose_for_scores(value)
attention_scores = torch.matmul(query, key.transpose(-1, -2))
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = torch.softmax(attention_scores, dim=-1)
attention_probs = self.attn_dropout(attention_probs)
context = torch.matmul(attention_probs, value)
context = context.permute(0, 2, 1, 3).contiguous()
new_context_shape = context.size()[:-2] + (self.hidden_size,)
context = context.view(*new_context_shape)
output_states = self.out_projection(context)
output_states = self.layer_dropout(output_states)
return output_states
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
LambdaLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/rf/crfk3gc6xui3eq5qwqwlv4vqt3zrph5hbf76zxtthwio4k44wyjq.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# pad => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%slice_4, [0, 0, 0, 0, 1, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 4) % 6
x0 = xindex % 2
x3 = (xindex // 24)
x5 = (xindex // 2) % 12
x6 = xindex
tmp0 = (-1) + x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + ((-16) + (2*x0) + (8*x5) + (64*x3)), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tl.store(out_ptr0 + (x6), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 2, 2), (24, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 96, grid=grid(96), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class LambdaLayer(nn.Module):
def __init__(self, planes):
super(LambdaLayer, self).__init__()
self.planes = planes
def forward(self, x):
return F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, self.planes // 4, self
.planes // 4), 'constant', 0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'planes': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 4 % 6
x0 = xindex % 2
x3 = xindex // 24
x5 = xindex // 2 % 12
x6 = xindex
tmp0 = -1 + x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (-16 + 2 * x0 + 8 * x5 + 64 * x3), tmp5 &
xmask, eviction_policy='evict_last', other=0.0)
tl.store(out_ptr0 + x6, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 2, 2), (24, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(96)](arg0_1, buf0, 96,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class LambdaLayerNew(nn.Module):
def __init__(self, planes):
super(LambdaLayerNew, self).__init__()
self.planes = planes
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| ZonghaiZhu/EZBM | LambdaLayer | false | 1,330 | [
"MIT"
] | 0 | b4f6fbd10598c79f144b778ef848554ac62a173a | https://github.com/ZonghaiZhu/EZBM/tree/b4f6fbd10598c79f144b778ef848554ac62a173a | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, planes):
super().__init__()
self.planes = planes
def forward(self, x):
return F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, self.planes // 4, self
.planes // 4), 'constant', 0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
AttentionVasvani | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/qm/cqmguzcmowp324butnxtk4lry2u7s726tvvgti2vcpiordqsyw2v.py
# Topologically Sorted Source Nodes: [mul, x, norm, sqrt, x_1], Original ATen: [aten.mul, aten.sum, aten.linalg_vector_norm, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# mul => mul
# norm => abs_1, pow_2, sum_2
# sqrt => sqrt
# x => sum_1
# x_1 => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 1.0), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%pow_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sqrt), kwargs = {})
triton_poi_fused_div_linalg_vector_norm_mul_sqrt_sum_0 = async_compile.triton('triton_poi_fused_div_linalg_vector_norm_mul_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_vector_norm_mul_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_mul_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp4 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask)
tmp7 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp8 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask)
tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp12 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tl_math.abs(tmp0)
tmp16 = tl_math.abs(tmp3)
tmp17 = tmp15 + tmp16
tmp18 = tl_math.abs(tmp7)
tmp19 = tmp17 + tmp18
tmp20 = tl_math.abs(tmp11)
tmp21 = tmp19 + tmp20
tmp22 = libdevice.sqrt(tmp21)
tmp23 = tmp14 / tmp22
tl.store(out_ptr0 + (x2), tmp23, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, x, norm, sqrt, x_1], Original ATen: [aten.mul, aten.sum, aten.linalg_vector_norm, aten.sqrt, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_linalg_vector_norm_mul_sqrt_sum_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class AttentionVasvani(nn.Module):
def __init__(self, encoder_dim=128, decoder_dim=128):
super(AttentionVasvani, self).__init__()
def forward(self, k, q):
x = torch.sum(k * q, dim=1, keepdim=True)
x /= torch.sqrt(torch.norm(k, p=1, dim=1, keepdim=True))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_mul_sqrt_sum_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp4 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask)
tmp7 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask)
tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp12 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tl_math.abs(tmp0)
tmp16 = tl_math.abs(tmp3)
tmp17 = tmp15 + tmp16
tmp18 = tl_math.abs(tmp7)
tmp19 = tmp17 + tmp18
tmp20 = tl_math.abs(tmp11)
tmp21 = tmp19 + tmp20
tmp22 = libdevice.sqrt(tmp21)
tmp23 = tmp14 / tmp22
tl.store(out_ptr0 + x2, tmp23, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_linalg_vector_norm_mul_sqrt_sum_0[grid(64)](arg0_1
, arg1_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class AttentionVasvaniNew(nn.Module):
def __init__(self, encoder_dim=128, decoder_dim=128):
super(AttentionVasvaniNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| a1247418/MT18_LH_human-sleep-classification | AttentionVasvani | false | 1,333 | [
"MIT"
] | 0 | c4a40571390aaa14b1cc8a458100e21252fe05d2 | https://github.com/a1247418/MT18_LH_human-sleep-classification/tree/c4a40571390aaa14b1cc8a458100e21252fe05d2 | import torch
from torch import nn
class Model(nn.Module):
def __init__(self, encoder_dim=128, decoder_dim=128):
super().__init__()
def forward(self, k, q):
x = torch.sum(k * q, dim=1, keepdim=True)
x /= torch.sqrt(torch.norm(k, p=1, dim=1, keepdim=True))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
LocalResponseNormLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/6w/c6wgqvz4kdrnqiec7t2vuvmkn46mmwv4k4fko7qcq7iqq7l5jzmk.py
# Topologically Sorted Source Nodes: [local_response_norm], Original ATen: [aten.constant_pad_nd, aten.avg_pool3d, aten.mul, aten.add, aten.pow, aten.div]
# Source node to ATen node mapping:
# local_response_norm => add, avg_pool3d, constant_pad_nd, div, mul_1, pow_1
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%view, [0, 0, 0, 0, 2, 2], 0.0), kwargs = {})
# %avg_pool3d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool3d.default](args = (%constant_pad_nd, [5, 1, 1], [1, 1, 1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 9.999999747378752e-05), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1.0), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.75), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_1), kwargs = {})
triton_poi_fused_add_avg_pool3d_constant_pad_nd_div_mul_pow_0 = async_compile.triton('triton_poi_fused_add_avg_pool3d_constant_pad_nd_div_mul_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool3d_constant_pad_nd_div_mul_pow_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_avg_pool3d_constant_pad_nd_div_mul_pow_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 4
x3 = xindex
tmp48 = tl.load(in_ptr0 + (x3), xmask)
tmp0 = (-2) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + ((-32) + x3), tmp5 & xmask, other=0.0)
tmp7 = tmp6 * tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp5, tmp7, tmp8)
tmp10 = (-1) + x1
tmp11 = tmp10 >= tmp1
tmp12 = tmp10 < tmp3
tmp13 = tmp11 & tmp12
tmp14 = tl.load(in_ptr0 + ((-16) + x3), tmp13 & xmask, other=0.0)
tmp15 = tmp14 * tmp14
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp13, tmp15, tmp16)
tmp18 = tmp17 + tmp9
tmp19 = x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tl.load(in_ptr0 + (x3), tmp22 & xmask, other=0.0)
tmp24 = tmp23 * tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp22, tmp24, tmp25)
tmp27 = tmp26 + tmp18
tmp28 = 1 + x1
tmp29 = tmp28 >= tmp1
tmp30 = tmp28 < tmp3
tmp31 = tmp29 & tmp30
tmp32 = tl.load(in_ptr0 + (16 + x3), tmp31 & xmask, other=0.0)
tmp33 = tmp32 * tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp31, tmp33, tmp34)
tmp36 = tmp35 + tmp27
tmp37 = 2 + x1
tmp38 = tmp37 >= tmp1
tmp39 = tmp37 < tmp3
tmp40 = tmp38 & tmp39
tmp41 = tl.load(in_ptr0 + (32 + x3), tmp40 & xmask, other=0.0)
tmp42 = tmp41 * tmp41
tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype)
tmp44 = tl.where(tmp40, tmp42, tmp43)
tmp45 = tmp44 + tmp36
tmp46 = 0.2
tmp47 = tmp45 * tmp46
tmp49 = 9.999999747378752e-05
tmp50 = tmp47 * tmp49
tmp51 = 1.0
tmp52 = tmp50 + tmp51
tmp53 = 0.75
tmp54 = libdevice.pow(tmp52, tmp53)
tmp55 = tmp48 / tmp54
tl.store(in_out_ptr0 + (x3), tmp55, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [local_response_norm], Original ATen: [aten.constant_pad_nd, aten.avg_pool3d, aten.mul, aten.add, aten.pow, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_avg_pool3d_constant_pad_nd_div_mul_pow_0.run(buf1, arg0_1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class LocalResponseNormLayer(nn.Module):
def forward(self, tensor, size=5, alpha=9.999999747378752e-05, beta=
0.75, k=1.0):
return F.local_response_norm(tensor, size=size, alpha=alpha, beta=
beta, k=k)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_avg_pool3d_constant_pad_nd_div_mul_pow_0(in_out_ptr0,
in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
tmp48 = tl.load(in_ptr0 + x3, xmask)
tmp0 = -2 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (-32 + x3), tmp5 & xmask, other=0.0)
tmp7 = tmp6 * tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp5, tmp7, tmp8)
tmp10 = -1 + x1
tmp11 = tmp10 >= tmp1
tmp12 = tmp10 < tmp3
tmp13 = tmp11 & tmp12
tmp14 = tl.load(in_ptr0 + (-16 + x3), tmp13 & xmask, other=0.0)
tmp15 = tmp14 * tmp14
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp13, tmp15, tmp16)
tmp18 = tmp17 + tmp9
tmp19 = x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tl.load(in_ptr0 + x3, tmp22 & xmask, other=0.0)
tmp24 = tmp23 * tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp22, tmp24, tmp25)
tmp27 = tmp26 + tmp18
tmp28 = 1 + x1
tmp29 = tmp28 >= tmp1
tmp30 = tmp28 < tmp3
tmp31 = tmp29 & tmp30
tmp32 = tl.load(in_ptr0 + (16 + x3), tmp31 & xmask, other=0.0)
tmp33 = tmp32 * tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp31, tmp33, tmp34)
tmp36 = tmp35 + tmp27
tmp37 = 2 + x1
tmp38 = tmp37 >= tmp1
tmp39 = tmp37 < tmp3
tmp40 = tmp38 & tmp39
tmp41 = tl.load(in_ptr0 + (32 + x3), tmp40 & xmask, other=0.0)
tmp42 = tmp41 * tmp41
tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype)
tmp44 = tl.where(tmp40, tmp42, tmp43)
tmp45 = tmp44 + tmp36
tmp46 = 0.2
tmp47 = tmp45 * tmp46
tmp49 = 9.999999747378752e-05
tmp50 = tmp47 * tmp49
tmp51 = 1.0
tmp52 = tmp50 + tmp51
tmp53 = 0.75
tmp54 = libdevice.pow(tmp52, tmp53)
tmp55 = tmp48 / tmp54
tl.store(in_out_ptr0 + x3, tmp55, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1),
torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_avg_pool3d_constant_pad_nd_div_mul_pow_0[grid(256)
](buf1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf1,
class LocalResponseNormLayerNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| a-kore/lucent | LocalResponseNormLayer | false | 1,334 | [
"Apache-2.0"
] | 0 | 6b2b4dfea45c36c99e16f9923104a532df80e0a8 | https://github.com/a-kore/lucent/tree/6b2b4dfea45c36c99e16f9923104a532df80e0a8 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def forward(self, tensor, size=5, alpha=9.999999747378752e-05, beta=
0.75, k=1.0):
return F.local_response_norm(tensor, size=size, alpha=alpha, beta=
beta, k=k)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
HSigmoid | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/ob/cobnk3fpbior34ymmaa72y3smp2qzgbqlaxb7rqscexhdfgsajou.py
# Topologically Sorted Source Nodes: [r, hardtanh, r_1], Original ATen: [aten.add, aten.hardtanh, aten.mul]
# Source node to ATen node mapping:
# hardtanh => clamp_max, clamp_min
# r => add
# r_1 => mul
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.16666666666666666), kwargs = {})
triton_poi_fused_add_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [r, hardtanh, r_1], Original ATen: [aten.add, aten.hardtanh, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
from torch.nn.quantized.modules import FloatFunctional
class TorchAddScalar(nn.Module):
""" Wrapper around torch.add so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.add_func = FloatFunctional()
def forward(self, x, y):
return self.add_func.add_scalar(x, y)
class TorchMulScalar(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul_scalar(x, y)
class HSigmoid(nn.Module):
def __init__(self):
super().__init__()
self.relu = nn.ReLU6(inplace=True)
self.add_scalar = TorchAddScalar()
self.mul_scalar = TorchMulScalar()
def forward(self, x):
return self.mul_scalar(self.relu(self.add_scalar(x, 3.0)), 1.0 / 6.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.parallel
from torch.nn.quantized.modules import FloatFunctional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class TorchAddScalar(nn.Module):
""" Wrapper around torch.add so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.add_func = FloatFunctional()
def forward(self, x, y):
return self.add_func.add_scalar(x, y)
class TorchMulScalar(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul_scalar(x, y)
class HSigmoidNew(nn.Module):
def __init__(self):
super().__init__()
self.relu = nn.ReLU6(inplace=True)
self.add_scalar = TorchAddScalar()
self.mul_scalar = TorchMulScalar()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| a1004123217/pytorch-mobile | HSigmoid | false | 1,335 | [
"MIT"
] | 0 | 97974af3259a2073efbc334d57841efbd3eaadfb | https://github.com/a1004123217/pytorch-mobile/tree/97974af3259a2073efbc334d57841efbd3eaadfb | import torch
import torch.nn as nn
import torch.nn.parallel
from torch.nn.quantized.modules import FloatFunctional
class TorchAddScalar(nn.Module):
""" Wrapper around torch.add so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.add_func = FloatFunctional()
def forward(self, x, y):
return self.add_func.add_scalar(x, y)
class TorchMulScalar(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul_scalar(x, y)
class Model(nn.Module):
def __init__(self):
super().__init__()
self.relu = nn.ReLU6(inplace=True)
self.add_scalar = TorchAddScalar()
self.mul_scalar = TorchMulScalar()
def forward(self, x):
return self.mul_scalar(self.relu(self.add_scalar(x, 3.0)), 1.0 / 6.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
BinaryClassifier | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/au/cau6qypw2vz4drppp6yr6chutchyhnniousxhhlq2y5r3yu3gep5.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/q5/cq52p2qap7uob2ddnn4qeh67r3muutkp3yhbkqpu4eqaemol3idl.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
triton_poi_fused_relu_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf5, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf5, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf3, buf5, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
class BinaryClassifier(nn.Module):
"""
Define a neural network that performs binary classification.
The network should accept your number of features as input, and produce
a single sigmoid value, that can be rounded to a label: 0 or 1, as output.
Notes on training:
To train a binary classifier in PyTorch, use BCELoss.
BCELoss is binary cross entropy loss, documentation: https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss
"""
def __init__(self, input_features, hidden_dim, output_dim):
"""
Initialize the model by setting up linear layers.
Use the input parameters to help define the layers of your model.
:param input_features: the number of input features in your training/test data
:param hidden_dim: helps define the number of nodes in the hidden layer(s)
:param output_dim: the number of outputs you want to produce
"""
super(BinaryClassifier, self).__init__()
self.input_dim = input_features
self.fc1 = nn.Linear(self.input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, output_dim)
self.dropout = nn.Dropout(0.25)
self.sig = nn.Sigmoid()
def forward(self, x):
"""
Perform a forward pass of our model on input features, x.
:param x: A batch of input features of size (batch_size, input_features)
:return: A single, sigmoid-activated value as output
"""
x = x.view(-1, self.input_dim)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = F.relu(self.fc2(x))
x = self.dropout(x)
x = self.fc3(x)
return self.sig(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_features': 4, 'hidden_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](buf1, primals_3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4
), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_0[grid(256)](buf3, primals_5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (4, 4), (1, 4
), 0), out=buf4)
buf5 = buf4
del buf4
triton_poi_fused_sigmoid_1[grid(256)](buf5, primals_7, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_7
return buf5, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), buf1, buf3, buf5, primals_6, primals_4
class BinaryClassifierNew(nn.Module):
"""
Define a neural network that performs binary classification.
The network should accept your number of features as input, and produce
a single sigmoid value, that can be rounded to a label: 0 or 1, as output.
Notes on training:
To train a binary classifier in PyTorch, use BCELoss.
BCELoss is binary cross entropy loss, documentation: https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss
"""
def __init__(self, input_features, hidden_dim, output_dim):
"""
Initialize the model by setting up linear layers.
Use the input parameters to help define the layers of your model.
:param input_features: the number of input features in your training/test data
:param hidden_dim: helps define the number of nodes in the hidden layer(s)
:param output_dim: the number of outputs you want to produce
"""
super(BinaryClassifierNew, self).__init__()
self.input_dim = input_features
self.fc1 = nn.Linear(self.input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, output_dim)
self.dropout = nn.Dropout(0.25)
self.sig = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| ZombieSocrates/ml-udacity-case-studies | BinaryClassifier | false | 1,336 | [
"MIT"
] | 0 | e4552a11276dc7564c51dac86ae854ca92a88659 | https://github.com/ZombieSocrates/ml-udacity-case-studies/tree/e4552a11276dc7564c51dac86ae854ca92a88659 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
class Model(nn.Module):
"""
Define a neural network that performs binary classification.
The network should accept your number of features as input, and produce
a single sigmoid value, that can be rounded to a label: 0 or 1, as output.
Notes on training:
To train a binary classifier in PyTorch, use BCELoss.
BCELoss is binary cross entropy loss, documentation: https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss
"""
def __init__(self, input_features, hidden_dim, output_dim):
"""
Initialize the model by setting up linear layers.
Use the input parameters to help define the layers of your model.
:param input_features: the number of input features in your training/test data
:param hidden_dim: helps define the number of nodes in the hidden layer(s)
:param output_dim: the number of outputs you want to produce
"""
super().__init__()
self.input_dim = input_features
self.fc1 = nn.Linear(self.input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, output_dim)
self.dropout = nn.Dropout(0.25)
self.sig = nn.Sigmoid()
def forward(self, x):
"""
Perform a forward pass of our model on input features, x.
:param x: A batch of input features of size (batch_size, input_features)
:return: A single, sigmoid-activated value as output
"""
x = x.view(-1, self.input_dim)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = F.relu(self.fc2(x))
x = self.dropout(x)
x = self.fc3(x)
return self.sig(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Actor | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/gj/cgjannwrbcahjcq5axj3nygglvwwn2brfqpje6x4nfwgd55teghg.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4096
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ml/cml2b5c636nadrg47xkvpjoo5j2nqtzxphyjve65dkdrm4btjxjb.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/md/cmdemqqhzykbln4aouhkgtuc32rwqfphtl333buie7a3cyqmzfhd.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_2 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/y4/cy44nput6v6foharb6yczn7nmd3w7s6cpcch7vdwijt5dqbe4f3f.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_3 => relu_3
# Graph fragment:
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/z7/cz7bvxb2tmtiwogcfbhcg47wdtutc5jsahxqpwod466tgqctbce6.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_4 => relu_4
# Graph fragment:
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/nj/cnjp4kmla4ibygxlqzzmj4z2xtf376pwlytnq62zauspcgv3tdef.py
# Topologically Sorted Source Nodes: [action_prob], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# action_prob => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/e3/ce3hlo6so3huwa5bkdan4qv73wwjoohgzygwbiis4hhxudb6wgej.py
# Topologically Sorted Source Nodes: [action_prob], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# action_prob => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4096, 4), (4, 1))
assert_size_stride(primals_2, (4096, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2048, 4096), (4096, 1))
assert_size_stride(primals_5, (2048, ), (1, ))
assert_size_stride(primals_6, (1024, 2048), (2048, 1))
assert_size_stride(primals_7, (1024, ), (1, ))
assert_size_stride(primals_8, (512, 1024), (1024, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (256, 512), (512, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (4, 256), (256, 1))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4096), (4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4096), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4096), (65536, 16384, 4096, 1), 0); del buf0 # reuse
buf17 = empty_strided_cuda((4, 4, 4, 4096), (65536, 16384, 4096, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf17, 262144, grid=grid(262144), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4096), (4096, 1), 0), reinterpret_tensor(primals_4, (4096, 2048), (1, 4096), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2048), (32768, 8192, 2048, 1), 0); del buf2 # reuse
buf16 = empty_strided_cuda((4, 4, 4, 2048), (32768, 8192, 2048, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf16, 131072, grid=grid(131072), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 2048), (2048, 1), 0), reinterpret_tensor(primals_6, (2048, 1024), (1, 2048), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf4 # reuse
buf15 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf15, 65536, grid=grid(65536), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_8, (1024, 512), (1, 1024), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf6 # reuse
buf14 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_3.run(buf7, primals_9, buf14, 32768, grid=grid(32768), stream=stream0)
del primals_9
buf8 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (64, 512), (512, 1), 0), reinterpret_tensor(primals_10, (512, 256), (1, 512), 0), out=buf8)
buf9 = reinterpret_tensor(buf8, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf8 # reuse
buf13 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_4.run(buf9, primals_11, buf13, 16384, grid=grid(16384), stream=stream0)
del primals_11
buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, reinterpret_tensor(buf9, (64, 256), (256, 1), 0), reinterpret_tensor(primals_12, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf10)
del primals_13
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [action_prob], Original ATen: [aten._softmax]
triton_poi_fused__softmax_5.run(buf10, buf11, 256, grid=grid(256), stream=stream0)
buf12 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [action_prob], Original ATen: [aten._softmax]
triton_poi_fused__softmax_6.run(buf11, buf12, 256, grid=grid(256), stream=stream0)
del buf11
return (buf12, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4096), (4096, 1), 0), reinterpret_tensor(buf3, (64, 2048), (2048, 1), 0), reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0), reinterpret_tensor(buf7, (64, 512), (512, 1), 0), reinterpret_tensor(buf9, (64, 256), (256, 1), 0), buf12, primals_12, buf13, primals_10, buf14, primals_8, buf15, primals_6, buf16, primals_4, buf17, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4096, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2048, 4096), (4096, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1024, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Actor(nn.Module):
def __init__(self, numberOfInputs, numberOfOutputs):
super(Actor, self).__init__()
self.fc1 = nn.Linear(numberOfInputs, 4096)
self.fc2 = nn.Linear(4096, 2048)
self.fc3 = nn.Linear(2048, 1024)
self.fc4 = nn.Linear(1024, 512)
self.fc5 = nn.Linear(512, 256)
self.action_head = nn.Linear(256, numberOfOutputs)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
x = F.relu(self.fc5(x))
action_prob = F.softmax(self.action_head(x), dim=1)
return action_prob
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'numberOfInputs': 4, 'numberOfOutputs': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 4096
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4096, 4), (4, 1))
assert_size_stride(primals_2, (4096,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2048, 4096), (4096, 1))
assert_size_stride(primals_5, (2048,), (1,))
assert_size_stride(primals_6, (1024, 2048), (2048, 1))
assert_size_stride(primals_7, (1024,), (1,))
assert_size_stride(primals_8, (512, 1024), (1024, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (256, 512), (512, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (4, 256), (256, 1))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4096), (4096, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4096), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4096), (65536, 16384,
4096, 1), 0)
del buf0
buf17 = empty_strided_cuda((4, 4, 4, 4096), (65536, 16384, 4096, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(262144)](buf1,
primals_2, buf17, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2048), (2048, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4096), (4096, 1), 0
), reinterpret_tensor(primals_4, (4096, 2048), (1, 4096), 0),
out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2048), (32768, 8192, 2048,
1), 0)
del buf2
buf16 = empty_strided_cuda((4, 4, 4, 2048), (32768, 8192, 2048, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(131072)](buf3,
primals_5, buf16, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 2048), (2048, 1), 0
), reinterpret_tensor(primals_6, (2048, 1024), (1, 2048), 0),
out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1024), (16384, 4096, 1024,
1), 0)
del buf4
buf15 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(65536)](buf5,
primals_7, buf15, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0
), reinterpret_tensor(primals_8, (1024, 512), (1, 1024), 0),
out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 512), (8192, 2048, 512, 1), 0
)
del buf6
buf14 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_3[grid(32768)](buf7,
primals_9, buf14, 32768, XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
buf8 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (64, 512), (512, 1), 0),
reinterpret_tensor(primals_10, (512, 256), (1, 512), 0), out=buf8)
buf9 = reinterpret_tensor(buf8, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf8
buf13 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_4[grid(16384)](buf9,
primals_11, buf13, 16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_13, reinterpret_tensor(buf9, (64, 256),
(256, 1), 0), reinterpret_tensor(primals_12, (256, 4), (1, 256),
0), alpha=1, beta=1, out=buf10)
del primals_13
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_5[grid(256)](buf10, buf11, 256, XBLOCK=
128, num_warps=4, num_stages=1)
buf12 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf10
triton_poi_fused__softmax_6[grid(256)](buf11, buf12, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del buf11
return (buf12, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(buf1, (64, 4096), (4096, 1), 0),
reinterpret_tensor(buf3, (64, 2048), (2048, 1), 0),
reinterpret_tensor(buf5, (64, 1024), (1024, 1), 0),
reinterpret_tensor(buf7, (64, 512), (512, 1), 0),
reinterpret_tensor(buf9, (64, 256), (256, 1), 0), buf12, primals_12,
buf13, primals_10, buf14, primals_8, buf15, primals_6, buf16,
primals_4, buf17)
class ActorNew(nn.Module):
def __init__(self, numberOfInputs, numberOfOutputs):
super(ActorNew, self).__init__()
self.fc1 = nn.Linear(numberOfInputs, 4096)
self.fc2 = nn.Linear(4096, 2048)
self.fc3 = nn.Linear(2048, 1024)
self.fc4 = nn.Linear(1024, 512)
self.fc5 = nn.Linear(512, 256)
self.action_head = nn.Linear(256, numberOfOutputs)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_10 = self.fc5.weight
primals_11 = self.fc5.bias
primals_12 = self.action_head.weight
primals_13 = self.action_head.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| ZY-KK/panda | Actor | false | 1,337 | [
"MIT"
] | 0 | 48fcbd65d563ef74aab2554be8de7662560c43da | https://github.com/ZY-KK/panda/tree/48fcbd65d563ef74aab2554be8de7662560c43da | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, numberOfInputs, numberOfOutputs):
super().__init__()
self.fc1 = nn.Linear(numberOfInputs, 4096)
self.fc2 = nn.Linear(4096, 2048)
self.fc3 = nn.Linear(2048, 1024)
self.fc4 = nn.Linear(1024, 512)
self.fc5 = nn.Linear(512, 256)
self.action_head = nn.Linear(256, numberOfOutputs)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
x = F.relu(self.fc5(x))
action_prob = F.softmax(self.action_head(x), dim=1)
return action_prob
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
HSwish | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/bh/cbhazxoqy4wl4yfu6xgac7ksqa6ufgca2qxjplpx6os5mnfgswij.py
# Topologically Sorted Source Nodes: [r, hardtanh, r_1, r_2], Original ATen: [aten.add, aten.hardtanh, aten.mul]
# Source node to ATen node mapping:
# hardtanh => clamp_max, clamp_min
# r => add
# r_1 => mul
# r_2 => mul_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.16666666666666666), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %mul), kwargs = {})
triton_poi_fused_add_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tmp9 = tmp0 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [r, hardtanh, r_1, r_2], Original ATen: [aten.add, aten.hardtanh, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
from torch.nn.quantized.modules import FloatFunctional
class TorchAddScalar(nn.Module):
""" Wrapper around torch.add so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.add_func = FloatFunctional()
def forward(self, x, y):
return self.add_func.add_scalar(x, y)
class TorchMultiply(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul(x, y)
class TorchMulScalar(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul_scalar(x, y)
class HSigmoid(nn.Module):
def __init__(self):
super().__init__()
self.relu = nn.ReLU6(inplace=True)
self.add_scalar = TorchAddScalar()
self.mul_scalar = TorchMulScalar()
def forward(self, x):
return self.mul_scalar(self.relu(self.add_scalar(x, 3.0)), 1.0 / 6.0)
class HSwish(nn.Module):
def __init__(self):
super().__init__()
self.hsig = HSigmoid()
self.mul = TorchMultiply()
def forward(self, x):
return self.mul(x, self.hsig(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.parallel
from torch.nn.quantized.modules import FloatFunctional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tmp9 = tmp0 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class TorchAddScalar(nn.Module):
""" Wrapper around torch.add so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.add_func = FloatFunctional()
def forward(self, x, y):
return self.add_func.add_scalar(x, y)
class TorchMultiply(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul(x, y)
class TorchMulScalar(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul_scalar(x, y)
class HSigmoid(nn.Module):
def __init__(self):
super().__init__()
self.relu = nn.ReLU6(inplace=True)
self.add_scalar = TorchAddScalar()
self.mul_scalar = TorchMulScalar()
def forward(self, x):
return self.mul_scalar(self.relu(self.add_scalar(x, 3.0)), 1.0 / 6.0)
class HSwishNew(nn.Module):
def __init__(self):
super().__init__()
self.hsig = HSigmoid()
self.mul = TorchMultiply()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| a1004123217/pytorch-mobile | HSwish | false | 1,338 | [
"MIT"
] | 0 | 97974af3259a2073efbc334d57841efbd3eaadfb | https://github.com/a1004123217/pytorch-mobile/tree/97974af3259a2073efbc334d57841efbd3eaadfb | import torch
import torch.nn as nn
import torch.nn.parallel
from torch.nn.quantized.modules import FloatFunctional
class TorchAddScalar(nn.Module):
""" Wrapper around torch.add so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.add_func = FloatFunctional()
def forward(self, x, y):
return self.add_func.add_scalar(x, y)
class TorchMultiply(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul(x, y)
class TorchMulScalar(nn.Module):
"""Wrapper around torch.mul so that all ops can be found at build
y must be a scalar, needed for quantization
"""
def __init__(self):
super().__init__()
self.mul_func = FloatFunctional()
def forward(self, x, y):
return self.mul_func.mul_scalar(x, y)
class HSigmoid(nn.Module):
def __init__(self):
super().__init__()
self.relu = nn.ReLU6(inplace=True)
self.add_scalar = TorchAddScalar()
self.mul_scalar = TorchMulScalar()
def forward(self, x):
return self.mul_scalar(self.relu(self.add_scalar(x, 3.0)), 1.0 / 6.0)
class Model(nn.Module):
def __init__(self):
super().__init__()
self.hsig = HSigmoid()
self.mul = TorchMultiply()
def forward(self, x):
return self.mul(x, self.hsig(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
MSERegularizedLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/vi/cvilruy7carspjybsnrgvy3mglfdwqxicpxiwwcpduq2zwlylwj6.py
# Topologically Sorted Source Nodes: [mse, pow_1, reg, mul, add], Original ATen: [aten.mse_loss, aten.pow, aten.sum, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mse => mean, pow_1, sub
# mul => mul
# pow_1 => pow_2
# reg => sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg2_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_2,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mul), kwargs = {})
triton_per_fused_add_mse_loss_mul_pow_sum_0 = async_compile.triton('triton_per_fused_add_mse_loss_mul_pow_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mse_loss_mul_pow_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mse_loss_mul_pow_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp7 = tl.load(in_ptr2 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp8 = tmp7 * tmp7
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = 256.0
tmp13 = tmp6 / tmp12
tmp14 = 1.0
tmp15 = tmp11 * tmp14
tmp16 = tmp13 + tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mse, pow_1, reg, mul, add], Original ATen: [aten.mse_loss, aten.pow, aten.sum, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_mse_loss_mul_pow_sum_0.run(buf2, arg1_1, arg0_1, arg2_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
import torch as tc
import torch.nn.functional as F
from torch.nn.modules.module import Module
class MSERegularizedLoss(Module):
def __init__(self, alpha=1):
super(MSERegularizedLoss, self).__init__()
self.alpha = alpha
def forward(self, weights, prediction, target):
mse = F.mse_loss(prediction, target)
reg = tc.sum(tc.pow(weights, 2))
return mse + self.alpha * reg
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
from torch.nn.modules.module import Module
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mse_loss_mul_pow_sum_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp7 = tl.load(in_ptr2 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp8 = tmp7 * tmp7
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = 256.0
tmp13 = tmp6 / tmp12
tmp14 = 1.0
tmp15 = tmp11 * tmp14
tmp16 = tmp13 + tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_mse_loss_mul_pow_sum_0[grid(1)](buf2, arg1_1,
arg0_1, arg2_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf2,
class MSERegularizedLossNew(Module):
def __init__(self, alpha=1):
super(MSERegularizedLossNew, self).__init__()
self.alpha = alpha
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| aalto-intelligent-robotics/mc-dropout-notebooks | MSERegularizedLoss | false | 1,339 | [
"MIT"
] | 0 | fc174c05166061eb21d4c5816c519828c8e72916 | https://github.com/aalto-intelligent-robotics/mc-dropout-notebooks/tree/fc174c05166061eb21d4c5816c519828c8e72916 | from torch.nn import Module
import torch
import torch as tc
import torch.nn.functional as F
from torch.nn.modules.module import Module
class Model(Module):
def __init__(self, alpha=1):
super().__init__()
self.alpha = alpha
def forward(self, weights, prediction, target):
mse = F.mse_loss(prediction, target)
reg = tc.sum(tc.pow(weights, 2))
return mse + self.alpha * reg
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return []
|
CompositeActivation | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/6q/c6qxyfxjspag53ixwmhqtyfapvl7w7tupzhersjhlw7pr5ofsydj.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%div, %div_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = libdevice.atan(tmp5)
tmp7 = 1.4925373134328357
tmp8 = tmp6 * tmp7
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp11 = tmp0 >= tmp3
tmp12 = tl.full([1], 8, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr0 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp11 & xmask, other=0.0)
tmp15 = libdevice.atan(tmp14)
tmp16 = tmp15 * tmp15
tmp17 = 1.6666666666666667
tmp18 = tmp16 * tmp17
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp11, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp10, tmp20)
tl.store(out_ptr0 + (x3), tmp21, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 512, grid=grid(512), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class CompositeActivation(torch.nn.Module):
def forward(self, x):
x = torch.atan(x)
return torch.cat([x / 0.67, x * x / 0.6], 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = libdevice.atan(tmp5)
tmp7 = 1.4925373134328357
tmp8 = tmp6 * tmp7
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp11 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp14 = tl.load(in_ptr0 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp11 &
xmask, other=0.0)
tmp15 = libdevice.atan(tmp14)
tmp16 = tmp15 * tmp15
tmp17 = 1.6666666666666667
tmp18 = tmp16 * tmp17
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp11, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp10, tmp20)
tl.store(out_ptr0 + x3, tmp21, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](arg0_1, buf0, 512, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class CompositeActivationNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| a-kore/lucent | CompositeActivation | false | 1,340 | [
"Apache-2.0"
] | 0 | 6b2b4dfea45c36c99e16f9923104a532df80e0a8 | https://github.com/a-kore/lucent/tree/6b2b4dfea45c36c99e16f9923104a532df80e0a8 | import torch
class Model(torch.nn.Module):
def forward(self, x):
x = torch.atan(x)
return torch.cat([x / 0.67, x * x / 0.6], 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Upsample | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/kh/ckhcwfkk52euszgq7gbchnszz3uu3fvdvi2xcaddlowbgdf27hfj.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index]
# Source node to ATen node mapping:
# x => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_4, add_5, add_6, clamp_max_2, clamp_max_3, clamp_min_1, clamp_min_2, clamp_min_3, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_1, mul_1, mul_2, mul_3, mul_4, sub_1, sub_2, sub_3, sub_4, sub_5, sub_6
# Graph fragment:
# %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
# %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_1, torch.float32), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.25), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0.0), kwargs = {})
# %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_1, torch.int64), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_1, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {})
# %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 16) % 16
x0 = xindex % 16
x2 = (xindex // 256)
x3 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tmp14 = x0
tmp15 = tmp14.to(tl.float32)
tmp16 = tmp15 + tmp2
tmp17 = tmp16 * tmp4
tmp18 = tmp17 - tmp2
tmp19 = triton_helpers.maximum(tmp18, tmp7)
tmp20 = tmp19.to(tl.int32)
tmp21 = tmp20 + tmp10
tmp22 = triton_helpers.minimum(tmp21, tmp12)
tmp23 = tl.load(in_ptr0 + (tmp22 + (4*tmp13) + (16*x2)), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr0 + (tmp20 + (4*tmp13) + (16*x2)), None, eviction_policy='evict_last')
tmp25 = tmp23 - tmp24
tmp26 = tmp20.to(tl.float32)
tmp27 = tmp19 - tmp26
tmp28 = triton_helpers.maximum(tmp27, tmp7)
tmp29 = 1.0
tmp30 = triton_helpers.minimum(tmp28, tmp29)
tmp31 = tmp25 * tmp30
tmp32 = tl.load(in_ptr0 + (tmp20 + (4*tmp9) + (16*x2)), None, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp22 + (4*tmp9) + (16*x2)), None, eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp30
tmp36 = tmp32 + tmp35
tmp37 = tmp24 + tmp31
tmp38 = tmp37 - tmp36
tmp39 = tmp9.to(tl.float32)
tmp40 = tmp8 - tmp39
tmp41 = triton_helpers.maximum(tmp40, tmp7)
tmp42 = triton_helpers.minimum(tmp41, tmp29)
tmp43 = tmp38 * tmp42
tmp44 = tmp36 + tmp43
tl.store(in_out_ptr0 + (x3), tmp44, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
buf2 = buf0; del buf0 # reuse
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(buf3, arg0_1, 4096, grid=grid(4096), stream=stream0)
del arg0_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Upsample(nn.Module):
def __init__(self, factor):
super(Upsample, self).__init__()
self.factor = factor
def forward(self, x):
x = nn.functional.interpolate(x, scale_factor=self.factor, mode=
'bilinear', align_corners=False)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'factor': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(
in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 16 % 16
x0 = xindex % 16
x2 = xindex // 256
x3 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tmp14 = x0
tmp15 = tmp14.to(tl.float32)
tmp16 = tmp15 + tmp2
tmp17 = tmp16 * tmp4
tmp18 = tmp17 - tmp2
tmp19 = triton_helpers.maximum(tmp18, tmp7)
tmp20 = tmp19.to(tl.int32)
tmp21 = tmp20 + tmp10
tmp22 = triton_helpers.minimum(tmp21, tmp12)
tmp23 = tl.load(in_ptr0 + (tmp22 + 4 * tmp13 + 16 * x2), None,
eviction_policy='evict_last')
tmp24 = tl.load(in_ptr0 + (tmp20 + 4 * tmp13 + 16 * x2), None,
eviction_policy='evict_last')
tmp25 = tmp23 - tmp24
tmp26 = tmp20.to(tl.float32)
tmp27 = tmp19 - tmp26
tmp28 = triton_helpers.maximum(tmp27, tmp7)
tmp29 = 1.0
tmp30 = triton_helpers.minimum(tmp28, tmp29)
tmp31 = tmp25 * tmp30
tmp32 = tl.load(in_ptr0 + (tmp20 + 4 * tmp9 + 16 * x2), None,
eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp22 + 4 * tmp9 + 16 * x2), None,
eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp30
tmp36 = tmp32 + tmp35
tmp37 = tmp24 + tmp31
tmp38 = tmp37 - tmp36
tmp39 = tmp9.to(tl.float32)
tmp40 = tmp8 - tmp39
tmp41 = triton_helpers.maximum(tmp40, tmp7)
tmp42 = triton_helpers.minimum(tmp41, tmp29)
tmp43 = tmp38 * tmp42
tmp44 = tmp36 + tmp43
tl.store(in_out_ptr0 + x3, tmp44, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
buf2 = buf0
del buf0
buf3 = buf2
del buf2
get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid
(4096)](buf3, arg0_1, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf3,
class UpsampleNew(nn.Module):
def __init__(self, factor):
super(UpsampleNew, self).__init__()
self.factor = factor
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| a3ahmad/DDPM | Upsample | false | 1,341 | [
"MIT"
] | 0 | 180440740cb82c2b4e7e0b06a0d8e662b5aa3f05 | https://github.com/a3ahmad/DDPM/tree/180440740cb82c2b4e7e0b06a0d8e662b5aa3f05 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, factor):
super().__init__()
self.factor = factor
def forward(self, x):
x = nn.functional.interpolate(x, scale_factor=self.factor, mode=
'bilinear', align_corners=False)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
UpSample | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/qh/cqhya6theq3cyi3hhxcsdbxfd6fgb5momtoovf7apj7ashpshxiz.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.pixel_shuffle]
# Source node to ATen node mapping:
# x_1 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_pixel_shuffle_0 = async_compile.triton('triton_poi_fused_pixel_shuffle_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 2], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pixel_shuffle_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pixel_shuffle_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 512
xnumel = 2
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x5 = xindex
y0 = yindex % 4
y1 = (yindex // 4) % 2
y2 = (yindex // 8) % 4
y6 = (yindex // 32)
y3 = (yindex // 32) % 4
y7 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*y2) + (16*x5) + (32*y1) + (64*y6)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x5 + (2*y1) + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x5 + (2*y7)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 2, 4, 2), (256, 64, 16, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.pixel_shuffle]
stream0 = get_raw_stream(0)
triton_poi_fused_pixel_shuffle_0.run(buf0, primals_2, buf1, 512, 2, grid=grid(512, 2), stream=stream0)
del buf0
del primals_2
return (reinterpret_tensor(buf1, (4, 4, 8, 8), (256, 64, 8, 1), 0), primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class UpSample(nn.Module):
def __init__(self, n_channels, factor=2):
super(UpSample, self).__init__()
out_channels = n_channels * factor * factor
self.proj = nn.Conv2d(n_channels, out_channels, 1, 1, 0)
self.up = nn.PixelShuffle(factor)
self.init_weight()
def forward(self, x):
x = self.proj(x)
x = self.up(x)
return x
def init_weight(self):
nn.init.xavier_normal_(self.proj.weight, gain=1.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_pixel_shuffle_0(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 512
xnumel = 2
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x5 = xindex
y0 = yindex % 4
y1 = yindex // 4 % 2
y2 = yindex // 8 % 4
y6 = yindex // 32
y3 = yindex // 32 % 4
y7 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * y2 + 16 * x5 + 32 * y1 + 64 * y6),
xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x5 + 2 * y1 + 4 * y3), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x5 + 2 * y7), tmp2, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 2, 4, 2), (256, 64, 16, 8, 2, 1
), torch.float32)
get_raw_stream(0)
triton_poi_fused_pixel_shuffle_0[grid(512, 2)](buf0, primals_2,
buf1, 512, 2, XBLOCK=2, YBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
return reinterpret_tensor(buf1, (4, 4, 8, 8), (256, 64, 8, 1), 0
), primals_1, primals_3
class UpSampleNew(nn.Module):
def __init__(self, n_channels, factor=2):
super(UpSampleNew, self).__init__()
out_channels = n_channels * factor * factor
self.proj = nn.Conv2d(n_channels, out_channels, 1, 1, 0)
self.up = nn.PixelShuffle(factor)
self.init_weight()
def init_weight(self):
nn.init.xavier_normal_(self.proj.weight, gain=1.0)
def forward(self, input_0):
primals_1 = self.proj.weight
primals_2 = self.proj.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| aa10402tw/RealTime-Segmentation | UpSample | false | 1,342 | [
"MIT"
] | 0 | 8c5cf13cd5570c48fa7bae9e6ec014989450889d | https://github.com/aa10402tw/RealTime-Segmentation/tree/8c5cf13cd5570c48fa7bae9e6ec014989450889d | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, n_channels, factor=2):
super().__init__()
out_channels = n_channels * factor * factor
self.proj = nn.Conv2d(n_channels, out_channels, 1, 1, 0)
self.up = nn.PixelShuffle(factor)
self.init_weight()
def forward(self, x):
x = self.proj(x)
x = self.up(x)
return x
def init_weight(self):
nn.init.xavier_normal_(self.proj.weight, gain=1.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Attention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/xq/cxqnkvz6ksfxzcebv4n77pe5u6roargnnmapis6ymq4r6b5krclq.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/lz/clzpvkxf6ex2lbapm65egvjtcerb3lrxuftxtlzwwccfjna7dphr.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/fl/cflqjpkz2pc5b2u4o5gdil4hlhm64fqkltbypl4idrlujgqbjvjh.py
# Topologically Sorted Source Nodes: [scored_x, condensed_x], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# condensed_x => sum_2
# scored_x => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %view_2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
triton_poi_fused_mul_sum_2 = async_compile.triton('triton_poi_fused_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp8 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp12 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 1), (1, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 16, grid=grid(16), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [scored_x, condensed_x], Original ATen: [aten.mul, aten.sum]
triton_poi_fused_mul_sum_2.run(primals_2, buf2, buf3, 16, grid=grid(16), stream=stream0)
del buf2
return (buf3, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
def new_parameter(*size):
out = nn.Parameter(torch.FloatTensor(*size))
torch.nn.init.xavier_normal_(out)
return out
class Attention(nn.Module):
def __init__(self, attention_size):
super(Attention, self).__init__()
self.attention = new_parameter(attention_size, 1)
def forward(self, x_in):
attention_score = torch.matmul(x_in, self.attention).squeeze()
attention_score = F.softmax(attention_score, dim=0).view(x_in.size(
0), x_in.size(1), 1)
scored_x = x_in * attention_score
condensed_x = torch.sum(scored_x, dim=1)
return condensed_x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'attention_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp8 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 1), (1, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf1, buf2, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
triton_poi_fused_mul_sum_2[grid(16)](primals_2, buf2, buf3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del buf2
return buf3, primals_2, buf0
def new_parameter(*size):
out = nn.Parameter(torch.FloatTensor(*size))
torch.nn.init.xavier_normal_(out)
return out
class AttentionNew(nn.Module):
def __init__(self, attention_size):
super(AttentionNew, self).__init__()
self.attention = new_parameter(attention_size, 1)
def forward(self, input_0):
primals_1 = self.attention
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| aaronbae/acl2020-dialogue-coherence-assessment | Attention | false | 1,343 | [
"MIT"
] | 0 | 98142558b2f80ace390d6b583a3242a373803a85 | https://github.com/aaronbae/acl2020-dialogue-coherence-assessment/tree/98142558b2f80ace390d6b583a3242a373803a85 | import torch
import torch.nn.functional as F
import torch.nn as nn
def new_parameter(*size):
out = nn.Parameter(torch.FloatTensor(*size))
torch.nn.init.xavier_normal_(out)
return out
class Model(nn.Module):
def __init__(self, attention_size):
super().__init__()
self.attention = new_parameter(attention_size, 1)
def forward(self, x_in):
attention_score = torch.matmul(x_in, self.attention).squeeze()
attention_score = F.softmax(attention_score, dim=0).view(x_in.size(
0), x_in.size(1), 1)
scored_x = x_in * attention_score
condensed_x = torch.sum(scored_x, dim=1)
return condensed_x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4]
|
MaxPool2dLayer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/7r/c7rzxjltguesvkazbysb26gqvur5priptu7klxnxqooaclt5izep.py
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2) % 2
x2 = (xindex // 4)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + (4*x1) + (16*x2)), xmask)
tmp3 = tl.load(in_ptr0 + (2 + x0 + (4*x1) + (16*x2)), xmask)
tmp5 = tl.load(in_ptr0 + (4 + x0 + (4*x1) + (16*x2)), xmask)
tmp7 = tl.load(in_ptr0 + (5 + x0 + (4*x1) + (16*x2)), xmask)
tmp9 = tl.load(in_ptr0 + (6 + x0 + (4*x1) + (16*x2)), xmask)
tmp11 = tl.load(in_ptr0 + (8 + x0 + (4*x1) + (16*x2)), xmask)
tmp13 = tl.load(in_ptr0 + (9 + x0 + (4*x1) + (16*x2)), xmask)
tmp15 = tl.load(in_ptr0 + (10 + x0 + (4*x1) + (16*x2)), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tl.store(out_ptr0 + (x3), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class MaxPool2dLayer(nn.Module):
def forward(self, tensor, kernel_size=(3, 3), stride=(1, 1), padding=0,
ceil_mode=False):
return F.max_pool2d(tensor, kernel_size, stride=stride, padding=
padding, ceil_mode=ceil_mode)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2 % 2
x2 = xindex // 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 4 * x1 + 16 * x2), xmask)
tmp3 = tl.load(in_ptr0 + (2 + x0 + 4 * x1 + 16 * x2), xmask)
tmp5 = tl.load(in_ptr0 + (4 + x0 + 4 * x1 + 16 * x2), xmask)
tmp7 = tl.load(in_ptr0 + (5 + x0 + 4 * x1 + 16 * x2), xmask)
tmp9 = tl.load(in_ptr0 + (6 + x0 + 4 * x1 + 16 * x2), xmask)
tmp11 = tl.load(in_ptr0 + (8 + x0 + 4 * x1 + 16 * x2), xmask)
tmp13 = tl.load(in_ptr0 + (9 + x0 + 4 * x1 + 16 * x2), xmask)
tmp15 = tl.load(in_ptr0 + (10 + x0 + 4 * x1 + 16 * x2), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tl.store(out_ptr0 + x3, tmp16, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(64)](arg0_1, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
return buf0,
class MaxPool2dLayerNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| a-kore/lucent | MaxPool2dLayer | false | 1,344 | [
"Apache-2.0"
] | 0 | 6b2b4dfea45c36c99e16f9923104a532df80e0a8 | https://github.com/a-kore/lucent/tree/6b2b4dfea45c36c99e16f9923104a532df80e0a8 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def forward(self, tensor, kernel_size=(3, 3), stride=(1, 1), padding=0,
ceil_mode=False):
return F.max_pool2d(tensor, kernel_size, stride=stride, padding=
padding, ceil_mode=ceil_mode)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
LocalNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/we/cwerb6bh4wkw66tuuogvvdhshhz6u3cw5s3a4jqb23ftxyfx5pg2.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# pad => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = (xindex // 6) % 6
x2 = (xindex // 36)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/gd/cgdqnufkmolkhmahgpirghlilfdhf2tzbnkmaswr2jaio34ke2tp.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => gt
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/4h/c4hp7y3t3avb7y4kdpd3qny63wnyjqlzzqqpgqgesca5dwxpwjbq.py
# Topologically Sorted Source Nodes: [conv2d, x, pad_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# conv2d => convolution
# pad_1 => _unsafe_index_2, _unsafe_index_3
# x => mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
# %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = (xindex // 6) % 6
x4 = (xindex // 36)
x2 = (xindex // 36) % 64
x5 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x4)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x4)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 0.01
tmp5 = tmp3 * tmp4
tmp6 = tl.where(tmp0, tmp3, tmp5)
tl.store(out_ptr0 + (x5), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/tz/ctz2qoenjoyo6tyt4vbajmakep7el2x5bm5bjwz5dxrqesj5uyf2.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_1 => gt_1, mul_1, where_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.01), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {})
triton_poi_fused_convolution_leaky_relu_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 16, 4, 4), (256, 16, 4, 1))
assert_size_stride(primals_2, (64, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 6, 6), (576, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 2304, grid=grid(2304), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1))
buf2 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_1.run(buf1, primals_3, buf2, 4096, grid=grid(4096), stream=stream0)
buf3 = empty_strided_cuda((4, 64, 6, 6), (2304, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, x, pad_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.reflection_pad2d]
triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2.run(buf2, buf1, primals_3, buf3, 9216, grid=grid(9216), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 4, 4), (1024, 16, 4, 1))
buf5 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool)
buf6 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_3.run(buf4, primals_5, buf5, buf6, 4096, grid=grid(4096), stream=stream0)
del buf4
del primals_5
return (buf6, primals_2, primals_4, buf0, buf2, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 16, 4, 4), (256, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class LocalNet(nn.Module):
def forward(self, x_in):
"""Double convolutional block
:param x_in: image features
:returns: image features
:rtype: Tensor
"""
x = self.lrelu(self.conv1(self.refpad(x_in)))
x = self.lrelu(self.conv2(self.refpad(x)))
return x
def __init__(self, in_channels=16, out_channels=64):
"""Double convolutional block
:param in_channels: number of input channels
:param out_channels: number of output channels
:returns: N/A
:rtype: N/A
"""
super(LocalNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 1, 0, 1)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, 0, 1)
self.lrelu = nn.LeakyReLU()
self.refpad = nn.ReflectionPad2d(1)
def get_inputs():
return [torch.rand([4, 16, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2),
xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = xindex // 6 % 6
x4 = xindex // 36
x2 = xindex // 36 % 64
x5 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x4),
xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x4),
xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 0.01
tmp5 = tmp3 * tmp4
tmp6 = tl.where(tmp0, tmp3, tmp5)
tl.store(out_ptr0 + x5, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 16, 4, 4), (256, 16, 4, 1))
assert_size_stride(primals_2, (64, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 6, 6), (576, 36, 6, 1), torch.float32
)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(2304)](primals_1, buf0,
2304, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1))
buf2 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_1[grid(4096)](buf1,
primals_3, buf2, 4096, XBLOCK=128, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 64, 6, 6), (2304, 36, 6, 1), torch.
float32)
triton_poi_fused_convolution_leaky_relu_reflection_pad2d_2[grid(9216)](
buf2, buf1, primals_3, buf3, 9216, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_3
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 4, 4), (1024, 16, 4, 1))
buf5 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool)
buf6 = buf1
del buf1
triton_poi_fused_convolution_leaky_relu_3[grid(4096)](buf4,
primals_5, buf5, buf6, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del buf4
del primals_5
return buf6, primals_2, primals_4, buf0, buf2, buf3, buf5
class LocalNetNew(nn.Module):
def __init__(self, in_channels=16, out_channels=64):
"""Double convolutional block
:param in_channels: number of input channels
:param out_channels: number of output channels
:returns: N/A
:rtype: N/A
"""
super(LocalNetNew, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 1, 0, 1)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, 0, 1)
self.lrelu = nn.LeakyReLU()
self.refpad = nn.ReflectionPad2d(1)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ZombaSY/DeepLPF | LocalNet | false | 1,345 | [
"BSD-3-Clause"
] | 0 | adce64ae01bc9e32f465a354cb1f6534f0d13597 | https://github.com/ZombaSY/DeepLPF/tree/adce64ae01bc9e32f465a354cb1f6534f0d13597 | import torch
import torch.nn as nn
class Model(nn.Module):
def forward(self, x_in):
"""Double convolutional block
:param x_in: image features
:returns: image features
:rtype: Tensor
"""
x = self.lrelu(self.conv1(self.refpad(x_in)))
x = self.lrelu(self.conv2(self.refpad(x)))
return x
def __init__(self, in_channels=16, out_channels=64):
"""Double convolutional block
:param in_channels: number of input channels
:param out_channels: number of output channels
:returns: N/A
:rtype: N/A
"""
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 1, 0, 1)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, 0, 1)
self.lrelu = nn.LeakyReLU()
self.refpad = nn.ReflectionPad2d(1)
def get_inputs():
return [torch.rand([4, 16, 4, 4])]
def get_init_inputs():
return []
|
InvConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/wq/cwqd6vvzq3zwrse3lj56kpmanvt2qz6gliz3yzesc627ryaf4eaj.py
# Topologically Sorted Source Nodes: [mul, ldj, sldj], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# ldj => mul_1
# mul => mul
# sldj => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul_1), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = 4.0
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp3
tmp6 = tmp0 + tmp5
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [slogdet], Original ATen: [aten._linalg_slogdet]
buf0 = torch.ops.aten._linalg_slogdet.default(primals_1)
buf2 = buf0[1]
buf3 = buf0[2]
buf4 = buf0[3]
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, ldj, sldj], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(primals_3, buf2, buf5, 256, grid=grid(256), stream=stream0)
del buf2
del primals_3
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(primals_2, reinterpret_tensor(primals_1, (4, 4, 1, 1), (4, 1, 1, 1), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
return (buf6, buf5, primals_2, buf3, buf4, reinterpret_tensor(primals_1, (4, 4, 1, 1), (4, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
class InvConv(nn.Module):
"""Invertible 1x1 Convolution for 2D inputs. Originally described in Glow
(https://arxiv.org/abs/1807.03039). Does not support LU-decomposed version.
Args:
num_channels (int): Number of channels in the input and output.
"""
def __init__(self, num_channels):
super(InvConv, self).__init__()
self.num_channels = num_channels
w_init = np.random.randn(num_channels, num_channels)
w_init = np.linalg.qr(w_init)[0].astype(np.float32)
self.weight = nn.Parameter(torch.from_numpy(w_init))
def forward(self, x, sldj, reverse=False):
ldj = torch.slogdet(self.weight)[1] * x.size(2) * x.size(3)
if reverse:
weight = torch.inverse(self.weight.double()).float()
sldj = sldj - ldj
else:
weight = self.weight
sldj = sldj + ldj
weight = weight.view(self.num_channels, self.num_channels, 1, 1)
z = F.conv2d(x, weight)
return z, sldj
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = 4.0
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp3
tmp6 = tmp0 + tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._linalg_slogdet.default(primals_1)
buf2 = buf0[1]
buf3 = buf0[2]
buf4 = buf0[3]
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](primals_3, buf2, buf5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del buf2
del primals_3
buf6 = extern_kernels.convolution(primals_2, reinterpret_tensor(
primals_1, (4, 4, 1, 1), (4, 1, 1, 1), 0), stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
return buf6, buf5, primals_2, buf3, buf4, reinterpret_tensor(primals_1,
(4, 4, 1, 1), (4, 1, 1, 1), 0)
class InvConvNew(nn.Module):
"""Invertible 1x1 Convolution for 2D inputs. Originally described in Glow
(https://arxiv.org/abs/1807.03039). Does not support LU-decomposed version.
Args:
num_channels (int): Number of channels in the input and output.
"""
def __init__(self, num_channels):
super(InvConvNew, self).__init__()
self.num_channels = num_channels
w_init = np.random.randn(num_channels, num_channels)
w_init = np.linalg.qr(w_init)[0].astype(np.float32)
self.weight = nn.Parameter(torch.from_numpy(w_init))
def forward(self, input_0, input_1):
primals_1 = self.weight
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| a-heintz/Flow-based-RelativeStateEstimation | InvConv | false | 1,346 | [
"MIT"
] | 0 | 9633fd74323db1206969186c2d2caa7a766e1948 | https://github.com/a-heintz/Flow-based-RelativeStateEstimation/tree/9633fd74323db1206969186c2d2caa7a766e1948 | import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
class Model(nn.Module):
"""Invertible 1x1 Convolution for 2D inputs. Originally described in Glow
(https://arxiv.org/abs/1807.03039). Does not support LU-decomposed version.
Args:
num_channels (int): Number of channels in the input and output.
"""
def __init__(self, num_channels):
super().__init__()
self.num_channels = num_channels
w_init = np.random.randn(num_channels, num_channels)
w_init = np.linalg.qr(w_init)[0].astype(np.float32)
self.weight = nn.Parameter(torch.from_numpy(w_init))
def forward(self, x, sldj, reverse=False):
ldj = torch.slogdet(self.weight)[1] * x.size(2) * x.size(3)
if reverse:
weight = torch.inverse(self.weight.double()).float()
sldj = sldj - ldj
else:
weight = self.weight
sldj = sldj + ldj
weight = weight.view(self.num_channels, self.num_channels, 1, 1)
z = F.conv2d(x, weight)
return z, sldj
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
DiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/s7/cs7jv7spsytbq3ouvdhla2tcr7wzgoznysid6m7rapuqn7g7cc3h.py
# Topologically Sorted Source Nodes: [mul, intersection, sum_2, sum_3], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# intersection => sum_1
# mul => mul
# sum_2 => sum_2
# sum_3 => sum_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [1]), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_1, [1]), kwargs = {})
triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
tl.store(out_ptr1 + (x0), tmp10, xmask)
tl.store(out_ptr2 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/wf/cwfp66pdiuvpu7ia4v5ln2nftqomh4gdpfux44irhboxg3weyrzz.py
# Topologically Sorted Source Nodes: [mul_1, add_1, union, add_2, loss, sum_4, truediv_1, loss_1], Original ATen: [aten.mul, aten.add, aten.div, aten.sum, aten.rsub]
# Source node to ATen node mapping:
# add_1 => add_1
# add_2 => add_2
# loss => div
# loss_1 => sub
# mul_1 => mul_1
# sum_4 => sum_4
# truediv_1 => div_1
# union => add
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_2), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%div,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_4, 4), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_1), kwargs = {})
triton_per_fused_add_div_mul_rsub_sum_1 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp5 = tl.load(in_ptr1 + (r0), None)
tmp6 = tl.load(in_ptr2 + (r0), None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp13 = 0.25
tmp14 = tmp12 * tmp13
tmp15 = tmp3 - tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul, intersection, sum_2, sum_3], Original ATen: [aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_mul_sum_0.run(arg1_1, arg0_1, buf0, buf1, buf2, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [mul_1, add_1, union, add_2, loss, sum_4, truediv_1, loss_1], Original ATen: [aten.mul, aten.add, aten.div, aten.sum, aten.rsub]
triton_per_fused_add_div_mul_rsub_sum_1.run(buf4, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0)
del buf0
del buf1
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class DiceLoss(nn.Module):
def __init__(self):
super(DiceLoss, self).__init__()
def forward(self, predict, target):
N = target.size(0)
smooth = 1
predict_flat = predict.view(N, -1)
target_flat = target.view(N, -1)
intersection = (predict_flat * target_flat).sum(1)
union = predict_flat.sum(1) + target_flat.sum(1)
loss = (2 * intersection + smooth) / (union + smooth)
loss = 1 - loss.sum() / N
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
tl.store(out_ptr2 + x0, tmp14, xmask)
@triton.jit
def triton_per_fused_add_div_mul_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp5 = tl.load(in_ptr1 + r0, None)
tmp6 = tl.load(in_ptr2 + r0, None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp13 = 0.25
tmp14 = tmp12 * tmp13
tmp15 = tmp3 - tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp15, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_mul_sum_0[grid(4)](arg1_1, arg0_1, buf0, buf1,
buf2, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused_add_div_mul_rsub_sum_1[grid(1)](buf4, buf0, buf1,
buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
del buf2
return buf4,
class DiceLossNew(nn.Module):
def __init__(self):
super(DiceLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| abc008/MT-Brain-Network | DiceLoss | false | 1,347 | [
"MIT"
] | 0 | a823722d4d3211c955bc1370bd8399d27c6640f4 | https://github.com/abc008/MT-Brain-Network/tree/a823722d4d3211c955bc1370bd8399d27c6640f4 | import torch
from torch import nn
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, predict, target):
N = target.size(0)
smooth = 1
predict_flat = predict.view(N, -1)
target_flat = target.view(N, -1)
intersection = (predict_flat * target_flat).sum(1)
union = predict_flat.sum(1) + target_flat.sum(1)
loss = (2 * intersection + smooth) / (union + smooth)
loss = 1 - loss.sum() / N
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
GLU | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/3u/c3ub52l73zdv4klgqzgxmtzrzxvztuyczv2jksnvrjr7erq7guxd.py
# Topologically Sorted Source Nodes: [lin], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# lin => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/eu/ceuy5y6cmvv7idk73hvklse2qywa2owwzat7b2fwrhoeuuhlzcm5.py
# Topologically Sorted Source Nodes: [sig, res], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# res => mul
# sig => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_2, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 16
y1 = (yindex // 16)
tmp0 = tl.load(in_out_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (x2 + (4*y3)), tmp5, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [lin], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [lin], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 1, 16, 4), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [sig, res], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_1.run(buf2, primals_3, primals_1, 64, 4, grid=grid(64, 4), stream=stream0)
del primals_3
return (buf2, primals_1, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class GLU(nn.Module):
def __init__(self, input_num):
super(GLU, self).__init__()
self.sigmoid = nn.Sigmoid()
self.linear = nn.Linear(input_num, input_num)
def forward(self, x):
lin = self.linear(x.permute(0, 2, 3, 1))
lin = lin.permute(0, 3, 1, 2)
sig = self.sigmoid(x)
res = lin * sig
return res
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_num': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_out_ptr0, in_ptr0, in_ptr1, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 16
y1 = yindex // 16
tmp0 = tl.load(in_out_ptr0 + (x2 + 4 * y3), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (x2 + 4 * y3), tmp5, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 1, 16, 4), 0)
del buf1
triton_poi_fused_mul_sigmoid_1[grid(64, 4)](buf2, primals_3,
primals_1, 64, 4, XBLOCK=4, YBLOCK=64, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_1, reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
class GLUNew(nn.Module):
def __init__(self, input_num):
super(GLUNew, self).__init__()
self.sigmoid = nn.Sigmoid()
self.linear = nn.Linear(input_num, input_num)
def forward(self, input_0):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| aagnone3/dc19t2 | GLU | false | 1,348 | [
"Apache-2.0"
] | 0 | cc7baf2a8fe73d28c224f0bf68b5355efd96c24f | https://github.com/aagnone3/dc19t2/tree/cc7baf2a8fe73d28c224f0bf68b5355efd96c24f | import torch
from torch import nn
class Model(nn.Module):
def __init__(self, input_num):
super().__init__()
self.sigmoid = nn.Sigmoid()
self.linear = nn.Linear(input_num, input_num)
def forward(self, x):
lin = self.linear(x.permute(0, 2, 3, 1))
lin = lin.permute(0, 3, 1, 2)
sig = self.sigmoid(x)
res = lin * sig
return res
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SqueezeExcite | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [x_se], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# x_se => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/o5/co5kpgkyaabh4nd7yz4gzpyl7x35mwdhgusbruykvtydzlq2lizg.py
# Topologically Sorted Source Nodes: [x_se_1, x_se_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_se_1 => convolution
# x_se_2 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/hc/chcuw27vv75itefu6xswbdhopf2pq6oaj4bww4whelczhqtkghqr.py
# Topologically Sorted Source Nodes: [x_se_3, add, relu6, truediv, x], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# relu6 => clamp_max, clamp_min
# truediv => div
# x => mul
# x_se_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %div), kwargs = {})
triton_poi_fused_add_convolution_div_hardtanh_mul_2 = async_compile.triton('triton_poi_fused_add_convolution_div_hardtanh_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_hardtanh_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_div_hardtanh_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 16)
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 3.0
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = 6.0
tmp9 = triton_helpers.minimum(tmp7, tmp8)
tmp10 = 0.16666666666666666
tmp11 = tmp9 * tmp10
tmp12 = tmp0 * tmp11
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/rh/crhdgkbcu2rbqzaxws3536qfrpjhmp6d6zhyebzqejxvceodywdi.py
# Topologically Sorted Source Nodes: [x_se_3, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward]
# Source node to ATen node mapping:
# add => add
# x_se_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, 3.0), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add, 0), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add, 6), kwargs = {})
# %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {})
triton_poi_fused_add_convolution_hardtanh_backward_3 = async_compile.triton('triton_poi_fused_add_convolution_hardtanh_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_hardtanh_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_hardtanh_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tmp7 = 6.0
tmp8 = tmp4 >= tmp7
tmp9 = tmp6 | tmp8
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x_se], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [x_se_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_se_1, x_se_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [x_se_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_se_3, add, relu6, truediv, x], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul]
triton_poi_fused_add_convolution_div_hardtanh_mul_2.run(primals_1, buf4, primals_5, buf5, 256, grid=grid(256), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_se_3, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward]
triton_poi_fused_add_convolution_hardtanh_backward_3.run(buf4, primals_5, buf6, 16, grid=grid(16), stream=stream0)
del buf4
del primals_5
return (buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.nn.functional as F
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def hard_sigmoid(x, inplace: 'bool'=False):
if inplace:
return x.add_(3.0).clamp_(0.0, 6.0).div_(6.0)
else:
return F.relu6(x + 3.0) / 6.0
class SqueezeExcite(nn.Module):
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
super(SqueezeExcite, self).__init__()
self.gate_fn = gate_fn
reduced_chs = _make_divisible((reduced_base_chs or in_chs) *
se_ratio, divisor)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.act1 = act_layer(inplace=True)
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
def forward(self, x):
x_se = self.avg_pool(x)
x_se = self.conv_reduce(x_se)
x_se = self.act1(x_se)
x_se = self.conv_expand(x_se)
x = x * self.gate_fn(x_se)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_chs': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.parallel
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_div_hardtanh_mul_2(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 3.0
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = 6.0
tmp9 = triton_helpers.minimum(tmp7, tmp8)
tmp10 = 0.16666666666666666
tmp11 = tmp9 * tmp10
tmp12 = tmp0 * tmp11
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_convolution_hardtanh_backward_3(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tmp7 = 6.0
tmp8 = tmp4 >= tmp7
tmp9 = tmp6 | tmp8
tl.store(out_ptr0 + x2, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(16)](buf3, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_convolution_div_hardtanh_mul_2[grid(256)](
primals_1, buf4, primals_5, buf5, 256, XBLOCK=128, num_warps=4,
num_stages=1)
buf6 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
triton_poi_fused_add_convolution_hardtanh_backward_3[grid(16)](buf4,
primals_5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf4
del primals_5
return buf5, primals_1, primals_2, primals_4, buf1, buf3, buf6
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def hard_sigmoid(x, inplace: 'bool'=False):
if inplace:
return x.add_(3.0).clamp_(0.0, 6.0).div_(6.0)
else:
return F.relu6(x + 3.0) / 6.0
class SqueezeExciteNew(nn.Module):
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
super(SqueezeExciteNew, self).__init__()
self.gate_fn = gate_fn
reduced_chs = _make_divisible((reduced_base_chs or in_chs) *
se_ratio, divisor)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.act1 = act_layer(inplace=True)
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
def forward(self, input_0):
primals_2 = self.conv_reduce.weight
primals_3 = self.conv_reduce.bias
primals_4 = self.conv_expand.weight
primals_5 = self.conv_expand.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| a1004123217/pytorch-mobile | SqueezeExcite | false | 1,349 | [
"MIT"
] | 0 | 97974af3259a2073efbc334d57841efbd3eaadfb | https://github.com/a1004123217/pytorch-mobile/tree/97974af3259a2073efbc334d57841efbd3eaadfb | import torch
import torch.nn as nn
import torch.nn.parallel
import torch.nn.functional as F
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def hard_sigmoid(x, inplace: 'bool'=False):
if inplace:
return x.add_(3.0).clamp_(0.0, 6.0).div_(6.0)
else:
return F.relu6(x + 3.0) / 6.0
class Model(nn.Module):
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
super().__init__()
self.gate_fn = gate_fn
reduced_chs = _make_divisible((reduced_base_chs or in_chs) *
se_ratio, divisor)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.act1 = act_layer(inplace=True)
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
def forward(self, x):
x_se = self.avg_pool(x)
x_se = self.conv_reduce(x_se)
x_se = self.act1(x_se)
x_se = self.conv_expand(x_se)
x = x * self.gate_fn(x_se)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.